Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/Matchbox/Base/MatchboxAmplitude.h b/MatrixElement/Matchbox/Base/MatchboxAmplitude.h
--- a/MatrixElement/Matchbox/Base/MatchboxAmplitude.h
+++ b/MatrixElement/Matchbox/Base/MatchboxAmplitude.h
@@ -1,542 +1,554 @@
// -*- C++ -*-
//
// MatchboxAmplitude.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MatchboxAmplitude_H
#define HERWIG_MatchboxAmplitude_H
//
// This is the declaration of the MatchboxAmplitude class.
//
#include "ThePEG/MatrixElement/Amplitude.h"
#include "ThePEG/Handlers/LastXCombInfo.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/ColourBasis.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/SpinCorrelationTensor.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/LastMatchboxXCombInfo.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxXComb.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxMEBase.fh"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.fh"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief Process information with coupling order
*/
struct Process {
PDVector legs;
unsigned int orderInAlphaS;
unsigned int orderInAlphaEW;
Process()
: orderInAlphaS(0), orderInAlphaEW(0) {}
Process(const PDVector& p,
unsigned int oas,
unsigned int oae)
: legs(p), orderInAlphaS(oas), orderInAlphaEW(oae) {}
bool operator==(const Process& other) const {
return
legs == other.legs &&
orderInAlphaS == other.orderInAlphaS &&
orderInAlphaEW == other.orderInAlphaEW;
}
bool operator<(const Process& other) const {
if ( orderInAlphaS != other.orderInAlphaS )
return orderInAlphaS < other.orderInAlphaS;
if ( orderInAlphaEW != other.orderInAlphaEW )
return orderInAlphaEW < other.orderInAlphaEW;
return legs < other.legs;
}
void persistentOutput(PersistentOStream & os) const {
os << legs << orderInAlphaS << orderInAlphaEW;
}
void persistentInput(PersistentIStream & is) {
is >> legs >> orderInAlphaS >> orderInAlphaEW;
}
};
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief Enumerate the type of calculation required
*/
namespace ProcessType {
enum Types {
treeME2 = 0,
colourCorrelatedME2,
spinColourCorrelatedME2,
oneLoopInterference
};
}
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief MatchboxAmplitude is the base class for amplitude
* implementations inside Matchbox.
*
* @see \ref MatchboxAmplitudeInterfaces "The interfaces"
* defined for MatchboxAmplitude.
*/
class MatchboxAmplitude:
public Amplitude,
public LastXCombInfo<StandardXComb>,
public LastMatchboxXCombInfo {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MatchboxAmplitude();
/**
* The destructor.
*/
virtual ~MatchboxAmplitude();
//@}
public:
/**
* Return the amplitude. Needs to be implemented from
* ThePEG::Amplitude but is actually ill-defined, as colours of the
* external particles are not specified. To this extent, this
* implementation just asserts.
*/
virtual Complex value(const tcPDVector & particles,
const vector<Lorentz5Momentum> & momenta,
const vector<int> & helicities);
/** @name Subprocess information */
//@{
/**
* Return true, if this amplitude can handle the given process.
*/
virtual bool canHandle(const PDVector& p,
Ptr<MatchboxFactory>::tptr) const { return canHandle(p); }
/**
* Return true, if this amplitude can handle the given process.
*/
virtual bool canHandle(const PDVector&) const { return false; }
/**
* Return the number of random numbers required to evaluate this
* amplitude at a fixed phase space point.
*/
virtual int nDimAdditional() const { return 0; }
/**
* Return a ME instance appropriate for this amplitude and the given
* subprocesses
*/
virtual Ptr<MatchboxMEBase>::ptr makeME(const PDVector&) const;
/**
* Set the (tree-level) order in \f$g_S\f$ in which this matrix
* element should be evaluated.
*/
virtual void orderInGs(unsigned int) {}
/**
* Return the (tree-level) order in \f$g_S\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInGs() const = 0;
/**
* Set the (tree-level) order in \f$g_{EM}\f$ in which this matrix
* element should be evaluated.
*/
virtual void orderInGem(unsigned int) {}
/**
* Return the (tree-level) order in \f$g_{EM}\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInGem() const = 0;
/**
* Return the Herwig++ StandardModel object
*/
Ptr<StandardModel>::tcptr standardModel() {
if ( !hwStandardModel() )
hwStandardModel(dynamic_ptr_cast<Ptr<StandardModel>::tcptr>(HandlerBase::standardModel()));
return hwStandardModel();
}
/**
* Tell whether the outgoing partons should be sorted when determining
* allowed subprocesses. Otherwise, all permutations are counted as
* separate subprocesses.
*/
virtual bool sortOutgoing() { return true; }
/**
+ * Return true, if this amplitude already includes averaging over
+ * incoming parton's quantum numbers.
+ */
+ virtual bool hasInitialAverage() const { return false; }
+
+ /**
+ * Return true, if this amplitude already includes symmetry factors
+ * for identical outgoing particles.
+ */
+ virtual bool hasFinalStateSymmetry() const { return false; }
+
+ /**
* Return true, if this amplitude is handled by a BLHA one-loop provider
*/
virtual bool isOLPTree() const { return false; }
/**
* Return true, if this amplitude is handled by a BLHA one-loop provider
*/
virtual bool isOLPLoop() const { return false; }
/**
* Write the order file header
*/
virtual void olpOrderFileHeader(ostream&) const;
/**
* Write the order file process list
*/
virtual void olpOrderFileProcessGroup(ostream&,
const string&,
const set<Process>&) const;
/**
* Write the order file process list
*/
virtual void olpOrderFileProcesses(ostream&,
const map<pair<Process,int>,int>& procs) const;
/**
* Start the one loop provider, if appropriate, giving order and
* contract files
*/
virtual void signOLP(const string&, const string&) { }
/**
* Start the one loop provider, if appropriate
*/
virtual void startOLP(const string&, int& status) { status = -1; }
/**
* Start the one loop provider, if appropriate. This default
* implementation writes an BLHA 2.0 order file and starts the OLP
*/
virtual bool startOLP(const map<pair<Process,int>,int>& procs);
//@}
/** @name Colour basis. */
//@{
/**
* Return the colour basis.
*/
Ptr<ColourBasis>::tptr colourBasis() const { return theColourBasis; }
/**
* Return true, if this amplitude will not require colour correlations.
*/
virtual bool noCorrelations() const { return !haveOneLoop(); }
/**
* Return true, if the colour basis is capable of assigning colour
* flows.
*/
virtual bool haveColourFlows() const {
return colourBasis() ? colourBasis()->haveColourFlows() : false;
}
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
*/
virtual Selector<const ColourLines *> colourGeometries(tcDiagPtr diag) const;
/**
* Return an ordering identifier for the current subprocess and
* colour absis tensor index.
*/
const string& colourOrderingString(size_t id) const;
/**
* Return an ordering identifier for the current subprocess and
* colour absis tensor index.
*/
const vector<vector<size_t> >& colourOrdering(size_t id) const;
//@}
/** @name Phasespace point, crossing and helicities */
//@{
/**
* Set the xcomb object.
*/
virtual void setXComb(tStdXCombPtr xc);
/**
* Return the momentum as crossed appropriate for this amplitude.
*/
Lorentz5Momentum amplitudeMomentum(int) const;
/**
* Perform a normal ordering of external legs and fill the
* crossing information as. This default implementation sorts
* lexicographically in (abs(colour)/spin/abs(charge)), putting pairs
* of particles/anti-particles where possible.
*/
virtual void fillCrossingMap(size_t shift = 0);
/**
* Generate the helicity combinations.
*/
virtual set<vector<int> > generateHelicities() const;
//@}
/** @name Tree-level amplitudes */
//@{
/**
* Calculate the tree level amplitudes for the phasespace point
* stored in lastXComb.
*/
virtual void prepareAmplitudes(Ptr<MatchboxMEBase>::tcptr);
/**
* Return the matrix element squared.
*/
virtual double me2() const;
/**
* Return the colour correlated matrix element.
*/
virtual double colourCorrelatedME2(pair<int,int> ij) const;
/**
* Return the large-N colour correlated matrix element.
*/
virtual double largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const;
/**
* Return a positive helicity polarization vector for a gluon of
* momentum p (with reference vector n) to be used when evaluating
* spin correlations.
*/
virtual LorentzVector<Complex> plusPolarization(const Lorentz5Momentum& p,
const Lorentz5Momentum& n) const;
/**
* Return the colour and spin correlated matrix element.
*/
virtual double spinColourCorrelatedME2(pair<int,int> emitterSpectator,
const SpinCorrelationTensor& c) const;
/**
* Return true, if tree-level contributions will be evaluated at amplitude level.
*/
virtual bool treeAmplitudes() const { return true; }
/**
* Evaluate the amplitude for the given colour tensor id and
* helicity assignment
*/
virtual Complex evaluate(size_t, const vector<int>&, Complex&) { return 0.; }
//@}
/** @name One-loop amplitudes */
//@{
/**
* Return true, if this amplitude is capable of calculating one-loop
* (QCD) corrections.
*/
virtual bool haveOneLoop() const { return false; }
/**
* Return true, if this amplitude only provides
* one-loop (QCD) corrections.
*/
virtual bool onlyOneLoop() const { return false; }
/**
* Return true, if one-loop contributions will be evaluated at amplitude level.
*/
virtual bool oneLoopAmplitudes() const { return true; }
/**
* Return true, if one loop corrections have been calculated in
* dimensional reduction. Otherwise conventional dimensional
* regularization is assumed. Note that renormalization is always
* assumed to be MSbar.
*/
virtual bool isDR() const { return false; }
/**
* Return true, if one loop corrections are given in the conventions
* of the integrated dipoles.
*/
virtual bool isCS() const { return false; }
/**
* Return true, if one loop corrections are given in the conventions
* of BDK.
*/
virtual bool isBDK() const { return false; }
/**
* Return true, if one loop corrections are given in the conventions
* of everything expanded.
*/
virtual bool isExpanded() const { return false; }
/**
* Return the value of the dimensional regularization
* parameter. Note that renormalization scale dependence is fully
* restored in DipoleIOperator.
*/
virtual Energy2 mu2() const { return 0.*GeV2; }
/**
* If defined, return the coefficient of the pole in epsilon^2
*/
virtual double oneLoopDoublePole() const { return 0.; }
/**
* If defined, return the coefficient of the pole in epsilon
*/
virtual double oneLoopSinglePole() const { return 0.; }
/**
* Calculate the one-loop amplitudes for the phasespace point
* stored in lastXComb, if provided.
*/
virtual void prepareOneLoopAmplitudes(Ptr<MatchboxMEBase>::tcptr);
/**
* Return the one-loop/tree interference.
*/
virtual double oneLoopInterference() const;
/**
* Evaluate the amplitude for the given colour tensor id and
* helicity assignment
*/
virtual Complex evaluateOneLoop(size_t, const vector<int>&) { return 0.; }
//@}
/** @name Caching and helpers to setup amplitude objects. */
//@{
/**
* Flush all cashes.
*/
virtual void flushCaches() {}
/**
* Clone this amplitude.
*/
Ptr<MatchboxAmplitude>::ptr cloneMe() const {
return dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(clone());
}
/**
* Clone the dependencies, using a given prefix.
*/
virtual void cloneDependencies(const std::string& prefix = "");
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* Recursively generate helicities
*/
void doGenerateHelicities(set<vector<int> >& res,
vector<int>& current,
size_t pos) const;
/**
* The colour basis implementation to be used.
*/
Ptr<ColourBasis>::ptr theColourBasis;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MatchboxAmplitude & operator=(const MatchboxAmplitude &);
};
inline PersistentOStream& operator<<(PersistentOStream& os,
const Process& h) {
h.persistentOutput(os);
return os;
}
inline PersistentIStream& operator>>(PersistentIStream& is,
Process& h) {
h.persistentInput(is);
return is;
}
}
#endif /* HERWIG_MatchboxAmplitude_H */
diff --git a/MatrixElement/Matchbox/Base/MatchboxMEBase.cc b/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
--- a/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
+++ b/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
@@ -1,1305 +1,1310 @@
// -*- C++ -*-
//
// MatchboxMEBase.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MatchboxMEBase class.
//
#include "MatchboxMEBase.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDF/PDF.h"
#include "ThePEG/PDT/PDT.h"
#include "ThePEG/StandardModel/StandardModelBase.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/Handlers/StdXCombGroup.h"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/DiagramDrawer.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.h"
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
MatchboxMEBase::MatchboxMEBase()
: MEBase(),
theOneLoop(false),
theOneLoopNoBorn(false) {}
MatchboxMEBase::~MatchboxMEBase() {}
Ptr<MatchboxFactory>::tcptr MatchboxMEBase::factory() const { return theFactory; }
void MatchboxMEBase::factory(Ptr<MatchboxFactory>::tcptr f) { theFactory = f; }
Ptr<Tree2toNGenerator>::tptr MatchboxMEBase::diagramGenerator() const { return factory()->diagramGenerator(); }
Ptr<ProcessData>::tptr MatchboxMEBase::processData() const { return factory()->processData(); }
unsigned int MatchboxMEBase::getNLight() const { return factory()->nLight(); }
double MatchboxMEBase::factorizationScaleFactor() const { return factory()->factorizationScaleFactor(); }
double MatchboxMEBase::renormalizationScaleFactor() const { return factory()->renormalizationScaleFactor(); }
bool MatchboxMEBase::fixedCouplings() const { return factory()->fixedCouplings(); }
bool MatchboxMEBase::fixedQEDCouplings() const { return factory()->fixedQEDCouplings(); }
bool MatchboxMEBase::checkPoles() const { return factory()->checkPoles(); }
bool MatchboxMEBase::verbose() const { return factory()->verbose(); }
bool MatchboxMEBase::initVerbose() const { return factory()->initVerbose(); }
void MatchboxMEBase::getDiagrams() const {
if ( diagramGenerator() && processData() ) {
vector<Ptr<Tree2toNDiagram>::ptr> diags;
vector<Ptr<Tree2toNDiagram>::ptr>& res =
processData()->diagramMap()[subProcess().legs];
if ( res.empty() ) {
res = diagramGenerator()->generate(subProcess().legs,orderInAlphaS(),orderInAlphaEW());
}
copy(res.begin(),res.end(),back_inserter(diags));
processData()->fillMassGenerators(subProcess().legs);
if ( diags.empty() )
return;
for ( vector<Ptr<Tree2toNDiagram>::ptr>::iterator d = diags.begin();
d != diags.end(); ++d ) {
add(*d);
}
return;
}
throw Exception()
<< "MatchboxMEBase::getDiagrams() expects a Tree2toNGenerator and ProcessData object.\n"
<< "Please check your setup." << Exception::abortnow;
}
Selector<MEBase::DiagramIndex>
MatchboxMEBase::diagrams(const DiagramVector & diags) const {
if ( phasespace() ) {
return phasespace()->selectDiagrams(diags);
}
throw Exception()
<< "MatchboxMEBase::diagrams() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return Selector<MEBase::DiagramIndex>();
}
Selector<const ColourLines *>
MatchboxMEBase::colourGeometries(tcDiagPtr diag) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->haveColourFlows() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
return matchboxAmplitude()->colourGeometries(diag);
}
}
Ptr<Tree2toNDiagram>::tcptr tdiag =
dynamic_ptr_cast<Ptr<Tree2toNDiagram>::tcptr>(diag);
assert(diag && processData());
vector<ColourLines*>& flows = processData()->colourFlowMap()[tdiag];
if ( flows.empty() ) {
list<list<list<pair<int,bool> > > > cflows =
ColourBasis::colourFlows(tdiag);
for ( list<list<list<pair<int,bool> > > >::const_iterator fit =
cflows.begin(); fit != cflows.end(); ++fit ) {
flows.push_back(new ColourLines(ColourBasis::cfstring(*fit)));
}
}
Selector<const ColourLines *> res;
for ( vector<ColourLines*>::const_iterator f = flows.begin();
f != flows.end(); ++f )
res.insert(1.0,*f);
return res;
}
unsigned int MatchboxMEBase::orderInAlphaS() const {
return subProcess().orderInAlphaS;
}
unsigned int MatchboxMEBase::orderInAlphaEW() const {
return subProcess().orderInAlphaEW;
}
void MatchboxMEBase::setXComb(tStdXCombPtr xc) {
MEBase::setXComb(xc);
lastMatchboxXComb(xc);
if ( phasespace() )
phasespace()->setXComb(xc);
if ( scaleChoice() )
scaleChoice()->setXComb(xc);
if ( matchboxAmplitude() )
matchboxAmplitude()->setXComb(xc);
}
double MatchboxMEBase::generateIncomingPartons(const double* r1, const double* r2) {
// shamelessly stolen from PartonExtractor.cc
Energy2 shmax = lastCuts().sHatMax();
Energy2 shmin = lastCuts().sHatMin();
Energy2 sh = shmin*pow(shmax/shmin, *r1);
double ymax = lastCuts().yHatMax();
double ymin = lastCuts().yHatMin();
double km = log(shmax/shmin);
ymax = min(ymax, log(lastCuts().x1Max()*sqrt(lastS()/sh)));
ymin = max(ymin, -log(lastCuts().x2Max()*sqrt(lastS()/sh)));
double y = ymin + (*r2)*(ymax - ymin);
double x1 = exp(-0.5*log(lastS()/sh) + y);
double x2 = exp(-0.5*log(lastS()/sh) - y);
Lorentz5Momentum P1 = lastParticles().first->momentum();
LorentzMomentum p1 = lightCone((P1.rho() + P1.e())*x1, Energy());
p1.rotateY(P1.theta());
p1.rotateZ(P1.phi());
meMomenta()[0] = p1;
Lorentz5Momentum P2 = lastParticles().second->momentum();
LorentzMomentum p2 = lightCone((P2.rho() + P2.e())*x2, Energy());
p2.rotateY(P2.theta());
p2.rotateZ(P2.phi());
meMomenta()[1] = p2;
lastXCombPtr()->lastX1X2(make_pair(x1,x2));
lastXCombPtr()->lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
return km*(ymax - ymin);
}
bool MatchboxMEBase::generateKinematics(const double * r) {
if ( phasespace() ) {
jacobian(phasespace()->generateKinematics(r,meMomenta()));
if ( jacobian() == 0.0 )
return false;
setScale();
logGenerateKinematics(r);
assert(lastMatchboxXComb());
if ( nDimAmplitude() > 0 ) {
amplitudeRandomNumbers().resize(nDimAmplitude());
copy(r + nDimPhasespace(),
r + nDimPhasespace() + nDimAmplitude(),
amplitudeRandomNumbers().begin());
}
if ( nDimInsertions() > 0 ) {
insertionRandomNumbers().resize(nDimInsertions());
copy(r + nDimPhasespace() + nDimAmplitude(),
r + nDimPhasespace() + nDimAmplitude() + nDimInsertions(),
insertionRandomNumbers().begin());
}
return true;
}
throw Exception()
<< "MatchboxMEBase::generateKinematics() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return false;
}
int MatchboxMEBase::nDim() const {
if ( lastMatchboxXComb() )
return nDimPhasespace() + nDimAmplitude() + nDimInsertions();
int ampAdd = 0;
if ( matchboxAmplitude() ) {
ampAdd = matchboxAmplitude()->nDimAdditional();
}
int insertionAdd = 0;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
insertionAdd = max(insertionAdd,(**v).nDimAdditional());
}
return nDimBorn() + ampAdd + insertionAdd;
}
int MatchboxMEBase::nDimBorn() const {
if ( lastMatchboxXComb() )
return nDimPhasespace();
if ( phasespace() ) {
size_t nout = diagrams().front()->partons().size()-2;
int n = phasespace()->nDim(nout);
if ( phasespace()->useMassGenerators() ) {
for ( cPDVector::const_iterator pd =
diagrams().front()->partons().begin();
pd != diagrams().front()->partons().end(); ++pd ) {
if ( processData()->massGenerator(*pd) ||
(**pd).width() != ZERO ) {
++n;
}
}
}
return n;
}
throw Exception()
<< "MatchboxMEBase::nDim() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0;
}
void MatchboxMEBase::setScale() const {
if ( haveX1X2() ) {
lastXCombPtr()->lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
}
Energy2 fscale = factorizationScale()*sqr(factorizationScaleFactor());
Energy2 rscale = renormalizationScale()*sqr(renormalizationScaleFactor());
Energy2 ewrscale = renormalizationScaleQED();
lastXCombPtr()->lastScale(fscale);
if ( !fixedCouplings() ) {
if ( rscale > lastCuts().scaleMin() )
lastXCombPtr()->lastAlphaS(SM().alphaS(rscale));
else
lastXCombPtr()->lastAlphaS(SM().alphaS(lastCuts().scaleMin()));
} else {
lastXCombPtr()->lastAlphaS(SM().alphaS());
}
if ( !fixedQEDCouplings() ) {
lastXCombPtr()->lastAlphaEM(SM().alphaEM(ewrscale));
} else {
lastXCombPtr()->lastAlphaEM(SM().alphaEMMZ());
}
logSetScale();
}
Energy2 MatchboxMEBase::factorizationScale() const {
if ( scaleChoice() ) {
return scaleChoice()->factorizationScale();
}
throw Exception()
<< "MatchboxMEBase::factorizationScale() expects a MatchboxScaleChoice object.\n"
<< "Please check your setup." << Exception::abortnow;
return ZERO;
}
Energy2 MatchboxMEBase::renormalizationScale() const {
if ( scaleChoice() ) {
return scaleChoice()->renormalizationScale();
}
throw Exception()
<< "MatchboxMEBase::renormalizationScale() expects a MatchboxScaleChoice object.\n"
<< "Please check your setup." << Exception::abortnow;
return ZERO;
}
Energy2 MatchboxMEBase::renormalizationScaleQED() const {
if ( scaleChoice() ) {
return scaleChoice()->renormalizationScaleQED();
}
return renormalizationScale();
}
void MatchboxMEBase::setVetoScales(tSubProPtr) const {}
void MatchboxMEBase::getPDFWeight(Energy2 factorizationScale) const {
if ( !mePartonData()[0]->coloured() &&
!mePartonData()[1]->coloured() ) {
lastMEPDFWeight(1.0);
logPDFWeight();
return;
}
double w = 1.;
if ( mePartonData()[0]->coloured() && havePDFWeight1() )
w *= pdf1(factorizationScale);
if ( mePartonData()[1]->coloured() && havePDFWeight2() )
w *= pdf2(factorizationScale);
lastMEPDFWeight(w);
logPDFWeight();
}
double MatchboxMEBase::pdf1(Energy2 fscale, double xEx) const {
assert(lastXCombPtr()->partonBins().first->pdf());
if ( xEx < 1. && lastX1() >= xEx ) {
return
( ( 1. - lastX1() ) / ( 1. - xEx ) ) *
lastXCombPtr()->partonBins().first->pdf()->xfx(lastParticles().first->dataPtr(),
lastPartons().first->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
xEx)/xEx;
}
return lastXCombPtr()->partonBins().first->pdf()->xfx(lastParticles().first->dataPtr(),
lastPartons().first->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
lastX1())/lastX1();
}
double MatchboxMEBase::pdf2(Energy2 fscale, double xEx) const {
assert(lastXCombPtr()->partonBins().second->pdf());
if ( xEx < 1. && lastX2() >= xEx ) {
return
( ( 1. - lastX2() ) / ( 1. - xEx ) ) *
lastXCombPtr()->partonBins().second->pdf()->xfx(lastParticles().second->dataPtr(),
lastPartons().second->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
xEx)/xEx;
}
return lastXCombPtr()->partonBins().second->pdf()->xfx(lastParticles().second->dataPtr(),
lastPartons().second->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
lastX2())/lastX2();
}
double MatchboxMEBase::me2() const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
lastME2(matchboxAmplitude()->me2()*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::me2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::finalStateSymmetry() const {
if ( symmetryFactor() > 0.0 )
return symmetryFactor();
double sFactor = 1.;
map<long,int> counts;
cPDVector checkData;
copy(mePartonData().begin()+2,mePartonData().end(),back_inserter(checkData));
cPDVector::iterator p = checkData.begin();
while ( !checkData.empty() ) {
if ( counts.find((**p).id()) != counts.end() ) {
counts[(**p).id()] += 1;
} else {
counts[(**p).id()] = 1;
}
checkData.erase(p);
p = checkData.begin();
continue;
}
for ( map<long,int>::const_iterator c = counts.begin();
c != counts.end(); ++c ) {
if ( c->second == 1 )
continue;
if ( c->second == 2 )
sFactor /= 2.;
else if ( c->second == 3 )
sFactor /= 6.;
else if ( c->second == 4 )
sFactor /= 24.;
}
symmetryFactor(sFactor);
return symmetryFactor();
}
double MatchboxMEBase::me2Norm(unsigned int addAlphaS) const {
// assume that we always have incoming
// spin-1/2 or massless spin-1 particles
double fac = 1./4.;
+ if ( hasInitialAverage() )
+ fac = 1.;
+
if ( orderInAlphaS() > 0 || addAlphaS != 0 )
fac *= pow(lastAlphaS()/SM().alphaS(),double(orderInAlphaS()+addAlphaS));
if ( orderInAlphaEW() > 0 )
fac *= pow(lastAlphaEM()/SM().alphaEM(),double(orderInAlphaEW()));
- if ( mePartonData()[0]->iColour() == PDT::Colour3 ||
- mePartonData()[0]->iColour() == PDT::Colour3bar )
- fac /= SM().Nc();
- else if ( mePartonData()[0]->iColour() == PDT::Colour8 )
- fac /= (SM().Nc()*SM().Nc()-1.);
+ if ( !hasInitialAverage() ) {
+ if ( mePartonData()[0]->iColour() == PDT::Colour3 ||
+ mePartonData()[0]->iColour() == PDT::Colour3bar )
+ fac /= SM().Nc();
+ else if ( mePartonData()[0]->iColour() == PDT::Colour8 )
+ fac /= (SM().Nc()*SM().Nc()-1.);
- if ( mePartonData()[1]->iColour() == PDT::Colour3 ||
- mePartonData()[1]->iColour() == PDT::Colour3bar )
- fac /= SM().Nc();
- else if ( mePartonData()[1]->iColour() == PDT::Colour8 )
- fac /= (SM().Nc()*SM().Nc()-1.);
+ if ( mePartonData()[1]->iColour() == PDT::Colour3 ||
+ mePartonData()[1]->iColour() == PDT::Colour3bar )
+ fac /= SM().Nc();
+ else if ( mePartonData()[1]->iColour() == PDT::Colour8 )
+ fac /= (SM().Nc()*SM().Nc()-1.);
+ }
- return finalStateSymmetry()*fac;
+ return !hasFinalStateSymmetry() ? finalStateSymmetry()*fac : fac;
}
CrossSection MatchboxMEBase::dSigHatDR() const {
getPDFWeight();
if ( !lastXCombPtr()->willPassCuts() ) {
lastME2(0.0);
lastMECrossSection(ZERO);
return lastMECrossSection();
}
double xme2 = me2();
lastME2(xme2);
if ( xme2 == 0. && !oneLoopNoBorn() ) {
lastME2(0.0);
lastMECrossSection(ZERO);
return lastMECrossSection();
}
double vme2 = 0.;
if ( oneLoop() )
vme2 = oneLoopInterference();
CrossSection res = ZERO;
if ( !oneLoopNoBorn() )
res +=
(sqr(hbarc)/(2.*lastSHat())) *
jacobian()* lastMEPDFWeight() * xme2;
if ( oneLoop() )
res +=
(sqr(hbarc)/(2.*lastSHat())) *
jacobian()* lastMEPDFWeight() * vme2;
if ( !onlyOneLoop() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).setXComb(lastXCombPtr());
res += (**v).dSigHatDR();
}
if ( checkPoles() )
logPoles();
}
double weight = 0.0;
bool applied = false;
for ( vector<Ptr<MatchboxReweightBase>::ptr>::const_iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).setXComb(lastXCombPtr());
if ( !(**rw).apply() )
continue;
weight += (**rw).evaluate();
applied = true;
}
if ( applied )
res *= weight;
lastMECrossSection(res);
return lastMECrossSection();
}
double MatchboxMEBase::oneLoopInterference() const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->oneLoopAmplitudes() )
matchboxAmplitude()->prepareOneLoopAmplitudes(this);
lastME2(matchboxAmplitude()->oneLoopInterference()*
crossingSign()*
me2Norm(1));
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::oneLoopInterference() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
MatchboxMEBase::AccuracyHistogram::AccuracyHistogram(double low,
double up,
unsigned int nbins)
: lower(low), upper(up),
sameSign(0), oppositeSign(0), nans(0),
overflow(0), underflow(0) {
double step = (up-low)/nbins;
for ( unsigned int k = 1; k <= nbins; ++k )
bins[lower + k*step] = 0.0;
}
void MatchboxMEBase::AccuracyHistogram::book(double a, double b) {
if ( isnan(a) || isnan(b) ||
isinf(a) || isinf(b) ) {
++nans;
return;
}
if ( a*b >= 0. )
++sameSign;
if ( a*b < 0. )
++oppositeSign;
double r = 1.;
if ( abs(a) != 0.0 )
r = abs(1.-abs(b/a));
else if ( abs(b) != 0.0 )
r = abs(b);
if ( log(r) < lower || r == 0.0 ) {
++underflow;
return;
}
if ( log(r) > upper ) {
++overflow;
return;
}
map<double,double>::iterator bin =
bins.upper_bound(log(r));
if ( bin == bins.end() )
return;
bin->second += 1.;
}
void MatchboxMEBase::AccuracyHistogram::dump(const std::string& prefix,
const cPDVector& proc) const {
ostringstream fname("");
for ( cPDVector::const_iterator p = proc.begin();
p != proc.end(); ++p )
fname << (**p).PDGName();
ofstream out((prefix+fname.str()+".dat").c_str());
out << "# same sign : " << sameSign << " opposite sign : "
<< oppositeSign << " nans : " << nans
<< " overflow : " << overflow
<< " underflow : " << underflow << "\n";
for ( map<double,double>::const_iterator b = bins.begin();
b != bins.end(); ++b ) {
map<double,double>::const_iterator bp = b; --bp;
if ( b->second != 0. ) {
if ( b != bins.begin() )
out << bp->first;
else
out << lower;
out << " " << b->first
<< " " << b->second
<< "\n" << flush;
}
}
}
void MatchboxMEBase::AccuracyHistogram::persistentOutput(PersistentOStream& os) const {
os << lower << upper << bins
<< sameSign << oppositeSign << nans
<< overflow << underflow;
}
void MatchboxMEBase::AccuracyHistogram::persistentInput(PersistentIStream& is) {
is >> lower >> upper >> bins
>> sameSign >> oppositeSign >> nans
>> overflow >> underflow;
}
void MatchboxMEBase::logPoles() const {
double res2me = oneLoopDoublePole();
double res1me = oneLoopSinglePole();
double res2i = 0.;
double res1i = 0.;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
res2i += (**v).oneLoopDoublePole();
res1i += (**v).oneLoopSinglePole();
}
epsilonSquarePoleHistograms[mePartonData()].book(res2me,res2i);
epsilonPoleHistograms[mePartonData()].book(res1me,res1i);
}
bool MatchboxMEBase::haveOneLoop() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->haveOneLoop();
return false;
}
bool MatchboxMEBase::onlyOneLoop() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->onlyOneLoop();
return false;
}
bool MatchboxMEBase::isDR() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isDR();
return false;
}
bool MatchboxMEBase::isCS() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isCS();
return false;
}
bool MatchboxMEBase::isBDK() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isBDK();
return false;
}
bool MatchboxMEBase::isExpanded() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isExpanded();
return false;
}
Energy2 MatchboxMEBase::mu2() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->mu2();
return 0*GeV2;
}
double MatchboxMEBase::oneLoopDoublePole() const {
if ( matchboxAmplitude() ) {
return
matchboxAmplitude()->oneLoopDoublePole()*
crossingSign()*
me2Norm(1);
}
return 0.;
}
double MatchboxMEBase::oneLoopSinglePole() const {
if ( matchboxAmplitude() ) {
return
matchboxAmplitude()->oneLoopSinglePole()*
crossingSign()*
me2Norm(1);
}
return 0.;
}
vector<Ptr<SubtractionDipole>::ptr>
MatchboxMEBase::getDipoles(const vector<Ptr<SubtractionDipole>::ptr>& dipoles,
const vector<Ptr<MatchboxMEBase>::ptr>& borns) const {
vector<Ptr<SubtractionDipole>::ptr> res;
// keep track of the dipoles we already did set up
set<pair<pair<pair<int,int>,int>,pair<Ptr<MatchboxMEBase>::tptr,Ptr<SubtractionDipole>::tptr> > > done;
cPDVector rep = diagrams().front()->partons();
int nreal = rep.size();
// now loop over configs
for ( int emitter = 0; emitter < nreal; ++emitter ) {
for ( int spectator = 0; spectator < nreal; ++spectator ) {
if ( emitter == spectator )
continue;
for ( int emission = 2; emission < nreal; ++emission ) {
if ( emission == emitter || emission == spectator )
continue;
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator b =
borns.begin(); b != borns.end(); ++b ) {
if ( (**b).onlyOneLoop() )
continue;
for ( vector<Ptr<SubtractionDipole>::ptr>::const_iterator d =
dipoles.begin(); d != dipoles.end(); ++d ) {
if ( !rep[emitter]->coloured() ||
!rep[emission]->coloured() ||
!rep[spectator]->coloured() ) {
continue;
}
if ( noDipole(emitter,emission,spectator) ) {
continue;
}
if ( done.find(make_pair(make_pair(make_pair(emitter,emission),spectator),make_pair(*b,*d)))
!= done.end() ) {
continue;
}
if ( !(**d).canHandle(rep,emitter,emission,spectator) ) {
continue;
}
// now get to work
(**d).clearBookkeeping();
(**d).realEmitter(emitter);
(**d).realEmission(emission);
(**d).realSpectator(spectator);
(**d).realEmissionME(const_cast<MatchboxMEBase*>(this));
(**d).underlyingBornME(*b);
(**d).setupBookkeeping();
if ( !((**d).empty()) ) {
Ptr<SubtractionDipole>::ptr nDipole = (**d).cloneMe();
res.push_back(nDipole);
done.insert(make_pair(make_pair(make_pair(emitter,emission),spectator),make_pair(*b,*d)));
if ( nDipole->isSymmetric() )
done.insert(make_pair(make_pair(make_pair(emission,emitter),spectator),make_pair(*b,*d)));
ostringstream dname;
dname << fullName() << "." << (**b).name() << "."
<< (**d).name() << ".[("
<< emitter << "," << emission << ")," << spectator << "]";
if ( ! (generator()->preinitRegister(nDipole,dname.str()) ) )
throw InitException() << "Dipole " << dname.str() << " already existing.";
nDipole->cloneDependencies(dname.str());
}
}
}
}
}
}
for ( vector<Ptr<SubtractionDipole>::ptr>::iterator d = res.begin();
d != res.end(); ++d )
(**d).partnerDipoles(res);
return res;
}
double MatchboxMEBase::colourCorrelatedME2(pair<int,int> ij) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
lastME2(matchboxAmplitude()->colourCorrelatedME2(ij)*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::colourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
largeNBasis->prepare(mePartonData(),false);
lastME2(matchboxAmplitude()->largeNColourCorrelatedME2(ij,largeNBasis)*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::largeNColourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::spinColourCorrelatedME2(pair<int,int> ij,
const SpinCorrelationTensor& c) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
lastME2(matchboxAmplitude()->spinColourCorrelatedME2(ij,c)*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::spinColourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
void MatchboxMEBase::flushCaches() {
MEBase::flushCaches();
if ( matchboxAmplitude() )
matchboxAmplitude()->flushCaches();
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator r =
reweights().begin(); r != reweights().end(); ++r ) {
(**r).flushCaches();
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).flushCaches();
}
}
void MatchboxMEBase::print(ostream& os) const {
os << "--- MatchboxMEBase setup -------------------------------------------------------\n";
os << " '" << name() << "' for subprocess:\n";
os << " ";
for ( PDVector::const_iterator pp = subProcess().legs.begin();
pp != subProcess().legs.end(); ++pp ) {
os << (**pp).PDGName() << " ";
if ( pp == subProcess().legs.begin() + 1 )
os << "-> ";
}
os << "\n";
os << " including " << (oneLoop() ? "" : "no ") << "virtual corrections";
if ( oneLoopNoBorn() )
os << " without Born contributions";
os << "\n";
if ( oneLoop() && !onlyOneLoop() ) {
os << " using insertion operators\n";
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
os << " '" << (**v).name() << "' with "
<< ((**v).isDR() ? "" : "C") << "DR/";
if ( (**v).isCS() )
os << "CS";
if ( (**v).isBDK() )
os << "BDK";
if ( (**v).isExpanded() )
os << "expanded";
os << " conventions\n";
}
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxMEBase::printLastEvent(ostream& os) const {
os << "--- MatchboxMEBase last event information --------------------------------------\n";
os << " for matrix element '" << name() << "'\n";
os << " process considered:\n ";
int in = 0;
for ( cPDVector::const_iterator p = mePartonData().begin();
p != mePartonData().end(); ++p ) {
os << (**p).PDGName() << " ";
if ( ++in == 2 )
os << " -> ";
}
os << " kinematic environment as set by the XComb " << lastXCombPtr() << ":\n"
<< " sqrt(shat)/GeV = " << sqrt(lastSHat()/GeV2)
<< " x1 = " << lastX1() << " x2 = " << lastX2()
<< " alphaS = " << lastAlphaS() << "\n";
os << " momenta/GeV generated from random numbers\n ";
copy(lastXComb().lastRandomNumbers().begin(),
lastXComb().lastRandomNumbers().end(),ostream_iterator<double>(os," "));
os << ":\n ";
for ( vector<Lorentz5Momentum>::const_iterator p = meMomenta().begin();
p != meMomenta().end(); ++p ) {
os << (*p/GeV) << "\n ";
}
os << "last cross section/nb calculated was:\n "
<< (lastMECrossSection()/nanobarn) << " (pdf weight " << lastMEPDFWeight() << ")\n";
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxMEBase::logGenerateKinematics(const double * r) const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' generated kinematics\nfrom "
<< nDim() << " random numbers:\n";
copy(r,r+nDim(),ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "storing phase space information in XComb "
<< lastXCombPtr() << "\n";
generator()->log() << "generated phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = meMomenta().begin();
cPDVector::const_iterator dit = mePartonData().begin();
for ( ; pit != meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << lastX1() << " x2 = " << lastX2() << "\n"
<< "and Jacobian = " << jacobian() << " sHat/GeV2 = "
<< (lastSHat()/GeV2) << "\n" << flush;
}
void MatchboxMEBase::logSetScale() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' set scales using XComb " << lastXCombPtr() << ":\n"
<< "scale/GeV2 = " << (scale()/GeV2) << " xi_R = "
<< renormalizationScaleFactor() << " xi_F = "
<< factorizationScaleFactor() << "\n"
<< "alpha_s = " << lastAlphaS() << "\n" << flush;
}
void MatchboxMEBase::logPDFWeight() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' calculated pdf weight = "
<< lastMEPDFWeight() << " from XComb "
<< lastXCombPtr() << "\n"
<< "x1 = " << lastX1() << " (" << (mePartonData()[0]->coloured() ? "" : "not ") << "used) "
<< "x2 = " << lastX2() << " (" << (mePartonData()[1]->coloured() ? "" : "not ") << "used)\n"
<< flush;
}
void MatchboxMEBase::logME2() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' evaluated me2 using XComb "
<< lastXCombPtr() << "\n"
<< "and phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = meMomenta().begin();
cPDVector::const_iterator dit = mePartonData().begin();
for ( ; pit != meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << lastX1() << " x2 = " << lastX2() << "\n"
<< "sHat/GeV2 = " << (lastSHat()/GeV2)
<< " me2 = " << lastME2() << "\n" << flush;
}
void MatchboxMEBase::logDSigHatDR() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' evaluated cross section using XComb "
<< lastXCombPtr() << "\n"
<< "Jacobian = " << jacobian() << " sHat/GeV2 = "
<< (lastSHat()/GeV2) << " dsig/nb = "
<< (lastMECrossSection()/nanobarn) << "\n" << flush;
}
void MatchboxMEBase::cloneDependencies(const std::string& prefix) {
if ( phasespace() ) {
Ptr<MatchboxPhasespace>::ptr myPhasespace = phasespace()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myPhasespace->name();
if ( ! (generator()->preinitRegister(myPhasespace,pname.str()) ) )
throw InitException() << "Phasespace generator " << pname.str() << " already existing.";
myPhasespace->cloneDependencies(pname.str());
phasespace(myPhasespace);
}
theAmplitude = dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(amplitude());
if ( matchboxAmplitude() ) {
Ptr<MatchboxAmplitude>::ptr myAmplitude = matchboxAmplitude()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myAmplitude->name();
if ( ! (generator()->preinitRegister(myAmplitude,pname.str()) ) )
throw InitException() << "Amplitude " << pname.str() << " already existing.";
myAmplitude->cloneDependencies(pname.str());
matchboxAmplitude(myAmplitude);
amplitude(myAmplitude);
matchboxAmplitude()->orderInGs(orderInAlphaS());
matchboxAmplitude()->orderInGem(orderInAlphaEW());
}
if ( scaleChoice() ) {
Ptr<MatchboxScaleChoice>::ptr myScaleChoice = scaleChoice()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myScaleChoice->name();
if ( ! (generator()->preinitRegister(myScaleChoice,pname.str()) ) )
throw InitException() << "Scale choice " << pname.str() << " already existing.";
scaleChoice(myScaleChoice);
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
Ptr<MatchboxReweightBase>::ptr myReweight = (**rw).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**rw).name();
if ( ! (generator()->preinitRegister(myReweight,pname.str()) ) )
throw InitException() << "Reweight " << pname.str() << " already existing.";
myReweight->cloneDependencies(pname.str());
*rw = myReweight;
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
Ptr<MatchboxInsertionOperator>::ptr myIOP = (**v).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**v).name();
if ( ! (generator()->preinitRegister(myIOP,pname.str()) ) )
throw InitException() << "Insertion operator " << pname.str() << " already existing.";
*v = myIOP;
}
}
void MatchboxMEBase::prepareXComb(MatchboxXCombData& xc) const {
if ( phasespace() ) {
size_t nout = diagrams().front()->partons().size()-2;
xc.nDimPhasespace(phasespace()->nDim(nout));
}
if ( matchboxAmplitude() ) {
xc.nDimAmplitude(matchboxAmplitude()->nDimAdditional());
if ( matchboxAmplitude()->colourBasis() ) {
size_t cdim =
matchboxAmplitude()->colourBasis()->prepare(diagrams(),matchboxAmplitude()->noCorrelations());
xc.colourBasisDim(cdim);
}
}
int insertionAdd = 0;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
insertionAdd = max(insertionAdd,(**v).nDimAdditional());
}
xc.nDimInsertions(insertionAdd);
xc.nLight(getNLight());
xc.olpId(olpProcess());
if ( initVerbose() ) {
string fname = name() + ".diagrams";
ifstream test(fname.c_str());
if ( !test ) {
test.close();
ofstream out(fname.c_str());
for ( vector<Ptr<DiagramBase>::ptr>::const_iterator d = diagrams().begin();
d != diagrams().end(); ++d ) {
DiagramDrawer::drawDiag(out,dynamic_cast<const Tree2toNDiagram&>(**d));
out << "\n";
}
}
}
}
StdXCombPtr MatchboxMEBase::makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec&,
tStdXCombPtr newHead,
tMEPtr newME) {
if ( !newME )
newME = this;
Ptr<MatchboxXComb>::ptr xc =
new_ptr(MatchboxXComb(newMaxEnergy, inc,
newEventHandler, newSubProcessHandler,
newExtractor, newCKKW,
newPartonBins, newCuts, newME,
newDiagrams, mir,
newHead));
prepareXComb(*xc);
return xc;
}
StdXCombPtr MatchboxMEBase::makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
tMEPtr newME) {
if ( !newME )
newME = this;
Ptr<MatchboxXComb>::ptr xc =
new_ptr(MatchboxXComb(newHead, newPartonBins, newME, newDiagrams));
prepareXComb(*xc);
return xc;
}
void MatchboxMEBase::persistentOutput(PersistentOStream & os) const {
os << theLastXComb << theFactory << thePhasespace
<< theAmplitude << theScaleChoice << theVirtuals
<< theReweights << theSubprocess << theOneLoop
<< theOneLoopNoBorn
<< epsilonSquarePoleHistograms << epsilonPoleHistograms
<< theOLPProcess;
}
void MatchboxMEBase::persistentInput(PersistentIStream & is, int) {
is >> theLastXComb >> theFactory >> thePhasespace
>> theAmplitude >> theScaleChoice >> theVirtuals
>> theReweights >> theSubprocess >> theOneLoop
>> theOneLoopNoBorn
>> epsilonSquarePoleHistograms >> epsilonPoleHistograms
>> theOLPProcess;
lastMatchboxXComb(theLastXComb);
}
void MatchboxMEBase::Init() {
static ClassDocumentation<MatchboxMEBase> documentation
("MatchboxMEBase is the base class for matrix elements "
"in the context of the matchbox NLO interface.");
}
IBPtr MatchboxMEBase::clone() const {
return new_ptr(*this);
}
IBPtr MatchboxMEBase::fullclone() const {
return new_ptr(*this);
}
void MatchboxMEBase::doinit() {
MEBase::doinit();
if ( !theAmplitude )
theAmplitude = dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(amplitude());
}
void MatchboxMEBase::dofinish() {
MEBase::dofinish();
for ( map<cPDVector,AccuracyHistogram>::const_iterator
b = epsilonSquarePoleHistograms.begin();
b != epsilonSquarePoleHistograms.end(); ++b ) {
b->second.dump(factory()->poleData() + "epsilonSquarePoles-",b->first);
}
for ( map<cPDVector,AccuracyHistogram>::const_iterator
b = epsilonPoleHistograms.begin();
b != epsilonPoleHistograms.end(); ++b ) {
b->second.dump(factory()->poleData() + "epsilonPoles-",b->first);
}
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MatchboxMEBase,MEBase>
describeHerwigMatchboxMEBase("Herwig::MatchboxMEBase", "HwMatchbox.so");
diff --git a/MatrixElement/Matchbox/Base/MatchboxMEBase.h b/MatrixElement/Matchbox/Base/MatchboxMEBase.h
--- a/MatrixElement/Matchbox/Base/MatchboxMEBase.h
+++ b/MatrixElement/Matchbox/Base/MatchboxMEBase.h
@@ -1,957 +1,974 @@
// -*- C++ -*-
//
// MatchboxMEBase.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MatchboxMEBase_H
#define HERWIG_MatchboxMEBase_H
//
// This is the declaration of the MatchboxMEBase class.
//
#include "ThePEG/MatrixElement/MEBase.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/SpinCorrelationTensor.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/Tree2toNGenerator.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxScaleChoice.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/ProcessData.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/MatchboxPhasespace.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxAmplitude.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxReweightBase.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxMEBase.fh"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.fh"
#include "Herwig++/MatrixElement/Matchbox/InsertionOperators/MatchboxInsertionOperator.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.fh"
#include "Herwig++/MatrixElement/Matchbox/Utility/LastMatchboxXCombInfo.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxXComb.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief MatchboxMEBase is the base class for matrix elements
* in the context of the matchbox NLO interface.
*
* @see \ref MatchboxMEBaseInterfaces "The interfaces"
* defined for MatchboxMEBase.
*/
class MatchboxMEBase:
public MEBase, public LastMatchboxXCombInfo {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MatchboxMEBase();
/**
* The destructor.
*/
virtual ~MatchboxMEBase();
//@}
public:
/**
* Return the factory which produced this matrix element
*/
Ptr<MatchboxFactory>::tcptr factory() const;
/**
* Set the factory which produced this matrix element
*/
void factory(Ptr<MatchboxFactory>::tcptr f);
/** @name Subprocess and diagram information. */
//@{
/**
* Return the subprocess.
*/
const Process& subProcess() const { return theSubprocess; }
/**
* Access the subprocess.
*/
Process& subProcess() { return theSubprocess; }
/**
* Return the diagram generator.
*/
Ptr<Tree2toNGenerator>::tptr diagramGenerator() const;
/**
* Return the process data.
*/
Ptr<ProcessData>::tptr processData() const;
/**
* Return true, if this matrix element does not want to
* make use of mirroring processes; in this case all
* possible partonic subprocesses with a fixed assignment
* of incoming particles need to be provided through the diagrams
* added with the add(...) method.
*/
virtual bool noMirror () const { return true; }
/**
* Add all possible diagrams with the add() function.
*/
virtual void getDiagrams() const;
using MEBase::getDiagrams;
/**
* With the information previously supplied with the
* setKinematics(...) method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
*/
virtual Selector<DiagramIndex> diagrams(const DiagramVector &) const;
using MEBase::diagrams;
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
*/
virtual Selector<const ColourLines *>
colourGeometries(tcDiagPtr diag) const;
/**
* Return the order in \f$\alpha_S\f$ in which this matrix element
* is given.
*/
virtual unsigned int orderInAlphaS() const;
using MEBase::orderInAlphaS;
/**
* Return the order in \f$\alpha_{EM}\f$ in which this matrix
* element is given. Returns 0.
*/
virtual unsigned int orderInAlphaEW() const;
using MEBase::orderInAlphaEW;
/**
+ * Return true, if this amplitude already includes averaging over
+ * incoming parton's quantum numbers.
+ */
+ virtual bool hasInitialAverage() const {
+ return matchboxAmplitude() ? matchboxAmplitude()->hasInitialAverage() : false;
+ }
+
+ /**
+ * Return true, if this amplitude already includes symmetry factors
+ * for identical outgoing particles.
+ */
+ virtual bool hasFinalStateSymmetry() const {
+ return matchboxAmplitude() ? matchboxAmplitude()->hasFinalStateSymmetry() : false;
+ }
+
+
+ /**
* Return the number of light flavours, this matrix
* element is calculated for.
*/
virtual unsigned int getNLight() const;
/**
* Return true, if this matrix element is handled by a BLHA one-loop provider
*/
virtual bool isOLPTree() const {
return matchboxAmplitude() ? matchboxAmplitude()->isOLPTree() : false;
}
/**
* Return true, if this matrix element is handled by a BLHA one-loop provider
*/
virtual bool isOLPLoop() const {
return matchboxAmplitude() ? matchboxAmplitude()->isOLPLoop() : false;
}
/**
* Return the process index, if this is an OLP handled matrix element
*/
const vector<int>& olpProcess() const { return theOLPProcess; }
/**
* Set the process index, if this is an OLP handled matrix element
*/
void olpProcess(int pType, int id) {
if ( theOLPProcess.empty() )
theOLPProcess.resize(4,0);
theOLPProcess[pType] = id;
}
//@}
/** @name Phasespace generation */
//@{
/**
* Return the phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::tptr phasespace() const { return thePhasespace; }
/**
* Set the phase space generator to be used.
*/
void phasespace(Ptr<MatchboxPhasespace>::ptr ps) { thePhasespace = ps; }
/**
* Set the XComb object to be used in the next call to
* generateKinematics() and dSigHatDR().
*/
virtual void setXComb(tStdXCombPtr xc);
/**
* Return true, if the XComb steering this matrix element
* should keep track of the random numbers used to generate
* the last phase space point
*/
virtual bool keepRandomNumbers() const { return true; }
/**
* Generate incoming parton momenta. This default
* implementation performs the standard mapping
* from x1,x2 -> tau,y making 1/tau flat; incoming
* parton momenta are stored in meMomenta()[0,1],
* only massless partons are supported so far;
* return the Jacobian of the mapping
*/
double generateIncomingPartons(const double* r1, const double* r2);
/**
* Generate internal degrees of freedom given nDim() uniform random
* numbers in the interval ]0,1[. To help the phase space generator,
* the 'dSigHatDR' should be a smooth function of these numbers,
* although this is not strictly necessary. The return value should
* be true of the generation succeeded. If so the generated momenta
* should be stored in the meMomenta() vector. Derived classes
* must call this method once internal degrees of freedom are setup
* and finally return the result of this method.
*/
virtual bool generateKinematics(const double * r);
/**
* The number of internal degreed of freedom used in the matrix
* element.
*/
virtual int nDim() const;
/**
* The number of internal degrees of freedom used in the matrix
* element for generating a Born phase space point
*/
virtual int nDimBorn() const;
/**
* Return true, if this matrix element will generate momenta for the
* incoming partons itself. The matrix element is required to store
* the incoming parton momenta in meMomenta()[0,1]. No mapping in
* tau and y is performed by the PartonExtractor object, if a
* derived class returns true here. The phase space jacobian is to
* include a factor 1/(x1 x2).
*/
virtual bool haveX1X2() const {
return
(phasespace() ? phasespace()->haveX1X2() : false) ||
diagrams().front()->partons().size() == 3;
}
/**
* Return true, if this matrix element expects
* the incoming partons in their center-of-mass system
*/
virtual bool wantCMS() const {
return
(phasespace() ? phasespace()->wantCMS() : true) &&
diagrams().front()->partons().size() != 3; }
/**
* Return the meMomenta as generated at the last
* phase space point.
*/
const vector<Lorentz5Momentum>& lastMEMomenta() const { return meMomenta(); }
/**
* Access the meMomenta.
*/
vector<Lorentz5Momentum>& lastMEMomenta() { return meMomenta(); }
//@}
/** @name Scale choices, couplings and PDFs */
//@{
/**
* Set the scale choice object
*/
void scaleChoice(Ptr<MatchboxScaleChoice>::ptr sc) { theScaleChoice = sc; }
/**
* Return the scale choice object
*/
Ptr<MatchboxScaleChoice>::tptr scaleChoice() const { return theScaleChoice; }
/**
* Set scales and alphaS
*/
void setScale() const;
/**
* Return the scale associated with the phase space point provided
* by the last call to setKinematics().
*/
virtual Energy2 scale() const { return lastScale(); }
/**
* Return the renormalization scale for the last generated phasespace point.
*/
virtual Energy2 factorizationScale() const;
/**
* Get the factorization scale factor
*/
virtual double factorizationScaleFactor() const;
/**
* Return the (QCD) renormalization scale for the last generated phasespace point.
*/
virtual Energy2 renormalizationScale() const;
/**
* Get the renormalization scale factor
*/
virtual double renormalizationScaleFactor() const;
/**
* Return the QED renormalization scale for the last generated phasespace point.
*/
virtual Energy2 renormalizationScaleQED() const;
/**
* Set veto scales on the particles at the given
* SubProcess which has been generated using this
* matrix element.
*/
virtual void setVetoScales(tSubProPtr) const;
/**
* Return true, if fixed couplings are used.
*/
bool fixedCouplings() const;
/**
* Return true, if fixed couplings are used.
*/
bool fixedQEDCouplings() const;
/**
* Return the value of \f$\alpha_S\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaS(scale()).
*/
virtual double alphaS() const { return lastAlphaS(); }
/**
* Return the value of \f$\alpha_EM\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaEM(scale()).
*/
virtual double alphaEM() const { return lastAlphaEM(); }
/**
* Return true, if this matrix element provides the PDF
* weight for the first incoming parton itself.
*/
virtual bool havePDFWeight1() const {
return diagrams().front()->partons()[0]->coloured();
}
/**
* Return true, if this matrix element provides the PDF
* weight for the second incoming parton itself.
*/
virtual bool havePDFWeight2() const {
return diagrams().front()->partons()[1]->coloured();
}
/**
* Set the PDF weight.
*/
void getPDFWeight(Energy2 factorizationScale = ZERO) const;
/**
* Supply the PDF weight for the first incoming parton.
*/
double pdf1(Energy2 factorizationScale = ZERO,
double xEx = 1.) const;
/**
* Supply the PDF weight for the second incoming parton.
*/
double pdf2(Energy2 factorizationScale = ZERO,
double xEx = 1.) const;
//@}
/** @name Amplitude information and matrix element evaluation */
//@{
/**
* Return the amplitude.
*/
Ptr<MatchboxAmplitude>::tptr matchboxAmplitude() const { return theAmplitude; }
/**
* Set the amplitude.
*/
void matchboxAmplitude(Ptr<MatchboxAmplitude>::ptr amp) { theAmplitude = amp; }
/**
* Return the matrix element for the kinematical configuation
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
*/
virtual double me2() const;
/**
* Return the symmetry factor for identical final state particles.
*/
virtual double finalStateSymmetry() const;
/**
* Return the normalizing factor for the matrix element averaged
* over quantum numbers and including running couplings.
*/
double me2Norm(unsigned int addAlphaS = 0) const;
/**
* Return the matrix element squared differential in the variables
* given by the last call to generateKinematics().
*/
virtual CrossSection dSigHatDR() const;
//@}
/** @name One-loop corrections */
//@{
/**
* Return the one-loop/tree interference.
*/
virtual double oneLoopInterference() const;
/**
* Return true, if this matrix element is capable of calculating
* one-loop (QCD) corrections.
*/
virtual bool haveOneLoop() const;
/**
* Return true, if this matrix element only provides
* one-loop (QCD) corrections.
*/
virtual bool onlyOneLoop() const;
/**
* Return true, if one loop corrections have been calculated in
* dimensional reduction. Otherwise conventional dimensional
* regularization is assumed. Note that renormalization is always
* assumed to be MSbar.
*/
virtual bool isDR() const;
/**
* Return true, if one loop corrections are given in the conventions
* of the integrated dipoles.
*/
virtual bool isCS() const;
/**
* Return true, if one loop corrections are given in the conventions
* of BDK.
*/
virtual bool isBDK() const;
/**
* Return true, if one loop corrections are given in the conventions
* of everything expanded.
*/
virtual bool isExpanded() const;
/**
* Return the value of the dimensional regularization
* parameter. Note that renormalization scale dependence is fully
* restored in DipoleIOperator.
*/
virtual Energy2 mu2() const;
/**
* If defined, return the coefficient of the pole in epsilon^2
*/
virtual double oneLoopDoublePole() const;
/**
* If defined, return the coefficient of the pole in epsilon
*/
virtual double oneLoopSinglePole() const;
/**
* Return true, if cancellationn of epsilon poles should be checked.
*/
bool checkPoles() const;
/**
* Simple histogram for accuracy checks
*/
struct AccuracyHistogram {
/**
* The lower bound
*/
double lower;
/**
* The upper bound
*/
double upper;
/**
* The bins, indexed by upper bound.
*/
map<double,double> bins;
/**
* The number of points of same sign
*/
unsigned long sameSign;
/**
* The number of points of opposite sign
*/
unsigned long oppositeSign;
/**
* The number of points being nan or inf
*/
unsigned long nans;
/**
* The overflow
*/
unsigned long overflow;
/**
* The underflow
*/
unsigned long underflow;
/**
* Constructor
*/
AccuracyHistogram(double low = -40.,
double up = 0.,
unsigned int nbins = 80);
/**
* Book two values to be checked for numerical compatibility
*/
void book(double a, double b);
/**
* Write to file.
*/
void dump(const std::string& prefix,
const cPDVector& proc) const;
/**
* Write to persistent ostream
*/
void persistentOutput(PersistentOStream&) const;
/**
* Read from persistent istream
*/
void persistentInput(PersistentIStream&);
};
/**
* Perform the check of epsilon pole cancellation.
*/
void logPoles() const;
/**
* Return the virtual corrections
*/
const vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() const {
return theVirtuals;
}
/**
* Return the virtual corrections
*/
vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() {
return theVirtuals;
}
/**
* Instruct this matrix element to include one-loop corrections
*/
void doOneLoop() { theOneLoop = true; }
/**
* Return true, if this matrix element includes one-loop corrections
*/
bool oneLoop() const { return theOneLoop; }
/**
* Instruct this matrix element to include one-loop corrections but
* no Born contributions
*/
void doOneLoopNoBorn() { theOneLoop = true; theOneLoopNoBorn = true; }
/**
* Return true, if this matrix element includes one-loop corrections
* but no Born contributions
*/
bool oneLoopNoBorn() const { return theOneLoopNoBorn || onlyOneLoop(); }
//@}
/** @name Dipole subtraction */
//@{
/**
* If this matrix element is considered a real
* emission matrix element, return all subtraction
* dipoles needed given a set of subtraction terms
* and underlying Born matrix elements to choose
* from.
*/
vector<Ptr<SubtractionDipole>::ptr>
getDipoles(const vector<Ptr<SubtractionDipole>::ptr>&,
const vector<Ptr<MatchboxMEBase>::ptr>&) const;
/**
* If this matrix element is considered a real emission matrix
* element, but actually neglecting a subclass of the contributing
* diagrams, return true if the given emitter-emission-spectator
* configuration should not be considered when setting up
* subtraction dipoles.
*/
virtual bool noDipole(int,int,int) const { return false; }
/**
* If this matrix element is considered an underlying Born matrix
* element in the context of a subtracted real emission, but
* actually neglecting a subclass of the contributing diagrams,
* return true if the given emitter-spectator configuration
* should not be considered when setting up subtraction dipoles.
*/
virtual bool noDipole(int,int) const { return false; }
/**
* Return the colour correlated matrix element squared with
* respect to the given two partons as appearing in mePartonData(),
* suitably scaled by sHat() to give a dimension-less number.
*/
virtual double colourCorrelatedME2(pair<int,int>) const;
/**
* Return the colour correlated matrix element squared in the
* large-N approximation with respect to the given two partons as
* appearing in mePartonData(), suitably scaled by sHat() to give a
* dimension-less number.
*/
virtual double largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const;
/**
* Return the colour and spin correlated matrix element squared for
* the gluon indexed by the first argument using the given
* correlation tensor.
*/
virtual double spinColourCorrelatedME2(pair<int,int> emitterSpectator,
const SpinCorrelationTensor& c) const;
//@}
/** @name Caching and diagnostic information */
//@{
/**
* Inform this matrix element that a new phase space
* point is about to be generated, so all caches should
* be flushed.
*/
virtual void flushCaches();
/**
* Return true, if verbose
*/
bool verbose() const;
/**
* Return true, if verbose
*/
bool initVerbose() const;
/**
* Dump the setup to an ostream
*/
void print(ostream&) const;
/**
* Print debug information on the last event
*/
virtual void printLastEvent(ostream&) const;
/**
* Write out diagnostic information for
* generateKinematics
*/
void logGenerateKinematics(const double * r) const;
/**
* Write out diagnostic information for
* setting scales
*/
void logSetScale() const;
/**
* Write out diagnostic information for
* pdf evaluation
*/
void logPDFWeight() const;
/**
* Write out diagnostic information for
* me2 evaluation
*/
void logME2() const;
/**
* Write out diagnostic information
* for dsigdr evaluation
*/
void logDSigHatDR() const;
//@}
/** @name Reweight objects */
//@{
/**
* Insert a reweight object
*/
void addReweight(Ptr<MatchboxReweightBase>::ptr rw) { theReweights.push_back(rw); }
/**
* Return the reweights
*/
const vector<Ptr<MatchboxReweightBase>::ptr>& reweights() const { return theReweights; }
/**
* Access the reweights
*/
vector<Ptr<MatchboxReweightBase>::ptr>& reweights() { return theReweights; }
//@}
/** @name Methods used to setup MatchboxMEBase objects */
//@{
/**
* Return true if this object needs to be initialized before all
* other objects (except those for which this function also returns
* true). This default version always returns false, but subclasses
* may override it to return true.
*/
virtual bool preInitialize() const { return true; }
/**
* Clone this matrix element.
*/
Ptr<MatchboxMEBase>::ptr cloneMe() const {
return dynamic_ptr_cast<Ptr<MatchboxMEBase>::ptr>(clone());
}
/**
* Clone the dependencies, using a given prefix.
*/
void cloneDependencies(const std::string& prefix = "");
/**
* Prepare an xcomb
*/
void prepareXComb(MatchboxXCombData&) const;
/**
* For the given event generation setup return a xcomb object
* appropriate to this matrix element.
*/
virtual StdXCombPtr makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec& allPBins,
tStdXCombPtr newHead = tStdXCombPtr(),
tMEPtr newME = tMEPtr());
/**
* For the given event generation setup return a dependent xcomb object
* appropriate to this matrix element.
*/
virtual StdXCombPtr makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
tMEPtr newME = tMEPtr());
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Finalize this object. Called in the run phase just after a
* run has ended. Used eg. to write out statistics.
*/
virtual void dofinish();
//@}
private:
/**
* The factory which produced this matrix element
*/
Ptr<MatchboxFactory>::tcptr theFactory;
/**
* The phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::ptr thePhasespace;
/**
* The amplitude to be used
*/
Ptr<MatchboxAmplitude>::ptr theAmplitude;
/**
* The scale choice object
*/
Ptr<MatchboxScaleChoice>::ptr theScaleChoice;
/**
* The virtual corrections.
*/
vector<Ptr<MatchboxInsertionOperator>::ptr> theVirtuals;
/**
* A vector of reweight objects the sum of which
* should be applied to reweight this matrix element
*/
vector<Ptr<MatchboxReweightBase>::ptr> theReweights;
private:
/**
* The subprocess to be considered.
*/
Process theSubprocess;
/**
* True, if this matrix element includes one-loop corrections
*/
bool theOneLoop;
/**
* True, if this matrix element includes one-loop corrections
* but no Born contributions
*/
bool theOneLoopNoBorn;
/**
* The process index, if this is an OLP handled matrix element
*/
vector<int> theOLPProcess;
/**
* Histograms of epsilon^2 pole cancellation
*/
mutable map<cPDVector,AccuracyHistogram> epsilonSquarePoleHistograms;
/**
* Histograms of epsilon pole cancellation
*/
mutable map<cPDVector,AccuracyHistogram> epsilonPoleHistograms;
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MatchboxMEBase & operator=(const MatchboxMEBase &);
};
inline PersistentOStream& operator<<(PersistentOStream& os,
const MatchboxMEBase::AccuracyHistogram& h) {
h.persistentOutput(os);
return os;
}
inline PersistentIStream& operator>>(PersistentIStream& is,
MatchboxMEBase::AccuracyHistogram& h) {
h.persistentInput(is);
return is;
}
}
#endif /* HERWIG_MatchboxMEBase_H */

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 12:30 PM (1 d, 20 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4022778
Default Alt Text
(79 KB)

Event Timeline