Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8308588
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
79 KB
Subscribers
None
View Options
diff --git a/MatrixElement/Matchbox/Base/MatchboxAmplitude.h b/MatrixElement/Matchbox/Base/MatchboxAmplitude.h
--- a/MatrixElement/Matchbox/Base/MatchboxAmplitude.h
+++ b/MatrixElement/Matchbox/Base/MatchboxAmplitude.h
@@ -1,542 +1,554 @@
// -*- C++ -*-
//
// MatchboxAmplitude.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MatchboxAmplitude_H
#define HERWIG_MatchboxAmplitude_H
//
// This is the declaration of the MatchboxAmplitude class.
//
#include "ThePEG/MatrixElement/Amplitude.h"
#include "ThePEG/Handlers/LastXCombInfo.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/ColourBasis.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/SpinCorrelationTensor.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/LastMatchboxXCombInfo.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxXComb.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxMEBase.fh"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.fh"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief Process information with coupling order
*/
struct Process {
PDVector legs;
unsigned int orderInAlphaS;
unsigned int orderInAlphaEW;
Process()
: orderInAlphaS(0), orderInAlphaEW(0) {}
Process(const PDVector& p,
unsigned int oas,
unsigned int oae)
: legs(p), orderInAlphaS(oas), orderInAlphaEW(oae) {}
bool operator==(const Process& other) const {
return
legs == other.legs &&
orderInAlphaS == other.orderInAlphaS &&
orderInAlphaEW == other.orderInAlphaEW;
}
bool operator<(const Process& other) const {
if ( orderInAlphaS != other.orderInAlphaS )
return orderInAlphaS < other.orderInAlphaS;
if ( orderInAlphaEW != other.orderInAlphaEW )
return orderInAlphaEW < other.orderInAlphaEW;
return legs < other.legs;
}
void persistentOutput(PersistentOStream & os) const {
os << legs << orderInAlphaS << orderInAlphaEW;
}
void persistentInput(PersistentIStream & is) {
is >> legs >> orderInAlphaS >> orderInAlphaEW;
}
};
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief Enumerate the type of calculation required
*/
namespace ProcessType {
enum Types {
treeME2 = 0,
colourCorrelatedME2,
spinColourCorrelatedME2,
oneLoopInterference
};
}
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief MatchboxAmplitude is the base class for amplitude
* implementations inside Matchbox.
*
* @see \ref MatchboxAmplitudeInterfaces "The interfaces"
* defined for MatchboxAmplitude.
*/
class MatchboxAmplitude:
public Amplitude,
public LastXCombInfo<StandardXComb>,
public LastMatchboxXCombInfo {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MatchboxAmplitude();
/**
* The destructor.
*/
virtual ~MatchboxAmplitude();
//@}
public:
/**
* Return the amplitude. Needs to be implemented from
* ThePEG::Amplitude but is actually ill-defined, as colours of the
* external particles are not specified. To this extent, this
* implementation just asserts.
*/
virtual Complex value(const tcPDVector & particles,
const vector<Lorentz5Momentum> & momenta,
const vector<int> & helicities);
/** @name Subprocess information */
//@{
/**
* Return true, if this amplitude can handle the given process.
*/
virtual bool canHandle(const PDVector& p,
Ptr<MatchboxFactory>::tptr) const { return canHandle(p); }
/**
* Return true, if this amplitude can handle the given process.
*/
virtual bool canHandle(const PDVector&) const { return false; }
/**
* Return the number of random numbers required to evaluate this
* amplitude at a fixed phase space point.
*/
virtual int nDimAdditional() const { return 0; }
/**
* Return a ME instance appropriate for this amplitude and the given
* subprocesses
*/
virtual Ptr<MatchboxMEBase>::ptr makeME(const PDVector&) const;
/**
* Set the (tree-level) order in \f$g_S\f$ in which this matrix
* element should be evaluated.
*/
virtual void orderInGs(unsigned int) {}
/**
* Return the (tree-level) order in \f$g_S\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInGs() const = 0;
/**
* Set the (tree-level) order in \f$g_{EM}\f$ in which this matrix
* element should be evaluated.
*/
virtual void orderInGem(unsigned int) {}
/**
* Return the (tree-level) order in \f$g_{EM}\f$ in which this matrix
* element is given.
*/
virtual unsigned int orderInGem() const = 0;
/**
* Return the Herwig++ StandardModel object
*/
Ptr<StandardModel>::tcptr standardModel() {
if ( !hwStandardModel() )
hwStandardModel(dynamic_ptr_cast<Ptr<StandardModel>::tcptr>(HandlerBase::standardModel()));
return hwStandardModel();
}
/**
* Tell whether the outgoing partons should be sorted when determining
* allowed subprocesses. Otherwise, all permutations are counted as
* separate subprocesses.
*/
virtual bool sortOutgoing() { return true; }
/**
+ * Return true, if this amplitude already includes averaging over
+ * incoming parton's quantum numbers.
+ */
+ virtual bool hasInitialAverage() const { return false; }
+
+ /**
+ * Return true, if this amplitude already includes symmetry factors
+ * for identical outgoing particles.
+ */
+ virtual bool hasFinalStateSymmetry() const { return false; }
+
+ /**
* Return true, if this amplitude is handled by a BLHA one-loop provider
*/
virtual bool isOLPTree() const { return false; }
/**
* Return true, if this amplitude is handled by a BLHA one-loop provider
*/
virtual bool isOLPLoop() const { return false; }
/**
* Write the order file header
*/
virtual void olpOrderFileHeader(ostream&) const;
/**
* Write the order file process list
*/
virtual void olpOrderFileProcessGroup(ostream&,
const string&,
const set<Process>&) const;
/**
* Write the order file process list
*/
virtual void olpOrderFileProcesses(ostream&,
const map<pair<Process,int>,int>& procs) const;
/**
* Start the one loop provider, if appropriate, giving order and
* contract files
*/
virtual void signOLP(const string&, const string&) { }
/**
* Start the one loop provider, if appropriate
*/
virtual void startOLP(const string&, int& status) { status = -1; }
/**
* Start the one loop provider, if appropriate. This default
* implementation writes an BLHA 2.0 order file and starts the OLP
*/
virtual bool startOLP(const map<pair<Process,int>,int>& procs);
//@}
/** @name Colour basis. */
//@{
/**
* Return the colour basis.
*/
Ptr<ColourBasis>::tptr colourBasis() const { return theColourBasis; }
/**
* Return true, if this amplitude will not require colour correlations.
*/
virtual bool noCorrelations() const { return !haveOneLoop(); }
/**
* Return true, if the colour basis is capable of assigning colour
* flows.
*/
virtual bool haveColourFlows() const {
return colourBasis() ? colourBasis()->haveColourFlows() : false;
}
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
*/
virtual Selector<const ColourLines *> colourGeometries(tcDiagPtr diag) const;
/**
* Return an ordering identifier for the current subprocess and
* colour absis tensor index.
*/
const string& colourOrderingString(size_t id) const;
/**
* Return an ordering identifier for the current subprocess and
* colour absis tensor index.
*/
const vector<vector<size_t> >& colourOrdering(size_t id) const;
//@}
/** @name Phasespace point, crossing and helicities */
//@{
/**
* Set the xcomb object.
*/
virtual void setXComb(tStdXCombPtr xc);
/**
* Return the momentum as crossed appropriate for this amplitude.
*/
Lorentz5Momentum amplitudeMomentum(int) const;
/**
* Perform a normal ordering of external legs and fill the
* crossing information as. This default implementation sorts
* lexicographically in (abs(colour)/spin/abs(charge)), putting pairs
* of particles/anti-particles where possible.
*/
virtual void fillCrossingMap(size_t shift = 0);
/**
* Generate the helicity combinations.
*/
virtual set<vector<int> > generateHelicities() const;
//@}
/** @name Tree-level amplitudes */
//@{
/**
* Calculate the tree level amplitudes for the phasespace point
* stored in lastXComb.
*/
virtual void prepareAmplitudes(Ptr<MatchboxMEBase>::tcptr);
/**
* Return the matrix element squared.
*/
virtual double me2() const;
/**
* Return the colour correlated matrix element.
*/
virtual double colourCorrelatedME2(pair<int,int> ij) const;
/**
* Return the large-N colour correlated matrix element.
*/
virtual double largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const;
/**
* Return a positive helicity polarization vector for a gluon of
* momentum p (with reference vector n) to be used when evaluating
* spin correlations.
*/
virtual LorentzVector<Complex> plusPolarization(const Lorentz5Momentum& p,
const Lorentz5Momentum& n) const;
/**
* Return the colour and spin correlated matrix element.
*/
virtual double spinColourCorrelatedME2(pair<int,int> emitterSpectator,
const SpinCorrelationTensor& c) const;
/**
* Return true, if tree-level contributions will be evaluated at amplitude level.
*/
virtual bool treeAmplitudes() const { return true; }
/**
* Evaluate the amplitude for the given colour tensor id and
* helicity assignment
*/
virtual Complex evaluate(size_t, const vector<int>&, Complex&) { return 0.; }
//@}
/** @name One-loop amplitudes */
//@{
/**
* Return true, if this amplitude is capable of calculating one-loop
* (QCD) corrections.
*/
virtual bool haveOneLoop() const { return false; }
/**
* Return true, if this amplitude only provides
* one-loop (QCD) corrections.
*/
virtual bool onlyOneLoop() const { return false; }
/**
* Return true, if one-loop contributions will be evaluated at amplitude level.
*/
virtual bool oneLoopAmplitudes() const { return true; }
/**
* Return true, if one loop corrections have been calculated in
* dimensional reduction. Otherwise conventional dimensional
* regularization is assumed. Note that renormalization is always
* assumed to be MSbar.
*/
virtual bool isDR() const { return false; }
/**
* Return true, if one loop corrections are given in the conventions
* of the integrated dipoles.
*/
virtual bool isCS() const { return false; }
/**
* Return true, if one loop corrections are given in the conventions
* of BDK.
*/
virtual bool isBDK() const { return false; }
/**
* Return true, if one loop corrections are given in the conventions
* of everything expanded.
*/
virtual bool isExpanded() const { return false; }
/**
* Return the value of the dimensional regularization
* parameter. Note that renormalization scale dependence is fully
* restored in DipoleIOperator.
*/
virtual Energy2 mu2() const { return 0.*GeV2; }
/**
* If defined, return the coefficient of the pole in epsilon^2
*/
virtual double oneLoopDoublePole() const { return 0.; }
/**
* If defined, return the coefficient of the pole in epsilon
*/
virtual double oneLoopSinglePole() const { return 0.; }
/**
* Calculate the one-loop amplitudes for the phasespace point
* stored in lastXComb, if provided.
*/
virtual void prepareOneLoopAmplitudes(Ptr<MatchboxMEBase>::tcptr);
/**
* Return the one-loop/tree interference.
*/
virtual double oneLoopInterference() const;
/**
* Evaluate the amplitude for the given colour tensor id and
* helicity assignment
*/
virtual Complex evaluateOneLoop(size_t, const vector<int>&) { return 0.; }
//@}
/** @name Caching and helpers to setup amplitude objects. */
//@{
/**
* Flush all cashes.
*/
virtual void flushCaches() {}
/**
* Clone this amplitude.
*/
Ptr<MatchboxAmplitude>::ptr cloneMe() const {
return dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(clone());
}
/**
* Clone the dependencies, using a given prefix.
*/
virtual void cloneDependencies(const std::string& prefix = "");
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* Recursively generate helicities
*/
void doGenerateHelicities(set<vector<int> >& res,
vector<int>& current,
size_t pos) const;
/**
* The colour basis implementation to be used.
*/
Ptr<ColourBasis>::ptr theColourBasis;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MatchboxAmplitude & operator=(const MatchboxAmplitude &);
};
inline PersistentOStream& operator<<(PersistentOStream& os,
const Process& h) {
h.persistentOutput(os);
return os;
}
inline PersistentIStream& operator>>(PersistentIStream& is,
Process& h) {
h.persistentInput(is);
return is;
}
}
#endif /* HERWIG_MatchboxAmplitude_H */
diff --git a/MatrixElement/Matchbox/Base/MatchboxMEBase.cc b/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
--- a/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
+++ b/MatrixElement/Matchbox/Base/MatchboxMEBase.cc
@@ -1,1305 +1,1310 @@
// -*- C++ -*-
//
// MatchboxMEBase.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MatchboxMEBase class.
//
#include "MatchboxMEBase.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDF/PDF.h"
#include "ThePEG/PDT/PDT.h"
#include "ThePEG/StandardModel/StandardModelBase.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/Handlers/StdXCombGroup.h"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/DiagramDrawer.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.h"
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
MatchboxMEBase::MatchboxMEBase()
: MEBase(),
theOneLoop(false),
theOneLoopNoBorn(false) {}
MatchboxMEBase::~MatchboxMEBase() {}
Ptr<MatchboxFactory>::tcptr MatchboxMEBase::factory() const { return theFactory; }
void MatchboxMEBase::factory(Ptr<MatchboxFactory>::tcptr f) { theFactory = f; }
Ptr<Tree2toNGenerator>::tptr MatchboxMEBase::diagramGenerator() const { return factory()->diagramGenerator(); }
Ptr<ProcessData>::tptr MatchboxMEBase::processData() const { return factory()->processData(); }
unsigned int MatchboxMEBase::getNLight() const { return factory()->nLight(); }
double MatchboxMEBase::factorizationScaleFactor() const { return factory()->factorizationScaleFactor(); }
double MatchboxMEBase::renormalizationScaleFactor() const { return factory()->renormalizationScaleFactor(); }
bool MatchboxMEBase::fixedCouplings() const { return factory()->fixedCouplings(); }
bool MatchboxMEBase::fixedQEDCouplings() const { return factory()->fixedQEDCouplings(); }
bool MatchboxMEBase::checkPoles() const { return factory()->checkPoles(); }
bool MatchboxMEBase::verbose() const { return factory()->verbose(); }
bool MatchboxMEBase::initVerbose() const { return factory()->initVerbose(); }
void MatchboxMEBase::getDiagrams() const {
if ( diagramGenerator() && processData() ) {
vector<Ptr<Tree2toNDiagram>::ptr> diags;
vector<Ptr<Tree2toNDiagram>::ptr>& res =
processData()->diagramMap()[subProcess().legs];
if ( res.empty() ) {
res = diagramGenerator()->generate(subProcess().legs,orderInAlphaS(),orderInAlphaEW());
}
copy(res.begin(),res.end(),back_inserter(diags));
processData()->fillMassGenerators(subProcess().legs);
if ( diags.empty() )
return;
for ( vector<Ptr<Tree2toNDiagram>::ptr>::iterator d = diags.begin();
d != diags.end(); ++d ) {
add(*d);
}
return;
}
throw Exception()
<< "MatchboxMEBase::getDiagrams() expects a Tree2toNGenerator and ProcessData object.\n"
<< "Please check your setup." << Exception::abortnow;
}
Selector<MEBase::DiagramIndex>
MatchboxMEBase::diagrams(const DiagramVector & diags) const {
if ( phasespace() ) {
return phasespace()->selectDiagrams(diags);
}
throw Exception()
<< "MatchboxMEBase::diagrams() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return Selector<MEBase::DiagramIndex>();
}
Selector<const ColourLines *>
MatchboxMEBase::colourGeometries(tcDiagPtr diag) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->haveColourFlows() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
return matchboxAmplitude()->colourGeometries(diag);
}
}
Ptr<Tree2toNDiagram>::tcptr tdiag =
dynamic_ptr_cast<Ptr<Tree2toNDiagram>::tcptr>(diag);
assert(diag && processData());
vector<ColourLines*>& flows = processData()->colourFlowMap()[tdiag];
if ( flows.empty() ) {
list<list<list<pair<int,bool> > > > cflows =
ColourBasis::colourFlows(tdiag);
for ( list<list<list<pair<int,bool> > > >::const_iterator fit =
cflows.begin(); fit != cflows.end(); ++fit ) {
flows.push_back(new ColourLines(ColourBasis::cfstring(*fit)));
}
}
Selector<const ColourLines *> res;
for ( vector<ColourLines*>::const_iterator f = flows.begin();
f != flows.end(); ++f )
res.insert(1.0,*f);
return res;
}
unsigned int MatchboxMEBase::orderInAlphaS() const {
return subProcess().orderInAlphaS;
}
unsigned int MatchboxMEBase::orderInAlphaEW() const {
return subProcess().orderInAlphaEW;
}
void MatchboxMEBase::setXComb(tStdXCombPtr xc) {
MEBase::setXComb(xc);
lastMatchboxXComb(xc);
if ( phasespace() )
phasespace()->setXComb(xc);
if ( scaleChoice() )
scaleChoice()->setXComb(xc);
if ( matchboxAmplitude() )
matchboxAmplitude()->setXComb(xc);
}
double MatchboxMEBase::generateIncomingPartons(const double* r1, const double* r2) {
// shamelessly stolen from PartonExtractor.cc
Energy2 shmax = lastCuts().sHatMax();
Energy2 shmin = lastCuts().sHatMin();
Energy2 sh = shmin*pow(shmax/shmin, *r1);
double ymax = lastCuts().yHatMax();
double ymin = lastCuts().yHatMin();
double km = log(shmax/shmin);
ymax = min(ymax, log(lastCuts().x1Max()*sqrt(lastS()/sh)));
ymin = max(ymin, -log(lastCuts().x2Max()*sqrt(lastS()/sh)));
double y = ymin + (*r2)*(ymax - ymin);
double x1 = exp(-0.5*log(lastS()/sh) + y);
double x2 = exp(-0.5*log(lastS()/sh) - y);
Lorentz5Momentum P1 = lastParticles().first->momentum();
LorentzMomentum p1 = lightCone((P1.rho() + P1.e())*x1, Energy());
p1.rotateY(P1.theta());
p1.rotateZ(P1.phi());
meMomenta()[0] = p1;
Lorentz5Momentum P2 = lastParticles().second->momentum();
LorentzMomentum p2 = lightCone((P2.rho() + P2.e())*x2, Energy());
p2.rotateY(P2.theta());
p2.rotateZ(P2.phi());
meMomenta()[1] = p2;
lastXCombPtr()->lastX1X2(make_pair(x1,x2));
lastXCombPtr()->lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
return km*(ymax - ymin);
}
bool MatchboxMEBase::generateKinematics(const double * r) {
if ( phasespace() ) {
jacobian(phasespace()->generateKinematics(r,meMomenta()));
if ( jacobian() == 0.0 )
return false;
setScale();
logGenerateKinematics(r);
assert(lastMatchboxXComb());
if ( nDimAmplitude() > 0 ) {
amplitudeRandomNumbers().resize(nDimAmplitude());
copy(r + nDimPhasespace(),
r + nDimPhasespace() + nDimAmplitude(),
amplitudeRandomNumbers().begin());
}
if ( nDimInsertions() > 0 ) {
insertionRandomNumbers().resize(nDimInsertions());
copy(r + nDimPhasespace() + nDimAmplitude(),
r + nDimPhasespace() + nDimAmplitude() + nDimInsertions(),
insertionRandomNumbers().begin());
}
return true;
}
throw Exception()
<< "MatchboxMEBase::generateKinematics() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return false;
}
int MatchboxMEBase::nDim() const {
if ( lastMatchboxXComb() )
return nDimPhasespace() + nDimAmplitude() + nDimInsertions();
int ampAdd = 0;
if ( matchboxAmplitude() ) {
ampAdd = matchboxAmplitude()->nDimAdditional();
}
int insertionAdd = 0;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
insertionAdd = max(insertionAdd,(**v).nDimAdditional());
}
return nDimBorn() + ampAdd + insertionAdd;
}
int MatchboxMEBase::nDimBorn() const {
if ( lastMatchboxXComb() )
return nDimPhasespace();
if ( phasespace() ) {
size_t nout = diagrams().front()->partons().size()-2;
int n = phasespace()->nDim(nout);
if ( phasespace()->useMassGenerators() ) {
for ( cPDVector::const_iterator pd =
diagrams().front()->partons().begin();
pd != diagrams().front()->partons().end(); ++pd ) {
if ( processData()->massGenerator(*pd) ||
(**pd).width() != ZERO ) {
++n;
}
}
}
return n;
}
throw Exception()
<< "MatchboxMEBase::nDim() expects a MatchboxPhasespace object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0;
}
void MatchboxMEBase::setScale() const {
if ( haveX1X2() ) {
lastXCombPtr()->lastSHat((meMomenta()[0]+meMomenta()[1]).m2());
}
Energy2 fscale = factorizationScale()*sqr(factorizationScaleFactor());
Energy2 rscale = renormalizationScale()*sqr(renormalizationScaleFactor());
Energy2 ewrscale = renormalizationScaleQED();
lastXCombPtr()->lastScale(fscale);
if ( !fixedCouplings() ) {
if ( rscale > lastCuts().scaleMin() )
lastXCombPtr()->lastAlphaS(SM().alphaS(rscale));
else
lastXCombPtr()->lastAlphaS(SM().alphaS(lastCuts().scaleMin()));
} else {
lastXCombPtr()->lastAlphaS(SM().alphaS());
}
if ( !fixedQEDCouplings() ) {
lastXCombPtr()->lastAlphaEM(SM().alphaEM(ewrscale));
} else {
lastXCombPtr()->lastAlphaEM(SM().alphaEMMZ());
}
logSetScale();
}
Energy2 MatchboxMEBase::factorizationScale() const {
if ( scaleChoice() ) {
return scaleChoice()->factorizationScale();
}
throw Exception()
<< "MatchboxMEBase::factorizationScale() expects a MatchboxScaleChoice object.\n"
<< "Please check your setup." << Exception::abortnow;
return ZERO;
}
Energy2 MatchboxMEBase::renormalizationScale() const {
if ( scaleChoice() ) {
return scaleChoice()->renormalizationScale();
}
throw Exception()
<< "MatchboxMEBase::renormalizationScale() expects a MatchboxScaleChoice object.\n"
<< "Please check your setup." << Exception::abortnow;
return ZERO;
}
Energy2 MatchboxMEBase::renormalizationScaleQED() const {
if ( scaleChoice() ) {
return scaleChoice()->renormalizationScaleQED();
}
return renormalizationScale();
}
void MatchboxMEBase::setVetoScales(tSubProPtr) const {}
void MatchboxMEBase::getPDFWeight(Energy2 factorizationScale) const {
if ( !mePartonData()[0]->coloured() &&
!mePartonData()[1]->coloured() ) {
lastMEPDFWeight(1.0);
logPDFWeight();
return;
}
double w = 1.;
if ( mePartonData()[0]->coloured() && havePDFWeight1() )
w *= pdf1(factorizationScale);
if ( mePartonData()[1]->coloured() && havePDFWeight2() )
w *= pdf2(factorizationScale);
lastMEPDFWeight(w);
logPDFWeight();
}
double MatchboxMEBase::pdf1(Energy2 fscale, double xEx) const {
assert(lastXCombPtr()->partonBins().first->pdf());
if ( xEx < 1. && lastX1() >= xEx ) {
return
( ( 1. - lastX1() ) / ( 1. - xEx ) ) *
lastXCombPtr()->partonBins().first->pdf()->xfx(lastParticles().first->dataPtr(),
lastPartons().first->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
xEx)/xEx;
}
return lastXCombPtr()->partonBins().first->pdf()->xfx(lastParticles().first->dataPtr(),
lastPartons().first->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
lastX1())/lastX1();
}
double MatchboxMEBase::pdf2(Energy2 fscale, double xEx) const {
assert(lastXCombPtr()->partonBins().second->pdf());
if ( xEx < 1. && lastX2() >= xEx ) {
return
( ( 1. - lastX2() ) / ( 1. - xEx ) ) *
lastXCombPtr()->partonBins().second->pdf()->xfx(lastParticles().second->dataPtr(),
lastPartons().second->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
xEx)/xEx;
}
return lastXCombPtr()->partonBins().second->pdf()->xfx(lastParticles().second->dataPtr(),
lastPartons().second->dataPtr(),
fscale == ZERO ? lastScale() : fscale,
lastX2())/lastX2();
}
double MatchboxMEBase::me2() const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
lastME2(matchboxAmplitude()->me2()*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::me2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::finalStateSymmetry() const {
if ( symmetryFactor() > 0.0 )
return symmetryFactor();
double sFactor = 1.;
map<long,int> counts;
cPDVector checkData;
copy(mePartonData().begin()+2,mePartonData().end(),back_inserter(checkData));
cPDVector::iterator p = checkData.begin();
while ( !checkData.empty() ) {
if ( counts.find((**p).id()) != counts.end() ) {
counts[(**p).id()] += 1;
} else {
counts[(**p).id()] = 1;
}
checkData.erase(p);
p = checkData.begin();
continue;
}
for ( map<long,int>::const_iterator c = counts.begin();
c != counts.end(); ++c ) {
if ( c->second == 1 )
continue;
if ( c->second == 2 )
sFactor /= 2.;
else if ( c->second == 3 )
sFactor /= 6.;
else if ( c->second == 4 )
sFactor /= 24.;
}
symmetryFactor(sFactor);
return symmetryFactor();
}
double MatchboxMEBase::me2Norm(unsigned int addAlphaS) const {
// assume that we always have incoming
// spin-1/2 or massless spin-1 particles
double fac = 1./4.;
+ if ( hasInitialAverage() )
+ fac = 1.;
+
if ( orderInAlphaS() > 0 || addAlphaS != 0 )
fac *= pow(lastAlphaS()/SM().alphaS(),double(orderInAlphaS()+addAlphaS));
if ( orderInAlphaEW() > 0 )
fac *= pow(lastAlphaEM()/SM().alphaEM(),double(orderInAlphaEW()));
- if ( mePartonData()[0]->iColour() == PDT::Colour3 ||
- mePartonData()[0]->iColour() == PDT::Colour3bar )
- fac /= SM().Nc();
- else if ( mePartonData()[0]->iColour() == PDT::Colour8 )
- fac /= (SM().Nc()*SM().Nc()-1.);
+ if ( !hasInitialAverage() ) {
+ if ( mePartonData()[0]->iColour() == PDT::Colour3 ||
+ mePartonData()[0]->iColour() == PDT::Colour3bar )
+ fac /= SM().Nc();
+ else if ( mePartonData()[0]->iColour() == PDT::Colour8 )
+ fac /= (SM().Nc()*SM().Nc()-1.);
- if ( mePartonData()[1]->iColour() == PDT::Colour3 ||
- mePartonData()[1]->iColour() == PDT::Colour3bar )
- fac /= SM().Nc();
- else if ( mePartonData()[1]->iColour() == PDT::Colour8 )
- fac /= (SM().Nc()*SM().Nc()-1.);
+ if ( mePartonData()[1]->iColour() == PDT::Colour3 ||
+ mePartonData()[1]->iColour() == PDT::Colour3bar )
+ fac /= SM().Nc();
+ else if ( mePartonData()[1]->iColour() == PDT::Colour8 )
+ fac /= (SM().Nc()*SM().Nc()-1.);
+ }
- return finalStateSymmetry()*fac;
+ return !hasFinalStateSymmetry() ? finalStateSymmetry()*fac : fac;
}
CrossSection MatchboxMEBase::dSigHatDR() const {
getPDFWeight();
if ( !lastXCombPtr()->willPassCuts() ) {
lastME2(0.0);
lastMECrossSection(ZERO);
return lastMECrossSection();
}
double xme2 = me2();
lastME2(xme2);
if ( xme2 == 0. && !oneLoopNoBorn() ) {
lastME2(0.0);
lastMECrossSection(ZERO);
return lastMECrossSection();
}
double vme2 = 0.;
if ( oneLoop() )
vme2 = oneLoopInterference();
CrossSection res = ZERO;
if ( !oneLoopNoBorn() )
res +=
(sqr(hbarc)/(2.*lastSHat())) *
jacobian()* lastMEPDFWeight() * xme2;
if ( oneLoop() )
res +=
(sqr(hbarc)/(2.*lastSHat())) *
jacobian()* lastMEPDFWeight() * vme2;
if ( !onlyOneLoop() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).setXComb(lastXCombPtr());
res += (**v).dSigHatDR();
}
if ( checkPoles() )
logPoles();
}
double weight = 0.0;
bool applied = false;
for ( vector<Ptr<MatchboxReweightBase>::ptr>::const_iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).setXComb(lastXCombPtr());
if ( !(**rw).apply() )
continue;
weight += (**rw).evaluate();
applied = true;
}
if ( applied )
res *= weight;
lastMECrossSection(res);
return lastMECrossSection();
}
double MatchboxMEBase::oneLoopInterference() const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->oneLoopAmplitudes() )
matchboxAmplitude()->prepareOneLoopAmplitudes(this);
lastME2(matchboxAmplitude()->oneLoopInterference()*
crossingSign()*
me2Norm(1));
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::oneLoopInterference() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
MatchboxMEBase::AccuracyHistogram::AccuracyHistogram(double low,
double up,
unsigned int nbins)
: lower(low), upper(up),
sameSign(0), oppositeSign(0), nans(0),
overflow(0), underflow(0) {
double step = (up-low)/nbins;
for ( unsigned int k = 1; k <= nbins; ++k )
bins[lower + k*step] = 0.0;
}
void MatchboxMEBase::AccuracyHistogram::book(double a, double b) {
if ( isnan(a) || isnan(b) ||
isinf(a) || isinf(b) ) {
++nans;
return;
}
if ( a*b >= 0. )
++sameSign;
if ( a*b < 0. )
++oppositeSign;
double r = 1.;
if ( abs(a) != 0.0 )
r = abs(1.-abs(b/a));
else if ( abs(b) != 0.0 )
r = abs(b);
if ( log(r) < lower || r == 0.0 ) {
++underflow;
return;
}
if ( log(r) > upper ) {
++overflow;
return;
}
map<double,double>::iterator bin =
bins.upper_bound(log(r));
if ( bin == bins.end() )
return;
bin->second += 1.;
}
void MatchboxMEBase::AccuracyHistogram::dump(const std::string& prefix,
const cPDVector& proc) const {
ostringstream fname("");
for ( cPDVector::const_iterator p = proc.begin();
p != proc.end(); ++p )
fname << (**p).PDGName();
ofstream out((prefix+fname.str()+".dat").c_str());
out << "# same sign : " << sameSign << " opposite sign : "
<< oppositeSign << " nans : " << nans
<< " overflow : " << overflow
<< " underflow : " << underflow << "\n";
for ( map<double,double>::const_iterator b = bins.begin();
b != bins.end(); ++b ) {
map<double,double>::const_iterator bp = b; --bp;
if ( b->second != 0. ) {
if ( b != bins.begin() )
out << bp->first;
else
out << lower;
out << " " << b->first
<< " " << b->second
<< "\n" << flush;
}
}
}
void MatchboxMEBase::AccuracyHistogram::persistentOutput(PersistentOStream& os) const {
os << lower << upper << bins
<< sameSign << oppositeSign << nans
<< overflow << underflow;
}
void MatchboxMEBase::AccuracyHistogram::persistentInput(PersistentIStream& is) {
is >> lower >> upper >> bins
>> sameSign >> oppositeSign >> nans
>> overflow >> underflow;
}
void MatchboxMEBase::logPoles() const {
double res2me = oneLoopDoublePole();
double res1me = oneLoopSinglePole();
double res2i = 0.;
double res1i = 0.;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
res2i += (**v).oneLoopDoublePole();
res1i += (**v).oneLoopSinglePole();
}
epsilonSquarePoleHistograms[mePartonData()].book(res2me,res2i);
epsilonPoleHistograms[mePartonData()].book(res1me,res1i);
}
bool MatchboxMEBase::haveOneLoop() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->haveOneLoop();
return false;
}
bool MatchboxMEBase::onlyOneLoop() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->onlyOneLoop();
return false;
}
bool MatchboxMEBase::isDR() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isDR();
return false;
}
bool MatchboxMEBase::isCS() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isCS();
return false;
}
bool MatchboxMEBase::isBDK() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isBDK();
return false;
}
bool MatchboxMEBase::isExpanded() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->isExpanded();
return false;
}
Energy2 MatchboxMEBase::mu2() const {
if ( matchboxAmplitude() )
return matchboxAmplitude()->mu2();
return 0*GeV2;
}
double MatchboxMEBase::oneLoopDoublePole() const {
if ( matchboxAmplitude() ) {
return
matchboxAmplitude()->oneLoopDoublePole()*
crossingSign()*
me2Norm(1);
}
return 0.;
}
double MatchboxMEBase::oneLoopSinglePole() const {
if ( matchboxAmplitude() ) {
return
matchboxAmplitude()->oneLoopSinglePole()*
crossingSign()*
me2Norm(1);
}
return 0.;
}
vector<Ptr<SubtractionDipole>::ptr>
MatchboxMEBase::getDipoles(const vector<Ptr<SubtractionDipole>::ptr>& dipoles,
const vector<Ptr<MatchboxMEBase>::ptr>& borns) const {
vector<Ptr<SubtractionDipole>::ptr> res;
// keep track of the dipoles we already did set up
set<pair<pair<pair<int,int>,int>,pair<Ptr<MatchboxMEBase>::tptr,Ptr<SubtractionDipole>::tptr> > > done;
cPDVector rep = diagrams().front()->partons();
int nreal = rep.size();
// now loop over configs
for ( int emitter = 0; emitter < nreal; ++emitter ) {
for ( int spectator = 0; spectator < nreal; ++spectator ) {
if ( emitter == spectator )
continue;
for ( int emission = 2; emission < nreal; ++emission ) {
if ( emission == emitter || emission == spectator )
continue;
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator b =
borns.begin(); b != borns.end(); ++b ) {
if ( (**b).onlyOneLoop() )
continue;
for ( vector<Ptr<SubtractionDipole>::ptr>::const_iterator d =
dipoles.begin(); d != dipoles.end(); ++d ) {
if ( !rep[emitter]->coloured() ||
!rep[emission]->coloured() ||
!rep[spectator]->coloured() ) {
continue;
}
if ( noDipole(emitter,emission,spectator) ) {
continue;
}
if ( done.find(make_pair(make_pair(make_pair(emitter,emission),spectator),make_pair(*b,*d)))
!= done.end() ) {
continue;
}
if ( !(**d).canHandle(rep,emitter,emission,spectator) ) {
continue;
}
// now get to work
(**d).clearBookkeeping();
(**d).realEmitter(emitter);
(**d).realEmission(emission);
(**d).realSpectator(spectator);
(**d).realEmissionME(const_cast<MatchboxMEBase*>(this));
(**d).underlyingBornME(*b);
(**d).setupBookkeeping();
if ( !((**d).empty()) ) {
Ptr<SubtractionDipole>::ptr nDipole = (**d).cloneMe();
res.push_back(nDipole);
done.insert(make_pair(make_pair(make_pair(emitter,emission),spectator),make_pair(*b,*d)));
if ( nDipole->isSymmetric() )
done.insert(make_pair(make_pair(make_pair(emission,emitter),spectator),make_pair(*b,*d)));
ostringstream dname;
dname << fullName() << "." << (**b).name() << "."
<< (**d).name() << ".[("
<< emitter << "," << emission << ")," << spectator << "]";
if ( ! (generator()->preinitRegister(nDipole,dname.str()) ) )
throw InitException() << "Dipole " << dname.str() << " already existing.";
nDipole->cloneDependencies(dname.str());
}
}
}
}
}
}
for ( vector<Ptr<SubtractionDipole>::ptr>::iterator d = res.begin();
d != res.end(); ++d )
(**d).partnerDipoles(res);
return res;
}
double MatchboxMEBase::colourCorrelatedME2(pair<int,int> ij) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
lastME2(matchboxAmplitude()->colourCorrelatedME2(ij)*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::colourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
largeNBasis->prepare(mePartonData(),false);
lastME2(matchboxAmplitude()->largeNColourCorrelatedME2(ij,largeNBasis)*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::largeNColourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
double MatchboxMEBase::spinColourCorrelatedME2(pair<int,int> ij,
const SpinCorrelationTensor& c) const {
if ( matchboxAmplitude() ) {
if ( matchboxAmplitude()->treeAmplitudes() )
matchboxAmplitude()->prepareAmplitudes(this);
lastME2(matchboxAmplitude()->spinColourCorrelatedME2(ij,c)*
crossingSign()*
me2Norm());
logME2();
return lastME2();
}
throw Exception()
<< "MatchboxMEBase::spinColourCorrelatedME2() expects a MatchboxAmplitude object.\n"
<< "Please check your setup." << Exception::abortnow;
return 0.;
}
void MatchboxMEBase::flushCaches() {
MEBase::flushCaches();
if ( matchboxAmplitude() )
matchboxAmplitude()->flushCaches();
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator r =
reweights().begin(); r != reweights().end(); ++r ) {
(**r).flushCaches();
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
(**v).flushCaches();
}
}
void MatchboxMEBase::print(ostream& os) const {
os << "--- MatchboxMEBase setup -------------------------------------------------------\n";
os << " '" << name() << "' for subprocess:\n";
os << " ";
for ( PDVector::const_iterator pp = subProcess().legs.begin();
pp != subProcess().legs.end(); ++pp ) {
os << (**pp).PDGName() << " ";
if ( pp == subProcess().legs.begin() + 1 )
os << "-> ";
}
os << "\n";
os << " including " << (oneLoop() ? "" : "no ") << "virtual corrections";
if ( oneLoopNoBorn() )
os << " without Born contributions";
os << "\n";
if ( oneLoop() && !onlyOneLoop() ) {
os << " using insertion operators\n";
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
os << " '" << (**v).name() << "' with "
<< ((**v).isDR() ? "" : "C") << "DR/";
if ( (**v).isCS() )
os << "CS";
if ( (**v).isBDK() )
os << "BDK";
if ( (**v).isExpanded() )
os << "expanded";
os << " conventions\n";
}
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxMEBase::printLastEvent(ostream& os) const {
os << "--- MatchboxMEBase last event information --------------------------------------\n";
os << " for matrix element '" << name() << "'\n";
os << " process considered:\n ";
int in = 0;
for ( cPDVector::const_iterator p = mePartonData().begin();
p != mePartonData().end(); ++p ) {
os << (**p).PDGName() << " ";
if ( ++in == 2 )
os << " -> ";
}
os << " kinematic environment as set by the XComb " << lastXCombPtr() << ":\n"
<< " sqrt(shat)/GeV = " << sqrt(lastSHat()/GeV2)
<< " x1 = " << lastX1() << " x2 = " << lastX2()
<< " alphaS = " << lastAlphaS() << "\n";
os << " momenta/GeV generated from random numbers\n ";
copy(lastXComb().lastRandomNumbers().begin(),
lastXComb().lastRandomNumbers().end(),ostream_iterator<double>(os," "));
os << ":\n ";
for ( vector<Lorentz5Momentum>::const_iterator p = meMomenta().begin();
p != meMomenta().end(); ++p ) {
os << (*p/GeV) << "\n ";
}
os << "last cross section/nb calculated was:\n "
<< (lastMECrossSection()/nanobarn) << " (pdf weight " << lastMEPDFWeight() << ")\n";
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxMEBase::logGenerateKinematics(const double * r) const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' generated kinematics\nfrom "
<< nDim() << " random numbers:\n";
copy(r,r+nDim(),ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "storing phase space information in XComb "
<< lastXCombPtr() << "\n";
generator()->log() << "generated phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = meMomenta().begin();
cPDVector::const_iterator dit = mePartonData().begin();
for ( ; pit != meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << lastX1() << " x2 = " << lastX2() << "\n"
<< "and Jacobian = " << jacobian() << " sHat/GeV2 = "
<< (lastSHat()/GeV2) << "\n" << flush;
}
void MatchboxMEBase::logSetScale() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' set scales using XComb " << lastXCombPtr() << ":\n"
<< "scale/GeV2 = " << (scale()/GeV2) << " xi_R = "
<< renormalizationScaleFactor() << " xi_F = "
<< factorizationScaleFactor() << "\n"
<< "alpha_s = " << lastAlphaS() << "\n" << flush;
}
void MatchboxMEBase::logPDFWeight() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' calculated pdf weight = "
<< lastMEPDFWeight() << " from XComb "
<< lastXCombPtr() << "\n"
<< "x1 = " << lastX1() << " (" << (mePartonData()[0]->coloured() ? "" : "not ") << "used) "
<< "x2 = " << lastX2() << " (" << (mePartonData()[1]->coloured() ? "" : "not ") << "used)\n"
<< flush;
}
void MatchboxMEBase::logME2() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' evaluated me2 using XComb "
<< lastXCombPtr() << "\n"
<< "and phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = meMomenta().begin();
cPDVector::const_iterator dit = mePartonData().begin();
for ( ; pit != meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << lastX1() << " x2 = " << lastX2() << "\n"
<< "sHat/GeV2 = " << (lastSHat()/GeV2)
<< " me2 = " << lastME2() << "\n" << flush;
}
void MatchboxMEBase::logDSigHatDR() const {
if ( !verbose() )
return;
generator()->log() << "'" << name() << "' evaluated cross section using XComb "
<< lastXCombPtr() << "\n"
<< "Jacobian = " << jacobian() << " sHat/GeV2 = "
<< (lastSHat()/GeV2) << " dsig/nb = "
<< (lastMECrossSection()/nanobarn) << "\n" << flush;
}
void MatchboxMEBase::cloneDependencies(const std::string& prefix) {
if ( phasespace() ) {
Ptr<MatchboxPhasespace>::ptr myPhasespace = phasespace()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myPhasespace->name();
if ( ! (generator()->preinitRegister(myPhasespace,pname.str()) ) )
throw InitException() << "Phasespace generator " << pname.str() << " already existing.";
myPhasespace->cloneDependencies(pname.str());
phasespace(myPhasespace);
}
theAmplitude = dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(amplitude());
if ( matchboxAmplitude() ) {
Ptr<MatchboxAmplitude>::ptr myAmplitude = matchboxAmplitude()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myAmplitude->name();
if ( ! (generator()->preinitRegister(myAmplitude,pname.str()) ) )
throw InitException() << "Amplitude " << pname.str() << " already existing.";
myAmplitude->cloneDependencies(pname.str());
matchboxAmplitude(myAmplitude);
amplitude(myAmplitude);
matchboxAmplitude()->orderInGs(orderInAlphaS());
matchboxAmplitude()->orderInGem(orderInAlphaEW());
}
if ( scaleChoice() ) {
Ptr<MatchboxScaleChoice>::ptr myScaleChoice = scaleChoice()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myScaleChoice->name();
if ( ! (generator()->preinitRegister(myScaleChoice,pname.str()) ) )
throw InitException() << "Scale choice " << pname.str() << " already existing.";
scaleChoice(myScaleChoice);
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
Ptr<MatchboxReweightBase>::ptr myReweight = (**rw).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**rw).name();
if ( ! (generator()->preinitRegister(myReweight,pname.str()) ) )
throw InitException() << "Reweight " << pname.str() << " already existing.";
myReweight->cloneDependencies(pname.str());
*rw = myReweight;
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
Ptr<MatchboxInsertionOperator>::ptr myIOP = (**v).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**v).name();
if ( ! (generator()->preinitRegister(myIOP,pname.str()) ) )
throw InitException() << "Insertion operator " << pname.str() << " already existing.";
*v = myIOP;
}
}
void MatchboxMEBase::prepareXComb(MatchboxXCombData& xc) const {
if ( phasespace() ) {
size_t nout = diagrams().front()->partons().size()-2;
xc.nDimPhasespace(phasespace()->nDim(nout));
}
if ( matchboxAmplitude() ) {
xc.nDimAmplitude(matchboxAmplitude()->nDimAdditional());
if ( matchboxAmplitude()->colourBasis() ) {
size_t cdim =
matchboxAmplitude()->colourBasis()->prepare(diagrams(),matchboxAmplitude()->noCorrelations());
xc.colourBasisDim(cdim);
}
}
int insertionAdd = 0;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator v =
virtuals().begin(); v != virtuals().end(); ++v ) {
insertionAdd = max(insertionAdd,(**v).nDimAdditional());
}
xc.nDimInsertions(insertionAdd);
xc.nLight(getNLight());
xc.olpId(olpProcess());
if ( initVerbose() ) {
string fname = name() + ".diagrams";
ifstream test(fname.c_str());
if ( !test ) {
test.close();
ofstream out(fname.c_str());
for ( vector<Ptr<DiagramBase>::ptr>::const_iterator d = diagrams().begin();
d != diagrams().end(); ++d ) {
DiagramDrawer::drawDiag(out,dynamic_cast<const Tree2toNDiagram&>(**d));
out << "\n";
}
}
}
}
StdXCombPtr MatchboxMEBase::makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec&,
tStdXCombPtr newHead,
tMEPtr newME) {
if ( !newME )
newME = this;
Ptr<MatchboxXComb>::ptr xc =
new_ptr(MatchboxXComb(newMaxEnergy, inc,
newEventHandler, newSubProcessHandler,
newExtractor, newCKKW,
newPartonBins, newCuts, newME,
newDiagrams, mir,
newHead));
prepareXComb(*xc);
return xc;
}
StdXCombPtr MatchboxMEBase::makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
tMEPtr newME) {
if ( !newME )
newME = this;
Ptr<MatchboxXComb>::ptr xc =
new_ptr(MatchboxXComb(newHead, newPartonBins, newME, newDiagrams));
prepareXComb(*xc);
return xc;
}
void MatchboxMEBase::persistentOutput(PersistentOStream & os) const {
os << theLastXComb << theFactory << thePhasespace
<< theAmplitude << theScaleChoice << theVirtuals
<< theReweights << theSubprocess << theOneLoop
<< theOneLoopNoBorn
<< epsilonSquarePoleHistograms << epsilonPoleHistograms
<< theOLPProcess;
}
void MatchboxMEBase::persistentInput(PersistentIStream & is, int) {
is >> theLastXComb >> theFactory >> thePhasespace
>> theAmplitude >> theScaleChoice >> theVirtuals
>> theReweights >> theSubprocess >> theOneLoop
>> theOneLoopNoBorn
>> epsilonSquarePoleHistograms >> epsilonPoleHistograms
>> theOLPProcess;
lastMatchboxXComb(theLastXComb);
}
void MatchboxMEBase::Init() {
static ClassDocumentation<MatchboxMEBase> documentation
("MatchboxMEBase is the base class for matrix elements "
"in the context of the matchbox NLO interface.");
}
IBPtr MatchboxMEBase::clone() const {
return new_ptr(*this);
}
IBPtr MatchboxMEBase::fullclone() const {
return new_ptr(*this);
}
void MatchboxMEBase::doinit() {
MEBase::doinit();
if ( !theAmplitude )
theAmplitude = dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>(amplitude());
}
void MatchboxMEBase::dofinish() {
MEBase::dofinish();
for ( map<cPDVector,AccuracyHistogram>::const_iterator
b = epsilonSquarePoleHistograms.begin();
b != epsilonSquarePoleHistograms.end(); ++b ) {
b->second.dump(factory()->poleData() + "epsilonSquarePoles-",b->first);
}
for ( map<cPDVector,AccuracyHistogram>::const_iterator
b = epsilonPoleHistograms.begin();
b != epsilonPoleHistograms.end(); ++b ) {
b->second.dump(factory()->poleData() + "epsilonPoles-",b->first);
}
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MatchboxMEBase,MEBase>
describeHerwigMatchboxMEBase("Herwig::MatchboxMEBase", "HwMatchbox.so");
diff --git a/MatrixElement/Matchbox/Base/MatchboxMEBase.h b/MatrixElement/Matchbox/Base/MatchboxMEBase.h
--- a/MatrixElement/Matchbox/Base/MatchboxMEBase.h
+++ b/MatrixElement/Matchbox/Base/MatchboxMEBase.h
@@ -1,957 +1,974 @@
// -*- C++ -*-
//
// MatchboxMEBase.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MatchboxMEBase_H
#define HERWIG_MatchboxMEBase_H
//
// This is the declaration of the MatchboxMEBase class.
//
#include "ThePEG/MatrixElement/MEBase.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/SpinCorrelationTensor.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/Tree2toNGenerator.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxScaleChoice.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/ProcessData.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/MatchboxPhasespace.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxAmplitude.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxReweightBase.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxMEBase.fh"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.fh"
#include "Herwig++/MatrixElement/Matchbox/InsertionOperators/MatchboxInsertionOperator.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.fh"
#include "Herwig++/MatrixElement/Matchbox/Utility/LastMatchboxXCombInfo.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxXComb.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief MatchboxMEBase is the base class for matrix elements
* in the context of the matchbox NLO interface.
*
* @see \ref MatchboxMEBaseInterfaces "The interfaces"
* defined for MatchboxMEBase.
*/
class MatchboxMEBase:
public MEBase, public LastMatchboxXCombInfo {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MatchboxMEBase();
/**
* The destructor.
*/
virtual ~MatchboxMEBase();
//@}
public:
/**
* Return the factory which produced this matrix element
*/
Ptr<MatchboxFactory>::tcptr factory() const;
/**
* Set the factory which produced this matrix element
*/
void factory(Ptr<MatchboxFactory>::tcptr f);
/** @name Subprocess and diagram information. */
//@{
/**
* Return the subprocess.
*/
const Process& subProcess() const { return theSubprocess; }
/**
* Access the subprocess.
*/
Process& subProcess() { return theSubprocess; }
/**
* Return the diagram generator.
*/
Ptr<Tree2toNGenerator>::tptr diagramGenerator() const;
/**
* Return the process data.
*/
Ptr<ProcessData>::tptr processData() const;
/**
* Return true, if this matrix element does not want to
* make use of mirroring processes; in this case all
* possible partonic subprocesses with a fixed assignment
* of incoming particles need to be provided through the diagrams
* added with the add(...) method.
*/
virtual bool noMirror () const { return true; }
/**
* Add all possible diagrams with the add() function.
*/
virtual void getDiagrams() const;
using MEBase::getDiagrams;
/**
* With the information previously supplied with the
* setKinematics(...) method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
*/
virtual Selector<DiagramIndex> diagrams(const DiagramVector &) const;
using MEBase::diagrams;
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
*/
virtual Selector<const ColourLines *>
colourGeometries(tcDiagPtr diag) const;
/**
* Return the order in \f$\alpha_S\f$ in which this matrix element
* is given.
*/
virtual unsigned int orderInAlphaS() const;
using MEBase::orderInAlphaS;
/**
* Return the order in \f$\alpha_{EM}\f$ in which this matrix
* element is given. Returns 0.
*/
virtual unsigned int orderInAlphaEW() const;
using MEBase::orderInAlphaEW;
/**
+ * Return true, if this amplitude already includes averaging over
+ * incoming parton's quantum numbers.
+ */
+ virtual bool hasInitialAverage() const {
+ return matchboxAmplitude() ? matchboxAmplitude()->hasInitialAverage() : false;
+ }
+
+ /**
+ * Return true, if this amplitude already includes symmetry factors
+ * for identical outgoing particles.
+ */
+ virtual bool hasFinalStateSymmetry() const {
+ return matchboxAmplitude() ? matchboxAmplitude()->hasFinalStateSymmetry() : false;
+ }
+
+
+ /**
* Return the number of light flavours, this matrix
* element is calculated for.
*/
virtual unsigned int getNLight() const;
/**
* Return true, if this matrix element is handled by a BLHA one-loop provider
*/
virtual bool isOLPTree() const {
return matchboxAmplitude() ? matchboxAmplitude()->isOLPTree() : false;
}
/**
* Return true, if this matrix element is handled by a BLHA one-loop provider
*/
virtual bool isOLPLoop() const {
return matchboxAmplitude() ? matchboxAmplitude()->isOLPLoop() : false;
}
/**
* Return the process index, if this is an OLP handled matrix element
*/
const vector<int>& olpProcess() const { return theOLPProcess; }
/**
* Set the process index, if this is an OLP handled matrix element
*/
void olpProcess(int pType, int id) {
if ( theOLPProcess.empty() )
theOLPProcess.resize(4,0);
theOLPProcess[pType] = id;
}
//@}
/** @name Phasespace generation */
//@{
/**
* Return the phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::tptr phasespace() const { return thePhasespace; }
/**
* Set the phase space generator to be used.
*/
void phasespace(Ptr<MatchboxPhasespace>::ptr ps) { thePhasespace = ps; }
/**
* Set the XComb object to be used in the next call to
* generateKinematics() and dSigHatDR().
*/
virtual void setXComb(tStdXCombPtr xc);
/**
* Return true, if the XComb steering this matrix element
* should keep track of the random numbers used to generate
* the last phase space point
*/
virtual bool keepRandomNumbers() const { return true; }
/**
* Generate incoming parton momenta. This default
* implementation performs the standard mapping
* from x1,x2 -> tau,y making 1/tau flat; incoming
* parton momenta are stored in meMomenta()[0,1],
* only massless partons are supported so far;
* return the Jacobian of the mapping
*/
double generateIncomingPartons(const double* r1, const double* r2);
/**
* Generate internal degrees of freedom given nDim() uniform random
* numbers in the interval ]0,1[. To help the phase space generator,
* the 'dSigHatDR' should be a smooth function of these numbers,
* although this is not strictly necessary. The return value should
* be true of the generation succeeded. If so the generated momenta
* should be stored in the meMomenta() vector. Derived classes
* must call this method once internal degrees of freedom are setup
* and finally return the result of this method.
*/
virtual bool generateKinematics(const double * r);
/**
* The number of internal degreed of freedom used in the matrix
* element.
*/
virtual int nDim() const;
/**
* The number of internal degrees of freedom used in the matrix
* element for generating a Born phase space point
*/
virtual int nDimBorn() const;
/**
* Return true, if this matrix element will generate momenta for the
* incoming partons itself. The matrix element is required to store
* the incoming parton momenta in meMomenta()[0,1]. No mapping in
* tau and y is performed by the PartonExtractor object, if a
* derived class returns true here. The phase space jacobian is to
* include a factor 1/(x1 x2).
*/
virtual bool haveX1X2() const {
return
(phasespace() ? phasespace()->haveX1X2() : false) ||
diagrams().front()->partons().size() == 3;
}
/**
* Return true, if this matrix element expects
* the incoming partons in their center-of-mass system
*/
virtual bool wantCMS() const {
return
(phasespace() ? phasespace()->wantCMS() : true) &&
diagrams().front()->partons().size() != 3; }
/**
* Return the meMomenta as generated at the last
* phase space point.
*/
const vector<Lorentz5Momentum>& lastMEMomenta() const { return meMomenta(); }
/**
* Access the meMomenta.
*/
vector<Lorentz5Momentum>& lastMEMomenta() { return meMomenta(); }
//@}
/** @name Scale choices, couplings and PDFs */
//@{
/**
* Set the scale choice object
*/
void scaleChoice(Ptr<MatchboxScaleChoice>::ptr sc) { theScaleChoice = sc; }
/**
* Return the scale choice object
*/
Ptr<MatchboxScaleChoice>::tptr scaleChoice() const { return theScaleChoice; }
/**
* Set scales and alphaS
*/
void setScale() const;
/**
* Return the scale associated with the phase space point provided
* by the last call to setKinematics().
*/
virtual Energy2 scale() const { return lastScale(); }
/**
* Return the renormalization scale for the last generated phasespace point.
*/
virtual Energy2 factorizationScale() const;
/**
* Get the factorization scale factor
*/
virtual double factorizationScaleFactor() const;
/**
* Return the (QCD) renormalization scale for the last generated phasespace point.
*/
virtual Energy2 renormalizationScale() const;
/**
* Get the renormalization scale factor
*/
virtual double renormalizationScaleFactor() const;
/**
* Return the QED renormalization scale for the last generated phasespace point.
*/
virtual Energy2 renormalizationScaleQED() const;
/**
* Set veto scales on the particles at the given
* SubProcess which has been generated using this
* matrix element.
*/
virtual void setVetoScales(tSubProPtr) const;
/**
* Return true, if fixed couplings are used.
*/
bool fixedCouplings() const;
/**
* Return true, if fixed couplings are used.
*/
bool fixedQEDCouplings() const;
/**
* Return the value of \f$\alpha_S\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaS(scale()).
*/
virtual double alphaS() const { return lastAlphaS(); }
/**
* Return the value of \f$\alpha_EM\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaEM(scale()).
*/
virtual double alphaEM() const { return lastAlphaEM(); }
/**
* Return true, if this matrix element provides the PDF
* weight for the first incoming parton itself.
*/
virtual bool havePDFWeight1() const {
return diagrams().front()->partons()[0]->coloured();
}
/**
* Return true, if this matrix element provides the PDF
* weight for the second incoming parton itself.
*/
virtual bool havePDFWeight2() const {
return diagrams().front()->partons()[1]->coloured();
}
/**
* Set the PDF weight.
*/
void getPDFWeight(Energy2 factorizationScale = ZERO) const;
/**
* Supply the PDF weight for the first incoming parton.
*/
double pdf1(Energy2 factorizationScale = ZERO,
double xEx = 1.) const;
/**
* Supply the PDF weight for the second incoming parton.
*/
double pdf2(Energy2 factorizationScale = ZERO,
double xEx = 1.) const;
//@}
/** @name Amplitude information and matrix element evaluation */
//@{
/**
* Return the amplitude.
*/
Ptr<MatchboxAmplitude>::tptr matchboxAmplitude() const { return theAmplitude; }
/**
* Set the amplitude.
*/
void matchboxAmplitude(Ptr<MatchboxAmplitude>::ptr amp) { theAmplitude = amp; }
/**
* Return the matrix element for the kinematical configuation
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
*/
virtual double me2() const;
/**
* Return the symmetry factor for identical final state particles.
*/
virtual double finalStateSymmetry() const;
/**
* Return the normalizing factor for the matrix element averaged
* over quantum numbers and including running couplings.
*/
double me2Norm(unsigned int addAlphaS = 0) const;
/**
* Return the matrix element squared differential in the variables
* given by the last call to generateKinematics().
*/
virtual CrossSection dSigHatDR() const;
//@}
/** @name One-loop corrections */
//@{
/**
* Return the one-loop/tree interference.
*/
virtual double oneLoopInterference() const;
/**
* Return true, if this matrix element is capable of calculating
* one-loop (QCD) corrections.
*/
virtual bool haveOneLoop() const;
/**
* Return true, if this matrix element only provides
* one-loop (QCD) corrections.
*/
virtual bool onlyOneLoop() const;
/**
* Return true, if one loop corrections have been calculated in
* dimensional reduction. Otherwise conventional dimensional
* regularization is assumed. Note that renormalization is always
* assumed to be MSbar.
*/
virtual bool isDR() const;
/**
* Return true, if one loop corrections are given in the conventions
* of the integrated dipoles.
*/
virtual bool isCS() const;
/**
* Return true, if one loop corrections are given in the conventions
* of BDK.
*/
virtual bool isBDK() const;
/**
* Return true, if one loop corrections are given in the conventions
* of everything expanded.
*/
virtual bool isExpanded() const;
/**
* Return the value of the dimensional regularization
* parameter. Note that renormalization scale dependence is fully
* restored in DipoleIOperator.
*/
virtual Energy2 mu2() const;
/**
* If defined, return the coefficient of the pole in epsilon^2
*/
virtual double oneLoopDoublePole() const;
/**
* If defined, return the coefficient of the pole in epsilon
*/
virtual double oneLoopSinglePole() const;
/**
* Return true, if cancellationn of epsilon poles should be checked.
*/
bool checkPoles() const;
/**
* Simple histogram for accuracy checks
*/
struct AccuracyHistogram {
/**
* The lower bound
*/
double lower;
/**
* The upper bound
*/
double upper;
/**
* The bins, indexed by upper bound.
*/
map<double,double> bins;
/**
* The number of points of same sign
*/
unsigned long sameSign;
/**
* The number of points of opposite sign
*/
unsigned long oppositeSign;
/**
* The number of points being nan or inf
*/
unsigned long nans;
/**
* The overflow
*/
unsigned long overflow;
/**
* The underflow
*/
unsigned long underflow;
/**
* Constructor
*/
AccuracyHistogram(double low = -40.,
double up = 0.,
unsigned int nbins = 80);
/**
* Book two values to be checked for numerical compatibility
*/
void book(double a, double b);
/**
* Write to file.
*/
void dump(const std::string& prefix,
const cPDVector& proc) const;
/**
* Write to persistent ostream
*/
void persistentOutput(PersistentOStream&) const;
/**
* Read from persistent istream
*/
void persistentInput(PersistentIStream&);
};
/**
* Perform the check of epsilon pole cancellation.
*/
void logPoles() const;
/**
* Return the virtual corrections
*/
const vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() const {
return theVirtuals;
}
/**
* Return the virtual corrections
*/
vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() {
return theVirtuals;
}
/**
* Instruct this matrix element to include one-loop corrections
*/
void doOneLoop() { theOneLoop = true; }
/**
* Return true, if this matrix element includes one-loop corrections
*/
bool oneLoop() const { return theOneLoop; }
/**
* Instruct this matrix element to include one-loop corrections but
* no Born contributions
*/
void doOneLoopNoBorn() { theOneLoop = true; theOneLoopNoBorn = true; }
/**
* Return true, if this matrix element includes one-loop corrections
* but no Born contributions
*/
bool oneLoopNoBorn() const { return theOneLoopNoBorn || onlyOneLoop(); }
//@}
/** @name Dipole subtraction */
//@{
/**
* If this matrix element is considered a real
* emission matrix element, return all subtraction
* dipoles needed given a set of subtraction terms
* and underlying Born matrix elements to choose
* from.
*/
vector<Ptr<SubtractionDipole>::ptr>
getDipoles(const vector<Ptr<SubtractionDipole>::ptr>&,
const vector<Ptr<MatchboxMEBase>::ptr>&) const;
/**
* If this matrix element is considered a real emission matrix
* element, but actually neglecting a subclass of the contributing
* diagrams, return true if the given emitter-emission-spectator
* configuration should not be considered when setting up
* subtraction dipoles.
*/
virtual bool noDipole(int,int,int) const { return false; }
/**
* If this matrix element is considered an underlying Born matrix
* element in the context of a subtracted real emission, but
* actually neglecting a subclass of the contributing diagrams,
* return true if the given emitter-spectator configuration
* should not be considered when setting up subtraction dipoles.
*/
virtual bool noDipole(int,int) const { return false; }
/**
* Return the colour correlated matrix element squared with
* respect to the given two partons as appearing in mePartonData(),
* suitably scaled by sHat() to give a dimension-less number.
*/
virtual double colourCorrelatedME2(pair<int,int>) const;
/**
* Return the colour correlated matrix element squared in the
* large-N approximation with respect to the given two partons as
* appearing in mePartonData(), suitably scaled by sHat() to give a
* dimension-less number.
*/
virtual double largeNColourCorrelatedME2(pair<int,int> ij,
Ptr<ColourBasis>::tptr largeNBasis) const;
/**
* Return the colour and spin correlated matrix element squared for
* the gluon indexed by the first argument using the given
* correlation tensor.
*/
virtual double spinColourCorrelatedME2(pair<int,int> emitterSpectator,
const SpinCorrelationTensor& c) const;
//@}
/** @name Caching and diagnostic information */
//@{
/**
* Inform this matrix element that a new phase space
* point is about to be generated, so all caches should
* be flushed.
*/
virtual void flushCaches();
/**
* Return true, if verbose
*/
bool verbose() const;
/**
* Return true, if verbose
*/
bool initVerbose() const;
/**
* Dump the setup to an ostream
*/
void print(ostream&) const;
/**
* Print debug information on the last event
*/
virtual void printLastEvent(ostream&) const;
/**
* Write out diagnostic information for
* generateKinematics
*/
void logGenerateKinematics(const double * r) const;
/**
* Write out diagnostic information for
* setting scales
*/
void logSetScale() const;
/**
* Write out diagnostic information for
* pdf evaluation
*/
void logPDFWeight() const;
/**
* Write out diagnostic information for
* me2 evaluation
*/
void logME2() const;
/**
* Write out diagnostic information
* for dsigdr evaluation
*/
void logDSigHatDR() const;
//@}
/** @name Reweight objects */
//@{
/**
* Insert a reweight object
*/
void addReweight(Ptr<MatchboxReweightBase>::ptr rw) { theReweights.push_back(rw); }
/**
* Return the reweights
*/
const vector<Ptr<MatchboxReweightBase>::ptr>& reweights() const { return theReweights; }
/**
* Access the reweights
*/
vector<Ptr<MatchboxReweightBase>::ptr>& reweights() { return theReweights; }
//@}
/** @name Methods used to setup MatchboxMEBase objects */
//@{
/**
* Return true if this object needs to be initialized before all
* other objects (except those for which this function also returns
* true). This default version always returns false, but subclasses
* may override it to return true.
*/
virtual bool preInitialize() const { return true; }
/**
* Clone this matrix element.
*/
Ptr<MatchboxMEBase>::ptr cloneMe() const {
return dynamic_ptr_cast<Ptr<MatchboxMEBase>::ptr>(clone());
}
/**
* Clone the dependencies, using a given prefix.
*/
void cloneDependencies(const std::string& prefix = "");
/**
* Prepare an xcomb
*/
void prepareXComb(MatchboxXCombData&) const;
/**
* For the given event generation setup return a xcomb object
* appropriate to this matrix element.
*/
virtual StdXCombPtr makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec& allPBins,
tStdXCombPtr newHead = tStdXCombPtr(),
tMEPtr newME = tMEPtr());
/**
* For the given event generation setup return a dependent xcomb object
* appropriate to this matrix element.
*/
virtual StdXCombPtr makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
tMEPtr newME = tMEPtr());
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Finalize this object. Called in the run phase just after a
* run has ended. Used eg. to write out statistics.
*/
virtual void dofinish();
//@}
private:
/**
* The factory which produced this matrix element
*/
Ptr<MatchboxFactory>::tcptr theFactory;
/**
* The phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::ptr thePhasespace;
/**
* The amplitude to be used
*/
Ptr<MatchboxAmplitude>::ptr theAmplitude;
/**
* The scale choice object
*/
Ptr<MatchboxScaleChoice>::ptr theScaleChoice;
/**
* The virtual corrections.
*/
vector<Ptr<MatchboxInsertionOperator>::ptr> theVirtuals;
/**
* A vector of reweight objects the sum of which
* should be applied to reweight this matrix element
*/
vector<Ptr<MatchboxReweightBase>::ptr> theReweights;
private:
/**
* The subprocess to be considered.
*/
Process theSubprocess;
/**
* True, if this matrix element includes one-loop corrections
*/
bool theOneLoop;
/**
* True, if this matrix element includes one-loop corrections
* but no Born contributions
*/
bool theOneLoopNoBorn;
/**
* The process index, if this is an OLP handled matrix element
*/
vector<int> theOLPProcess;
/**
* Histograms of epsilon^2 pole cancellation
*/
mutable map<cPDVector,AccuracyHistogram> epsilonSquarePoleHistograms;
/**
* Histograms of epsilon pole cancellation
*/
mutable map<cPDVector,AccuracyHistogram> epsilonPoleHistograms;
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MatchboxMEBase & operator=(const MatchboxMEBase &);
};
inline PersistentOStream& operator<<(PersistentOStream& os,
const MatchboxMEBase::AccuracyHistogram& h) {
h.persistentOutput(os);
return os;
}
inline PersistentIStream& operator>>(PersistentIStream& is,
MatchboxMEBase::AccuracyHistogram& h) {
h.persistentInput(is);
return is;
}
}
#endif /* HERWIG_MatchboxMEBase_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 12:30 PM (1 d, 20 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4022778
Default Alt Text
(79 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment