Page MenuHomeHEPForge

No OneTemporary

diff --git a/FixedOrderGen/configFO.yml b/FixedOrderGen/configFO.yml
index fae8bab..6fca80b 100644
--- a/FixedOrderGen/configFO.yml
+++ b/FixedOrderGen/configFO.yml
@@ -1,97 +1,94 @@
## Number of generated events
events: 200
jets:
min pt: 20 # minimal jet pt, should be slightly below analysis cut
peak pt: 30 # peak pt of jets, should be at analysis cut
algorithm: antikt # jet clustering algorithm
R: 0.4 # jet R parameter
max rapidity: 5 # maximum jet rapidity
## Particle beam
beam:
energy: 6500
particles: [p, p]
## PDF ID according to LHAPDF
pdf: 230000
## Scattering process
process: p p => h 4j
## Particle decays (multiple decays are allowed)
decays:
Higgs: {into: [photon, photon], branching ratio: 0.0023568762400521404}
Wp: {into: [e+, nu_e], branching ratio: 1}
Wm: {into: [e-, nu_e_bar]} # equivalent to "branching ratio: 1"
## Fraction of events with two extremal emissions in one direction
## that contain an subleading emission e.g. unordered emission
subleading fraction: 0.05
## Allow different subleading configurations.
## By default all processes are allowed.
## This does not check if the processes are implemented in HEJ!
#
# subleading channels:
# - unordered
# - qqx
## Unweighting parameters
## remove to obtain weighted events
# unweight:
# sample size: 200 # should be similar to "events:", but not more than ~10000
# max deviation: 0
## --- The following settings are equivalent to HEJ, --- ##
## --- see HEJ for reference. --- ##
## Central scale choice
scales: max jet pperp
## Event output files
event output:
- HEJFO.lhe
# - HEJFO_events.hepmc
-## Analysis
-## Rivet analysis
-#
-# analysis:
-# rivet: MC_XS # rivet analysis name
-# output: HEJ # name of the yoda files, ".yoda" and scale suffix will be added
+## Analyses
#
+# analyses:
+## Rivet analysis
+# - rivet: MC_XS # rivet analysis name
+# output: HEJ # name of the yoda files, ".yoda" and scale suffix will be added
## Custom analysis
-#
-# analysis:
-# plugin: /path/to/libmyanalysis.so
-# my analysis parameter: some value
+# - plugin: /path/to/libmyanalysis.so
+# my analysis parameter: some value
## Selection of random number generator and seed
random generator:
name: mixmax
# seed: 1
## Vacuum expectation value
vev: 246.2196508
## Properties of the weak gauge bosons
particle properties:
Higgs:
mass: 125
width: 0.004165
W:
mass: 80.385
width: 2.085
Z:
mass: 91.187
width: 2.495
## Parameters for Higgs-gluon couplings
## this requires compilation with QCDloop
#
# Higgs coupling:
# use impact factors: false
# mt: 174
# include bottom: true
# mb: 4.7
diff --git a/FixedOrderGen/include/config.hh b/FixedOrderGen/include/config.hh
index 6dfff7b..461fcee 100644
--- a/FixedOrderGen/include/config.hh
+++ b/FixedOrderGen/include/config.hh
@@ -1,45 +1,45 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include "yaml-cpp/yaml.h"
#include "HEJ/HiggsCouplingSettings.hh"
#include "HEJ/optional.hh"
#include "HEJ/Config.hh"
#include "HEJ/output_formats.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/EWConstants.hh"
#include "Beam.hh"
#include "Decay.hh"
#include "JetParameters.hh"
#include "Process.hh"
#include "UnweightSettings.hh"
namespace HEJFOG{
struct Config{
Process process;
size_t events;
JetParameters jets;
Beam beam;
int pdf_id;
double subleading_fraction;
unsigned int subleading_channels; //! < see HEJFOG::Subleading
ParticlesDecayMap particle_decays;
- YAML::Node analysis_parameters;
+ std::vector<YAML::Node> analyses_parameters;
HEJ::ScaleConfig scales;
std::vector<HEJ::OutputFile> output;
HEJ::RNGConfig rng;
HEJ::HiggsCouplingSettings Higgs_coupling;
HEJ::EWConstants ew_parameters;
HEJ::optional<UnweightSettings> unweight;
};
Config load_config(std::string const & config_file);
}
diff --git a/FixedOrderGen/src/config.cc b/FixedOrderGen/src/config.cc
index e241857..675e1c1 100644
--- a/FixedOrderGen/src/config.cc
+++ b/FixedOrderGen/src/config.cc
@@ -1,427 +1,437 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "config.hh"
#include <cctype>
#include "Subleading.hh"
#include "HEJ/Config.hh"
#include "HEJ/YAMLreader.hh"
namespace HEJFOG{
using HEJ::set_from_yaml;
using HEJ::set_from_yaml_if_defined;
using HEJ::pid::ParticleID;
namespace{
//! Get YAML tree of supported options
/**
* The configuration file is checked against this tree of options
* in assert_all_options_known.
*/
YAML::Node const & get_supported_options(){
const static YAML::Node supported = [](){
YAML::Node supported;
static const auto opts = {
"process", "events", "subleading fraction","subleading channels",
"scales", "scale factors", "max scale ratio", "pdf", "vev",
- "event output", "analysis", "import scales"
+ "event output", "analyses", "analysis", "import scales"
};
// add subnodes to "supported" - the assigned value is irrelevant
for(auto && opt: opts) supported[opt] = "";
for(auto && jet_opt: {"min pt", "peak pt", "algorithm", "R", "max rapidity"}){
supported["jets"][jet_opt] = "";
}
for(auto && particle_type: {"Higgs", "W", "Z"}){
for(auto && particle_opt: {"mass", "width"}){
supported["particle properties"][particle_type][particle_opt] = "";
}
}
for(auto && particle_type: {"Higgs", "Wp", "W+", "Wm", "W-", "Z"}){
for(auto && particle_opt: {"into", "branching ratio"}){
supported["decays"][particle_type][particle_opt] = "";
}
}
for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
supported["Higgs coupling"][opt] = "";
}
for(auto && beam_opt: {"energy", "particles"}){
supported["beam"][beam_opt] = "";
}
for(auto && unweight_opt: {"sample size", "max deviation"}){
supported["unweight"][unweight_opt] = "";
}
for(auto && opt: {"name", "seed"}){
supported["random generator"][opt] = "";
}
return supported;
}();
return supported;
}
JetParameters get_jet_parameters(
YAML::Node const & node, std::string const & entry
){
const auto p = HEJ::get_jet_parameters(node, entry);
JetParameters result;
result.def = p.def;
result.min_pt = p.min_pt;
set_from_yaml(result.max_y, node, entry, "max rapidity");
set_from_yaml_if_defined(result.peak_pt, node, entry, "peak pt");
if(result.peak_pt && *result.peak_pt <= result.min_pt)
throw std::invalid_argument{
"Value of option 'peak pt' has to be larger than 'min pt'."
};
return result;
}
Beam get_Beam(
YAML::Node const & node, std::string const & entry
){
Beam beam;
std::vector<HEJ::ParticleID> particles;
set_from_yaml(beam.energy, node, entry, "energy");
set_from_yaml_if_defined(particles, node, entry, "particles");
if(! particles.empty()){
for(HEJ::ParticleID particle: particles){
if(particle != HEJ::pid::p && particle != HEJ::pid::p_bar){
throw std::invalid_argument{
"Unsupported value in option " + entry + ": particles:"
" only proton ('p') and antiproton ('p_bar') beams are supported"
};
}
}
if(particles.size() != 2){
throw std::invalid_argument{"Not exactly two beam particles"};
}
beam.particles.front() = particles.front();
beam.particles.back() = particles.back();
}
return beam;
}
std::vector<std::string> split(
std::string const & str, std::string const & delims
){
std::vector<std::string> result;
for(size_t begin, end = 0; end != str.npos;){
begin = str.find_first_not_of(delims, end);
if(begin == str.npos) break;
end = str.find_first_of(delims, begin + 1);
result.emplace_back(str.substr(begin, end - begin));
}
return result;
}
std::invalid_argument invalid_incoming(std::string const & what){
return std::invalid_argument{
"Incoming particle type " + what + " not supported,"
" incoming particles have to be 'p', 'p_bar' or partons"
};
}
std::invalid_argument invalid_outgoing(std::string const & what){
return std::invalid_argument{
"Outgoing particle type " + what + " not supported,"
" outgoing particles have to be 'j', 'photon', 'H', 'Wm', 'Wp', 'e-', 'e+', 'nu_e', 'nu_e_bar'"
};
}
HEJ::ParticleID reconstruct_boson_id(
std::vector<HEJ::ParticleID> const & ids
){
assert(ids.size()==2);
const int pidsum = ids[0] + ids[1];
if(pidsum == +1) {
assert(HEJ::is_antilepton(ids[0]));
if(HEJ::is_antineutrino(ids[0])) {
throw HEJ::not_implemented{"lepton-flavour violating final state"};
}
assert(HEJ::is_neutrino(ids[1]));
// charged antilepton + neutrino means we had a W+
return HEJ::pid::Wp;
}
if(pidsum == -1) {
assert(HEJ::is_antilepton(ids[0]));
if(HEJ::is_neutrino(ids[1])) {
throw HEJ::not_implemented{"lepton-flavour violating final state"};
}
assert(HEJ::is_antineutrino(ids[0]));
// charged lepton + antineutrino means we had a W-
return HEJ::pid::Wm;
}
throw HEJ::not_implemented{
"final state with leptons "+HEJ::name(ids[0])+" and "+HEJ::name(ids[1])
+" not supported"
};
}
Process get_process(
YAML::Node const & node, std::string const & entry
){
Process result;
std::string process_string;
set_from_yaml(process_string, node, entry);
assert(! process_string.empty());
const auto particles = split(process_string, " \n\t\v=>");
if(particles.size() < 3){
throw std::invalid_argument{
"Bad format in option process: '" + process_string
+ "', expected format is 'in1 in2 => out1 ...'"
};
}
result.incoming.front() = HEJ::to_ParticleID(particles[0]);
result.incoming.back() = HEJ::to_ParticleID(particles[1]);
for(size_t i = 0; i < result.incoming.size(); ++i){
const HEJ::ParticleID in = result.incoming[i];
if(
in != HEJ::pid::proton && in != HEJ::pid::p_bar
&& !HEJ::is_parton(in)
){
throw invalid_incoming(particles[i]);
}
}
result.njets = 0;
for(size_t i = result.incoming.size(); i < particles.size(); ++i){
assert(! particles[i].empty());
if(particles[i] == "j") ++result.njets;
else if(std::isdigit(particles[i].front())
&& particles[i].back() == 'j')
result.njets += std::stoi(particles[i]);
else{
const auto pid = HEJ::to_ParticleID(particles[i]);
if(pid==HEJ::pid::Higgs || pid==HEJ::pid::Wp || pid==HEJ::pid::Wm){
if(result.boson)
throw std::invalid_argument{
"More than one outgoing boson is not supported"
};
if(!result.boson_decay.empty())
throw std::invalid_argument{
"Production of a boson together with a lepton is not supported"
};
result.boson = pid;
} else if (HEJ::is_anylepton(pid)){
// Do not accept more leptons, if two leptons are already mentioned
if( result.boson_decay.size()>=2 )
throw std::invalid_argument{"Too many leptons provided"};
if(result.boson)
throw std::invalid_argument{
"Production of a lepton together with a boson is not supported"
};
result.boson_decay.emplace_back(pid);
} else {
throw invalid_outgoing(particles[i]);
}
}
}
if(result.njets < 2){
throw std::invalid_argument{
"Process has to include at least two jets ('j')"
};
}
if(!result.boson_decay.empty()){
std::sort(begin(result.boson_decay),end(result.boson_decay));
assert(!result.boson);
result.boson = reconstruct_boson_id(result.boson_decay);
}
return result;
}
HEJFOG::Subleading to_subleading_channel(YAML::Node const & yaml){
std::string name;
using namespace HEJFOG::channels;
set_from_yaml(name, yaml);
if(name == "none")
return none;
if(name == "all")
return all;
if(name == "unordered" || name == "uno")
return uno;
if(name == "qqx")
return qqx;
throw HEJ::unknown_option("Unknown subleading channel '"+name+"'");
}
unsigned int get_subleading_channels(YAML::Node const & node){
using YAML::NodeType;
using namespace HEJFOG::channels;
// all channels allowed by default
if(!node) return all;
switch(node.Type()){
case NodeType::Undefined:
return all;
case NodeType::Null:
return none;
case NodeType::Scalar:
return to_subleading_channel(node);
case NodeType::Map:
throw HEJ::invalid_type{"map is not a valid option for subleading channels"};
case NodeType::Sequence:
unsigned int channels = HEJFOG::Subleading::none;
for(auto && channel_node: node){
channels |= get_subleading_channels(channel_node);
}
return channels;
}
throw std::logic_error{"unreachable"};
}
Decay get_decay(YAML::Node const & node,
std::string const & entry, std::string const & boson
){
Decay decay;
set_from_yaml(decay.products, node, entry, boson, "into");
decay.branching_ratio=1;
set_from_yaml_if_defined(decay.branching_ratio, node, entry, boson,
"branching ratio");
return decay;
}
std::vector<Decay> get_decays(YAML::Node const & node,
std::string const & entry, std::string const & boson
){
using YAML::NodeType;
if(!node[entry][boson]) return {};
switch(node[entry][boson].Type()){
case NodeType::Null:
case NodeType::Undefined:
return {};
case NodeType::Scalar:
throw HEJ::invalid_type{"value is not a list of decays"};
case NodeType::Map:
return {get_decay(node, entry, boson)};
case NodeType::Sequence:
std::vector<Decay> result;
for(auto && decay_str: node[entry][boson]){
result.emplace_back(get_decay(decay_str, entry, boson));
}
return result;
}
throw std::logic_error{"unreachable"};
}
ParticlesDecayMap get_all_decays(YAML::Node const & node,
std::string const & entry
){
if(!node[entry]) return {};
if(!node[entry].IsMap())
throw HEJ::invalid_type{entry + " have to be a map"};
ParticlesDecayMap result;
for(auto const & sub_node: node[entry]) {
const auto boson = sub_node.first.as<std::string>();
const auto id = HEJ::to_ParticleID(boson);
result.emplace(id, get_decays(node, entry, boson));
}
return result;
}
HEJ::ParticleProperties get_particle_properties(
YAML::Node const & node, std::string const & entry,
std::string const & boson
){
HEJ::ParticleProperties result;
set_from_yaml(result.mass, node, entry, boson, "mass");
set_from_yaml(result.width, node, entry, boson, "width");
return result;
}
HEJ::EWConstants get_ew_parameters(YAML::Node const & node){
HEJ::EWConstants result;
double vev;
set_from_yaml(vev, node, "vev");
result.set_vevWZH(vev,
get_particle_properties(node, "particle properties", "W"),
get_particle_properties(node, "particle properties", "Z"),
get_particle_properties(node, "particle properties", "Higgs")
);
return result;
}
UnweightSettings get_unweight(
YAML::Node const & node, std::string const & entry
){
UnweightSettings result;
set_from_yaml(result.sample_size, node, entry, "sample size");
if(result.sample_size <= 0){
throw std::invalid_argument{
"negative sample size " + std::to_string(result.sample_size)
};
}
set_from_yaml(result.max_dev, node, entry, "max deviation");
return result;
}
Config to_Config(YAML::Node const & yaml){
try{
HEJ::assert_all_options_known(yaml, get_supported_options());
}
catch(HEJ::unknown_option const & ex){
throw HEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
}
Config config;
config.process = get_process(yaml, "process");
set_from_yaml(config.events, yaml, "events");
config.jets = get_jet_parameters(yaml, "jets");
config.beam = get_Beam(yaml, "beam");
for(size_t i = 0; i < config.process.incoming.size(); ++i){
const auto & in = config.process.incoming[i];
using namespace HEJ::pid;
if( (in == p || in == p_bar) && in != config.beam.particles[i]){
throw std::invalid_argument{
"Particle type of beam " + std::to_string(i+1) + " incompatible"
+ " with type of incoming particle " + std::to_string(i+1)
};
}
}
set_from_yaml(config.pdf_id, yaml, "pdf");
set_from_yaml(config.subleading_fraction, yaml, "subleading fraction");
if(config.subleading_fraction < 0 || config.subleading_fraction > 1){
throw std::invalid_argument{
"subleading fraction has to be between 0 and 1"
};
}
if(config.subleading_fraction == 0)
config.subleading_channels = Subleading::none;
else
config.subleading_channels = get_subleading_channels(yaml["subleading channels"]);
config.ew_parameters = get_ew_parameters(yaml);
config.particle_decays = get_all_decays(yaml, "decays");
if(config.process.boson // check that Ws always decay
&& std::abs(*config.process.boson) == HEJ::ParticleID::Wp
&& config.process.boson_decay.empty()
){
auto const & decay = config.particle_decays.find(*config.process.boson);
if(decay == config.particle_decays.end() || decay->second.empty())
throw std::invalid_argument{
"Decay for "+HEJ::name(*config.process.boson)+" is required"};
}
- set_from_yaml_if_defined(config.analysis_parameters, yaml, "analysis");
+ set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses");
+ if(yaml["analysis"]){
+ std::cerr <<
+ "WARNING: Configuration entry 'analysis' is deprecated. "
+ " Use 'analyses' instead.\n";
+ YAML::Node ana;
+ set_from_yaml(ana, yaml, "analysis");
+ if(!ana.IsNull()){
+ config.analyses_parameters.push_back(ana);
+ }
+ }
config.scales = HEJ::to_ScaleConfig(yaml);
set_from_yaml_if_defined(config.output, yaml, "event output");
config.rng = HEJ::to_RNGConfig(yaml, "random generator");
config.Higgs_coupling = HEJ::get_Higgs_coupling(yaml, "Higgs coupling");
if(yaml["unweight"]) config.unweight = get_unweight(yaml, "unweight");
return config;
}
} // namespace anonymous
Config load_config(std::string const & config_file){
try{
return to_Config(YAML::LoadFile(config_file));
}
catch(...){
std::cerr << "Error reading " << config_file << ":\n ";
throw;
}
}
}
diff --git a/FixedOrderGen/src/main.cc b/FixedOrderGen/src/main.cc
index 3451bdc..3c5f939 100644
--- a/FixedOrderGen/src/main.cc
+++ b/FixedOrderGen/src/main.cc
@@ -1,261 +1,277 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include <algorithm>
#include <chrono>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <cstdint>
#include "LHEF/LHEF.h"
#include "yaml-cpp/yaml.h"
#include <boost/iterator/filter_iterator.hpp>
#include "HEJ/CombinedEventWriter.hh"
#include "HEJ/CrossSectionAccumulator.hh"
#include "HEJ/get_analysis.hh"
#include "HEJ/LesHouchesWriter.hh"
#include "HEJ/make_RNG.hh"
#include "HEJ/ProgressBar.hh"
#include "HEJ/stream.hh"
#include "HEJ/Unweighter.hh"
#include "config.hh"
#include "EventGenerator.hh"
#include "PhaseSpacePoint.hh"
#include "Version.hh"
namespace{
constexpr auto banner =
" __ ___ __ ______ __ "
" __ \n / / / (_)___ _/ /_ / ____/___ "
" ___ _________ ___ __ / /__ / /______ \n "
" / /_/ / / __ `/ __ \\ / __/ / __ \\/ _ \\/ ___/ __ `/ / / / __ / / _"
" \\/ __/ ___/ \n / __ / / /_/ / / / / / /___/ /"
" / / __/ / / /_/ / /_/ / / /_/ / __/ /_(__ ) "
" \n /_/ /_/_/\\__, /_/ /_/ /_____/_/ /_/\\___/_/ \\__, /\\__, / \\___"
"_/\\___/\\__/____/ \n ____///__/ "
"__ ____ ///__//____/ ______ __ "
" \n / ____(_) _____ ____/ / / __ \\_________/ /__ _____ / "
"____/__ ____ ___ _________ _/ /_____ _____\n / /_ / / |/_/ _ \\/ __"
" / / / / / ___/ __ / _ \\/ ___/ / / __/ _ \\/ __ \\/ _ \\/ ___/ __ `/ "
"__/ __ \\/ ___/\n / __/ / /> </ __/ /_/ / / /_/ / / / /_/ / __/ / "
" / /_/ / __/ / / / __/ / / /_/ / /_/ /_/ / / \n /_/ /_/_/|_|\\___"
"/\\__,_/ \\____/_/ \\__,_/\\___/_/ \\____/\\___/_/ /_/\\___/_/ "
"\\__,_/\\__/\\____/_/ \n";
constexpr double invGeV2_to_pb = 389379292.;
}
HEJFOG::Config load_config(char const * filename){
try{
return HEJFOG::load_config(filename);
}
catch(std::exception const & exc){
std::cerr << "Error: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
-std::unique_ptr<HEJ::Analysis> get_analysis(
- YAML::Node const & parameters, LHEF::HEPRUP const & heprup
+std::vector<std::unique_ptr<HEJ::Analysis>> get_analyses(
+ std::vector<YAML::Node> const & parameters, LHEF::HEPRUP const & heprup
){
try{
- return HEJ::get_analysis(parameters, heprup);
+ return HEJ::get_analyses(parameters, heprup);
}
catch(std::exception const & exc){
std::cerr << "Failed to load analysis: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
template<class Iterator>
auto make_lowpt_filter(Iterator begin, Iterator end, HEJ::optional<double> peak_pt){
return boost::make_filter_iterator(
[peak_pt](HEJ::Event const & ev){
assert(! ev.jets().empty());
double min_pt = peak_pt?(*peak_pt):0.;
const auto softest_jet = fastjet::sorted_by_pt(ev.jets()).back();
return softest_jet.pt() > min_pt;
},
begin, end
);
}
int main(int argn, char** argv) {
using namespace std::string_literals;
if (argn < 2) {
std::cerr << "\n# Usage:\n." << argv[0] << " config_file\n";
return EXIT_FAILURE;
}
std::cout << banner;
std::cout << "Version " << HEJFOG::Version::String()
<< ", revision " << HEJFOG::Version::revision() << std::endl;
fastjet::ClusterSequence::print_banner();
using clock = std::chrono::system_clock;
const auto start_time = clock::now();
// read configuration
auto config = load_config(argv[1]);
std::shared_ptr<HEJ::RNG> ran{
HEJ::make_RNG(config.rng.name, config.rng.seed)};
assert(ran != nullptr);
HEJ::ScaleGenerator scale_gen{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
std::move(scale_gen),
config.jets,
config.pdf_id,
config.subleading_fraction,
config.subleading_channels,
config.particle_decays,
config.Higgs_coupling,
config.ew_parameters,
ran
};
// prepare process information for output
LHEF::HEPRUP heprup;
heprup.IDBMUP=std::pair<long,long>(config.beam.particles[0], config.beam.particles[1]);
heprup.EBMUP=std::make_pair(config.beam.energy, config.beam.energy);
heprup.PDFGUP=std::make_pair(0,0);
heprup.PDFSUP=std::make_pair(config.pdf_id,config.pdf_id);
heprup.NPRUP=1;
heprup.XSECUP=std::vector<double>(1.);
heprup.XERRUP=std::vector<double>(1.);
heprup.LPRUP=std::vector<int>{1};
heprup.generators.emplace_back(LHEF::XMLTag{});
heprup.generators.back().name = HEJFOG::Version::package_name();
heprup.generators.back().version = HEJFOG::Version::String();
HEJ::CombinedEventWriter writer{config.output, heprup};
- std::unique_ptr<HEJ::Analysis> analysis = get_analysis(
- config.analysis_parameters, heprup
+ std::vector<std::unique_ptr<HEJ::Analysis>> analyses = get_analyses(
+ config.analyses_parameters, heprup
);
- assert(analysis != nullptr);
+ assert(analyses.empty() || analyses.front() != nullptr);
// warm-up phase to train unweighter
HEJ::optional<HEJ::Unweighter> unweighter{};
std::map<HEJFOG::Status, std::uint64_t> status_counter;
std::vector<HEJ::Event> events;
std::uint64_t trials = 0;
if(config.unweight) {
std::cout << "Calibrating unweighting ...\n";
const auto warmup_start = clock::now();
const size_t warmup_events = config.unweight->sample_size;
HEJ::ProgressBar<size_t> warmup_progress{std::cout, warmup_events};
for(; events.size() < warmup_events; ++trials){
auto ev = generator.gen_event();
++status_counter[generator.status()];
assert( (generator.status() == HEJFOG::good) == bool(ev) );
- if(generator.status() == HEJFOG::good && analysis->pass_cuts(*ev, *ev)) {
+ if(generator.status() != HEJFOG::good) continue;
+ const bool pass_cuts = analyses.empty()?true:std::any_of(
+ begin(analyses), end(analyses),
+ [&ev](auto const & analysis) { return analysis->pass_cuts(*ev, *ev); }
+ );
+ if(pass_cuts) {
events.emplace_back(std::move(*ev));
++warmup_progress;
}
}
std::cout << std::endl;
unweighter = HEJ::Unweighter();
unweighter->set_cut_to_peakwt(
make_lowpt_filter(events.cbegin(), events.cend(), config.jets.peak_pt),
make_lowpt_filter(events.cend(), events.cend(), config.jets.peak_pt),
config.unweight->max_dev
);
std::vector<HEJ::Event> unweighted_events;
for(auto && ev: events) {
auto unweighted = unweighter->unweight(std::move(ev), *ran);
if(unweighted) {
unweighted_events.emplace_back(std::move(*unweighted));
}
}
events = std::move(unweighted_events);
if(events.empty()) {
std::cerr <<
"Failed to generate events. Please increase \"unweight: sample size\""
" or reduce \"unweight: max deviation\"\n";
return EXIT_FAILURE;
}
const auto warmup_end = clock::now();
const double completion = static_cast<double>(events.size())/config.events;
const std::chrono::duration<double> remaining_time =
(warmup_end- warmup_start)*(1./completion - 1);
const auto finish = clock::to_time_t(
std::chrono::time_point_cast<std::chrono::seconds>(warmup_end + remaining_time)
);
std::cout
<< "Generated " << events.size() << "/" << config.events << " events ("
<< static_cast<int>(std::round(100*completion)) << "%)\n"
<< "Estimated remaining generation time: "
<< remaining_time.count() << " seconds ("
<< std::put_time(std::localtime(&finish), "%c") << ")\n\n";
} // end unweighting warm-up
// main generation loop
// event weight is wrong, need to divide by "total number of trials" afterwards
HEJ::ProgressBar<size_t> progress{std::cout, config.events};
progress.increment(events.size());
events.reserve(config.events);
for(; events.size() < config.events; ++trials){
auto ev = generator.gen_event();
++status_counter[generator.status()];
assert( (generator.status() == HEJFOG::good) == bool(ev) );
- if(generator.status() == HEJFOG::good && analysis->pass_cuts(*ev, *ev)) {
+ if(generator.status() != HEJFOG::good) continue;
+ const bool pass_cuts = analyses.empty()?true:std::any_of(
+ begin(analyses), end(analyses),
+ [&ev](auto const & analysis) { return analysis->pass_cuts(*ev, *ev); }
+ );
+ if(pass_cuts) {
if(unweighter) {
auto unweighted = unweighter->unweight(std::move(*ev), *ran);
if(! unweighted) continue;
ev = std::move(unweighted);
}
events.emplace_back(std::move(*ev));
++progress;
}
}
std::cout << std::endl;
// final run though events with correct weight
HEJ::CrossSectionAccumulator xs;
for(auto & ev: events){
ev.parameters() *= invGeV2_to_pb/trials;
- analysis->fill(ev, ev);
+ for(auto const & analysis: analyses) {
+ if(analysis->pass_cuts(ev, ev)) {
+ analysis->fill(ev, ev);
+ }
+ }
writer.write(ev);
xs.fill(ev);
}
- analysis->finalise();
+ for(auto const & analysis: analyses) {
+ analysis->finalise();
+ }
// Print final informations
const std::chrono::duration<double> run_time = (clock::now() - start_time);
std::cout << "\nTask Runtime: " << run_time.count() << " seconds for "
<< events.size() << " Events (" << events.size()/run_time.count()
<< " evts/s)\n" << std::endl;
std::cout << xs << "\n";
for(auto && entry: status_counter){
const double fraction = static_cast<double>(entry.second)/trials;
const int percent = std::round(100*fraction);
std::cout << "status "
<< std::left << std::setw(16) << (to_string(entry.first) + ":")
<< " [";
for(int i = 0; i < percent/2; ++i) std::cout << '#';
for(int i = percent/2; i < 50; ++i) std::cout << ' ';
std::cout << "] " << percent << "%" << std::endl;
}
return EXIT_SUCCESS;
}

File Metadata

Mime Type
text/x-diff
Expires
Sun, Feb 23, 3:00 PM (46 m, 51 s)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4476755
Default Alt Text
(30 KB)

Event Timeline