Page MenuHomeHEPForge

No OneTemporary

diff --git a/bin/rivet-merge b/bin/rivet-merge
--- a/bin/rivet-merge
+++ b/bin/rivet-merge
@@ -1,66 +1,70 @@
#! /usr/bin/env python
"""\
Merge together yoda files produced by Rivet.
Examples:
%prog [options] <yodafile> [<yodafile2> ...]
ENVIRONMENT:
* RIVET_ANALYSIS_PATH: list of paths to be searched for plugin
analysis libraries at runtime
* RIVET_DATA_PATH: list of paths to be searched for data files
"""
import os, sys
## Load the rivet module
try:
import rivet
except:
## If rivet loading failed, try to bootstrap the Python path!
try:
# TODO: Is this a good idea? Maybe just notify the user that their PYTHONPATH is wrong?
import commands
modname = sys.modules[__name__].__file__
binpath = os.path.dirname(modname)
rivetconfigpath = os.path.join(binpath, "rivet-config")
rivetpypath = commands.getoutput(rivetconfigpath + " --pythonpath")
sys.path.append(rivetpypath)
import rivet
except:
sys.stderr.write("The rivet Python module could not be loaded: is your PYTHONPATH set correctly?\n")
sys.exit(5)
rivet.util.check_python_version()
rivet.util.set_process_name("rivet-merge")
import time, datetime, logging, signal
## Parse command line options
from optparse import OptionParser, OptionGroup
parser = OptionParser(usage=__doc__, version="rivet v%s" % rivet.version())
extragroup = OptionGroup(parser, "Run settings")
extragroup.add_option("-o", "--output-file", dest="OUTPUTFILE",
default="Rivet.yoda", help="specify the output histo file path (default = %default)")
extragroup.add_option("-e", "--equiv", dest="EQUIV", action="store_true", default=False,
help="assume that the yoda files are equivalent but statistically independent (default= assume that different files contains different processes)")
+
+extragroup.add_option("-O", "--merge-option", dest="MERGEOPTIONS", action="append",
+ default=[], help="specify an analysis option name where different options should be merged into the default analysis.")
+
parser.add_option_group(extragroup)
opts, args = parser.parse_args()
############################
## Actual analysis runs
## Set up analysis handler
ah = rivet.AnalysisHandler("Merging")
-ah.mergeYodas(args, opts.EQUIV)
+ah.mergeYodas(args, opts.MERGEOPTIONS, opts.EQUIV)
ah.writeData(opts.OUTPUTFILE)
diff --git a/include/Rivet/Analysis.hh b/include/Rivet/Analysis.hh
--- a/include/Rivet/Analysis.hh
+++ b/include/Rivet/Analysis.hh
@@ -1,1225 +1,1232 @@
// -*- C++ -*-
#ifndef RIVET_Analysis_HH
#define RIVET_Analysis_HH
#include "Rivet/Config/RivetCommon.hh"
#include "Rivet/AnalysisInfo.hh"
#include "Rivet/Event.hh"
#include "Rivet/Projection.hh"
#include "Rivet/ProjectionApplier.hh"
#include "Rivet/ProjectionHandler.hh"
#include "Rivet/AnalysisLoader.hh"
#include "Rivet/Tools/Cuts.hh"
#include "Rivet/Tools/Logging.hh"
#include "Rivet/Tools/ParticleUtils.hh"
#include "Rivet/Tools/BinnedHistogram.hh"
#include "Rivet/Tools/RivetMT2.hh"
#include "Rivet/Tools/RivetYODA.hh"
#include "Rivet/Tools/Percentile.hh"
#include "Rivet/Projections/CentralityProjection.hh"
/// @def vetoEvent
/// Preprocessor define for vetoing events, including the log message and return.
#define vetoEvent \
do { MSG_DEBUG("Vetoing event on line " << __LINE__ << " of " << __FILE__); return; } while(0)
namespace Rivet {
// Forward declaration
class AnalysisHandler;
/// @brief This is the base class of all analysis classes in Rivet.
///
/// There are
/// three virtual functions which should be implemented in base classes:
///
/// void init() is called by Rivet before a run is started. Here the
/// analysis class should book necessary histograms. The needed
/// projections should probably rather be constructed in the
/// constructor.
///
/// void analyze(const Event&) is called once for each event. Here the
/// analysis class should apply the necessary Projections and fill the
/// histograms.
///
/// void finalize() is called after a run is finished. Here the analysis
/// class should do whatever manipulations are necessary on the
/// histograms. Writing the histograms to a file is, however, done by
/// the Rivet class.
class Analysis : public ProjectionApplier {
/// The AnalysisHandler is a friend.
friend class AnalysisHandler;
public:
/// @name Standard constructors and destructors.
//@{
// /// The default constructor.
// Analysis();
/// Constructor
Analysis(const std::string& name);
/// The destructor.
virtual ~Analysis() {}
//@}
public:
/// @name Main analysis methods
//@{
/// Initialize this analysis object. A concrete class should here
/// book all necessary histograms. An overridden function must make
/// sure it first calls the base class function.
virtual void init() { }
/// Analyze one event. A concrete class should here apply the
/// necessary projections on the \a event and fill the relevant
/// histograms. An overridden function must make sure it first calls
/// the base class function.
virtual void analyze(const Event& event) = 0;
/// Finalize this analysis object. A concrete class should here make
/// all necessary operations on the histograms. Writing the
/// histograms to a file is, however, done by the Rivet class. An
/// overridden function must make sure it first calls the base class
/// function.
virtual void finalize() { }
//@}
public:
/// @name Metadata
/// Metadata is used for querying from the command line and also for
/// building web pages and the analysis pages in the Rivet manual.
//@{
/// Get the actual AnalysisInfo object in which all this metadata is stored.
const AnalysisInfo& info() const {
assert(_info && "No AnalysisInfo object :O");
return *_info;
}
/// @brief Get the name of the analysis.
///
/// By default this is computed by combining the results of the
/// experiment, year and Spires ID metadata methods and you should
/// only override it if there's a good reason why those won't
/// work. If options has been set for this instance, a
/// corresponding string is appended at the end.
virtual std::string name() const {
return ( (info().name().empty()) ? _defaultname : info().name() ) + _optstring;
}
// get name of reference data file, which could be different from plugin name
virtual std::string getRefDataName() const {
return (info().getRefDataName().empty()) ? _defaultname : info().getRefDataName();
}
// set name of reference data file, which could be different from plugin name
virtual void setRefDataName(const std::string& ref_data="") {
info().setRefDataName(!ref_data.empty() ? ref_data : name());
}
/// Get the Inspire ID code for this analysis.
virtual std::string inspireId() const {
return info().inspireId();
}
/// Get the SPIRES ID code for this analysis (~deprecated).
virtual std::string spiresId() const {
return info().spiresId();
}
/// @brief Names & emails of paper/analysis authors.
///
/// Names and email of authors in 'NAME \<EMAIL\>' format. The first
/// name in the list should be the primary contact person.
virtual std::vector<std::string> authors() const {
return info().authors();
}
/// @brief Get a short description of the analysis.
///
/// Short (one sentence) description used as an index entry.
/// Use @a description() to provide full descriptive paragraphs
/// of analysis details.
virtual std::string summary() const {
return info().summary();
}
/// @brief Get a full description of the analysis.
///
/// Full textual description of this analysis, what it is useful for,
/// what experimental techniques are applied, etc. Should be treated
/// as a chunk of restructuredText (http://docutils.sourceforge.net/rst.html),
/// with equations to be rendered as LaTeX with amsmath operators.
virtual std::string description() const {
return info().description();
}
/// @brief Information about the events needed as input for this analysis.
///
/// Event types, energies, kinematic cuts, particles to be considered
/// stable, etc. etc. Should be treated as a restructuredText bullet list
/// (http://docutils.sourceforge.net/rst.html)
virtual std::string runInfo() const {
return info().runInfo();
}
/// Experiment which performed and published this analysis.
virtual std::string experiment() const {
return info().experiment();
}
/// Collider on which the experiment ran.
virtual std::string collider() const {
return info().collider();
}
/// When the original experimental analysis was published.
virtual std::string year() const {
return info().year();
}
/// The luminosity in inverse femtobarn
virtual std::string luminosityfb() const {
return info().luminosityfb();
}
/// Journal, and preprint references.
virtual std::vector<std::string> references() const {
return info().references();
}
/// BibTeX citation key for this article.
virtual std::string bibKey() const {
return info().bibKey();
}
/// BibTeX citation entry for this article.
virtual std::string bibTeX() const {
return info().bibTeX();
}
/// Whether this analysis is trusted (in any way!)
virtual std::string status() const {
return (info().status().empty()) ? "UNVALIDATED" : info().status();
}
/// Any work to be done on this analysis.
virtual std::vector<std::string> todos() const {
return info().todos();
}
/// Return the allowed pairs of incoming beams required by this analysis.
virtual const std::vector<PdgIdPair>& requiredBeams() const {
return info().beams();
}
/// Declare the allowed pairs of incoming beams required by this analysis.
virtual Analysis& setRequiredBeams(const std::vector<PdgIdPair>& requiredBeams) {
info().setBeams(requiredBeams);
return *this;
}
/// Sets of valid beam energy pairs, in GeV
virtual const std::vector<std::pair<double, double> >& requiredEnergies() const {
return info().energies();
}
/// Get vector of analysis keywords
virtual const std::vector<std::string> & keywords() const {
return info().keywords();
}
/// Declare the list of valid beam energy pairs, in GeV
virtual Analysis& setRequiredEnergies(const std::vector<std::pair<double, double> >& requiredEnergies) {
info().setEnergies(requiredEnergies);
return *this;
}
/// Return true if this analysis needs to know the process cross-section.
/// @todo Remove this and require HepMC >= 2.06
bool needsCrossSection() const {
return info().needsCrossSection();
}
/// Declare whether this analysis needs to know the process cross-section from the generator.
/// @todo Remove this and require HepMC >= 2.06
Analysis& setNeedsCrossSection(bool needed=true) {
info().setNeedsCrossSection(needed);
return *this;
}
//@}
/// @name Internal metadata modifying methods
//@{
/// Get the actual AnalysisInfo object in which all this metadata is stored (non-const).
AnalysisInfo& info() {
assert(_info && "No AnalysisInfo object :O");
return *_info;
}
//@}
/// @name Run conditions
//@{
/// Incoming beams for this run
const ParticlePair& beams() const;
/// Incoming beam IDs for this run
const PdgIdPair beamIds() const;
/// Centre of mass energy for this run
double sqrtS() const;
+ /// Check if we are running rivet-merge.
+ bool merging() const {
+ return sqrtS() <= 0.0;
+ }
+
//@}
/// @name Analysis / beam compatibility testing
//@{
/// Check if analysis is compatible with the provided beam particle IDs and energies
bool isCompatible(const ParticlePair& beams) const;
/// Check if analysis is compatible with the provided beam particle IDs and energies
bool isCompatible(PdgId beam1, PdgId beam2, double e1, double e2) const;
/// Check if analysis is compatible with the provided beam particle IDs and energies
bool isCompatible(const PdgIdPair& beams, const std::pair<double,double>& energies) const;
//@}
/// Set the cross section from the generator
Analysis& setCrossSection(double xs); //, double xserr=0.0);
/// Access the controlling AnalysisHandler object.
AnalysisHandler& handler() const { return *_analysishandler; }
protected:
/// Get a Log object based on the name() property of the calling analysis object.
Log& getLog() const;
/// Get the process cross-section in pb. Throws if this hasn't been set.
double crossSection() const;
/// Get the process cross-section per generated event in pb. Throws if this
/// hasn't been set.
double crossSectionPerEvent() const;
/// @brief Get the number of events seen (via the analysis handler).
///
/// @note Use in the finalize phase only.
size_t numEvents() const;
/// @brief Get the sum of event weights seen (via the analysis handler).
///
/// @note Use in the finalize phase only.
double sumW() const;
/// Alias
double sumOfWeights() const { return sumW(); }
/// @brief Get the sum of squared event weights seen (via the analysis handler).
///
/// @note Use in the finalize phase only.
double sumW2() const;
protected:
/// @name Histogram paths
//@{
/// Get the canonical histogram "directory" path for this analysis.
const std::string histoDir() const;
/// Get the canonical histogram path for the named histogram in this analysis.
const std::string histoPath(const std::string& hname) const;
/// Get the canonical histogram path for the numbered histogram in this analysis.
const std::string histoPath(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const;
/// Get the internal histogram name for given d, x and y (cf. HepData)
const std::string mkAxisCode(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const;
/// Alias
/// @deprecated Prefer the "mk" form, consistent with other "making function" names
const std::string makeAxisCode(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return mkAxisCode(datasetId, xAxisId, yAxisId);
}
//@}
/// @name Histogram reference data
//@{
/// Get reference data for a named histo
/// @todo SFINAE to ensure that the type inherits from YODA::AnalysisObject?
template <typename T=YODA::Scatter2D>
const T& refData(const string& hname) const {
_cacheRefData();
MSG_TRACE("Using histo bin edges for " << name() << ":" << hname);
if (!_refdata[hname]) {
MSG_ERROR("Can't find reference histogram " << hname);
throw Exception("Reference data " + hname + " not found.");
}
return dynamic_cast<T&>(*_refdata[hname]);
}
/// Get reference data for a numbered histo
/// @todo SFINAE to ensure that the type inherits from YODA::AnalysisObject?
template <typename T=YODA::Scatter2D>
const T& refData(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
const string hname = makeAxisCode(datasetId, xAxisId, yAxisId);
return refData(hname);
}
//@}
/// @name Counter booking
//@{
/// Book a counter.
CounterPtr bookCounter(const std::string& name,
const std::string& title="");
// const std::string& valtitle=""
/// Book a counter, using a path generated from the dataset and axis ID codes
///
/// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way.
CounterPtr bookCounter(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const std::string& title="");
// const std::string& valtitle=""
//@}
/// @name 1D histogram booking
//@{
/// Book a 1D histogram with @a nbins uniformly distributed across the range @a lower - @a upper .
Histo1DPtr bookHisto1D(const std::string& name,
size_t nbins, double lower, double upper,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D histogram with non-uniform bins defined by the vector of bin edges @a binedges .
Histo1DPtr bookHisto1D(const std::string& name,
const std::vector<double>& binedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D histogram with non-uniform bins defined by the vector of bin edges @a binedges .
Histo1DPtr bookHisto1D(const std::string& name,
const std::initializer_list<double>& binedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D histogram with binning from a reference scatter.
Histo1DPtr bookHisto1D(const std::string& name,
const Scatter2D& refscatter,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D histogram, using the binnings in the reference data histogram.
Histo1DPtr bookHisto1D(const std::string& name,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D histogram, using the binnings in the reference data histogram.
///
/// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way.
Histo1DPtr bookHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
//@}
/// @name 2D histogram booking
//@{
/// Book a 2D histogram with @a nxbins and @a nybins uniformly
/// distributed across the ranges @a xlower - @a xupper and @a
/// ylower - @a yupper respectively along the x- and y-axis.
Histo2DPtr bookHisto2D(const std::string& name,
size_t nxbins, double xlower, double xupper,
size_t nybins, double ylower, double yupper,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D histogram with non-uniform bins defined by the
/// vectors of bin edges @a xbinedges and @a ybinedges.
Histo2DPtr bookHisto2D(const std::string& name,
const std::vector<double>& xbinedges,
const std::vector<double>& ybinedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D histogram with non-uniform bins defined by the
/// vectors of bin edges @a xbinedges and @a ybinedges.
Histo2DPtr bookHisto2D(const std::string& name,
const std::initializer_list<double>& xbinedges,
const std::initializer_list<double>& ybinedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D histogram with binning from a reference scatter.
Histo2DPtr bookHisto2D(const std::string& name,
const Scatter3D& refscatter,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D histogram, using the binnings in the reference data histogram.
Histo2DPtr bookHisto2D(const std::string& name,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D histogram, using the binnings in the reference data histogram.
///
/// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way.
Histo2DPtr bookHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
//@}
/// @name 1D profile histogram booking
//@{
/// Book a 1D profile histogram with @a nbins uniformly distributed across the range @a lower - @a upper .
Profile1DPtr bookProfile1D(const std::string& name,
size_t nbins, double lower, double upper,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D profile histogram with non-uniform bins defined by the vector of bin edges @a binedges .
Profile1DPtr bookProfile1D(const std::string& name,
const std::vector<double>& binedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D profile histogram with non-uniform bins defined by the vector of bin edges @a binedges .
Profile1DPtr bookProfile1D(const std::string& name,
const std::initializer_list<double>& binedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D profile histogram with binning from a reference scatter.
Profile1DPtr bookProfile1D(const std::string& name,
const Scatter2D& refscatter,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D profile histogram, using the binnings in the reference data histogram.
Profile1DPtr bookProfile1D(const std::string& name,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// Book a 1D profile histogram, using the binnings in the reference data histogram.
///
/// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way.
Profile1DPtr bookProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
//@}
/// @name 2D profile histogram booking
//@{
/// Book a 2D profile histogram with @a nxbins and @a nybins uniformly
/// distributed across the ranges @a xlower - @a xupper and @a ylower - @a
/// yupper respectively along the x- and y-axis.
Profile2DPtr bookProfile2D(const std::string& name,
size_t nxbins, double xlower, double xupper,
size_t nybins, double ylower, double yupper,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D profile histogram with non-uniform bins defined by the vectorx
/// of bin edges @a xbinedges and @a ybinedges.
Profile2DPtr bookProfile2D(const std::string& name,
const std::vector<double>& xbinedges,
const std::vector<double>& ybinedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D profile histogram with non-uniform bins defined by the vectorx
/// of bin edges @a xbinedges and @a ybinedges.
Profile2DPtr bookProfile2D(const std::string& name,
const std::initializer_list<double>& xbinedges,
const std::initializer_list<double>& ybinedges,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D profile histogram with binning from a reference scatter.
Profile2DPtr bookProfile2D(const std::string& name,
const Scatter3D& refscatter,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D profile histogram, using the binnings in the reference data histogram.
Profile2DPtr bookProfile2D(const std::string& name,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
/// Book a 2D profile histogram, using the binnings in the reference data histogram.
///
/// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way.
Profile2DPtr bookProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="",
const std::string& ztitle="");
//@}
/// @name 2D scatter booking
//@{
/// @brief Book a 2-dimensional data point set with the given name.
///
/// @note Unlike histogram booking, scatter booking by default makes no
/// attempt to use reference data to pre-fill the data object. If you want
/// this, which is sometimes useful e.g. when the x-position is not really
/// meaningful and can't be extracted from the data, then set the @a
/// copy_pts parameter to true. This creates points to match the reference
/// data's x values and errors, but with the y values and errors zeroed...
/// assuming that there is a reference histo with the same name: if there
/// isn't, an exception will be thrown.
Scatter2DPtr bookScatter2D(const std::string& name,
bool copy_pts=false,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// @brief Book a 2-dimensional data point set, using the binnings in the reference data histogram.
///
/// The paper, dataset and x/y-axis IDs will be used to build the histo name in the HepData standard way.
///
/// @note Unlike histogram booking, scatter booking by default makes no
/// attempt to use reference data to pre-fill the data object. If you want
/// this, which is sometimes useful e.g. when the x-position is not really
/// meaningful and can't be extracted from the data, then set the @a
/// copy_pts parameter to true. This creates points to match the reference
/// data's x values and errors, but with the y values and errors zeroed.
Scatter2DPtr bookScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
bool copy_pts=false,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// @brief Book a 2-dimensional data point set with equally spaced x-points in a range.
///
/// The y values and errors will be set to 0.
Scatter2DPtr bookScatter2D(const std::string& name,
size_t npts, double lower, double upper,
const std::string& title="",
const std::string& xtitle="",
const std::string& ytitle="");
/// @brief Book a 2-dimensional data point set based on provided contiguous "bin edges".
///
/// The y values and errors will be set to 0.
Scatter2DPtr bookScatter2D(const std::string& hname,
const std::vector<double>& binedges,
const std::string& title,
const std::string& xtitle,
const std::string& ytitle);
//@}
public:
/// @name accessing options for this Analysis instance.
//@{
/// Get an option for this analysis instance as a string.
std::string getOption(std::string optname) {
if ( _options.find(optname) != _options.end() )
return _options.find(optname)->second;
return "";
}
/// Get an option for this analysis instance converted to a
/// specific type (given by the specified @a def value).
template<typename T>
T getOption(std::string optname, T def) {
if (_options.find(optname) == _options.end()) return def;
std::stringstream ss;
ss << _options.find(optname)->second;
T ret;
ss >> ret;
return ret;
}
//@}
/// @brief Book a CentralityProjection
///
/// Using a SingleValueProjection, @a proj, giving the value of an
/// experimental observable to be used as a centrality estimator,
/// book a CentralityProjection based on the experimentally
/// measured pecentiles of this observable (as given by the
/// reference data for the @a calHistName histogram in the @a
/// calAnaName analysis. If a preloaded file with the output of a
/// run using the @a calAnaName analysis contains a valid
/// generated @a calHistName histogram, it will be used as an
/// optional percentile binning. Also if this preloaded file
/// contains a histogram with the name @a calHistName with an
/// appended "_IMP" This histogram will be used to add an optional
/// centrality percentile based on the generated impact
/// parameter. If @increasing is true, a low (high) value of @proj
/// is assumed to correspond to a more peripheral (central) event.
const CentralityProjection&
declareCentrality(const SingleValueProjection &proj,
string calAnaName, string calHistName,
const string projName, bool increasing = false);
/// @brief Book a Pecentile wrapper around AnalysisObjects.
///
/// Based on a previously registered CentralityProjection named @a
/// projName book one AnalysisObject for each @a centralityBin and
/// name them according to the corresponding code in the @a ref
/// vector.
template <class T>
Percentile<T> bookPercentile(string projName,
vector<pair<float, float> > centralityBins,
vector<tuple<int, int, int> > ref) {
typedef typename ReferenceTraits<T>::RefT RefT;
Percentile<T> pctl(this, projName);
const int nCent = centralityBins.size();
for (int iCent = 0; iCent < nCent; ++iCent) {
const string axisCode = makeAxisCode(std::get<0>(ref[iCent]),
std::get<1>(ref[iCent]),
std::get<2>(ref[iCent]));
- shared_ptr<T> ao;
- CounterPtr cnt;
- try {
- ao = getAnalysisObject<T>(axisCode);
- MSG_TRACE("Found old " << histoPath(axisCode));
- }
- catch (Exception) {
- const RefT & refscatter = refData<RefT>(axisCode);
- ao = make_shared<T>(refscatter, histoPath(axisCode));
- addAnalysisObject(ao);
- MSG_TRACE("Created new " << histoPath(axisCode));
- }
- try {
- cnt = getAnalysisObject<Counter>("TMP/COUNTER/" + axisCode);
- MSG_TRACE("Found old " << histoPath("TMP/COUNTER/" + axisCode));
- }
- catch (Exception) {
- cnt = make_shared<Counter>(histoPath("TMP/COUNTER/" + axisCode));
- addAnalysisObject(cnt);
- MSG_TRACE("Created new " << histoPath("TMP/COUNTER/" + axisCode));
- }
+ const RefT & refscatter = refData<RefT>(axisCode);
+ shared_ptr<T> ao = addOrGetCompatAO(make_shared<T>(refscatter, histoPath(axisCode)));
+ CounterPtr cnt =
+ addOrGetCompatAO(make_shared<Counter>(histoPath("TMP/COUNTER/" + axisCode)));
pctl.add(ao, cnt, centralityBins[iCent]);
}
return pctl;
}
/// @brief Book Pecentile wrappers around AnalysisObjects.
///
/// Based on a previously registered CentralityProjection named @a
/// projName book one (or several) AnalysisObject(s) named
/// according to @a ref where the x-axis will be filled according
/// to the percentile output(s) of the @projName.
template <class T>
PercentileXaxis<T> bookPercentileXaxis(string projName,
tuple<int, int, int> ref) {
typedef typename ReferenceTraits<T>::RefT RefT;
PercentileXaxis<T> pctl(this, projName);
const string axisCode = makeAxisCode(std::get<0>(ref),
std::get<1>(ref),
std::get<2>(ref));
- shared_ptr<T> ao;
- CounterPtr cnt;
- try {
- ao = getAnalysisObject<T>(histoPath(axisCode));
- }
- catch (Exception) {
- const RefT & refscatter = refData<RefT>(axisCode);
- ao = make_shared<T>(refscatter, axisCode);
- addAnalysisObject(ao);
- }
+ const RefT & refscatter = refData<RefT>(axisCode);
+ shared_ptr<T> ao = addOrGetCompatAO(make_shared<T>(refscatter, histoPath(axisCode)));
pctl.add(proj, ao, make_shared<Counter>());
return pctl;
}
/// @name Analysis object manipulation
/// @todo Should really be protected: only public to keep BinnedHistogram happy for now...
//@{
/// Multiplicatively scale the given counter, @a cnt, by factor @s factor.
void scale(CounterPtr cnt, double factor);
/// Multiplicatively scale the given counters, @a cnts, by factor @s factor.
/// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh)
/// @todo Use SFINAE for a generic iterable of CounterPtrs
void scale(const std::vector<CounterPtr>& cnts, double factor) {
for (auto& c : cnts) scale(c, factor);
}
/// @todo YUCK!
template <std::size_t array_size>
void scale(const CounterPtr (&cnts)[array_size], double factor) {
// for (size_t i = 0; i < std::extent<decltype(cnts)>::value; ++i) scale(cnts[i], factor);
for (auto& c : cnts) scale(c, factor);
}
/// Normalize the given histogram, @a histo, to area = @a norm.
void normalize(Histo1DPtr histo, double norm=1.0, bool includeoverflows=true);
/// Normalize the given histograms, @a histos, to area = @a norm.
/// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh)
/// @todo Use SFINAE for a generic iterable of Histo1DPtrs
void normalize(const std::vector<Histo1DPtr>& histos, double norm=1.0, bool includeoverflows=true) {
for (auto& h : histos) normalize(h, norm, includeoverflows);
}
/// @todo YUCK!
template <std::size_t array_size>
void normalize(const Histo1DPtr (&histos)[array_size], double norm=1.0, bool includeoverflows=true) {
for (auto& h : histos) normalize(h, norm, includeoverflows);
}
/// Multiplicatively scale the given histogram, @a histo, by factor @s factor.
void scale(Histo1DPtr histo, double factor);
/// Multiplicatively scale the given histograms, @a histos, by factor @s factor.
/// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh)
/// @todo Use SFINAE for a generic iterable of Histo1DPtrs
void scale(const std::vector<Histo1DPtr>& histos, double factor) {
for (auto& h : histos) scale(h, factor);
}
/// @todo YUCK!
template <std::size_t array_size>
void scale(const Histo1DPtr (&histos)[array_size], double factor) {
for (auto& h : histos) scale(h, factor);
}
/// Normalize the given histogram, @a histo, to area = @a norm.
void normalize(Histo2DPtr histo, double norm=1.0, bool includeoverflows=true);
/// Normalize the given histograms, @a histos, to area = @a norm.
/// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh)
/// @todo Use SFINAE for a generic iterable of Histo2DPtrs
void normalize(const std::vector<Histo2DPtr>& histos, double norm=1.0, bool includeoverflows=true) {
for (auto& h : histos) normalize(h, norm, includeoverflows);
}
/// @todo YUCK!
template <std::size_t array_size>
void normalize(const Histo2DPtr (&histos)[array_size], double norm=1.0, bool includeoverflows=true) {
for (auto& h : histos) normalize(h, norm, includeoverflows);
}
/// Multiplicatively scale the given histogram, @a histo, by factor @s factor.
void scale(Histo2DPtr histo, double factor);
/// Multiplicatively scale the given histograms, @a histos, by factor @s factor.
/// @note Constness intentional, if weird, to allow passing rvalue refs of smart ptrs (argh)
/// @todo Use SFINAE for a generic iterable of Histo2DPtrs
void scale(const std::vector<Histo2DPtr>& histos, double factor) {
for (auto& h : histos) scale(h, factor);
}
/// @todo YUCK!
template <std::size_t array_size>
void scale(const Histo2DPtr (&histos)[array_size], double factor) {
for (auto& h : histos) scale(h, factor);
}
/// Helper for counter division.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(CounterPtr c1, CounterPtr c2, Scatter1DPtr s) const;
/// Helper for histogram division with raw YODA objects.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(const YODA::Counter& c1, const YODA::Counter& c2, Scatter1DPtr s) const;
/// Helper for histogram division.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const;
/// Helper for histogram division with raw YODA objects.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(const YODA::Histo1D& h1, const YODA::Histo1D& h2, Scatter2DPtr s) const;
/// Helper for profile histogram division.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(Profile1DPtr p1, Profile1DPtr p2, Scatter2DPtr s) const;
/// Helper for profile histogram division with raw YODA objects.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(const YODA::Profile1D& p1, const YODA::Profile1D& p2, Scatter2DPtr s) const;
/// Helper for 2D histogram division.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(Histo2DPtr h1, Histo2DPtr h2, Scatter3DPtr s) const;
/// Helper for 2D histogram division with raw YODA objects.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(const YODA::Histo2D& h1, const YODA::Histo2D& h2, Scatter3DPtr s) const;
/// Helper for 2D profile histogram division.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(Profile2DPtr p1, Profile2DPtr p2, Scatter3DPtr s) const;
/// Helper for 2D profile histogram division with raw YODA objects
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void divide(const YODA::Profile2D& p1, const YODA::Profile2D& p2, Scatter3DPtr s) const;
/// Helper for histogram efficiency calculation.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void efficiency(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const;
/// Helper for histogram efficiency calculation.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void efficiency(const YODA::Histo1D& h1, const YODA::Histo1D& h2, Scatter2DPtr s) const;
/// Helper for histogram asymmetry calculation.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void asymm(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const;
/// Helper for histogram asymmetry calculation.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void asymm(const YODA::Histo1D& h1, const YODA::Histo1D& h2, Scatter2DPtr s) const;
/// Helper for converting a differential histo to an integral one.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void integrate(Histo1DPtr h, Scatter2DPtr s) const;
/// Helper for converting a differential histo to an integral one.
///
/// @note Assigns to the (already registered) output scatter, @a s. Preserves the path information of the target.
void integrate(const Histo1D& h, Scatter2DPtr s) const;
//@}
public:
/// List of registered analysis data objects
const vector<AnalysisObjectPtr>& analysisObjects() const {
return _analysisobjects;
}
protected:
/// @name Data object registration, retrieval, and removal
//@{
/// Register a data object in the histogram system
void addAnalysisObject(AnalysisObjectPtr ao);
+ /// Register a data object in the system and return its pointer,
+ /// or, if an object of the same path is already there, check if it
+ /// is compatible (eg. same type and same binning) and return that
+ /// object instead. Emits a warning if an incompatible object with
+ /// the same name is found and replcaces that with the given data
+ /// object.
+ template <typename AO=YODA::AnalysisObject>
+ std::shared_ptr<AO> addOrGetCompatAO(std::shared_ptr<AO> aonew) {
+ foreach (const AnalysisObjectPtr& ao, analysisObjects()) {
+ if ( ao->path() == aonew->path() ) {
+ std::shared_ptr<AO> aoold = dynamic_pointer_cast<AO>(ao);
+ if ( aoold && bookingCompatible(aonew, aoold) ) {
+ MSG_TRACE("Bound pre-existing data object " << aonew->path()
+ << " for " << name());
+ return aoold;
+ } else {
+ MSG_WARNING("Found incompatible pre-existing data object with same path "
+ << aonew->path() << " for " << name());
+ }
+ }
+ }
+ MSG_TRACE("Registered " << aonew->annotation("Type") << " " << aonew->path()
+ << " for " << name());
+ addAnalysisObject(aonew);
+ return aonew;
+ }
+
/// Get a data object from the histogram system
template <typename AO=YODA::AnalysisObject>
const std::shared_ptr<AO> getAnalysisObject(const std::string& name) const {
foreach (const AnalysisObjectPtr& ao, analysisObjects()) {
if (ao->path() == histoPath(name)) return dynamic_pointer_cast<AO>(ao);
}
throw LookupError("Data object " + histoPath(name) + " not found");
}
/// Get a data object from the histogram system (non-const)
template <typename AO=YODA::AnalysisObject>
std::shared_ptr<AO> getAnalysisObject(const std::string& name) {
foreach (const AnalysisObjectPtr& ao, analysisObjects()) {
if (ao->path() == histoPath(name)) return dynamic_pointer_cast<AO>(ao);
}
throw LookupError("Data object " + histoPath(name) + " not found");
}
/// Unregister a data object from the histogram system (by name)
void removeAnalysisObject(const std::string& path);
/// Unregister a data object from the histogram system (by pointer)
void removeAnalysisObject(AnalysisObjectPtr ao);
/// Get all data object from the AnalysisHandler.
vector<AnalysisObjectPtr> getAllData(bool includeorphans) const;
/// Get a data object from another analysis (e.g. preloaded
/// calibration histogram).
/// Get a data object from the histogram system (non-const)
template <typename AO=YODA::AnalysisObject>
std::shared_ptr<AO> getAnalysisObject(const std::string & ananame,
const std::string& name) {
std::string path = "/" + ananame + "/" + name;
for ( AnalysisObjectPtr ao : getAllData(true) ) {
if ( ao->path() == path )
return dynamic_pointer_cast<AO>(ao);
}
return std::shared_ptr<AO>();
}
/// Get a named Histo1D object from the histogram system
const Histo1DPtr getHisto1D(const std::string& name) const {
return getAnalysisObject<Histo1D>(name);
}
/// Get a named Histo1D object from the histogram system (non-const)
Histo1DPtr getHisto1D(const std::string& name) {
return getAnalysisObject<Histo1D>(name);
}
/// Get a Histo1D object from the histogram system by axis ID codes (non-const)
const Histo1DPtr getHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return getAnalysisObject<Histo1D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a Histo1D object from the histogram system by axis ID codes (non-const)
Histo1DPtr getHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) {
return getAnalysisObject<Histo1D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a named Histo2D object from the histogram system
const Histo2DPtr getHisto2D(const std::string& name) const {
return getAnalysisObject<Histo2D>(name);
}
/// Get a named Histo2D object from the histogram system (non-const)
Histo2DPtr getHisto2D(const std::string& name) {
return getAnalysisObject<Histo2D>(name);
}
/// Get a Histo2D object from the histogram system by axis ID codes (non-const)
const Histo2DPtr getHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return getAnalysisObject<Histo2D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a Histo2D object from the histogram system by axis ID codes (non-const)
Histo2DPtr getHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) {
return getAnalysisObject<Histo2D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a named Profile1D object from the histogram system
const Profile1DPtr getProfile1D(const std::string& name) const {
return getAnalysisObject<Profile1D>(name);
}
/// Get a named Profile1D object from the histogram system (non-const)
Profile1DPtr getProfile1D(const std::string& name) {
return getAnalysisObject<Profile1D>(name);
}
/// Get a Profile1D object from the histogram system by axis ID codes (non-const)
const Profile1DPtr getProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return getAnalysisObject<Profile1D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a Profile1D object from the histogram system by axis ID codes (non-const)
Profile1DPtr getProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) {
return getAnalysisObject<Profile1D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a named Profile2D object from the histogram system
const Profile2DPtr getProfile2D(const std::string& name) const {
return getAnalysisObject<Profile2D>(name);
}
/// Get a named Profile2D object from the histogram system (non-const)
Profile2DPtr getProfile2D(const std::string& name) {
return getAnalysisObject<Profile2D>(name);
}
/// Get a Profile2D object from the histogram system by axis ID codes (non-const)
const Profile2DPtr getProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return getAnalysisObject<Profile2D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a Profile2D object from the histogram system by axis ID codes (non-const)
Profile2DPtr getProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) {
return getAnalysisObject<Profile2D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a named Scatter2D object from the histogram system
const Scatter2DPtr getScatter2D(const std::string& name) const {
return getAnalysisObject<Scatter2D>(name);
}
/// Get a named Scatter2D object from the histogram system (non-const)
Scatter2DPtr getScatter2D(const std::string& name) {
return getAnalysisObject<Scatter2D>(name);
}
/// Get a Scatter2D object from the histogram system by axis ID codes (non-const)
const Scatter2DPtr getScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return getAnalysisObject<Scatter2D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
/// Get a Scatter2D object from the histogram system by axis ID codes (non-const)
Scatter2DPtr getScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) {
return getAnalysisObject<Scatter2D>(makeAxisCode(datasetId, xAxisId, yAxisId));
}
//@}
private:
/// Name passed to constructor (used to find .info analysis data file, and as a fallback)
string _defaultname;
/// Pointer to analysis metadata object
unique_ptr<AnalysisInfo> _info;
/// Storage of all plot objects
/// @todo Make this a map for fast lookup by path?
vector<AnalysisObjectPtr> _analysisobjects;
/// @name Cross-section variables
//@{
double _crossSection;
bool _gotCrossSection;
//@}
/// The controlling AnalysisHandler object.
AnalysisHandler* _analysishandler;
/// Collection of cached refdata to speed up many autobookings: the
/// reference data file should only be read once.
mutable std::map<std::string, AnalysisObjectPtr> _refdata;
/// Options the (this instance of) the analysis
map<string, string> _options;
/// The string of options.
string _optstring;
private:
/// @name Utility functions
//@{
/// Get the reference data for this paper and cache it.
void _cacheRefData() const;
//@}
/// The assignment operator is private and must never be called.
/// In fact, it should not even be implemented.
Analysis& operator=(const Analysis&);
};
}
// Include definition of analysis plugin system so that analyses automatically see it when including Analysis.hh
#include "Rivet/AnalysisBuilder.hh"
/// @def DECLARE_RIVET_PLUGIN
/// Preprocessor define to prettify the global-object plugin hook mechanism.
#define DECLARE_RIVET_PLUGIN(clsname) Rivet::AnalysisBuilder<clsname> plugin_ ## clsname
/// @def DECLARE_ALIASED_RIVET_PLUGIN
/// Preprocessor define to prettify the global-object plugin hook mechanism, with an extra alias name for this analysis.
// #define DECLARE_ALIASED_RIVET_PLUGIN(clsname, alias) Rivet::AnalysisBuilder<clsname> plugin_ ## clsname ## ( ## #alias ## )
#define DECLARE_ALIASED_RIVET_PLUGIN(clsname, alias) DECLARE_RIVET_PLUGIN(clsname)( #alias )
/// @def DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR
/// Preprocessor define to prettify the manky constructor with name string argument
#define DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR(clsname) clsname() : Analysis(# clsname) {}
/// @def DEFAULT_RIVET_ANALYSIS_CTOR
/// Slight abbreviation for DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR
#define DEFAULT_RIVET_ANALYSIS_CTOR(clsname) DEFAULT_RIVET_ANALYSIS_CONSTRUCTOR(clsname)
#endif
diff --git a/include/Rivet/AnalysisHandler.hh b/include/Rivet/AnalysisHandler.hh
--- a/include/Rivet/AnalysisHandler.hh
+++ b/include/Rivet/AnalysisHandler.hh
@@ -1,308 +1,316 @@
// -*- C++ -*-
#ifndef RIVET_RivetHandler_HH
#define RIVET_RivetHandler_HH
#include "Rivet/Config/RivetCommon.hh"
#include "Rivet/Particle.hh"
#include "Rivet/AnalysisLoader.hh"
#include "Rivet/Tools/RivetYODA.hh"
namespace Rivet {
// Forward declaration and smart pointer for Analysis
class Analysis;
typedef std::shared_ptr<Analysis> AnaHandle;
// Needed to make smart pointers compare equivalent in the STL set
struct CmpAnaHandle {
bool operator() (const AnaHandle& a, const AnaHandle& b) const {
return a.get() < b.get();
}
};
/// A class which handles a number of analysis objects to be applied to
/// generated events. An {@link Analysis}' AnalysisHandler is also responsible
/// for handling the final writing-out of histograms.
class AnalysisHandler {
public:
/// @name Constructors and destructors. */
//@{
/// Preferred constructor, with optional run name.
AnalysisHandler(const string& runname="");
/// @brief Destructor
/// The destructor is not virtual, as this class should not be inherited from.
~AnalysisHandler();
//@}
private:
/// Get a logger object.
Log& getLog() const;
public:
/// @name Run properties
//@{
/// Get the name of this run.
string runName() const { return _runname; }
/// Get the number of events seen. Should only really be used by external
/// steering code or analyses in the finalize phase.
size_t numEvents() const { return _eventcounter.numEntries(); }
/// @brief Access the sum of the event weights seen
///
/// This is the weighted equivalent of the number of events. It should only
/// be used by external steering code or analyses in the finalize phase.
double sumW() const { return _eventcounter.sumW(); }
/// Access to the sum of squared-weights
double sumW2() const { return _eventcounter.sumW2(); }
/// @brief Compatibility alias for sumOfWeights
///
/// @deprecated Prefer sumW
double sumOfWeights() const { return sumW(); }
/// @brief Set the sum of weights
///
/// This is useful if Rivet is steered externally and
/// the analyses are run for a sub-contribution of the events
/// (but of course have to be normalised to the total sum of weights)
///
/// @todo What about the sumW2 term? That needs to be set coherently. Need a
/// new version, with all three N,sumW,sumW2 numbers (or a counter)
/// supplied.
///
/// @deprecated Weight sums are no longer tracked this way...
void setSumOfWeights(const double& sum) {
//_sumOfWeights = sum;
throw Error("Can't set sum of weights independently, since it's now tracked by a Counter. "
"Please contact the Rivet authors if you need this.");
}
/// Is cross-section information required by at least one child analysis?
/// @deprecated Should no-longer be an issue: does any generator not write the cross-section?
bool needCrossSection() const;
/// Whether the handler knows about a cross-section.
/// @deprecated Should no-longer be an issue: does any generator not write the cross-section?
bool hasCrossSection() const;
/// Get the cross-section known to the handler.
double crossSection() const { return _xs; }
/// Set the cross-section for the process being generated.
/// @todo What about the xsec uncertainty? Add a second, optional argument?
AnalysisHandler& setCrossSection(double xs);
/// Set the beam particles for this run
AnalysisHandler& setRunBeams(const ParticlePair& beams) {
_beams = beams;
MSG_DEBUG("Setting run beams = " << beams << " @ " << sqrtS()/GeV << " GeV");
return *this;
}
/// Get the beam particles for this run, usually determined from the first event.
const ParticlePair& beams() const { return _beams; }
/// Get beam IDs for this run, usually determined from the first event.
/// @deprecated Use standalone beamIds(ah.beams()), to clean AH interface
PdgIdPair beamIds() const;
/// Get energy for this run, usually determined from the first event.
/// @deprecated Use standalone sqrtS(ah.beams()), to clean AH interface
double sqrtS() const;
/// Setter for _ignoreBeams
void setIgnoreBeams(bool ignore=true);
//@}
/// @name Handle analyses
//@{
/// Get a list of the currently registered analyses' names.
std::vector<std::string> analysisNames() const;
/// Get the collection of currently registered analyses.
const std::set<AnaHandle, CmpAnaHandle>& analyses() const {
return _analyses;
}
/// Get a registered analysis by name.
const AnaHandle analysis(const std::string& analysisname) const;
/// Add an analysis to the run list by object
AnalysisHandler& addAnalysis(Analysis* analysis);
/// @brief Add an analysis to the run list using its name.
///
/// The actual Analysis to be used will be obtained via
/// AnalysisLoader::getAnalysis(string). If no matching analysis is found,
/// no analysis is added (i.e. the null pointer is checked and discarded.
AnalysisHandler& addAnalysis(const std::string& analysisname);
/// @brief Add an analysis with a map of analysis options.
AnalysisHandler& addAnalysis(const std::string& analysisname, std::map<string, string> pars);
/// @brief Add analyses to the run list using their names.
///
/// The actual {@link Analysis}' to be used will be obtained via
/// AnalysisHandler::addAnalysis(string), which in turn uses
/// AnalysisLoader::getAnalysis(string). If no matching analysis is found
/// for a given name, no analysis is added, but also no error is thrown.
AnalysisHandler& addAnalyses(const std::vector<std::string>& analysisnames);
/// Remove an analysis from the run list using its name.
AnalysisHandler& removeAnalysis(const std::string& analysisname);
/// Remove analyses from the run list using their names.
AnalysisHandler& removeAnalyses(const std::vector<std::string>& analysisnames);
//@}
/// @name Main init/execute/finalise
//@{
/// Initialize a run, with the run beams taken from the example event.
void init(const GenEvent& event);
/// @brief Analyze the given \a event by reference.
///
/// This function will call the AnalysisBase::analyze() function of all
/// included analysis objects.
void analyze(const GenEvent& event);
/// @brief Analyze the given \a event by pointer.
///
/// This function will call the AnalysisBase::analyze() function of all
/// included analysis objects, after checking the event pointer validity.
void analyze(const GenEvent* event);
/// Finalize a run. This function calls the AnalysisBase::finalize()
/// functions of all included analysis objects.
void finalize();
//@}
/// @name Histogram / data object access
//@{
/// Add a vector of analysis objects to the current state.
void addData(const std::vector<AnalysisObjectPtr>& aos);
/// Read analysis plots into the histo collection (via addData) from the named file.
void readData(const std::string& filename);
/// Get all analyses' plots as a vector of analysis objects.
std::vector<AnalysisObjectPtr> getData(bool includeorphans = false,
bool includetmps = false) const;
/// Write all analyses' plots (via getData) to the named file.
void writeData(const std::string& filename) const;
/// Tell Rivet to dump intermediate result to a file named @a
/// dumpfile every @a period'th event. If @period is not positive,
/// no dumping will be done.
void dump(string dumpfile, int period) {
_dumpPeriod = period;
_dumpFile = dumpfile;
}
/// Take the vector of yoda files and merge them together using
/// the cross section and weight information provided in each
/// file. Each file in @a aofiles is assumed to have been produced
/// by Rivet. By default the files are assumed to contain
/// different processes (or the same processs but mutually
/// exclusive cuts), but if @a equiv if ture, the files are
/// assumed to contain output of completely equivalent (but
/// statistically independent) Rivet runs. The corresponding
/// analyses will be loaded and their analysis objects will be
/// filled with the merged result. finalize() will be run on each
/// relevant anslysis. The resulting YODA file can then be rwitten
- /// out by writeData().
- void mergeYodas(const vector<string> & aofiles, bool equiv = false);
+ /// out by writeData(). If delopts is non-empty, it is assumed to
+ /// contain names different options to be merged into the same
+ /// analysis objects.
+ void mergeYodas(const vector<string> & aofiles,
+ const vector<string> & delopts = vector<string>(),
+ bool equiv = false);
+
+ /// Helper function to strip specific options from data object paths.
+ void stripOptions(AnalysisObjectPtr ao,
+ const vector<string> & delopts) const;
//@}
private:
/// The collection of Analysis objects to be used.
set<AnaHandle, CmpAnaHandle> _analyses;
/// A vector of pre-loaded object which do not have a valid
/// Analysis plugged in.
vector<AnalysisObjectPtr> _orphanedPreloads;
/// A vector containing copies of analysis objects after
/// finalize() has been run.
vector<AnalysisObjectPtr> _finalizedAOs;
/// @name Run properties
//@{
/// Run name
std::string _runname;
/// Event counter
Counter _eventcounter;
/// Cross-section known to AH
double _xs, _xserr;
/// Beams used by this run.
ParticlePair _beams;
/// Flag to check if init has been called
bool _initialised;
/// Flag whether input event beams should be ignored in compatibility check
bool _ignoreBeams;
/// Determines how often Rivet runs finalize() and writes the
/// result to a YODA file.
int _dumpPeriod;
/// The name of a YODA file to which Rivet periodically dumps
/// results.
string _dumpFile;
/// Flag to indicate periodic dumping is in progress
bool _dumping;
//@}
private:
/// The assignment operator is private and must never be called.
/// In fact, it should not even be implemented.
AnalysisHandler& operator=(const AnalysisHandler&);
/// The copy constructor is private and must never be called. In
/// fact, it should not even be implemented.
AnalysisHandler(const AnalysisHandler&);
};
}
#endif
diff --git a/include/Rivet/Tools/RivetYODA.hh b/include/Rivet/Tools/RivetYODA.hh
--- a/include/Rivet/Tools/RivetYODA.hh
+++ b/include/Rivet/Tools/RivetYODA.hh
@@ -1,103 +1,125 @@
#ifndef RIVET_RIVETYODA_HH
#define RIVET_RIVETYODA_HH
#include "Rivet/Config/RivetCommon.hh"
#include "YODA/AnalysisObject.h"
#include "YODA/Counter.h"
#include "YODA/Histo1D.h"
#include "YODA/Histo2D.h"
#include "YODA/Profile1D.h"
#include "YODA/Profile2D.h"
#include "YODA/Scatter1D.h"
#include "YODA/Scatter2D.h"
#include "YODA/Scatter3D.h"
namespace Rivet {
typedef std::shared_ptr<YODA::AnalysisObject> AnalysisObjectPtr;
typedef std::shared_ptr<YODA::Counter> CounterPtr;
typedef std::shared_ptr<YODA::Histo1D> Histo1DPtr;
typedef std::shared_ptr<YODA::Histo2D> Histo2DPtr;
typedef std::shared_ptr<YODA::Profile1D> Profile1DPtr;
typedef std::shared_ptr<YODA::Profile2D> Profile2DPtr;
typedef std::shared_ptr<YODA::Scatter1D> Scatter1DPtr;
typedef std::shared_ptr<YODA::Scatter2D> Scatter2DPtr;
typedef std::shared_ptr<YODA::Scatter3D> Scatter3DPtr;
using YODA::AnalysisObject;
using YODA::Counter;
using YODA::Histo1D;
using YODA::HistoBin1D;
using YODA::Histo2D;
using YODA::HistoBin2D;
using YODA::Profile1D;
using YODA::ProfileBin1D;
using YODA::Profile2D;
using YODA::ProfileBin2D;
using YODA::Scatter1D;
using YODA::Point1D;
using YODA::Scatter2D;
using YODA::Point2D;
using YODA::Scatter3D;
using YODA::Point3D;
/// Function to get a map of all the refdata in a paper with the given @a papername.
map<string, AnalysisObjectPtr> getRefData(const string& papername);
/// Get the file system path to the reference file for this paper.
string getDatafilePath(const string& papername);
/// Traits class to access the type of the AnalysisObject in the
/// reference files.
template<typename T> struct ReferenceTraits {};
template<> struct ReferenceTraits<Counter> { typedef Counter RefT; };
template<> struct ReferenceTraits<Scatter1D> { typedef Scatter1D RefT; };
template<> struct ReferenceTraits<Histo1D> { typedef Scatter2D RefT; };
template<> struct ReferenceTraits<Profile1D> { typedef Scatter2D RefT; };
template<> struct ReferenceTraits<Scatter2D> { typedef Scatter2D RefT; };
template<> struct ReferenceTraits<Histo2D> { typedef Scatter3D RefT; };
template<> struct ReferenceTraits<Profile2D> { typedef Scatter3D RefT; };
template<> struct ReferenceTraits<Scatter3D> { typedef Scatter3D RefT; };
- // If @a dst and @a src both are of same subclass T, copy the
- // contents of @a src into @a dst and return true. Otherwise return
- // false.
+ /// If @a dst and @a src both are of same subclass T, copy the
+ /// contents of @a src into @a dst and return true. Otherwise return
+ /// false.
template <typename T>
- bool aocopy(AnalysisObjectPtr src, AnalysisObjectPtr dst) {
+ inline bool aocopy(AnalysisObjectPtr src, AnalysisObjectPtr dst) {
shared_ptr<T> tsrc = dynamic_pointer_cast<T>(src);
if ( !tsrc ) return false;
shared_ptr<T> tdst = dynamic_pointer_cast<T>(dst);
if ( !tdst ) return false;
*tdst = *tsrc;
return true;
}
- // If @a dst and @a src both are of same subclass T, add the
- // contents of @a src into @a dst and return true. Otherwise return
- // false.
+ /// If @a dst and @a src both are of same subclass T, add the
+ /// contents of @a src into @a dst and return true. Otherwise return
+ /// false.
template <typename T>
- bool aoadd(AnalysisObjectPtr dst, AnalysisObjectPtr src, double scale) {
+ inline bool aoadd(AnalysisObjectPtr dst, AnalysisObjectPtr src, double scale) {
shared_ptr<T> tsrc = dynamic_pointer_cast<T>(src);
if ( !tsrc ) return false;
shared_ptr<T> tdst = dynamic_pointer_cast<T>(dst);
if ( !tdst ) return false;
tsrc->scaleW(scale);
*tdst += *tsrc;
return true;
}
- // If @a dst is the same subclass as @a src, copy the contents of @a
- // src into @a dst and return true. Otherwise return false.
+ /// If @a dst is the same subclass as @a src, copy the contents of @a
+ /// src into @a dst and return true. Otherwise return false.
bool copyao(AnalysisObjectPtr src, AnalysisObjectPtr dst);
- // If @a dst is the same subclass as @a src, scale the contents of
- // @a src with @a scale and add it to @a dst and return true. Otherwise
- // return false.
+ /// If @a dst is the same subclass as @a src, scale the contents of
+ /// @a src with @a scale and add it to @a dst and return true. Otherwise
+ /// return false.
bool addaos(AnalysisObjectPtr dst, AnalysisObjectPtr src, double scale);
+ /// Check if two analysis objects have the same binning or, if not
+ /// binned, are in other ways compatible.
+ // inline bool bookingCompatible(CounterPtr, CounterPtr) {
+ // return true;
+ // }
+ template <typename TPtr>
+ inline bool bookingCompatible(TPtr a, TPtr b) {
+ return a->sameBinning(*b);
+ }
+ inline bool bookingCompatible(CounterPtr, CounterPtr) {
+ return true;
+ }
+ inline bool bookingCompatible(Scatter1DPtr a, Scatter1DPtr b) {
+ return a->numPoints() == b->numPoints();
+ }
+ inline bool bookingCompatible(Scatter2DPtr a, Scatter2DPtr b) {
+ return a->numPoints() == b->numPoints();
+ }
+ inline bool bookingCompatible(Scatter3DPtr a, Scatter3DPtr b) {
+ return a->numPoints() == b->numPoints();
+ }
+
}
#endif
diff --git a/pyext/rivet/core.pyx b/pyext/rivet/core.pyx
--- a/pyext/rivet/core.pyx
+++ b/pyext/rivet/core.pyx
@@ -1,238 +1,238 @@
# distutils: language = c++
cimport rivet as c
from cython.operator cimport dereference as deref
# Need to be careful with memory management -- perhaps use the base object that
# we used in YODA?
cdef extern from "<utility>" namespace "std" nogil:
cdef c.unique_ptr[c.Analysis] move(c.unique_ptr[c.Analysis])
cdef class AnalysisHandler:
cdef c.AnalysisHandler *_ptr
def __cinit__(self):
self._ptr = new c.AnalysisHandler()
def __del__(self):
del self._ptr
def setIgnoreBeams(self, ignore=True):
self._ptr.setIgnoreBeams(ignore)
def addAnalysis(self, name):
self._ptr.addAnalysis(name.encode('utf-8'))
return self
def analysisNames(self):
anames = self._ptr.analysisNames()
return [ a.decode('utf-8') for a in anames ]
# def analysis(self, aname):
# cdef c.Analysis* ptr = self._ptr.analysis(aname)
# cdef Analysis pyobj = Analysis.__new__(Analysis)
# if not ptr:
# return None
# pyobj._ptr = ptr
# return pyobj
def readData(self, name):
self._ptr.readData(name.encode('utf-8'))
def writeData(self, name):
self._ptr.writeData(name.encode('utf-8'))
def crossSection(self):
return self._ptr.crossSection()
def finalize(self):
self._ptr.finalize()
def dump(self, file, period):
self._ptr.dump(file, period)
- def mergeYodas(self, filelist, equiv):
- self._ptr.mergeYodas(filelist, equiv)
+ def mergeYodas(self, filelist, delopts, equiv):
+ self._ptr.mergeYodas(filelist, delopts, equiv)
cdef class Run:
cdef c.Run *_ptr
def __cinit__(self, AnalysisHandler h):
self._ptr = new c.Run(h._ptr[0])
def __del__(self):
del self._ptr
def setCrossSection(self, double x):
self._ptr.setCrossSection(x)
return self
def setListAnalyses(self, choice):
self._ptr.setListAnalyses(choice)
return self
def init(self, name, weight=1.0):
return self._ptr.init(name.encode('utf-8'), weight)
def openFile(self, name, weight=1.0):
return self._ptr.openFile(name.encode('utf-8'), weight)
def readEvent(self):
return self._ptr.readEvent()
def skipEvent(self):
return self._ptr.skipEvent()
def processEvent(self):
return self._ptr.processEvent()
def finalize(self):
return self._ptr.finalize()
cdef class Analysis:
cdef c.unique_ptr[c.Analysis] _ptr
def __init__(self):
raise RuntimeError('This class cannot be instantiated')
def requiredBeams(self):
return deref(self._ptr).requiredBeams()
def requiredEnergies(self):
return deref(self._ptr).requiredEnergies()
def keywords(self):
kws = deref(self._ptr).keywords()
return [ k.decode('utf-8') for k in kws ]
def authors(self):
auths = deref(self._ptr).authors()
return [ a.decode('utf-8') for a in auths ]
def bibKey(self):
return deref(self._ptr).bibKey().decode('utf-8')
def name(self):
return deref(self._ptr).name().decode('utf-8')
def bibTeX(self):
return deref(self._ptr).bibTeX().decode('utf-8')
def references(self):
refs = deref(self._ptr).references()
return [ r.decode('utf-8') for r in refs ]
def collider(self):
return deref(self._ptr).collider().decode('utf-8')
def description(self):
return deref(self._ptr).description().decode('utf-8')
def experiment(self):
return deref(self._ptr).experiment().decode('utf-8')
def inspireId(self):
return deref(self._ptr).inspireId().decode('utf-8')
def spiresId(self):
return deref(self._ptr).spiresId().decode('utf-8')
def runInfo(self):
return deref(self._ptr).runInfo().decode('utf-8')
def status(self):
return deref(self._ptr).status().decode('utf-8')
def summary(self):
return deref(self._ptr).summary().decode('utf-8')
def year(self):
return deref(self._ptr).year().decode('utf-8')
def luminosityfb(self):
return deref(self._ptr).luminosityfb().decode('utf-8')
#cdef object
LEVELS = dict(TRACE = 0, DEBUG = 10, INFO = 20,
WARN = 30, WARNING = 30, ERROR = 40,
CRITICAL = 50, ALWAYS = 50)
cdef class AnalysisLoader:
@staticmethod
def analysisNames():
names = c.AnalysisLoader_analysisNames()
return [ n.decode('utf-8') for n in names ]
@staticmethod
def getAnalysis(name):
name = name.encode('utf-8')
cdef c.unique_ptr[c.Analysis] ptr = c.AnalysisLoader_getAnalysis(name)
cdef Analysis pyobj = Analysis.__new__(Analysis)
if not ptr:
return None
pyobj._ptr = move(ptr)
# Create python object
return pyobj
def getAnalysisLibPaths():
ps = c.getAnalysisLibPaths()
return [ p.decode('utf-8') for p in ps ]
def setAnalysisLibPaths(xs):
bs = [ x.encode('utf-8') for x in xs ]
c.setAnalysisLibPaths(bs)
def addAnalysisLibPath(path):
c.addAnalysisLibPath(path.encode('utf-8'))
def setAnalysisDataPaths(xs):
bs = [ x.encode('utf-8') for x in xs ]
c.setAnalysisDataPaths(bs)
def addAnalysisDataPath(path):
c.addAnalysisDataPath(path.encode('utf-8'))
def getAnalysisDataPaths():
ps = c.getAnalysisDataPaths()
return [ p.decode('utf-8') for p in ps ]
def findAnalysisDataFile(q):
f = c.findAnalysisDataFile(q.encode('utf-8'))
return f.decode('utf-8')
def getAnalysisRefPaths():
ps = c.getAnalysisRefPaths()
return [ p.decode('utf-8') for p in ps ]
def findAnalysisRefFile(q):
f = c.findAnalysisRefFile(q.encode('utf-8'))
return f.decode('utf-8')
def getAnalysisInfoPaths():
ps = c.getAnalysisInfoPaths()
return [ p.decode('utf-8') for p in ps ]
def findAnalysisInfoFile(q):
f = c.findAnalysisInfoFile(q.encode('utf-8'))
return f.decode('utf-8')
def getAnalysisPlotPaths():
ps = c.getAnalysisPlotPaths()
return [ p.decode('utf-8') for p in ps ]
def findAnalysisPlotFile(q):
f = c.findAnalysisPlotFile(q.encode('utf-8'))
return f.decode('utf-8')
def version():
return c.version().decode('utf-8')
def setLogLevel(name, level):
c.setLogLevel(name.encode('utf-8'), level)
diff --git a/pyext/rivet/rivet.pxd b/pyext/rivet/rivet.pxd
--- a/pyext/rivet/rivet.pxd
+++ b/pyext/rivet/rivet.pxd
@@ -1,94 +1,94 @@
from libcpp.map cimport map
from libcpp.pair cimport pair
from libcpp.vector cimport vector
from libcpp cimport bool
from libcpp.string cimport string
from libcpp.memory cimport unique_ptr
ctypedef int PdgId
ctypedef pair[PdgId,PdgId] PdgIdPair
cdef extern from "Rivet/AnalysisHandler.hh" namespace "Rivet":
cdef cppclass AnalysisHandler:
void setIgnoreBeams(bool)
AnalysisHandler& addAnalysis(string)
vector[string] analysisNames() const
# Analysis* analysis(string)
void writeData(string&)
void readData(string&)
double crossSection()
void finalize()
void dump(string, int)
- void mergeYodas(vector[string], bool)
+ void mergeYodas(vector[string], vector[string], bool)
cdef extern from "Rivet/Run.hh" namespace "Rivet":
cdef cppclass Run:
Run(AnalysisHandler)
Run& setCrossSection(double) # For chaining?
Run& setListAnalyses(bool)
bool init(string, double) except + # $2=1.0
bool openFile(string, double) except + # $2=1.0
bool readEvent() except +
bool skipEvent() except +
bool processEvent() except +
bool finalize() except +
cdef extern from "Rivet/Analysis.hh" namespace "Rivet":
cdef cppclass Analysis:
vector[PdgIdPair]& requiredBeams()
vector[pair[double, double]] requiredEnergies()
vector[string] authors()
vector[string] references()
vector[string] keywords()
string name()
string bibTeX()
string bibKey()
string collider()
string description()
string experiment()
string inspireId()
string spiresId()
string runInfo()
string status()
string summary()
string year()
string luminosityfb()
# Might need to translate the following errors, although I believe 'what' is now
# preserved. But often, we need the exception class name.
#Error
#RangeError
#LogicError
#PidError
#InfoError
#WeightError
#UserError
cdef extern from "Rivet/AnalysisLoader.hh":
vector[string] AnalysisLoader_analysisNames "Rivet::AnalysisLoader::analysisNames" ()
unique_ptr[Analysis] AnalysisLoader_getAnalysis "Rivet::AnalysisLoader::getAnalysis" (string)
cdef extern from "Rivet/Tools/RivetPaths.hh" namespace "Rivet":
vector[string] getAnalysisLibPaths()
void setAnalysisLibPaths(vector[string])
void addAnalysisLibPath(string)
vector[string] getAnalysisDataPaths()
void setAnalysisDataPaths(vector[string])
void addAnalysisDataPath(string)
string findAnalysisDataFile(string)
vector[string] getAnalysisRefPaths()
string findAnalysisRefFile(string)
vector[string] getAnalysisInfoPaths()
string findAnalysisInfoFile(string)
vector[string] getAnalysisPlotPaths()
string findAnalysisPlotFile(string)
cdef extern from "Rivet/Rivet.hh" namespace "Rivet":
string version()
cdef extern from "Rivet/Tools/Logging.hh":
void setLogLevel "Rivet::Log::setLevel" (string, int)
diff --git a/src/Core/Analysis.cc b/src/Core/Analysis.cc
--- a/src/Core/Analysis.cc
+++ b/src/Core/Analysis.cc
@@ -1,1009 +1,925 @@
// -*- C++ -*-
#include "Rivet/Config/RivetCommon.hh"
#include "Rivet/Analysis.hh"
#include "Rivet/AnalysisHandler.hh"
#include "Rivet/AnalysisInfo.hh"
#include "Rivet/Tools/BeamConstraint.hh"
#include "Rivet/Projections/ImpactParameterProjection.hh"
#include "Rivet/Projections/GeneratedPercentileProjection.hh"
#include "Rivet/Projections/UserCentEstimate.hh"
#include "Rivet/Projections/CentralityProjection.hh"
namespace Rivet {
Analysis::Analysis(const string& name)
: _crossSection(-1.0),
_gotCrossSection(false),
_analysishandler(NULL)
{
ProjectionApplier::_allowProjReg = false;
_defaultname = name;
unique_ptr<AnalysisInfo> ai = AnalysisInfo::make(name);
assert(ai);
_info = move(ai);
assert(_info);
}
double Analysis::sqrtS() const {
return handler().sqrtS();
}
const ParticlePair& Analysis::beams() const {
return handler().beams();
}
const PdgIdPair Analysis::beamIds() const {
return handler().beamIds();
}
const string Analysis::histoDir() const {
/// @todo Cache in a member variable
string _histoDir;
if (_histoDir.empty()) {
_histoDir = "/" + name();
if (handler().runName().length() > 0) {
_histoDir = "/" + handler().runName() + _histoDir;
}
replace_all(_histoDir, "//", "/"); //< iterates until none
}
return _histoDir;
}
const string Analysis::histoPath(const string& hname) const {
const string path = histoDir() + "/" + hname;
return path;
}
const string Analysis::histoPath(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
return histoDir() + "/" + mkAxisCode(datasetId, xAxisId, yAxisId);
}
const string Analysis::mkAxisCode(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId) const {
stringstream axisCode;
axisCode << "d";
if (datasetId < 10) axisCode << 0;
axisCode << datasetId;
axisCode << "-x";
if (xAxisId < 10) axisCode << 0;
axisCode << xAxisId;
axisCode << "-y";
if (yAxisId < 10) axisCode << 0;
axisCode << yAxisId;
return axisCode.str();
}
Log& Analysis::getLog() const {
string logname = "Rivet.Analysis." + name();
return Log::getLog(logname);
}
///////////////////////////////////////////
size_t Analysis::numEvents() const {
return handler().numEvents();
}
double Analysis::sumW() const {
return handler().sumW();
}
double Analysis::sumW2() const {
return handler().sumW2();
}
///////////////////////////////////////////
bool Analysis::isCompatible(const ParticlePair& beams) const {
return isCompatible(beams.first.pid(), beams.second.pid(),
beams.first.energy(), beams.second.energy());
}
bool Analysis::isCompatible(PdgId beam1, PdgId beam2, double e1, double e2) const {
PdgIdPair beams(beam1, beam2);
pair<double,double> energies(e1, e2);
return isCompatible(beams, energies);
}
bool Analysis::isCompatible(const PdgIdPair& beams, const pair<double,double>& energies) const {
// First check the beam IDs
bool beamIdsOk = false;
for (const PdgIdPair& bp : requiredBeams()) {
if (compatible(beams, bp)) {
beamIdsOk = true;
break;
}
}
if (!beamIdsOk) return false;
// Next check that the energies are compatible (within 1% or 1 GeV, whichever is larger, for a bit of UI forgiveness)
/// @todo Use some sort of standard ordering to improve comparisons, esp. when the two beams are different particles
bool beamEnergiesOk = requiredEnergies().size() > 0 ? false : true;
typedef pair<double,double> DoublePair;
for (const DoublePair& ep : requiredEnergies()) {
if ((fuzzyEquals(ep.first, energies.first, 0.01) && fuzzyEquals(ep.second, energies.second, 0.01)) ||
(fuzzyEquals(ep.first, energies.second, 0.01) && fuzzyEquals(ep.second, energies.first, 0.01)) ||
(abs(ep.first - energies.first) < 1*GeV && abs(ep.second - energies.second) < 1*GeV) ||
(abs(ep.first - energies.second) < 1*GeV && abs(ep.second - energies.first) < 1*GeV)) {
beamEnergiesOk = true;
break;
}
}
return beamEnergiesOk;
/// @todo Need to also check internal consistency of the analysis'
/// beam requirements with those of the projections it uses.
}
///////////////////////////////////////////
Analysis& Analysis::setCrossSection(double xs) {
_crossSection = xs;
_gotCrossSection = true;
return *this;
}
double Analysis::crossSection() const {
if (!_gotCrossSection || std::isnan(_crossSection)) {
string errMsg = "You did not set the cross section for the analysis " + name();
throw Error(errMsg);
}
return _crossSection;
}
double Analysis::crossSectionPerEvent() const {
const double sumW = sumOfWeights();
assert(sumW != 0.0);
return _crossSection / sumW;
}
////////////////////////////////////////////////////////////
// Histogramming
void Analysis::_cacheRefData() const {
if (_refdata.empty()) {
MSG_TRACE("Getting refdata cache for paper " << name());
_refdata = getRefData(getRefDataName());
}
}
vector<AnalysisObjectPtr> Analysis::getAllData(bool includeorphans) const{
return handler().getData(includeorphans);
}
CounterPtr Analysis::bookCounter(const string& cname,
const string& title) {
- // const string& xtitle,
- // const string& ytitle) {
- const string path = histoPath(cname);
- CounterPtr ctr = make_shared<Counter>(path, title);
- addAnalysisObject(ctr);
- MSG_TRACE("Made counter " << cname << " for " << name());
- // hist->setAnnotation("XLabel", xtitle);
- // hist->setAnnotation("YLabel", ytitle);
- return ctr;
+ return addOrGetCompatAO(make_shared<Counter>(histoPath(cname), title));
}
CounterPtr Analysis::bookCounter(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const string& title) {
- // const string& xtitle,
- // const string& ytitle) {
- const string axisCode = mkAxisCode(datasetId, xAxisId, yAxisId);
- return bookCounter(axisCode, title);
+ return bookCounter(mkAxisCode(datasetId, xAxisId, yAxisId), title);
}
Histo1DPtr Analysis::bookHisto1D(const string& hname,
size_t nbins, double lower, double upper,
const string& title,
const string& xtitle,
const string& ytitle) {
Histo1DPtr hist = make_shared<Histo1D>(nbins, lower, upper, histoPath(hname), title);
- try { // try to bind to pre-existing
- if ( !getHisto1D(hname)->sameBinning(*hist) ) {
- throw Exception("Histogram " + hname + " already exists with a different binning");
- }
- // AnalysisObjectPtr ao = getAnalysisObject(path);
- // hist = dynamic_pointer_cast<Histo1D>(ao);
- hist = getHisto1D(hname);
- /// @todo Test that cast worked
- /// @todo Also test that binning is as expected?
- MSG_TRACE("Bound pre-existing histogram " << hname << " for " << name());
- } catch (LookupError) { // binding failed; make it from scratch
- addAnalysisObject(hist);
- MSG_TRACE("Made histogram " << hname << " for " << name());
- }
hist->setTitle(title);
hist->setAnnotation("XLabel", xtitle);
hist->setAnnotation("YLabel", ytitle);
- return hist;
+ return addOrGetCompatAO(hist);
}
Histo1DPtr Analysis::bookHisto1D(const string& hname,
const vector<double>& binedges,
const string& title,
const string& xtitle,
const string& ytitle) {
Histo1DPtr hist = make_shared<Histo1D>(binedges, histoPath(hname), title);
- try { // try to bind to pre-existing
- if ( !getHisto1D(hname)->sameBinning(*hist) ) {
- throw Exception("Histogram " + hname + " already exists with a different binning");
- }
- // AnalysisObjectPtr ao = getAnalysisObject(path);
- // hist = dynamic_pointer_cast<Histo1D>(ao);
- hist = getHisto1D(hname);
- /// @todo Test that cast worked
- /// @todo Also test that binning is as expected?
- MSG_TRACE("Bound pre-existing histogram " << hname << " for " << name());
- } catch (LookupError) { // binding failed; make it from scratch
- addAnalysisObject(hist);
- MSG_TRACE("Made histogram " << hname << " for " << name());
- }
hist->setTitle(title);
hist->setAnnotation("XLabel", xtitle);
hist->setAnnotation("YLabel", ytitle);
- return hist;
+ return addOrGetCompatAO(hist);
}
Histo1DPtr Analysis::bookHisto1D(const string& hname,
const initializer_list<double>& binedges,
const string& title,
const string& xtitle,
const string& ytitle) {
return bookHisto1D(hname, vector<double>{binedges}, title, xtitle, ytitle);
}
Histo1DPtr Analysis::bookHisto1D(const string& hname,
const Scatter2D& refscatter,
const string& title,
const string& xtitle,
const string& ytitle) {
Histo1DPtr hist = make_shared<Histo1D>(refscatter, histoPath(hname));
- try { // try to bind to pre-existing
- if ( !getHisto1D(hname)->sameBinning(*hist) ) {
- throw Exception("Histogram " + hname + " already exists with a different binning");
- }
- // AnalysisObjectPtr ao = getAnalysisObject(path);
- // hist = dynamic_pointer_cast<Histo1D>(ao);
- hist = getHisto1D(hname);
- /// @todo Test that cast worked
- /// @todo Also test that binning is as expected?
- MSG_TRACE("Bound pre-existing histogram " << hname << " for " << name());
- } catch (LookupError) { // binding failed; make it from scratch
- addAnalysisObject(hist);
- MSG_TRACE("Made histogram " << hname << " for " << name());
- }
hist->setTitle(title);
hist->setAnnotation("XLabel", xtitle);
hist->setAnnotation("YLabel", ytitle);
- return hist;
+ return addOrGetCompatAO(hist);
}
Histo1DPtr Analysis::bookHisto1D(const string& hname,
const string& title,
const string& xtitle,
const string& ytitle) {
const Scatter2D& refdata = refData(hname);
return bookHisto1D(hname, refdata, title, xtitle, ytitle);
}
Histo1DPtr Analysis::bookHisto1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const string& title,
const string& xtitle,
const string& ytitle) {
const string axisCode = mkAxisCode(datasetId, xAxisId, yAxisId);
return bookHisto1D(axisCode, title, xtitle, ytitle);
}
/// @todo Add booking methods which take a path, titles and *a reference Scatter from which to book*
/////////////////
Histo2DPtr Analysis::bookHisto2D(const string& hname,
size_t nxbins, double xlower, double xupper,
size_t nybins, double ylower, double yupper,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle)
{
const string path = histoPath(hname);
Histo2DPtr hist = make_shared<Histo2D>(nxbins, xlower, xupper, nybins, ylower, yupper, path, title);
- addAnalysisObject(hist);
- MSG_TRACE("Made 2D histogram " << hname << " for " << name());
hist->setAnnotation("XLabel", xtitle);
hist->setAnnotation("YLabel", ytitle);
hist->setAnnotation("ZLabel", ztitle);
- return hist;
+ return addOrGetCompatAO(hist);
}
Histo2DPtr Analysis::bookHisto2D(const string& hname,
const vector<double>& xbinedges,
const vector<double>& ybinedges,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle)
{
const string path = histoPath(hname);
Histo2DPtr hist = make_shared<Histo2D>(xbinedges, ybinedges, path, title);
- addAnalysisObject(hist);
- MSG_TRACE("Made 2D histogram " << hname << " for " << name());
hist->setAnnotation("XLabel", xtitle);
hist->setAnnotation("YLabel", ytitle);
hist->setAnnotation("ZLabel", ztitle);
- return hist;
+ return addOrGetCompatAO(hist);
}
Histo2DPtr Analysis::bookHisto2D(const string& hname,
const initializer_list<double>& xbinedges,
const initializer_list<double>& ybinedges,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle)
{
return bookHisto2D(hname, vector<double>{xbinedges}, vector<double>{ybinedges},
title, xtitle, ytitle, ztitle);
}
Histo2DPtr Analysis::bookHisto2D(const string& hname,
const Scatter3D& refscatter,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle) {
const string path = histoPath(hname);
Histo2DPtr hist( new Histo2D(refscatter, path) );
- addAnalysisObject(hist);
- MSG_TRACE("Made 2D histogram " << hname << " for " << name());
if (hist->hasAnnotation("IsRef")) hist->rmAnnotation("IsRef");
hist->setTitle(title);
hist->setAnnotation("XLabel", xtitle);
hist->setAnnotation("YLabel", ytitle);
hist->setAnnotation("ZLabel", ztitle);
- return hist;
+ return addOrGetCompatAO(hist);
}
Histo2DPtr Analysis::bookHisto2D(const string& hname,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle) {
const Scatter3D& refdata = refData<Scatter3D>(hname);
return bookHisto2D(hname, refdata, title, xtitle, ytitle, ztitle);
}
Histo2DPtr Analysis::bookHisto2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle) {
const string axisCode = mkAxisCode(datasetId, xAxisId, yAxisId);
return bookHisto2D(axisCode, title, xtitle, ytitle, ztitle);
}
/////////////////
Profile1DPtr Analysis::bookProfile1D(const string& hname,
size_t nbins, double lower, double upper,
const string& title,
const string& xtitle,
const string& ytitle) {
const string path = histoPath(hname);
Profile1DPtr prof = make_shared<Profile1D>(nbins, lower, upper, path, title);
- addAnalysisObject(prof);
- MSG_TRACE("Made profile histogram " << hname << " for " << name());
prof->setAnnotation("XLabel", xtitle);
prof->setAnnotation("YLabel", ytitle);
- return prof;
+ return addOrGetCompatAO(prof);
}
Profile1DPtr Analysis::bookProfile1D(const string& hname,
const vector<double>& binedges,
const string& title,
const string& xtitle,
const string& ytitle) {
const string path = histoPath(hname);
Profile1DPtr prof = make_shared<Profile1D>(binedges, path, title);
- addAnalysisObject(prof);
- MSG_TRACE("Made profile histogram " << hname << " for " << name());
prof->setAnnotation("XLabel", xtitle);
prof->setAnnotation("YLabel", ytitle);
- return prof;
+ return addOrGetCompatAO(prof);
}
Profile1DPtr Analysis::bookProfile1D(const string& hname,
const initializer_list<double>& binedges,
const string& title,
const string& xtitle,
const string& ytitle)
{
return bookProfile1D(hname, vector<double>{binedges}, title, xtitle, ytitle);
}
Profile1DPtr Analysis::bookProfile1D(const string& hname,
const Scatter2D& refscatter,
const string& title,
const string& xtitle,
const string& ytitle) {
const string path = histoPath(hname);
Profile1DPtr prof = make_shared<Profile1D>(refscatter, path);
- addAnalysisObject(prof);
- MSG_TRACE("Made profile histogram " << hname << " for " << name());
if (prof->hasAnnotation("IsRef")) prof->rmAnnotation("IsRef");
prof->setTitle(title);
prof->setAnnotation("XLabel", xtitle);
prof->setAnnotation("YLabel", ytitle);
- return prof;
+ return addOrGetCompatAO(prof);
}
Profile1DPtr Analysis::bookProfile1D(const string& hname,
const string& title,
const string& xtitle,
const string& ytitle) {
const Scatter2D& refdata = refData(hname);
return bookProfile1D(hname, refdata, title, xtitle, ytitle);
}
Profile1DPtr Analysis::bookProfile1D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const string& title,
const string& xtitle,
const string& ytitle) {
const string axisCode = mkAxisCode(datasetId, xAxisId, yAxisId);
return bookProfile1D(axisCode, title, xtitle, ytitle);
}
///////////////////
Profile2DPtr Analysis::bookProfile2D(const string& hname,
size_t nxbins, double xlower, double xupper,
size_t nybins, double ylower, double yupper,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle)
{
const string path = histoPath(hname);
Profile2DPtr prof = make_shared<Profile2D>(nxbins, xlower, xupper, nybins, ylower, yupper, path, title);
- addAnalysisObject(prof);
- MSG_TRACE("Made 2D profile histogram " << hname << " for " << name());
prof->setAnnotation("XLabel", xtitle);
prof->setAnnotation("YLabel", ytitle);
prof->setAnnotation("ZLabel", ztitle);
- return prof;
+ return addOrGetCompatAO(prof);
}
Profile2DPtr Analysis::bookProfile2D(const string& hname,
const vector<double>& xbinedges,
const vector<double>& ybinedges,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle)
{
const string path = histoPath(hname);
Profile2DPtr prof = make_shared<Profile2D>(xbinedges, ybinedges, path, title);
- addAnalysisObject(prof);
- MSG_TRACE("Made 2D profile histogram " << hname << " for " << name());
prof->setAnnotation("XLabel", xtitle);
prof->setAnnotation("YLabel", ytitle);
prof->setAnnotation("ZLabel", ztitle);
- return prof;
+ return addOrGetCompatAO(prof);
}
Profile2DPtr Analysis::bookProfile2D(const string& hname,
const initializer_list<double>& xbinedges,
const initializer_list<double>& ybinedges,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle)
{
return bookProfile2D(hname, vector<double>{xbinedges}, vector<double>{ybinedges},
title, xtitle, ytitle, ztitle);
}
Profile2DPtr Analysis::bookProfile2D(const string& hname,
const Scatter3D& refscatter,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle) {
const string path = histoPath(hname);
Profile2DPtr prof( new Profile2D(refscatter, path) );
- addAnalysisObject(prof);
- MSG_TRACE("Made 2D profile histogram " << hname << " for " << name());
if (prof->hasAnnotation("IsRef")) prof->rmAnnotation("IsRef");
prof->setTitle(title);
prof->setAnnotation("XLabel", xtitle);
prof->setAnnotation("YLabel", ytitle);
prof->setAnnotation("ZLabel", ztitle);
- return prof;
+ return addOrGetCompatAO(prof);
}
Profile2DPtr Analysis::bookProfile2D(const string& hname,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle) {
const Scatter3D& refdata = refData<Scatter3D>(hname);
return bookProfile2D(hname, refdata, title, xtitle, ytitle, ztitle);
}
Profile2DPtr Analysis::bookProfile2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
const string& title,
const string& xtitle,
const string& ytitle,
const string& ztitle) {
const string axisCode = mkAxisCode(datasetId, xAxisId, yAxisId);
return bookProfile2D(axisCode, title, xtitle, ytitle, ztitle);
}
/////////////////
Scatter2DPtr Analysis::bookScatter2D(unsigned int datasetId, unsigned int xAxisId, unsigned int yAxisId,
bool copy_pts,
const string& title,
const string& xtitle,
const string& ytitle) {
const string axisCode = mkAxisCode(datasetId, xAxisId, yAxisId);
return bookScatter2D(axisCode, copy_pts, title, xtitle, ytitle);
}
Scatter2DPtr Analysis::bookScatter2D(const string& hname,
bool copy_pts,
const string& title,
const string& xtitle,
const string& ytitle) {
Scatter2DPtr s;
const string path = histoPath(hname);
if (copy_pts) {
const Scatter2D& refdata = refData(hname);
s = make_shared<Scatter2D>(refdata, path);
for (Point2D& p : s->points()) p.setY(0, 0);
} else {
s = make_shared<Scatter2D>(path);
}
- addAnalysisObject(s);
- MSG_TRACE("Made scatter " << hname << " for " << name());
if (s->hasAnnotation("IsRef")) s->rmAnnotation("IsRef");
s->setTitle(title);
s->setAnnotation("XLabel", xtitle);
s->setAnnotation("YLabel", ytitle);
- return s;
+ return addOrGetCompatAO(s);
}
Scatter2DPtr Analysis::bookScatter2D(const string& hname,
size_t npts, double lower, double upper,
const string& title,
const string& xtitle,
const string& ytitle) {
- Scatter2DPtr s;
const string path = histoPath(hname);
- try { // try to bind to pre-existing
- s = getAnalysisObject<Scatter2D>(hname);
- /// @todo Also test that binning is as expected?
- MSG_TRACE("Bound pre-existing scatter " << path << " for " << name());
- } catch (...) { // binding failed; make it from scratch
- s = make_shared<Scatter2D>(path);
- const double binwidth = (upper-lower)/npts;
- for (size_t pt = 0; pt < npts; ++pt) {
- const double bincentre = lower + (pt + 0.5) * binwidth;
- s->addPoint(bincentre, 0, binwidth/2.0, 0);
- }
- addAnalysisObject(s);
- MSG_TRACE("Made scatter " << hname << " for " << name());
+ Scatter2DPtr s = make_shared<Scatter2D>(path);
+ const double binwidth = (upper-lower)/npts;
+ for (size_t pt = 0; pt < npts; ++pt) {
+ const double bincentre = lower + (pt + 0.5) * binwidth;
+ s->addPoint(bincentre, 0, binwidth/2.0, 0);
}
s->setTitle(title);
s->setAnnotation("XLabel", xtitle);
s->setAnnotation("YLabel", ytitle);
- return s;
+ return addOrGetCompatAO(s);
}
Scatter2DPtr Analysis::bookScatter2D(const string& hname,
const vector<double>& binedges,
const string& title,
const string& xtitle,
const string& ytitle) {
const string path = histoPath(hname);
Scatter2DPtr s = make_shared<Scatter2D>(path);
for (size_t pt = 0; pt < binedges.size()-1; ++pt) {
const double bincentre = (binedges[pt] + binedges[pt+1]) / 2.0;
const double binwidth = binedges[pt+1] - binedges[pt];
s->addPoint(bincentre, 0, binwidth/2.0, 0);
}
- addAnalysisObject(s);
- MSG_TRACE("Made scatter " << hname << " for " << name());
s->setTitle(title);
s->setAnnotation("XLabel", xtitle);
s->setAnnotation("YLabel", ytitle);
- return s;
+ return addOrGetCompatAO(s);
}
/////////////////////
void Analysis::divide(CounterPtr c1, CounterPtr c2, Scatter1DPtr s) const {
const string path = s->path();
*s = *c1 / *c2;
s->setPath(path);
}
void Analysis::divide(const Counter& c1, const Counter& c2, Scatter1DPtr s) const {
const string path = s->path();
*s = c1 / c2;
s->setPath(path);
}
void Analysis::divide(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const {
const string path = s->path();
*s = *h1 / *h2;
s->setPath(path);
}
void Analysis::divide(const Histo1D& h1, const Histo1D& h2, Scatter2DPtr s) const {
const string path = s->path();
*s = h1 / h2;
s->setPath(path);
}
void Analysis::divide(Profile1DPtr p1, Profile1DPtr p2, Scatter2DPtr s) const {
const string path = s->path();
*s = *p1 / *p2;
s->setPath(path);
}
void Analysis::divide(const Profile1D& p1, const Profile1D& p2, Scatter2DPtr s) const {
const string path = s->path();
*s = p1 / p2;
s->setPath(path);
}
void Analysis::divide(Histo2DPtr h1, Histo2DPtr h2, Scatter3DPtr s) const {
const string path = s->path();
*s = *h1 / *h2;
s->setPath(path);
}
void Analysis::divide(const Histo2D& h1, const Histo2D& h2, Scatter3DPtr s) const {
const string path = s->path();
*s = h1 / h2;
s->setPath(path);
}
void Analysis::divide(Profile2DPtr p1, Profile2DPtr p2, Scatter3DPtr s) const {
const string path = s->path();
*s = *p1 / *p2;
s->setPath(path);
}
void Analysis::divide(const Profile2D& p1, const Profile2D& p2, Scatter3DPtr s) const {
const string path = s->path();
*s = p1 / p2;
s->setPath(path);
}
/// @todo Counter and Histo2D efficiencies and asymms
void Analysis::efficiency(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const {
const string path = s->path();
*s = YODA::efficiency(*h1, *h2);
s->setPath(path);
}
void Analysis::efficiency(const Histo1D& h1, const Histo1D& h2, Scatter2DPtr s) const {
const string path = s->path();
*s = YODA::efficiency(h1, h2);
s->setPath(path);
}
void Analysis::asymm(Histo1DPtr h1, Histo1DPtr h2, Scatter2DPtr s) const {
const string path = s->path();
*s = YODA::asymm(*h1, *h2);
s->setPath(path);
}
void Analysis::asymm(const Histo1D& h1, const Histo1D& h2, Scatter2DPtr s) const {
const string path = s->path();
*s = YODA::asymm(h1, h2);
s->setPath(path);
}
void Analysis::scale(CounterPtr cnt, double factor) {
if (!cnt) {
MSG_WARNING("Failed to scale counter=NULL in analysis " << name() << " (scale=" << factor << ")");
return;
}
if (std::isnan(factor) || std::isinf(factor)) {
MSG_WARNING("Failed to scale counter=" << cnt->path() << " in analysis: " << name() << " (invalid scale factor = " << factor << ")");
factor = 0;
}
MSG_TRACE("Scaling counter " << cnt->path() << " by factor " << factor);
try {
cnt->scaleW(factor);
} catch (YODA::Exception& we) {
MSG_WARNING("Could not scale counter " << cnt->path());
return;
}
}
void Analysis::normalize(Histo1DPtr histo, double norm, bool includeoverflows) {
if (!histo) {
MSG_WARNING("Failed to normalize histo=NULL in analysis " << name() << " (norm=" << norm << ")");
return;
}
MSG_TRACE("Normalizing histo " << histo->path() << " to " << norm);
try {
const double hint = histo->integral(includeoverflows);
if (hint == 0) MSG_WARNING("Skipping histo with null area " << histo->path());
else histo->normalize(norm, includeoverflows);
} catch (YODA::Exception& we) {
MSG_WARNING("Could not normalize histo " << histo->path());
return;
}
}
void Analysis::scale(Histo1DPtr histo, double factor) {
if (!histo) {
MSG_WARNING("Failed to scale histo=NULL in analysis " << name() << " (scale=" << factor << ")");
return;
}
if (std::isnan(factor) || std::isinf(factor)) {
MSG_WARNING("Failed to scale histo=" << histo->path() << " in analysis: " << name() << " (invalid scale factor = " << factor << ")");
factor = 0;
}
MSG_TRACE("Scaling histo " << histo->path() << " by factor " << factor);
try {
histo->scaleW(factor);
} catch (YODA::Exception& we) {
MSG_WARNING("Could not scale histo " << histo->path());
return;
}
}
void Analysis::normalize(Histo2DPtr histo, double norm, bool includeoverflows) {
if (!histo) {
MSG_ERROR("Failed to normalize histo=NULL in analysis " << name() << " (norm=" << norm << ")");
return;
}
MSG_TRACE("Normalizing histo " << histo->path() << " to " << norm);
try {
const double hint = histo->integral(includeoverflows);
if (hint == 0) MSG_WARNING("Skipping histo with null area " << histo->path());
else histo->normalize(norm, includeoverflows);
} catch (YODA::Exception& we) {
MSG_WARNING("Could not normalize histo " << histo->path());
return;
}
}
void Analysis::scale(Histo2DPtr histo, double factor) {
if (!histo) {
MSG_ERROR("Failed to scale histo=NULL in analysis " << name() << " (scale=" << factor << ")");
return;
}
if (std::isnan(factor) || std::isinf(factor)) {
MSG_ERROR("Failed to scale histo=" << histo->path() << " in analysis: " << name() << " (invalid scale factor = " << factor << ")");
factor = 0;
}
MSG_TRACE("Scaling histo " << histo->path() << " by factor " << factor);
try {
histo->scaleW(factor);
} catch (YODA::Exception& we) {
MSG_WARNING("Could not scale histo " << histo->path());
return;
}
}
void Analysis::integrate(Histo1DPtr h, Scatter2DPtr s) const {
// preserve the path info
const string path = s->path();
*s = toIntegralHisto(*h);
s->setPath(path);
}
void Analysis::integrate(const Histo1D& h, Scatter2DPtr s) const {
// preserve the path info
const string path = s->path();
*s = toIntegralHisto(h);
s->setPath(path);
}
/// @todo 2D versions of integrate... defined how, exactly?!?
//////////////////////////////////
void Analysis::addAnalysisObject(AnalysisObjectPtr ao) {
_analysisobjects.push_back(ao);
}
void Analysis::removeAnalysisObject(const string& path) {
for (vector<AnalysisObjectPtr>::iterator it = _analysisobjects.begin(); it != _analysisobjects.end(); ++it) {
if ((*it)->path() == path) {
_analysisobjects.erase(it);
break;
}
}
}
void Analysis::removeAnalysisObject(AnalysisObjectPtr ao) {
for (vector<AnalysisObjectPtr>::iterator it = _analysisobjects.begin(); it != _analysisobjects.end(); ++it) {
if (*it == ao) {
_analysisobjects.erase(it);
break;
}
}
}
const CentralityProjection &
Analysis::declareCentrality(const SingleValueProjection &proj,
string calAnaName, string calHistName,
const string projName, bool increasing) {
CentralityProjection cproj;
// Select the centrality variable from option. Use REF as default.
// Other selections are "GEN", "IMP" and "USR" (USR only in HEPMC 3).
string sel = getOption<string>("cent","REF");
set<string> done;
if ( sel == "REF" ) {
Scatter2DPtr refscat;
auto refmap = getRefData(calAnaName);
if ( refmap.find(calHistName) != refmap.end() )
refscat =
dynamic_pointer_cast<Scatter2D>(refmap.find(calHistName)->second);
if ( !refscat ) {
MSG_WARNING("No reference calibration histogram for " <<
"CentralityProjection " << projName << " found " <<
"(requested histogram " << calHistName << " in " <<
calAnaName << ")");
}
else {
MSG_INFO("Found calibration histogram " << sel << " " << refscat->path());
cproj.add(PercentileProjection(proj, refscat, increasing), sel);
}
}
else if ( sel == "GEN" ) {
Histo1DPtr genhist;
string histpath = "/" + calAnaName + "/" + calHistName;
for ( AnalysisObjectPtr ao : handler().getData(true) ) {
if ( ao->path() == histpath )
genhist = dynamic_pointer_cast<Histo1D>(ao);
}
if ( !genhist || genhist->numEntries() <= 1 ) {
MSG_WARNING("No generated calibration histogram for " <<
"CentralityProjection " << projName << " found " <<
"(requested histogram " << calHistName << " in " <<
calAnaName << ")");
}
else {
MSG_INFO("Found calibration histogram " << sel << " " << genhist->path());
cproj.add(PercentileProjection(proj, genhist, increasing), sel);
}
}
else if ( sel == "IMP" ) {
Histo1DPtr imphist =
getAnalysisObject<Histo1D>(calAnaName, calHistName + "_IMP");
if ( !imphist || imphist->numEntries() <= 1 ) {
MSG_WARNING("No impact parameter calibration histogram for " <<
"CentralityProjection " << projName << " found " <<
"(requested histogram " << calHistName << "_IMP in " <<
calAnaName << ")");
}
else {
MSG_INFO("Found calibration histogram " << sel << " " << imphist->path());
cproj.add(PercentileProjection(ImpactParameterProjection(),
imphist, true), sel);
}
}
else if ( sel == "USR" ) {
#if HEPMC_VERSION_CODE >= 3000000
Histo1DPtr usrhist =
getAnalysisObject<Histo1D>(calAnaName, calHistName + "_USR");
if ( !usrhist || usrhist->numEntries() <= 1 ) {
MSG_WARNING("No user-defined calibration histogram for " <<
"CentralityProjection " << projName << " found " <<
"(requested histogram " << calHistName << "_USR in " <<
calAnaName << ")");
continue;
}
else {
MSG_INFO("Found calibration histogram " << sel << " " << usrhist->path());
cproj.add((UserCentEstimate(), usrhist, true), sel);
}
#else
MSG_WARNING("UserCentEstimate is only available with HepMC3.");
#endif
}
else if ( sel == "RAW" ) {
#if HEPMC_VERSION_CODE >= 3000000
cproj.add(GeneratedCentrality(), sel);
#else
MSG_WARNING("GeneratedCentrality is only available with HepMC3.");
#endif
}
else
MSG_WARNING("'" << sel << "' is not a valid PercentileProjection tag.");
if ( cproj.empty() )
MSG_WARNING("CentralityProjection " << projName
<< " did not contain any valid PercentileProjections.");
return declare(cproj, projName);
}
}
diff --git a/src/Core/AnalysisHandler.cc b/src/Core/AnalysisHandler.cc
--- a/src/Core/AnalysisHandler.cc
+++ b/src/Core/AnalysisHandler.cc
@@ -1,566 +1,571 @@
// -*- C++ -*-
#include "Rivet/Config/RivetCommon.hh"
#include "Rivet/AnalysisHandler.hh"
#include "Rivet/Analysis.hh"
#include "Rivet/Tools/ParticleName.hh"
#include "Rivet/Tools/BeamConstraint.hh"
#include "Rivet/Tools/Logging.hh"
#include "Rivet/Projections/Beam.hh"
#include "YODA/IO.h"
namespace Rivet {
AnalysisHandler::AnalysisHandler(const string& runname)
: _runname(runname),
_eventcounter("/_EVTCOUNT"),
_xs(NAN), _xserr(NAN),
_initialised(false), _ignoreBeams(false), _dumpPeriod(0), _dumping(false)
{ }
AnalysisHandler::~AnalysisHandler()
{ }
Log& AnalysisHandler::getLog() const {
return Log::getLog("Rivet.Analysis.Handler");
}
void AnalysisHandler::init(const GenEvent& ge) {
if (_initialised)
throw UserError("AnalysisHandler::init has already been called: cannot re-initialize!");
setRunBeams(Rivet::beams(ge));
MSG_DEBUG("Initialising the analysis handler");
_eventcounter.reset();
// Check that analyses are beam-compatible, and remove those that aren't
const size_t num_anas_requested = analysisNames().size();
vector<string> anamestodelete;
for (const AnaHandle a : _analyses) {
if (!_ignoreBeams && !a->isCompatible(beams())) {
//MSG_DEBUG(a->name() << " requires beams " << a->requiredBeams() << " @ " << a->requiredEnergies() << " GeV");
anamestodelete.push_back(a->name());
}
}
for (const string& aname : anamestodelete) {
MSG_WARNING("Analysis '" << aname << "' is incompatible with the provided beams: removing");
removeAnalysis(aname);
}
if (num_anas_requested > 0 && analysisNames().empty()) {
cerr << "All analyses were incompatible with the first event's beams\n"
<< "Exiting, since this probably wasn't intentional!" << endl;
exit(1);
}
// Warn if any analysis' status is not unblemished
for (const AnaHandle a : analyses()) {
if (toUpper(a->status()) == "PRELIMINARY") {
MSG_WARNING("Analysis '" << a->name() << "' is preliminary: be careful, it may change and/or be renamed!");
} else if (toUpper(a->status()) == "OBSOLETE") {
MSG_WARNING("Analysis '" << a->name() << "' is obsolete: please update!");
} else if (toUpper(a->status()).find("UNVALIDATED") != string::npos) {
MSG_WARNING("Analysis '" << a->name() << "' is unvalidated: be careful, it may be broken!");
}
}
// Initialize the remaining analyses
for (AnaHandle a : _analyses) {
MSG_DEBUG("Initialising analysis: " << a->name());
try {
// Allow projection registration in the init phase onwards
a->_allowProjReg = true;
a->init();
//MSG_DEBUG("Checking consistency of analysis: " << a->name());
//a->checkConsistency();
} catch (const Error& err) {
cerr << "Error in " << a->name() << "::init method: " << err.what() << endl;
exit(1);
}
MSG_DEBUG("Done initialising analysis: " << a->name());
}
_initialised = true;
MSG_DEBUG("Analysis handler initialised");
}
void AnalysisHandler::analyze(const GenEvent& ge) {
// Call init with event as template if not already initialised
if (!_initialised) init(ge);
assert(_initialised);
// Ensure that beam details match those from the first event (if we're checking beams)
if ( !_ignoreBeams ) {
const PdgIdPair beams = Rivet::beamIds(ge);
const double sqrts = Rivet::sqrtS(ge);
if (!compatible(beams, _beams) || !fuzzyEquals(sqrts, sqrtS())) {
cerr << "Event beams mismatch: "
<< PID::toBeamsString(beams) << " @ " << sqrts/GeV << " GeV" << " vs. first beams "
<< this->beams() << " @ " << this->sqrtS()/GeV << " GeV" << endl;
exit(1);
}
}
// Create the Rivet event wrapper
/// @todo Filter/normalize the event here
Event event(ge);
// Weights
/// @todo Drop this / just report first weight when we support multiweight events
_eventcounter.fill(event.weight());
MSG_DEBUG("Event #" << _eventcounter.numEntries() << " weight = " << event.weight());
// Cross-section
#ifdef HEPMC_HAS_CROSS_SECTION
if (ge.cross_section()) {
_xs = ge.cross_section()->cross_section();
_xserr = ge.cross_section()->cross_section_error();
}
#endif
// Run the analyses
for (AnaHandle a : _analyses) {
MSG_TRACE("About to run analysis " << a->name());
try {
a->analyze(event);
} catch (const Error& err) {
cerr << "Error in " << a->name() << "::analyze method: " << err.what() << endl;
exit(1);
}
MSG_TRACE("Finished running analysis " << a->name());
}
if ( _dumpPeriod > 0 && numEvents()%_dumpPeriod == 0 ) {
MSG_INFO("Dumping intermediate results to " << _dumpFile << ".");
_dumping = true;
finalize();
_dumping = false;
writeData(_dumpFile);
}
}
void AnalysisHandler::analyze(const GenEvent* ge) {
if (ge == nullptr) {
MSG_ERROR("AnalysisHandler received null pointer to GenEvent");
//throw Error("AnalysisHandler received null pointer to GenEvent");
}
analyze(*ge);
}
void AnalysisHandler::finalize() {
if (!_initialised) return;
// First we make copies of all analysis objects.
map<string,AnalysisObjectPtr> backupAOs;
for (auto ao : getData(false, true) )
backupAOs[ao->path()] = AnalysisObjectPtr(ao->newclone());
// Now we run the (re-entrant) finalize() functions for all analyses.
MSG_INFO("Finalising analyses");
for (AnaHandle a : _analyses) {
a->setCrossSection(_xs);
try {
if ( !_dumping || a->info().reentrant() ) a->finalize();
else if ( _dumping )
MSG_INFO("Skipping periodic dump of " << a->name()
<< " as it is not declared reentrant.");
} catch (const Error& err) {
cerr << "Error in " << a->name() << "::finalize method: " << err.what() << endl;
exit(1);
}
}
// Now we copy all analysis objects to the list of finalized
// ones, and restore the value to their original ones.
_finalizedAOs.clear();
for ( auto ao : getData() )
_finalizedAOs.push_back(AnalysisObjectPtr(ao->newclone()));
for ( auto ao : getData(false, true) ) {
auto aoit = backupAOs.find(ao->path());
if ( aoit == backupAOs.end() ) {
AnaHandle ana = analysis(split(ao->path(), "/")[0]);
if ( ana ) ana->removeAnalysisObject(ao->path());
} else
copyao(aoit->second, ao);
}
// Print out number of events processed
const int nevts = _eventcounter.numEntries();
MSG_INFO("Processed " << nevts << " event" << (nevts != 1 ? "s" : ""));
// // Delete analyses
// MSG_DEBUG("Deleting analyses");
// _analyses.clear();
// Print out MCnet boilerplate
cout << endl;
cout << "The MCnet usage guidelines apply to Rivet: see http://www.montecarlonet.org/GUIDELINES" << endl;
cout << "Please acknowledge plots made with Rivet analyses, and cite arXiv:1003.0694 (http://arxiv.org/abs/1003.0694)" << endl;
}
AnalysisHandler& AnalysisHandler::addAnalysis(const string& analysisname, std::map<string, string> pars) {
// Make an option handle.
std::string parHandle = "";
for (map<string, string>::iterator par = pars.begin(); par != pars.end(); ++par) {
parHandle +=":";
parHandle += par->first + "=" + par->second;
}
return addAnalysis(analysisname + parHandle);
}
AnalysisHandler& AnalysisHandler::addAnalysis(const string& analysisname) {
// Check for a duplicate analysis
/// @todo Might we want to be able to run an analysis twice, with different params?
/// Requires avoiding histo tree clashes, i.e. storing the histos on the analysis objects.
string ananame = analysisname;
vector<string> anaopt = split(analysisname, ":");
if ( anaopt.size() > 1 ) ananame = anaopt[0];
AnaHandle analysis( AnalysisLoader::getAnalysis(ananame) );
if (analysis.get() != 0) { // < Check for null analysis.
MSG_DEBUG("Adding analysis '" << analysisname << "'");
map<string,string> opts;
for ( int i = 1, N = anaopt.size(); i < N; ++i ) {
vector<string> opt = split(anaopt[i], "=");
if ( opt.size() != 2 ) {
MSG_WARNING("Error in option specification. Skipping analysis "
<< analysisname);
return *this;
}
if ( !analysis->info().validOption(opt[0], opt[1]) ) {
MSG_WARNING("Cannot set option '" << opt[0] << "' to '" << opt[1]
<< "'. Skipping analysis " << analysisname);
return *this;
}
opts[opt[0]] = opt[1];
}
for ( auto opt: opts) {
analysis->_options[opt.first] = opt.second;
analysis->_optstring += ":" + opt.first + "=" + opt.second;
}
for (const AnaHandle& a : _analyses) {
if (a->name() == analysis->name() ) {
MSG_WARNING("Analysis '" << analysisname << "' already registered: skipping duplicate");
return *this;
}
}
analysis->_analysishandler = this;
_analyses.insert(analysis);
} else {
MSG_WARNING("Analysis '" << analysisname << "' not found.");
}
// MSG_WARNING(_analyses.size());
// for (const AnaHandle& a : _analyses) MSG_WARNING(a->name());
return *this;
}
AnalysisHandler& AnalysisHandler::removeAnalysis(const string& analysisname) {
std::shared_ptr<Analysis> toremove;
for (const AnaHandle a : _analyses) {
if (a->name() == analysisname) {
toremove = a;
break;
}
}
if (toremove.get() != 0) {
MSG_DEBUG("Removing analysis '" << analysisname << "'");
_analyses.erase(toremove);
}
return *this;
}
/////////////////////////////
void AnalysisHandler::addData(const std::vector<AnalysisObjectPtr>& aos) {
for (const AnalysisObjectPtr ao : aos) {
string path = ao->path();
if ( path.substr(0, 5) != "/RAW/" ) {
_orphanedPreloads.push_back(ao);
continue;
}
path = path.substr(4);
ao->setPath(path);
if (path.size() > 1) { // path > "/"
try {
const string ananame = split(path, "/")[0];
AnaHandle a = analysis(ananame);
a->addAnalysisObject(ao); /// @todo Need to statistically merge...
} catch (const Error& e) {
MSG_TRACE("Adding analysis object " << path <<
" to the list of orphans.");
_orphanedPreloads.push_back(ao);
}
}
}
}
+ void AnalysisHandler::stripOptions(AnalysisObjectPtr ao,
+ const vector<string> & delopts) const {
+ string path = ao->path();
+ string ananame = split(path, "/")[0];
+ vector<string> anaopts = split(ananame, ":");
+ for ( int i = 1, N = anaopts.size(); i < N; ++i )
+ for ( auto opt : delopts )
+ if ( opt == "*" || anaopts[i].find(opt + "=") == 0 )
+ path.replace(path.find(":" + anaopts[i]), (":" + anaopts[i]).length(), "");
+ ao->setPath(path);
+ }
+
+
+
+
void AnalysisHandler::
- mergeYodas(const vector<string> & aofiles, bool equiv) {
+ mergeYodas(const vector<string> & aofiles, const vector<string> & delopts, bool equiv) {
vector< vector<AnalysisObjectPtr> > aosv;
vector<double> xsecs;
vector<double> xsecerrs;
vector<CounterPtr> sows;
set<string> ananames;
_eventcounter.reset();
// First scan all files and extract analysis objects and add the
// corresponding anayses..
for ( auto file : aofiles ) {
Scatter1DPtr xsec;
CounterPtr sow;
// For each file make sure that cross section and sum-of-weights
// objects are present and stor all RAW ones in a vector;
vector<AnalysisObjectPtr> aos;
try {
/// @todo Use new YODA SFINAE to fill the smart ptr vector directly
vector<YODA::AnalysisObject*> aos_raw;
YODA::read(file, aos_raw);
for (AnalysisObject* aor : aos_raw) {
AnalysisObjectPtr ao = AnalysisObjectPtr(aor);
if ( ao->path().substr(0, 5) != "/RAW/" ) continue;
ao->setPath(ao->path().substr(4));
if ( ao->path() == "/_XSEC" )
xsec = dynamic_pointer_cast<Scatter1D>(ao);
else if ( ao->path() == "/_EVTCOUNT" )
sow = dynamic_pointer_cast<Counter>(ao);
else {
+ stripOptions(ao, delopts);
string ananame = split(ao->path(), "/")[0];
- // HERE we shoud handle merged options, if any.
- // vector<string> anaopts = split(ananame, ":");
- // ananame = anaopts[0];
- // for (int i = 1, N = anaopts.size(); i < N; ++i )
if ( ananames.insert(ananame).second ) addAnalysis(ananame);
aos.push_back(ao);
}
}
if ( !xsec || !sow ) {
MSG_ERROR( "Error in AnalysisHandler::mergeYodas: The file " << file
<< " did not contain weights and cross section info.");
exit(1);
}
xsecs.push_back(xsec->point(0).x());
xsecerrs.push_back(sqr(xsec->point(0).xErrAvg()));
- std::cerr << _eventcounter.numEntries() << std::endl;
- std::cerr << _eventcounter.effNumEntries() << std::endl;
- std::cerr << _eventcounter.sumW() << std::endl;
- std::cerr << _eventcounter.sumW2() << std::endl;
_eventcounter += *sow;
- std::cerr << _eventcounter.numEntries() << std::endl;
- std::cerr << _eventcounter.effNumEntries() << std::endl;
- std::cerr << _eventcounter.sumW() << std::endl;
- std::cerr << _eventcounter.sumW2() << std::endl;
sows.push_back(sow);
aosv.push_back(aos);
} catch (...) { //< YODA::ReadError&
throw UserError("Unexpected error in reading file: " + file);
}
}
// Now calculate the scale to be applied for all bins in a file
// and get the common cross section and sum of weights.
_xs = _xserr = 0.0;
for ( int i = 0, N = sows.size(); i < N; ++i ) {
double effnent = sows[i]->effNumEntries();
_xs += (equiv? effnent: 1.0)*xsecs[i];
_xserr += (equiv? sqr(effnent): 1.0)*xsecerrs[i];
}
vector<double> scales(sows.size(), 1.0);
if ( equiv ) {
_xs /= _eventcounter.effNumEntries();
_xserr = sqrt(_xserr)/_eventcounter.effNumEntries();
} else {
_xserr = sqrt(_xserr);
for ( int i = 0, N = sows.size(); i < N; ++i )
scales[i] = (_eventcounter.sumW()/sows[i]->sumW())*(xsecs[i]/_xs);
}
// Initialize the analyses allowing them to book analysis objects.
for (AnaHandle a : _analyses) {
MSG_DEBUG("Initialising analysis: " << a->name());
if ( !a->info().reentrant() )
MSG_WARNING("Analysis " << a->name() << " has not been validated to have "
<< "a reentrant finalize method. The result is unpredictable.");
try {
// Allow projection registration in the init phase onwards
a->_allowProjReg = true;
+ cerr << "sqrtS " << sqrtS() << endl;
a->init();
//MSG_DEBUG("Checking consistency of analysis: " << a->name());
//a->checkConsistency();
} catch (const Error& err) {
cerr << "Error in " << a->name() << "::init method: " << err.what() << endl;
exit(1);
}
MSG_DEBUG("Done initialising analysis: " << a->name());
}
_initialised = true;
// Get a list of all anaysis objects to handle.
map<string,AnalysisObjectPtr> current;
for ( auto ao : getData(false, true) ) current[ao->path()] = ao;
// Go through all objects to be merged and add them to current
// after appropriate scaling.
for ( int i = 0, N = aosv.size(); i < N; ++i)
for ( auto ao : aosv[i] ) {
if ( ao->path() == "/_XSEC" || ao->path() == "_EVTCOUNT" ) continue;
auto aoit = current.find(ao->path());
if ( aoit == current.end() ) {
MSG_WARNING("" << ao->path() << " was not properly booked.");
continue;
}
if ( !addaos(aoit->second, ao, scales[i]) )
MSG_WARNING("Cannot merge objects with path " << ao->path()
<<" of type " << ao->annotation("Type") );
}
// Now we can simply finalize() the analysis, leaving the
// controlling program to write it out some yoda-file.
finalize();
}
void AnalysisHandler::readData(const string& filename) {
vector<AnalysisObjectPtr> aos;
try {
/// @todo Use new YODA SFINAE to fill the smart ptr vector directly
vector<YODA::AnalysisObject*> aos_raw;
YODA::read(filename, aos_raw);
for (AnalysisObject* aor : aos_raw) aos.push_back(AnalysisObjectPtr(aor));
} catch (...) { //< YODA::ReadError&
throw UserError("Unexpected error in reading file: " + filename);
}
if (!aos.empty()) addData(aos);
}
vector<AnalysisObjectPtr> AnalysisHandler::
getData(bool includeorphans, bool includetmps) const {
vector<AnalysisObjectPtr> rtn;
// Event counter
rtn.push_back( make_shared<Counter>(_eventcounter) );
// Cross-section + err as scatter
YODA::Scatter1D::Points pts; pts.insert(YODA::Point1D(_xs, _xserr));
rtn.push_back( make_shared<Scatter1D>(pts, "/_XSEC") );
// Analysis histograms
for (const AnaHandle a : analyses()) {
vector<AnalysisObjectPtr> aos = a->analysisObjects();
// MSG_WARNING(a->name() << " " << aos.size());
for (const AnalysisObjectPtr ao : aos) {
// Exclude paths from final write-out if they contain a "TMP" layer (i.e. matching "/TMP/")
/// @todo This needs to be much more nuanced for re-entrant histogramming
if ( !includetmps && ao->path().find("/TMP/" ) != string::npos) continue;
rtn.push_back(ao);
}
}
// Sort histograms alphanumerically by path before write-out
sort(rtn.begin(), rtn.end(), [](AnalysisObjectPtr a, AnalysisObjectPtr b) {return a->path() < b->path();});
if ( includeorphans )
rtn.insert(rtn.end(), _orphanedPreloads.begin(), _orphanedPreloads.end());
return rtn;
}
void AnalysisHandler::writeData(const string& filename) const {
vector<AnalysisObjectPtr> out = _finalizedAOs;
out.reserve(2*out.size());
vector<AnalysisObjectPtr> aos = getData(false, true);
for ( auto ao : aos ) {
ao = AnalysisObjectPtr(ao->newclone());
ao->setPath("/RAW" + ao->path());
out.push_back(ao);
}
try {
YODA::write(filename, out.begin(), out.end());
} catch (...) { //< YODA::WriteError&
throw UserError("Unexpected error in writing file: " + filename);
}
}
std::vector<std::string> AnalysisHandler::analysisNames() const {
std::vector<std::string> rtn;
for (AnaHandle a : _analyses) {
rtn.push_back(a->name());
}
return rtn;
}
const AnaHandle AnalysisHandler::analysis(const std::string& analysisname) const {
for (const AnaHandle a : analyses())
if (a->name() == analysisname) return a;
throw Error("No analysis named '" + analysisname + "' registered in AnalysisHandler");
}
AnalysisHandler& AnalysisHandler::addAnalyses(const std::vector<std::string>& analysisnames) {
for (const string& aname : analysisnames) {
//MSG_DEBUG("Adding analysis '" << aname << "'");
addAnalysis(aname);
}
return *this;
}
AnalysisHandler& AnalysisHandler::removeAnalyses(const std::vector<std::string>& analysisnames) {
for (const string& aname : analysisnames) {
removeAnalysis(aname);
}
return *this;
}
bool AnalysisHandler::needCrossSection() const {
bool rtn = false;
for (const AnaHandle a : _analyses) {
if (!rtn) rtn = a->needsCrossSection();
if (rtn) break;
}
return rtn;
}
AnalysisHandler& AnalysisHandler::setCrossSection(double xs) {
_xs = xs;
return *this;
}
bool AnalysisHandler::hasCrossSection() const {
return (!std::isnan(crossSection()));
}
AnalysisHandler& AnalysisHandler::addAnalysis(Analysis* analysis) {
analysis->_analysishandler = this;
_analyses.insert(AnaHandle(analysis));
return *this;
}
PdgIdPair AnalysisHandler::beamIds() const {
return Rivet::beamIds(beams());
}
double AnalysisHandler::sqrtS() const {
return Rivet::sqrtS(beams());
}
void AnalysisHandler::setIgnoreBeams(bool ignore) {
_ignoreBeams=ignore;
}
}

File Metadata

Mime Type
text/x-diff
Expires
Sun, Feb 23, 2:45 PM (22 h, 21 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4486693
Default Alt Text
(138 KB)

Event Timeline