Page MenuHomeHEPForge

No OneTemporary

diff --git a/Shower/Base/ShowerTree.cc b/Shower/Base/ShowerTree.cc
--- a/Shower/Base/ShowerTree.cc
+++ b/Shower/Base/ShowerTree.cc
@@ -1,1376 +1,1401 @@
// -*- C++ -*-
//
// ShowerTree.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#include "ShowerProgenitor.h"
#include "ThePEG/EventRecord/MultiColour.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ShowerTree.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "Herwig++/Shower/ShowerHandler.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Handlers/XComb.h"
#include "KinematicsReconstructor.h"
#include <cassert>
#include "ThePEG/Repository/CurrentGenerator.h"
#include "ThePEG/PDT/StandardMatchers.h"
using namespace Herwig;
using namespace ThePEG;
set<long> ShowerTree::_decayInShower = set<long>();
bool ShowerTree::_spaceTime = false;
Energy2 ShowerTree::_vmin2 = 0.1*GeV2;
namespace {
void findBeam(tPPtr & beam, PPtr incoming) {
while(!beam->children().empty()) {
bool found=false;
for(unsigned int ix=0;ix<beam->children().size();++ix) {
if(beam->children()[ix]==incoming) {
found = true;
break;
}
}
if(found) break;
beam = beam->children()[0];
}
}
}
// constructor from hard process
ShowerTree::ShowerTree(const PPair incoming, const ParticleVector & out,
ShowerDecayMap& decay)
: _hardMECorrection(false), _wasHard(true),
_parent(), _hasShowered(false) {
tPPair beam = CurrentGenerator::current().currentEvent()->incoming();
findBeam(beam.first ,incoming.first );
findBeam(beam.second,incoming.second);
_incoming = incoming;
double x1(_incoming.first ->momentum().rho()/beam.first ->momentum().rho());
double x2(_incoming.second->momentum().rho()/beam.second->momentum().rho());
// must have two incoming particles
assert(_incoming.first && _incoming.second);
// set the parent tree
_parent=ShowerTreePtr();
// temporary vectors to contain all the particles before insertion into
// the data structure
vector<PPtr> original,copy;
vector<ShowerParticlePtr> shower;
// create copies of ThePEG particles for the incoming particles
original.push_back(_incoming.first);
copy.push_back(new_ptr(Particle(*_incoming.first)));
original.push_back(_incoming.second);
copy.push_back(new_ptr(Particle(*_incoming.second)));
// and same for outgoing
map<PPtr,ShowerTreePtr> trees;
for (ParticleVector::const_iterator it = out.begin();
it != out.end(); ++it) {
// if decayed or should be decayed in shower make the tree
PPtr orig = *it;
- if(!orig->children().empty() ||
- (decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
+ bool radiates = false;
+ if(!orig->children().empty()) {
+ // remove d,u,s,c,b quarks and leptons other than on-shell taus
+ if(StandardQCDPartonMatcher::Check(orig->id())||
+ (LeptonMatcher::Check(orig->id())&& !(abs(orig->id())==ParticleID::tauminus && abs(orig->mass()-orig->dataPtr()->mass())<MeV))) {
+ radiates = true;
+ }
+ else
+ for(unsigned int iy=0;iy<orig->children().size();++iy) {
+ if(orig->children()[iy]->id()==orig->id()) {
+ radiates = true;
+ break;
+ }
+ }
+ }
+ if(radiates) {
+ findDecayProducts(orig,original,copy,decay,trees);
+ }
+ else if(!orig->children().empty()||
+ (decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
newtree->setParents();
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
+ original.push_back(orig);
+ copy.push_back(new_ptr(Particle(*orig)));
}
- original.push_back(orig);
- copy.push_back(new_ptr(Particle(*orig)));
+ else {
+ original.push_back(orig);
+ copy.push_back(new_ptr(Particle(*orig)));
+ }
}
// colour isolate the hard process
colourIsolate(original,copy);
// now create the Shower particles
// create ShowerParticles for the incoming particles
assert(original.size() == copy.size());
for(unsigned int ix=0;ix<original.size();++ix) {
ShowerParticlePtr temp=new_ptr(ShowerParticle(*copy[ix],1,ix>=2));
fixColour(temp);
// incoming
if(ix<2) {
temp->x(ix==0 ? x1 : x2);
_incomingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],
copy[ix],temp)),temp));
_backward.insert(temp);
}
// outgoing
else {
_outgoingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],
copy[ix],temp)),temp));
_forward.insert(temp);
}
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end())
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,mit->first->progenitor())));
}
}
void ShowerTree::findDecayProducts(PPtr in, vector<PPtr> & original, vector<PPtr> & copy,
ShowerDecayMap& decay, map<PPtr,ShowerTreePtr> & trees) {
ParticleVector children=in->children();
for(unsigned int ix=0;ix<children.size();++ix) {
// if decayed or should be decayed in shower make the tree
PPtr orig=children[ix];
in->abandonChild(orig);
bool radiates = false;
if(!orig->children().empty()) {
- if(StandardQCDPartonMatcher::Check(orig->id())) {
+ // remove d,u,s,c,b quarks and leptons other than on-shell taus
+ if(StandardQCDPartonMatcher::Check(orig->id())||
+ (LeptonMatcher::Check(orig->id())&& !(abs(orig->id())==ParticleID::tauminus && abs(orig->mass()-orig->dataPtr()->mass())<MeV))) {
radiates = true;
}
else
for(unsigned int iy=0;iy<orig->children().size();++iy) {
if(orig->children()[iy]->id()==orig->id()) {
radiates = true;
break;
}
}
}
if(radiates) {
findDecayProducts(orig,original,copy,decay,trees);
}
else if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
newtree->setParents();
newtree->_parent=this;
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
else {
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
}
}
ShowerTree::ShowerTree(PPtr in,
ShowerDecayMap& decay)
: _hardMECorrection(false), _wasHard(false), _hasShowered(false) {
// there must be an incoming particle
assert(in);
// temporary vectors to contain all the particles before insertion into
// the data structure
vector<PPtr> original,copy;
// insert place holder for incoming particle
original.push_back(in);
copy.push_back(PPtr());
// we need to deal with the decay products if decayed
map<PPtr,ShowerTreePtr> trees;
if(!in->children().empty()) {
ParticleVector children=in->children();
for(unsigned int ix=0;ix<children.size();++ix) {
// if decayed or should be decayed in shower make the tree
PPtr orig=children[ix];
in->abandonChild(orig);
bool radiates = false;
if(!orig->children().empty()) {
- if(StandardQCDPartonMatcher::Check(orig->id())) {
+ if(StandardQCDPartonMatcher::Check(orig->id())||
+ (LeptonMatcher::Check(orig->id())&& !(abs(orig->id())==ParticleID::tauminus && abs(orig->mass()-orig->dataPtr()->mass())<MeV))) {
radiates = true;
}
else {
for(unsigned int iy=0;iy<orig->children().size();++iy) {
if(orig->children()[iy]->id()==orig->id()) {
radiates = true;
break;
}
}
}
// finally assume all non-decaying particles are in this class
if(!radiates) {
radiates = !decaysInShower(orig->id());
}
}
if(radiates) {
findDecayProducts(orig,original,copy,decay,trees);
}
else if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
newtree->setParents();
newtree->_parent=this;
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
else {
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
}
}
// create the incoming particle
copy[0] = new_ptr(Particle(*in));
// isolate the colour
colourIsolate(original,copy);
// create the parent
ShowerParticlePtr sparent(new_ptr(ShowerParticle(*copy[0],2,false)));
fixColour(sparent);
_incomingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[0],copy[0],sparent))
,sparent));
// return if not decayed
if(original.size()==1) return;
// create the children
assert(copy.size() == original.size());
for (unsigned int ix=1;ix<original.size();++ix) {
ShowerParticlePtr stemp= new_ptr(ShowerParticle(*copy[ix],2,true));
fixColour(stemp);
_outgoingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],copy[ix],
stemp)),
stemp));
_forward.insert(stemp);
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end())
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,mit->first->progenitor())));
}
}
void ShowerTree::updateFinalStateShowerProduct(ShowerProgenitorPtr progenitor,
ShowerParticlePtr parent,
const ShowerParticleVector & children) {
assert(children.size()==2);
bool matches[2];
for(unsigned int ix=0;ix<2;++ix) {
matches[ix] = children[ix]->id()==progenitor->id();
}
ShowerParticlePtr newpart;
if(matches[0]&&matches[1]) {
if(parent->showerKinematics()->z()>0.5) newpart=children[0];
else newpart=children[1];
}
else if(matches[0]) newpart=children[0];
else if(matches[1]) newpart=children[1];
_outgoingLines[progenitor]=newpart;
}
void ShowerTree::updateInitialStateShowerProduct(ShowerProgenitorPtr progenitor,
ShowerParticlePtr newParent) {
_incomingLines[progenitor]=newParent;
}
void ShowerTree::isolateLine(vector<PPair>::const_iterator cit,
vector<PPair> & particles,
tcColinePtr oldline,
tColinePtr newline) {
// loop over particles
for(vector<PPair>::const_iterator cjt=particles.begin();
cjt!=particles.end();++cjt) {
if(cjt==cit) continue;
// if particle has colour line
if((*cjt).second->colourLine()) {
// if only one check if current line and reset
if(int((*cjt).second->colourInfo()->colourLines().size())==1) {
if((*cjt).second->colourLine()==oldline)
newline->addColoured((*cjt).first);
}
// if more than one check if each line current line and reset
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).second->colourInfo());
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).first ->colourInfo());
for(unsigned int ix=0;ix<colour1->colourLines().size();++ix) {
if(colour1->colourLines()[ix]==oldline)
colour2->colourLine(newline,int(ix)+1);
}
}
}
// if particle has anticolour line
if((*cjt).second->antiColourLine()) {
// if only one check if current line and reset
if(int((*cjt).second->colourInfo()->antiColourLines().size())==1) {
if((*cjt).second->antiColourLine()==oldline)
newline->addColoured((*cjt).first,true);
}
// if more than one check if each line current line and reset
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).second->colourInfo());
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).first ->colourInfo());
for(unsigned int ix=0;ix<colour1->antiColourLines().size();++ix) {
if(colour1->antiColourLines()[ix]==oldline)
colour2->antiColourLine(newline, int(ix)+1);
}
}
}
}
}
void ShowerTree::colourIsolate(const vector<PPtr> & original,
const vector<PPtr> & copy) {
// vectors must have same size
assert(original.size()==copy.size());
// create a temporary map with all the particles to make looping easier
vector<PPair> particles;
particles.reserve(original.size());
for(unsigned int ix=0;ix<original.size();++ix)
particles.push_back(make_pair(copy[ix],original[ix]));
// reset the colour of the copies
vector<PPair>::const_iterator cit;
// make the colour connections of the copies
for(cit=particles.begin();cit!=particles.end();++cit) {
if((*cit).first->colourInfo()) {
if((*cit).first->dataPtr()->iColour() == PDT::Colour6 ||
(*cit).first->dataPtr()->iColour() == PDT::Colour6bar)
(*cit).first->colourInfo(new_ptr(MultiColour()));
else
(*cit).first->colourInfo(new_ptr(ColourBase()));
}
}
map<tcColinePtr,tColinePtr> cmap;
// make the colour connections of the copies
// loop over the particles
for(cit=particles.begin();cit!=particles.end();++cit) {
// if particle has at least one colour line
if((*cit).second->colourLine()) {
// one and only one line
if(int((*cit).second->colourInfo()->colourLines().size())==1) {
// if not already change
if(!(*cit).first->colourLine()) {
// make new line
tcColinePtr oldline=(*cit).second->colourLine();
ColinePtr newline=ColourLine::create((*cit).first);
cmap[oldline]=newline;
isolateLine(cit,particles,oldline,newline);
}
}
// more than one line
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).second->colourInfo());
vector<tcColinePtr> lines1 = colour1->colourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).first->colourInfo());
vector<tcColinePtr> lines2 = colour2->colourLines();
// loop over lines
for(unsigned int ix=0;ix<lines1.size();++ix) {
if( (lines2.size()>ix && !lines2[ix]) ||
lines2.size()<=ix) {
tcColinePtr oldline = lines1[ix];
ColinePtr newline = new_ptr(ColourLine());
cmap[oldline]=newline;
colour2->colourLine(newline, int(ix)+1);
isolateLine(cit,particles,oldline,newline);
}
}
}
}
// if anticolour line
if((*cit).second->antiColourLine()) {
// one and only one line
if(int((*cit).second->colourInfo()->antiColourLines().size())==1) {
// if not already change
if(!(*cit).first->antiColourLine()) {
// make new line
tcColinePtr oldline=(*cit).second->antiColourLine();
ColinePtr newline=ColourLine::create((*cit).first, true);
cmap[oldline]=newline;
isolateLine(cit,particles,oldline,newline);
}
}
// more than one line
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).second->colourInfo());
vector<tcColinePtr> lines1 = colour1->antiColourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).first->colourInfo());
vector<tcColinePtr> lines2 = colour2->antiColourLines();
// loop over lines
for(unsigned int ix=0;ix<lines1.size();++ix) {
if( (lines2.size()>ix && !lines2[ix]) ||
lines2.size()<=ix) {
tcColinePtr oldline = lines1[ix];
ColinePtr newline = new_ptr(ColourLine());
cmap[oldline]=newline;
colour2->antiColourLine(newline, int(ix)+1);
isolateLine(cit,particles,oldline,newline);
}
}
}
}
}
// sort out sinks and sources
for(cit=particles.begin();cit!=particles.end();++cit) {
tColinePtr cline[2];
tColinePair cpair;
for(unsigned int ix=0;ix<4;++ix) {
cline[0] = ix<2 ? cit->second->colourLine() : cit->second->antiColourLine();
cline[1] = ix<2 ? cit->first ->colourLine() : cit->first ->antiColourLine();
if(cline[0]) {
switch (ix) {
case 0: case 2:
cpair = cline[0]->sinkNeighbours();
break;
case 1: case 3:
cpair = cline[0]->sourceNeighbours();
break;
};
}
else {
cpair = make_pair(tColinePtr(),tColinePtr());
}
if(cline[0]&&cpair.first) {
map<tcColinePtr,tColinePtr>::const_iterator
mit[2] = {cmap.find(cpair.first),cmap.find(cpair.second)};
if(mit[0]!=cmap.end()&&mit[1]!=cmap.end()) {
if(ix==0||ix==2) {
cline[1]->setSinkNeighbours(mit[0]->second,mit[1]->second);
}
else {
cline[1]->setSourceNeighbours(mit[0]->second,mit[1]->second);
}
}
}
}
}
}
void ShowerTree::mapColour(PPtr original,
PPtr copy) {
// has colour line
if(copy->colourLine()) {
// one and only one
if(copy->colourInfo()->colourLines().size()==1) {
_colour.insert(make_pair(copy->colourLine(),
original->colourLine()));
}
// more than one
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(copy->colourInfo());
vector<tcColinePtr> lines1 = colour1->colourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(original->colourInfo());
vector<tcColinePtr> lines2 = colour2->colourLines();
for(unsigned int ix=0;ix<lines1.size();++ix)
_colour.insert(make_pair(const_ptr_cast<ColinePtr>(lines1[ix]),
const_ptr_cast<ColinePtr>(lines2[ix])));
}
}
// has anticolour line
if(copy->antiColourLine()) {
// one and only one
if(copy->colourInfo()->antiColourLines().size()==1) {
_colour.insert(make_pair(copy->antiColourLine(),
original->antiColourLine()));
}
// more than one
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(copy->colourInfo());
vector<tcColinePtr> lines1 = colour1->antiColourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(original->colourInfo());
vector<tcColinePtr> lines2 = colour2->antiColourLines();
for(unsigned int ix=0;ix<lines1.size();++ix)
_colour.insert(make_pair(const_ptr_cast<ColinePtr>(lines1[ix]),
const_ptr_cast<ColinePtr>(lines2[ix])));
}
}
}
void ShowerTree::insertHard(StepPtr pstep, bool ISR, bool) {
assert(_incomingLines.size()==2);
_colour.clear();
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// construct the map of colour lines for hard process
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
if(!cit->first->perturbative()) continue;
mapColour(cit->first->original(),cit->first->copy());
}
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
if(!cjt->first->perturbative()) continue;
mapColour(cjt->first->original(),cjt->first->copy());
}
// initial-state radiation
if(ISR) {
for(cit=incomingLines().begin();cit!=incomingLines().end();++cit) {
ShowerParticlePtr init=(*cit).first->progenitor();
assert(init->thePEGBase());
PPtr original = (*cit).first->original();
if(original->parents().empty()) continue;
PPtr hadron= original->parents()[0];
assert(!original->children().empty());
PPtr copy=cit->first->copy();
ParticleVector intermediates=original->children();
for(unsigned int ix=0;ix<intermediates.size();++ix) {
init->abandonChild(intermediates[ix]);
copy->abandonChild(intermediates[ix]);
}
// if not from a matrix element correction
if(cit->first->perturbative()) {
// break mother/daugther relations
init->addChild(original);
hadron->abandonChild(original);
// if particle showers add shower
if(cit->first->hasEmitted()) {
addInitialStateShower(init,hadron,pstep,false);
}
// no showering for this particle
else {
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
init->setLifeLength(Lorentz5Distance());
init->setVertex(LorentzPoint());
}
}
// from matrix element correction
else {
// break mother/daugther relations
hadron->abandonChild(original);
copy->addChild(original);
updateColour(copy);
init->addChild(copy);
pstep->addIntermediate(copy);
copy->setLifeLength(Lorentz5Distance());
copy->setVertex(LorentzPoint());
// if particle showers add shower
if(cit->first->hasEmitted()) {
addInitialStateShower(init,hadron,pstep,false);
}
// no showering for this particle
else {
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
init->setLifeLength(Lorentz5Distance());
init->setVertex(LorentzPoint());
}
}
}
}
else {
for(cit=incomingLines().begin();cit!=incomingLines().end();++cit) {
ShowerParticlePtr init=(*cit).first->progenitor();
assert(init->thePEGBase());
PPtr original = (*cit).first->original();
if(original->parents().empty()) continue;
PPtr hadron= original->parents()[0];
assert(!original->children().empty());
PPtr copy=cit->first->copy();
ParticleVector intermediates=original->children();
for(unsigned int ix=0;ix<intermediates.size();++ix) {
init->abandonChild(intermediates[ix]);
copy->abandonChild(intermediates[ix]);
}
// break mother/daugther relations
init->addChild(original);
hadron->abandonChild(original);
// no showering for this particle
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
init->setLifeLength(Lorentz5Distance());
init->setVertex(LorentzPoint());
original->setLifeLength(Lorentz5Distance());
original->setVertex(LorentzPoint());
}
}
// final-state radiation
for(cjt=outgoingLines().begin();cjt!=outgoingLines().end();++cjt) {
ShowerParticlePtr init=(*cjt).first->progenitor();
assert(init->thePEGBase());
// ZERO the distance of original
(*cjt).first->original()->setLifeLength(Lorentz5Distance());
(*cjt).first->original()->setVertex(LorentzPoint());
// if not from a matrix element correction
if(cjt->first->perturbative()) {
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
parents[ix]->abandonChild(init);
(*cjt).first->original()->addChild(init);
pstep->addDecayProduct(init);
}
// from a matrix element correction
else {
if(cjt->first->original()==_incoming.first||
cjt->first->original()==_incoming.second) {
updateColour((*cjt).first->copy());
(*cjt).first->original()->parents()[0]->
addChild((*cjt).first->copy());
pstep->addDecayProduct((*cjt).first->copy());
(*cjt).first->copy()->addChild(init);
pstep->addDecayProduct(init);
}
else {
updateColour((*cjt).first->copy());
(*cjt).first->original()->addChild((*cjt).first->copy());
pstep->addDecayProduct((*cjt).first->copy());
(*cjt).first->copy()->addChild(init);
pstep->addDecayProduct(init);
}
// ZERO the distance of copy ??? \todo change if add space-time
(*cjt).first->copy()->setLifeLength(Lorentz5Distance());
(*cjt).first->copy()->setVertex(LorentzPoint());
}
// copy so travels no distance
init->setLifeLength(Lorentz5Distance());
init->setVertex(init->parents()[0]->decayVertex());
// sort out the colour
updateColour(init);
// insert shower products
addFinalStateShower(init,pstep);
}
_colour.clear();
}
void ShowerTree::addFinalStateShower(PPtr p, StepPtr s) {
// if endpoint assume doesn't travel
if(p->children().empty()) {
p->setLifeLength(Lorentz5Distance());
return;
}
// set the space-time distance
else {
p->setLifeLength(spaceTimeDistance(p));
}
ParticleVector::const_iterator child;
for(child=p->children().begin(); child != p->children().end(); ++child) {
updateColour(*child);
s->addDecayProduct(*child);
(**child).setVertex(p->decayVertex());
addFinalStateShower(*child,s);
}
}
void ShowerTree::updateColour(PPtr particle) {
// if attached to a colour line
if(particle->colourLine()) {
// one and only one
if(particle->colourInfo()->colourLines().size()==1) {
bool reset=false;
// if colour line from hard process reconnect
ColinePtr c1=particle->colourLine();
if(_colour.find(c1)!=_colour.end()) {
c1->removeColoured(particle);
_colour[c1]->addColoured(particle);
reset=true;
}
// ensure properly connected to the line
if(!reset) {
ColinePtr c1=particle->colourLine();
c1->removeColoured(particle);
c1->addColoured(particle);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(particle->colourInfo());
vector<tcColinePtr> lines = colour->colourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr c1 = const_ptr_cast<ColinePtr>(lines[ix]);
if(_colour.find(c1)!=_colour.end()) {
colour->colourLine(_colour[c1],int(ix)+1);
c1->removeColoured(particle);
}
}
}
}
// if attached to an anticolour line
if(particle->antiColourLine()) {
bool reset=false;
// one and only one
if(particle->colourInfo()->antiColourLines().size()==1) {
// if anti colour line from hard process reconnect
ColinePtr c1=particle->antiColourLine();
if(_colour.find(c1)!=_colour.end()) {
c1->removeColoured(particle,true);
_colour[c1]->addColoured(particle,true);
reset=true;
}
if(!reset) {
ColinePtr c1=particle->antiColourLine();
c1->removeColoured(particle,true);
c1->addColoured(particle,true);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(particle->colourInfo());
vector<tcColinePtr> lines = colour->antiColourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr c1 = const_ptr_cast<ColinePtr>(lines[ix]);
if(_colour.find(c1)!=_colour.end()) {
colour->antiColourLine(_colour[c1],int(ix)+1);
c1->removeColoured(particle,true);
}
}
}
}
}
void ShowerTree::addInitialStateShower(PPtr p, PPtr hadron,
StepPtr s, bool addchildren) {
// Each parton here should only have one parent
if(!p->parents().empty()) {
if(p->parents().size()!=1)
throw Exception() << "Particle must only have one parent in ShowerTree"
<< "::addInitialStateShower" << Exception::runerror;
// set the space-time distances
if(addchildren) {
p->setLifeLength(spaceTimeDistance(p));
p->setVertex(p->children()[0]->vertex()-p->lifeLength());
}
else {
p->setLifeLength(spaceTimeDistance(p));
p->setVertex(-p->lifeLength());
}
// recurse
addInitialStateShower(p->parents()[0],hadron,s);
}
else {
hadron->addChild(p);
s->addIntermediate(p);
p->setVertex(p->children()[0]->vertex());
p->setLifeLength(Lorentz5Distance());
}
updateColour(p);
// if not adding children return
if(!addchildren) return;
// add children
ParticleVector::const_iterator child;
for(child = p->children().begin(); child != p->children().end(); ++child) {
// if a final-state particle update the colour
ShowerParticlePtr schild =
dynamic_ptr_cast<ShowerParticlePtr>(*child);
(**child).setVertex(p->decayVertex());
if(schild && schild->isFinalState()) updateColour(*child);
// if there are grandchildren of p
if(!(*child)->children().empty()) {
// Add child as intermediate
s->addIntermediate(*child);
// If child is shower particle and final-state, add children
if(schild && schild->isFinalState()) addFinalStateShower(schild,s);
}
else
s->addDecayProduct(*child);
}
}
void ShowerTree::decay(ShowerDecayMap & decay) {
// must be one incoming particle
assert(_incomingLines.size()==1);
// if already decayed return
if(!_outgoingLines.empty()) return;
// otherwise decay it
applyTransforms();
// now we need to replace the particle with a new copy after the shower
// find particle after the shower
ShowerParticlePtr newparent=_parent->_treelinks[this].second;
// now make the new progenitor
vector<PPtr> original,copy;
original.push_back(newparent);
copy.push_back(new_ptr(Particle(*newparent)));
// reisolate the colour
colourIsolate(original,copy);
// make the new progenitor
ShowerParticlePtr stemp=new_ptr(ShowerParticle(*copy[0],2,false));
fixColour(stemp);
ShowerProgenitorPtr newprog=new_ptr(ShowerProgenitor(original[0],copy[0],stemp));
_incomingLines.clear();
_incomingLines.insert(make_pair(newprog,stemp));
// now we need to decay the copy
PPtr parent=copy[0];
if(parent->spinInfo()) parent->spinInfo()->decay(true);
unsigned int ntry = 0;
while (true) {
// exit if fails
if (++ntry>=200)
throw Exception() << "Failed to perform decay in ShowerTree::decay()"
<< " after " << 200
<< " attempts for " << parent->PDGName()
<< Exception::eventerror;
// select decay mode
tDMPtr dm(parent->data().selectMode(*parent));
if(!dm)
throw Exception() << "Failed to select decay mode in ShowerTree::decay()"
<< "for " << newparent->PDGName()
<< Exception::eventerror;
if(!dm->decayer())
throw Exception() << "No Decayer for selected decay mode "
<< " in ShowerTree::decay()"
<< Exception::runerror;
// start of try block
try {
ParticleVector children = dm->decayer()->decay(*dm, *parent);
// if no children have another go
if(children.empty()) continue;
// set up parent
parent->decayMode(dm);
// add children
for (unsigned int i = 0, N = children.size(); i < N; ++i ) {
children[i]->setLabVertex(parent->labDecayVertex());
parent->addChild(children[i]);
parent->scale(ZERO);
}
// if succeeded break out of loop
break;
}
catch(KinematicsReconstructionVeto) {}
}
// insert the trees from the children
ParticleVector children=parent->children();
map<PPtr,ShowerTreePtr> trees;
for(unsigned int ix=0;ix<children.size();++ix) {
PPtr orig=children[ix];
parent->abandonChild(orig);
// if particle has children or decays in shower
if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
}
// now create the shower progenitors
PPtr ncopy=new_ptr(Particle(*orig));
//copy[0]->addChild(ncopy);
ShowerParticlePtr nshow=new_ptr(ShowerParticle(*ncopy,2,true));
fixColour(nshow);
ShowerProgenitorPtr prog=new_ptr(ShowerProgenitor(children[ix],
ncopy,nshow));
_outgoingLines.insert(make_pair(prog,nshow));
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end()) {
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,
mit->first->progenitor())));
tit->second->_parent=this;
}
}
}
void ShowerTree::insertDecay(StepPtr pstep,bool ISR, bool) {
assert(_incomingLines.size()==1);
_colour.clear();
// find final particle from previous tree
PPtr final;
if(_parent&&!_parent->_treelinks.empty())
final = _parent->_treelinks[this].second;
else
final=_incomingLines.begin()->first->original();
// construct the map of colour lines
PPtr copy=_incomingLines.begin()->first->copy();
mapColour(final,copy);
// now this is the ONE instance of the particle which should have a life length
// \todo change if space-time picture added
// set the lifelength, need this so that still in right direction after
// any ISR recoils
Length ctau = copy->lifeTime();
Lorentz5Distance lifeLength(ctau,final->momentum().vect()*(ctau/final->mass()));
final->setLifeLength(lifeLength);
// initial-state radiation
if(ISR&&!_incomingLines.begin()->first->progenitor()->children().empty()) {
ShowerParticlePtr init=_incomingLines.begin()->first->progenitor();
updateColour(init);
final->addChild(init);
pstep->addDecayProduct(init);
// just a copy doesn't travel
init->setLifeLength(Lorentz5Distance());
init->setVertex(final->decayVertex());
// insert shower products
addFinalStateShower(init,pstep);
// sort out colour
final=_incomingLines.begin()->second;
_colour.clear();
mapColour(final,copy);
}
// get the decaying particles
// make the copy
tColinePair cline=make_pair(copy->colourLine(),copy->antiColourLine());
updateColour(copy);
// sort out sinks and sources if needed
if(cline.first) {
if(cline.first->sourceNeighbours().first) {
copy->colourLine()->setSourceNeighbours(cline.first->sourceNeighbours().first,
cline.first->sourceNeighbours().second);
}
else if (cline.first->sinkNeighbours().first) {
copy->colourLine()->setSinkNeighbours(cline.first->sinkNeighbours().first,
cline.first->sinkNeighbours().second);
}
}
if(cline.second) {
if(cline.second->sourceNeighbours().first) {
copy->antiColourLine()->setSourceNeighbours(cline.second->sourceNeighbours().first,
cline.second->sourceNeighbours().second);
}
else if (cline.second->sinkNeighbours().first) {
copy->antiColourLine()->setSinkNeighbours(cline.second->sinkNeighbours().first,
cline.second->sinkNeighbours().second);
}
}
// copy of the one from the hard process
tParticleVector dpar=copy->parents();
for(unsigned int ix=0;ix<dpar.size();++ix) dpar[ix]->abandonChild(copy);
final->addChild(copy);
pstep->addDecayProduct(copy);
// just a copy does not move
copy->setLifeLength(Lorentz5Distance());
copy->setVertex(final->decayVertex());
// final-state radiation
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cit;
for(cit=outgoingLines().begin();cit!=outgoingLines().end();++cit) {
ShowerParticlePtr init=cit->first->progenitor();
// ZERO the distance
init->setLifeLength(Lorentz5Distance());
if(!init->thePEGBase())
throw Exception() << "Final-state particle must have a ThePEGBase"
<< " in ShowerTree::insertDecay()"
<< Exception::runerror;
// if not from matrix element correction
if(cit->first->perturbative()) {
// add the child
updateColour(cit->first->copy());
PPtr orig=cit->first->original();
orig->setLifeLength(Lorentz5Distance());
orig->setVertex(copy->decayVertex());
copy->addChild(orig);
pstep->addDecayProduct(orig);
orig->addChild(cit->first->copy());
pstep->addDecayProduct(cit->first->copy());
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
{parents[ix]->abandonChild(init);}
(*cit).first->copy()->addChild(init);
pstep->addDecayProduct(init);
updateColour(init);
}
// from a matrix element correction
else {
if(copy->children().end()==
find(copy->children().begin(),copy->children().end(),
cit->first->original())) {
updateColour(cit->first->original());
copy->addChild(cit->first->original());
pstep->addDecayProduct(cit->first->original());
}
updateColour(cit->first->copy());
cit->first->original()->addChild(cit->first->copy());
pstep->addDecayProduct(cit->first->copy());
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
{parents[ix]->abandonChild(init);}
(*cit).first->copy()->addChild(init);
pstep->addDecayProduct(init);
updateColour(init);
}
// ZERO the distances as just copies
cit->first->copy()->setLifeLength(Lorentz5Distance());
init->setLifeLength(Lorentz5Distance());
cit->first->copy()->setVertex(copy->decayVertex());
init->setVertex(copy->decayVertex());
// insert shower products
addFinalStateShower(init,pstep);
}
_colour.clear();
}
void ShowerTree::clear() {
// reset the has showered flag
_hasShowered=false;
// clear the colour map
_colour.clear();
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cjt;
// abandon the children of the outgoing particles
for(cit=_outgoingLines.begin();cit!=_outgoingLines.end();++cit) {
ShowerParticlePtr orig=cit->first->progenitor();
orig->set5Momentum(cit->first->copy()->momentum());
ParticleVector children=orig->children();
for(unsigned int ix=0;ix<children.size();++ix) orig->abandonChild(children[ix]);
_outgoingLines[cit->first]=orig;
cit->first->hasEmitted(false);
cit->first->reconstructed(ShowerProgenitor::notReconstructed);
}
// forward products
_forward.clear();
for(cit=_outgoingLines.begin();cit!=_outgoingLines.end();++cit)
_forward.insert(cit->first->progenitor());
// if a decay
if(!_wasHard) {
ShowerParticlePtr orig=_incomingLines.begin()->first->progenitor();
orig->set5Momentum(_incomingLines.begin()->first->copy()->momentum());
ParticleVector children=orig->children();
for(unsigned int ix=0;ix<children.size();++ix) orig->abandonChild(children[ix]);
_incomingLines.begin()->first->reconstructed(ShowerProgenitor::notReconstructed);
}
// if a hard process
else {
for(cjt=_incomingLines.begin();cjt!=_incomingLines.end();++cjt) {
tPPtr parent = cjt->first->original()->parents().empty() ?
tPPtr() : cjt->first->original()->parents()[0];
ShowerParticlePtr temp=
new_ptr(ShowerParticle(*cjt->first->copy(),
cjt->first->progenitor()->perturbative(),
cjt->first->progenitor()->isFinalState()));
fixColour(temp);
temp->x(cjt->first->progenitor()->x());
cjt->first->hasEmitted(false);
if(!(cjt->first->progenitor()==cjt->second)&&cjt->second&&parent)
parent->abandonChild(cjt->second);
cjt->first->progenitor(temp);
_incomingLines[cjt->first]=temp;
cjt->first->reconstructed(ShowerProgenitor::notReconstructed);
}
}
// reset the particles at the end of the shower
_backward.clear();
// if hard process backward products
if(_wasHard)
for(cjt=_incomingLines.begin();cjt!=_incomingLines.end();++cjt)
_backward.insert(cjt->first->progenitor());
clearTransforms();
}
void ShowerTree::resetShowerProducts() {
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
_backward.clear();
_forward.clear();
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit)
_backward.insert(cit->second);
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt)
_forward.insert(cjt->second);
}
void ShowerTree::updateAfterShower(ShowerDecayMap & decay) {
// update the links
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::iterator tit;
for(tit=_treelinks.begin();tit!=_treelinks.end();++tit) {
if(tit->second.first) {
mit=_outgoingLines.find(tit->second.first);
if(mit!=_outgoingLines.end()) tit->second.second=mit->second;
}
}
// get the particles coming from those in the hard process
set<tShowerParticlePtr> hard;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit)
hard.insert(mit->second);
// find the shower particles which should be decayed in the
// shower but didn't come from the hard process
set<tShowerParticlePtr>::const_iterator cit;
for(cit=_forward.begin();cit!=_forward.end();++cit) {
if(decaysInShower((**cit).id())&&
hard.find(*cit)==hard.end()) {
ShowerTreePtr newtree=new_ptr(ShowerTree(*cit,decay));
newtree->setParents();
newtree->_parent=this;
Energy width=(**cit).dataPtr()->generateWidth((**cit).mass());
decay.insert(make_pair(width,newtree));
_treelinks.insert(make_pair(newtree,
make_pair(tShowerProgenitorPtr(),*cit)));
}
}
}
void ShowerTree::addFinalStateBranching(ShowerParticlePtr parent,
const ShowerParticleVector & children) {
assert(children.size()==2);
_forward.erase(parent);
for(unsigned int ix=0; ix<children.size(); ++ix) {
_forward.insert(children[ix]);
}
}
void ShowerTree::addInitialStateBranching(ShowerParticlePtr oldParent,
ShowerParticlePtr newParent,
ShowerParticlePtr otherChild) {
_backward.erase(oldParent);
_backward.insert(newParent);
_forward.insert(otherChild);
}
void ShowerTree::setParents() {
// set the parent tree of the children
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator tit;
for(tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->_parent=this;
}
vector<ShowerProgenitorPtr> ShowerTree::extractProgenitors() {
// extract the particles from the ShowerTree
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator mit;
vector<ShowerProgenitorPtr> ShowerHardJets;
for(mit=incomingLines().begin();mit!=incomingLines().end();++mit)
ShowerHardJets.push_back((*mit).first);
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mjt;
for(mjt=outgoingLines().begin();mjt!=outgoingLines().end();++mjt)
ShowerHardJets.push_back((*mjt).first);
return ShowerHardJets;
}
void ShowerTree::transform(const LorentzRotation & boost, bool applyNow) {
if(applyNow) {
// now boost all the particles
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// incoming
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
cit->first->progenitor()->deepTransform(boost);
cit->first->copy()->deepTransform(boost);
}
// outgoing
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
cjt->first->progenitor()->deepTransform(boost);
cjt->first->copy()->deepTransform(boost);
}
}
else {
Lorentz5Momentum ptemp1 = _incomingLines.begin()->first->progenitor()->momentum();
Lorentz5Momentum ptemp2 = ptemp1;
ptemp1 *= _transforms;
ptemp1 *= boost;
_transforms.transform(boost);
ptemp2 *= _transforms;
}
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->transform(boost,applyNow);
}
void ShowerTree::applyTransforms() {
// now boost all the particles
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// incoming
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
cit->first->progenitor()->deepTransform(_transforms);
cit->first->copy()->deepTransform(_transforms);
}
// outgoing
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
cjt->first->progenitor()->deepTransform(_transforms);
cjt->first->copy()->deepTransform(_transforms);
}
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->applyTransforms();
_transforms = LorentzRotation();
}
void ShowerTree::clearTransforms() {
_transforms = LorentzRotation();
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->clearTransforms();
}
void ShowerTree::fixColour(tShowerParticlePtr part) {
if(!part->colourInfo()->colourLines().empty()) {
if(part->colourInfo()->colourLines().size()==1) {
ColinePtr line=part->colourLine();
if(line) {
line->removeColoured(part);
line->addColoured(part);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(part->colourInfo());
vector<tcColinePtr> lines = colour->colourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr line = const_ptr_cast<ColinePtr>(lines[ix]);
if(line) {
line->removeColoured(part);
line->addColoured(part);
}
}
}
}
if(!part->colourInfo()->antiColourLines().empty()) {
if(part->colourInfo()->antiColourLines().size()==1) {
ColinePtr line=part->antiColourLine();
if(line) {
line->removeAntiColoured(part);
line->addAntiColoured(part);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(part->colourInfo());
vector<tcColinePtr> lines = colour->antiColourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr line = const_ptr_cast<ColinePtr>(lines[ix]);
if(line) {
line->removeAntiColoured(part);
line->addAntiColoured(part);
}
}
}
}
}
vector<ShowerParticlePtr> ShowerTree::extractProgenitorParticles() {
vector<ShowerParticlePtr> particles;
// incoming particles
for(map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator
cit=incomingLines().begin(); cit!=incomingLines().end();++cit)
particles.push_back(cit->first->progenitor());
// outgoing particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt=outgoingLines().begin(); cjt!=outgoingLines().end();++cjt)
particles.push_back(cjt->first->progenitor());
return particles;
}
Lorentz5Distance ShowerTree::spaceTimeDistance(tPPtr particle) {
if(!_spaceTime) return Lorentz5Distance();
Energy2 q2 = particle->mass() > ZERO ? sqr(particle->mass()) : -sqr(particle->mass());
const tcPDPtr data = particle->dataPtr();
// calculate width imposing min value
Energy conMass = max(data->constituentMass(),200*MeV);
Energy width = max(data->generateWidth(particle->mass()),_vmin2/conMass);
// offshellness
Energy2 offShell = q2-sqr(data->constituentMass());
if(abs(offShell)<1e-10*GeV2) offShell = ZERO;
InvEnergy2 fact = UseRandom::rndExp(1./sqrt((sqr(offShell)+sqr(q2*width/conMass))));
Lorentz5Distance output = (hbarc*fact)*particle->momentum();
return output;
}
namespace {
bool decayProduct(tSubProPtr subProcess,
tPPtr particle) {
// must be time-like and not incoming
if(particle->momentum().m2()<=ZERO||
particle == subProcess->incoming().first||
particle == subProcess->incoming().second) return false;
// if only 1 outgoing and this is it
if(subProcess->outgoing().size()==1 &&
subProcess->outgoing()[0]==particle) return true;
// must not be the s-channel intermediate otherwise
if(find(subProcess->incoming().first->children().begin(),
subProcess->incoming().first->children().end(),particle)!=
subProcess->incoming().first->children().end()&&
find(subProcess->incoming().second->children().begin(),
subProcess->incoming().second->children().end(),particle)!=
subProcess->incoming().second->children().end()&&
subProcess->incoming().first ->children().size()==1&&
subProcess->incoming().second->children().size()==1)
return false;
// if non-coloured this is enough
if(!particle->dataPtr()->coloured()) return true;
// if coloured must be unstable
if(particle->dataPtr()->stable()) return false;
// must not have same particle type as a child
int id = particle->id();
for(unsigned int ix=0;ix<particle->children().size();++ix)
if(particle->children()[ix]->id()==id) return false;
// otherwise its a decaying particle
return true;
}
PPtr findParent(PPtr original, bool & isHard,
set<PPtr> outgoingset,
tSubProPtr subProcess) {
PPtr parent=original;
isHard |=(outgoingset.find(original) != outgoingset.end());
if(!original->parents().empty()) {
PPtr orig=original->parents()[0];
if(CurrentGenerator::current().currentEventHandler()->currentStep()->
find(orig)&&decayProduct(subProcess,orig)) {
parent=findParent(orig,isHard,outgoingset,subProcess);
}
}
return parent;
}
}
void ShowerTree::constructTrees(tSubProPtr subProcess, ShowerTreePtr & hard,
ShowerDecayMap & decay, tPVector tagged) {
// temporary storage of the particles
set<PPtr> hardParticles;
// loop over the tagged particles
bool isHard=false;
for (tParticleVector::const_iterator taggedP = tagged.begin();
taggedP != tagged.end(); ++taggedP) {
// if a remnant don't consider
if(CurrentGenerator::current().currentEventHandler()->currentCollision()->isRemnant(*taggedP))
continue;
// find the parent and whether its a colourless s-channel resonance
bool isDecayProd=false;
tPPtr parent = *taggedP;
// check if from s channel decaying colourless particle
while(parent&&!parent->parents().empty()&&!isDecayProd) {
parent = parent->parents()[0];
if(parent == subProcess->incoming().first ||
parent == subProcess->incoming().second ) break;
isDecayProd = decayProduct(subProcess,parent);
}
set<PPtr> outgoingset(tagged.begin(),tagged.end());
// add to list of outgoing hard particles if needed
isHard |=(outgoingset.find(*taggedP) != outgoingset.end());
// not sure what the evolver bit was doing here ?
// if (isDecayProd && evolver_->_hardEmissionMode<2)
if (isDecayProd)
hardParticles.insert(findParent(parent,isHard,outgoingset,subProcess));
else hardParticles.insert(*taggedP);
}
// there must be something to shower
if(hardParticles.empty())
throw Exception() << "No particles to shower in "
<< "ShowerTree::constructTrees()"
<< Exception::eventerror;
if(!isHard)
throw Exception() << "Starting on decay not yet implemented in "
<< "ShowerTree::constructTrees()"
<< Exception::runerror;
// create the hard process ShowerTree
ParticleVector out(hardParticles.begin(),hardParticles.end());
hard=new_ptr(ShowerTree(subProcess->incoming(),out, decay));
hard->setParents();
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Jan 21, 2:28 AM (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4243669
Default Alt Text
(51 KB)

Event Timeline