Page MenuHomeHEPForge

No OneTemporary

diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc
index c93962a..cc2fbda 100644
--- a/FixedOrderGen/src/PhaseSpacePoint.cc
+++ b/FixedOrderGen/src/PhaseSpacePoint.cc
@@ -1,358 +1,358 @@
#include "PhaseSpacePoint.hh"
#include <random>
#include "RHEJ/kinematics.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/debug.hh"
#include "Process.hh"
using namespace RHEJ;
namespace HEJFOG{
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
RHEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){
RHEJ::UnclusteredEvent result;
result.incoming = psp.incoming();
std::sort(
begin(result.incoming), end(result.incoming),
[](Sparticle o1, Sparticle o2){return o1.p.pz()<o2.p.pz();}
);
assert(result.incoming.size() == 2);
result.outgoing = psp.outgoing();
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
RHEJ::rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.central.mur = NaN;
result.central.muf = NaN;
result.central.weight = psp.weight();
return result;
}
namespace{
//generate Ranlux64Engine with fixed, predefined state
/*
* some (all?) of the Ranlux64Engine constructors leave fields
* uninitialised, invoking undefined behaviour. This can be
* circumvented by restoring the state from a file
*/
CLHEP::Ranlux64Engine gen_Ranlux64Engine(){
static const std::string state =
"9876\n"
"0.91280703978419097666\n"
"0.41606065829518357191\n"
"0.99156342622341142601\n"
"0.030922955274050423213\n"
"0.16206278421638486975\n"
"0.76151768001958330956\n"
"0.43765760066092695979\n"
"0.42904698253748563275\n"
"0.11476317525663759511\n"
"0.026620053590963976831\n"
"0.65953715764414511114\n"
"0.30136722624439826745\n"
"3.5527136788005009294e-15 4\n"
"1 202\n";
const std::string file = std::tmpnam(nullptr);
{
std::ofstream out{file};
out << state;
}
CLHEP::Ranlux64Engine result;
result.restoreStatus(file.c_str());
return result;
}
}
CLHEP::Ranlux64Engine PhaseSpacePoint::ran_{gen_Ranlux64Engine()};
void PhaseSpacePoint::reset_ranlux(std::string const & init_file){
reset_ranlux(init_file.c_str());
}
void PhaseSpacePoint::reset_ranlux(char const * init_file){
ran_.restoreStatus(init_file);
}
PhaseSpacePoint::PhaseSpacePoint(
Process const & proc,
fastjet::JetDefinition jet_def,double jetptmin, double rapmax,
RHEJ::PDF & pdf, double E_beam
):
unob_(false),
unof_(false),
jetptmin_{jetptmin},
jet_def_{jet_def}
{
const int nout = proc.njets + (proc.boson?1:0);
status_ = good;
weight_ = 1;
weight_ /= std::tgamma(nout);
{
outgoing_.reserve(nout);
// sqrt(s)/2 is the maximum pt
for(auto&& p_out: gen_LO_partons(proc.njets, jetptmin_, E_beam, rapmax)){
outgoing_.emplace_back(Sparticle{pid::gluon, std::move(p_out)});
}
if(status_ != good) return;
if(proc.boson && *proc.boson == pid::Higgs){
// The Higgs
auto Hparticle=gen_boson(pid::higgs);
auto pos=std::upper_bound(
begin(outgoing_),end(outgoing_),Hparticle,rapidity_less{}
);
outgoing_.insert(pos,Hparticle);
}
reconstruct_incoming(proc.incoming, pdf, E_beam);
if(status_ != good) return;
// set outgoing states
most_backward_FKL(outgoing_).type = incoming_[0].type;
most_forward_FKL(outgoing_).type = incoming_[1].type;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_LO_partons(
int np , double ptmin, double ptmax, double rapmax
){
if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"};
// heuristic parameters for pt sampling
const double ptpar = ptmin + np/5.;
const double arg_small_y = atan((ptmax - ptmin)/ptpar);
const double y_cut = 3.;
weight_ /= pow(16.*pow(M_PI,3),np-2);
std::vector<fastjet::PseudoJet> partons;
partons.reserve(np);
for(int i = 0; i < np; ++i){
const double y = -rapmax + 2*rapmax*ran_.flat();
weight_ *= 2*rapmax;
const double phi = 2*M_PI*ran_.flat();
weight_ *= 2.0*M_PI;
double pt;
const double r1 = ran_.flat();
if(y < y_cut){
pt = ptmin + ptpar*tan(r1*arg_small_y);
const double temp = cos(r1*arg_small_y);
weight_ *= pt*ptpar*arg_small_y/(temp*temp);
}
else{
- const double ptpar2 = ptpar;
+ const double ptpar2 = ptpar/(1 + 5*(y-y_cut));
const double temp = 1. - std::exp((ptmin-ptmax)/ptpar2);
pt = ptmin - ptpar2*std::log(1-r1*temp);
weight_ *= pt*ptpar2*temp/(1-r1*temp);
}
partons.emplace_back(fastjet::PtYPhiM(pt, y, phi));
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
// Need to check that at LO, the number of jets = number of partons;
fastjet::ClusterSequence cs(partons, jet_def_);
auto cluster_jets=cs.inclusive_jets(jetptmin_);
if (cluster_jets.size()!=unsigned(np)){
weight_=0.0;
status_ = not_enough_jets;
return {};
}
std::sort(begin(partons), end(partons), rapidity_less{});
return partons;
}
Sparticle PhaseSpacePoint::gen_boson(
RHEJ::ParticleID bosonid
){
std::array<double,2> ptrans{0.,0.};
for (auto const & parton:outgoing_) {
ptrans[0]-=parton.px();
ptrans[1]-=parton.py();
}
// The Higgs:
// Generate a y Gaussian distributed around 0
const double y = random_normal(1.6);
// r1=ran.flat();
// double sH=flags.mH*(flags.mH + flags.GammaH*tan((M_PI*r1)/2. + (-1. + r1)*atan(flags.mH/flags.GammaH)));
const double sH=125.*125.;
const double mHperp=sqrt(ptrans[0]*ptrans[0]+ptrans[1]*ptrans[1]+sH);
const double pz=mHperp*sinh(y);
const double E=mHperp*cosh(y);
return Sparticle{bosonid,fastjet::PseudoJet{ptrans[0],ptrans[1],pz,E}};
}
Sparticle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Sparticle> const & partons
) const{
if(unob_) return partons[1];
if(!RHEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Sparticle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Sparticle> const & partons
) const{
const size_t last_idx = partons.size() - 1;
if(unof_) return partons[last_idx-1];
if(!RHEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
Sparticle & PhaseSpacePoint::most_backward_FKL(
std::vector<Sparticle> & partons
) const{
if(unob_) return partons[1];
if(!RHEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Sparticle & PhaseSpacePoint::most_forward_FKL(
std::vector<Sparticle> & partons
) const{
const size_t last_idx = partons.size() - 1;
if(unof_) return partons[last_idx-1];
if(!RHEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<RHEJ::ParticleID, 2> const & ids,
RHEJ::PDF & pdf, double E_beam
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
// calculate xa, xb
const double sqrts=2*E_beam;
const double xa=(incoming_[0].p.e()-incoming_[0].p.pz())/sqrts;
const double xb=(incoming_[1].p.e()+incoming_[1].p.pz())/sqrts;
// abort if phase space point is outside of collider energy reach
if (xa>1. || xb>1.){
weight_=0;
status_ = too_much_energy;
return;
}
// pick pdfs
/** TODO:
* ufa, ufb don't correspond to our final scale choice.
* The reversed HEJ scale generators currently expect a full event as input,
* so fixing this is not completely trivial
*/
if(ids[0] == pid::proton || ids[0] == pid::p_bar){
const double ufa=jetptmin_;
incoming_[0].type = generate_incoming_id(xa, ufa, pdf);
}
else {
incoming_[0].type = ids[0];
}
if(ids[1] == pid::proton || ids[1] == pid::p_bar){
const double ufb=jetptmin_;
incoming_[1].type = generate_incoming_id(xb, ufb, pdf);
}
else {
incoming_[1].type = ids[1];
}
assert(momentum_conserved(1e-7));
}
RHEJ::ParticleID PhaseSpacePoint::generate_incoming_id(
double x, double uf, RHEJ::PDF & pdf
){
const double pdfg=fabs(pdf.pdfpt(0,x,uf,pid::gluon));
const double pdfu=fabs(pdf.pdfpt(0,x,uf,pid::up));
const double pdfd=fabs(pdf.pdfpt(0,x,uf,pid::down));
const double pdfux=fabs(pdf.pdfpt(0,x,uf,pid::u_bar));
const double pdfdx=fabs(pdf.pdfpt(0,x,uf,pid::d_bar));
const double pdfc=fabs(pdf.pdfpt(0,x,uf,pid::charm));
const double pdfs=fabs(pdf.pdfpt(0,x,uf,pid::strange));
const double pdfsx=fabs(pdf.pdfpt(0,x,uf,pid::s_bar));
const double pdfb=fabs(pdf.pdfpt(0,x,uf,pid::b));
const double pdftot=pdfg+4.0/9.0*(pdfu + pdfd + pdfux + pdfdx +pdfs +pdfsx + 2.0*(pdfc +pdfb ));
const double r1=pdftot*ran_.flat();
double sum;
if (r1<(sum=pdfg)) {
weight_*=pdftot/pdfg;
return pid::gluon;
}
if (r1<(sum+=(4./9.)*pdfu)) {
weight_*=pdftot/((4./9.)*pdfu);
return pid::up;
}
else if (r1<(sum+=(4./9.)*pdfd)) {
weight_*=pdftot/((4./9.)*pdfd);
return pid::down;
}
else if (r1<(sum+=(4./9.)*pdfux)) {
weight_*=pdftot/((4./9.)*pdfux);
return pid::u_bar;
}
else if (r1<(sum+=(4./9.)*pdfdx)) {
weight_*=pdftot/((4./9.)*pdfdx);
return pid::d_bar;
}
else if (r1<(sum+=(4./9.)*pdfc)) {
weight_*=pdftot/((4./9.)*pdfc);
return pid::c;
}
else if (r1<(sum+=(4./9.)*pdfc)){
weight_*=pdftot/((4./9.)*pdfc);
return pid::c_bar;
}
else if (r1<(sum+=(4./9.)*pdfs)) {
weight_*=pdftot/((4./9.)*pdfs);
return pid::s;
}
else if (r1<(sum+=(4./9.)*pdfsx)) {
weight_*=pdftot/((4./9.)*pdfsx);
return pid::s_bar;
}
else if (r1<(sum+=(4./9.)*pdfb)) {
weight_*=pdftot/((4./9.)*pdfb);
return pid::b;
}
else if (r1<=(sum+=(4./9.)*pdfb)) {
weight_*=pdftot/((4./9.)*pdfb);
return pid::b_bar;
}
std::cout << "Error in choosing incoming parton: "<<x<<" "<<uf<<" "<<sum<<" "<<pdftot<<" "<<r1;
std::cout << " "<<pdfg+4./9.*(pdfu+pdfux+pdfd+pdfdx+pdfs+pdfsx+2.*(pdfc+pdfb))<<std::endl;
throw std::logic_error{"Failed to choose parton flavour"};
}
double PhaseSpacePoint::random_normal(double stddev){
const double r1 = ran_.flat();
const double r2 = ran_.flat();
const double lninvr1 = -log(r1);
const double result = stddev*sqrt(2.*lninvr1)*cos(2.*M_PI*r2);
weight_ *= exp(result*result/(2*stddev*stddev))*sqrt(2.*M_PI)*stddev;
return result;
}
bool PhaseSpacePoint::momentum_conserved(double ep) const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
for(auto const & out: outgoing()) diff -= out.p;
return nearby_ep(diff, fastjet::PseudoJet{}, ep);
}
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Jan 21, 2:19 AM (1 d, 19 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4231918
Default Alt Text
(11 KB)

Event Timeline