Page MenuHomeHEPForge

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/Shower/Base/Evolver.cc b/Shower/Base/Evolver.cc
--- a/Shower/Base/Evolver.cc
+++ b/Shower/Base/Evolver.cc
@@ -1,2311 +1,2322 @@
// -*- C++ -*-
//
// Evolver.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the Evolver class.
//
#include "Evolver.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "ShowerKinematics.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Utilities/Throw.h"
#include "ShowerTree.h"
#include "ShowerProgenitor.h"
#include "KinematicsReconstructor.h"
#include "PartnerFinder.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig++/Shower/ShowerHandler.h"
#include "ThePEG/Utilities/DescribeClass.h"
+#include "ShowerVertex.h"
using namespace Herwig;
DescribeClass<Evolver,Interfaced>
describeEvolver ("Herwig::Evolver","HwShower.so");
IBPtr Evolver::clone() const {
return new_ptr(*this);
}
IBPtr Evolver::fullclone() const {
return new_ptr(*this);
}
void Evolver::persistentOutput(PersistentOStream & os) const {
os << _model << _splittingGenerator << _maxtry
<< _meCorrMode << _hardVetoMode << _hardVetoRead << _hardVetoReadOption
<< _limitEmissions << _spinOpt
<< ounit(_iptrms,GeV) << _beta << ounit(_gamma,GeV) << ounit(_iptmax,GeV)
<< _vetoes << _trunc_Mode << _hardEmissionMode
<< _colourEvolutionMethod << _reconOpt << _hardScaleFactor
<< interaction_<< interactions_.size();
for(unsigned int ix=0;ix<interactions_.size();++ix)
os << oenum(interactions_[ix]);
}
void Evolver::persistentInput(PersistentIStream & is, int) {
unsigned int isize;
is >> _model >> _splittingGenerator >> _maxtry
>> _meCorrMode >> _hardVetoMode >> _hardVetoRead >> _hardVetoReadOption
>> _limitEmissions >> _spinOpt
>> iunit(_iptrms,GeV) >> _beta >> iunit(_gamma,GeV) >> iunit(_iptmax,GeV)
>> _vetoes >> _trunc_Mode >> _hardEmissionMode
>> _colourEvolutionMethod >> _reconOpt >> _hardScaleFactor
>> interaction_ >> isize;
interactions_.resize(isize);
for(unsigned int ix=0;ix<interactions_.size();++ix)
is >> ienum(interactions_[ix]);
}
void Evolver::doinit() {
Interfaced::doinit();
if(interaction_==0) {
interactions_.push_back(ShowerInteraction::QCD);
interactions_.push_back(ShowerInteraction::QED);
}
else if(interaction_==1) {
interactions_.push_back(ShowerInteraction::QCD);
}
else if(interaction_==2) {
interactions_.push_back(ShowerInteraction::QED);
interactions_.push_back(ShowerInteraction::QCD);
}
else if(interaction_==3) {
interactions_.push_back(ShowerInteraction::QED);
}
else if(interaction_==4) {
interactions_.push_back(ShowerInteraction::Both);
}
}
void Evolver::Init() {
static ClassDocumentation<Evolver> documentation
("This class is responsible for carrying out the showering,",
"including the kinematics reconstruction, in a given scale range,"
"including the option of the POWHEG approach to simulated next-to-leading order"
" radiation\\cite{Nason:2004rx}.",
"%\\cite{Nason:2004rx}\n"
"\\bibitem{Nason:2004rx}\n"
" P.~Nason,\n"
" ``A new method for combining NLO QCD with shower Monte Carlo algorithms,''\n"
" JHEP {\\bf 0411} (2004) 040\n"
" [arXiv:hep-ph/0409146].\n"
" %%CITATION = JHEPA,0411,040;%%\n");
static Reference<Evolver,SplittingGenerator>
interfaceSplitGen("SplittingGenerator",
"A reference to the SplittingGenerator object",
&Herwig::Evolver::_splittingGenerator,
false, false, true, false);
static Reference<Evolver,ShowerModel> interfaceShowerModel
("ShowerModel",
"The pointer to the object which defines the shower evolution model.",
&Evolver::_model, false, false, true, false, false);
static Parameter<Evolver,unsigned int> interfaceMaxTry
("MaxTry",
"The maximum number of attempts to generate the shower from a"
" particular ShowerTree",
&Evolver::_maxtry, 100, 1, 1000,
false, false, Interface::limited);
static Switch<Evolver, unsigned int> ifaceMECorrMode
("MECorrMode",
"Choice of the ME Correction Mode",
&Evolver::_meCorrMode, 1, false, false);
static SwitchOption off
(ifaceMECorrMode,"No","MECorrections off", 0);
static SwitchOption on
(ifaceMECorrMode,"Yes","hard+soft on", 1);
static SwitchOption hard
(ifaceMECorrMode,"Hard","only hard on", 2);
static SwitchOption soft
(ifaceMECorrMode,"Soft","only soft on", 3);
static Switch<Evolver, unsigned int> ifaceHardVetoMode
("HardVetoMode",
"Choice of the Hard Veto Mode",
&Evolver::_hardVetoMode, 1, false, false);
static SwitchOption HVoff
(ifaceHardVetoMode,"No","hard vetos off", 0);
static SwitchOption HVon
(ifaceHardVetoMode,"Yes","hard vetos on", 1);
static SwitchOption HVIS
(ifaceHardVetoMode,"Initial", "only IS emissions vetoed", 2);
static SwitchOption HVFS
(ifaceHardVetoMode,"Final","only FS emissions vetoed", 3);
static Switch<Evolver, unsigned int> ifaceHardVetoRead
("HardVetoScaleSource",
"If hard veto scale is to be read",
&Evolver::_hardVetoRead, 0, false, false);
static SwitchOption HVRcalc
(ifaceHardVetoRead,"Calculate","Calculate from hard process", 0);
static SwitchOption HVRread
(ifaceHardVetoRead,"Read","Read from XComb->lastScale", 1);
static Switch<Evolver, bool> ifaceHardVetoReadOption
("HardVetoReadOption",
"Apply read-in scale veto to all collisions or just the primary one?",
&Evolver::_hardVetoReadOption, false, false, false);
static SwitchOption AllCollisions
(ifaceHardVetoReadOption,
"AllCollisions",
"Read-in pT veto applied to primary and secondary collisions.",
false);
static SwitchOption PrimaryCollision
(ifaceHardVetoReadOption,
"PrimaryCollision",
"Read-in pT veto applied to primary but not secondary collisions.",
true);
static Parameter<Evolver, Energy> ifaceiptrms
("IntrinsicPtGaussian",
"RMS of intrinsic pT of Gaussian distribution:\n"
"2*(1-Beta)*exp(-sqr(intrinsicpT/RMS))/sqr(RMS)",
&Evolver::_iptrms, GeV, ZERO, ZERO, 1000000.0*GeV,
false, false, Interface::limited);
static Parameter<Evolver, double> ifacebeta
("IntrinsicPtBeta",
"Proportion of inverse quadratic distribution in generating intrinsic pT.\n"
"(1-Beta) is the proportion of Gaussian distribution",
&Evolver::_beta, 0, 0, 1,
false, false, Interface::limited);
static Parameter<Evolver, Energy> ifacegamma
("IntrinsicPtGamma",
"Parameter for inverse quadratic:\n"
"2*Beta*Gamma/(sqr(Gamma)+sqr(intrinsicpT))",
&Evolver::_gamma,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static Parameter<Evolver, Energy> ifaceiptmax
("IntrinsicPtIptmax",
"Upper bound on intrinsic pT for inverse quadratic",
&Evolver::_iptmax,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static RefVector<Evolver,ShowerVeto> ifaceVetoes
("Vetoes",
"The vetoes to be checked during showering",
&Evolver::_vetoes, -1,
false,false,true,true,false);
static Switch<Evolver,unsigned int> interfaceLimitEmissions
("LimitEmissions",
"Limit the number and type of emissions for testing",
&Evolver::_limitEmissions, 0, false, false);
static SwitchOption interfaceLimitEmissionsNoLimit
(interfaceLimitEmissions,
"NoLimit",
"Allow an arbitrary number of emissions",
0);
static SwitchOption interfaceLimitEmissionsOneInitialStateEmission
(interfaceLimitEmissions,
"OneInitialStateEmission",
"Allow one emission in the initial state and none in the final state",
1);
static SwitchOption interfaceLimitEmissionsOneFinalStateEmission
(interfaceLimitEmissions,
"OneFinalStateEmission",
"Allow one emission in the final state and none in the initial state",
2);
static SwitchOption interfaceLimitEmissionsHardOnly
(interfaceLimitEmissions,
"HardOnly",
"Only allow radiation from the hard ME correction",
3);
static SwitchOption interfaceLimitEmissionsOneEmission
(interfaceLimitEmissions,
"OneEmission",
"Allow one emission in either the final state or initial state, but not both",
4);
static Switch<Evolver,bool> interfaceTruncMode
("TruncatedShower", "Include the truncated shower?",
&Evolver::_trunc_Mode, 1, false, false);
static SwitchOption interfaceTruncMode0
(interfaceTruncMode,"No","Truncated Shower is OFF", 0);
static SwitchOption interfaceTruncMode1
(interfaceTruncMode,"Yes","Truncated Shower is ON", 1);
static Switch<Evolver,unsigned int> interfaceHardEmissionMode
("HardEmissionMode",
"Whether to use ME corrections or POWHEG for the hardest emission",
&Evolver::_hardEmissionMode, 0, false, false);
static SwitchOption interfaceHardEmissionModeMECorrection
(interfaceHardEmissionMode,
"MECorrection",
"Old fashioned ME correction",
0);
static SwitchOption interfaceHardEmissionModePOWHEG
(interfaceHardEmissionMode,
"POWHEG",
"Powheg style hard emission",
1);
static Switch<Evolver,int> interfaceColourEvolutionMethod
("ColourEvolutionMethod",
"Choice of method for choosing the colour factor in gluon evolution",
&Evolver::_colourEvolutionMethod, 0, false, false);
static SwitchOption interfaceColourEvolutionMethodDefault
(interfaceColourEvolutionMethod,
"Default",
"Colour factor is CA for all scales",
0);
static SwitchOption interfaceColourEvolutionMethodHalfCA
(interfaceColourEvolutionMethod,
"HalfCA",
"Only use half the normal radiation until second scale is reached",
1);
static Switch<Evolver,unsigned int > interfaceInteractions
("Interactions",
"The interactions to be used in the shower",
&Evolver::interaction_, 1, false, false);
static SwitchOption interfaceInteractionsQCDFirst
(interfaceInteractions,
"QCDFirst",
"QCD first then QED",
0);
static SwitchOption interfaceInteractionsQCDOnly
(interfaceInteractions,
"QCDOnly",
"Only QCD",
1);
static SwitchOption interfaceInteractionsQEDFirst
(interfaceInteractions,
"QEDFirst",
"QED first then QCD",
2);
static SwitchOption interfaceInteractionsQEDOnly
(interfaceInteractions,
"QEDOnly",
"Only QED",
3);
static SwitchOption interfaceInteractionsBothAtOnce
(interfaceInteractions,
"BothAtOnce",
"Generate both at the same time",
4);
static Switch<Evolver,unsigned int> interfaceReconstructionOption
("ReconstructionOption",
"Treatment of the reconstruction of the transverse momentum of "
"a branching from the evolution scale.",
&Evolver::_reconOpt, 0, false, false);
static SwitchOption interfaceReconstructionOptionCutOff
(interfaceReconstructionOption,
"CutOff",
"Use the cut-off masses in the calculation",
0);
static SwitchOption interfaceReconstructionOptionOffShell
(interfaceReconstructionOption,
"OffShell",
"Use the off-shell masses in the calculation",
1);
static Parameter<Evolver,double> interfaceHardScaleFactor
("HardScaleFactor",
"Set the factor to multiply the hard veto scale.",
&Evolver::_hardScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Switch<Evolver,unsigned int> interfaceSpinCorrelations
("SpinCorrelations",
"Treatment of spin correlations in the parton shower",
&Evolver::_spinOpt, 0, false, false);
static SwitchOption interfaceSpinCorrelationsOff
(interfaceSpinCorrelations,
"Off",
"No spin correlations",
0);
static SwitchOption interfaceSpinCorrelationsSpin
(interfaceSpinCorrelations,
"Spin",
"Include the azimuthal spin correlations only",
1);
static SwitchOption interfaceSpinCorrelationsSoft
(interfaceSpinCorrelations,
"Soft",
"Include the soft correlations inside the cone only",
2);
static SwitchOption interfaceSpinCorrelationsBoth
(interfaceSpinCorrelations,
"Both",
"Include both spin and soft correlations",
3);
}
void Evolver::generateIntrinsicpT(vector<ShowerProgenitorPtr> particlesToShower) {
_intrinsic.clear();
if ( !ipTon() || !isISRadiationON() ) return;
// don't do anything for the moment for secondary scatters
if( !ShowerHandler::currentHandler()->firstInteraction() ) return;
// generate intrinsic pT
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
// only consider initial-state particles
if(particlesToShower[ix]->progenitor()->isFinalState()) continue;
if(!particlesToShower[ix]->progenitor()->dataPtr()->coloured()) continue;
Energy ipt;
if(UseRandom::rnd() > _beta) {
ipt=_iptrms*sqrt(-log(UseRandom::rnd()));
}
else {
ipt=_gamma*sqrt(pow(1.+sqr(_iptmax/_gamma), UseRandom::rnd())-1.);
}
pair<Energy,double> pt = make_pair(ipt,UseRandom::rnd(Constants::twopi));
_intrinsic[particlesToShower[ix]] = pt;
}
}
void Evolver::setupMaximumScales(const vector<ShowerProgenitorPtr> & p,
XCPtr xcomb) {
// let POWHEG events radiate freely
if(_hardEmissionMode==1&&hardTree()) {
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(Constants::MaxEnergy);
return;
}
// return if no vetos
if (!hardVetoOn()) return;
// find out if hard partonic subprocess.
bool isPartonic(false);
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = _currenttree->incomingLines().begin();
Lorentz5Momentum pcm;
for(; cit!=currentTree()->incomingLines().end(); ++cit) {
pcm += cit->first->progenitor()->momentum();
isPartonic |= cit->first->progenitor()->coloured();
}
// find maximum pt from hard process, the maximum pt from all outgoing
// coloured lines (this is simpler and more general than
// 2stu/(s^2+t^2+u^2)). Maximum scale for scattering processes will
// be transverse mass.
Energy ptmax = -1.0*GeV;
// general case calculate the scale
if (!hardVetoXComb()||
(hardVetoReadOption()&&
!ShowerHandler::currentHandler()->firstInteraction())) {
// scattering process
if(currentTree()->isHard()) {
assert(xcomb);
// coloured incoming particles
if (isPartonic) {
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt = currentTree()->outgoingLines().begin();
for(; cjt!=currentTree()->outgoingLines().end(); ++cjt) {
if (cjt->first->progenitor()->coloured())
ptmax = max(ptmax,cjt->first->progenitor()->momentum().mt());
}
}
if (ptmax < ZERO) ptmax = pcm.m();
if(hardVetoXComb()&&hardVetoReadOption()&&
!ShowerHandler::currentHandler()->firstInteraction()) {
ptmax=min(ptmax,sqrt(xcomb->lastScale()));
}
}
// decay, incoming() is the decaying particle.
else {
ptmax = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
// hepeup.SCALUP is written into the lastXComb by the
// LesHouchesReader itself - use this by user's choice.
// Can be more general than this.
else {
if(currentTree()->isHard()) {
assert(xcomb);
ptmax = sqrt( xcomb->lastScale() );
}
else {
ptmax = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
ptmax *= hardScaleFactor();
// set maxHardPt for all progenitors. For partonic processes this
// is now the max pt in the FS, for non-partonic processes or
// processes with no coloured FS the invariant mass of the IS
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(ptmax);
}
void Evolver::showerHardProcess(ShowerTreePtr hard, XCPtr xcomb) {
_hardme = HwMEBasePtr();
// extract the matrix element
tStdXCombPtr lastXC = dynamic_ptr_cast<tStdXCombPtr>(xcomb);
if(lastXC) {
_hardme = dynamic_ptr_cast<HwMEBasePtr>(lastXC->matrixElement());
}
_decayme = HwDecayerBasePtr();
// set the current tree
currentTree(hard);
hardTree(HardTreePtr());
// number of attempts if more than one interaction switched on
unsigned int interactionTry=0;
do {
try {
// generate the showering
doShowering(true,xcomb);
// if no vetos return
return;
}
catch (InteractionVeto) {
currentTree()->clear();
++interactionTry;
}
}
while(interactionTry<=5);
throw Exception() << "Too many tries for shower in "
<< "Evolver::showerHardProcess()"
<< Exception::eventerror;
}
void Evolver::hardMatrixElementCorrection(bool hard) {
// set the initial enhancement factors for the soft correction
_initialenhance = 1.;
_finalenhance = 1.;
// if hard matrix element switched off return
if(!MECOn()) return;
// see if we can get the correction from the matrix element
// or decayer
if(hard) {
if(_hardme&&_hardme->hasMECorrection()) {
_hardme->initializeMECorrection(_currenttree,
_initialenhance,_finalenhance);
if(hardMEC())
_hardme->applyHardMatrixElementCorrection(_currenttree);
}
}
else {
if(_decayme&&_decayme->hasMECorrection()) {
_decayme->initializeMECorrection(_currenttree,
_initialenhance,_finalenhance);
if(hardMEC())
_decayme->applyHardMatrixElementCorrection(_currenttree);
}
}
}
bool Evolver::timeLikeShower(tShowerParticlePtr particle,
ShowerInteraction::Type type,
bool first) {
// don't do anything if not needed
if(_limitEmissions == 1 || hardOnly() ||
( _limitEmissions == 2 && _nfs != 0) ||
( _limitEmissions == 4 && _nfs + _nis != 0) ) return false;
ShowerParticleVector theChildren;
int ntry=0;
do {
++ntry;
// generate the emission
Branching fb;
while (true) {
fb=_splittingGenerator->chooseForwardBranching(*particle,_finalenhance,type);
// no emission return
if(!fb.kinematics) return false;
// if emission OK break
if(!timeLikeVetoed(fb,particle)) break;
// otherwise reset scale and continue - SO IS involved in veto algorithm
particle->vetoEmission(fb.type,fb.kinematics->scale());
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
tcPDPtr pdata[2];
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
theChildren.push_back(new_ptr(ShowerParticle(pdata[0],true)));
theChildren.push_back(new_ptr(ShowerParticle(pdata[1],true)));
// update the children
particle->showerKinematics()->
updateChildren(particle, theChildren,fb.type);
// update number of emissions
++_nfs;
if(_limitEmissions!=0) return true;
// shower the first particle
timeLikeShower(theChildren[0],type,false);
if(theChildren[0]->spinInfo()) theChildren[0]->spinInfo()->develop();
// shower the second particle
timeLikeShower(theChildren[1],type,false);
if(theChildren[1]->spinInfo()) theChildren[1]->spinInfo()->develop();
// that's if for old approach
if(_reconOpt==0) break;
// branching has happened
particle->showerKinematics()->
updateParent(particle, theChildren,fb.type);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<theChildren.size();++ix)
particle->abandonChild(theChildren[ix]);
theChildren.clear();
}
}
while(particle->virtualMass()==ZERO&&ntry<50);
if(first)
particle->showerKinematics()->resetChildren(particle,theChildren);
return true;
}
bool
Evolver::spaceLikeShower(tShowerParticlePtr particle, PPtr beam,
ShowerInteraction::Type type) {
//using the pdf's associated with the ShowerHandler assures, that
//modified pdf's are used for the secondary interactions via
//CascadeHandler::resetPDFs(...)
tcPDFPtr pdf;
if(ShowerHandler::currentHandler()->firstPDF().particle() == _beam)
pdf = ShowerHandler::currentHandler()->firstPDF().pdf();
if(ShowerHandler::currentHandler()->secondPDF().particle() == _beam)
pdf = ShowerHandler::currentHandler()->secondPDF().pdf();
Energy freeze = ShowerHandler::currentHandler()->pdfFreezingScale();
// don't do anything if not needed
if(_limitEmissions == 2 || hardOnly() ||
( _limitEmissions == 1 && _nis != 0 ) ||
( _limitEmissions == 4 && _nis + _nfs != 0 ) ) return false;
Branching bb;
// generate branching
while (true) {
bb=_splittingGenerator->chooseBackwardBranching(*particle,beam,
_initialenhance,
_beam,type,
pdf,freeze);
// return if no emission
if(!bb.kinematics) return false;
// if not vetoed break
if(!spaceLikeVetoed(bb,particle)) break;
// otherwise reset scale and continue
particle->vetoEmission(bb.type,bb.kinematics->scale());
+ if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
}
// assign the splitting function and shower kinematics
particle->showerKinematics(bb.kinematics);
// For the time being we are considering only 1->2 branching
// particles as in Sudakov form factor
tcPDPtr part[2]={getParticleData(bb.ids[0]),
getParticleData(bb.ids[2])};
if(particle->id()!=bb.ids[1]) {
if(part[0]->CC()) part[0]=part[0]->CC();
if(part[1]->CC()) part[1]=part[1]->CC();
}
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent=new_ptr(ShowerParticle(part[0],false));
ShowerParticlePtr otherChild = new_ptr(ShowerParticle(part[1],true,true));
ShowerParticleVector theChildren;
theChildren.push_back(particle);
theChildren.push_back(otherChild);
//this updates the evolution scale
particle->showerKinematics()->
updateParent(newParent, theChildren,bb.type);
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,newParent);
_currenttree->addInitialStateBranching(particle,newParent,otherChild);
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
++_nis;
bool emitted = _limitEmissions==0 ?
spaceLikeShower(newParent,beam,type) : false;
+ if(newParent->spinInfo()) newParent->spinInfo()->develop();
// now reconstruct the momentum
if(!emitted) {
if(_intrinsic.find(_progenitor)==_intrinsic.end()) {
bb.kinematics->updateLast(newParent,ZERO,ZERO);
}
else {
pair<Energy,double> kt=_intrinsic[_progenitor];
bb.kinematics->updateLast(newParent,
kt.first*cos(kt.second),
kt.first*sin(kt.second));
}
}
particle->showerKinematics()->
updateChildren(newParent, theChildren,bb.type);
if(_limitEmissions!=0) return true;
// perform the shower of the final-state particle
timeLikeShower(otherChild,type,true);
+ if(theChildren[1]->spinInfo()) theChildren[1]->spinInfo()->develop();
// return the emitted
return true;
}
void Evolver::showerDecay(ShowerTreePtr decay) {
_decayme = HwDecayerBasePtr();
_hardme = HwMEBasePtr();
// find the decayer
// try the normal way if possible
tDMPtr dm = decay->incomingLines().begin()->first->original() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->copy() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->progenitor()->decayMode();
// otherwise make a string and look it up
if(!dm) {
string tag = decay->incomingLines().begin()->first->original()->dataPtr()->name()
+ "->";
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it=decay->outgoingLines().begin();it!=decay->outgoingLines().end();++it) {
if(it!=decay->outgoingLines().begin()) tag += ",";
tag += it->first->original()->dataPtr()->name();
}
tag += ";";
dm = generator()->findDecayMode(tag);
}
if(dm) _decayme = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// set the ShowerTree to be showered
currentTree(decay);
decay->applyTransforms();
hardTree(HardTreePtr());
unsigned int interactionTry=0;
do {
try {
// generate the showering
doShowering(false,XCPtr());
// if no vetos return
return;
}
catch (InteractionVeto) {
currentTree()->clear();
++interactionTry;
}
}
while(interactionTry<=5);
throw Exception() << "Too many tries for QED shower in Evolver::showerDecay()"
<< Exception::eventerror;
}
bool Evolver::spaceLikeDecayShower(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass,ShowerInteraction::Type type) {
Branching fb;
while (true) {
fb=_splittingGenerator->chooseDecayBranching(*particle,maxScales,minmass,
_initialenhance,type);
// return if no radiation
if(!fb.kinematics) return false;
// if not vetoed break
if(!spaceLikeDecayVetoed(fb,particle)) break;
// otherwise reset scale and continue
particle->vetoEmission(fb.type,fb.kinematics->scale());
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
tcPDPtr pdata[2];
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(pdata[0],true)));
theChildren.push_back(new_ptr(ShowerParticle(pdata[1],true)));
// some code moved to updateChildren
particle->showerKinematics()->
updateChildren(particle, theChildren, fb.type);
// In the case of splittings which involves coloured particles,
// set properly the colour flow of the branching.
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,theChildren[0]);
_currenttree->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the first particle
spaceLikeDecayShower(theChildren[0],maxScales,minmass,type);
// shower the second particle
timeLikeShower(theChildren[1],type,true);
// branching has happened
return true;
}
vector<ShowerProgenitorPtr> Evolver::setupShower(bool hard) {
// generate POWHEG hard emission if needed
if(_hardEmissionMode==1) hardestEmission(hard);
ShowerInteraction::Type inter = interactions_[0];
if(_hardtree&&inter!=ShowerInteraction::Both) {
inter = _hardtree->interaction();
}
// set the initial colour partners
setEvolutionPartners(hard,inter,false);
// generate hard me if needed
if(_hardEmissionMode==0) hardMatrixElementCorrection(hard);
// get the particles to be showered
vector<ShowerProgenitorPtr> particlesToShower =
currentTree()->extractProgenitors();
// remake the colour partners if needed
if(_hardEmissionMode==0 && _currenttree->hardMatrixElementCorrection()) {
setEvolutionPartners(hard,interactions_[0],true);
_currenttree->resetShowerProducts();
}
// return the answer
return particlesToShower;
}
void Evolver::setEvolutionPartners(bool hard,ShowerInteraction::Type type,
bool clear) {
// match the particles in the ShowerTree and hardTree
if(hardTree() && !hardTree()->connect(currentTree()))
throw Exception() << "Can't match trees in "
<< "Evolver::setEvolutionPartners()"
<< Exception::eventerror;
// extract the progenitors
vector<ShowerParticlePtr> particles =
currentTree()->extractProgenitorParticles();
// clear the partners if needed
if(clear) {
for(unsigned int ix=0;ix<particles.size();++ix) {
particles[ix]->partner(ShowerParticlePtr());
particles[ix]->clearPartners();
}
}
// sort out the colour partners
if(hardTree()) {
// find the partner
for(unsigned int ix=0;ix<particles.size();++ix) {
tHardBranchingPtr partner =
hardTree()->particles()[particles[ix]]->colourPartner();
if(!partner) continue;
for(map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
it=hardTree()->particles().begin();
it!=hardTree()->particles().end();++it) {
if(it->second==partner) particles[ix]->partner(it->first);
}
if(!particles[ix]->partner())
throw Exception() << "Can't match partners in "
<< "Evolver::setEvolutionPartners()"
<< Exception::eventerror;
}
}
// Set the initial evolution scales
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,type,!_hardtree);
}
void Evolver::updateHistory(tShowerParticlePtr particle) {
if(!particle->children().empty()) {
ShowerParticleVector theChildren;
for(unsigned int ix=0;ix<particle->children().size();++ix) {
ShowerParticlePtr part = dynamic_ptr_cast<ShowerParticlePtr>
(particle->children()[ix]);
theChildren.push_back(part);
}
// update the history if needed
if(particle==_currenttree->getFinalStateShowerProduct(_progenitor))
_currenttree->updateFinalStateShowerProduct(_progenitor,
particle,theChildren);
_currenttree->addFinalStateBranching(particle,theChildren);
for(unsigned int ix=0;ix<theChildren.size();++ix)
updateHistory(theChildren[ix]);
}
}
bool Evolver::startTimeLikeShower(ShowerInteraction::Type type) {
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && !mit->second->children().empty() ) {
bool output=truncatedTimeLikeShower(progenitor()->progenitor(),
mit->second ,type);
if(output) updateHistory(progenitor()->progenitor());
return output;
}
}
bool output = hardOnly() ? false :
timeLikeShower(progenitor()->progenitor() ,type,true) ;
if(output) updateHistory(progenitor()->progenitor());
return output;
}
bool Evolver::startSpaceLikeShower(PPtr parent, ShowerInteraction::Type type) {
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
return truncatedSpaceLikeShower( progenitor()->progenitor(),
parent, mit->second->parent(), type );
}
}
return hardOnly() ? false :
spaceLikeShower(progenitor()->progenitor(),parent,type);
}
bool Evolver::
startSpaceLikeDecayShower(const ShowerParticle::EvolutionScales & maxScales,
Energy minimumMass,ShowerInteraction::Type type) {
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
HardBranchingPtr branch=mit->second;
while(branch->parent()) branch=branch->parent();
return truncatedSpaceLikeDecayShower(progenitor()->progenitor(),maxScales,
minimumMass, branch ,type);
}
}
return hardOnly() ? false :
spaceLikeDecayShower(progenitor()->progenitor(),maxScales,minimumMass,type);
}
bool Evolver::timeLikeVetoed(const Branching & fb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction::Type type = fb.type==ShowerPartnerType::QED ?
ShowerInteraction::QED : ShowerInteraction::QCD;
// check whether emission was harder than largest pt of hard subprocess
if ( hardVetoFS() && fb.kinematics->pT() > _progenitor->maxHardPt() )
return true;
// soft matrix element correction veto
if( softMEC()) {
if(_hardme && _hardme->hasMECorrection()) {
if(_hardme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
else if(_decayme && _decayme->hasMECorrection()) {
if(_decayme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
}
// veto on maximum pt
if(fb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
// general vetos
if (fb.kinematics && !_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoTimeLike(_progenitor,particle,fb);
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if(vetoed) return true;
}
return false;
}
bool Evolver::spaceLikeVetoed(const Branching & bb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction::Type type = bb.type==ShowerPartnerType::QED ?
ShowerInteraction::QED : ShowerInteraction::QCD;
// check whether emission was harder than largest pt of hard subprocess
if (hardVetoIS() && bb.kinematics->pT() > _progenitor->maxHardPt())
return true;
// apply the soft correction
if( softMEC() && _hardme && _hardme->hasMECorrection() ) {
if(_hardme->softMatrixElementVeto(_progenitor,particle,bb))
return true;
}
// the more general vetos
// check vs max pt for the shower
if(bb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,bb);
switch ((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if (vetoed) return true;
}
return false;
}
bool Evolver::spaceLikeDecayVetoed( const Branching & fb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction::Type type = fb.type==ShowerPartnerType::QED ?
ShowerInteraction::QED : ShowerInteraction::QCD;
// apply the soft correction
if( softMEC() && _decayme && _decayme->hasMECorrection() ) {
if(_decayme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
// veto on hardest pt in the shower
if(fb.kinematics->pT()> _progenitor->maximumpT(type)) return true;
// general vetos
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,fb);
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
if (vetoed) return true;
}
}
return false;
}
void Evolver::hardestEmission(bool hard) {
HardTreePtr ISRTree;
if( ( _hardme && _hardme->hasPOWHEGCorrection()!=0) ||
( _decayme && _decayme->hasPOWHEGCorrection()!=0)) {
if(_hardme) {
assert(hard);
if(interaction_==4) {
vector<ShowerInteraction::Type> inter(2);
inter[0] = ShowerInteraction::QCD;
inter[1] = ShowerInteraction::QED;
_hardtree = _hardme->generateHardest( currentTree(),inter );
}
else {
_hardtree = _hardme->generateHardest( currentTree(),interactions_ );
}
}
else {
assert(!hard);
_hardtree = _decayme->generateHardest( currentTree() );
}
// store initial state POWHEG radiation
if(_hardtree && _hardme && _hardme->hasPOWHEGCorrection()==1)
ISRTree=_hardtree;
}
else {
_hardtree = ShowerHandler::currentHandler()->generateCKKW(currentTree());
}
// if hard me doesn't have a FSR powheg
// correction use decay powheg correction
if (_hardme && _hardme->hasPOWHEGCorrection()<2) {
// check for intermediate colour singlet resonance
const ParticleVector inter = _hardme->subProcess()->intermediates();
if (inter.size()!=1 ||
inter[0]->momentum().m2()/GeV2 < 0 ||
inter[0]->dataPtr()->iColour()!=PDT::Colour0){
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
map<ShowerProgenitorPtr, tShowerParticlePtr > out = currentTree()->outgoingLines();
// ignore cases where outgoing particles are not coloured
if (out.size()!=2 ||
out. begin()->second->dataPtr()->iColour()==PDT::Colour0 ||
out.rbegin()->second->dataPtr()->iColour()==PDT::Colour0) {
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
// look up decay mode
tDMPtr dm;
string tag;
string inParticle = inter[0]->dataPtr()->name() + "->";
vector<string> outParticles;
outParticles.push_back(out.begin ()->first->progenitor()->dataPtr()->name());
outParticles.push_back(out.rbegin()->first->progenitor()->dataPtr()->name());
for (int it=0; it<2; ++it){
tag = inParticle + outParticles[it] + "," + outParticles[(it+1)%2] + ";";
dm = generator()->findDecayMode(tag);
if(dm) break;
}
// get the decayer
HwDecayerBasePtr decayer;
if(dm) decayer = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// check if decayer has a FSR POWHEG correction
if (!decayer || decayer->hasPOWHEGCorrection()<2){
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
// generate the hardest emission
ShowerDecayMap decay;
PPtr in = new_ptr(*inter[0]);
ShowerTreePtr decayTree = new_ptr(ShowerTree(in, decay));
HardTreePtr FSRTree = decayer->generateHardest(decayTree);
if (!FSRTree) {
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
// if there is no ISRTree make _hardtree from FSRTree
if (!ISRTree){
vector<HardBranchingPtr> inBranch,hardBranch;
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit =currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit ) {
inBranch.push_back(new_ptr(HardBranching(cit->second,SudakovPtr(),
HardBranchingPtr(),
HardBranching::Incoming)));
inBranch.back()->beam(cit->first->original()->parents()[0]);
hardBranch.push_back(inBranch.back());
}
if(inBranch[0]->branchingParticle()->dataPtr()->coloured()) {
inBranch[0]->colourPartner(inBranch[1]);
inBranch[1]->colourPartner(inBranch[0]);
}
for(set<HardBranchingPtr>::iterator it=FSRTree->branchings().begin();
it!=FSRTree->branchings().end();++it) {
if((**it).branchingParticle()->id()!=in->id())
hardBranch.push_back(*it);
}
hardBranch[2]->colourPartner(hardBranch[3]);
hardBranch[3]->colourPartner(hardBranch[2]);
HardTreePtr newTree = new_ptr(HardTree(hardBranch,inBranch,
ShowerInteraction::QCD));
_hardtree = newTree;
}
// Otherwise modify the ISRTree to include the emission in FSRTree
else {
vector<tShowerParticlePtr> FSROut, ISROut;
set<HardBranchingPtr>::iterator itFSR, itISR;
// get outgoing particles
for(itFSR =FSRTree->branchings().begin();
itFSR!=FSRTree->branchings().end();++itFSR){
if ((**itFSR).status()==HardBranching::Outgoing)
FSROut.push_back((*itFSR)->branchingParticle());
}
for(itISR =ISRTree->branchings().begin();
itISR!=ISRTree->branchings().end();++itISR){
if ((**itISR).status()==HardBranching::Outgoing)
ISROut.push_back((*itISR)->branchingParticle());
}
// find COM frame formed by outgoing particles
LorentzRotation eventFrameFSR, eventFrameISR;
eventFrameFSR = ((FSROut[0]->momentum()+FSROut[1]->momentum()).findBoostToCM());
eventFrameISR = ((ISROut[0]->momentum()+ISROut[1]->momentum()).findBoostToCM());
// find rotation between ISR and FSR frames
int j=0;
if (ISROut[0]->id()!=FSROut[0]->id()) j=1;
eventFrameISR.rotateZ( (eventFrameFSR*FSROut[0]->momentum()).phi()-
(eventFrameISR*ISROut[j]->momentum()).phi() );
eventFrameISR.rotateY( (eventFrameFSR*FSROut[0]->momentum()).theta()-
(eventFrameISR*ISROut[j]->momentum()).theta() );
eventFrameISR.invert();
for (itFSR=FSRTree->branchings().begin();
itFSR!=FSRTree->branchings().end();++itFSR){
if ((**itFSR).branchingParticle()->id()==in->id()) continue;
for (itISR =ISRTree->branchings().begin();
itISR!=ISRTree->branchings().end();++itISR){
if ((**itISR).status()==HardBranching::Incoming) continue;
if ((**itFSR).branchingParticle()->id()==
(**itISR).branchingParticle()->id()){
// rotate FSRTree particle to ISRTree event frame
(**itISR).branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).branchingParticle()->momentum());
(**itISR).branchingParticle()->rescaleMass();
// add the children of the FSRTree particles to the ISRTree
if(!(**itFSR).children().empty()){
(**itISR).addChild((**itFSR).children()[0]);
(**itISR).addChild((**itFSR).children()[1]);
// rotate momenta to ISRTree event frame
(**itISR).children()[0]->branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).children()[0]->branchingParticle()->momentum());
(**itISR).children()[1]->branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).children()[1]->branchingParticle()->momentum());
}
}
}
}
_hardtree = ISRTree;
}
}
if(_hardtree){
connectTrees(currentTree(),_hardtree,hard);
}
}
bool Evolver::truncatedTimeLikeShower(tShowerParticlePtr particle,
HardBranchingPtr branch,
ShowerInteraction::Type type) {
int ntry=0;
do {
++ntry;
Branching fb;
unsigned int iout=0;
tcPDPtr pdata[2];
while (true) {
// no truncated shower break
if(!isTruncatedShowerON()||hardOnly()) break;
// generate emission
fb=splittingGenerator()->chooseForwardBranching(*particle,1.,type);
// no emission break
if(!fb.kinematics) break;
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// get the particle data objects
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
// find the truncated line
iout=0;
if(pdata[0]->id()!=pdata[1]->id()) {
if(pdata[0]->id()==particle->id()) iout=1;
else if (pdata[1]->id()==particle->id()) iout=2;
}
else if(pdata[0]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
// only if same interaction for forced branching
ShowerInteraction::Type type2 = fb.type==ShowerPartnerType::QED ?
ShowerInteraction::QED : ShowerInteraction::QCD;
// and evolution
if(type2==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type2)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
// should do base class vetos as well
if(timeLikeVetoed(fb,particle)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
break;
}
// if no branching force trunctaed emission
if(!fb.kinematics) {
// construct the kinematics for the hard emission
ShoKinPtr showerKin=
branch->sudakov()->createFinalStateBranching(branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT());
showerKin->initialize( *particle,PPtr() );
IdList idlist(3);
idlist[0] = particle->id();
idlist[1] = branch->children()[0]->branchingParticle()->id();
idlist[2] = branch->children()[1]->branchingParticle()->id();
fb = Branching( showerKin, idlist, branch->sudakov(),branch->type() );
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics( fb.kinematics );
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[0]->
branchingParticle()->dataPtr(),true)));
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[1]->
branchingParticle()->dataPtr(),true)));
particle->showerKinematics()->
updateChildren(particle, theChildren,fb.type);
// shower the first particle
if( branch->children()[0]->children().empty() ) {
if( ! hardOnly() )
timeLikeShower(theChildren[0],type,false);
}
else {
truncatedTimeLikeShower( theChildren[0],branch->children()[0],type);
}
// shower the second particle
if( branch->children()[1]->children().empty() ) {
if( ! hardOnly() )
timeLikeShower( theChildren[1] , type,false);
}
else {
truncatedTimeLikeShower( theChildren[1],branch->children()[1] ,type);
}
// that's if for old approach
if(_reconOpt==0) return true;
// branching has happened
particle->showerKinematics()->updateParent(particle, theChildren,fb.type);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<theChildren.size();++ix)
particle->abandonChild(theChildren[ix]);
theChildren.clear();
}
else return true;
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back( new_ptr( ShowerParticle( pdata[0], true ) ) );
theChildren.push_back( new_ptr( ShowerParticle( pdata[1], true ) ) );
particle->showerKinematics()->
updateChildren( particle, theChildren , fb.type);
// shower the first particle
if( iout == 1 ) truncatedTimeLikeShower( theChildren[0], branch , type );
else timeLikeShower( theChildren[0] , type,false);
// shower the second particle
if( iout == 2 ) truncatedTimeLikeShower( theChildren[1], branch , type );
else timeLikeShower( theChildren[1] , type,false);
// that's if for old approach
if(_reconOpt==0) return true;
// branching has happened
particle->showerKinematics()->updateParent(particle, theChildren,fb.type);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<theChildren.size();++ix)
particle->abandonChild(theChildren[ix]);
theChildren.clear();
}
else return true;
}
while(ntry<50);
return false;
}
bool Evolver::truncatedSpaceLikeShower(tShowerParticlePtr particle, PPtr beam,
HardBranchingPtr branch,
ShowerInteraction::Type type) {
tcPDFPtr pdf;
if(ShowerHandler::currentHandler()->firstPDF().particle() == beamParticle())
pdf = ShowerHandler::currentHandler()->firstPDF().pdf();
if(ShowerHandler::currentHandler()->secondPDF().particle() == beamParticle())
pdf = ShowerHandler::currentHandler()->secondPDF().pdf();
Energy freeze = ShowerHandler::currentHandler()->pdfFreezingScale();
Branching bb;
// parameters of the force branching
double z(0.);
HardBranchingPtr timelike;
for( unsigned int ix = 0; ix < branch->children().size(); ++ix ) {
if( branch->children()[ix]->status() ==HardBranching::Outgoing) {
timelike = branch->children()[ix];
}
if( branch->children()[ix]->status() ==HardBranching::Incoming )
z = branch->children()[ix]->z();
}
// generate truncated branching
tcPDPtr part[2];
if(z>=0.&&z<=1.) {
while (true) {
if( !isTruncatedShowerON() || hardOnly() ) break;
bb = splittingGenerator()->chooseBackwardBranching( *particle,
beam, 1., beamParticle(),
type , pdf,freeze);
if( !bb.kinematics || bb.kinematics->scale() < branch->scale() ) {
bb = Branching();
break;
}
// particles as in Sudakov form factor
part[0] = getParticleData( bb.ids[0] );
part[1] = getParticleData( bb.ids[2] );
//is emitter anti-particle
if( particle->id() != bb.ids[1]) {
if( part[0]->CC() ) part[0] = part[0]->CC();
if( part[1]->CC() ) part[1] = part[1]->CC();
}
double zsplit = bb.kinematics->z();
// apply the vetos for the truncated shower
// if doesn't carry most of momentum
ShowerInteraction::Type type2 = bb.type==ShowerPartnerType::QED ?
ShowerInteraction::QED : ShowerInteraction::QCD;
if(type2==branch->sudakov()->interactionType() &&
zsplit < 0.5) {
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
// others
if( part[0]->id() != particle->id() || // if particle changes type
bb.kinematics->pT() > progenitor()->maximumpT(type2) || // pt veto
bb.kinematics->scale() < branch->scale()) { // angular ordering veto
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
// and those from the base class
if(spaceLikeVetoed(bb,particle)) {
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
break;
}
}
if( !bb.kinematics ) {
//do the hard emission
ShoKinPtr kinematics =
branch->sudakov()->createInitialStateBranching( branch->scale(), z, branch->phi(),
branch->children()[0]->pT() );
kinematics->initialize( *particle, beam );
// assign the splitting function and shower kinematics
particle->showerKinematics( kinematics );
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent =
new_ptr( ShowerParticle( branch->branchingParticle()->dataPtr(), false ) );
ShowerParticlePtr otherChild =
new_ptr( ShowerParticle( timelike->branchingParticle()->dataPtr(),
true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren, branch->type());
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted=false;
if(!hardOnly()) {
if( branch->parent() ) {
emitted = truncatedSpaceLikeShower( newParent, beam, branch->parent() , type);
}
else {
emitted = spaceLikeShower( newParent, beam , type);
}
}
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[progenitor()];
kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren,bb.type);
if(hardOnly()) return true;
// perform the shower of the final-state particle
if( timelike->children().empty() ) {
timeLikeShower( otherChild , type,true);
}
else {
truncatedTimeLikeShower( otherChild, timelike , type);
}
// return the emitted
return true;
}
// assign the splitting function and shower kinematics
particle->showerKinematics( bb.kinematics );
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent = new_ptr( ShowerParticle( part[0], false ) );
ShowerParticlePtr otherChild = new_ptr( ShowerParticle( part[1], true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren, bb.type);
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted = truncatedSpaceLikeShower( newParent, beam, branch,type);
// now reconstruct the momentum
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
bb.kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[ progenitor() ];
bb.kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren, bb.type);
// perform the shower of the final-state particle
timeLikeShower( otherChild , type,true);
// return the emitted
return true;
}
bool Evolver::
truncatedSpaceLikeDecayShower(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass, HardBranchingPtr branch,
ShowerInteraction::Type type) {
Branching fb;
unsigned int iout=0;
tcPDPtr pdata[2];
while (true) {
// no truncated shower break
if(!isTruncatedShowerON()||hardOnly()) break;
fb=splittingGenerator()->chooseDecayBranching(*particle,maxScales,minmass,1.,type);
// return if no radiation
if(!fb.kinematics) break;
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// get the particle data objects
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
// find the truncated line
iout=0;
if(pdata[0]->id()!=pdata[1]->id()) {
if(pdata[0]->id()==particle->id()) iout=1;
else if (pdata[1]->id()==particle->id()) iout=2;
}
else if(pdata[0]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
ShowerInteraction::Type type2 = fb.type==ShowerPartnerType::QED ?
ShowerInteraction::QED : ShowerInteraction::QCD;
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
if(type2==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type2)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
// should do base class vetos as well
// if not vetoed break
if(!spaceLikeDecayVetoed(fb,particle)) break;
// otherwise reset scale and continue
particle->vetoEmission(fb.type,fb.kinematics->scale());
}
// this may not be currently used but in principle could be
// and should be included
if (!fb.kinematics) {
// construct the kinematics for the hard emission
ShoKinPtr showerKin=
branch->sudakov()->createDecayBranching(branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT());
showerKin->initialize( *particle,PPtr() );
IdList idlist(3);
idlist[0] = particle->id();
idlist[1] = branch->children()[0]->branchingParticle()->id();
idlist[2] = branch->children()[1]->branchingParticle()->id();
// create the branching
fb = Branching( showerKin, idlist, branch->sudakov(),ShowerPartnerType::QCDColourLine );
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics( fb.kinematics );
// Assign the splitting function to the emitting particle.
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[0]->
branchingParticle()->dataPtr(),true)));
theChildren.push_back(new_ptr(ShowerParticle(branch->children()[1]->
branchingParticle()->dataPtr(),true)));
particle->showerKinematics()->
updateChildren(particle, theChildren,fb.type);
if(theChildren[0]->id()==particle->id()) {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),theChildren[0]);
currentTree()->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the space-like particle
if( branch->children()[0]->children().empty() ) {
if( ! hardOnly() ) spaceLikeDecayShower(theChildren[0],maxScales,minmass,type);
}
else {
truncatedSpaceLikeDecayShower( theChildren[0],maxScales,minmass,
branch->children()[0],type);
}
// shower the second particle
if( branch->children()[1]->children().empty() ) {
if( ! hardOnly() ) timeLikeShower( theChildren[1] , type,true);
}
else {
truncatedTimeLikeShower( theChildren[1],branch->children()[1] ,type);
}
}
else {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),theChildren[1]);
currentTree()->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the space-like particle
if( branch->children()[1]->children().empty() ) {
if( ! hardOnly() ) spaceLikeDecayShower(theChildren[1],maxScales,minmass,type);
}
else {
truncatedSpaceLikeDecayShower( theChildren[1],maxScales,minmass,
branch->children()[1],type);
}
// shower the second particle
if( branch->children()[0]->children().empty() ) {
if( ! hardOnly() ) timeLikeShower( theChildren[0] , type,true);
}
else {
truncatedTimeLikeShower( theChildren[0],branch->children()[0] ,type);
}
}
return true;
}
// has emitted
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
// For the time being we are considering only 1->2 branching
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
ShowerParticleVector theChildren;
theChildren.push_back(new_ptr(ShowerParticle(pdata[0],true)));
theChildren.push_back(new_ptr(ShowerParticle(pdata[1],true)));
particle->showerKinematics()->updateChildren(particle, theChildren,fb.type);
// In the case of splittings which involves coloured particles,
// set properly the colour flow of the branching.
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),theChildren[0]);
currentTree()->addInitialStateBranching(particle,theChildren[0],theChildren[1]);
// shower the first particle
truncatedSpaceLikeDecayShower(theChildren[0],maxScales,minmass,branch,type);
// shower the second particle
timeLikeShower(theChildren[1],type,true);
// branching has happened
return true;
}
bool Evolver::constructDecayTree(vector<ShowerProgenitorPtr> & particlesToShower,
ShowerInteraction::Type inter) {
Energy ptmax(-GeV);
// get the maximum pt is all ready a hard tree
if(hardTree()) {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->maximumpT(inter)>ptmax&&
particlesToShower[ix]->progenitor()->isFinalState())
ptmax = particlesToShower[ix]->maximumpT(inter);
}
}
vector<HardBranchingPtr> spaceBranchings,allBranchings;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
HardBranchingPtr newBranch;
if(particlesToShower[ix]->hasEmitted()) {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
particlesToShower[ix]->progenitor()->
showerKinematics()->SudakovFormFactor(),
HardBranchingPtr(),HardBranching::Outgoing));
constructTimeLikeLine(newBranch,particlesToShower[ix]->progenitor());
}
else {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Outgoing));
}
allBranchings.push_back(newBranch);
}
else {
HardBranchingPtr newBranch;
if(particlesToShower[ix]->hasEmitted()) {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
particlesToShower[ix]->progenitor()->
showerKinematics()->SudakovFormFactor(),
HardBranchingPtr(),HardBranching::Decay));
constructTimeLikeLine(newBranch,particlesToShower[ix]->progenitor());
HardBranchingPtr last=newBranch;
do {
for(unsigned int ix=0;ix<last->children().size();++ix) {
if(last->children()[ix]->branchingParticle()->id()==
particlesToShower[ix]->id()) {
last = last->children()[ix];
continue;
}
}
}
while(!last->children().empty());
last->status(HardBranching::Incoming);
spaceBranchings.push_back(newBranch);
allBranchings .push_back(last);
}
else {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Incoming));
spaceBranchings.push_back(newBranch);
allBranchings .push_back(newBranch);
}
}
}
HardTreePtr QCDTree = new_ptr(HardTree(allBranchings,spaceBranchings,inter));
// set the charge partners
ShowerParticleVector particles;
particles.push_back(spaceBranchings.back()->branchingParticle());
for(set<HardBranchingPtr>::iterator cit=QCDTree->branchings().begin();
cit!=QCDTree->branchings().end();++cit) {
if((*cit)->status()==HardBranching::Outgoing)
particles.push_back((*cit)->branchingParticle());
}
// get the partners
showerModel()->partnerFinder()->setInitialEvolutionScales(particles,true,inter,true);
// do the inverse recon
if(!showerModel()->kinematicsReconstructor()->
deconstructDecayJets(QCDTree,this,inter)) {
return false;
}
// clear the old shower
currentTree()->clear();
// set the hard tree
hardTree(QCDTree);
// set the charge partners
setEvolutionPartners(false,inter,false);
// get the particles to be showered
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
particlesToShower.clear();
// incoming particles
for(cit=currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit)
particlesToShower.push_back(((*cit).first));
assert(particlesToShower.size()==1);
// outgoing particles
for(cjt=currentTree()->outgoingLines().begin();
cjt!=currentTree()->outgoingLines().end();++cjt) {
particlesToShower.push_back(((*cjt).first));
if(ptmax>ZERO) particlesToShower.back()->maximumpT(ptmax,inter);
}
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(particlesToShower[ix]->progenitor());
if( mit != eit) {
if(mit->second->status()==HardBranching::Outgoing)
particlesToShower[ix]->progenitor()->set5Momentum(mit->second->pVector());
}
}
return true;
}
bool Evolver::constructHardTree(vector<ShowerProgenitorPtr> & particlesToShower,
ShowerInteraction::Type inter) {
bool noEmission = true;
vector<HardBranchingPtr> spaceBranchings,allBranchings;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
HardBranchingPtr newBranch;
if(particlesToShower[ix]->hasEmitted()) {
noEmission = false;
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
particlesToShower[ix]->progenitor()->
showerKinematics()->SudakovFormFactor(),
HardBranchingPtr(),HardBranching::Outgoing));
constructTimeLikeLine(newBranch,particlesToShower[ix]->progenitor());
}
else {
newBranch =
new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Outgoing));
}
allBranchings.push_back(newBranch);
}
else {
HardBranchingPtr first,last;
if(!particlesToShower[ix]->progenitor()->parents().empty()) {
noEmission = false;
constructSpaceLikeLine(particlesToShower[ix]->progenitor(),
first,last,SudakovPtr(),
particlesToShower[ix]->original()->parents()[0]);
}
else {
first = new_ptr(HardBranching(particlesToShower[ix]->progenitor(),
SudakovPtr(),HardBranchingPtr(),
HardBranching::Incoming));
if(particlesToShower[ix]->original()->parents().empty())
first->beam(particlesToShower[ix]->original());
else
first->beam(particlesToShower[ix]->original()->parents()[0]);
last = first;
}
spaceBranchings.push_back(first);
allBranchings.push_back(last);
}
}
if(!noEmission) {
HardTreePtr QCDTree = new_ptr(HardTree(allBranchings,spaceBranchings,
inter));
// set the charge partners
ShowerParticleVector particles;
for(set<HardBranchingPtr>::iterator cit=QCDTree->branchings().begin();
cit!=QCDTree->branchings().end();++cit) {
particles.push_back((*cit)->branchingParticle());
}
// get the partners
showerModel()->partnerFinder()->setInitialEvolutionScales(particles,false,
inter,true);
// do the inverse recon
if(!showerModel()->kinematicsReconstructor()->
deconstructHardJets(QCDTree,this,inter))
throw Exception() << "Can't to shower deconstruction for QED shower in"
<< "QEDEvolver::showerHard" << Exception::eventerror;
// set the hard tree
hardTree(QCDTree);
}
// clear the old shower
currentTree()->clear();
// set the charge partners
setEvolutionPartners(true,inter,false);
// get the particles to be showered
particlesToShower = currentTree()->extractProgenitors();
// reset momenta
if(hardTree()) {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(particlesToShower[ix]->progenitor());
if( mit != eit) {
particlesToShower[ix]->progenitor()->set5Momentum(mit->second->showerMomentum());
}
}
}
return true;
}
void Evolver::constructTimeLikeLine(tHardBranchingPtr branch,
tShowerParticlePtr particle) {
for(unsigned int ix=0;ix<particle->children().size();++ix) {
HardBranching::Status status = branch->status();
tShowerParticlePtr child =
dynamic_ptr_cast<ShowerParticlePtr>(particle->children()[ix]);
if(child->children().empty()) {
HardBranchingPtr newBranch =
new_ptr(HardBranching(child,SudakovPtr(),branch,status));
branch->addChild(newBranch);
}
else {
HardBranchingPtr newBranch =
new_ptr(HardBranching(child,child->showerKinematics()->SudakovFormFactor(),
branch,status));
constructTimeLikeLine(newBranch,child);
branch->addChild(newBranch);
}
}
// sort out the type of interaction
if(!branch->children().empty()) {
if(branch->branchingParticle()->id()==ParticleID::gamma ||
branch->children()[0]->branchingParticle()->id()==ParticleID::gamma ||
branch->children()[1]->branchingParticle()->id()==ParticleID::gamma)
branch->type(ShowerPartnerType::QED);
else {
if(branch->branchingParticle()->id()==
branch->children()[0]->branchingParticle()->id()) {
if(branch->branchingParticle()->dataPtr()->iColour()==PDT::Colour8) {
tShowerParticlePtr emittor =
branch->branchingParticle()->showerKinematics()->z()>0.5 ?
branch->children()[0]->branchingParticle() :
branch->children()[1]->branchingParticle();
if(branch->branchingParticle()->colourLine()==emittor->colourLine())
branch->type(ShowerPartnerType::QCDAntiColourLine);
else if(branch->branchingParticle()->antiColourLine()==emittor->antiColourLine())
branch->type(ShowerPartnerType::QCDColourLine);
else
assert(false);
}
else if(branch->branchingParticle()->colourLine()) {
branch->type(ShowerPartnerType::QCDColourLine);
}
else if(branch->branchingParticle()->antiColourLine()) {
branch->type(ShowerPartnerType::QCDAntiColourLine);
}
else
assert(false);
}
else if(branch->branchingParticle()->id()==ParticleID::g &&
branch->children()[0]->branchingParticle()->id()==
-branch->children()[1]->branchingParticle()->id()) {
if(branch->branchingParticle()->showerKinematics()->z()>0.5)
branch->type(ShowerPartnerType::QCDAntiColourLine);
else
branch->type(ShowerPartnerType::QCDColourLine);
}
else
assert(false);
}
}
}
void Evolver::constructSpaceLikeLine(tShowerParticlePtr particle,
HardBranchingPtr & first,
HardBranchingPtr & last,
SudakovPtr sud,PPtr beam) {
if(!particle) return;
if(!particle->parents().empty()) {
tShowerParticlePtr parent =
dynamic_ptr_cast<ShowerParticlePtr>(particle->parents()[0]);
SudakovPtr newSud=particle->showerKinematics()->SudakovFormFactor();
constructSpaceLikeLine(parent,first,last,newSud,beam);
}
HardBranchingPtr newBranch =
new_ptr(HardBranching(particle,sud,last,HardBranching::Incoming));
newBranch->beam(beam);
if(!first) {
first=newBranch;
last =newBranch;
return;
}
last->addChild(newBranch);
tShowerParticlePtr timeChild =
dynamic_ptr_cast<ShowerParticlePtr>(particle->parents()[0]->children()[1]);
HardBranchingPtr timeBranch;
if(!timeChild->children().empty()) {
timeBranch =
new_ptr(HardBranching(timeChild,
timeChild->showerKinematics()->SudakovFormFactor(),
last,HardBranching::Outgoing));
constructTimeLikeLine(timeBranch,timeChild);
}
else {
timeBranch =
new_ptr(HardBranching(timeChild,SudakovPtr(),last,HardBranching::Outgoing));
}
last->addChild(timeBranch);
// sort out the type
if(last->branchingParticle() ->id() == ParticleID::gamma ||
newBranch->branchingParticle() ->id() == ParticleID::gamma ||
timeBranch->branchingParticle()->id() == ParticleID::gamma) {
last->type(ShowerPartnerType::QED);
}
else if(last->branchingParticle()->id()==newBranch->branchingParticle()->id()) {
if(last->branchingParticle()->id()==ParticleID::g) {
if(last->branchingParticle()->colourLine()==
newBranch->branchingParticle()->colourLine()) {
last->type(ShowerPartnerType::QCDAntiColourLine);
}
else {
last->type(ShowerPartnerType::QCDColourLine);
}
}
else if(last->branchingParticle()->hasColour()) {
last->type(ShowerPartnerType::QCDColourLine);
}
else if(last->branchingParticle()->hasAntiColour()) {
last->type(ShowerPartnerType::QCDAntiColourLine);
}
else
assert(false);
}
else if(newBranch->branchingParticle()->id()==ParticleID::g) {
if(last->branchingParticle()->hasColour()) {
last->type(ShowerPartnerType::QCDAntiColourLine);
}
else if(last->branchingParticle()->hasAntiColour()) {
last->type(ShowerPartnerType::QCDColourLine);
}
else
assert(false);
}
else if(newBranch->branchingParticle()->hasColour()) {
last->type(ShowerPartnerType::QCDColourLine);
}
else if(newBranch->branchingParticle()->hasAntiColour()) {
last->type(ShowerPartnerType::QCDAntiColourLine);
}
else {
assert(false);
}
last=newBranch;
}
void Evolver::connectTrees(ShowerTreePtr showerTree,
HardTreePtr hardTree, bool hard ) {
ShowerParticleVector particles;
// find the Sudakovs
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
// Sudakovs for ISR
if((**cit).parent()&&(**cit).status()==HardBranching::Incoming) {
++_nis;
IdList br(3);
br[0] = (**cit).parent()->branchingParticle()->id();
br[1] = (**cit). branchingParticle()->id();
br[2] = (**cit).parent()->children()[0]==*cit ?
(**cit).parent()->children()[1]->branchingParticle()->id() :
(**cit).parent()->children()[0]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->initialStateBranchings();
if(br[1]<0&&br[0]==br[1]) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
}
else if(br[1]<0) {
br[1] = -br[1];
br[2] = -br[2];
}
long index = abs(br[1]);
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.second;
if(ids[0]==br[0]&&ids[1]==br[1]&&ids[2]==br[2]) {
sudakov=cjt->second.first;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "Evolver::connectTrees() for ISR"
<< Exception::runerror;
(**cit).parent()->sudakov(sudakov);
}
// Sudakovs for FSR
else if(!(**cit).children().empty()) {
++_nfs;
IdList br(3);
br[0] = (**cit) .branchingParticle()->id();
br[1] = (**cit).children()[0]->branchingParticle()->id();
br[2] = (**cit).children()[1]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->finalStateBranchings();
if(br[0]<0) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
br[2] = abs(br[2]);
}
long index = br[0];
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.second;
if(ids[0]==br[0]&&ids[1]==br[1]&&ids[2]==br[2]) {
sudakov=cjt->second.first;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "Evolver::connectTrees()"
<< Exception::runerror;
(**cit).sudakov(sudakov);
}
}
// calculate the evolution scale
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
particles.push_back((*cit)->branchingParticle());
}
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,hardTree->interaction(),
!hardTree->partnersSet());
hardTree->partnersSet(true);
// inverse reconstruction
if(hard)
showerModel()->kinematicsReconstructor()->
deconstructHardJets(hardTree,ShowerHandler::currentHandler()->evolver(),
hardTree->interaction());
else
showerModel()->kinematicsReconstructor()->
deconstructDecayJets(hardTree,ShowerHandler::currentHandler()->evolver(),
hardTree->interaction());
// now reset the momenta of the showering particles
vector<ShowerProgenitorPtr> particlesToShower;
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit=showerTree->incomingLines().begin();
cit!=showerTree->incomingLines().end();++cit )
particlesToShower.push_back(cit->first);
// extract the showering particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cit=showerTree->outgoingLines().begin();
cit!=showerTree->outgoingLines().end();++cit )
particlesToShower.push_back(cit->first);
// match them
vector<bool> matched(particlesToShower.size(),false);
for(set<HardBranchingPtr>::const_iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
Energy2 dmin( 1e30*GeV2 );
int iloc(-1);
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(matched[ix]) continue;
if( (**cit).branchingParticle()->id() != particlesToShower[ix]->progenitor()->id() ) continue;
if( (**cit).branchingParticle()->isFinalState() !=
particlesToShower[ix]->progenitor()->isFinalState() ) continue;
Energy2 dtest =
sqr( particlesToShower[ix]->progenitor()->momentum().x() - (**cit).showerMomentum().x() ) +
sqr( particlesToShower[ix]->progenitor()->momentum().y() - (**cit).showerMomentum().y() ) +
sqr( particlesToShower[ix]->progenitor()->momentum().z() - (**cit).showerMomentum().z() ) +
sqr( particlesToShower[ix]->progenitor()->momentum().t() - (**cit).showerMomentum().t() );
// add mass difference for identical particles (e.g. Z0 Z0 production)
dtest += 1e10*sqr(particlesToShower[ix]->progenitor()->momentum().m()-
(**cit).showerMomentum().m());
if( dtest < dmin ) {
iloc = ix;
dmin = dtest;
}
}
if(iloc<0) throw Exception() << "Failed to match shower and hard trees in Evolver::hardestEmission"
<< Exception::eventerror;
particlesToShower[iloc]->progenitor()->set5Momentum((**cit).showerMomentum());
matched[iloc] = true;
}
// correction boosts for daughter trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit = showerTree->treelinks().begin();
tit != showerTree->treelinks().end();++tit) {
ShowerTreePtr decayTree = tit->first;
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = decayTree->incomingLines().begin();
// reset the momentum of the decay particle
Lorentz5Momentum oldMomentum = cit->first->progenitor()->momentum();
Lorentz5Momentum newMomentum = tit->second.second->momentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
boost.boost (-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
decayTree->transform(boost,true);
}
}
void Evolver::doShowering(bool hard,XCPtr xcomb) {
// order of the interactions
bool showerOrder(true);
// zero number of emissions
_nis = _nfs = 0;
// extract particles to shower
vector<ShowerProgenitorPtr> particlesToShower(setupShower(hard));
// setup the maximum scales for the shower
if (hardVetoOn()) setupMaximumScales(particlesToShower,xcomb);
// specific stuff for hard processes and decays
Energy minmass(ZERO), mIn(ZERO);
// hard process generate the intrinsic p_T once and for all
if(hard) {
generateIntrinsicpT(particlesToShower);
}
// decay compute the minimum mass of the final-state
else {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
if(particlesToShower[ix]->progenitor()->dataPtr()->stable())
minmass += particlesToShower[ix]->progenitor()->dataPtr()->constituentMass();
else
minmass += particlesToShower[ix]->progenitor()->mass();
}
else {
mIn = particlesToShower[ix]->progenitor()->mass();
}
}
// throw exception if decay can't happen
if ( minmass > mIn ) {
throw Exception() << "Evolver.cc: Mass of decaying particle is "
<< "below constituent masses of decay products."
<< Exception::eventerror;
}
}
// check if interactions in right order
if(hardTree() && interaction_!=4 &&
hardTree()->interaction()!=interactions_[0]) {
assert(interactions_.size()==2);
showerOrder = false;
swap(interactions_[0],interactions_[1]);
}
// loop over possible interactions
for(unsigned int inter=0;inter<interactions_.size();++inter) {
// set up for second pass if required
if(inter!=0) {
// zero intrinsic pt so only added first time round
intrinsicpT().clear();
// construct the tree and throw veto if not possible
if(!(hard ?
constructHardTree (particlesToShower,interactions_[inter]) :
constructDecayTree(particlesToShower,interactions_[inter])))
throw InteractionVeto();
}
// main shower loop
unsigned int ntry(0);
bool reconstructed = false;
do {
// clear results of last attempt if needed
if(ntry!=0) {
currentTree()->clear();
setEvolutionPartners(hard,interactions_[inter],true);
_nis = _nfs = 0;
+ for(unsigned int ix=0; ix<particlesToShower.size();++ix) {
+ SpinPtr spin = particlesToShower[ix]->progenitor()->spinInfo();
+ if(spin && spin->decayVertex() &&
+ dynamic_ptr_cast<tcSVertexPtr>(spin->decayVertex())) {
+ spin->decayVertex(VertexPtr());
+ }
+ }
}
// generate the shower
// pick random starting point
unsigned int istart=UseRandom::irnd(particlesToShower.size());
unsigned int istop = particlesToShower.size();
// loop over particles with random starting point
for(unsigned int ix=istart;ix<=istop;++ix) {
if(ix==particlesToShower.size()) {
if(istart!=0) {
istop = istart-1;
ix=0;
}
else break;
}
// extract the progenitor
progenitor(particlesToShower[ix]);
// final-state radiation
if(progenitor()->progenitor()->isFinalState()) {
if(!isFSRadiationON()) continue;
// perform shower
progenitor()->hasEmitted(startTimeLikeShower(interactions_[inter]));
}
// initial-state radiation
else {
if(!isISRadiationON()) continue;
// hard process
if(hard) {
// get the PDF
setBeamParticle(_progenitor->beam());
assert(beamParticle());
// perform the shower
// set the beam particle
tPPtr beamparticle=progenitor()->original();
if(!beamparticle->parents().empty())
beamparticle=beamparticle->parents()[0];
// generate the shower
progenitor()->hasEmitted(startSpaceLikeShower(beamparticle,
interactions_[inter]));
}
// decay
else {
// skip colour and electrically neutral particles
if(!progenitor()->progenitor()->dataPtr()->coloured() &&
!progenitor()->progenitor()->dataPtr()->charged()) {
progenitor()->hasEmitted(false);
continue;
}
// perform shower
// set the scales correctly. The current scale is the maximum scale for
// emission not the starting scale
ShowerParticle::EvolutionScales maxScales(progenitor()->progenitor()->scales());
progenitor()->progenitor()->scales() = ShowerParticle::EvolutionScales();
if(progenitor()->progenitor()->dataPtr()->charged()) {
progenitor()->progenitor()->scales().QED = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QED_noAO = progenitor()->progenitor()->mass();
}
if(progenitor()->progenitor()->hasColour()) {
progenitor()->progenitor()->scales().QCD_c = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QCD_c_noAO = progenitor()->progenitor()->mass();
}
if(progenitor()->progenitor()->hasAntiColour()) {
progenitor()->progenitor()->scales().QCD_ac = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QCD_ac_noAO = progenitor()->progenitor()->mass();
}
// perform the shower
progenitor()->hasEmitted(startSpaceLikeDecayShower(maxScales,minmass,
interactions_[inter]));
}
}
}
// do the kinematic reconstruction, checking if it worked
reconstructed = hard ?
showerModel()->kinematicsReconstructor()->
reconstructHardJets (currentTree(),intrinsicpT(),interactions_[inter]) :
showerModel()->kinematicsReconstructor()->
reconstructDecayJets(currentTree(),interactions_[inter]);
}
while(!reconstructed&&maximumTries()>++ntry);
// check if failed to generate the shower
if(ntry==maximumTries()) {
if(hard)
throw ShowerHandler::ShowerTriesVeto(ntry);
else
throw Exception() << "Failed to generate the shower after "
<< ntry << " attempts in Evolver::showerDecay()"
<< Exception::eventerror;
}
}
// tree has now showered
_currenttree->hasShowered(true);
if(!showerOrder) swap(interactions_[0],interactions_[1]);
hardTree(HardTreePtr());
}
diff --git a/Shower/Base/ShowerVertex.cc b/Shower/Base/ShowerVertex.cc
--- a/Shower/Base/ShowerVertex.cc
+++ b/Shower/Base/ShowerVertex.cc
@@ -1,75 +1,76 @@
// -*- C++ -*-
//
// ShowerVertex.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2007 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ShowerVertex class.
//
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/EventRecord/SpinInfo.h"
#include "ShowerVertex.h"
using namespace Herwig;
using namespace Herwig::Helicity;
using namespace ThePEG;
DescribeNoPIOClass<ShowerVertex,HelicityVertex>
describeShowerVertex ("Herwig::ShowerVertex","");
void ShowerVertex::Init() {
static ClassDocumentation<ShowerVertex> documentation
("The ShowerVertex class is the implementation of a "
"vertex for a shower for the Herwig++ spin correlation algorithm");
}
// method to get the rho matrix for a given outgoing particle
RhoDMatrix ShowerVertex::getRhoMatrix(int i, bool) const {
assert(matrixElement_.nOut()==2);
// calculate the incoming spin density matrix
RhoDMatrix input=incoming()[0]->rhoMatrix();
if(convertIn_) input = mapIncoming(input);
// get the rho matrices for the outgoing particles
vector<RhoDMatrix> rhoout;
for(unsigned int ix=0,N=outgoing().size();ix<N;++ix) {
if(int(ix)!=i)
rhoout.push_back(outgoing()[ix]->DMatrix());
}
// calculate the spin density matrix
return matrixElement_.calculateRhoMatrix(i,input,rhoout);
}
// method to get the D matrix for an incoming particle
RhoDMatrix ShowerVertex::getDMatrix(int) const {
assert(matrixElement_.nOut()==2);
// get the decay matrices for the outgoing particles
vector<RhoDMatrix> Dout;
for(unsigned int ix=0,N=outgoing().size();ix<N;++ix) {
Dout.push_back(outgoing()[ix]->DMatrix());
}
// calculate the spin density matrix and return the answer
return matrixElement_.calculateDMatrix(Dout);
}
RhoDMatrix ShowerVertex::mapIncoming(RhoDMatrix rho) const {
RhoDMatrix output(rho.iSpin());
for(int ixa=0;ixa<rho.iSpin();++ixa) {
for(int ixb=0;ixb<rho.iSpin();++ixb) {
for(int iya=0;iya<rho.iSpin();++iya) {
for(int iyb=0;iyb<rho.iSpin();++iyb) {
output(ixa,ixb) += rho(iya,iyb)*inMatrix_(iya,ixa)*conj(inMatrix_(iyb,ixb));
}
}
}
}
+ output.normalize();
return output;
}
diff --git a/Shower/Base/SudakovFormFactor.cc b/Shower/Base/SudakovFormFactor.cc
--- a/Shower/Base/SudakovFormFactor.cc
+++ b/Shower/Base/SudakovFormFactor.cc
@@ -1,498 +1,587 @@
// -*- C++ -*-
//
// SudakovFormFactor.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SudakovFormFactor class.
//
#include "SudakovFormFactor.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ShowerKinematics.h"
#include "ShowerParticle.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeAbstractClass<SudakovFormFactor,Interfaced>
describeSudakovFormFactor ("Herwig::SudakovFormFactor","");
void SudakovFormFactor::persistentOutput(PersistentOStream & os) const {
os << splittingFn_ << alpha_ << pdfmax_ << particles_ << pdffactor_
<< a_ << b_ << ounit(c_,GeV) << ounit(kinCutoffScale_,GeV) << cutOffOption_
<< ounit(vgcut_,GeV) << ounit(vqcut_,GeV)
<< ounit(pTmin_,GeV) << ounit(pT2min_,GeV2);
}
void SudakovFormFactor::persistentInput(PersistentIStream & is, int) {
is >> splittingFn_ >> alpha_ >> pdfmax_ >> particles_ >> pdffactor_
>> a_ >> b_ >> iunit(c_,GeV) >> iunit(kinCutoffScale_,GeV) >> cutOffOption_
>> iunit(vgcut_,GeV) >> iunit(vqcut_,GeV)
>> iunit(pTmin_,GeV) >> iunit(pT2min_,GeV2);
}
void SudakovFormFactor::Init() {
static ClassDocumentation<SudakovFormFactor> documentation
("The SudakovFormFactor class is the base class for the implementation of Sudakov"
" form factors in Herwig++");
static Reference<SudakovFormFactor,SplittingFunction>
interfaceSplittingFunction("SplittingFunction",
"A reference to the SplittingFunction object",
&Herwig::SudakovFormFactor::splittingFn_,
false, false, true, false);
static Reference<SudakovFormFactor,ShowerAlpha>
interfaceAlpha("Alpha",
"A reference to the Alpha object",
&Herwig::SudakovFormFactor::alpha_,
false, false, true, false);
static Parameter<SudakovFormFactor,double> interfacePDFmax
("PDFmax",
"Maximum value of PDF weight. ",
&SudakovFormFactor::pdfmax_, 35.0, 1.0, 100000.0,
false, false, Interface::limited);
static Switch<SudakovFormFactor,unsigned int> interfacePDFFactor
("PDFFactor",
"Include additional factors in the overestimate for the PDFs",
&SudakovFormFactor::pdffactor_, 0, false, false);
static SwitchOption interfacePDFFactorOff
(interfacePDFFactor,
"Off",
"Don't include any factors",
0);
static SwitchOption interfacePDFFactorOverZ
(interfacePDFFactor,
"OverZ",
"Include an additional factor of 1/z",
1);
static SwitchOption interfacePDFFactorOverOneMinusZ
(interfacePDFFactor,
"OverOneMinusZ",
"Include an additional factor of 1/(1-z)",
2);
static SwitchOption interfacePDFFactorOverZOneMinusZ
(interfacePDFFactor,
"OverZOneMinusZ",
"Include an additional factor of 1/z/(1-z)",
3);
static Switch<SudakovFormFactor,unsigned int> interfaceCutOffOption
("CutOffOption",
"The type of cut-off to use to end the shower",
&SudakovFormFactor::cutOffOption_, 0, false, false);
static SwitchOption interfaceCutOffOptionDefault
(interfaceCutOffOption,
"Default",
"Use the standard Herwig++ cut-off on virtualities with the minimum"
" virtuality depending on the mass of the branching particle",
0);
static SwitchOption interfaceCutOffOptionFORTRAN
(interfaceCutOffOption,
"FORTRAN",
"Use a FORTRAN-like cut-off on virtualities",
1);
static SwitchOption interfaceCutOffOptionpT
(interfaceCutOffOption,
"pT",
"Use a cut on the minimum allowed pT",
2);
static Parameter<SudakovFormFactor,double> interfaceaParameter
("aParameter",
"The a parameter for the kinematic cut-off",
&SudakovFormFactor::a_, 0.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,double> interfacebParameter
("bParameter",
"The b parameter for the kinematic cut-off",
&SudakovFormFactor::b_, 2.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacecParameter
("cParameter",
"The c parameter for the kinematic cut-off",
&SudakovFormFactor::c_, GeV, 0.3*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy>
interfaceKinScale ("cutoffKinScale",
"kinematic cutoff scale for the parton shower phase"
" space (unit [GeV])",
&SudakovFormFactor::kinCutoffScale_, GeV,
2.3*GeV, 0.001*GeV, 10.0*GeV,false,false,false);
static Parameter<SudakovFormFactor,Energy> interfaceGluonVirtualityCut
("GluonVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality of the gluon",
&SudakovFormFactor::vgcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfaceQuarkVirtualityCut
("QuarkVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality added to"
" the mass for particles other than the gluon",
&SudakovFormFactor::vqcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacepTmin
("pTmin",
"The minimum pT if using a cut-off on the pT",
&SudakovFormFactor::pTmin_, GeV, 1.0*GeV, ZERO, 10.0*GeV,
false, false, Interface::limited);
}
bool SudakovFormFactor::
PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
Ptr<BeamParticleData>::transient_const_pointer beam) const {
assert(pdf_);
Energy2 theScale = t;
if (theScale < sqr(freeze_)) theScale = sqr(freeze_);
double newpdf(0.0), oldpdf(0.0);
//different treatment of MPI ISR is done via CascadeHandler::resetPDFs()
newpdf=pdf_->xfx(beam,parton0,theScale,x/z());
oldpdf=pdf_->xfx(beam,parton1,theScale,x);
if(newpdf<=0.) return true;
if(oldpdf<=0.) return false;
double ratio = newpdf/oldpdf;
double maxpdf(pdfmax_);
switch (pdffactor_) {
case 1:
maxpdf /= z();
break;
case 2:
maxpdf /= 1.-z();
break;
case 3:
maxpdf /= (z()*(1.-z()));
break;
}
// ratio / PDFMax must be a probability <= 1.0
if (ratio > maxpdf) {
generator()->log() << "PDFVeto warning: Ratio > " << name()
<< ":PDFmax (by a factor of "
<< ratio/maxpdf <<") for "
<< parton0->PDGName() << " to "
<< parton1->PDGName() << "\n";
}
return ratio < UseRandom::rnd()*maxpdf;
}
void SudakovFormFactor::addSplitting(const IdList & in) {
bool add=true;
for(unsigned int ix=0;ix<particles_.size();++ix) {
if(particles_[ix].size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if(particles_[ix][iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
add=false;
break;
}
}
}
if(add) particles_.push_back(in);
}
+namespace {
+
+LorentzRotation boostToShower(const vector<Lorentz5Momentum> & basis) {
+ // we are doing the evolution in the back-to-back frame
+ // work out the boostvector
+ Boost boostv(-(basis[0]+basis[1]).boostVector());
+ // momentum of the parton
+ Lorentz5Momentum porig(basis[0]);
+ // construct the Lorentz boost
+ LorentzRotation output(boostv);
+ porig *= output;
+ Axis axis(porig.vect().unit());
+ // now rotate so along the z axis as needed for the splitting functions
+ if(axis.perp2()>0.) {
+ double sinth(sqrt(1.-sqr(axis.z())));
+ output.rotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
+ }
+ else if(axis.z()>0.) {
+ porig.setZ(-porig.z());
+ }
+ return output;
+}
+
+RhoDMatrix bosonMapping(ShowerParticle & particle,
+ const Lorentz5Momentum & porig,
+ VectorSpinPtr vspin,
+ const LorentzRotation & rot) {
+ // rotate the original basis
+ vector<LorentzPolarizationVector> sbasis;
+ for(unsigned int ix=0;ix<3;++ix) {
+ sbasis.push_back(vspin->getProductionBasisState(ix));
+ sbasis.back().transform(rot);
+ }
+ // splitting basis
+ vector<LorentzPolarizationVector> fbasis;
+ bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
+ VectorWaveFunction wave(porig,particle.dataPtr(),outgoing);
+ for(unsigned int ix=0;ix<3;++ix) {
+ if(massless&&ix==1) {
+ fbasis.push_back(LorentzPolarizationVector());
+ }
+ else {
+ wave.reset(ix);
+ fbasis.push_back(wave.wave());
+ }
+ }
+ // work out the mapping
+ RhoDMatrix mapping=RhoDMatrix(PDT::Spin1,false);
+ for(unsigned int ix=0;ix<3;++ix) {
+ for(unsigned int iy=0;iy<3;++iy) {
+ mapping(ix,iy)= sbasis[iy].dot(fbasis[ix].conjugate());
+ if(particle.id()<0)
+ mapping(ix,iy)=conj(mapping(ix,iy));
+ }
+ }
+ // \todo need to fix this
+ mapping = RhoDMatrix(PDT::Spin1,false);
+ if(massless) {
+ mapping(0,0) = 1.;
+ mapping(2,2) = 1.;
+ }
+ else {
+ mapping(0,0) = 1.;
+ mapping(1,1) = 1.;
+ mapping(2,2) = 1.;
+ }
+ return mapping;
+}
+
+RhoDMatrix fermionMapping(ShowerParticle & particle,
+ const Lorentz5Momentum & porig,
+ FermionSpinPtr fspin,
+ const LorentzRotation & rot) {
+ // extract the original basis states
+ vector<LorentzSpinor<SqrtEnergy> > sbasis;
+ for(unsigned int ix=0;ix<2;++ix) {
+ sbasis.push_back(fspin->getProductionBasisState(ix));
+ sbasis.back().transform(rot);
+ }
+ // calculate the states in the splitting basis
+ vector<LorentzSpinor<SqrtEnergy> > fbasis;
+ SpinorWaveFunction wave(porig,particle.dataPtr(),
+ particle.id()>0 ? incoming : outgoing);
+ for(unsigned int ix=0;ix<2;++ix) {
+ wave.reset(ix);
+ fbasis.push_back(wave.dimensionedWave());
+ }
+ RhoDMatrix mapping=RhoDMatrix(PDT::Spin1Half,false);
+ for(unsigned int ix=0;ix<2;++ix) {
+ if(fbasis[0].s2()==SqrtEnergy()) {
+ mapping(ix,0) = sbasis[ix].s3()/fbasis[0].s3();
+ mapping(ix,1) = sbasis[ix].s2()/fbasis[1].s2();
+ }
+ else {
+ mapping(ix,0) = sbasis[ix].s2()/fbasis[0].s2();
+ mapping(ix,1) = sbasis[ix].s3()/fbasis[1].s3();
+ }
+ }
+ return mapping;
+}
+
+VectorSpinPtr createVectorSpinInfo(ShowerParticle & particle,
+ const Lorentz5Momentum & porig,
+ const LorentzRotation & rot,
+ Helicity::Direction dir) {
+ // calculate the splitting basis for the branching
+ // and rotate back to construct the basis states
+ LorentzRotation rinv = rot.inverse();
+ bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
+ VectorWaveFunction wave(porig,particle.dataPtr(),dir);
+ VectorSpinPtr vspin = new_ptr(VectorSpinInfo(particle.momentum(),dir==outgoing));
+ for(unsigned int ix=0;ix<3;++ix) {
+ LorentzPolarizationVector basis;
+ if(massless&&ix==1) {
+ basis = LorentzPolarizationVector();
+ }
+ else {
+ wave.reset(ix);
+ basis = wave.wave();
+ }
+ basis *= rinv;
+ vspin->setBasisState(ix,basis);
+ vspin->setDecayState(ix,basis);
+ }
+ particle.spinInfo(vspin);
+ vspin-> DMatrix() = RhoDMatrix(PDT::Spin1);
+ vspin->rhoMatrix() = RhoDMatrix(PDT::Spin1);
+ if(massless) {
+ vspin-> DMatrix()(0,0) = 0.5;
+ vspin->rhoMatrix()(0,0) = 0.5;
+ vspin-> DMatrix()(2,2) = 0.5;
+ vspin->rhoMatrix()(2,2) = 0.5;
+ }
+ return vspin;
+}
+}
+
bool SudakovFormFactor::getMapping(SpinPtr & output, RhoDMatrix & mapping,
ShowerParticle & particle,ShoKinPtr showerkin) {
- // if the particle is final-state and not from the hard process
- if(!particle.perturbative() && particle.isFinalState()) {
+ // if the particle is not from the hard process
+ if(!particle.perturbative()) {
// mapping is the identity
mapping=RhoDMatrix(particle.dataPtr()->iSpin());
output=particle.spinInfo();
assert(output);
return false;
}
// if particle is final-state and is from the hard process
- else if(particle.perturbative() && particle.isFinalState()) {
+ else if(particle.isFinalState()) {
+ assert(particle.perturbative()==1 || particle.perturbative()==2);
// get the basis vectors
vector<Lorentz5Momentum> basis=showerkin->getBasis();
- // momentum of the evolution frame
- // hard process
- if(particle.perturbative()==1) {
- }
- // decay
- else if(particle.perturbative()==2) {
- }
- else
- assert(false);
- // we are doing the evolution in the back-to-back frame
- // work out the boostvector
-
- // is this really true ??
- Boost boostv(-(basis[0]+basis[1]).boostVector());
- // boost the momentum
- Lorentz5Momentum porig(basis[0]);
- porig.boost(boostv);
- // now rotate so along the z axis as needed for the splitting functions
- Axis axis(porig.vect().unit());
- LorentzRotation rot;
- if(axis.perp2()>0.) {
- double sinth(sqrt(1.-sqr(axis.z())));
- rot.setRotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
- porig.transform(rot);
- }
- else if(axis.z()>0.) {
- porig.setZ(-porig.z());
- }
+ // get transform to shower frame
+ LorentzRotation rot = boostToShower(basis);
+ Lorentz5Momentum porig = rot*basis[0];
+ porig.setX(ZERO);
+ porig.setY(ZERO);
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
- mapping=RhoDMatrix(spin);
+ mapping=RhoDMatrix(spin,false);
// do the spin dependent bit
if(spin==PDT::Spin0) {
cerr << "testing spin 0 not yet implemented " << endl;
- exit(0);
+ assert(false);
}
else if(spin==PDT::Spin1Half) {
FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(fspin) {
output=fspin;
- // rotate the original basis
- vector<LorentzSpinor<SqrtEnergy> > sbasis;
- for(unsigned int ix=0;ix<2;++ix) {
- sbasis.push_back(fspin->getProductionBasisState(ix));
- sbasis.back().transform(rot);
- }
- // splitting basis
- vector<LorentzSpinorBar<SqrtEnergy> > fbasis;
- SpinorBarWaveFunction wave;
- if(particle.id()>0)
- wave=SpinorBarWaveFunction(porig,particle.dataPtr(),outgoing);
- else
- wave=SpinorBarWaveFunction(porig,particle.dataPtr(),incoming);
- for(unsigned int ix=0;ix<2;++ix) {
- wave.reset(ix);
- fbasis.push_back(wave.dimensionedWave());
- }
- // work out the mapping
- for(unsigned int ix=0;ix<2;++ix) {
- for(unsigned int iy=0;iy<2;++iy) {
- mapping(ix,iy)=sbasis[iy].scalar(fbasis[ix])/2./porig.mass();
- if(particle.id()<0){mapping(ix,iy)=conj(mapping(ix,iy));}
- }
- }
+ mapping = fermionMapping(particle,porig,fspin,rot);
return true;
}
// spin info does not exist create it
else {
// calculate the splitting basis for the branching
// and rotate back to construct the basis states
LorentzRotation rinv = rot.inverse();
SpinorWaveFunction wave;
if(particle.id()>0)
wave=SpinorWaveFunction(porig,particle.dataPtr(),incoming);
else
wave=SpinorWaveFunction(porig,particle.dataPtr(),outgoing);
FermionSpinPtr fspin = new_ptr(FermionSpinInfo(particle.momentum(),true));
for(unsigned int ix=0;ix<2;++ix) {
wave.reset(ix);
LorentzSpinor<SqrtEnergy> basis = wave.dimensionedWave();
basis.transform(rinv);
fspin->setBasisState(ix,basis);
fspin->setDecayState(ix,basis);
}
output=fspin;
particle.spinInfo(fspin);
return false;
}
}
else if(spin==PDT::Spin1) {
VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(vspin) {
output=vspin;
- // rotate the original basis
- vector<LorentzPolarizationVector> sbasis;
- for(unsigned int ix=0;ix<3;++ix) {
- sbasis.push_back(vspin->getProductionBasisState(ix));
- sbasis.back().transform(rot);
- }
- // splitting basis
- vector<LorentzPolarizationVector> fbasis;
- bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
- VectorWaveFunction wave(porig,particle.dataPtr(),outgoing);
- for(unsigned int ix=0;ix<3;++ix) {
- if(massless&&ix==1) {
- fbasis.push_back(LorentzPolarizationVector());
- }
- else {
- wave.reset(ix);
- fbasis.push_back(wave.wave());
- }
- }
- // work out the mapping
- for(unsigned int ix=0;ix<3;++ix) {
- for(unsigned int iy=0;iy<3;++iy) {
- mapping(ix,iy)= sbasis[iy].dot(fbasis[ix].conjugate());
- if(particle.id()<0)
- mapping(ix,iy)=conj(mapping(ix,iy));
- }
- }
+ mapping = bosonMapping(particle,porig,vspin,rot);
return true;
}
else {
- // calculate the splitting basis for the branching
- // and rotate back to construct the basis states
- LorentzRotation rinv = rot.inverse();
- bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
- VectorWaveFunction wave(porig,particle.dataPtr(),outgoing);
- VectorSpinPtr vspin = new_ptr(VectorSpinInfo(particle.momentum(),true));
- for(unsigned int ix=0;ix<3;++ix) {
- LorentzPolarizationVector basis;
- if(massless&&ix==1) {
- basis = LorentzPolarizationVector();
- }
- else {
- wave.reset(ix);
- basis = wave.wave();
- }
- basis *= rinv;
- vspin->setBasisState(ix,basis);
- vspin->setDecayState(ix,basis);
- }
- particle.spinInfo(vspin);
- if(massless) {
- mapping(0,0) = 1.;
- mapping(1,1) = 0.;
- mapping(2,2) = 1.;
- vspin->rhoMatrix()(0,0) = 0.5;
- vspin->rhoMatrix()(1,1) = 0.;
- vspin->rhoMatrix()(2,2) = 0.5;
- }
- output = vspin;
+ output = createVectorSpinInfo(particle,porig,rot,outgoing);
return false;
}
}
// not scalar/fermion/vector
else
assert(false);
}
+ else if(particle.perturbative() && !particle.isFinalState()) {
+ assert(particle.perturbative()==1);
+ // get the basis vectors
+ vector<Lorentz5Momentum> basis=showerkin->getBasis();
+ // get transform to shower frame
+ LorentzRotation rot = boostToShower(basis);
+ Lorentz5Momentum porig = rot*basis[0];
+ porig.setX(ZERO);
+ porig.setY(ZERO);
+ // the rest depends on the spin of the particle
+ PDT::Spin spin(particle.dataPtr()->iSpin());
+ mapping=RhoDMatrix(spin);
+ // do the spin dependent bit
+ if(spin==PDT::Spin0) {
+ cerr << "testing spin 0 not yet implemented " << endl;
+ assert(false);
+ }
+ // spin-1/2
+ else if(spin==PDT::Spin1Half) {
+ FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
+ // spin info exists get information from it
+ if(fspin) {
+ output=fspin;
+ mapping = fermionMapping(particle,porig,fspin,rot);
+ return true;
+ }
+ // spin info does not exist create it
+ else {
+ cerr << "testing has no spininfo\n";
+ assert(false);
+ }
+ }
+ // spin-1
+ else if(spin==PDT::Spin1) {
+ VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
+ // spinInfo exists map it
+ if(vspin) {
+ output=vspin;
+ mapping = bosonMapping(particle,porig,vspin,rot);
+ return true;
+ }
+ // create the spininfo
+ else {
+ output = createVectorSpinInfo(particle,porig,rot,incoming);
+ return false;
+ }
+ }
+ assert(false);
+ }
+ else
+ assert(false);
return true;
}
void SudakovFormFactor::removeSplitting(const IdList & in) {
for(vector<IdList>::iterator it=particles_.begin();
it!=particles_.end();++it) {
if(it->size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if((*it)[iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
vector<IdList>::iterator itemp=it;
--itemp;
particles_.erase(it);
it = itemp;
}
}
}
}
Energy2 SudakovFormFactor::guesst(Energy2 t1,unsigned int iopt,
const IdList &ids,
double enhance,bool ident) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double c =
1./((splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
splittingFn_->integOverP(zlimits_.first ,ids,pdfopt))*
alpha_->overestimateValue()/Constants::twopi*enhance);
assert(iopt<=2);
if(iopt==1) {
c/=pdfmax_;
if(ident) c*=0.5;
}
else if(iopt==2) c*=-1.;
if(splittingFn_->interactionOrder()==1) {
double r = UseRandom::rnd();
if(iopt!=2 || c*log(r)<log(Constants::MaxEnergy2/t1)) {
return t1*pow(r,c);
}
else
return Constants::MaxEnergy2;
}
else {
assert(false && "Units are dubious here.");
int nm(splittingFn()->interactionOrder()-1);
c/=Math::powi(alpha_->overestimateValue()/Constants::twopi,nm);
return t1 / pow (1. - nm*c*log(UseRandom::rnd())
* Math::powi(t1*UnitRemoval::InvE2,nm)
,1./double(nm));
}
}
double SudakovFormFactor::guessz (unsigned int iopt, const IdList &ids) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double lower = splittingFn_->integOverP(zlimits_.first,ids,pdfopt);
return splittingFn_->invIntegOverP
(lower + UseRandom::rnd()*(splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
lower),ids,pdfopt);
}
void SudakovFormFactor::doinit() {
Interfaced::doinit();
pT2min_ = cutOffOption()==2 ? sqr(pTmin_) : ZERO;
}
const vector<Energy> & SudakovFormFactor::virtualMasses(const IdList & ids) {
static vector<Energy> output;
output.clear();
if(cutOffOption() == 0) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
Energy kinCutoff=
kinematicCutOff(kinScale(),*std::max_element(output.begin(),output.end()));
for(unsigned int ix=0;ix<output.size();++ix)
output[ix]=max(kinCutoff,output[ix]);
}
else if(cutOffOption() == 1) {
for(unsigned int ix=0;ix<ids.size();++ix) {
output.push_back(getParticleData(ids[ix])->mass());
output.back() += ids[ix]==ParticleID::g ? vgCut() : vqCut();
}
}
else if(cutOffOption() == 2) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
}
else {
throw Exception() << "Unknown option for the cut-off"
<< " in SudakovFormFactor::virtualMasses()"
<< Exception::runerror;
}
return output;
}
diff --git a/Shower/Base/SudakovFormFactor.h b/Shower/Base/SudakovFormFactor.h
--- a/Shower/Base/SudakovFormFactor.h
+++ b/Shower/Base/SudakovFormFactor.h
@@ -1,649 +1,658 @@
// -*- C++ -*-
//
// SudakovFormFactor.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_SudakovFormFactor_H
#define HERWIG_SudakovFormFactor_H
//
// This is the declaration of the SudakovFormFactor class.
//
#include "ThePEG/Interface/Interfaced.h"
#include "Herwig++/Shower/SplittingFunctions/SplittingFunction.h"
#include "Herwig++/Shower/Couplings/ShowerAlpha.h"
#include "Herwig++/Shower/SplittingFunctions/SplittingGenerator.fh"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/PDF/BeamParticleData.h"
#include "ThePEG/EventRecord/RhoDMatrix.h"
#include "ThePEG/EventRecord/SpinInfo.h"
#include "ShowerKinematics.fh"
#include "SudakovFormFactor.fh"
namespace Herwig {
using namespace ThePEG;
/**
* A typedef for the BeamParticleData
*/
typedef Ptr<BeamParticleData>::transient_const_pointer tcBeamPtr;
/** \ingroup Shower
*
* This is the definition of the Sudakov form factor class. In general this
* is the base class for the implementation of Sudakov form factors in Herwig++.
* The methods generateNextTimeBranching(), generateNextDecayBranching() and
* generateNextSpaceBranching need to be implemented in classes inheriting from this
* one.
*
* In addition a number of methods are implemented to assist with the calculation
* of the form factor using the veto algorithm in classes inheriting from this one.
*
* In general the Sudakov form-factor, for final-state radiation, is given
* by
* \f[\Delta_{ba}(\tilde{q}_{i+1},\tilde{q}_i)=
* \exp\left\{
* -\int^{\tilde{q}^2_i}_{\tilde{q}^2_{i+1}}
* \frac{{\rm d}\tilde{q}^2}{\tilde{q}^2}
* \int\frac{\alpha_S(z,\tilde{q})}{2\pi}
* P_{ba}(z,\tilde{q})\Theta(p_T)
* \right\}.
* \f]
* We can solve this to obtain the next value of the scale \f$\tilde{q}_{i+1}\f$
* given the previous value \f$\tilde{q}_i\f$
* in the following way. First we obtain a simplified form of the integrand
* which is greater than or equal to the true integrand for all values of
* \f$\tilde{q}\f$.
*
* In practice it is easiest to obtain this over estimate in pieces. The ShowerAlpha
* object contains an over estimate for \f$\alpha_S\f$, the splitting function
* contains both an over estimate of the spltting function and its integral
* which is needed to compute the over estimate of the \f$\tilde{q}\f$ integrand,
* together with an over estimate of the limit of the \f$z\f$ integral.
*
* This gives an overestimate of the integrand
* \f[g(\tilde{q}^2) = \frac{c}{\tilde{q}^2}, \f]
* where because the over estimates are chosen to be independent of \f$\tilde{q}\f$ the
* parameter
* \f[c = \frac{\alpha_{\rm over}}{2\pi}\int^{z_1}_{z_0}P_{\rm over}(z),\f]
* is a constant independent of \f$\tilde{q}\f$.
*
* The guesst() member can then be used to generate generate the value of
* \f$\tilde{q}^2\f$ according to this result. This is done by solving the Sudakov
* form factor, with the over estimates, is equal to a random number
* \f$r\f$ in the interval \f$[0,1]\f$. This gives
* \f[\tilde{q}^2_{i+1}=G^{-1}\left[G(\tilde{q}^2_i)+\ln r\right],\f]
* where \f$G(\tilde{q}^2)=c\ln(\tilde{q}^2)\f$ is the infinite integral
* of \f$g(\tilde{q}^2)\f$ and \f$G^{-1}(x)=\exp\left(\frac{x}c\right)\f$
* is its inverse.
* It this case we therefore obtain
* \f[\tilde{q}^2_{i+1}=\tilde{q}^2_ir^{\frac1c}.\f]
* The value of \f$z\f$ can then be calculated in a similar way
* \f[z = I^{-1}\left[I(z_0)+r\left(I(z_1)-I(z_0)\right)\right],\f]
* using the guessz() member,
* where \f$I=\int P(z){\rm d}z\f$ and \f$I^{-1}\f$ is its inverse.
*
* The veto algorithm then uses rejection using the ratio of the
* true value to the overestimated one to obtain the original distribution.
* This is accomplished using the
* - alphaSVeto() member for the \f$\alpha_S\f$ veto
* - SplittingFnVeto() member for the veto on the value of the splitting function.
* in general there must also be a chech that the emission is in the allowed
* phase space but this is left to the inheriting classes as it will depend
* on the ordering variable.
*
* The Sudakov form factor for the initial-scale shower is different because
* it must include the PDF which guides the backward evolution.
* It is given by
* \f[\Delta_{ba}(\tilde{q}_{i+1},\tilde{q}_i)=
* \exp\left\{
* -\int^{\tilde{q}^2_i}_{\tilde{q}^2_{i+1}}
* \frac{{\rm d}\tilde{q}^2}{\tilde{q}^2}
* \int\frac{\alpha_S(z,\tilde{q})}{2\pi}
* P_{ba}(z,\tilde{q})\frac{x'f_a(\frac{x}z,\tilde{q}^2)}{xf_b(x,\tilde{q^2})}
* \right\},
* \f]
* where \f$x\f$ is the fraction of the beam momentum the parton \f$b\f$ had before
* the backward evolution.
* This can be solve in the same way as for the final-state branching but the constant
* becomes
* \f[c = \frac{\alpha_{\rm over}}{2\pi}\int^{z_1}_{z_0}P_{\rm over}(z)PDF_{\rm max},\f]
* where
* \f[PDF_{\rm max}=\max\frac{x'f_a(\frac{x}z,\tilde{q}^2)}{xf_b(x,\tilde{q^2})},\f]
* which can be set using an interface.
* In addition the PDFVeto() member then is needed to implement the relevant veto.
*
* @see SplittingGenerator
* @see SplittingFunction
* @see ShowerAlpha
* @see \ref SudakovFormFactorInterfaces "The interfaces"
* defined for SudakovFormFactor.
*/
class SudakovFormFactor: public Interfaced {
/**
* The SplittingGenerator is a friend to insert the particles in the
* branchings at initialisation
*/
friend class SplittingGenerator;
public:
/**
* The default constructor.
*/
SudakovFormFactor() : pdfmax_(35.0), pdffactor_(0),
cutOffOption_(0), a_(0.3), b_(2.3), c_(0.3*GeV),
kinCutoffScale_( 2.3*GeV ), vgcut_(0.85*GeV),
vqcut_(0.85*GeV), pTmin_(1.*GeV), pT2min_(ZERO),
z_( 0.0 ),phi_(0.0), pT_() {}
/**
* Members to generate the scale of the next branching
*/
//@{
/**
* Return the scale of the next time-like branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param ids The PDG codes of the particles in the splitting
* @param cc Whether this is the charge conjugate of the branching
* @param enhance The radiation enhancement factor
* defined.
*/
virtual ShoKinPtr generateNextTimeBranching(const Energy startingScale,
const IdList &ids,const bool cc,
double enhance)=0;
/**
* Return the scale of the next space-like decay branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param stoppingScale stopping scale for the evolution
* @param minmass The minimum mass allowed for the spake-like particle.
* @param ids The PDG codes of the particles in the splitting
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param enhance The radiation enhancement factor
*/
virtual ShoKinPtr generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const bool cc,
double enhance)=0;
/**
* Return the scale of the next space-like branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param ids The PDG codes of the particles in the splitting
* @param x The fraction of the beam momentum
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param beam The beam particle
* @param enhance The radiation enhancement factor
*/
virtual ShoKinPtr generateNextSpaceBranching(const Energy startingScale,
const IdList &ids,double x,
const bool cc,double enhance,
tcBeamPtr beam)=0;
//@}
/**
- * Generate the azimuthal angle of the branching
+ * Generate the azimuthal angle of the branching for forward evolution
* @param particle The branching particle
* @param ids The PDG codes of the particles in the branchings
* @param The Shower kinematics
*/
virtual double generatePhiForward(ShowerParticle & particle,const IdList & ids,
ShoKinPtr kinematics)=0;
/**
+ * Generate the azimuthal angle of the branching for backward evolution
+ * @param particle The branching particle
+ * @param ids The PDG codes of the particles in the branchings
+ * @param The Shower kinematics
+ */
+ virtual double generatePhiBackward(ShowerParticle & particle,const IdList & ids,
+ ShoKinPtr kinematics)=0;
+
+ /**
* Methods to provide public access to the private member variables
*/
//@{
/**
* Return the pointer to the SplittingFunction object.
*/
tSplittingFnPtr splittingFn() const { return splittingFn_; }
/**
* Return the pointer to the ShowerAlpha object.
*/
tShowerAlphaPtr alpha() const { return alpha_; }
/**
* The type of interaction
*/
inline ShowerInteraction::Type interactionType() const
{return splittingFn_->interactionType();}
//@}
public:
/**
* Methods to access the kinematic variables for the branching
*/
//@{
/**
* The energy fraction
*/
double z() const { return z_; }
/**
* The azimuthal angle
*/
double phi() const { return phi_; }
/**
* The transverse momentum
*/
Energy pT() const { return pT_; }
//@}
/**
* Access the maximum weight for the PDF veto
*/
double pdfMax() const { return pdfmax_;}
/**
* Method to return the evolution scale given the
* transverse momentum, \f$p_T\f$ and \f$z\f$.
*/
virtual Energy calculateScale(double z, Energy pt, IdList ids,unsigned int iopt)=0;
/**
* Method to create the ShowerKinematics object for a final-state branching
*/
virtual ShoKinPtr createFinalStateBranching(Energy scale,double z,
double phi, Energy pt)=0;
/**
* Method to create the ShowerKinematics object for an initial-state branching
*/
virtual ShoKinPtr createInitialStateBranching(Energy scale,double z,
double phi, Energy pt)=0;
/**
* Method to create the ShowerKinematics object for a decay branching
*/
virtual ShoKinPtr createDecayBranching(Energy scale,double z,
double phi, Energy pt)=0;
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
protected:
/**
* Methods to implement the veto algorithm to generate the scale of
* the next branching
*/
//@{
/**
* Value of the energy fraction for the veto algorithm
* @param iopt The option for calculating z
* @param ids The PDG codes of the particles in the splitting
* - 0 is final-state
* - 1 is initial-state for the hard process
* - 2 is initial-state for particle decays
*/
double guessz (unsigned int iopt, const IdList &ids) const;
/**
* Value of the scale for the veto algorithm
* @param t1 The starting valoe of the scale
* @param iopt The option for calculating t
* @param ids The PDG codes of the particles in the splitting
* - 0 is final-state
* - 1 is initial-state for the hard process
* - 2 is initial-state for particle decays
* @param enhance The radiation enhancement factor
* @param identical Whether or not the outgoing particles are identical
*/
Energy2 guesst (Energy2 t1,unsigned int iopt, const IdList &ids,
double enhance, bool identical) const;
/**
* Veto on the PDF for the initial-state shower
* @param t The scale
* @param x The fraction of the beam momentum
* @param parton0 Pointer to the particleData for the
* new parent (this is the particle we evolved back to)
* @param parton1 Pointer to the particleData for the
* original particle
* @param beam The BeamParticleData object
*/
bool PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
tcBeamPtr beam) const;
/**
* The veto on the splitting function.
* @param t The scale
* @param ids The PDG codes of the particles in the splitting
* @param mass Whether or not to use the massive splitting functions
* @return true if vetoed
*/
bool SplittingFnVeto(const Energy2 t,
const IdList &ids,
const bool mass) const {
return UseRandom::rnd()>splittingFn_->ratioP(z_, t, ids,mass);
}
/**
* The veto on the coupling constant
* @param pt2 The value of ther transverse momentum squared, \f$p_T^2\f$.
* @return true if vetoed
*/
bool alphaSVeto(const Energy2 pt2) const {
return UseRandom::rnd() > ThePEG::Math::powi(alpha_->ratio(pt2),
splittingFn_->interactionOrder());
}
//@}
/**
* Methods to set the kinematic variables for the branching
*/
//@{
/**
* The energy fraction
*/
void z(double in) { z_=in; }
/**
* The azimuthal angle
*/
void phi(double in) { phi_=in; }
/**
* The transverse momentum
*/
void pT(Energy in) { pT_=in; }
//@}
/**
* Set/Get the limits on the energy fraction for the splitting
*/
//@{
/**
* Get the limits
*/
pair<double,double> zLimits() const { return zlimits_;}
/**
* Set the limits
*/
void zLimits(pair<double,double> in) { zlimits_=in; }
//@}
/**
* Set the particles in the splittings
*/
void addSplitting(const IdList &);
/**
* Delete the particles in the splittings
*/
void removeSplitting(const IdList &);
/**
* Access the potential branchings
*/
const vector<IdList> & particles() const { return particles_; }
/**
* For a particle which came from the hard process get the spin density and
* the mapping required to the basis used in the Shower
* @param rho The \f$\rho\f$ matrix
* @param mapping The mapping
* @param particle The particle
* @param showerkin The ShowerKinematics object
*/
bool getMapping(SpinPtr &, RhoDMatrix & map,
ShowerParticle & particle,ShoKinPtr showerkin);
public:
/**
* @name Methods for the cut-off
*/
//@{
/**
* The option being used
*/
unsigned int cutOffOption() const { return cutOffOption_; }
/**
* The kinematic scale
*/
Energy kinScale() const {return kinCutoffScale_;}
/**
* The virtuality cut-off on the gluon \f$Q_g=\frac{\delta-am_q}{b}\f$
* @param scale The scale \f$\delta\f$
* @param mq The quark mass \f$m_q\f$.
*/
Energy kinematicCutOff(Energy scale, Energy mq) const
{return max((scale -a_*mq)/b_,c_);}
/**
* The virtualilty cut-off for gluons
*/
Energy vgCut() const { return vgcut_; }
/**
* The virtuality cut-off for everything else
*/
Energy vqCut() const { return vqcut_; }
/**
* The minimum \f$p_T\f$ for the branching
*/
Energy pTmin() const { return pTmin_; }
/**
* The square of the minimum \f$p_T\f$
*/
Energy2 pT2min() const { return pT2min_; }
/**
* Calculate the virtual masses for a branchings
*/
const vector<Energy> & virtualMasses(const IdList & ids);
//@}
/**
* Set the PDF
*/
void setPDF(tcPDFPtr pdf, Energy scale) {
pdf_ = pdf;
freeze_ = scale;
}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
SudakovFormFactor & operator=(const SudakovFormFactor &);
private:
/**
* Pointer to the splitting function for this Sudakov form factor
*/
SplittingFnPtr splittingFn_;
/**
* Pointer to the coupling for this Sudakov form factor
*/
ShowerAlphaPtr alpha_;
/**
* Maximum value of the PDF weight
*/
double pdfmax_;
/**
* List of the particles this Sudakov is used for to aid in setting up
* interpolation tables if needed
*/
vector<IdList> particles_;
/**
* Option for the inclusion of a factor \f$1/(1-z)\f$ in the PDF estimate
*/
unsigned pdffactor_;
private:
/**
* Option for the type of cut-off to be applied
*/
unsigned int cutOffOption_;
/**
* Parameters for the default Herwig++ cut-off option, i.e. the parameters for
* the \f$Q_g=\max(\frac{\delta-am_q}{b},c)\f$ kinematic cut-off
*/
//@{
/**
* The \f$a\f$ parameter
*/
double a_;
/**
* The \f$b\f$ parameter
*/
double b_;
/**
* The \f$c\f$ parameter
*/
Energy c_;
/**
* Kinematic cutoff used in the parton shower phase space.
*/
Energy kinCutoffScale_;
//@}
/**
* Parameters for the FORTRAN-like cut-off
*/
//@{
/**
* The virtualilty cut-off for gluons
*/
Energy vgcut_;
/**
* The virtuality cut-off for everything else
*/
Energy vqcut_;
//@}
/**
* Parameters for the \f$p_T\f$ cut-off
*/
//@{
/**
* The minimum \f$p_T\f$ for the branching
*/
Energy pTmin_;
/**
* The square of the minimum \f$p_T\f$
*/
Energy2 pT2min_;
//@}
private:
/**
* Member variables to keep the shower kinematics information
* generated by a call to generateNextTimeBranching or generateNextSpaceBranching
*/
//@{
/**
* The energy fraction
*/
double z_;
/**
* The azimuthal angle
*/
double phi_;
/**
* The transverse momentum
*/
Energy pT_;
//@}
/**
* The limits of \f$z\f$ in the splitting
*/
pair<double,double> zlimits_;
/**
* Stuff for the PDFs
*/
//@{
/**
* PDf
*/
tcPDFPtr pdf_;
/**
* Freezing scale
*/
Energy freeze_;
//@}
};
}
#endif /* HERWIG_SudakovFormFactor_H */
diff --git a/Shower/Default/FS_QTildeShowerKinematics1to2.cc b/Shower/Default/FS_QTildeShowerKinematics1to2.cc
--- a/Shower/Default/FS_QTildeShowerKinematics1to2.cc
+++ b/Shower/Default/FS_QTildeShowerKinematics1to2.cc
@@ -1,250 +1,204 @@
// -*- C++ -*-
//
// FS_QTildeShowerKinematics1to2.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the FS_QTildeShowerKinematics1to2 class.
//
#include "FS_QTildeShowerKinematics1to2.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "Herwig++/Shower/SplittingFunctions/SplittingFunction.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/Debug.h"
-#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
-#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
-#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
-#include "ThePEG/Helicity/LorentzSpinorBar.h"
#include "Herwig++/Shower/ShowerHandler.h"
#include "Herwig++/Shower/Base/Evolver.h"
#include "Herwig++/Shower/Base/PartnerFinder.h"
#include "Herwig++/Shower/Base/ShowerModel.h"
#include "Herwig++/Shower/Base/KinematicsReconstructor.h"
using namespace Herwig;
-using namespace ThePEG::Helicity;
void FS_QTildeShowerKinematics1to2::
updateParameters(tShowerParticlePtr theParent,
tShowerParticlePtr theChild0,
tShowerParticlePtr theChild1,
bool setAlpha) const {
const ShowerParticle::Parameters & parent = theParent->showerParameters();
ShowerParticle::Parameters & child0 = theChild0->showerParameters();
ShowerParticle::Parameters & child1 = theChild1->showerParameters();
// determine alphas of children according to interpretation of z
if ( setAlpha ) {
child0.alpha = z() * parent.alpha;
child1.alpha = (1.-z()) * parent.alpha;
}
// set the values
double cphi = cos(phi());
double sphi = sin(phi());
child0.ptx = pT() * cphi + z() * parent.ptx;
child0.pty = pT() * sphi + z() * parent.pty;
child0.pt = sqrt( sqr(child0.ptx) + sqr(child0.pty) );
child1.ptx = -pT() * cphi + (1.-z())* parent.ptx;
child1.pty = -pT() * sphi + (1.-z())* parent.pty;
child1.pt = sqrt( sqr(child1.ptx) + sqr(child1.pty) );
}
void FS_QTildeShowerKinematics1to2::
updateChildren(const tShowerParticlePtr parent,
const ShowerParticleVector & children,
ShowerPartnerType::Type partnerType) const {
assert(children.size()==2);
// calculate the scales
splittingFn()->evaluateFinalStateScales(partnerType,scale(),z(),parent,
children[0],children[1]);
// update the parameters
updateParameters(parent, children[0], children[1], true);
// set up the colour connections
splittingFn()->colourConnection(parent,children[0],children[1],partnerType,false);
// make the products children of the parent
parent->addChild(children[0]);
parent->addChild(children[1]);
// sort out the helicity stuff
if(! ShowerHandler::currentHandler()->evolver()->correlations()) return;
SpinPtr pspin(parent->spinInfo());
if(!pspin) return;
// get the vertex
VertexPtr vertex(const_ptr_cast<VertexPtr>(pspin->decayVertex()));
if(!vertex) return;
- // construct the spin info for the children
ShowerParticleVector::const_iterator pit;
for(pit=children.begin();pit!=children.end();++pit) {
- Energy mass = (*pit)->data().mass();
- // calculate the momentum of the children assuming on-shell
- Energy2 pt2 = sqr((**pit).showerParameters().pt);
- double alpha = (**pit).showerParameters().alpha;
- double beta = 0.5*(sqr(mass) + pt2 - sqr(alpha)*pVector().m2())/(alpha*p_dot_n());
- Lorentz5Momentum porig=sudakov2Momentum(alpha,beta,
- (**pit).showerParameters().ptx,
- (**pit).showerParameters().pty);
- porig.setMass(mass);
- // now construct the required spininfo and calculate the basis states
- PDT::Spin spin((*pit)->dataPtr()->iSpin());
- if(spin==PDT::Spin0) {
- assert(false);
- }
- // calculate the basis states and construct the SpinInfo for a spin-1/2 particle
- else if(spin==PDT::Spin1Half) {
- // outgoing particle
- if((*pit)->id()>0) {
- vector<LorentzSpinorBar<SqrtEnergy> > stemp;
- SpinorBarWaveFunction::calculateWaveFunctions(stemp,*pit,outgoing);
- SpinorBarWaveFunction::constructSpinInfo(stemp,*pit,outgoing,true);
- }
- // outgoing antiparticle
- else {
- vector<LorentzSpinor<SqrtEnergy> > stemp;
- SpinorWaveFunction::calculateWaveFunctions(stemp,*pit,outgoing);
- SpinorWaveFunction::constructSpinInfo(stemp,*pit,outgoing,true);
- }
- }
- // calculate the basis states and construct the SpinInfo for a spin-1 particle
- else if(spin==PDT::Spin1) {
- bool massless((*pit)->id()==ParticleID::g||(*pit)->id()==ParticleID::gamma);
- vector<Helicity::LorentzPolarizationVector> vtemp;
- VectorWaveFunction::calculateWaveFunctions(vtemp,*pit,outgoing,massless);
- VectorWaveFunction::constructSpinInfo(vtemp,*pit,outgoing,true,massless);
- }
- else {
- throw Exception() << "Spins higher than 1 are not yet implemented in "
- << "FS_QtildaShowerKinematics1to2::constructVertex() "
- << Exception::runerror;
- }
+ // construct the spin info for the children
+ constructSpinInfo(*pit,true);
// connect the spinInfo object to the vertex
(*pit)->spinInfo()->productionVertex(vertex);
- (*pit)->set5Momentum(porig);
}
}
void FS_QTildeShowerKinematics1to2::
reconstructParent(const tShowerParticlePtr parent,
const ParticleVector & children ) const {
assert(children.size() == 2);
ShowerParticlePtr c1 = dynamic_ptr_cast<ShowerParticlePtr>(children[0]);
ShowerParticlePtr c2 = dynamic_ptr_cast<ShowerParticlePtr>(children[1]);
parent->showerParameters().beta=
c1->showerParameters().beta + c2->showerParameters().beta;
parent->set5Momentum( c1->momentum() + c2->momentum() );
}
void FS_QTildeShowerKinematics1to2::reconstructLast(const tShowerParticlePtr theLast,
Energy mass) const {
// set beta component and consequently all missing data from that,
// using the nominal (i.e. PDT) mass.
Energy theMass = mass > ZERO ? mass : theLast->data().constituentMass();
ShowerParticle::Parameters & last = theLast->showerParameters();
last.beta = ( sqr(theMass) + sqr(last.pt) - sqr(last.alpha) * pVector().m2() )
/ ( 2. * last.alpha * p_dot_n() );
// set that new momentum
theLast->set5Momentum(sudakov2Momentum( last.alpha, last.beta,
last.ptx, last.pty) );
}
void FS_QTildeShowerKinematics1to2::initialize(ShowerParticle & particle,PPtr) {
// set the basis vectors
Lorentz5Momentum p,n;
Frame frame;
if(particle.perturbative()!=0) {
// find the partner and its momentum
ShowerParticlePtr partner=particle.partner();
Lorentz5Momentum ppartner(partner->momentum());
// momentum of the emitting particle
p = particle.momentum();
Lorentz5Momentum pcm;
// if the partner is a final-state particle then the reference
// vector is along the partner in the rest frame of the pair
if(partner->isFinalState()) {
Boost boost=(p + ppartner).findBoostToCM();
pcm = ppartner;
pcm.boost(boost);
n = Lorentz5Momentum(ZERO,pcm.vect());
n.boost( -boost);
}
else if(!partner->isFinalState()) {
// if the partner is an initial-state particle then the reference
// vector is along the partner which should be massless
if(particle.perturbative()==1)
{n = Lorentz5Momentum(ZERO,ppartner.vect());}
// if the partner is an initial-state decaying particle then the reference
// vector is along the backwards direction in rest frame of decaying particle
else {
Boost boost=ppartner.findBoostToCM();
pcm = p;
pcm.boost(boost);
n = Lorentz5Momentum( ZERO, -pcm.vect());
n.boost( -boost);
}
}
frame = BackToBack;
}
else if(particle.initiatesTLS()) {
tShoKinPtr kin=dynamic_ptr_cast<ShowerParticlePtr>
(particle.parents()[0]->children()[0])->showerKinematics();
p = kin->getBasis()[0];
n = kin->getBasis()[1];
frame = kin->frame();
}
else {
tShoKinPtr kin=dynamic_ptr_cast<ShowerParticlePtr>(particle.parents()[0])
->showerKinematics();
p = kin->getBasis()[0];
n = kin->getBasis()[1];
frame = kin->frame();
}
// set the basis vectors
setBasis(p,n,frame);
}
void FS_QTildeShowerKinematics1to2::updateParent(const tShowerParticlePtr parent,
const ShowerParticleVector & children,
ShowerPartnerType::Type) const {
IdList ids(3);
ids[0] = parent->id();
ids[1] = children[0]->id();
ids[2] = children[1]->id();
const vector<Energy> & virtualMasses = SudakovFormFactor()->virtualMasses(ids);
if(children[0]->children().empty()) children[0]->virtualMass(virtualMasses[1]);
if(children[1]->children().empty()) children[1]->virtualMass(virtualMasses[2]);
// compute the new pT of the branching
Energy2 pt2=sqr(z()*(1.-z()))*sqr(scale())
- sqr(children[0]->virtualMass())*(1.-z())
- sqr(children[1]->virtualMass())* z() ;
if(ids[0]!=ParticleID::g) pt2 += z()*(1.-z())*sqr(virtualMasses[0]);
Energy2 q2 =
sqr(children[0]->virtualMass())/z() +
sqr(children[1]->virtualMass())/(1.-z()) +
pt2/z()/(1.-z());
if(pt2<ZERO) {
parent->virtualMass(ZERO);
}
else {
parent->virtualMass(sqrt(q2));
pT(sqrt(pt2));
}
}
void FS_QTildeShowerKinematics1to2::
resetChildren(const tShowerParticlePtr parent,
const ShowerParticleVector & children) const {
updateParameters(parent, children[0], children[1], false);
for(unsigned int ix=0;ix<children.size();++ix) {
if(children[ix]->children().empty()) continue;
ShowerParticleVector newChildren;
for(unsigned int iy=0;iy<children[ix]->children().size();++iy)
newChildren.push_back(dynamic_ptr_cast<ShowerParticlePtr>
(children[ix]->children()[iy]));
children[ix]->showerKinematics()->resetChildren(children[ix],newChildren);
}
}
diff --git a/Shower/Default/IS_QTildeShowerKinematics1to2.cc b/Shower/Default/IS_QTildeShowerKinematics1to2.cc
--- a/Shower/Default/IS_QTildeShowerKinematics1to2.cc
+++ b/Shower/Default/IS_QTildeShowerKinematics1to2.cc
@@ -1,154 +1,179 @@
// -*- C++ -*-
//
// IS_QTildeShowerKinematics1to2.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the IS_QTildeShowerKinematics1to2 class.
//
#include "IS_QTildeShowerKinematics1to2.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/Debug.h"
+#include "Herwig++/Shower/ShowerHandler.h"
+#include "Herwig++/Shower/Base/Evolver.h"
+#include "Herwig++/Shower/Base/PartnerFinder.h"
+#include "Herwig++/Shower/Base/ShowerModel.h"
+#include "Herwig++/Shower/Base/KinematicsReconstructor.h"
#include <cassert>
using namespace Herwig;
void IS_QTildeShowerKinematics1to2::
updateChildren( const tShowerParticlePtr theParent,
const ShowerParticleVector & theChildren,
ShowerPartnerType::Type) const {
const ShowerParticle::Parameters & parent = theParent->showerParameters();
ShowerParticle::Parameters & child0 = theChildren[0]->showerParameters();
ShowerParticle::Parameters & child1 = theChildren[1]->showerParameters();
double cphi = cos(phi());
double sphi = sin(phi());
child1.alpha = (1.-z()) * parent.alpha;
child1.ptx = (1.-z()) * parent.ptx - cphi * pT();
child1.pty = (1.-z()) * parent.pty - sphi * pT();
child1.pt = sqrt( sqr(child1.ptx) + sqr(child1.pty) );
// space-like child
child0.alpha = parent.alpha - child1.alpha;
child0.beta = parent.beta - child1.beta;
child0.ptx = parent.ptx - child1.ptx;
child0.pty = parent.pty - child1.pty;
}
void IS_QTildeShowerKinematics1to2::
updateParent(const tShowerParticlePtr parent,
const ShowerParticleVector & children,
ShowerPartnerType::Type partnerType) const {
// calculate the scales
splittingFn()->evaluateInitialStateScales(partnerType,scale(),z(),parent,
children[0],children[1]);
// set proper colour connections
splittingFn()->colourConnection(parent,children[0],children[1],
partnerType,true);
// set proper parent/child relationships
parent->addChild(children[0]);
parent->addChild(children[1]);
parent->x(children[0]->x()/z());
+ // sort out the helicity stuff
+ if(! ShowerHandler::currentHandler()->evolver()->correlations()) return;
+ SpinPtr pspin(children[0]->spinInfo());
+ if(!pspin) return;
+ // get the vertex
+ VertexPtr vertex(const_ptr_cast<VertexPtr>(pspin->decayVertex()));
+ if(!vertex) return;
+ // construct the spin info for parent and timelike child
+ // temporary assignment of shower parameters to calculate correlations
+ parent->showerParameters().alpha = parent->x();
+ children[1]->showerParameters().alpha = (1.-z()) * parent->x();
+ children[1]->showerParameters().ptx = - cos(phi()) * pT();
+ children[1]->showerParameters().pty = - sin(phi()) * pT();
+ children[1]->showerParameters().pt = pT();
+ // construct the spin infos
+ constructSpinInfo(parent,false);
+ constructSpinInfo(children[1],true);
+ // connect the spinInfo objects to the vertex
+ parent ->spinInfo()->productionVertex(vertex);
+ children[1]->spinInfo()->productionVertex(vertex);
}
void IS_QTildeShowerKinematics1to2::
reconstructParent(const tShowerParticlePtr theParent,
const ParticleVector & theChildren ) const {
PPtr c1 = theChildren[0];
ShowerParticlePtr c2 = dynamic_ptr_cast<ShowerParticlePtr>(theChildren[1]);
ShowerParticle::Parameters & c2param = c2->showerParameters();
// get shower variables from 1st child in order to keep notation
// parent->(c1, c2) clean even though the splitting was initiated
// from c1. The name updateParent is still referring to the
// timelike branching though.
// on-shell child
c2param.beta = 0.5*( sqr(c2->data().constituentMass()) + sqr(c2param.pt) )
/ ( c2param.alpha * p_dot_n() );
c2->set5Momentum( sudakov2Momentum(c2param.alpha, c2param.beta,
c2param.ptx , c2param.pty) );
// spacelike child
Lorentz5Momentum pc1(theParent->momentum() - c2->momentum());
pc1.rescaleMass();
c1->set5Momentum(pc1);
}
void IS_QTildeShowerKinematics1to2::
updateLast( const tShowerParticlePtr theLast,Energy px,Energy py) const {
if(theLast->isFinalState()) return;
ShowerParticle::Parameters & last = theLast->showerParameters();
Energy2 pt2 = sqr(px) + sqr(py);
last.alpha = theLast->x();
last.beta = 0.5 * pt2 / last.alpha / p_dot_n();
last.ptx = ZERO;
last.pty = ZERO;
last.pt = ZERO;
// momentum
Lorentz5Momentum ntemp = Lorentz5Momentum(ZERO,-pVector().vect());
double beta = 0.5 * pt2 / last.alpha / (pVector() * ntemp);
Lorentz5Momentum plast =
Lorentz5Momentum( (pVector().z()>ZERO ? px : -px), py, ZERO, ZERO)
+ theLast->x() * pVector() + beta * ntemp;
plast.rescaleMass();
theLast->set5Momentum(plast);
}
void IS_QTildeShowerKinematics1to2::initialize(ShowerParticle & particle, PPtr parent) {
// For the time being we are considering only 1->2 branching
Lorentz5Momentum p, n, pthis, pcm;
assert(particle.perturbative()!=2);
Frame frame;
if(particle.perturbative()==1) {
// find the partner and its momentum
ShowerParticlePtr partner=particle.partner();
assert(partner);
if(partner->isFinalState()) {
Lorentz5Momentum pa = -particle.momentum()+partner->momentum();
Lorentz5Momentum pb = particle.momentum();
Energy scale=parent->momentum().t();
Lorentz5Momentum pbasis(ZERO,parent->momentum().vect().unit()*scale);
Axis axis(pa.vect().unit());
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
if(axis.perp2()>1e-20) {
rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
rot.rotateX(Constants::pi);
}
if(abs(1.-pa.e()/pa.vect().mag())>1e-6) rot.boostZ( pa.e()/pa.vect().mag());
pb *= rot;
if(pb.perp2()/GeV2>1e-20) {
Boost trans = -1./pb.e()*pb.vect();
trans.setZ(0.);
rot.boost(trans);
}
pbasis *=rot;
rot.invert();
n = rot*Lorentz5Momentum(ZERO,-pbasis.vect());
p = rot*Lorentz5Momentum(ZERO, pbasis.vect());
}
else {
pcm = parent->momentum();
p = Lorentz5Momentum(ZERO, pcm.vect());
n = Lorentz5Momentum(ZERO, -pcm.vect());
}
frame = BackToBack;
}
else {
p = dynamic_ptr_cast<ShowerParticlePtr>(particle.children()[0])
->showerKinematics()->getBasis()[0];
n = dynamic_ptr_cast<ShowerParticlePtr>(particle.children()[0])
->showerKinematics()->getBasis()[1];
frame = dynamic_ptr_cast<ShowerParticlePtr>(particle.children()[0])
->showerKinematics()->frame();
}
setBasis(p,n,frame);
}
diff --git a/Shower/Default/QTildeShowerKinematics1to2.cc b/Shower/Default/QTildeShowerKinematics1to2.cc
--- a/Shower/Default/QTildeShowerKinematics1to2.cc
+++ b/Shower/Default/QTildeShowerKinematics1to2.cc
@@ -1,105 +1,157 @@
// -*- C++ -*-
//
// QTildeShowerKinematics1to2.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the QTildeShowerKinematics1to2 class.
//
#include "QTildeShowerKinematics1to2.h"
#include "ThePEG/Interface/ClassDocumentation.h"
+#include "Herwig++/Shower/Base/ShowerParticle.h"
+#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
+#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
+#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
+#include "ThePEG/Helicity/LorentzSpinorBar.h"
using namespace Herwig;
+using namespace ThePEG::Helicity;
vector<Lorentz5Momentum> QTildeShowerKinematics1to2::getBasis() const {
vector<Lorentz5Momentum> dum;
dum.push_back( _pVector );
dum.push_back( _nVector );
return dum;
}
void QTildeShowerKinematics1to2::setBasis(const Lorentz5Momentum &p,
const Lorentz5Momentum & n,
Frame inframe) {
_pVector=p;
_nVector=n;
frame(inframe);
}
Lorentz5Momentum QTildeShowerKinematics1to2::
sudakov2Momentum(double alpha, double beta, Energy px, Energy py) const {
if(isnan(beta)||isinf(beta))
throw Exception() << "beta infinite in "
<< "QTildeShowerKinematics1to2::sudakov2Momentum()"
<< Exception::eventerror;
Lorentz5Momentum dq;
if(frame()==BackToBack) {
const Boost beta_bb = -(_pVector + _nVector).boostVector();
Lorentz5Momentum p_bb = _pVector;
Lorentz5Momentum n_bb = _nVector;
p_bb.boost( beta_bb );
n_bb.boost( beta_bb );
// set first in b2b frame along z-axis (assuming that p and n are
// b2b as checked above)
dq=Lorentz5Momentum(ZERO, ZERO, (alpha - beta)*p_bb.vect().mag(),
alpha*p_bb.t() + beta*n_bb.t());
// add transverse components
dq.setX(px);
dq.setY(py);
// rotate to have z-axis parallel to p
// this rotation changed by PR to a different rotation with the same effect
// but different azimuthal angle to make implementing spin correlations easier
// dq.rotateUz( unitVector(p_bb.vect()) );
Axis axis(p_bb.vect().unit());
if(axis.perp2()>0.) {
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.setRotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
dq.transform(rot);
}
else if(axis.z()<0.) {
dq.setZ(-dq.z());
}
// boost back
dq.boost( -beta_bb );
dq.rescaleMass();
// return the momentum
}
else if(frame()==Rest) {
const Boost beta_bb = -pVector().boostVector();
Lorentz5Momentum p_bb = pVector();
Lorentz5Momentum n_bb = nVector();
p_bb.boost( beta_bb );
n_bb.boost( beta_bb );
// set first in b2b frame along z-axis (assuming that p and n are
// b2b as checked above)
dq=Lorentz5Momentum (ZERO, ZERO, 0.5*beta*pVector().mass(),
alpha*pVector().mass() + 0.5*beta*pVector().mass());
// add transverse components
dq.setX(px);
dq.setY(py);
// changed to be same as other case
// dq.rotateUz( unitVector(n_bb.vect()) );
Axis axis(n_bb.vect().unit());
if(axis.perp2()>0.) {
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.setRotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
dq.transform(rot);
}
else if(axis.z()<0.) {
dq.setZ(-dq.z());
}
// boost back
dq.boost( -beta_bb );
dq.rescaleMass();
}
else
assert(false);
return dq;
}
+
+void QTildeShowerKinematics1to2::constructSpinInfo(tShowerParticlePtr particle,
+ bool timeLike) const {
+ Energy mass = particle->data().mass();
+ // calculate the momentum of the assuming on-shell
+ Energy2 pt2 = sqr(particle->showerParameters().pt);
+ double alpha = timeLike ? particle->showerParameters().alpha : particle->x();
+ double beta = 0.5*(sqr(mass) + pt2 - sqr(alpha)*pVector().m2())/(alpha*p_dot_n());
+ Lorentz5Momentum porig=sudakov2Momentum(alpha,beta,
+ particle->showerParameters().ptx,
+ particle->showerParameters().pty);
+ porig.setMass(mass);
+ // now construct the required spininfo and calculate the basis states
+ PDT::Spin spin(particle->dataPtr()->iSpin());
+ if(spin==PDT::Spin0) {
+ assert(false);
+ }
+ // calculate the basis states and construct the SpinInfo for a spin-1/2 particle
+ else if(spin==PDT::Spin1Half) {
+ // outgoing particle
+ if(particle->id()>0) {
+ vector<LorentzSpinorBar<SqrtEnergy> > stemp;
+ SpinorBarWaveFunction::calculateWaveFunctions(stemp,particle,outgoing);
+ SpinorBarWaveFunction::constructSpinInfo(stemp,particle,outgoing,timeLike);
+ }
+ // outgoing antiparticle
+ else {
+ vector<LorentzSpinor<SqrtEnergy> > stemp;
+ SpinorWaveFunction::calculateWaveFunctions(stemp,particle,outgoing);
+ SpinorWaveFunction::constructSpinInfo(stemp,particle,outgoing,timeLike);
+ }
+ }
+ // calculate the basis states and construct the SpinInfo for a spin-1 particle
+ else if(spin==PDT::Spin1) {
+ bool massless(particle->id()==ParticleID::g||particle->id()==ParticleID::gamma);
+ vector<Helicity::LorentzPolarizationVector> vtemp;
+ VectorWaveFunction::calculateWaveFunctions(vtemp,particle,outgoing,massless);
+ VectorWaveFunction::constructSpinInfo(vtemp,particle,outgoing,timeLike,massless);
+ }
+ else {
+ throw Exception() << "Spins higher than 1 are not yet implemented in "
+ << "FS_QtildaShowerKinematics1to2::constructVertex() "
+ << Exception::runerror;
+ }
+ particle->set5Momentum(porig);
+}
diff --git a/Shower/Default/QTildeShowerKinematics1to2.h b/Shower/Default/QTildeShowerKinematics1to2.h
--- a/Shower/Default/QTildeShowerKinematics1to2.h
+++ b/Shower/Default/QTildeShowerKinematics1to2.h
@@ -1,105 +1,110 @@
// -*- C++ -*-
//
// QTildeShowerKinematics1to2.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_QTildeShowerKinematics1to2_H
#define HERWIG_QTildeShowerKinematics1to2_H
//
// This is the declaration of the QTildeShowerKinematics1to2 class.
//
#include "Herwig++/Shower/Base/ShowerKinematics.h"
#include "ThePEG/Vectors/Lorentz5Vector.h"
#include "QTildeShowerKinematics1to2.fh"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
*
* This abstract class describes the common features for initial and final
* state radiation kinematics for \f$1\to2\f$ branchings and for
* the choice of \f$\tilde{q}\f$ as evolution variable.
*
* @see ShowerKinematics
* @see IS_QTildeShowerKinematics1to2
* @see FS_QTildeShowerKinematics1to2
* @see KinematicsReconstructor
*/
class QTildeShowerKinematics1to2: public ShowerKinematics {
public:
/**
* Implementation of the virtual function returning a set of basis vectors, specific to
* the type of evolution. This function will be used by the
* ForwardShowerEvolver in order to access \f$p\f$
* and \f$n\f$.
*/
virtual vector<Lorentz5Momentum> getBasis() const;
/**
* Access to the \f$p\f$ vector used to describe the kinematics.
*/
const Lorentz5Momentum & pVector() const {return _pVector;}
/**
* Access to the \f$n\f$ vector used to describe the kinematics.
*/
const Lorentz5Momentum & nVector() const {return _nVector;}
/**
* Dot product of thew basis vectors
*/
Energy2 p_dot_n() const {return _pVector*_nVector;}
/**
* Converts a Sudakov parametrization of a momentum w.r.t. the given
* basis \f$p\f$ and \f$n\f$ into a 5 momentum.
* @param alpha The \f$\alpha\f$ parameter of the Sudakov parameterisation
* @param beta The \f$\beta\f$ parameter of the Sudakov parameterisation
* @param px The \f$x\f$-component of the transverse momentum in the Sudakov
* parameterisation
* @param py The \f$x\f$-component of the transverse momentum in the Sudakov
* parameterisation
*/
Lorentz5Momentum sudakov2Momentum(double alpha, double beta,
Energy px, Energy py) const;
protected:
/**
* Set the basis vectors
*/
void setBasis(const Lorentz5Momentum &p, const Lorentz5Momentum & n, Frame frame);
+ /**
+ * Construct the spin info object for a shower particle
+ */
+ void constructSpinInfo(tShowerParticlePtr,bool timelike) const;
+
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
QTildeShowerKinematics1to2 & operator=(const QTildeShowerKinematics1to2 &);
private:
/**
* The \f$p\f$ reference vector
*/
Lorentz5Momentum _pVector;
/**
* The \f$n\f$ reference vector
*/
Lorentz5Momentum _nVector;
};
}
#endif /* HERWIG_QTildeShowerKinematics1to2_H */
diff --git a/Shower/Default/QTildeSudakov.cc b/Shower/Default/QTildeSudakov.cc
--- a/Shower/Default/QTildeSudakov.cc
+++ b/Shower/Default/QTildeSudakov.cc
@@ -1,463 +1,509 @@
// -*- C++ -*-
//
// QTildeSudakov.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the QTildeSudakov class.
//
#include "QTildeSudakov.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/EventRecord/Event.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "Herwig++/Shower/Default/FS_QTildeShowerKinematics1to2.h"
#include "Herwig++/Shower/Default/IS_QTildeShowerKinematics1to2.h"
#include "Herwig++/Shower/Default/Decay_QTildeShowerKinematics1to2.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig++/Shower/Base/ShowerVertex.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "Herwig++/Shower/ShowerHandler.h"
#include "Herwig++/Shower/Base/Evolver.h"
#include "Herwig++/Shower/Base/PartnerFinder.h"
#include "Herwig++/Shower/Base/ShowerModel.h"
#include "Herwig++/Shower/Base/KinematicsReconstructor.h"
using namespace Herwig;
DescribeNoPIOClass<QTildeSudakov,Herwig::SudakovFormFactor>
describeQTildeSudakov ("Herwig::QTildeSudakov","HwShower.so");
void QTildeSudakov::Init() {
static ClassDocumentation<QTildeSudakov> documentation
("The QTildeSudakov class implements the Sudakov form factor for ordering it"
" qtilde");
}
bool QTildeSudakov::guessTimeLike(Energy2 &t,Energy2 tmin,double enhance) {
Energy2 told = t;
// calculate limits on z and if lower>upper return
if(!computeTimeLikeLimits(t)) return false;
// guess values of t and z
t = guesst(told,0,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(0,ids_));
// actual values for z-limits
if(!computeTimeLikeLimits(t)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::guessSpaceLike(Energy2 &t, Energy2 tmin, const double x,
double enhance) {
Energy2 told = t;
// calculate limits on z if lower>upper return
if(!computeSpaceLikeLimits(t,x)) return false;
// guess values of t and z
t = guesst(told,1,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(1,ids_));
// actual values for z-limits
if(!computeSpaceLikeLimits(t,x)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::PSVeto(const Energy2 t) {
// still inside PS, return true if outside
// check vs overestimated limits
if(z() < zLimits().first || z() > zLimits().second) return true;
// compute the pts
Energy2 pt2=sqr(z()*(1.-z()))*t-masssquared_[1]*(1.-z())-masssquared_[2]*z();
if(ids_[0]!=ParticleID::g) pt2+=z()*(1.-z())*masssquared_[0];
// if pt2<0 veto
if(pt2<pT2min()) return true;
// otherwise calculate pt and return
pT(sqrt(pt2));
return false;
}
ShoKinPtr QTildeSudakov::generateNextTimeBranching(const Energy startingScale,
const IdList &ids,const bool cc,
double enhance) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z(0.);
phi(0.);
// perform initialization
Energy2 tmax(sqr(startingScale)),tmin;
initialize(ids,tmin,cc);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// calculate next value of t using veto algorithm
Energy2 t(tmax);
do {
if(!guessTimeLike(t,tmin,enhance)) break;
}
while(PSVeto(t) || SplittingFnVeto(z()*(1.-z())*t,ids,true) ||
alphaSVeto(sqr(z()*(1.-z()))*t));
- if(t > ZERO) q_ = sqrt(t);
- else q_ = -1.*MeV;
- phi(0.);
+ q_ = t > ZERO ? Energy(sqrt(t)) : -1.*MeV;
if(q_ < ZERO) return ShoKinPtr();
// return the ShowerKinematics object
return createFinalStateBranching(q_,z(),phi(),pT());
}
ShoKinPtr QTildeSudakov::
generateNextSpaceBranching(const Energy startingQ,
const IdList &ids,
double x,bool cc,
double enhance,
Ptr<BeamParticleData>::transient_const_pointer beam) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z(0.);
phi(0.);
// perform the initialization
Energy2 tmax(sqr(startingQ)),tmin;
initialize(ids,tmin,cc);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// extract the partons which are needed for the PDF veto
// Different order, incoming parton is id = 1, outgoing are id=0,2
tcPDPtr parton0 = getParticleData(ids[0]);
tcPDPtr parton1 = getParticleData(ids[1]);
if(cc) {
if(parton0->CC()) parton0 = parton0->CC();
if(parton1->CC()) parton1 = parton1->CC();
}
// calculate next value of t using veto algorithm
Energy2 t(tmax),pt2(ZERO);
do {
if(!guessSpaceLike(t,tmin,x,enhance)) break;
pt2=sqr(1.-z())*t-z()*masssquared_[2];
}
while(z() > zLimits().second ||
SplittingFnVeto((1.-z())*t/z(),ids,true) ||
alphaSVeto(sqr(1.-z())*t) ||
PDFVeto(t,x,parton0,parton1,beam) || pt2 < pT2min() );
if(t > ZERO && zLimits().first < zLimits().second) q_ = sqrt(t);
else return ShoKinPtr();
- phi(Constants::twopi*UseRandom::rnd());
pT(sqrt(pt2));
// create the ShowerKinematics and return it
return createInitialStateBranching(q_,z(),phi(),pT());
}
void QTildeSudakov::initialize(const IdList & ids, Energy2 & tmin,const bool cc) {
ids_=ids;
if(cc) {
for(unsigned int ix=0;ix<ids.size();++ix) {
if(getParticleData(ids[ix])->CC()) ids_[ix]*=-1;
}
}
tmin = cutOffOption() != 2 ? ZERO : 4.*pT2min();
masses_ = virtualMasses(ids);
masssquared_.clear();
for(unsigned int ix=0;ix<masses_.size();++ix) {
masssquared_.push_back(sqr(masses_[ix]));
if(ix>0) tmin=max(masssquared_[ix],tmin);
}
}
ShoKinPtr QTildeSudakov::generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const bool cc,
double enhance) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to this method.
q_ = Constants::MaxEnergy;
z(0.);
phi(0.);
// perform initialisation
Energy2 tmax(sqr(stoppingScale)),tmin;
initialize(ids,tmin,cc);
tmin=sqr(startingScale);
// check some branching possible
if(tmax<=tmin) return ShoKinPtr();
// perform the evolution
Energy2 t(tmin),pt2(-MeV2);
do {
if(!guessDecay(t,tmax,minmass,enhance)) break;
pt2 = sqr(1.-z())*(t-masssquared_[0])-z()*masssquared_[2];
}
while(SplittingFnVeto((1.-z())*t/z(),ids,true)||
alphaSVeto(sqr(1.-z())*t) ||
pt2<pT2min() ||
t*(1.-z())>masssquared_[0]-sqr(minmass));
if(t > ZERO) {
q_ = sqrt(t);
pT(sqrt(pt2));
}
else return ShoKinPtr();
phi(Constants::twopi*UseRandom::rnd());
// create the ShowerKinematics object
return createDecayBranching(q_,z(),phi(),pT());
}
bool QTildeSudakov::guessDecay(Energy2 &t,Energy2 tmax, Energy minmass,
double enhance) {
// previous scale
Energy2 told = t;
// overestimated limits on z
if(tmax<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
Energy2 tm2 = tmax-masssquared_[0];
Energy tm = sqrt(tm2);
pair<double,double> limits=make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
zLimits(limits);
if(zLimits().second<zLimits().first) {
t=-1.0*GeV2;
return false;
}
// guess values of t and z
t = guesst(told,2,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(2,ids_));
// actual values for z-limits
if(t<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
tm2 = t-masssquared_[0];
tm = sqrt(tm2);
limits=make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
zLimits(limits);
if(t>tmax||zLimits().second<zLimits().first) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::computeTimeLikeLimits(Energy2 & t) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
// special case for gluon radiating
pair<double,double> limits;
if(ids_[0]==ParticleID::g||ids_[0]==ParticleID::gamma) {
// no emission possible
if(t<16.*masssquared_[1]) {
t=-1.*GeV2;
return false;
}
// overestimate of the limits
limits.first = 0.5*(1.-sqrt(1.-4.*sqrt((masssquared_[1]+pT2min())/t)));
limits.second = 1.-limits.first;
}
// special case for radiated particle is gluon
else if(ids_[2]==ParticleID::g||ids_[2]==ParticleID::gamma) {
limits.first = sqrt((masssquared_[1]+pT2min())/t);
limits.second = 1.-sqrt((masssquared_[2]+pT2min())/t);
}
else if(ids_[1]==ParticleID::g||ids_[1]==ParticleID::gamma) {
limits.second = sqrt((masssquared_[2]+pT2min())/t);
limits.first = 1.-sqrt((masssquared_[1]+pT2min())/t);
}
else {
limits.first = (masssquared_[1]+pT2min())/t;
limits.second = 1.-(masssquared_[2]+pT2min())/t;
}
if(limits.first>=limits.second) {
t=-1.*GeV2;
return false;
}
zLimits(limits);
return true;
}
bool QTildeSudakov::computeSpaceLikeLimits(Energy2 & t, double x) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
pair<double,double> limits;
// compute the limits
limits.first = x;
double yy = 1.+0.5*masssquared_[2]/t;
limits.second = yy - sqrt(sqr(yy)-1.+pT2min()/t);
// return false if lower>upper
zLimits(limits);
if(limits.second<limits.first) {
t=-1.*GeV2;
return false;
}
else
return true;
}
double QTildeSudakov::generatePhiForward(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics) {
// no correlations, return flat phi
if(! ShowerHandler::currentHandler()->evolver()->correlations())
return Constants::twopi*UseRandom::rnd();
// get the spin density matrix and the mapping
RhoDMatrix mapping;
SpinPtr inspin;
bool needMapping = getMapping(inspin,mapping,particle,kinematics);
// set the decayed flag
inspin->decay();
// get the spin density matrix
RhoDMatrix rho=inspin->rhoMatrix();
// map to the shower basis if needed
if(needMapping) {
RhoDMatrix rhop(rho.iSpin(),false);
for(int ixa=0;ixa<rho.iSpin();++ixa) {
for(int ixb=0;ixb<rho.iSpin();++ixb) {
for(int iya=0;iya<rho.iSpin();++iya) {
for(int iyb=0;iyb<rho.iSpin();++iyb) {
rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb));
}
}
}
}
+ rhop.normalize();
rho = rhop;
}
// get the kinematic variables
- double phi0 = 0.;
double z = kinematics->z();
Energy2 t = z*(1.-z)*sqr(kinematics->scale());
- // extract the phi of the previous branching
- if(!particle.parents().empty()) {
- tPPtr parent = particle.parents()[0];
- if(parent) {
- tShowerParticlePtr showerParent = dynamic_ptr_cast<tShowerParticlePtr>(parent);
- if(showerParent) {
- phi0 = showerParent->showerKinematics()->phi();
- if(parent->children()[0]==&particle) {
- phi0 = phi0;
- }
- else if(parent->children()[1]==&particle) {
- phi0 -= Constants::pi;
- if(phi0<0.) phi0 += Constants::twopi;
- }
- else
- assert(false);
- }
- }
- }
// generate the azimuthal angle
double phi;
Complex wgt;
vector<pair<int,Complex> >
wgts = splittingFn()->generatePhiForward(z,t,ids,rho);
static const Complex ii(0.,1.);
do {
phi = Constants::twopi*UseRandom::rnd();
wgt = 0.;
for(unsigned int ix=0;ix<wgts.size();++ix) {
if(wgts[ix].first==0)
wgt += wgts[ix].second;
else
wgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
}
if(wgt.real()-1.>1e-10) {
- cerr << "testing weight problem " << wgt << " " << wgt.real()-1.
+ cerr << "Forward weight problem " << wgt << " " << wgt.real()-1.
<< " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << z << " " << phi << "\n";
cerr << "Weights \n";
for(unsigned int ix=0;ix<wgts.size();++ix)
cerr << wgts[ix].first << " " << wgts[ix].second << "\n";
}
}
while(wgt.real()<UseRandom::rnd());
// compute the matrix element for spin correlations
- DecayMatrixElement
- me(splittingFn()->matrixElement(particle,kinematics,z,t,ids,phi));
+ DecayMatrixElement me(splittingFn()->matrixElement(z,t,ids,phi));
// create the vertex
SVertexPtr Svertex(new_ptr(ShowerVertex()));
// set the matrix element
Svertex->ME().reset(me);
// set the incoming particle for the vertex
inspin->decayVertex(Svertex);
- // return the azimuthal angle (remember this is phi w.r.t. the previous branching)
+ // return the azimuthal angle
+ return phi;
+}
+
+double QTildeSudakov::generatePhiBackward(ShowerParticle & particle,
+ const IdList & ids,
+ ShoKinPtr kinematics) {
+ // no correlations, return flat phi
+ if(! ShowerHandler::currentHandler()->evolver()->correlations())
+ return Constants::twopi*UseRandom::rnd();
+ // get the spin density matrix and the mapping
+ RhoDMatrix mapping;
+ SpinPtr inspin;
+ bool needMapping = getMapping(inspin,mapping,particle,kinematics);
+ // set the decayed flag (counterintuitive but going backward)
+ inspin->decay();
+ // get the spin density matrix
+ RhoDMatrix rho=inspin->DMatrix();
+ // map to the shower basis if needed
+ if(needMapping) {
+ RhoDMatrix rhop(rho.iSpin(),false);
+ for(int ixa=0;ixa<rho.iSpin();++ixa) {
+ for(int ixb=0;ixb<rho.iSpin();++ixb) {
+ for(int iya=0;iya<rho.iSpin();++iya) {
+ for(int iyb=0;iyb<rho.iSpin();++iyb) {
+ rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb));
+ }
+ }
+ }
+ }
+ rhop.normalize();
+ rho = rhop;
+ }
+ // get the kinematic variables
+ double z = kinematics->z();
+ Energy2 t = (1.-z)*sqr(kinematics->scale())/z;
+ // generate the azimuthal angle
+ double phi;
+ Complex wgt;
+ vector<pair<int,Complex> >
+ wgts = splittingFn()->generatePhiBackward(z,t,ids,rho);
+ static const Complex ii(0.,1.);
+ do {
+ phi = Constants::twopi*UseRandom::rnd();
+ wgt = 0.;
+ for(unsigned int ix=0;ix<wgts.size();++ix) {
+ if(wgts[ix].first==0)
+ wgt += wgts[ix].second;
+ else
+ wgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
+ }
+ if(wgt.real()-1.>1e-10) {
+ cerr << "Backward weight problem " << wgt << " " << wgt.real()-1.
+ << " " << ids[0] << " " << ids[1] << " " << ids[2] << " " << " " << z << " " << phi << "\n";
+ cerr << "Weights \n";
+ for(unsigned int ix=0;ix<wgts.size();++ix)
+ cerr << wgts[ix].first << " " << wgts[ix].second << "\n";
+ }
+ }
+ while(wgt.real()<UseRandom::rnd());
+ // compute the matrix element for spin correlations
+ DecayMatrixElement me(splittingFn()->matrixElement(z,t,ids,phi));
+ // create the vertex
+ SVertexPtr Svertex(new_ptr(ShowerVertex()));
+ // set the matrix element
+ Svertex->ME().reset(me);
+ // set the incoming particle for the vertex
+ // (in reality the first child as going backwards)
+ inspin->decayVertex(Svertex);
+ // return the azimuthal angle
return phi;
}
Energy QTildeSudakov::calculateScale(double zin, Energy pt, IdList ids,
unsigned int iopt) {
Energy2 tmin;
initialize(ids,tmin,false);
// final-state branching
if(iopt==0) {
Energy2 scale=(sqr(pt)+masssquared_[1]*(1.-zin)+masssquared_[2]*zin);
if(ids[0]!=ParticleID::g) scale -= zin*(1.-zin)*masssquared_[0];
scale /= sqr(zin*(1-zin));
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==1) {
Energy2 scale=(sqr(pt)+zin*masssquared_[2])/sqr(1.-zin);
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==2) {
Energy2 scale = (sqr(pt)+zin*masssquared_[2])/sqr(1.-zin)+masssquared_[0];
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else {
throw Exception() << "Unknown option in QTildeSudakov::calculateScale() "
<< "iopt = " << iopt << Exception::runerror;
}
}
ShoKinPtr QTildeSudakov::createFinalStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(FS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr QTildeSudakov::createInitialStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(IS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr QTildeSudakov::createDecayBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(Decay_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
diff --git a/Shower/Default/QTildeSudakov.h b/Shower/Default/QTildeSudakov.h
--- a/Shower/Default/QTildeSudakov.h
+++ b/Shower/Default/QTildeSudakov.h
@@ -1,266 +1,275 @@
// -*- C++ -*-
//
// QTildeSudakov.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_QTildeSudakov_H
#define HERWIG_QTildeSudakov_H
//
// This is the declaration of the QTildeSudakov class.
//
#include "Herwig++/Shower/Base/SudakovFormFactor.h"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
*
* The QTildeSudakov class implements the Sudakov form factor for evolution in
* \f$\tilde{q}^2\f$ using the veto algorithm.
*
* @see \ref QTildeSudakovInterfaces "The interfaces"
* defined for QTildeSudakov.
*/
class QTildeSudakov: public SudakovFormFactor {
public:
/**
* The default constructor.
*/
inline QTildeSudakov() {}
/**
* Members to generate the scale of the next branching
*/
//@{
/**
* Return the scale of the next time-like branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param ids The PDG codes of the particles in the splitting
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param enhance The radiation enhancement factor
*/
virtual ShoKinPtr generateNextTimeBranching(const Energy startingScale,
const IdList &ids,const bool cc,
double enhance);
/**
* Return the scale of the next space-like decay branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param stoppingScale stopping scale for the evolution
* @param minmass The minimum mass allowed for the spake-like particle.
* @param ids The PDG codes of the particles in the splitting
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param enhance The radiation enhancement factor
*/
virtual ShoKinPtr generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const bool cc,
double enhance);
/**
* Return the scale of the next space-like branching. If there is no
* branching then it returns ZERO.
* @param startingScale starting scale for the evolution
* @param ids The PDG codes of the particles in the splitting
* @param x The fraction of the beam momentum
* @param cc Whether this is the charge conjugate of the branching
* defined.
* @param enhance The radiation enhancement factor
* @param beam The beam particle
*/
virtual ShoKinPtr generateNextSpaceBranching(const Energy startingScale,
const IdList &ids,double x,
const bool cc, double enhance,
tcBeamPtr beam);
//@}
/**
- * Generate the azimuthal angle of the branching
+ * Generate the azimuthal angle of the branching for forward branching
* @param particle The branching particle
* @param ids The PDG codes of the particles in the branchings
* @param The Shower kinematics
*/
virtual double generatePhiForward(ShowerParticle & particle,const IdList & ids,
ShoKinPtr kinematics);
+
+ /**
+ * Generate the azimuthal angle of the branching for backward branching
+ * @param particle The branching particle
+ * @param ids The PDG codes of the particles in the branchings
+ * @param The Shower kinematics
+ */
+ virtual double generatePhiBackward(ShowerParticle & particle,const IdList & ids,
+ ShoKinPtr kinematics);
/**
* Method to return the evolution scale given the
* transverse momentum, \f$p_T\f$ and \f$z\f$.
*/
virtual Energy calculateScale(double z, Energy pt, IdList ids,unsigned int iopt);
/**
* Method to create the ShowerKinematics object for a final-state branching
*/
virtual ShoKinPtr createFinalStateBranching(Energy scale,double z,
double phi, Energy pt);
/**
* Method to create the ShowerKinematics object for an initial-state branching
*/
virtual ShoKinPtr createInitialStateBranching(Energy scale,double z,
double phi, Energy pt);
/**
* Method to create the ShowerKinematics object for a decay branching
*/
virtual ShoKinPtr createDecayBranching(Energy scale,double z,
double phi, Energy pt);
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/**
* Methods to provide the next value of the scale before the vetos
* are applied.
*/
//@{
/**
* Value of the energy fraction and scale for time-like branching
* @param t The scale
* @param tmin The minimum scale
* @param enhance The radiation enhancement factor
* @return False if scale less than minimum, true otherwise
*/
bool guessTimeLike(Energy2 &t, Energy2 tmin, double enhance);
/**
* Value of the energy fraction and scale for time-like branching
* @param t The scale
* @param tmax The maximum scale
* @param minmass The minimum mass of the particle after the branching
* @param enhance The radiation enhancement factor
*/
bool guessDecay(Energy2 &t, Energy2 tmax,Energy minmass,
double enhance);
/**
* Value of the energy fraction and scale for space-like branching
* @param t The scale
* @param tmin The minimum scale
* @param x Fraction of the beam momentum.
* @param enhance The radiation enhancement factor
*/
bool guessSpaceLike(Energy2 &t, Energy2 tmin, const double x,
double enhance);
//@}
/**
* Initialize the values of the cut-offs and scales
* @param tmin The minimum scale
* @param ids The ids of the partics in the branching
* @param cc Whether this is the charge conjugate of the branching
*/
void initialize(const IdList & ids,Energy2 &tmin, const bool cc);
/**
* Phase Space veto member to implement the \f$\Theta\f$ function as a veto
* so that the emission is within the allowed phase space.
* @param t The scale
* @return true if vetoed
*/
bool PSVeto(const Energy2 t);
/**
* Compute the limits on \f$z\f$ for time-like branching
* @param scale The scale of the particle
* @return True if lower limit less than upper, otherwise false
*/
bool computeTimeLikeLimits(Energy2 & scale);
/**
* Compute the limits on \f$z\f$ for space-like branching
* @param scale The scale of the particle
* @param x The energy fraction of the parton
* @return True if lower limit less than upper, otherwise false
*/
bool computeSpaceLikeLimits(Energy2 & scale, double x);
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
inline virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
inline virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
QTildeSudakov & operator=(const QTildeSudakov &);
private:
/**
* The evolution scale, \f$\tilde{q}\f$.
*/
Energy q_;
/**
* The Ids of the particles in the current branching
*/
IdList ids_;
/**
* The masses of the particles in the current branching
*/
vector<Energy> masses_;
/**
* The mass squared of the particles in the current branching
*/
vector<Energy2> masssquared_;
};
}
#endif /* HERWIG_QTildeSudakov_H */
diff --git a/Shower/SplittingFunctions/HalfHalfOneSplitFn.cc b/Shower/SplittingFunctions/HalfHalfOneSplitFn.cc
--- a/Shower/SplittingFunctions/HalfHalfOneSplitFn.cc
+++ b/Shower/SplittingFunctions/HalfHalfOneSplitFn.cc
@@ -1,128 +1,134 @@
// -*- C++ -*-
//
// HalfHalfOneSplitFn.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the HalfHalfOneSplitFn class.
//
#include "HalfHalfOneSplitFn.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
-#include "Herwig++/Shower/Base/ShowerParticle.h"
using namespace Herwig;
DescribeNoPIOClass<HalfHalfOneSplitFn,Herwig::SplittingFunction>
describeHalfHalfOneSplitFn ("Herwig::HalfHalfOneSplitFn","HwShower.so");
void HalfHalfOneSplitFn::Init() {
static ClassDocumentation<HalfHalfOneSplitFn> documentation
("The HalfHalfOneSplitFn class implements the q -> qg splitting function");
}
double HalfHalfOneSplitFn::P(const double z, const Energy2 t,
const IdList &ids, const bool mass) const {
double val = (1. + sqr(z))/(1.-z);
if(mass) {
Energy m = getParticleData(ids[0])->mass();
val -= 2.*sqr(m)/t;
}
return colourFactor(ids)*val;
}
double HalfHalfOneSplitFn::overestimateP(const double z,
const IdList & ids) const {
return 2.*colourFactor(ids)/(1.-z);
}
double HalfHalfOneSplitFn::ratioP(const double z, const Energy2 t,
const IdList & ids, const bool mass) const {
double val = 1. + sqr(z);
if(mass) {
Energy m = getParticleData(ids[0])->mass();
val -= 2.*sqr(m)*(1.-z)/t;
}
return 0.5*val;
}
double HalfHalfOneSplitFn::integOverP(const double z,
const IdList & ids,
unsigned int PDFfactor) const {
switch (PDFfactor) {
case 0:
return -2.*colourFactor(ids)*Math::log1m(z);
case 1:
return 2.*colourFactor(ids)*log(z/(1.-z));
case 2:
return 2.*colourFactor(ids)/(1.-z);
case 3:
default:
throw Exception() << "HalfHalfOneSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
double HalfHalfOneSplitFn::invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor) const {
switch (PDFfactor) {
case 0:
return 1. - exp(- 0.5*r/colourFactor(ids));
case 1:
return 1./(1.-exp(-0.5*r/colourFactor(ids)));
case 2:
return 1.-2.*colourFactor(ids)/r;
case 3:
default:
throw Exception() << "HalfHalfOneSplitFn::invIntegOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
bool HalfHalfOneSplitFn::accept(const IdList &ids) const {
// 3 particles and in and out fermion same
if(ids.size()!=3 || ids[0]!=ids[1]) return false;
tcPDPtr q=getParticleData(ids[0]);
tcPDPtr g=getParticleData(ids[2]);
if(q->iSpin()!=PDT::Spin1Half ||
g->iSpin()!=PDT::Spin1) return false;
return checkColours(ids);
}
vector<pair<int, Complex> >
HalfHalfOneSplitFn::generatePhiForward(const double, const Energy2, const IdList & ,
- const RhoDMatrix &) {
+ const RhoDMatrix &) {
// no dependence on the spin density matrix, dependence on off-diagonal terms cancels
// and rest = splitting function for Tr(rho)=1 as required by defn
return vector<pair<int, Complex> >(1,make_pair(0,1.));
}
-DecayMatrixElement HalfHalfOneSplitFn::matrixElement(ShowerParticle & particle,ShoKinPtr,
- const double z, const Energy2 t,
- const IdList &, const double phi) {
+vector<pair<int, Complex> >
+HalfHalfOneSplitFn::generatePhiBackward(const double, const Energy2, const IdList & ,
+ const RhoDMatrix &) {
+ // no dependence on the spin density matrix, dependence on off-diagonal terms cancels
+ // and rest = splitting function for Tr(rho)=1 as required by defn
+ return vector<pair<int, Complex> >(1,make_pair(0,1.));
+}
+
+DecayMatrixElement HalfHalfOneSplitFn::matrixElement(const double z, const Energy2 t,
+ const IdList & ids, const double phi) {
// calculate the kernal
DecayMatrixElement kernal(PDT::Spin1Half,PDT::Spin1Half,PDT::Spin1);
- Energy m = particle.dataPtr()->mass();
+ Energy m = getParticleData(ids[0])->mass();
double mt = m/sqrt(t);
double root = sqrt(1.-(1.-z)*sqr(m)/z/t);
double romz = sqrt(1.-z);
double rz = sqrt(z);
Complex phase = exp(Complex(0.,1.)*phi);
kernal(0,0,0) = -root/romz*phase;
kernal(1,1,2) = -conj(kernal(0,0,0));
kernal(0,0,2) = root/romz*z/phase;
kernal(1,1,0) = -conj(kernal(0,0,2));
kernal(1,0,2) = mt*(1.-z)/rz;
kernal(0,1,0) = conj(kernal(1,0,2));
kernal(0,1,2) = 0.;
kernal(1,0,0) = 0.;
return kernal;
}
diff --git a/Shower/SplittingFunctions/HalfHalfOneSplitFn.h b/Shower/SplittingFunctions/HalfHalfOneSplitFn.h
--- a/Shower/SplittingFunctions/HalfHalfOneSplitFn.h
+++ b/Shower/SplittingFunctions/HalfHalfOneSplitFn.h
@@ -1,177 +1,186 @@
// -*- C++ -*-
//
// HalfHalfOneSplitFn.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_HalfHalfOneSplitFn_H
#define HERWIG_HalfHalfOneSplitFn_H
//
// This is the declaration of the HalfHalfOneSplitFn class.
//
#include "SplittingFunction.h"
namespace Herwig {
using namespace ThePEG;
/**\ingroup Shower
*
* This class provides the concrete implementation of the exact leading-order
* splitting function for \f$\frac12\to q\frac12 1\f$.
*
* In this case the splitting function is given by
* \f[P(z,t) =C\left(\frac{1+z^2}{1-z}-2\frac{m^2_q}{t}\right),\f]
* where \f$C\f$ is the corresponding colour factor.
* Our choice for the overestimate is
* \f[P_{\rm over}(z) = \frac{2C}{1-z},\f]
* therefore the integral is
* \f[\int P_{\rm over}(z) {\rm d}z = -2C\ln(1-z),\f]
* and its inverse is
* \f[1-\exp\left(\frac{r}{2C}\right).\f]
*
* @see \ref HalfHalfOneSplitFnInterfaces "The interfaces"
* defined for HalfHalfOneSplitFn.
*/
class HalfHalfOneSplitFn: public SplittingFunction {
public:
/**
* The default constructor.
*/
HalfHalfOneSplitFn() : SplittingFunction(1) {}
/**
* Concrete implementation of the method to determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* The concrete implementation of the splitting function, \f$P(z,t)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the overestimate of the splitting function,
* \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const;
/**
* The concrete implementation of the
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,t)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const;
/**
* The concrete implementation of the inverse of the indefinite integral.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const;
//@}
/**
* Method to calculate the azimuthal angle
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &);
+
+ /**
+ * Method to calculate the azimuthal angle for backward evolution
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
+ */
+ virtual vector<pair<int,Complex> >
+ generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &);
/**
* Calculate the matrix element for the splitting
- * @param particle The particle which is branching
- * @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
*/
- virtual DecayMatrixElement matrixElement(ShowerParticle & particle,ShoKinPtr showerkin,
- const double z, const Energy2 t,
+ virtual DecayMatrixElement matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi);
public:
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
HalfHalfOneSplitFn & operator=(const HalfHalfOneSplitFn &);
};
}
#endif /* HERWIG_HalfHalfOneSplitFn_H */
diff --git a/Shower/SplittingFunctions/HalfOneHalfSplitFn.cc b/Shower/SplittingFunctions/HalfOneHalfSplitFn.cc
--- a/Shower/SplittingFunctions/HalfOneHalfSplitFn.cc
+++ b/Shower/SplittingFunctions/HalfOneHalfSplitFn.cc
@@ -1,98 +1,143 @@
// -*- C++ -*-
//
// HalfOneHalfSplitFn.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the HalfOneHalfSplitFn class.
//
#include "HalfOneHalfSplitFn.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeNoPIOClass<HalfOneHalfSplitFn,Herwig::SplittingFunction>
describeHalfOneHalfSplitFn ("Herwig::HalfOneHalfSplitFn","HwShower.so");
void HalfOneHalfSplitFn::Init() {
static ClassDocumentation<HalfOneHalfSplitFn> documentation
- ("The HalfOneHalfSplitFn class implements the splitting function for q -> g q");
+ ("The HalfOneHalfSplitFn class implements the splitting "
+ "function for q -> g q");
}
double HalfOneHalfSplitFn::P(const double z, const Energy2 t,
const IdList &ids, const bool mass) const {
double val=(2.*(1.-z)+sqr(z))/z;
if(mass) {
Energy m = getParticleData(ids[0])->mass();
val-=2.*sqr(m)/t;
}
return colourFactor(ids)*val;
}
double HalfOneHalfSplitFn::overestimateP(const double z,
const IdList &ids) const {
return 2.*colourFactor(ids)/z;
}
double HalfOneHalfSplitFn::ratioP(const double z, const Energy2 t,
const IdList &ids,const bool mass) const {
double val=2.*(1.-z)+sqr(z);
if(mass) {
Energy m=getParticleData(ids[0])->mass();
val -=2.*sqr(m)*z/t;
}
return 0.5*val;
}
double HalfOneHalfSplitFn::integOverP(const double z, const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return 2.*colourFactor(ids)*log(z);
case 1:
return -2.*colourFactor(ids)/z;
case 2:
return 2.*colourFactor(ids)*log(z/(1.-z));
case 3:
default:
throw Exception() << "HalfOneHalfSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
double HalfOneHalfSplitFn::invIntegOverP(const double r,
const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return exp(0.5*r/colourFactor(ids));
case 1:
return -2.*colourFactor(ids)/r;
case 2:
return 1./(1.+exp(-0.5*r/colourFactor(ids)));
case 3:
default:
throw Exception() << "HalfOneHalfSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
bool HalfOneHalfSplitFn::accept(const IdList &ids) const {
// 3 particles and in and out fermion same
if(ids.size()!=3 || ids[0]!=ids[2]) return false;
tcPDPtr q=getParticleData(ids[0]);
tcPDPtr g=getParticleData(ids[1]);
if(q->iSpin()!=PDT::Spin1Half ||
g->iSpin()!=PDT::Spin1) return false;
return checkColours(ids);
}
+
+vector<pair<int, Complex> >
+HalfOneHalfSplitFn::generatePhiForward(const double, const Energy2, const IdList & ,
+ const RhoDMatrix &) {
+ // no dependence on the spin density matrix, dependence on off-diagonal terms cancels
+ // and rest = splitting function for Tr(rho)=1 as required by defn
+ return vector<pair<int, Complex> >(1,make_pair(0,1.));
+}
+
+vector<pair<int, Complex> >
+HalfOneHalfSplitFn::generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix & rho) {
+ assert(rho.iSpin()==PDT::Spin1);
+ double mt = sqr(getParticleData(ids[0])->mass())/t;
+ double diag = (1.+sqr(1.-z))/z - 2.*mt;
+ double off = 2.*(1.-z)/z*(1.-mt*z/(1.-z));
+ double max = diag+2.*abs(rho(0,2))*off;
+ vector<pair<int, Complex> > output;
+ output.push_back(make_pair( 0, (rho(0,0)+rho(2,2))*diag/max));
+ output.push_back(make_pair( 2, -rho(0,2) * off/max));
+ output.push_back(make_pair(-2, -rho(2,0) * off/max));
+ return output;
+}
+
+DecayMatrixElement HalfOneHalfSplitFn::matrixElement(const double z, const Energy2 t,
+ const IdList & ids, const double phi) {
+ // calculate the kernal
+ DecayMatrixElement kernal(PDT::Spin1Half,PDT::Spin1,PDT::Spin1Half);
+ Energy m = getParticleData(ids[0])->mass();
+ double mt = m/sqrt(t);
+ double root = sqrt(1.-z*sqr(m)/(1.-z)/t);
+ double romz = sqrt(1.-z);
+ double rz = sqrt(z);
+ Complex phase = exp(Complex(0.,1.)*phi);
+ kernal(0,0,0) = -root/rz/phase;
+ kernal(1,1,2) = -conj(kernal(0,0,0));
+ kernal(0,0,2) = root/rz*(1.-z)*phase;
+ kernal(1,1,0) = -conj(kernal(0,0,2));
+ kernal(1,0,2) = mt*z/romz;
+ kernal(0,1,0) = conj(kernal(1,0,2));
+ kernal(0,1,2) = 0.;
+ kernal(1,0,0) = 0.;
+ return kernal;
+}
diff --git a/Shower/SplittingFunctions/HalfOneHalfSplitFn.h b/Shower/SplittingFunctions/HalfOneHalfSplitFn.h
--- a/Shower/SplittingFunctions/HalfOneHalfSplitFn.h
+++ b/Shower/SplittingFunctions/HalfOneHalfSplitFn.h
@@ -1,152 +1,186 @@
// -*- C++ -*-
//
// HalfOneHalfSplitFn.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_HalfOneHalfSplitFn_H
#define HERWIG_HalfOneHalfSplitFn_H
//
// This is the declaration of the HalfOneHalfSplitFn class.
//
#include "SplittingFunction.h"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
*
* This classs provides the concrete implementation of the exact leading-order
* splitting function for \f$\frac12\to 1\frac12\f$.
*
* In this case the splitting function is given by
* \f[P(z,t) = C\left(\frac{2(1-z)+z^2}{z}-2\frac{m^2_q}t\right),\f]
* where \f$C\f$ is the corresponding colour factor.
* Our choice for the overestimate is
* \f[P_{\rm over}(z) = 2C\frac1z,\f]
* therefore the integral is
* \f[\int P_{\rm over}(z) {\rm d}z = 2C\ln z,\f]
* and its inverse is
* \f[\exp\left(\frac{r}{2C}\right).\f]
*
* @see SplittingFunction
*/
class HalfOneHalfSplitFn: public SplittingFunction {
public:
/**
* The default constructor.
*/
HalfOneHalfSplitFn() : SplittingFunction(1) {}
/**
* Concrete implementation of the method to determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* The concrete implementation of the splitting function, \f$P(z,t)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the overestimate of the splitting function,
* \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const;
/**
* The concrete implementation of the
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,t)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const;
/**
* The concrete implementation of the inverse of the indefinite integral.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const;
//@}
+ /**
+ * Method to calculate the azimuthal angle for forward evolution
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
+ */
+ virtual vector<pair<int,Complex> >
+ generatePhiForward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &);
+
+ /**
+ * Method to calculate the azimuthal angle for backward evolution
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
+ */
+ virtual vector<pair<int,Complex> >
+ generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &);
+
+ /**
+ * Calculate the matrix element for the splitting
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ */
+ virtual DecayMatrixElement matrixElement(const double z, const Energy2 t,
+ const IdList & ids, const double phi);
+
public:
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
HalfOneHalfSplitFn & operator=(const HalfOneHalfSplitFn &);
};
}
#endif /* HERWIG_HalfOneHalfSplitFn_H */
diff --git a/Shower/SplittingFunctions/OneHalfHalfSplitFn.cc b/Shower/SplittingFunctions/OneHalfHalfSplitFn.cc
--- a/Shower/SplittingFunctions/OneHalfHalfSplitFn.cc
+++ b/Shower/SplittingFunctions/OneHalfHalfSplitFn.cc
@@ -1,136 +1,148 @@
// -*- C++ -*-
//
// OneHalfHalfSplitFn.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the OneHalfHalfSplitFn class.
//
#include "OneHalfHalfSplitFn.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeNoPIOClass<OneHalfHalfSplitFn,Herwig::SplittingFunction>
describeOneHalfHalfSplitFn ("Herwig::OneHalfHalfSplitFn","HwShower.so");
void OneHalfHalfSplitFn::Init() {
static ClassDocumentation<OneHalfHalfSplitFn> documentation
("The OneHalfHalfSplitFn class implements the splitting function for g->q qbar");
}
double OneHalfHalfSplitFn::P(const double z, const Energy2 t,
const IdList &ids, const bool mass) const {
double zz = z*(1.-z);
double val=1.-2.*zz;
if(mass) {
Energy m = getParticleData(ids[1])->mass();
val +=2.*sqr(m)/t;
}
return colourFactor(ids)*val;
}
double OneHalfHalfSplitFn::overestimateP(const double,
const IdList &ids) const {
return colourFactor(ids);
}
double OneHalfHalfSplitFn::ratioP(const double z, const Energy2 t,
const IdList &ids, const bool mass) const {
double zz = z*(1.-z);
double val = 1.-2.*zz;
if(mass) {
Energy m = getParticleData(ids[1])->mass();
val+= 2.*sqr(m)/t;
}
return val;
}
double OneHalfHalfSplitFn::integOverP(const double z, const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return colourFactor(ids)*z;
case 1:
return colourFactor(ids)*log(z);
case 2:
return -colourFactor(ids)*log(1.-z);
case 3:
return colourFactor(ids)*log(z/(1.-z));
default:
throw Exception() << "OneHalfHalfSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
double OneHalfHalfSplitFn::invIntegOverP(const double r,
const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return r/colourFactor(ids);
case 1:
return exp(r/colourFactor(ids));
case 2:
return 1.-exp(-r/colourFactor(ids));
case 3:
return 1./(1.+exp(-r/colourFactor(ids)));
default:
throw Exception() << "OneHalfHalfSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
bool OneHalfHalfSplitFn::accept(const IdList &ids) const {
if(ids.size()!=3) return false;
if(ids[1]!=-ids[2]) return false;
tcPDPtr q=getParticleData(ids[1]);
if(q->iSpin()!=PDT::Spin1Half) return false;
tcPDPtr g=getParticleData(ids[0]);
if(g->iSpin()!=PDT::Spin1) return false;
return checkColours(ids);
}
vector<pair<int, Complex> >
OneHalfHalfSplitFn::generatePhiForward(const double z, const Energy2 t, const IdList & ids,
- const RhoDMatrix & rho) {
+ const RhoDMatrix & rho) {
assert(rho.iSpin()==PDT::Spin1);
double modRho = abs(rho(0,2));
Energy mq = getParticleData(ids[1])->mass();
Energy2 mq2 = sqr(mq);
double fact = z*(1.-z)-mq2/t;
double max = 1.+2.*fact*(-1.+2.*modRho);
vector<pair<int, Complex> > output;
output.push_back(make_pair( 0,(rho(0,0)+rho(2,2))*(1.-2.*fact)/max));
output.push_back(make_pair(-2,2.*fact*rho(0,2)/max));
output.push_back(make_pair( 2,2.*fact*rho(2,0)/max));
return output;
}
-DecayMatrixElement OneHalfHalfSplitFn::matrixElement(ShowerParticle &,ShoKinPtr,
- const double z, const Energy2 t,
+vector<pair<int, Complex> >
+OneHalfHalfSplitFn::generatePhiBackward(const double, const Energy2, const IdList &,
+ const RhoDMatrix & ) {
+ // no dependance
+ return vector<pair<int, Complex> >(1,make_pair(1,1.));
+}
+
+DecayMatrixElement OneHalfHalfSplitFn::matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi) {
static const Complex ii(0.,1.);
// calculate the kernal
DecayMatrixElement kernal(PDT::Spin1,PDT::Spin1Half,PDT::Spin1Half);
double mt = getParticleData(ids[1])->mass()/sqrt(t);
- double root = sqrt(1.-sqr(mt)/z/(1.-z));
+ double root =1.-sqr(mt)/z/(1.-z);
+ if(root>=0.)
+ root = sqrt(root);
+ else {
+ mt = 0.;
+ root = 1.;
+ }
kernal(0,0,0) = mt/sqrt(z*(1.-z));
kernal(2,1,1) = kernal(0,0,0);
kernal(0,0,1) = -z*root*exp(-ii*phi);
kernal(2,1,0) = -conj(kernal(0,0,1));
kernal(0,1,0) = (1.-z)*exp(-ii*phi)*root;
kernal(2,0,1) = -conj(kernal(0,1,0));
kernal(0,1,1) = 0.;
kernal(2,0,0) = 0.;
return kernal;
}
diff --git a/Shower/SplittingFunctions/OneHalfHalfSplitFn.h b/Shower/SplittingFunctions/OneHalfHalfSplitFn.h
--- a/Shower/SplittingFunctions/OneHalfHalfSplitFn.h
+++ b/Shower/SplittingFunctions/OneHalfHalfSplitFn.h
@@ -1,180 +1,191 @@
// -*- C++ -*-
//
// OneHalfHalfSplitFn.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_OneHalfHalfSplitFn_H
#define HERWIG_OneHalfHalfSplitFn_H
//
// This is the declaration of the OneHalfHalfSplitFn class.
//
#include "SplittingFunction.h"
namespace Herwig {
using namespace ThePEG;
/**\ingroup Shower
*
* This class provides the concrete implementation of the exact leading-order
* splitting function for \f$1\to \frac12\frac12\f$.
*
* In this case the splitting function is given by
* \f[P(z,t) =C\left(1-2z(1-z)+2\frac{m_q^2}{t}\right),\f]
* where \f$C\f$ is the corresponding colour factor
* Our choice for the overestimate is
* \f[P_{\rm over}(z) = C,\f]
* therefore the integral is
* \f[\int P_{\rm over}(z) {\rm d}z =Cz,\f]
* and its inverse is
* \f[\frac{r}{C}\f]
*
* @see \ref OneHalfHalfSplitFnInterfaces "The interfaces"
* defined for OneHalfHalfSplitFn.
*/
class OneHalfHalfSplitFn: public SplittingFunction {
public:
/**
* The default constructor.
*/
OneHalfHalfSplitFn() : SplittingFunction(1) {}
/**
* Concrete implementation of the method to determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* The concrete implementation of the splitting function, \f$P\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the overestimate of the splitting function,
* \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const;
/**
* The concrete implementation of the
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,\tilde{q}^2)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const;
/**
* The concrete implementation of the inverse of the indefinite integral.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const;
//@}
/**
* Method to calculate the azimuthal angle
* @param particle The particle which is branching
* @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &);
-
+
/**
- * Calculate the matrix element for the splitting
+ * Method to calculate the azimuthal angle
* @param particle The particle which is branching
* @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
*/
- virtual DecayMatrixElement matrixElement(ShowerParticle & particle,ShoKinPtr showerkin,
- const double z, const Energy2 t,
+ virtual vector<pair<int,Complex> >
+ generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &);
+
+ /**
+ * Calculate the matrix element for the splitting
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ */
+ virtual DecayMatrixElement matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi);
public:
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
OneHalfHalfSplitFn & operator=(const OneHalfHalfSplitFn &);
};
}
#endif /* HERWIG_OneHalfHalfSplitFn_H */
diff --git a/Shower/SplittingFunctions/OneOneOneSplitFn.cc b/Shower/SplittingFunctions/OneOneOneSplitFn.cc
--- a/Shower/SplittingFunctions/OneOneOneSplitFn.cc
+++ b/Shower/SplittingFunctions/OneOneOneSplitFn.cc
@@ -1,119 +1,132 @@
// -*- C++ -*-
//
// OneOneOneSplitFn.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the OneOneOneSplitFn class.
//
#include "OneOneOneSplitFn.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeNoPIOClass<OneOneOneSplitFn,Herwig::SplittingFunction>
describeOneOneOneSplitFn ("Herwig::OneOneOneSplitFn","HwShower.so");
void OneOneOneSplitFn::Init() {
static ClassDocumentation<OneOneOneSplitFn> documentation
("The OneOneOneSplitFn class implements the g -> gg splitting function");
}
double OneOneOneSplitFn::P(const double z, const Energy2,
const IdList & ids, const bool)const {
// (this is historically important! the first physics - two years
// after the birth of the project - in the Herwig++ shower! Alberto
// & Stefan, 25/04/2002).
return colourFactor(ids)*sqr(1.-z*(1.-z))/(z*(1.-z));
}
double OneOneOneSplitFn::overestimateP(const double z,
const IdList & ids) const {
return colourFactor(ids)*(1/z + 1/(1.-z));
}
double OneOneOneSplitFn::ratioP(const double z, const Energy2,
const IdList & , const bool) const {
return sqr(1.-z*(1.-z));
}
double OneOneOneSplitFn::invIntegOverP(const double r,
const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return 1./(1.+exp(-r/colourFactor(ids)));
case 1:
case 2:
case 3:
default:
throw Exception() << "OneOneOneSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
double OneOneOneSplitFn::integOverP(const double z, const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
assert(z>0.&&z<1.);
return colourFactor(ids)*log(z/(1.-z));
case 1:
case 2:
case 3:
default:
throw Exception() << "OneOneOneSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
bool OneOneOneSplitFn::accept(const IdList & ids) const {
if(ids.size()!=3) return false;
for(unsigned int ix=0;ix<ids.size();++ix) {
tcPDPtr part = getParticleData(ids[ix]);
if(part->iSpin()!=PDT::Spin1) return false;
}
return checkColours(ids);
}
vector<pair<int, Complex> >
OneOneOneSplitFn::generatePhiForward(const double z, const Energy2, const IdList &,
- const RhoDMatrix & rho) {
+ const RhoDMatrix & rho) {
assert(rho.iSpin()==PDT::Spin1);
double modRho = abs(rho(0,2));
double max = 2.*z*modRho*(1.-z)+sqr(1.-(1.-z)*z)/(z*(1.-z));
vector<pair<int, Complex> > output;
output.push_back(make_pair( 0,(rho(0,0)+rho(2,2))*sqr(1.-(1.-z)*z)/(z*(1.-z))/max));
output.push_back(make_pair(-2,-rho(0,2)*z*(1.-z)/max));
output.push_back(make_pair( 2,-rho(2,0)*z*(1.-z)/max));
return output;
}
-DecayMatrixElement OneOneOneSplitFn::matrixElement(ShowerParticle &,ShoKinPtr,
- const double z, const Energy2,
- const IdList &, const double phi) {
+vector<pair<int, Complex> >
+OneOneOneSplitFn::generatePhiBackward(const double z, const Energy2, const IdList &,
+ const RhoDMatrix & rho) {
+ assert(rho.iSpin()==PDT::Spin1);
+ double diag = sqr(1 - (1 - z)*z)/(1 - z)/z;
+ double off = (1.-z)/z;
+ double max = 2.*abs(rho(0,2))*off+diag;
+ vector<pair<int, Complex> > output;
+ output.push_back(make_pair( 0, (rho(0,0)+rho(2,2))*diag/max));
+ output.push_back(make_pair( 2,-rho(0,2) * off/max));
+ output.push_back(make_pair(-2,-rho(2,0) * off/max));
+ return output;
+}
+
+DecayMatrixElement OneOneOneSplitFn::matrixElement(const double z, const Energy2,
+ const IdList &, const double phi) {
// calculate the kernal
DecayMatrixElement kernal(PDT::Spin1,PDT::Spin1,PDT::Spin1);
double omz = 1.-z;
double root = sqrt(z*omz);
Complex phase = exp(Complex(0.,1.)*phi);
kernal(0,0,0) = phase/root;
kernal(2,2,2) = -conj(kernal(0,0,0));
kernal(0,0,2) = -sqr(z)/root/phase;
kernal(2,2,0) = -conj(kernal(0,0,2));
kernal(0,2,0) = -sqr(omz)/root/phase;
kernal(2,0,2) = -conj(kernal(0,2,0));
kernal(0,2,2) = 0.;
kernal(2,0,0) = 0.;
return kernal;
}
diff --git a/Shower/SplittingFunctions/OneOneOneSplitFn.h b/Shower/SplittingFunctions/OneOneOneSplitFn.h
--- a/Shower/SplittingFunctions/OneOneOneSplitFn.h
+++ b/Shower/SplittingFunctions/OneOneOneSplitFn.h
@@ -1,178 +1,187 @@
// -*- C++ -*-
//
// OneOneOneSplitFn.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_OneOneOneSplitFn_H
#define HERWIG_OneOneOneSplitFn_H
//
// This is the declaration of the OneOneOneSplitFn class.
//
#include "SplittingFunction.h"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
*
* This class provides the concrete implementation of the exact leading-order
* splitting function for \f$1\to 11\f$.
*
* In this case the splitting function is given by
* \f[P(z) =2C*\left(\frac{z}{1-z}+\frac{1-z}{z}+z(1-z)\right),\f]
* where \f$C=\f$ is the corresponding colour factor.
* Our choice for the overestimate is
* \f[P_{\rm over}(z) = 2C\left(\frac1z+\frac1{1-z}\right),\f]
* therefore the integral is
* \f[\int P_{\rm over}(z) {\rm d}z =2C\ln\left(\frac{z}{1-z}\right),\f]
* and its inverse is
* \f[\frac{\exp\left(\frac{r}{2C}\right)}{(1+\exp\left(\frac{r}{2C}\right)}\f]
*
*
* @see \ref OneOneOneSplitFnInterfaces "The interfaces"
* defined for OneOneOneSplitFn.
*/
class OneOneOneSplitFn: public SplittingFunction {
public:
/**
* The default constructor.
*/
OneOneOneSplitFn() : SplittingFunction(1) {}
/**
* Concrete implementation of the method to determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* The concrete implementation of the splitting function, \f$P(z,t)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the overestimate of the splitting function,
* \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const;
/**
* The concrete implementation of the
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,t)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass) const;
/**
* The concrete implementation of the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const;
/**
* The concrete implementation of the inverse of the indefinite integral.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const;
//@}
/**
- * Method to calculate the azimuthal angle
+ * Method to calculate the azimuthal angle for forward evolution
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &);
+
+ /**
+ * Method to calculate the azimuthal angle for backward evolution
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
+ */
+ virtual vector<pair<int,Complex> >
+ generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &);
/**
* Calculate the matrix element for the splitting
- * @param particle The particle which is branching
- * @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
*/
- virtual DecayMatrixElement matrixElement(ShowerParticle & particle,ShoKinPtr showerkin,
- const double z, const Energy2 t,
+ virtual DecayMatrixElement matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi);
public:
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
OneOneOneSplitFn & operator=(const OneOneOneSplitFn &);
};
}
#endif /* HERWIG_OneOneOneSplitFn_H */
diff --git a/Shower/SplittingFunctions/SplittingFunction.cc b/Shower/SplittingFunctions/SplittingFunction.cc
--- a/Shower/SplittingFunctions/SplittingFunction.cc
+++ b/Shower/SplittingFunctions/SplittingFunction.cc
@@ -1,911 +1,897 @@
// -*- C++ -*-
//
// SplittingFunction.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SplittingFunction class.
//
#include "SplittingFunction.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeAbstractClass<SplittingFunction,Interfaced>
describeSplittingFunction ("Herwig::SplittingFunction","");
void SplittingFunction::Init() {
static ClassDocumentation<SplittingFunction> documentation
("The SplittingFunction class is the based class for 1->2 splitting functions"
" in Herwig++");
static Switch<SplittingFunction,ColourStructure> interfaceColourStructure
("ColourStructure",
"The colour structure for the splitting function",
&SplittingFunction::_colourStructure, Undefined, false, false);
static SwitchOption interfaceColourStructureTripletTripletOctet
(interfaceColourStructure,
"TripletTripletOctet",
"3 -> 3 8",
TripletTripletOctet);
static SwitchOption interfaceColourStructureOctetOctetOctet
(interfaceColourStructure,
"OctetOctetOctet",
"8 -> 8 8",
OctetOctetOctet);
static SwitchOption interfaceColourStructureOctetTripletTriplet
(interfaceColourStructure,
"OctetTripletTriplet",
"8 -> 3 3bar",
OctetTripletTriplet);
static SwitchOption interfaceColourStructureTripletOctetTriplet
(interfaceColourStructure,
"TripletOctetTriplet",
"3 -> 8 3",
TripletOctetTriplet);
static SwitchOption interfaceColourStructureSextetSextetOctet
(interfaceColourStructure,
"SextetSextetOctet",
"6 -> 6 8",
SextetSextetOctet);
static SwitchOption interfaceColourStructureChargedChargedNeutral
(interfaceColourStructure,
"ChargedChargedNeutral",
"q -> q 0",
ChargedChargedNeutral);
static SwitchOption interfaceColourStructureNeutralChargedCharged
(interfaceColourStructure,
"NeutralChargedCharged",
"0 -> q qbar",
NeutralChargedCharged);
static SwitchOption interfaceColourStructureChargedNeutralCharged
(interfaceColourStructure,
"ChargedNeutralCharged",
"q -> 0 q",
ChargedNeutralCharged);
static Switch<SplittingFunction,ShowerInteraction::Type>
interfaceInteractionType
("InteractionType",
"Type of the interaction",
&SplittingFunction::_interactionType,
ShowerInteraction::UNDEFINED, false, false);
static SwitchOption interfaceInteractionTypeQCD
(interfaceInteractionType,
"QCD","QCD",ShowerInteraction::QCD);
static SwitchOption interfaceInteractionTypeQED
(interfaceInteractionType,
"QED","QED",ShowerInteraction::QED);
static Switch<SplittingFunction,int> interfaceSplittingColourMethod
("SplittingColourMethod",
"Choice of assigning colour in 8->88 splittings.",
&SplittingFunction::_splittingColourMethod, 0, false, false);
static SwitchOption interfaceSplittingColourMethodRandom
(interfaceSplittingColourMethod,
"Random",
"Choose colour assignments randomly.",
0);
static SwitchOption interfaceSplittingColourMethodCorrectLines
(interfaceSplittingColourMethod,
"CorrectLines",
"Choose correct lines for colour.",
1);
static SwitchOption interfaceSplittingColourMethodRandomRecord
(interfaceSplittingColourMethod,
"RandomRecord",
"Choose colour assignments randomly and record the result.",
2);
static Switch<SplittingFunction,bool> interfaceAngularOrdered
("AngularOrdered",
"Whether or not this interaction is angular ordered, "
"normally only g->q qbar and gamma-> f fbar are the only ones which aren't.",
&SplittingFunction::angularOrdered_, true, false, false);
static SwitchOption interfaceAngularOrderedYes
(interfaceAngularOrdered,
"Yes",
"Interaction is angular ordered",
true);
static SwitchOption interfaceAngularOrderedNo
(interfaceAngularOrdered,
"No",
"Interaction isn't angular ordered",
false);
}
-vector<pair<int,Complex> >
-SplittingFunction::generatePhiForward(const double, const Energy2,
- const IdList &, const RhoDMatrix &) {
- cerr << "Using SplittingFunction::generatePhiForward()" << fullName() << "\n";
- assert(false);
-}
-
-DecayMatrixElement SplittingFunction::matrixElement(ShowerParticle &,ShoKinPtr,
- const double, const Energy2,
- const IdList &, const double) {
- cerr << "SplittingFunction::matrixElement called for " << fullName() << "\n";
- assert(false);
-}
-
void SplittingFunction::persistentOutput(PersistentOStream & os) const {
using namespace ShowerInteraction;
os << oenum(_interactionType) << _interactionOrder
<< oenum(_colourStructure) << _colourFactor
<< angularOrdered_ << _splittingColourMethod;
}
void SplittingFunction::persistentInput(PersistentIStream & is, int) {
using namespace ShowerInteraction;
is >> ienum(_interactionType) >> _interactionOrder
>> ienum(_colourStructure) >> _colourFactor
>> angularOrdered_ >> _splittingColourMethod;
}
void SplittingFunction::colourConnection(tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second,
ShowerPartnerType::Type partnerType,
const bool back) const {
if(_colourStructure==TripletTripletOctet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(( cparent.first && !cparent.second &&
partnerType==ShowerPartnerType::QCDColourLine) ||
( !cparent.first && cparent.second &&
partnerType==ShowerPartnerType::QCDAntiColourLine));
// q -> q g
if(cparent.first) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
newline->addColoured ( first);
newline->addAntiColoured (second);
}
// qbar -> qbar g
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.second->addAntiColoured(second);
newline->addColoured(second);
newline->addAntiColoured(first);
}
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(( cfirst.first && !cfirst.second &&
partnerType==ShowerPartnerType::QCDColourLine) ||
( !cfirst.first && cfirst.second &&
partnerType==ShowerPartnerType::QCDAntiColourLine));
// q -> q g
if(cfirst.first) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addAntiColoured(second);
newline->addColoured(second);
newline->addColoured(parent);
}
// qbar -> qbar g
else {
ColinePtr newline=new_ptr(ColourLine());
cfirst.second->addColoured(second);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure==OctetOctetOctet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(cparent.first&&cparent.second);
// ensure first gluon is hardest
if( first->id()==second->id() && parent->showerKinematics()->z()<0.5 )
swap(first,second);
// colour line radiates
if(partnerType==ShowerPartnerType::QCDColourLine) {
// The colour line is radiating
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addAntiColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
// anti colour line radiates
else if(partnerType==ShowerPartnerType::QCDAntiColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addAntiColoured(second);
newline->addColoured(second);
newline->addAntiColoured(first);
}
else
assert(false);
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(cfirst.first&&cfirst.second);
// The colour line is radiating
if(partnerType==ShowerPartnerType::QCDColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addAntiColoured(second);
cfirst.second->addAntiColoured(parent);
newline->addColoured(parent);
newline->addColoured(second);
}
// anti colour line radiates
else if(partnerType==ShowerPartnerType::QCDAntiColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addColoured(parent);
cfirst.second->addColoured(second);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
else
assert(false);
}
}
else if(_colourStructure == OctetTripletTriplet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(cparent.first&&cparent.second);
cparent.first ->addColoured ( first);
cparent.second->addAntiColoured(second);
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(( cfirst.first && !cfirst.second) ||
(!cfirst.first && cfirst.second));
// g -> q qbar
if(cfirst.first) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addColoured(parent);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
// g -> qbar q
else {
ColinePtr newline=new_ptr(ColourLine());
cfirst.second->addAntiColoured(parent);
newline->addColoured(second);
newline->addColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure == TripletOctetTriplet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(( cparent.first && !cparent.second) ||
(!cparent.first && cparent.second));
// q -> g q
if(cparent.first) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
newline->addColoured (second);
newline->addAntiColoured( first);
}
// qbar -> g qbar
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.second->addAntiColoured(first);
newline->addColoured ( first);
newline->addAntiColoured(second);
}
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(cfirst.first&&cfirst.second);
// q -> g q
if(parent->id()>0) {
cfirst.first ->addColoured(parent);
cfirst.second->addColoured(second);
}
else {
cfirst.first ->addAntiColoured(second);
cfirst.second->addAntiColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure==SextetSextetOctet) {
//make sure we're not doing backward evolution
assert(!back);
//make sure something sensible
assert(parent->colourLine() || parent->antiColourLine());
//get the colour lines or anti-colour lines
bool isAntiColour=true;
ColinePair cparent;
if(parent->colourLine()) {
cparent = ColinePair(const_ptr_cast<tColinePtr>(parent->colourInfo()->colourLines()[0]),
const_ptr_cast<tColinePtr>(parent->colourInfo()->colourLines()[1]));
isAntiColour=false;
}
else {
cparent = ColinePair(const_ptr_cast<tColinePtr>(parent->colourInfo()->antiColourLines()[0]),
const_ptr_cast<tColinePtr>(parent->colourInfo()->antiColourLines()[1]));
}
//check for sensible input
// assert(cparent.first && cparent.second);
// sextet has 2 colour lines
if(!isAntiColour) {
//pick at random which of the colour topolgies to take
double topology = UseRandom::rnd();
if(topology < 0.25) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else if(topology >=0.25 && topology < 0.5) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addColoured(second);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else if(topology >= 0.5 && topology < 0.75) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addColoured(second);
newline->addColoured(first);
newline->addAntiColoured(second);
}
}
// sextet has 2 anti-colour lines
else {
double topology = UseRandom::rnd();
if(topology < 0.25){
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(second);
cparent.second->addAntiColoured(first);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else if(topology >=0.25 && topology < 0.5) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(first);
cparent.second->addAntiColoured(second);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else if(topology >= 0.5 && topology < 0.75) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(second);
cparent.second->addAntiColoured(first);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(first);
cparent.second->addAntiColoured(second);
newline->addAntiColoured(first);
newline->addColoured(second);
}
}
}
else if(_colourStructure == ChargedChargedNeutral) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(first);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(first);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// q -> q g
if(cfirst.first) {
cfirst.first->addColoured(parent);
}
// qbar -> qbar g
if(cfirst.second) {
cfirst.second->addAntiColoured(parent);
}
}
}
else if(_colourStructure == ChargedNeutralCharged) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(second);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(second);
}
}
else {
if (second->dataPtr()->iColour()==PDT::Colour3 ) {
ColinePtr newline=new_ptr(ColourLine());
newline->addColoured(second);
newline->addColoured(parent);
}
else if (second->dataPtr()->iColour()==PDT::Colour3bar ) {
ColinePtr newline=new_ptr(ColourLine());
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
}
}
else if(_colourStructure == NeutralChargedCharged ) {
if(!back) {
if(first->dataPtr()->coloured()) {
ColinePtr newline=new_ptr(ColourLine());
if(first->dataPtr()->iColour()==PDT::Colour3) {
newline->addColoured (first );
newline->addAntiColoured(second);
}
else if (first->dataPtr()->iColour()==PDT::Colour3bar) {
newline->addColoured (second);
newline->addAntiColoured(first );
}
else
assert(false);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// gamma -> q qbar
if(cfirst.first) {
cfirst.first->addAntiColoured(second);
}
// gamma -> qbar q
else if(cfirst.second) {
cfirst.second->addColoured(second);
}
else
assert(false);
}
}
else {
assert(false);
}
}
void SplittingFunction::doinit() {
Interfaced::doinit();
assert(_interactionType!=ShowerInteraction::UNDEFINED);
assert((_colourStructure>0&&_interactionType==ShowerInteraction::QCD) ||
(_colourStructure<0&&_interactionType==ShowerInteraction::QED) );
if(_colourFactor>0.) return;
// compute the colour factors if need
if(_colourStructure==TripletTripletOctet) {
_colourFactor = 4./3.;
}
else if(_colourStructure==OctetOctetOctet) {
_colourFactor = 3.;
}
else if(_colourStructure==OctetTripletTriplet) {
_colourFactor = 0.5;
}
else if(_colourStructure==TripletOctetTriplet) {
_colourFactor = 4./3.;
}
else if(_colourStructure==SextetSextetOctet) {
_colourFactor = 10./3.;
}
else if(_colourStructure<0) {
_colourFactor = 1.;
}
else {
assert(false);
}
}
bool SplittingFunction::checkColours(const IdList & ids) const {
tcPDPtr pd[3]={getParticleData(ids[0]),
getParticleData(ids[1]),
getParticleData(ids[2])};
if(_colourStructure==TripletTripletOctet) {
if(ids[0]!=ids[1]) return false;
if((pd[0]->iColour()==PDT::Colour3||pd[0]->iColour()==PDT::Colour3bar) &&
pd[2]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==OctetOctetOctet) {
for(unsigned int ix=0;ix<3;++ix) {
if(pd[ix]->iColour()!=PDT::Colour8) return false;
}
return true;
}
else if(_colourStructure==OctetTripletTriplet) {
if(pd[0]->iColour()!=PDT::Colour8) return false;
if(pd[1]->iColour()==PDT::Colour3&&pd[2]->iColour()==PDT::Colour3bar)
return true;
if(pd[1]->iColour()==PDT::Colour3bar&&pd[2]->iColour()==PDT::Colour3)
return true;
return false;
}
else if(_colourStructure==TripletOctetTriplet) {
if(ids[0]!=ids[2]) return false;
if((pd[0]->iColour()==PDT::Colour3||pd[0]->iColour()==PDT::Colour3bar) &&
pd[1]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==SextetSextetOctet) {
if(ids[0]!=ids[1]) return false;
if((pd[0]->iColour()==PDT::Colour6 || pd[0]->iColour()==PDT::Colour6bar) &&
pd[2]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==ChargedChargedNeutral) {
if(ids[0]!=ids[1]) return false;
if(pd[2]->iCharge()!=0) return false;
if(pd[0]->iCharge()==pd[1]->iCharge()) return true;
return false;
}
else if(_colourStructure==ChargedNeutralCharged) {
if(ids[0]!=ids[2]) return false;
if(pd[1]->iCharge()!=0) return false;
if(pd[0]->iCharge()==pd[2]->iCharge()) return true;
return false;
}
else if(_colourStructure==NeutralChargedCharged) {
if(ids[1]!=-ids[2]) return false;
if(pd[0]->iCharge()!=0) return false;
if(pd[1]->iCharge()==-pd[2]->iCharge()) return true;
return false;
}
else {
assert(false);
}
return false;
}
namespace {
bool hasColour(tPPtr p) {
PDT::Colour colour = p->dataPtr()->iColour();
return colour==PDT::Colour3 || colour==PDT::Colour8 || colour == PDT::Colour6;
}
bool hasAntiColour(tPPtr p) {
PDT::Colour colour = p->dataPtr()->iColour();
return colour==PDT::Colour3bar || colour==PDT::Colour8 || colour == PDT::Colour6bar;
}
}
void SplittingFunction::evaluateFinalStateScales(ShowerPartnerType::Type partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr emitter,
tShowerParticlePtr emitted) {
// identify emitter and emitted
double zEmitter = z, zEmitted = 1.-z;
bool bosonSplitting(false);
// special for g -> gg, particle highest z is emitter
if(emitter->id() == emitted->id() && emitter->id() == parent->id() &&
zEmitted > zEmitter) {
swap(zEmitted,zEmitter);
swap( emitted, emitter);
}
// otherwise if particle ID same
else if(emitted->id()==parent->id()) {
swap(zEmitted,zEmitter);
swap( emitted, emitter);
}
// no real emitter/emitted
else if(emitter->id()!=parent->id()) {
bosonSplitting = true;
}
// may need to add angularOrder flag here
// now the various scales
// QED
if(partnerType==ShowerPartnerType::QED) {
assert(colourStructure()==ChargedChargedNeutral ||
colourStructure()==ChargedNeutralCharged ||
colourStructure()==NeutralChargedCharged );
// normal case
if(!bosonSplitting) {
assert(colourStructure()==ChargedChargedNeutral ||
colourStructure()==ChargedNeutralCharged );
// set the scales
// emitter
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
emitter->scales().QCD_c = min(scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min(scale,parent->scales().QCD_c_noAO );
emitter->scales().QCD_ac = min(scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min(scale,parent->scales().QCD_ac_noAO);
// emitted
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
emitted->scales().QCD_c = ZERO;
emitted->scales().QCD_c_noAO = ZERO;
emitted->scales().QCD_ac = ZERO;
emitted->scales().QCD_ac_noAO = ZERO;
}
// gamma -> f fbar
else {
assert(colourStructure()==NeutralChargedCharged );
// emitter
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
if(hasColour(emitter)) {
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(emitter)) {
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
}
// emitted
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
if(hasColour(emitted)) {
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(emitted)) {
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
}
}
// QCD
else {
// normal case eg q -> q g and g -> g g
if(!bosonSplitting) {
emitter->scales().QED = min(scale,parent->scales().QED );
emitter->scales().QED_noAO = min(scale,parent->scales().QED_noAO);
if(partnerType==ShowerPartnerType::QCDColourLine) {
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
emitter->scales().QCD_ac = min(zEmitter*scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min( scale,parent->scales().QCD_ac_noAO);
}
else {
emitter->scales().QCD_c = min(zEmitter*scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min( scale,parent->scales().QCD_c_noAO );
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
}
// emitted
emitted->scales().QED = ZERO;
emitted->scales().QED_noAO = ZERO;
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
// g -> q qbar
else {
// emitter
if(emitter->dataPtr()->charged()) {
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
}
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
// emitted
if(emitted->dataPtr()->charged()) {
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
}
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
}
}
void SplittingFunction::evaluateInitialStateScales(ShowerPartnerType::Type partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr spacelike,
tShowerParticlePtr timelike) {
// scale for time-like child
Energy AOScale = (1.-z)*scale;
// QED
if(partnerType==ShowerPartnerType::QED) {
if(parent->id()==spacelike->id()) {
// parent
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
}
else if(parent->id()==timelike->id()) {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
if(hasColour(parent)) {
parent ->scales().QCD_c = scale;
parent ->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(parent)) {
parent ->scales().QCD_ac = scale;
parent ->scales().QCD_ac_noAO = scale;
}
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
if(hasColour(timelike)) {
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
}
}
else {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
parent ->scales().QCD_c = ZERO ;
parent ->scales().QCD_c_noAO = ZERO ;
parent ->scales().QCD_ac = ZERO ;
parent ->scales().QCD_ac_noAO = ZERO ;
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
if(hasColour(timelike)) {
timelike->scales().QCD_c = min(AOScale,spacelike->scales().QCD_ac );
timelike->scales().QCD_c_noAO = min( scale,spacelike->scales().QCD_ac_noAO);
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = min(AOScale,spacelike->scales().QCD_c );
timelike->scales().QCD_ac_noAO = min( scale,spacelike->scales().QCD_c_noAO );
}
}
}
// QCD
else {
// timelike
if(timelike->dataPtr()->charged()) {
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
}
if(hasColour(timelike)) {
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
}
if(parent->id()==spacelike->id()) {
parent ->scales().QED = min(scale,spacelike->scales().QED );
parent ->scales().QED_noAO = min(scale,spacelike->scales().QED_noAO );
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
}
else {
if(parent->dataPtr()->charged()) {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
}
if(hasColour(parent)) {
parent ->scales().QCD_c = scale;
parent ->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(parent)) {
parent ->scales().QCD_ac = scale;
parent ->scales().QCD_ac_noAO = scale;
}
}
}
}
void SplittingFunction::evaluateDecayScales(ShowerPartnerType::Type partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr spacelike,
tShowerParticlePtr timelike) {
assert(parent->id()==spacelike->id());
// angular-ordered scale for 2nd child
Energy AOScale = (1.-z)*scale;
// QED
if(partnerType==ShowerPartnerType::QED) {
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
// spacelike
spacelike->scales().QED = scale;
spacelike->scales().QED_noAO = scale;
}
// QCD
else {
// timelike
timelike->scales().QED = ZERO;
timelike->scales().QED_noAO = ZERO;
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
// spacelike
spacelike->scales().QED = max(scale,parent->scales().QED );
spacelike->scales().QED_noAO = max(scale,parent->scales().QED_noAO );
}
spacelike->scales().QCD_c = max(scale,parent->scales().QCD_c );
spacelike->scales().QCD_c_noAO = max(scale,parent->scales().QCD_c_noAO );
spacelike->scales().QCD_ac = max(scale,parent->scales().QCD_ac );
spacelike->scales().QCD_ac_noAO = max(scale,parent->scales().QCD_ac_noAO);
}
diff --git a/Shower/SplittingFunctions/SplittingFunction.h b/Shower/SplittingFunctions/SplittingFunction.h
--- a/Shower/SplittingFunctions/SplittingFunction.h
+++ b/Shower/SplittingFunctions/SplittingFunction.h
@@ -1,373 +1,382 @@
// -*- C++ -*-
//
// SplittingFunction.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_SplittingFunction_H
#define HERWIG_SplittingFunction_H
//
// This is the declaration of the SplittingFunction class.
//
#include "ThePEG/Interface/Interfaced.h"
#include "Herwig++/Shower/ShowerConfig.h"
#include "ThePEG/EventRecord/RhoDMatrix.h"
#include "Herwig++/Decay/DecayMatrixElement.h"
#include "Herwig++/Shower/Base/ShowerKinematics.fh"
#include "ThePEG/EventRecord/ColourLine.h"
#include "ThePEG/PDT/ParticleData.h"
#include "SplittingFunction.fh"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
* Enum to define the possible types of colour structure which can occur in
* the branching.
*/
enum ColourStructure {Undefined=0,
TripletTripletOctet = 1,OctetOctetOctet =2,
OctetTripletTriplet = 3,TripletOctetTriplet=4,
SextetSextetOctet = 5,
ChargedChargedNeutral=-1,ChargedNeutralCharged=-2,
NeutralChargedCharged=-3};
/** \ingroup Shower
*
* This is an abstract class which defines the common interface
* for all \f$1\to2\f$ splitting functions, for both initial-state
* and final-state radiation.
*
* The SplittingFunction class contains a number of purely virtual members
* which must be implemented in the inheriting classes. The class also stores
* the interaction type of the spltting function.
*
* The inheriting classes need to specific the splitting function
* \f$P(z,2p_j\cdot p_k)\f$, in terms of the energy fraction \f$z\f$ and
* the evolution scale. In order to allow the splitting functions to be used
* with different choices of evolution functions the scale is given by
* \f[2p_j\cdot p_k=(p_j+p_k)^2-m_{jk}^2=Q^2-(p_j+p_k)^2=z(1-z)\tilde{q}^2=
* \frac{p_T^2}{z(1-z)}-m_{jk}^2+\frac{m_j^2}{z}+\frac{m_k^2}{1-z},\f]
* where \f$Q^2\f$ is the virtuality of the branching particle,
* $p_T$ is the relative transverse momentum of the branching products and
* \f$\tilde{q}^2\f$ is the angular variable described in hep-ph/0310083.
*
* In addition an overestimate of the
* splitting function, \f$P_{\rm over}(z)\f$ which only depends upon \f$z\f$,
* the integral, inverse of the integral for this overestimate and
* ratio of the true splitting function to the overestimate must be provided
* as they are necessary for the veto alogrithm used to implement the evolution.
*
* @see \ref SplittingFunctionInterfaces "The interfaces"
* defined for SplittingFunction.
*/
class SplittingFunction: public Interfaced {
public:
/**
* The default constructor.
* @param b All splitting functions must have an interaction order
*/
SplittingFunction(unsigned int b)
: Interfaced(), _interactionType(ShowerInteraction::UNDEFINED),
_interactionOrder(b),
_colourStructure(Undefined), _colourFactor(-1.),
angularOrdered_(true),
_splittingColourMethod(0) {}
public:
/**
* Methods to return the interaction type and order for the splitting function
*/
//@{
/**
* Return the type of the interaction
*/
ShowerInteraction::Type interactionType() const {return _interactionType;}
/**
* Return the order of the splitting function in the interaction
*/
unsigned int interactionOrder() const {return _interactionOrder;}
/**
* Return the colour structure
*/
ColourStructure colourStructure() const {return _colourStructure;}
/**
* Return the colour factor
*/
double colourFactor(const IdList &ids) const {
if(_colourStructure>0)
return _colourFactor;
else if(_colourStructure<0) {
if(_colourStructure==ChargedChargedNeutral ||
_colourStructure==ChargedNeutralCharged) {
tPDPtr part=getParticleData(ids[0]);
return sqr(double(part->iCharge())/3.);
}
else {
tPDPtr part=getParticleData(ids[1]);
return sqr(double(part->iCharge())/3.);
}
}
else
assert(false);
}
//@}
/**
* Purely virtual method which should determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const = 0;
/**
* Method to check the colours are correct
*/
virtual bool checkColours(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* Purely virtual method which should return the exact value of the splitting function,
* \f$P\f$ evaluated in terms of the energy fraction, \f$z\f$, and the evolution scale
\f$\tilde{q}^2\f$.
* @param z The energy fraction.
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
const bool mass) const = 0;
/**
* Purely virtual method which should return
* an overestimate of the splitting function,
* \f$P_{\rm over}\f$ such that the result \f$P_{\rm over}\geq P\f$. This function
* should be simple enough that it does not depend on the evolution scale.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const = 0;
/**
* Purely virtual method which should return
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,\tilde{q}^2)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
const bool mass) const = 0;
/**
* Purely virtual method which should return the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const = 0;
/**
* Purely virtual method which should return the inverse of the
* indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$ which is used to
* generate the value of \f$z\f$.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const = 0;
//@}
/**
* Purely virtual method which should make the proper colour connection
* between the emitting parent and the branching products.
* @param parent The parent for the branching
* @param first The first branching product
* @param second The second branching product
* @param partnerType The type of evolution partner
* @param back Whether this is foward or backward evolution.
*/
virtual void colourConnection(tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second,
ShowerPartnerType::Type partnerType,
const bool back) const;
/**
- * Method to calculate the azimuthal angle
+ * Method to calculate the azimuthal angle for forward evolution
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
- const RhoDMatrix &);
+ const RhoDMatrix &) = 0;
+
+ /**
+ * Method to calculate the azimuthal angle for backward evolution
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
+ */
+ virtual vector<pair<int,Complex> >
+ generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &) = 0;
/**
* Calculate the matrix element for the splitting
- * @param particle The particle which is branching
- * @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
*/
- virtual DecayMatrixElement matrixElement(ShowerParticle & particle,ShoKinPtr showerkin,
- const double z, const Energy2 t,
- const IdList & ids, const double phi);
+ virtual DecayMatrixElement matrixElement(const double z, const Energy2 t,
+ const IdList & ids, const double phi) = 0;
/**
* Whether or not the interaction is angular ordered
*/
bool angularOrdered() const {return angularOrdered_;}
/**
* Functions to state scales after branching happens
*/
//@{
/**
* Sort out scales for final-state emission
*/
void evaluateFinalStateScales(ShowerPartnerType::Type type,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second);
/**
* Sort out scales for initial-state emission
*/
void evaluateInitialStateScales(ShowerPartnerType::Type type,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second);
/**
* Sort out scales for decay emission
*/
void evaluateDecayScales(ShowerPartnerType::Type type,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second);
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
protected:
/**
* Set the colour factor
*/
void colourFactor(double in) {_colourFactor=in;}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
SplittingFunction & operator=(const SplittingFunction &);
private:
/**
* The interaction type for the splitting function.
*/
ShowerInteraction::Type _interactionType;
/**
* The order of the splitting function in the coupling
*/
unsigned int _interactionOrder;
/**
* The colour structure
*/
ColourStructure _colourStructure;
/**
* The colour factor
*/
double _colourFactor;
/**
* Whether or not this interaction is angular-ordered
*/
bool angularOrdered_;
/**
* The method for assigning colour
* The default, 0, will assign colour lines for octets
* randomly without keeping a record of which lines radiate.
* For option 1 only the "correct" lines will radiate until
* the lowest scale is reached.
* For option 2 there will be random radiation, but the
* line which radiates is recorded
*/
int _splittingColourMethod;
};
}
#endif /* HERWIG_SplittingFunction_H */
diff --git a/Shower/SplittingFunctions/SplittingGenerator.cc b/Shower/SplittingFunctions/SplittingGenerator.cc
--- a/Shower/SplittingFunctions/SplittingGenerator.cc
+++ b/Shower/SplittingFunctions/SplittingGenerator.cc
@@ -1,547 +1,549 @@
// -*- C++ -*-
//
// SplittingGenerator.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SplittingGenerator class.
//
#include "SplittingGenerator.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Command.h"
#include "ThePEG/Utilities/StringUtils.h"
#include "ThePEG/Repository/Repository.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/Rebinder.h"
#include <cassert>
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeClass<SplittingGenerator,Interfaced>
describeSplittingGenerator ("Herwig::SplittingGenerator","");
IBPtr SplittingGenerator::clone() const {
return new_ptr(*this);
}
IBPtr SplittingGenerator::fullclone() const {
return new_ptr(*this);
}
void SplittingGenerator::persistentOutput(PersistentOStream & os) const {
os << _isr_Mode << _fsr_Mode << _bbranchings << _fbranchings;
}
void SplittingGenerator::persistentInput(PersistentIStream & is, int) {
is >> _isr_Mode >> _fsr_Mode >> _bbranchings >> _fbranchings;
}
void SplittingGenerator::Init() {
static ClassDocumentation<SplittingGenerator> documentation
("There class is responsible for initializing the Sudakov form factors ",
"and generating splittings.");
static Switch<SplittingGenerator, bool> interfaceISRMode
("ISR",
"Include initial-state radiation?",
&SplittingGenerator::_isr_Mode, 1, false, false);
static SwitchOption interfaceISRMode0
(interfaceISRMode,"No","ISR (Initial State Radiation) is OFF", 0);
static SwitchOption interfaceISRMode1
(interfaceISRMode,"Yes","ISR (Initial State Radiation) is ON", 1);
static Switch<SplittingGenerator, bool> interfaceFSRMode
("FSR",
"Include final-state radiation?",
&SplittingGenerator::_fsr_Mode, 1, false, false);
static SwitchOption interfaceFSRMode0
(interfaceFSRMode,"No","FSR (Final State Radiation) is OFF", 0);
static SwitchOption interfaceFSRMode1
(interfaceFSRMode,"Yes","FSR (Final State Radiation) is ON", 1);
static Command<SplittingGenerator> interfaceAddSplitting
("AddFinalSplitting",
"Adds another splitting to the list of splittings considered "
"in the shower. Command is a->b,c; Sudakov",
&SplittingGenerator::addFinalSplitting);
static Command<SplittingGenerator> interfaceAddInitialSplitting
("AddInitialSplitting",
"Adds another splitting to the list of initial splittings to consider "
"in the shower. Command is a->b,c; Sudakov. Here the particle a is the "
"particle that is PRODUCED by the splitting. b is the initial state "
"particle that is splitting in the shower.",
&SplittingGenerator::addInitialSplitting);
static Command<SplittingGenerator> interfaceDeleteSplitting
("DeleteFinalSplitting",
"Deletes a splitting from the list of splittings considered "
"in the shower. Command is a->b,c; Sudakov",
&SplittingGenerator::deleteFinalSplitting);
static Command<SplittingGenerator> interfaceDeleteInitialSplitting
("DeleteInitialSplitting",
"Deletes a splitting from the list of initial splittings to consider "
"in the shower. Command is a->b,c; Sudakov. Here the particle a is the "
"particle that is PRODUCED by the splitting. b is the initial state "
"particle that is splitting in the shower.",
&SplittingGenerator::deleteInitialSplitting);
}
string SplittingGenerator::addSplitting(string arg, bool final) {
string partons = StringUtils::car(arg);
string sudakov = StringUtils::cdr(arg);
vector<tPDPtr> products;
string::size_type next = partons.find("->");
if(next == string::npos)
return "Error: Invalid string for splitting " + arg;
if(partons.find(';') == string::npos)
return "Error: Invalid string for splitting " + arg;
tPDPtr parent = Repository::findParticle(partons.substr(0,next));
partons = partons.substr(next+2);
do {
next = min(partons.find(','), partons.find(';'));
tPDPtr pdp = Repository::findParticle(partons.substr(0,next));
partons = partons.substr(next+1);
if(pdp) products.push_back(pdp);
else return "Error: Could not create splitting from " + arg;
} while(partons[0] != ';' && partons.size());
SudakovPtr s;
s = dynamic_ptr_cast<SudakovPtr>(Repository::TraceObject(sudakov));
if(!s) return "Error: Could not load Sudakov " + sudakov + '\n';
IdList ids;
ids.push_back(parent->id());
for(vector<tPDPtr>::iterator it = products.begin(); it!=products.end(); ++it)
ids.push_back((*it)->id());
// check splitting can handle this
if(!s->splittingFn()->accept(ids))
return "Error: Sudakov " + sudakov + "can't handle particles\n";
// add to map
addToMap(ids,s,final);
return "";
}
string SplittingGenerator::deleteSplitting(string arg, bool final) {
string partons = StringUtils::car(arg);
string sudakov = StringUtils::cdr(arg);
vector<tPDPtr> products;
string::size_type next = partons.find("->");
if(next == string::npos)
return "Error: Invalid string for splitting " + arg;
if(partons.find(';') == string::npos)
return "Error: Invalid string for splitting " + arg;
tPDPtr parent = Repository::findParticle(partons.substr(0,next));
partons = partons.substr(next+2);
do {
next = min(partons.find(','), partons.find(';'));
tPDPtr pdp = Repository::findParticle(partons.substr(0,next));
partons = partons.substr(next+1);
if(pdp) products.push_back(pdp);
else return "Error: Could not create splitting from " + arg;
} while(partons[0] != ';' && partons.size());
SudakovPtr s;
s = dynamic_ptr_cast<SudakovPtr>(Repository::TraceObject(sudakov));
if(!s) return "Error: Could not load Sudakov " + sudakov + '\n';
IdList ids;
ids.push_back(parent->id());
for(vector<tPDPtr>::iterator it = products.begin(); it!=products.end(); ++it)
ids.push_back((*it)->id());
// check splitting can handle this
if(!s->splittingFn()->accept(ids))
return "Error: Sudakov " + sudakov + "can't handle particles\n";
// delete from map
deleteFromMap(ids,s,final);
return "";
}
void SplittingGenerator::addToMap(const IdList &ids, const SudakovPtr &s, bool final) {
if(isISRadiationON() && !final) {
_bbranchings.insert(BranchingInsert(ids[1],BranchingElement(s,ids)));
s->addSplitting(ids);
}
if(isFSRadiationON() && final) {
_fbranchings.insert(BranchingInsert(ids[0],BranchingElement(s,ids)));
s->addSplitting(ids);
}
}
void SplittingGenerator::deleteFromMap(const IdList &ids,
const SudakovPtr &s, bool final) {
if(isISRadiationON() && !final) {
pair<BranchingList::iterator,BranchingList::iterator>
range = _bbranchings.equal_range(ids[1]);
for(BranchingList::iterator it=range.first;it!=range.second&&it->first==ids[1];++it) {
if(it->second.first==s&&it->second.second==ids)
_bbranchings.erase(it);
}
s->removeSplitting(ids);
}
if(isFSRadiationON() && final) {
pair<BranchingList::iterator,BranchingList::iterator>
range = _fbranchings.equal_range(ids[0]);
for(BranchingList::iterator it=range.first;it!=range.second&&it->first==ids[0];++it) {
if(it->second.first==s&&it->second.second==ids)
_fbranchings.erase(it);
}
s->removeSplitting(ids);
}
}
Branching SplittingGenerator::chooseForwardBranching(ShowerParticle &particle,
double enhance,
ShowerInteraction::Type type) const {
Energy newQ = ZERO;
ShoKinPtr kinematics = ShoKinPtr();
ShowerPartnerType::Type partnerType(ShowerPartnerType::Undefined);
SudakovPtr sudakov = SudakovPtr();
IdList ids;
// First, find the eventual branching, corresponding to the highest scale.
long index = abs(particle.data().id());
// if no branchings return empty branching struct
if( _fbranchings.find(index) == _fbranchings.end() )
return Branching(ShoKinPtr(), IdList(),SudakovPtr(),ShowerPartnerType::Undefined);
// otherwise select branching
for(BranchingList::const_iterator cit = _fbranchings.lower_bound(index);
cit != _fbranchings.upper_bound(index); ++cit) {
// check either right interaction or doing both
if(type != cit->second.first->interactionType() &&
type != ShowerInteraction::Both ) continue;
// whether or not this interaction should be angular ordered
bool angularOrdered = cit->second.first->splittingFn()->angularOrdered();
ShoKinPtr newKin;
ShowerPartnerType::Type type;
// work out which starting scale we need
if(cit->second.first->interactionType()==ShowerInteraction::QED) {
type = ShowerPartnerType::QED;
Energy startingScale = angularOrdered ? particle.scales().QED : particle.scales().QED_noAO;
newKin = cit->second.first->
generateNextTimeBranching(startingScale,cit->second.second,
particle.id()!=cit->first,enhance);
}
else if(cit->second.first->interactionType()==ShowerInteraction::QCD) {
// special for octets
if(particle.dataPtr()->iColour()==PDT::Colour8) {
// octet -> octet octet
if(cit->second.first->splittingFn()->colourStructure()==OctetOctetOctet) {
type = ShowerPartnerType::QCDColourLine;
Energy startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO;
newKin= cit->second.first->
generateNextTimeBranching(startingScale,cit->second.second,
particle.id()!=cit->first,0.5*enhance);
startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO;
ShoKinPtr newKin2 = cit->second.first->
generateNextTimeBranching(startingScale,cit->second.second,
particle.id()!=cit->first,0.5*enhance);
// pick the one with the highest scale
if( ( newKin && newKin2 && newKin2->scale() > newKin->scale()) ||
(!newKin && newKin2) ) {
newKin = newKin2;
type = ShowerPartnerType::QCDAntiColourLine;
}
}
// other g -> q qbar
else {
Energy startingScale = angularOrdered ?
max(particle.scales().QCD_c , particle.scales().QCD_ac ) :
max(particle.scales().QCD_c_noAO, particle.scales().QCD_ac_noAO);
newKin= cit->second.first->
generateNextTimeBranching(startingScale, cit->second.second,
particle.id()!=cit->first,enhance);
type = UseRandom::rndbool() ?
ShowerPartnerType::QCDColourLine : ShowerPartnerType::QCDAntiColourLine;
}
}
// everything else q-> qg etc
else {
Energy startingScale;
if(particle.hasColour()) {
type = ShowerPartnerType::QCDColourLine;
startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO;
}
else {
type = ShowerPartnerType::QCDAntiColourLine;
startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO;
}
newKin= cit->second.first->
generateNextTimeBranching(startingScale,cit->second.second,
particle.id()!=cit->first,enhance);
}
}
// shouldn't be anything else
else
assert(false);
// if no kinematics contine
if(!newKin) continue;
// select highest scale
if( newKin->scale() > newQ ) {
kinematics = newKin;
newQ = newKin->scale();
ids = cit->second.second;
sudakov = cit->second.first;
partnerType = type;
}
}
// return empty branching if nothing happened
if(!kinematics) return Branching(ShoKinPtr(), IdList(),SudakovPtr(),
ShowerPartnerType::Undefined);
// If a branching has been selected initialize it
kinematics->initialize(particle,PPtr());
// and generate phi
kinematics->phi(sudakov->generatePhiForward(particle,ids,kinematics));
// and return it
return Branching(kinematics, ids,sudakov,partnerType);
}
Branching SplittingGenerator::
chooseDecayBranching(ShowerParticle &particle,
const ShowerParticle::EvolutionScales & stoppingScales,
Energy minmass, double enhance,
ShowerInteraction::Type interaction) const {
Energy newQ = Constants::MaxEnergy;
ShoKinPtr kinematics;
SudakovPtr sudakov;
ShowerPartnerType::Type partnerType(ShowerPartnerType::Undefined);
IdList ids;
// First, find the eventual branching, corresponding to the lowest scale.
long index = abs(particle.data().id());
// if no branchings return empty branching struct
if(_fbranchings.find(index) == _fbranchings.end())
return Branching(ShoKinPtr(), IdList(),SudakovPtr(),ShowerPartnerType::Undefined);
// otherwise select branching
for(BranchingList::const_iterator cit = _fbranchings.lower_bound(index);
cit != _fbranchings.upper_bound(index); ++cit) {
// check interaction doesn't change flavour
if(cit->second.second[1]!=index&&cit->second.second[2]!=index) continue;
// check either right interaction or doing both
if(interaction != cit->second.first->interactionType() &&
interaction != ShowerInteraction::Both ) continue;
// whether or not this interaction should be angular ordered
bool angularOrdered = cit->second.first->splittingFn()->angularOrdered();
ShoKinPtr newKin;
ShowerPartnerType::Type type;
// work out which starting scale we need
if(cit->second.first->interactionType()==ShowerInteraction::QED) {
type = ShowerPartnerType::QED;
Energy stoppingScale = angularOrdered ? stoppingScales.QED : stoppingScales.QED_noAO;
Energy startingScale = angularOrdered ? particle.scales().QED : particle.scales().QED_noAO;
if(startingScale < stoppingScale ) {
newKin = cit->second.first->
generateNextDecayBranching(startingScale,stoppingScale,minmass,cit->second.second,
particle.id()!=cit->first,enhance);
}
}
else if(cit->second.first->interactionType()==ShowerInteraction::QCD) {
// special for octets
if(particle.dataPtr()->iColour()==PDT::Colour8) {
// octet -> octet octet
if(cit->second.first->splittingFn()->colourStructure()==OctetOctetOctet) {
Energy stoppingColour = angularOrdered ? stoppingScales.QCD_c : stoppingScales.QCD_c_noAO;
Energy stoppingAnti = angularOrdered ? stoppingScales.QCD_ac : stoppingScales.QCD_ac_noAO;
Energy startingColour = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO;
Energy startingAnti = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO;
type = ShowerPartnerType::QCDColourLine;
if(startingColour<stoppingColour) {
newKin= cit->second.first->
generateNextDecayBranching(startingColour,stoppingColour,minmass,
cit->second.second,
particle.id()!=cit->first,0.5*enhance);
}
ShoKinPtr newKin2;
if(startingAnti<stoppingAnti) {
newKin2 = cit->second.first->
generateNextDecayBranching(startingAnti,stoppingAnti,minmass,
cit->second.second,
particle.id()!=cit->first,0.5*enhance);
}
// pick the one with the lowest scale
if( (newKin&&newKin2&&newKin2->scale()<newKin->scale()) ||
(!newKin&&newKin2) ) {
newKin = newKin2;
type = ShowerPartnerType::QCDAntiColourLine;
}
}
// other
else {
assert(false);
}
}
// everything else
else {
Energy startingScale,stoppingScale;
if(particle.hasColour()) {
type = ShowerPartnerType::QCDColourLine;
stoppingScale = angularOrdered ? stoppingScales.QCD_c : stoppingScales.QCD_c_noAO;
startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO;
}
else {
type = ShowerPartnerType::QCDAntiColourLine;
stoppingScale = angularOrdered ? stoppingScales.QCD_ac : stoppingScales.QCD_ac_noAO;
startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO;
}
if(startingScale < stoppingScale ) {
newKin = cit->second.first->
generateNextDecayBranching(startingScale,stoppingScale,minmass,cit->second.second,
particle.id()!=cit->first,enhance);
}
}
}
// shouldn't be anything else
else
assert(false);
if(!newKin) continue;
// select highest scale
if(newKin->scale() < newQ ) {
newQ = newKin->scale();
ids = cit->second.second;
kinematics=newKin;
sudakov=cit->second.first;
partnerType = type;
}
}
// return empty branching if nothing happened
if(!kinematics) return Branching(ShoKinPtr(), IdList(),SudakovPtr(),
ShowerPartnerType::Undefined);
// initialize the branching
kinematics->initialize(particle,PPtr());
// and return it
return Branching(kinematics, ids,sudakov,partnerType);
}
Branching SplittingGenerator::
chooseBackwardBranching(ShowerParticle &particle,PPtr beamparticle,
double enhance,
Ptr<BeamParticleData>::transient_const_pointer beam,
ShowerInteraction::Type type,
tcPDFPtr pdf, Energy freeze) const {
Energy newQ=ZERO;
ShoKinPtr kinematics=ShoKinPtr();
ShowerPartnerType::Type partnerType(ShowerPartnerType::Undefined);
SudakovPtr sudakov;
IdList ids;
// First, find the eventual branching, corresponding to the highest scale.
long index = abs(particle.id());
// if no possible branching return
if(_bbranchings.find(index) == _bbranchings.end())
return Branching(ShoKinPtr(), IdList(),SudakovPtr(),ShowerPartnerType::Undefined);
// otherwise select branching
for(BranchingList::const_iterator cit = _bbranchings.lower_bound(index);
cit != _bbranchings.upper_bound(index); ++cit ) {
// check either right interaction or doing both
if(type != cit->second.first->interactionType() &&
type != ShowerInteraction::Both ) continue;
// setup the PDF
cit->second.first->setPDF(pdf,freeze);
// whether or not this interaction should be angular ordered
bool angularOrdered = cit->second.first->splittingFn()->angularOrdered();
ShoKinPtr newKin;
ShowerPartnerType::Type type;
if(cit->second.first->interactionType()==ShowerInteraction::QED) {
type = ShowerPartnerType::QED;
Energy startingScale = angularOrdered ? particle.scales().QED : particle.scales().QED_noAO;
newKin=cit->second.first->
generateNextSpaceBranching(startingScale,cit->second.second, particle.x(),
particle.id()!=cit->first,enhance,beam);
}
else if(cit->second.first->interactionType()==ShowerInteraction::QCD) {
// special for octets
if(particle.dataPtr()->iColour()==PDT::Colour8) {
// octet -> octet octet
if(cit->second.first->splittingFn()->colourStructure()==OctetOctetOctet) {
type = ShowerPartnerType::QCDColourLine;
Energy startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO;
newKin = cit->second.first->
generateNextSpaceBranching(startingScale,cit->second.second, particle.x(),
particle.id()!=cit->first,0.5*enhance,beam);
startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO;
ShoKinPtr newKin2 = cit->second.first->
generateNextSpaceBranching(startingScale,cit->second.second, particle.x(),
particle.id()!=cit->first,0.5*enhance,beam);
// pick the one with the highest scale
if( (newKin&&newKin2&&newKin2->scale()>newKin->scale()) ||
(!newKin&&newKin2) ) {
newKin = newKin2;
type = ShowerPartnerType::QCDAntiColourLine;
}
}
else {
Energy startingScale = angularOrdered ?
max(particle.scales().QCD_c , particle.scales().QCD_ac ) :
max(particle.scales().QCD_c_noAO, particle.scales().QCD_ac_noAO);
type = UseRandom::rndbool() ?
ShowerPartnerType::QCDColourLine : ShowerPartnerType::QCDAntiColourLine;
newKin=cit->second.first->
generateNextSpaceBranching(startingScale,cit->second.second, particle.x(),
particle.id()!=cit->first,enhance,beam);
}
}
// everything else
else {
Energy startingScale;
if(particle.hasColour()) {
type = ShowerPartnerType::QCDColourLine;
startingScale = angularOrdered ? particle.scales().QCD_c : particle.scales().QCD_c_noAO;
}
else {
type = ShowerPartnerType::QCDAntiColourLine;
startingScale = angularOrdered ? particle.scales().QCD_ac : particle.scales().QCD_ac_noAO;
}
newKin=cit->second.first->
generateNextSpaceBranching(startingScale,cit->second.second, particle.x(),
particle.id()!=cit->first,enhance,beam);
}
}
// shouldn't be anything else
else
assert(false);
// if no kinematics contine
if(!newKin) continue;
// select highest scale
if(newKin->scale() > newQ) {
newQ = newKin->scale();
kinematics=newKin;
ids = cit->second.second;
sudakov=cit->second.first;
partnerType = type;
}
}
// return empty branching if nothing happened
if(!kinematics) return Branching(ShoKinPtr(), IdList(),SudakovPtr(),
ShowerPartnerType::Undefined);
// initialize the ShowerKinematics
// and return it
kinematics->initialize(particle,beamparticle);
+ // and generate phi
+ kinematics->phi(sudakov->generatePhiBackward(particle,ids,kinematics));
// return the answer
return Branching(kinematics, ids,sudakov,partnerType);
}
void SplittingGenerator::rebind(const TranslationMap & trans)
{
BranchingList::iterator cit;
for(cit=_fbranchings.begin();cit!=_fbranchings.end();++cit)
{(cit->second).first=trans.translate((cit->second).first);}
for(cit=_bbranchings.begin();cit!=_bbranchings.end();++cit)
{(cit->second).first=trans.translate((cit->second).first);}
Interfaced::rebind(trans);
}
IVector SplittingGenerator::getReferences() {
IVector ret = Interfaced::getReferences();
BranchingList::iterator cit;
for(cit=_fbranchings.begin();cit!=_fbranchings.end();++cit)
{ret.push_back((cit->second).first);}
for(cit=_bbranchings.begin();cit!=_bbranchings.end();++cit)
{ret.push_back((cit->second).first);}
return ret;
}
diff --git a/Shower/SplittingFunctions/ZeroZeroOneSplitFn.cc b/Shower/SplittingFunctions/ZeroZeroOneSplitFn.cc
--- a/Shower/SplittingFunctions/ZeroZeroOneSplitFn.cc
+++ b/Shower/SplittingFunctions/ZeroZeroOneSplitFn.cc
@@ -1,113 +1,118 @@
// -*- C++ -*-
//
// PhitoPhiGSplitFn.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ZeroZeroOneSplitFn class.
//
#include "ZeroZeroOneSplitFn.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
-#include "Herwig++/Shower/Base/ShowerParticle.h"
using namespace Herwig;
DescribeNoPIOClass<ZeroZeroOneSplitFn,Herwig::SplittingFunction>
describeZeroZeroOneSplitFn ("Herwig::ZeroZeroOneSplitFn","HwShower.so");
void ZeroZeroOneSplitFn::Init() {
static ClassDocumentation<ZeroZeroOneSplitFn> documentation
("The ZeroZeroOneSplitFn class implements the splitting function for the "
"radiation of a gluon by a scalar coloured particle");
}
double ZeroZeroOneSplitFn::P(const double z, const Energy2 t,
const IdList &ids, const bool mass) const {
double val = z/(1.-z);
if(mass) {
Energy m = getParticleData(ids[0])->mass();
val-= sqr(m)/t;
}
return 2.*colourFactor(ids)*val;
}
double ZeroZeroOneSplitFn::overestimateP(const double z,
const IdList &ids) const {
return 2.*colourFactor(ids)/(1.-z);
}
double ZeroZeroOneSplitFn::ratioP(const double z, const Energy2 t,
const IdList &ids,const bool mass) const {
double val = z;
if(mass) {
Energy m = getParticleData(ids[0])->mass();
val-=sqr(m)*(1.-z)/t;
}
return val;
}
double ZeroZeroOneSplitFn::integOverP(const double z, const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return -2.*colourFactor(ids)*log(1.-z);
case 1:
case 2:
case 3:
default:
throw Exception() << "ZeroZeroOneSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
double ZeroZeroOneSplitFn::invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor) const {
switch(PDFfactor) {
case 0:
return 1. - exp(- 0.5*r/colourFactor(ids));
case 1:
case 2:
case 3:
default:
throw Exception() << "ZeroZeroOneSplitFn::integOverP() invalid PDFfactor = "
<< PDFfactor << Exception::runerror;
}
}
bool ZeroZeroOneSplitFn::accept(const IdList &ids) const {
if(ids.size()!=3) return false;
if(ids[0]!=ids[1]) return false;
tcPDPtr q=getParticleData(ids[0]);
tcPDPtr g=getParticleData(ids[2]);
if(q->iSpin()!=PDT::Spin0 ||
g->iSpin()!=PDT::Spin1) return false;
return checkColours(ids);
}
-
vector<pair<int, Complex> >
ZeroZeroOneSplitFn::generatePhiForward(const double, const Energy2, const IdList &,
const RhoDMatrix &) {
// scalar so no dependence
return vector<pair<int, Complex> >(1,make_pair(0,1.));
}
-DecayMatrixElement ZeroZeroOneSplitFn::matrixElement(ShowerParticle & particle,ShoKinPtr,
- const double z, const Energy2 t,
- const IdList &, const double phi) {
+vector<pair<int, Complex> >
+ZeroZeroOneSplitFn::generatePhiBackward(const double, const Energy2, const IdList &,
+ const RhoDMatrix &) {
+ // scalar so no dependence
+ assert(false);
+ return vector<pair<int, Complex> >(1,make_pair(0,1.));
+}
+
+DecayMatrixElement ZeroZeroOneSplitFn::matrixElement(const double z, const Energy2 t,
+ const IdList & ids, const double phi) {
// calculate the kernal
DecayMatrixElement kernal(PDT::Spin0,PDT::Spin0,PDT::Spin1);
- Energy m = particle.dataPtr()->mass();
+ Energy m = getParticleData(ids[0])->mass();
kernal(0,0,0) = -exp(Complex(0.,1.)*phi)*sqrt(1.-(1.-z)*sqr(m)/z/t)*sqrt(z/(1.-z));
kernal(0,0,2) = -conj(kernal(0,0,0));
return kernal;
}
diff --git a/Shower/SplittingFunctions/ZeroZeroOneSplitFn.h b/Shower/SplittingFunctions/ZeroZeroOneSplitFn.h
--- a/Shower/SplittingFunctions/ZeroZeroOneSplitFn.h
+++ b/Shower/SplittingFunctions/ZeroZeroOneSplitFn.h
@@ -1,178 +1,191 @@
// -*- C++ -*-
//
// ZeroZeroOneSplitFn.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_ZeroZeroOneSplitFn_H
#define HERWIG_ZeroZeroOneSplitFn_H
//
// This is the declaration of the ZeroZeroOneSplitFn class.
//
#include "SplittingFunction.h"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
* This class provides the concrete implementation of the exact leading-order
* splitting function for \f$\phi\to \phi g\f$.
*
* In this case the splitting function is given by
* \f[P(z,t) = 2C\left(\frac{z}{1-z}-\frac{m^2_\phi}{t}\right),\f]
* where \f$C\f$ is the corresponding colour factor.
* Our choice for the overestimate is
* \f[P_{\rm over}(z) = \frac{2C}{1-z},\f]
* therefore the integral is
* \f[\int P_{\rm over}(z) {\rm d}z = -2C\ln(1-z),\f]
* and its inverse is
* \f[1-\exp\left(\frac{r}{2C}\right).\f]
*
* @see \ref ZeroZeroOneSplitFnInterfaces "The interfaces"
* defined for ZeroZeroOneSplitFn.
*/
class ZeroZeroOneSplitFn: public SplittingFunction {
public:
/**
* The default constructor.
*/
ZeroZeroOneSplitFn() : SplittingFunction(1) {}
/**
* Concrete implementation of the method to determine whether this splitting
* function can be used for a given set of particles.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual bool accept(const IdList & ids) const;
/**
* Methods to return the splitting function.
*/
//@{
/**
* The concrete implementation of the splitting function, \f$P\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double P(const double z, const Energy2 t, const IdList & ids,
bool mass) const;
/**
* The concrete implementation of the overestimate of the splitting function,
* \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
*/
virtual double overestimateP(const double z, const IdList & ids) const;
/**
* The concrete implementation of the
* the ratio of the splitting function to the overestimate, i.e.
* \f$P(z,\tilde{q}^2)/P_{\rm over}(z)\f$.
* @param z The energy fraction.
* @param t The scale.
* @param ids The PDG codes for the particles in the splitting.
* @param mass Whether or not to include the mass dependent terms
*/
virtual double ratioP(const double z, const Energy2 t, const IdList & ids,
bool mass) const;
/**
* The concrete implementation of the indefinite integral of the
* overestimated splitting function, \f$P_{\rm over}\f$.
* @param z The energy fraction.
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double integOverP(const double z, const IdList & ids,
unsigned int PDFfactor=0) const;
/**
* The concrete implementation of the inverse of the indefinite integral.
* @param r Value of the splitting function to be inverted
* @param ids The PDG codes for the particles in the splitting.
* @param PDFfactor Which additional factor to include for the PDF
* 0 is no additional factor,
* 1 is \f$1/z\f$, 2 is \f$1/(1-z)\f$ and 3 is \f$1/z/(1-z)\f$
*/
virtual double invIntegOverP(const double r, const IdList & ids,
unsigned int PDFfactor=0) const;
//@}
/**
- * Method to calculate the azimuthal angle
+ * Method to calculate the azimuthal angle for forward evolution
* @param particle The particle which is branching
* @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
* @return The weight
*/
virtual vector<pair<int,Complex> >
generatePhiForward(const double z, const Energy2 t, const IdList & ids,
const RhoDMatrix &);
+ /**
+ * Method to calculate the azimuthal angle for backward
+ * Shouldn't be needed and NOT IMPLEMENTED
+ * @param particle The particle which is branching
+ * @param showerkin The ShowerKinematics object
+ * @param z The energy fraction
+ * @param t The scale \f$t=2p_j\cdot p_k\f$.
+ * @param ids The PDG codes for the particles in the splitting.
+ * @param The azimuthal angle, \f$\phi\f$.
+ * @return The weight
+ */
+ virtual vector<pair<int,Complex> >
+ generatePhiBackward(const double z, const Energy2 t, const IdList & ids,
+ const RhoDMatrix &);
/**
* Calculate the matrix element for the splitting
* @param particle The particle which is branching
* @param showerkin The ShowerKinematics object
* @param z The energy fraction
* @param t The scale \f$t=2p_j\cdot p_k\f$.
* @param ids The PDG codes for the particles in the splitting.
* @param The azimuthal angle, \f$\phi\f$.
*/
- virtual DecayMatrixElement matrixElement(ShowerParticle & particle,ShoKinPtr showerkin,
- const double z, const Energy2 t,
+ virtual DecayMatrixElement matrixElement(const double z, const Energy2 t,
const IdList & ids, const double phi);
public:
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
ZeroZeroOneSplitFn & operator=(const ZeroZeroOneSplitFn &);
};
}
#endif /* HERWIG_ZeroZeroOneSplitFn_H */

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 11:23 PM (1 d, 9 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4186872
Default Alt Text
(309 KB)

Event Timeline