Page MenuHomeHEPForge

No OneTemporary

diff --git a/FixedOrderGen/include/PhaseSpacePoint.hh b/FixedOrderGen/include/PhaseSpacePoint.hh
index 004c14d..ac8c452 100644
--- a/FixedOrderGen/include/PhaseSpacePoint.hh
+++ b/FixedOrderGen/include/PhaseSpacePoint.hh
@@ -1,199 +1,201 @@
/** \file PhaseSpacePoint.hh
* \brief Contains the PhaseSpacePoint Class
*/
#pragma once
#include <vector>
#include "RHEJ/utility.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/PDG_codes.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/RNG.hh"
#include "Status.hh"
#include "JetParameters.hh"
#include "HiggsProperties.hh"
namespace HEJFOG{
class Process;
using RHEJ::Particle;
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param proc The process to generate
* @param jet_def The Jet Definition Used
* @param jetptmin Minimum Jet Transverse Momentum
* @param rapmax Maximum parton rapidity
* @param pdf The pdf set (used for sampling)
* @param subl_chance Chance to turn a potentially subleading
* emission (uno or central qqx) into an actual one
*
* Initially, only FKL phase space points are generated. subl_chance gives
* the change of turning one emissions into a subleading configuration,
* i.e. either unordered or central quark/anti-quark pair. Unordered
* emissions require that the most extremal emission in any direction is
* a quark or anti-quark and the next emission is a gluon. Quark/anti-quark
* pairs are only generated for W processes. At most one subleading
* emission will be generated in this way.
*/
PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_properties,
RHEJ::PDF & pdf, double E_beam,
double subl_chance,
HiggsProperties const & higgs_properties,
RHEJ::RNG & ran
);
//! Get Weight Function
/**
* @returns Weight of Event
*/
double weight() const{
return weight_;
}
Status status() const{
return status_;
}
//! Get Incoming Function
/**
* @returns Incoming Particles
*/
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Get Outgoing Function
/**
* @returns Outgoing Particles
*/
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
std::unordered_map<int, std::vector<Particle>> const & decays() const{
return decays_;
}
private:
/**
* \internal
* \brief Generate LO parton momentum
*
* @param count Number of partons to generate
* @param is_pure_jets If true ensures momentum conservation in x and y
* @param jet_param Jet properties to fulfil
* @param max_pt max allowed pt for a parton (typically E_CMS)
* @param ran Random Number Generator
*
* @returns Momentum of partons
*
* Ensures that each parton is in its own jet.
* Generation is independent of parton flavour. Output is sorted in rapidity.
*/
std::vector<fastjet::PseudoJet> gen_LO_partons(
int count, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
RHEJ::RNG & ran
);
Particle gen_boson(
RHEJ::ParticleID bosonid, double mass, double width,
RHEJ::RNG & ran
);
template<class ParticleMomenta>
fastjet::PseudoJet gen_last_momentum(
ParticleMomenta const & other_momenta,
double mass_square, double y
) const;
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
/**
* \internal
* \brief Generate incoming partons according to the PDF
*
* @param uf Scale used in the PDF
*/
void reconstruct_incoming(
Process const & proc,
RHEJ::PDF & pdf, double E_beam,
double uf,
RHEJ::RNG & ran
);
RHEJ::ParticleID generate_incoming_id(
size_t beam_idx, double x, double uf, RHEJ::PDF & pdf,
RHEJ::RNG & ran, bool allow_gluon=true
);
bool momentum_conserved(double ep) const;
RHEJ::Particle const & most_backward_FKL(
std::vector<RHEJ::Particle> const & partons
) const;
RHEJ::Particle const & most_forward_FKL(
std::vector<RHEJ::Particle> const & partons
) const;
RHEJ::Particle & most_backward_FKL(std::vector<RHEJ::Particle> & partons) const;
RHEJ::Particle & most_forward_FKL(std::vector<RHEJ::Particle> & partons) const;
bool extremal_FKL_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
double random_normal(double stddev, RHEJ::RNG & ran);
/**
* @brief Turns a FKL configuration into a subleading one
*
* @param chance Change to switch to subleading configuration
* @param proc Process to decide which subleading
* configurations are allowed
*
* With a chance of "chance" the FKL configuration is either turned into
* a unordered configuration or, for A/W/Z bosons, a configuration with
* a central quark/anti-quark pair.
*/
void maybe_turn_to_subl(double chance, Process const & proc, RHEJ::RNG & ran);
void turn_to_uno(bool can_be_uno_backward, bool can_be_uno_forward, RHEJ::RNG & ran);
void turn_to_qqx(RHEJ::RNG & ran);
std::vector<Particle> decay_boson(
RHEJ::Particle const & parent,
std::vector<Decay> const & decays,
RHEJ::RNG & ran
);
+ /// @brief setup outgoing partons to ensure correct coupling to boson
+ void couple_boson(RHEJ::ParticleID boson, RHEJ::RNG & ran);
Decay select_decay_channel(
std::vector<Decay> const & decays,
RHEJ::RNG & ran
);
double gen_hard_pt(
int np, double ptmin, double ptmax, double y,
RHEJ::RNG & ran
);
double gen_soft_pt(int np, double ptmax, RHEJ::RNG & ran);
double gen_parton_pt(
int count, JetParameters const & jet_param, double ptmax, double y,
RHEJ::RNG & ran
);
double weight_;
Status status_;
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<int, std::vector<Particle>> decays_;
};
RHEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp);
}
diff --git a/FixedOrderGen/include/Status.hh b/FixedOrderGen/include/Status.hh
index 54fdc0b..88d2155 100644
--- a/FixedOrderGen/include/Status.hh
+++ b/FixedOrderGen/include/Status.hh
@@ -1,22 +1,24 @@
#pragma once
#include <string>
#include <stdexcept>
namespace HEJFOG{
enum Status{
good,
not_enough_jets,
- too_much_energy
+ too_much_energy,
+ wrong_final_state /// @TODO remove this state
};
inline std::string to_string(Status s){
switch(s){
- case good: return "good";
- case not_enough_jets: return "not enough jets";
- case too_much_energy: return "too much energy";
- default:;
+ case good: return "good";
+ case not_enough_jets: return "not enough jets";
+ case too_much_energy: return "too much energy";
+ case wrong_final_state: return "wrong final state";
+ default:;
}
throw std::logic_error{"unreachable"};
}
}
diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc
index 2432400..abbc20a 100644
--- a/FixedOrderGen/src/PhaseSpacePoint.cc
+++ b/FixedOrderGen/src/PhaseSpacePoint.cc
@@ -1,613 +1,656 @@
#include "PhaseSpacePoint.hh"
#include <random>
#include <algorithm>
#include "RHEJ/Constants.hh"
#include "RHEJ/kinematics.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/exceptions.hh"
#include "Process.hh"
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
using namespace RHEJ;
namespace HEJFOG{
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
RHEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){
RHEJ::UnclusteredEvent result;
result.incoming = psp.incoming();
std::sort(
begin(result.incoming), end(result.incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
assert(result.incoming.size() == 2);
result.outgoing = psp.outgoing();
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
RHEJ::rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.decays = psp.decays();
result.central.mur = NaN;
result.central.muf = NaN;
result.central.weight = psp.weight();
return result;
}
namespace{
bool can_swap_to_uno(
RHEJ::Particle const & p1, RHEJ::Particle const & p2
){
return is_parton(p1)
&& p1.type != pid::gluon
&& p2.type == pid::gluon;
}
size_t count_gluons(std::vector<Particle>::const_iterator first,
std::vector<Particle>::const_iterator last){
return std::count_if(first, last, [](Particle const & p)
{return p.type == pid::gluon;});
}
/** assumes FKL configurations between first and last,
* else there can be a quark in a non-extreme position
* e.g. uno configuration gqg would pass
*/
bool can_change_to_qqx(
std::vector<Particle>::const_iterator first,
std::vector<Particle>::const_iterator last){
return 1 < count_gluons(first,last);
}
bool is_AWZ_proccess(Process const & proc){
return proc.boson && is_AWZ_boson(*proc.boson);
}
}
void PhaseSpacePoint::maybe_turn_to_subl(
double chance,
Process const & proc,
RHEJ::RNG & ran
){
if(proc.njets <= 2) return;
assert(outgoing_.size() >= 2);
// decide what kind of subleading process is allowed
bool allow_uno = false;
const size_t nout = outgoing_.size();
const bool can_be_uno_backward = can_swap_to_uno(
outgoing_[0], outgoing_[1]
);
const bool can_be_uno_forward = can_swap_to_uno(
outgoing_[nout-1], outgoing_[nout-2]
);
allow_uno = can_be_uno_backward || can_be_uno_forward;
bool allow_qqx = false;
if(is_AWZ_proccess(proc)) {
allow_qqx = can_change_to_qqx(outgoing_.cbegin(), outgoing_.cend());
if(incoming_[0].type == pid::gluon && incoming_[1].type == pid::gluon) {
/// enforce qqx for initial gg
allow_uno = false;
chance = 1.;
}
}
if(!allow_uno && !allow_qqx) return;
if(ran.flat() < chance){
weight_ /= chance;
if(allow_uno && !allow_qqx){
turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran);
} else if (!allow_uno && allow_qqx) {
std::cout << "only qqx" << std::endl;
turn_to_qqx(ran);
} else {
assert( allow_uno && allow_qqx);
std::cout << "both qqx and uno" << std::endl;
if(ran.flat() < 0.5) turn_to_uno(can_be_uno_backward, can_be_uno_forward, ran);
else turn_to_qqx(ran);
weight_ *= 2.;
}
} else weight_ /= 1 - chance;
}
void PhaseSpacePoint::turn_to_uno(
const bool can_be_uno_backward, const bool can_be_uno_forward,
RHEJ::RNG & ran
){
if(!can_be_uno_backward && !can_be_uno_forward) return;
const size_t nout = outgoing_.size();
if(can_be_uno_backward && can_be_uno_forward){
if(ran.flat() < 0.5){
std::swap(outgoing_[0].type, outgoing_[1].type);
} else {
std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type);
}
weight_ *= 2.;
} else if(can_be_uno_backward){
std::swap(outgoing_[0].type, outgoing_[1].type);
} else {
assert(can_be_uno_forward);
std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type);
}
}
void PhaseSpacePoint::turn_to_qqx(RHEJ::RNG & ran){
/// find first and last gluon in FKL chain
auto first = std::find_if(outgoing_.begin(), outgoing_.end(),
[](Particle const & p){return p.type == pid::gluon;});
auto last = std::find_if(first, outgoing_.end(),
[](Particle const & p){return is_quark(p) || is_antiquark(p);});
const size_t ng = count_gluons(first,last);
if(ng < 2)
throw std::logic_error("not enough gluons to create qqx");
// select flavour of quark
const double r1 = 2.*ran.flat()-1.;
weight_ *= n_f*2;
int flavour = pid::down;
for (double sum = 1./n_f; sum < std::abs(r1); sum += 1./n_f)
++flavour;
flavour*=r1<0.?-1:1;
// select gluon for switch
first += floor((ng-1) * ran.flat());
auto next = std::find_if(first+1, last,
[](Particle const & p){return p.type == pid::gluon;});
assert(next != outgoing_.end());
weight_ *= (ng-1);
first->type = ParticleID(flavour);
next->type = ParticleID(-flavour);
}
template<class ParticleMomenta>
fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum(
ParticleMomenta const & other_momenta,
const double mass_square, const double y
) const {
std::array<double,2> pt{0.,0.};
for (auto const & p: other_momenta) {
pt[0]-= p.px();
pt[1]-= p.py();
}
const double mperp = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square);
const double pz=mperp*sinh(y);
const double E=mperp*cosh(y);
return {pt[0], pt[1], pz, E};
}
PhaseSpacePoint::PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_param,
RHEJ::PDF & pdf, double E_beam,
double subl_chance,
HiggsProperties const & h,
RHEJ::RNG & ran
)
{
assert(proc.njets >= 2);
status_ = good;
weight_ = 1;
const int nout = proc.njets + (proc.boson?1:0);
outgoing_.reserve(nout);
// generate parton momenta
const bool is_pure_jets = !proc.boson;
auto partons = gen_LO_partons(
proc.njets, is_pure_jets, jet_param, E_beam, ran
);
// pre fill flavour with gluons
for(auto&& p_out: partons) {
outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out)});
}
if(status_ != good) return;
if(proc.boson){
switch (*proc.boson) {
case pid::Higgs:{
auto Hparticle=gen_boson(pid::higgs, h.mass, h.width, ran);
auto pos=std::upper_bound(
begin(outgoing_),end(outgoing_),Hparticle,rapidity_less{}
);
outgoing_.insert(pos, Hparticle);
if(! h.decays.empty()){
const int boson_idx = std::distance(begin(outgoing_), pos);
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], h.decays, ran)
);
}
break;
}
case pid::Wp:{
/// @TODO implement, currently this is just a relabel Higgs
///@{
std::cout << "Emission of Wp not implemented yet.\nThis is just a place holder" << std::endl;
auto Hparticle=gen_boson(pid::Wp, h.mass, h.width, ran);
auto pos=std::upper_bound(
begin(outgoing_),end(outgoing_),Hparticle,rapidity_less{}
);
outgoing_.insert(pos, Hparticle);
if(! h.decays.empty()){
const int boson_idx = std::distance(begin(outgoing_), pos);
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], h.decays, ran)
);
}
///@}
break;
}
case pid::Wm:{
/// @TODO implement, currently this is just a relabel Higgs
///@{
std::cout << "Emission of Wm not implemented yet.\nThis is just a place holder" << std::endl;
auto Hparticle=gen_boson(pid::higgs, h.mass, h.width, ran);
auto pos=std::upper_bound(
begin(outgoing_),end(outgoing_),Hparticle,rapidity_less{}
);
outgoing_.insert(pos, Hparticle);
if(! h.decays.empty()){
const int boson_idx = std::distance(begin(outgoing_), pos);
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], h.decays, ran)
);
}
///@}
break;
}
case pid::photon:
case pid::Z:
default:
throw std::logic_error("Emission of boson of unsupported type");
}
}
// normalisation of momentum-conserving delta function
weight_ *= pow(2*M_PI, 4);
reconstruct_incoming(proc, pdf, E_beam, jet_param.min_pt, ran);
if(status_ != good) return;
// set outgoing states
most_backward_FKL(outgoing_).type = incoming_[0].type;
most_forward_FKL(outgoing_).type = incoming_[1].type;
maybe_turn_to_subl(subl_chance, proc, ran);
+ if(proc.boson) couple_boson(*proc.boson, ran);
+
#ifndef NDEBUG
if(is_AWZ_proccess(proc)){
// check that W has a quark to couple to
auto const partons = filter_partons(outgoing_);
/// @TODO extend assert to also check flavour? Maybe easier in separate cmake test
assert(partons.front().type != pid::gluon
|| partons.back().type != pid::gluon // extremal quark
|| ( (partons.size() > 3 ) // or central qqx
&& ( 1<std::count_if(partons.cbegin()+1, partons.cend()-1,
[](Particle const & p) {return p.type != pid::gluon;})
))
);
}
#endif
}
double PhaseSpacePoint::gen_hard_pt(
int np , double ptmin, double ptmax, double y,
RHEJ::RNG & ran
) {
// heuristic parameters for pt sampling
const double ptpar = ptmin + np/5.;
const double arg_small_y = atan((ptmax - ptmin)/ptpar);
const double y_cut = 3.;
const double r1 = ran.flat();
if(y < y_cut){
const double pt = ptmin + ptpar*tan(r1*arg_small_y);
const double temp = cos(r1*arg_small_y);
weight_ *= pt*ptpar*arg_small_y/(temp*temp);
return pt;
}
const double ptpar2 = ptpar/(1 + 5*(y-y_cut));
const double temp = 1. - std::exp((ptmin-ptmax)/ptpar2);
const double pt = ptmin - ptpar2*std::log(1-r1*temp);
weight_ *= pt*ptpar2*temp/(1-r1*temp);
return pt;
}
double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, RHEJ::RNG & ran) {
constexpr double ptpar = 4.;
const double r = ran.flat();
const double pt = max_pt + ptpar/np*std::log(r);
weight_ *= pt*ptpar/(np*r);
return pt;
}
double PhaseSpacePoint::gen_parton_pt(
int count, JetParameters const & jet_param, double max_pt, double y,
RHEJ::RNG & ran
) {
constexpr double p_small_pt = 0.02;
if(! jet_param.peak_pt) {
return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran);
}
const double r = ran.flat();
if(r > p_small_pt) {
weight_ /= 1. - p_small_pt;
return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran);
}
weight_ /= p_small_pt;
const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran);
if(pt < jet_param.min_pt) {
weight_=0.0;
status_ = not_enough_jets;
return jet_param.min_pt;
}
return pt;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_LO_partons(
int np, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
RHEJ::RNG & ran
){
if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"};
weight_ /= pow(16.*pow(M_PI,3),np);
weight_ /= std::tgamma(np+1); //remove rapidity ordering
std::vector<fastjet::PseudoJet> partons;
partons.reserve(np);
for(int i = 0; i < np; ++i){
const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat();
weight_ *= 2*jet_param.max_y;
const bool is_last_parton = i+1 == np;
if(is_pure_jets && is_last_parton) {
constexpr double parton_mass_sq = 0.;
partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y));
break;
}
const double phi = 2*M_PI*ran.flat();
weight_ *= 2.0*M_PI;
const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran);
if(weight_ == 0.0) return {};
partons.emplace_back(fastjet::PtYPhiM(pt, y, phi));
assert(jet_param.min_pt <= partons[i].pt());
assert(partons[i].pt() <= max_pt+1e-5);
}
// Need to check that at LO, the number of jets = number of partons;
fastjet::ClusterSequence cs(partons, jet_param.def);
auto cluster_jets=cs.inclusive_jets(jet_param.min_pt);
if (cluster_jets.size()!=unsigned(np)){
weight_=0.0;
status_ = not_enough_jets;
return {};
}
std::sort(begin(partons), end(partons), rapidity_less{});
return partons;
}
Particle PhaseSpacePoint::gen_boson(
RHEJ::ParticleID bosonid, double mass, double width,
RHEJ::RNG & ran
){
// Usual phase space measure
weight_ /= 16.*pow(M_PI, 3);
// Generate a y Gaussian distributed around 0
// TODO: magic number only for Higgs
const double y = random_normal(1.6, ran);
const double r1 = ran.flat();
const double sH = mass*(
mass + width*tan(M_PI/2.*r1 + (r1-1.)*atan(mass/width))
);
auto p = gen_last_momentum(outgoing_, sH, y);
return Particle{bosonid, std::move(p)};
}
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
if(!RHEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t last_idx = partons.size() - 1;
if(!RHEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
if(!RHEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t last_idx = partons.size() - 1;
if(!RHEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
void PhaseSpacePoint::reconstruct_incoming(
Process const & proc,
RHEJ::PDF & pdf, double E_beam,
double uf,
RHEJ::RNG & ran
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
// calculate xa, xb
const double sqrts=2*E_beam;
const double xa=(incoming_[0].p.e()-incoming_[0].p.pz())/sqrts;
const double xb=(incoming_[1].p.e()+incoming_[1].p.pz())/sqrts;
// abort if phase space point is outside of collider energy reach
if (xa>1. || xb>1.){
weight_=0;
status_ = too_much_energy;
return;
}
// pick pdfs
/** @TODO
* ufa, ufb don't correspond to our final scale choice.
* The reversed HEJ scale generators currently expect a full event as input,
* so fixing this is not completely trivial
*/
auto const & ids = proc.incoming;
bool allow_gluon = 1;
// special case W2j: needs one quark initially
if(proc.njets == 2 && is_AWZ_proccess(proc)){
+ // @TODO optimise: do not allow dd initial for Wp, also for 3j
if(ids[0] == pid::gluon || ids[1] == pid::gluon){
// one gluon -> other has to be quark
allow_gluon = 0;
if(ids[0] == ids[1]){ // both gluons
throw RHEJ::not_implemented{
"W+2 jet process requires at least one initial quark"
};
}
} else { // else force one to be a gluon
allow_gluon = ran.flat() < 0.5; // @TODO better sample
weight_*=2.;
}
}
for(size_t i = 0; i < 2; ++i){
if(ids[i] == pid::proton || ids[i] == pid::p_bar){
incoming_[i].type =
generate_incoming_id(i, i?xb:xa, uf, pdf, ran, allow_gluon);
if(allow_gluon && proc.njets == 2 && is_AWZ_proccess(proc))
allow_gluon = 0; // no gluon in first -> must be second
}
else {
incoming_[i].type = ids[i];
}
}
assert(momentum_conserved(1e-7));
}
namespace {
/// particles are ordered, odd = anti
ParticleID index_to_pid(size_t i){
if(!i) return pid::gluon;
return static_cast<ParticleID>(i%2?(i+1)/2:-i/2);
}
}
RHEJ::ParticleID PhaseSpacePoint::generate_incoming_id(
size_t const beam_idx, double const x, double const uf,
RHEJ::PDF & pdf, RHEJ::RNG & ran, bool allow_gluon
){
std::array<double,11> pdf_wt;
pdf_wt[0] = allow_gluon?fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon)):0.;
double pdftot = pdf_wt[0];
for(size_t i = 1; i < pdf_wt.size(); ++i){
pdf_wt[i] = 4./9.*fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i)));
pdftot += pdf_wt[i];
}
const double r1 = pdftot * ran.flat();
double sum = 0;
for(size_t i=0; i < pdf_wt.size(); ++i){
if (r1 < (sum+=pdf_wt[i])){
weight_*= pdftot/pdf_wt[i];
return index_to_pid(i);
}
}
std::cerr << "Error in choosing incoming parton: "<<x<<" "<<uf<<" "
<<sum<<" "<<pdftot<<" "<<r1<<std::endl;
throw std::logic_error{"Failed to choose parton flavour"};
}
+ namespace {
+ bool is_up_type(Particle const & part){
+ return RHEJ::is_anyquark(part) && !(abs(part.type)%2);
+ }
+ bool is_down_type(Particle const & part){
+ return RHEJ::is_anyquark(part) && abs(part.type)%2;
+ }
+ }
+
+ void PhaseSpacePoint::couple_boson(
+ RHEJ::ParticleID const boson, RHEJ::RNG & ran
+ ){
+ if(abs(boson) != pid::Wp) return; // only matters for W
+
+ // find all possible quarks
+ const int sign_W = boson>0?1:-1;
+ std::vector<Particle*> allowed_parts;
+ for(auto & part: outgoing_){
+ // Wp -> up OR anti-down, Wm -> anti-up OR down
+ if ( (sign_W*part.type > 0 && is_up_type(part))
+ || (sign_W*part.type < 0 && is_down_type(part)) )
+ allowed_parts.push_back(&part);
+ }
+ if(!allowed_parts.size()){
+ /// @TODO do not allow such states in the generation
+ status_=wrong_final_state;
+ return;
+ }
+
+ // select one and flip it
+ size_t idx = 0;
+ if(allowed_parts.size() > 1){
+ /// @TODO more efficient sampling
+ idx = floor(ran.flat()*allowed_parts.size());
+ weight_ *= allowed_parts.size();
+ }
+ allowed_parts[idx]->type =
+ static_cast<ParticleID>( allowed_parts[idx]->type - sign_W );
+ }
+
double PhaseSpacePoint::random_normal(
double stddev,
RHEJ::RNG & ran
){
const double r1 = ran.flat();
const double r2 = ran.flat();
const double lninvr1 = -log(r1);
const double result = stddev*sqrt(2.*lninvr1)*cos(2.*M_PI*r2);
weight_ *= exp(result*result/(2*stddev*stddev))*sqrt(2.*M_PI)*stddev;
return result;
}
bool PhaseSpacePoint::momentum_conserved(double ep) const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
for(auto const & out: outgoing()) diff -= out.p;
return nearby_ep(diff, fastjet::PseudoJet{}, ep);
}
Decay PhaseSpacePoint::select_decay_channel(
std::vector<Decay> const & decays,
RHEJ::RNG & ran
){
double br_total = 0.;
for(auto const & decay: decays) br_total += decay.branching_ratio;
// adjust weight
// this is given by (channel branching ratio)/(chance to pick channel)
// where (chance to pick channel) =
// (channel branching ratio)/(total branching ratio)
weight_ *= br_total;
const double r1 = br_total*ran.flat();
double br_sum = 0.;
for(auto const & decay: decays){
br_sum += decay.branching_ratio;
if(r1 < br_sum) return decay;
}
throw std::logic_error{"unreachable"};
}
std::vector<Particle> PhaseSpacePoint::decay_boson(
RHEJ::Particle const & parent,
std::vector<Decay> const & decays,
RHEJ::RNG & ran
){
const auto channel = select_decay_channel(decays, ran);
if(channel.products.size() != 2){
throw RHEJ::not_implemented{
"only decays into two particles are implemented"
};
}
std::vector<Particle> decay_products(channel.products.size());
for(size_t i = 0; i < channel.products.size(); ++i){
decay_products[i].type = channel.products[i];
}
// choose polar and azimuth angle in parent rest frame
const double E = parent.m()/2;
const double theta = 2.*M_PI*ran.flat();
const double cos_phi = 2.*ran.flat()-1.;
const double sin_phi = sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi
const double px = E*cos(theta)*sin_phi;
const double py = E*sin(theta)*sin_phi;
const double pz = E*cos_phi;
decay_products[0].p.reset(px, py, pz, E);
decay_products[1].p.reset(-px, -py, -pz, E);
for(auto & particle: decay_products) particle.p.boost(parent.p);
return decay_products;
}
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 10:26 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242645
Default Alt Text
(29 KB)

Event Timeline