Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8723947
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
16 KB
Subscribers
None
View Options
diff --git a/MatrixElement/General/MEvv2ss.cc b/MatrixElement/General/MEvv2ss.cc
--- a/MatrixElement/General/MEvv2ss.cc
+++ b/MatrixElement/General/MEvv2ss.cc
@@ -1,312 +1,313 @@
// -*- C++ -*-
//
// MEvv2ss.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MEvv2ss class.
//
#include "MEvv2ss.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
using namespace Herwig;
using ThePEG::Helicity::TensorWaveFunction;
using ThePEG::Helicity::incoming;
using ThePEG::Helicity::outgoing;
void MEvv2ss::doinit() {
GeneralHardME::doinit();
scalar1_.resize(numberOfDiags());
scalar2_.resize(numberOfDiags());
scalar3_.resize(numberOfDiags());
vector_ .resize(numberOfDiags());
tensor_ .resize(numberOfDiags());
+ contact_.resize(numberOfDiags());
initializeMatrixElements(PDT::Spin1, PDT::Spin1,
PDT::Spin0, PDT::Spin0);
for(size_t i = 0; i < numberOfDiags(); ++i ) {
HPDiagram dg = getProcessInfo()[i];
if( !dg.intermediate ) {
- contact_ = dynamic_ptr_cast<AbstractVVSSVertexPtr>(dg.vertices.first);
+ contact_[i] = dynamic_ptr_cast<AbstractVVSSVertexPtr>(dg.vertices.first);
}
else if(dg.channelType == HPDiagram::tChannel) {
if (dg.intermediate->iSpin() == PDT::Spin0 ) {
AbstractVSSVertexPtr vss1 =
dynamic_ptr_cast<AbstractVSSVertexPtr>(dg.vertices.first);
AbstractVSSVertexPtr vss2 =
dynamic_ptr_cast<AbstractVSSVertexPtr>(dg.vertices.second);
scalar2_[i] = make_pair(vss1, vss2);
}
else if( dg.intermediate->iSpin() == PDT::Spin1 ) {
AbstractVVSVertexPtr vvs1 =
dynamic_ptr_cast<AbstractVVSVertexPtr>(dg.vertices.first);
AbstractVVSVertexPtr vvs2 =
dynamic_ptr_cast<AbstractVVSVertexPtr>(dg.vertices.second);
scalar3_[i] = make_pair(vvs1, vvs2);
}
else
assert(false);
}
else {
if( dg.intermediate->iSpin() == PDT::Spin0 ) {
AbstractVVSVertexPtr vvs =
dynamic_ptr_cast<AbstractVVSVertexPtr>(dg.vertices.first);
AbstractSSSVertexPtr sss =
dynamic_ptr_cast<AbstractSSSVertexPtr>(dg.vertices.second);
scalar1_[i] = make_pair(vvs, sss);
}
else if( dg.intermediate->iSpin() == PDT::Spin1 ) {
AbstractVVVVertexPtr vvv =
dynamic_ptr_cast<AbstractVVVVertexPtr>(dg.vertices.first);
AbstractVSSVertexPtr vss =
dynamic_ptr_cast<AbstractVSSVertexPtr>(dg.vertices.second);
vector_[i] = make_pair(vvv, vss);
}
else if( dg.intermediate->iSpin() == PDT::Spin2 ) {
AbstractVVTVertexPtr vvt =
dynamic_ptr_cast<AbstractVVTVertexPtr>(dg.vertices.first);
AbstractSSTVertexPtr sst =
dynamic_ptr_cast<AbstractSSTVertexPtr>(dg.vertices.second);
tensor_[i] = make_pair(vvt, sst);
}
}
}
}
double MEvv2ss::me2() const {
VBVector v1(2), v2(2);
for( size_t i = 0; i < 2; ++i ) {
v1[i] = VectorWaveFunction(rescaledMomenta()[0],mePartonData()[0], 2*i,
incoming);
v2[i] = VectorWaveFunction(rescaledMomenta()[1],mePartonData()[1], 2*i,
incoming);
}
ScalarWaveFunction sca1(rescaledMomenta()[2],mePartonData()[2],
Complex(1.,0.),outgoing);
ScalarWaveFunction sca2(rescaledMomenta()[3],mePartonData()[3],
Complex(1.,0.),outgoing);
double full_me(0.);
vv2ssME(v1, v2, sca1, sca2, full_me , true);
#ifndef NDEBUG
if( debugME() ) debug(full_me);
#endif
return full_me;
}
ProductionMatrixElement
MEvv2ss::vv2ssME(const VBVector & v1, const VBVector & v2,
const ScalarWaveFunction & sca1,
const ScalarWaveFunction & sca2,
double & me2, bool first) const {
const Energy2 m2(scale());
const Energy masst = sca1.mass(), massu = sca2.mass();
// weights for the selection of the diagram
vector<double> me(numberOfDiags(), 0.);
// weights for the selection of the colour flow
vector<double> flow(numberOfFlows(),0.);
//loop over vector helicities
for(unsigned int iv1 = 0; iv1 < 2; ++iv1) {
for(unsigned int iv2 = 0; iv2 < 2; ++iv2) {
vector<Complex> flows(numberOfFlows(),0.);
// loop over diagrams
for(HPCount ix = 0; ix < numberOfDiags(); ++ix) {
Complex diag(0.);
const HPDiagram & current = getProcessInfo()[ix];
// do four-point diag first
if(current.channelType == HPDiagram::fourPoint) {
- diag = contact_->evaluate(m2, v1[iv1], v2[iv2], sca1, sca2);
+ diag = contact_[ix]->evaluate(m2, v1[iv1], v2[iv2], sca1, sca2);
}
else {
tcPDPtr offshell = current.intermediate;
if(current.channelType == HPDiagram::tChannel) {
if(offshell->iSpin() == PDT::Spin0) {
if(current.ordered.second) {
ScalarWaveFunction interS = scalar2_[ix].first->
evaluate(m2, 3, offshell, v1[iv1], sca1, masst);
diag = scalar2_[ix].second->evaluate(m2, v2[iv2], interS, sca2);
}
else {
ScalarWaveFunction interS = scalar2_[ix].first->
evaluate(m2, 3, offshell, v1[iv1], sca2, massu);
diag = scalar2_[ix].second->evaluate(m2, v2[iv2], interS, sca1);
}
}
else {
if(current.ordered.second) {
VectorWaveFunction interV = scalar3_[ix].first->
evaluate(m2, 3, offshell, v1[iv1], sca1);
diag = scalar3_[ix].second->evaluate(m2, v2[iv2], interV, sca2);
}
else {
VectorWaveFunction interV = scalar3_[ix].first->
evaluate(m2, 3, offshell, v1[iv1], sca2);
diag = scalar3_[ix].second->evaluate(m2, v2[iv2], interV, sca1);
}
}
}
else if(current.channelType == HPDiagram::sChannel) {
if(offshell->iSpin() == PDT::Spin0) {
ScalarWaveFunction interS = scalar1_[ix].first->
evaluate(m2, 1, offshell, v1[iv1], v2[iv2]);
diag = scalar1_[ix].second->evaluate(m2, interS, sca1, sca2);
}
else if(offshell->iSpin() == PDT::Spin1) {
VectorWaveFunction interV = vector_[ix].first->
evaluate(m2, 1, offshell, v1[iv1], v2[iv2]);
diag = vector_[ix].second->evaluate(m2, interV, sca1, sca2);
}
else if(offshell->iSpin() == PDT::Spin2) {
TensorWaveFunction interT = tensor_[ix].first->
evaluate(m2, 1, offshell, v1[iv1], v2[iv2]);
diag = tensor_[ix].second->evaluate(m2, sca1, sca2, interT);
}
}
else
diag = 0.;
}
me[ix] += norm(diag);
diagramME()[ix](2*iv1, 2*iv2, 0, 0) = diag;
//Compute flows
for(size_t iy = 0; iy < current.colourFlow.size(); ++iy) {
assert(current.colourFlow[iy].first<flows.size());
flows[current.colourFlow[iy].first] +=
current.colourFlow[iy].second * diag;
}
}
// MEs for the different colour flows
for(unsigned int iy = 0; iy < numberOfFlows(); ++iy)
flowME()[iy](2*iv1, 2*iv2, 0, 0) = flows[iy];
//Now add flows to me2 with appropriate colour factors
for(size_t ii = 0; ii < numberOfFlows(); ++ii)
for(size_t ij = 0; ij < numberOfFlows(); ++ij)
me2 += getColourFactors()[ii][ij]*(flows[ii]*conj(flows[ij])).real();
// contribution to the colour flow
for(unsigned int ii = 0; ii < numberOfFlows(); ++ii) {
flow[ii] += getColourFactors()[ii][ii]*norm(flows[ii]);
}
}
}
// if not computing the cross section return the selected colour flow
if(!first) return flowME()[colourFlow()];
me2 = selectColourFlow(flow,me,me2);
return flowME()[colourFlow()];
}
void MEvv2ss::persistentOutput(PersistentOStream & os) const {
os << scalar1_ << scalar2_ << scalar3_ << vector_ << tensor_ << contact_;
}
void MEvv2ss::persistentInput(PersistentIStream & is, int) {
is >> scalar1_ >> scalar2_ >> scalar3_ >> vector_ >> tensor_ >> contact_;
initializeMatrixElements(PDT::Spin1, PDT::Spin1,
PDT::Spin0, PDT::Spin0);
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<MEvv2ss,GeneralHardME>
describeHerwigMEvv2ss("Herwig::MEvv2ss", "Herwig.so");
void MEvv2ss::Init() {
static ClassDocumentation<MEvv2ss> documentation
("This class implements the ME for the vector-vector to scalar-scalar "
"hard-process");
}
void MEvv2ss::constructVertex(tSubProPtr sub) {
ParticleVector ext = hardParticles(sub);
VBVector v1, v2;
// set up the wavefunctions with real momenta
VectorWaveFunction(v1, ext[0], incoming, false, true);
VectorWaveFunction(v2, ext[1], incoming, false, true);
ScalarWaveFunction sca1(ext[2], outgoing, true);
ScalarWaveFunction sca2(ext[3], outgoing, true);
// calculate rescaled moment
setRescaledMomenta(ext);
// wavefunctions with rescaled momenta
VectorWaveFunction v1r (rescaledMomenta()[0],
ext[0]->dataPtr(), incoming);
VectorWaveFunction v2r (rescaledMomenta()[1],
ext[1]->dataPtr(), incoming);
sca1 = ScalarWaveFunction(rescaledMomenta()[2],
ext[2]->dataPtr(), outgoing);
sca2 = ScalarWaveFunction(rescaledMomenta()[3],
ext[3]->dataPtr(), outgoing);
for( unsigned int ihel = 0; ihel < 2; ++ihel ) {
v1r.reset(2*ihel);
v1[ihel] = v1r;
v2r.reset(2*ihel);
v2[ihel] = v2r;
}
double dummy(0.);
ProductionMatrixElement pme = vv2ssME(v1, v2, sca1, sca2, dummy , false);
#ifndef NDEBUG
if( debugME() ) debug(dummy);
#endif
createVertex(pme,ext);
}
void MEvv2ss::debug(double me2) const {
if( !generator()->logfile().is_open() ) return;
if( mePartonData()[0]->id() != 21 || mePartonData()[1]->id() != 21) return;
long id3 = abs(mePartonData()[2]->id());
long id4 = abs(mePartonData()[3]->id());
int type = -1;
//SUSY gg>~q~q
if( ((id3 >= 1000001 && id3 <= 1000006 ) && (id4 >= 1000001 && id4 <= 1000006 ) ) ||
((id3 >= 2000001 && id3 <= 2000006 ) && (id4 >= 2000001 && id4 <= 2000006 ) ) ) {
type = 0;
}
// Sextet production
else if(mePartonData()[2]->iColour() == PDT::Colour6 &&
mePartonData()[3]->iColour() == PDT::Colour6bar ) {
type = 1;
}
else {
return;
}
double gs4 = sqr( 4.*Constants::pi*SM().alphaS(scale()));
int Nc = SM().Nc();
Energy4 s2 = sqr(sHat());
Energy2 m3s = meMomenta()[2].m2();
Energy2 m4s = meMomenta()[3].m2();
Energy4 spt2 = uHat()*tHat() - m3s*m4s;
Energy2 t3 = tHat()-m3s, u4 = uHat()-m4s;
Energy4 t3s = sqr(t3) , u4s = sqr(u4);
Energy8 pre = gs4*(sqr(spt2) + s2*m3s*m4s);
// matrix element
double analytic(0.);
// triplet scalars
if(type==0) {
analytic = pre*Nc*
( u4s + t3s - s2/sqr(Nc) )/2./(sqr(Nc) - 1.)/s2/t3s/u4s;
}
// sextet scalars
else if(type==1) {
analytic = pre*(Nc+2.)/(sqr(Nc)-1.)/Nc*
((Nc+2.)*(Nc-1.)/t3s/u4s - sqr(Nc)/t3/u4/s2);
}
double diff = abs(analytic - me2)/(analytic+me2);
if( diff > 1e-10 ) {
generator()->log()
<< mePartonData()[0]->PDGName() << ","
<< mePartonData()[1]->PDGName() << "->"
<< mePartonData()[2]->PDGName() << ","
<< mePartonData()[3]->PDGName() << " difference: "
<< setprecision(10) << diff << " ratio: " << analytic/me2 << '\n';
}
}
diff --git a/MatrixElement/General/MEvv2ss.h b/MatrixElement/General/MEvv2ss.h
--- a/MatrixElement/General/MEvv2ss.h
+++ b/MatrixElement/General/MEvv2ss.h
@@ -1,199 +1,199 @@
// -*- C++ -*-
//
// MEvv2ss.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MEvv2ss_H
#define HERWIG_MEvv2ss_H
//
// This is the declaration of the MEvv2ss class.
//
#include "GeneralHardME.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Helicity/Vertex/AbstractVVSVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVSSVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVVVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVTVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractSSTVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVSSVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractSSSVertex.h"
#include "Herwig/MatrixElement/ProductionMatrixElement.h"
namespace Herwig {
using namespace ThePEG;
using ThePEG::Helicity::VectorWaveFunction;
using ThePEG::Helicity::ScalarWaveFunction;
/**
* This is the implementation of the matrix element for the process
* vector-vector to scalar-scalar. It inherits from GeneralHardME and
* implements the required virtual functions.
*
* @see \ref MEff2ffInterfaces "The Interfaces"
* defined for MEff2ff.
* @see GeneralHardME
*/
class MEvv2ss: public GeneralHardME {
public:
/** A vector of VectorWaveFunction objects*/
typedef vector<VectorWaveFunction> VBVector;
public:
/** @name Virtual functions required by the MEBase class. */
//@{
/**
* The matrix element for the kinematical configuration
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
* @return the matrix element scaled with sHat() to give a
* dimensionless number.
*/
virtual double me2() const;
//@}
/**
* Set the Hardvertex for the spin correlations
* @param sub
*/
virtual void constructVertex(tSubProPtr sub);
private:
/**
* Calculate the matrix element.
* @param v1 A vector of VectorWaveFunction objects for the first boson
* @param v2 A vector of VectorWaveFunction objects for the second boson
* @param sca1 A ScalarWaveFunction for the first outgoing
* @param sca2 A ScalarWaveFunction for the second outgoing
* @param me2 The value of the spin-summed matrix element squared
* (to be calculated)
* @param first Whether or not first call to decide if colour decomposition etc
* should be calculated
*/
ProductionMatrixElement vv2ssME(const VBVector & v1, const VBVector & v2,
const ScalarWaveFunction & sca1,
const ScalarWaveFunction & sca2,
double & me2, bool first) const;
protected:
/**
* A debugging function to test the value of me2 against an
* analytic function.
* @param me2 The value of the \f$ |\bar{\mathcal{M}}|^2 \f$
*/
virtual void debug(double me2) const;
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MEvv2ss & operator=(const MEvv2ss &);
private:
/** @name The dynamically casted vertices. */
//@{
/**
* Intermediate s-channel scalar
*/
vector<pair<AbstractVVSVertexPtr, AbstractSSSVertexPtr> > scalar1_;
/**
* Intermediate t-channel scalar
*/
vector<pair<AbstractVSSVertexPtr, AbstractVSSVertexPtr> > scalar2_;
/**
* Intermediate t-channel scalar
*/
vector<pair<AbstractVVSVertexPtr, AbstractVVSVertexPtr> > scalar3_;
/**
* Intermediate s-channel vector
*/
vector<pair<AbstractVVVVertexPtr, AbstractVSSVertexPtr> > vector_;
/**
* Intermediate s-channel tensor
*/
vector<pair<AbstractVVTVertexPtr, AbstractSSTVertexPtr> > tensor_;
/**
* The contact vertex
*/
- AbstractVVSSVertexPtr contact_;
+ vector<AbstractVVSSVertexPtr> contact_;
//@}
};
}
#endif /* HERWIG_MEvv2ss_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Mon, Jan 20, 9:59 PM (1 d, 4 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4210900
Default Alt Text
(16 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment