Page MenuHomeHEPForge

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/FixedOrderGen/include/Beam.hh b/FixedOrderGen/include/Beam.hh
index 0d17565..02db339 100644
--- a/FixedOrderGen/include/Beam.hh
+++ b/FixedOrderGen/include/Beam.hh
@@ -1,14 +1,14 @@
#pragma once
#include <array>
#include "RHEJ/PDG_codes.hh"
namespace HEJFOG{
struct Beam{
double energy;
- std::array<RHEJ::ParticleID, 2> particles{{
- RHEJ::pid::proton, RHEJ::pid::proton
+ std::array<HEJ::ParticleID, 2> particles{{
+ HEJ::pid::proton, HEJ::pid::proton
}};
};
}
diff --git a/FixedOrderGen/include/CrossSectionAccumulator.hh b/FixedOrderGen/include/CrossSectionAccumulator.hh
index b7e9e86..58d8a38 100644
--- a/FixedOrderGen/include/CrossSectionAccumulator.hh
+++ b/FixedOrderGen/include/CrossSectionAccumulator.hh
@@ -1,43 +1,43 @@
#pragma once
#include <map>
#include "RHEJ/Event.hh"
#include "RHEJ/event_types.hh"
namespace HEJFOG {
template<typename T>
struct WithError {
T value = T{};
T error = T{};
};
class CrossSectionAccumulator {
public:
- void fill(RHEJ::Event const & ev) {
+ void fill(HEJ::Event const & ev) {
const double wt = ev.central().weight;
auto & entry = xs_[ev.type()];
entry.value += wt;
entry.error += wt*wt;
total_.value += wt;
total_.error += wt*wt;
}
auto begin() const {
return std::begin(xs_);
}
auto end() const {
return std::end(xs_);
}
WithError<double> total() const {
return total_;
}
private:
- std::map<RHEJ::event_type::EventType, WithError<double>> xs_;
+ std::map<HEJ::event_type::EventType, WithError<double>> xs_;
WithError<double> total_;
};
}
diff --git a/FixedOrderGen/include/Decay.hh b/FixedOrderGen/include/Decay.hh
index 2f556fc..eb285fe 100644
--- a/FixedOrderGen/include/Decay.hh
+++ b/FixedOrderGen/include/Decay.hh
@@ -1,11 +1,11 @@
#pragma once
#include "RHEJ/PDG_codes.hh"
#include <vector>
namespace HEJFOG{
struct Decay{
- std::vector<RHEJ::pid::ParticleID> products;
+ std::vector<HEJ::pid::ParticleID> products;
double branching_ratio;
};
}
diff --git a/FixedOrderGen/include/EventGenerator.hh b/FixedOrderGen/include/EventGenerator.hh
index f35bd2d..0abc9b0 100644
--- a/FixedOrderGen/include/EventGenerator.hh
+++ b/FixedOrderGen/include/EventGenerator.hh
@@ -1,53 +1,53 @@
#pragma once
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
#include "RHEJ/RNG.hh"
#include "JetParameters.hh"
#include "Process.hh"
#include "Beam.hh"
#include "Status.hh"
#include "HiggsProperties.hh"
-namespace RHEJ{
+namespace HEJ{
class Event;
class HiggsCouplingSettings;
class ScaleGenerator;
}
namespace HEJFOG{
class EventGenerator{
public:
EventGenerator(
Process process,
Beam beam,
- RHEJ::ScaleGenerator scale_gen,
+ HEJ::ScaleGenerator scale_gen,
JetParameters jets,
int pdf_id,
double uno_chance,
HiggsProperties higgs_properties,
- RHEJ::HiggsCouplingSettings Higgs_coupling,
- RHEJ::RNG & ran
+ HEJ::HiggsCouplingSettings Higgs_coupling,
+ HEJ::RNG & ran
);
- RHEJ::Event gen_event();
+ HEJ::Event gen_event();
Status status() const {
return status_;
}
private:
- RHEJ::PDF pdf_;
- RHEJ::MatrixElement ME_;
- RHEJ::ScaleGenerator scale_gen_;
+ HEJ::PDF pdf_;
+ HEJ::MatrixElement ME_;
+ HEJ::ScaleGenerator scale_gen_;
Process process_;
JetParameters jets_;
Beam beam_;
Status status_;
double uno_chance_;
HiggsProperties higgs_properties_;
- std::reference_wrapper<RHEJ::RNG> ran_;
+ std::reference_wrapper<HEJ::RNG> ran_;
};
}
diff --git a/FixedOrderGen/include/JetParameters.hh b/FixedOrderGen/include/JetParameters.hh
index 7482302..5c60927 100644
--- a/FixedOrderGen/include/JetParameters.hh
+++ b/FixedOrderGen/include/JetParameters.hh
@@ -1,14 +1,14 @@
#pragma once
#include "fastjet/JetDefinition.hh"
#include "RHEJ/optional.hh"
namespace HEJFOG{
struct JetParameters{
fastjet::JetDefinition def;
double min_pt;
double max_y;
- RHEJ::optional<double> peak_pt;
+ HEJ::optional<double> peak_pt;
};
}
diff --git a/FixedOrderGen/include/PhaseSpacePoint.hh b/FixedOrderGen/include/PhaseSpacePoint.hh
index 1b2d2bc..aaa737a 100644
--- a/FixedOrderGen/include/PhaseSpacePoint.hh
+++ b/FixedOrderGen/include/PhaseSpacePoint.hh
@@ -1,164 +1,164 @@
/** \file PhaseSpacePoint.hh
* \brief Contains the PhaseSpacePoint Class
*/
#pragma once
#include <vector>
#include "RHEJ/utility.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/PDG_codes.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/RNG.hh"
#include "Status.hh"
#include "JetParameters.hh"
#include "HiggsProperties.hh"
namespace HEJFOG{
class Process;
- using RHEJ::Particle;
+ using HEJ::Particle;
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param proc The process to generate
* @param jet_def The Jet Definition Used
* @param jetptmin Minimum Jet Transverse Momentum
* @param rapmax Maximum parton rapidity
* @param pdf The pdf set (used for sampling)
* @param uno_chance Chance to turn a potentially unordered
* emission into an actual one
*
* Initially, only FKL phase space points are generated. If the most
* extremal emission in any direction is a quark or anti-quark and the
* next emission is a gluon, uno_chance is the chance to turn this into
* an unordered emission event by swapping the two flavours. At most one
* unordered emission will be generated in this way.
*/
PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_properties,
- RHEJ::PDF & pdf, double E_beam,
+ HEJ::PDF & pdf, double E_beam,
double uno_chance,
HiggsProperties const & higgs_properties,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
//! Get Weight Function
/**
* @returns Weight of Event
*/
double weight() const{
return weight_;
}
Status status() const{
return status_;
}
//! Get Incoming Function
/**
* @returns Incoming Particles
*/
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Get Outgoing Function
/**
* @returns Outgoing Particles
*/
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
std::unordered_map<int, std::vector<Particle>> const & decays() const{
return decays_;
}
private:
std::vector<fastjet::PseudoJet> gen_LO_partons(
int count, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
Particle gen_boson(
- RHEJ::ParticleID bosonid, double mass, double width,
- RHEJ::RNG & ran
+ HEJ::ParticleID bosonid, double mass, double width,
+ HEJ::RNG & ran
);
template<class ParticleMomenta>
fastjet::PseudoJet gen_last_momentum(
ParticleMomenta const & other_momenta,
double mass_square, double y
) const;
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
void reconstruct_incoming(
- std::array<RHEJ::ParticleID, 2> const & ids,
- RHEJ::PDF & pdf, double E_beam,
+ std::array<HEJ::ParticleID, 2> const & ids,
+ HEJ::PDF & pdf, double E_beam,
double uf,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
- RHEJ::ParticleID generate_incoming_id(
- size_t beam_idx, double x, double uf, RHEJ::PDF & pdf,
- RHEJ::RNG & ran
+ HEJ::ParticleID generate_incoming_id(
+ size_t beam_idx, double x, double uf, HEJ::PDF & pdf,
+ HEJ::RNG & ran
);
bool momentum_conserved(double ep) const;
- RHEJ::Particle const & most_backward_FKL(
- std::vector<RHEJ::Particle> const & partons
+ HEJ::Particle const & most_backward_FKL(
+ std::vector<HEJ::Particle> const & partons
) const;
- RHEJ::Particle const & most_forward_FKL(
- std::vector<RHEJ::Particle> const & partons
+ HEJ::Particle const & most_forward_FKL(
+ std::vector<HEJ::Particle> const & partons
) const;
- RHEJ::Particle & most_backward_FKL(std::vector<RHEJ::Particle> & partons) const;
- RHEJ::Particle & most_forward_FKL(std::vector<RHEJ::Particle> & partons) const;
+ HEJ::Particle & most_backward_FKL(std::vector<HEJ::Particle> & partons) const;
+ HEJ::Particle & most_forward_FKL(std::vector<HEJ::Particle> & partons) const;
bool extremal_FKL_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
- double random_normal(double stddev, RHEJ::RNG & ran);
- void maybe_turn_to_uno(double chance, RHEJ::RNG & ran);
+ double random_normal(double stddev, HEJ::RNG & ran);
+ void maybe_turn_to_uno(double chance, HEJ::RNG & ran);
std::vector<Particle> decay_boson(
- RHEJ::Particle const & parent,
+ HEJ::Particle const & parent,
std::vector<Decay> const & decays,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
Decay select_decay_channel(
std::vector<Decay> const & decays,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
double gen_hard_pt(
int np, double ptmin, double ptmax, double y,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
- double gen_soft_pt(int np, double ptmax, RHEJ::RNG & ran);
+ double gen_soft_pt(int np, double ptmax, HEJ::RNG & ran);
double gen_parton_pt(
int count, JetParameters const & jet_param, double ptmax, double y,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
double weight_;
Status status_;
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<int, std::vector<Particle>> decays_;
};
- RHEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp);
+ HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp);
}
diff --git a/FixedOrderGen/include/Process.hh b/FixedOrderGen/include/Process.hh
index 29096e8..780dbaa 100644
--- a/FixedOrderGen/include/Process.hh
+++ b/FixedOrderGen/include/Process.hh
@@ -1,15 +1,15 @@
#pragma once
#include <array>
#include "RHEJ/PDG_codes.hh"
#include "RHEJ/optional.hh"
namespace HEJFOG{
struct Process{
- std::array<RHEJ::ParticleID, 2> incoming;
+ std::array<HEJ::ParticleID, 2> incoming;
int njets;
- RHEJ::optional<RHEJ::ParticleID> boson;
+ HEJ::optional<HEJ::ParticleID> boson;
};
}
diff --git a/FixedOrderGen/include/Unweighter.hh b/FixedOrderGen/include/Unweighter.hh
index c392a8c..21d859d 100644
--- a/FixedOrderGen/include/Unweighter.hh
+++ b/FixedOrderGen/include/Unweighter.hh
@@ -1,72 +1,72 @@
#pragma once
#include <limits>
#include <cmath>
#include "RHEJ/optional.hh"
#include "RHEJ/RNG.hh"
-namespace RHEJ {
+namespace HEJ {
class Event;
}
namespace HEJFOG {
namespace detail {
- bool has_jet_softer_than(RHEJ::Event const & ev, double pt);
+ bool has_jet_softer_than(HEJ::Event const & ev, double pt);
template<typename Iterator>
double calc_cut(
Iterator begin, Iterator end, double max_dev,
double min_pt
) {
double mean = 0.;
double err = 0.;
double awt_sum = 0.;
for(; begin != end; ++begin){
if(has_jet_softer_than(*begin, min_pt)) continue;
const double awt = std::abs(begin->central().weight);
const double tmp = awt*std::log(awt);
mean += tmp;
err += tmp*tmp;
awt_sum += awt;
}
mean /= awt_sum;
err = std::sqrt(err)/awt_sum;
return std::exp(mean + max_dev*err);
}
}
class Unweighter {
public:
template<typename Iterator>
Unweighter(
Iterator begin, Iterator end, double max_dev,
- RHEJ::RNG & ran,
+ HEJ::RNG & ran,
/* minimum pt of jets for an event to be considered for unweighting
*
* If the 'jets: peak pt' option is set to the *resummation* jet
* threshold, events with softer jets will have a spurious
* large weight, although they hardly contribute after resummation.
* This destroys the unweighting efficiency.
* By setting min_unweight_pt to the same threshold, we can exclude
* these events from unweighting.
*/
double min_unweight_pt = 0.
):
cut_{detail::calc_cut(begin, end, max_dev, min_unweight_pt)},
min_unweight_pt_{min_unweight_pt},
ran_{ran}
{}
- RHEJ::optional<RHEJ::Event> unweight(RHEJ::Event ev) const;
+ HEJ::optional<HEJ::Event> unweight(HEJ::Event ev) const;
private:
double cut_;
double min_unweight_pt_;
- std::reference_wrapper<RHEJ::RNG> ran_;
- std::function<bool(RHEJ::Event const &)> unweight_ok_;
+ std::reference_wrapper<HEJ::RNG> ran_;
+ std::function<bool(HEJ::Event const &)> unweight_ok_;
};
}
diff --git a/FixedOrderGen/include/config.hh b/FixedOrderGen/include/config.hh
index eb5a881..1da5de1 100644
--- a/FixedOrderGen/include/config.hh
+++ b/FixedOrderGen/include/config.hh
@@ -1,37 +1,37 @@
#pragma once
#include "yaml-cpp/yaml.h"
#include "RHEJ/HiggsCouplingSettings.hh"
#include "RHEJ/optional.hh"
#include "RHEJ/config.hh"
#include "RHEJ/output_formats.hh"
#include "RHEJ/exceptions.hh"
#include "Process.hh"
#include "JetParameters.hh"
#include "Beam.hh"
#include "HiggsProperties.hh"
#include "UnweightSettings.hh"
namespace HEJFOG{
struct Config{
Process process;
int events;
JetParameters jets;
Beam beam;
int pdf_id;
double unordered_fraction;
HiggsProperties Higgs_properties;
YAML::Node analysis_parameters;
- RHEJ::ScaleConfig scales;
- std::vector<RHEJ::OutputFile> output;
- RHEJ::RNGConfig rng;
- RHEJ::HiggsCouplingSettings Higgs_coupling;
- RHEJ::optional<UnweightSettings> unweight;
+ HEJ::ScaleConfig scales;
+ std::vector<HEJ::OutputFile> output;
+ HEJ::RNGConfig rng;
+ HEJ::HiggsCouplingSettings Higgs_coupling;
+ HEJ::optional<UnweightSettings> unweight;
};
Config load_config(std::string const & config_file);
}
diff --git a/FixedOrderGen/src/EventGenerator.cc b/FixedOrderGen/src/EventGenerator.cc
index e10dee6..7159bb6 100644
--- a/FixedOrderGen/src/EventGenerator.cc
+++ b/FixedOrderGen/src/EventGenerator.cc
@@ -1,81 +1,81 @@
#include "EventGenerator.hh"
#include "Process.hh"
#include "Beam.hh"
#include "JetParameters.hh"
#include "PhaseSpacePoint.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/config.hh"
namespace HEJFOG{
EventGenerator::EventGenerator(
Process process,
Beam beam,
- RHEJ::ScaleGenerator scale_gen,
+ HEJ::ScaleGenerator scale_gen,
JetParameters jets,
int pdf_id,
double uno_chance,
HiggsProperties higgs_properties,
- RHEJ::HiggsCouplingSettings Higgs_coupling,
- RHEJ::RNG & ran
+ HEJ::HiggsCouplingSettings Higgs_coupling,
+ HEJ::RNG & ran
):
pdf_{pdf_id, beam.particles[0], beam.particles[1]},
ME_{
[this](double mu){ return pdf_.Halphas(mu); },
- RHEJ::MatrixElementConfig{
- RHEJ::JetParameters{jets.def, jets.min_pt},
+ HEJ::MatrixElementConfig{
+ HEJ::JetParameters{jets.def, jets.min_pt},
false,
std::move(Higgs_coupling)
}
},
scale_gen_{std::move(scale_gen)},
process_{std::move(process)},
jets_{std::move(jets)},
beam_{std::move(beam)},
uno_chance_{uno_chance},
higgs_properties_{std::move(higgs_properties)},
ran_{ran}
{
}
- RHEJ::Event EventGenerator::gen_event(){
+ HEJ::Event EventGenerator::gen_event(){
HEJFOG::PhaseSpacePoint psp{
process_,
jets_,
pdf_, beam_.energy,
uno_chance_,
higgs_properties_,
ran_
};
status_ = psp.status();
if(status_ != good) return {};
- RHEJ::Event ev = scale_gen_(
- RHEJ::Event{
+ HEJ::Event ev = scale_gen_(
+ HEJ::Event{
to_UnclusteredEvent(std::move(psp)),
jets_.def, jets_.min_pt
}
);
- const double shat = RHEJ::shat(ev);
+ const double shat = HEJ::shat(ev);
const double xa = (ev.incoming()[0].E()-ev.incoming()[0].pz())/(2.*beam_.energy);
const double xb = (ev.incoming()[1].E()+ev.incoming()[1].pz())/(2.*beam_.energy);
// evaluate matrix element on this point
ev.central().weight *= ME_.tree(
ev.central().mur, ev.incoming(), ev.outgoing(), false
)/(shat*shat);
ev.central().weight *= pdf_.pdfpt(0,xa,ev.central().muf, ev.incoming()[0].type);
ev.central().weight *= pdf_.pdfpt(0,xb,ev.central().muf, ev.incoming()[1].type);
for(auto & var: ev.variations()){
var.weight *= ME_.tree(
var.mur, ev.incoming(), ev.outgoing(), false
)/(shat*shat);
var.weight *= pdf_.pdfpt(0,xa,var.muf, ev.incoming()[0].type);
var.weight *= pdf_.pdfpt(0,xb,var.muf, ev.incoming()[1].type);
}
return ev;
}
}
diff --git a/FixedOrderGen/src/PhaseSpacePoint.cc b/FixedOrderGen/src/PhaseSpacePoint.cc
index e018057..4baaafd 100644
--- a/FixedOrderGen/src/PhaseSpacePoint.cc
+++ b/FixedOrderGen/src/PhaseSpacePoint.cc
@@ -1,448 +1,448 @@
#include "PhaseSpacePoint.hh"
#include <random>
#include "RHEJ/kinematics.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/exceptions.hh"
#include "Process.hh"
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
-using namespace RHEJ;
+using namespace HEJ;
namespace HEJFOG{
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
- RHEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){
- RHEJ::UnclusteredEvent result;
+ HEJ::UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){
+ HEJ::UnclusteredEvent result;
result.incoming = psp.incoming();
std::sort(
begin(result.incoming), end(result.incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
assert(result.incoming.size() == 2);
result.outgoing = psp.outgoing();
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
- RHEJ::rapidity_less{}
+ HEJ::rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.decays = psp.decays();
result.central.mur = NaN;
result.central.muf = NaN;
result.central.weight = psp.weight();
return result;
}
namespace{
bool can_swap_to_uno(
- RHEJ::Particle const & p1, RHEJ::Particle const & p2
+ HEJ::Particle const & p1, HEJ::Particle const & p2
){
return is_parton(p1)
- && p1.type != RHEJ::pid::gluon
- && p2.type == RHEJ::pid::gluon;
+ && p1.type != HEJ::pid::gluon
+ && p2.type == HEJ::pid::gluon;
}
}
void PhaseSpacePoint::maybe_turn_to_uno(
double chance,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
){
assert(outgoing_.size() >= 2);
const size_t nout = outgoing_.size();
const bool can_be_uno_backward = can_swap_to_uno(
outgoing_[0], outgoing_[1]
);
const bool can_be_uno_forward = can_swap_to_uno(
outgoing_[nout-1], outgoing_[nout-2]
);
if(!can_be_uno_backward && !can_be_uno_forward) return;
if(ran.flat() < chance){
weight_ /= chance;
if(can_be_uno_backward && can_be_uno_forward){
if(ran.flat() < 0.5){
std::swap(outgoing_[0].type, outgoing_[1].type);
}
else{
std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type);
}
weight_ *= 2.;
}
else if(can_be_uno_backward){
std::swap(outgoing_[0].type, outgoing_[1].type);
}
else{
assert(can_be_uno_forward);
std::swap(outgoing_[nout-1].type, outgoing_[nout-2].type);
}
}
else weight_ /= 1 - chance;
}
template<class ParticleMomenta>
fastjet::PseudoJet PhaseSpacePoint::gen_last_momentum(
ParticleMomenta const & other_momenta,
const double mass_square, const double y
) const {
std::array<double,2> pt{0.,0.};
for (auto const & p: other_momenta) {
pt[0]-= p.px();
pt[1]-= p.py();
}
const double mperp = sqrt(pt[0]*pt[0]+pt[1]*pt[1]+mass_square);
const double pz=mperp*sinh(y);
const double E=mperp*cosh(y);
return {pt[0], pt[1], pz, E};
}
PhaseSpacePoint::PhaseSpacePoint(
Process const & proc,
JetParameters const & jet_param,
- RHEJ::PDF & pdf, double E_beam,
+ HEJ::PDF & pdf, double E_beam,
double uno_chance,
HiggsProperties const & h,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
)
{
assert(proc.njets >= 2);
status_ = good;
weight_ = 1;
const int nout = proc.njets + (proc.boson?1:0);
outgoing_.reserve(nout);
const bool is_pure_jets = !proc.boson;
auto partons = gen_LO_partons(
proc.njets, is_pure_jets, jet_param, E_beam, ran
);
for(auto&& p_out: partons) {
outgoing_.emplace_back(Particle{pid::gluon, std::move(p_out)});
}
if(status_ != good) return;
if(proc.boson && *proc.boson == pid::Higgs){
// The Higgs
auto Hparticle=gen_boson(pid::higgs, h.mass, h.width, ran);
auto pos=std::upper_bound(
begin(outgoing_),end(outgoing_),Hparticle,rapidity_less{}
);
outgoing_.insert(pos, Hparticle);
if(! h.decays.empty()){
const int boson_idx = std::distance(begin(outgoing_), pos);
decays_.emplace(
boson_idx,
decay_boson(outgoing_[boson_idx], h.decays, ran)
);
}
}
// normalisation of momentum-conserving delta function
weight_ *= pow(2*M_PI, 4);
reconstruct_incoming(proc.incoming, pdf, E_beam, jet_param.min_pt, ran);
if(status_ != good) return;
// set outgoing states
most_backward_FKL(outgoing_).type = incoming_[0].type;
most_forward_FKL(outgoing_).type = incoming_[1].type;
if(proc.njets > 2) maybe_turn_to_uno(uno_chance, ran);
}
double PhaseSpacePoint::gen_hard_pt(
int np , double ptmin, double ptmax, double y,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
) {
// heuristic parameters for pt sampling
const double ptpar = ptmin + np/5.;
const double arg_small_y = atan((ptmax - ptmin)/ptpar);
const double y_cut = 3.;
const double r1 = ran.flat();
if(y < y_cut){
const double pt = ptmin + ptpar*tan(r1*arg_small_y);
const double temp = cos(r1*arg_small_y);
weight_ *= pt*ptpar*arg_small_y/(temp*temp);
return pt;
}
const double ptpar2 = ptpar/(1 + 5*(y-y_cut));
const double temp = 1. - std::exp((ptmin-ptmax)/ptpar2);
const double pt = ptmin - ptpar2*std::log(1-r1*temp);
weight_ *= pt*ptpar2*temp/(1-r1*temp);
return pt;
}
- double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, RHEJ::RNG & ran) {
+ double PhaseSpacePoint::gen_soft_pt(int np, double max_pt, HEJ::RNG & ran) {
constexpr double ptpar = 4.;
const double r = ran.flat();
const double pt = max_pt + ptpar/np*std::log(r);
weight_ *= pt*ptpar/(np*r);
return pt;
}
double PhaseSpacePoint::gen_parton_pt(
int count, JetParameters const & jet_param, double max_pt, double y,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
) {
constexpr double p_small_pt = 0.02;
if(! jet_param.peak_pt) {
return gen_hard_pt(count, jet_param.min_pt, max_pt, y, ran);
}
const double r = ran.flat();
if(r > p_small_pt) {
weight_ /= 1. - p_small_pt;
return gen_hard_pt(count, *jet_param.peak_pt, max_pt, y, ran);
}
weight_ /= p_small_pt;
const double pt = gen_soft_pt(count, *jet_param.peak_pt, ran);
if(pt < jet_param.min_pt) {
weight_=0.0;
status_ = not_enough_jets;
return jet_param.min_pt;
}
return pt;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_LO_partons(
int np, bool is_pure_jets,
JetParameters const & jet_param,
double max_pt,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
){
if (np<2) throw std::invalid_argument{"Not enough partons in gen_LO_partons"};
weight_ /= pow(16.*pow(M_PI,3),np);
weight_ /= std::tgamma(np+1); //remove rapidity ordering
std::vector<fastjet::PseudoJet> partons;
partons.reserve(np);
for(int i = 0; i < np; ++i){
const double y = -jet_param.max_y + 2*jet_param.max_y*ran.flat();
weight_ *= 2*jet_param.max_y;
const bool is_last_parton = i+1 == np;
if(is_pure_jets && is_last_parton) {
constexpr double parton_mass_sq = 0.;
partons.emplace_back(gen_last_momentum(partons, parton_mass_sq, y));
break;
}
const double phi = 2*M_PI*ran.flat();
weight_ *= 2.0*M_PI;
const double pt = gen_parton_pt(np, jet_param, max_pt, y, ran);
if(weight_ == 0.0) return {};
partons.emplace_back(fastjet::PtYPhiM(pt, y, phi));
assert(jet_param.min_pt <= partons[i].pt());
assert(partons[i].pt() <= max_pt+1e-5);
}
// Need to check that at LO, the number of jets = number of partons;
fastjet::ClusterSequence cs(partons, jet_param.def);
auto cluster_jets=cs.inclusive_jets(jet_param.min_pt);
if (cluster_jets.size()!=unsigned(np)){
weight_=0.0;
status_ = not_enough_jets;
return {};
}
std::sort(begin(partons), end(partons), rapidity_less{});
return partons;
}
Particle PhaseSpacePoint::gen_boson(
- RHEJ::ParticleID bosonid, double mass, double width,
- RHEJ::RNG & ran
+ HEJ::ParticleID bosonid, double mass, double width,
+ HEJ::RNG & ran
){
// Usual phase space measure
weight_ /= 16.*pow(M_PI, 3);
// Generate a y Gaussian distributed around 0
// TODO: magic number only for Higgs
const double y = random_normal(1.6, ran);
const double r1 = ran.flat();
const double sH = mass*(
mass + width*tan(M_PI/2.*r1 + (r1-1.)*atan(mass/width))
);
auto p = gen_last_momentum(outgoing_, sH, y);
return Particle{bosonid, std::move(p)};
}
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
- if(!RHEJ::is_parton(partons[0])) return partons[1];
+ if(!HEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t last_idx = partons.size() - 1;
- if(!RHEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
+ if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
- if(!RHEJ::is_parton(partons[0])) return partons[1];
+ if(!HEJ::is_parton(partons[0])) return partons[1];
return partons[0];
}
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t last_idx = partons.size() - 1;
- if(!RHEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
+ if(!HEJ::is_parton(partons[last_idx])) return partons[last_idx-1];
return partons[last_idx];
}
void PhaseSpacePoint::reconstruct_incoming(
- std::array<RHEJ::ParticleID, 2> const & ids,
- RHEJ::PDF & pdf, double E_beam,
+ std::array<HEJ::ParticleID, 2> const & ids,
+ HEJ::PDF & pdf, double E_beam,
double uf,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
// calculate xa, xb
const double sqrts=2*E_beam;
const double xa=(incoming_[0].p.e()-incoming_[0].p.pz())/sqrts;
const double xb=(incoming_[1].p.e()+incoming_[1].p.pz())/sqrts;
// abort if phase space point is outside of collider energy reach
if (xa>1. || xb>1.){
weight_=0;
status_ = too_much_energy;
return;
}
// pick pdfs
/** TODO:
* ufa, ufb don't correspond to our final scale choice.
* The HEJ scale generators currently expect a full event as input,
* so fixing this is not completely trivial
*/
for(size_t i = 0; i < 2; ++i){
if(ids[i] == pid::proton || ids[i] == pid::p_bar){
incoming_[i].type = generate_incoming_id(i, i?xb:xa, uf, pdf, ran);
}
else {
incoming_[i].type = ids[i];
}
}
assert(momentum_conserved(1e-7));
}
namespace {
/// particles are ordered, odd = anti
ParticleID index_to_pid(size_t i){
if(!i) return pid::gluon;
return static_cast<ParticleID>(i%2?(i+1)/2:-i/2);
}
}
- RHEJ::ParticleID PhaseSpacePoint::generate_incoming_id(
+ HEJ::ParticleID PhaseSpacePoint::generate_incoming_id(
size_t const beam_idx, double const x, double const uf,
- RHEJ::PDF & pdf, RHEJ::RNG & ran
+ HEJ::PDF & pdf, HEJ::RNG & ran
){
std::array<double,11> pdf_wt;
pdf_wt[0] = fabs(pdf.pdfpt(beam_idx,x,uf,pid::gluon));
double pdftot = pdf_wt[0];
for(size_t i = 1; i < pdf_wt.size(); ++i){
pdf_wt[i] = 4./9.*fabs(pdf.pdfpt(beam_idx,x,uf,index_to_pid(i)));
pdftot += pdf_wt[i];
}
const double r1 = pdftot * ran.flat();
double sum = 0;
for(size_t i=0; i < pdf_wt.size(); ++i){
if (r1 < (sum+=pdf_wt[i])){
weight_*= pdftot/pdf_wt[i];
return index_to_pid(i);
}
}
std::cerr << "Error in choosing incoming parton: "<<x<<" "<<uf<<" "
<<sum<<" "<<pdftot<<" "<<r1<<std::endl;
throw std::logic_error{"Failed to choose parton flavour"};
}
double PhaseSpacePoint::random_normal(
double stddev,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
){
const double r1 = ran.flat();
const double r2 = ran.flat();
const double lninvr1 = -log(r1);
const double result = stddev*sqrt(2.*lninvr1)*cos(2.*M_PI*r2);
weight_ *= exp(result*result/(2*stddev*stddev))*sqrt(2.*M_PI)*stddev;
return result;
}
bool PhaseSpacePoint::momentum_conserved(double ep) const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
for(auto const & out: outgoing()) diff -= out.p;
return nearby_ep(diff, fastjet::PseudoJet{}, ep);
}
Decay PhaseSpacePoint::select_decay_channel(
std::vector<Decay> const & decays,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
){
double br_total = 0.;
for(auto const & decay: decays) br_total += decay.branching_ratio;
// adjust weight
// this is given by (channel branching ratio)/(chance to pick channel)
// where (chance to pick channel) =
// (channel branching ratio)/(total branching ratio)
weight_ *= br_total;
const double r1 = br_total*ran.flat();
double br_sum = 0.;
for(auto const & decay: decays){
br_sum += decay.branching_ratio;
if(r1 < br_sum) return decay;
}
throw std::logic_error{"unreachable"};
}
std::vector<Particle> PhaseSpacePoint::decay_boson(
- RHEJ::Particle const & parent,
+ HEJ::Particle const & parent,
std::vector<Decay> const & decays,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
){
const auto channel = select_decay_channel(decays, ran);
if(channel.products.size() != 2){
- throw RHEJ::not_implemented{
+ throw HEJ::not_implemented{
"only decays into two particles are implemented"
};
}
std::vector<Particle> decay_products(channel.products.size());
for(size_t i = 0; i < channel.products.size(); ++i){
decay_products[i].type = channel.products[i];
}
// choose polar and azimuth angle in parent rest frame
const double E = parent.m()/2;
const double theta = 2.*M_PI*ran.flat();
const double cos_phi = 2.*ran.flat()-1.;
const double sin_phi = sqrt(1. - cos_phi*cos_phi); // Know 0 < phi < pi
const double px = E*cos(theta)*sin_phi;
const double py = E*sin(theta)*sin_phi;
const double pz = E*cos_phi;
decay_products[0].p.reset(px, py, pz, E);
decay_products[1].p.reset(-px, -py, -pz, E);
for(auto & particle: decay_products) particle.p.boost(parent.p);
return decay_products;
}
}
diff --git a/FixedOrderGen/src/Unweighter.cc b/FixedOrderGen/src/Unweighter.cc
index c0791e1..52951dc 100644
--- a/FixedOrderGen/src/Unweighter.cc
+++ b/FixedOrderGen/src/Unweighter.cc
@@ -1,34 +1,34 @@
#include "Unweighter.hh"
#include <cassert>
#include "RHEJ/Event.hh"
namespace HEJFOG {
namespace detail {
- bool has_jet_softer_than(RHEJ::Event const & ev, double pt) {
+ bool has_jet_softer_than(HEJ::Event const & ev, double pt) {
assert(! ev.jets().empty());
const auto softest_jet = fastjet::sorted_by_pt(ev.jets()).back();
return softest_jet.pt() < pt;
}
}
namespace {
- void normalise_weights(RHEJ::Event & ev, double target) {
+ void normalise_weights(HEJ::Event & ev, double target) {
const double awt = std::abs(ev.central().weight);
ev.central().weight *= target/awt;
for(auto & var: ev.variations()) var.weight *= target/awt;
}
}
- RHEJ::optional<RHEJ::Event> Unweighter::unweight(RHEJ::Event ev) const {
+ HEJ::optional<HEJ::Event> Unweighter::unweight(HEJ::Event ev) const {
if(detail::has_jet_softer_than(ev, min_unweight_pt_)) return ev;
const double awt = std::abs(ev.central().weight);
if(ran_.get().flat() < awt/cut_) {
if(awt < cut_) normalise_weights(ev, cut_);
return ev;
}
return {};
}
}
diff --git a/FixedOrderGen/src/config.cc b/FixedOrderGen/src/config.cc
index 277a8ee..73dcf5f 100644
--- a/FixedOrderGen/src/config.cc
+++ b/FixedOrderGen/src/config.cc
@@ -1,287 +1,287 @@
#include "config.hh"
#include <cctype>
#include "RHEJ/config.hh"
#include "RHEJ/YAMLreader.hh"
namespace HEJFOG{
- using RHEJ::set_from_yaml;
- using RHEJ::set_from_yaml_if_defined;
+ using HEJ::set_from_yaml;
+ using HEJ::set_from_yaml_if_defined;
namespace{
//! Get YAML tree of supported options
/**
* The configuration file is checked against this tree of options
* in assert_all_options_known.
*/
YAML::Node const & get_supported_options(){
const static YAML::Node supported = [](){
YAML::Node supported;
static const auto opts = {
"process", "events", "unordered fraction", "scales", "scale factors",
"max scale ratio", "pdf", "event output", "analysis", "import scales"
};
// add subnodes to "supported" - the assigned value is irrelevant
for(auto && opt: opts) supported[opt] = "";
for(auto && jet_opt: {"min pt", "peak pt", "algorithm", "R", "max rapidity"}){
supported["jets"][jet_opt] = "";
}
for(auto && Higgs_opt: {"mass", "width"}){
supported["Higgs properties"][Higgs_opt] = "";
}
supported["Higgs properties"]["decays"]["into"] = "";
supported["Higgs properties"]["decays"]["branching ratio"] = "";
for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
supported["Higgs coupling"][opt] = "";
}
for(auto && beam_opt: {"energy", "particles"}){
supported["beam"][beam_opt] = "";
}
for(auto && unweight_opt: {"sample size", "max deviation"}){
supported["unweight"][unweight_opt] = "";
}
for(auto && opt: {"name", "seed"}){
supported["random generator"][opt] = "";
}
return supported;
}();
return supported;
}
JetParameters get_jet_parameters(
YAML::Node const & node, std::string const & entry
){
- const auto p = RHEJ::get_jet_parameters(node, entry);
+ const auto p = HEJ::get_jet_parameters(node, entry);
JetParameters result;
result.def = p.def;
result.min_pt = p.min_pt;
set_from_yaml(result.max_y, node, entry, "max rapidity");
set_from_yaml_if_defined(result.peak_pt, node, entry, "peak pt");
return result;
}
Beam get_Beam(
YAML::Node const & node, std::string const & entry
){
Beam beam;
- std::vector<RHEJ::ParticleID> particles;
+ std::vector<HEJ::ParticleID> particles;
set_from_yaml(beam.energy, node, entry, "energy");
set_from_yaml_if_defined(particles, node, entry, "particles");
if(! particles.empty()){
- for(RHEJ::ParticleID particle: particles){
- if(particle != RHEJ::pid::p && particle != RHEJ::pid::p_bar){
+ for(HEJ::ParticleID particle: particles){
+ if(particle != HEJ::pid::p && particle != HEJ::pid::p_bar){
throw std::invalid_argument{
"Unsupported value in option " + entry + ": particles:"
" only proton ('p') and antiproton ('p_bar') beams are supported"
};
}
}
if(particles.size() != 2){
throw std::invalid_argument{"Not exactly two beam particles"};
}
beam.particles.front() = particles.front();
beam.particles.back() = particles.back();
}
return beam;
}
std::vector<std::string> split(
std::string const & str, std::string const & delims
){
std::vector<std::string> result;
for(size_t begin, end = 0; end != str.npos;){
begin = str.find_first_not_of(delims, end);
if(begin == str.npos) break;
end = str.find_first_of(delims, begin + 1);
result.emplace_back(str.substr(begin, end - begin));
}
return result;
}
std::invalid_argument invalid_incoming(std::string const & what){
return std::invalid_argument{
"Incoming particle type " + what + " not supported,"
" incoming particles have to be 'p', 'p_bar' or partons"
};
}
std::invalid_argument invalid_outgoing(std::string const & what){
return std::invalid_argument{
"Outgoing particle type " + what + " not supported,"
" outgoing particles have to be 'j', 'photon', 'W+', 'W-', 'Z', 'H'"
};
}
Process get_process(
YAML::Node const & node, std::string const & entry
){
Process result;
std::string process_string;
set_from_yaml(process_string, node, entry);
assert(! process_string.empty());
const auto particles = split(process_string, " \n\t\v=>");
if(particles.size() < 3){
throw std::invalid_argument{
"Bad format in option process: '" + process_string
+ "', expected format is 'in1 in2 => out1 ...'"
};
}
- result.incoming.front() = RHEJ::to_ParticleID(particles[0]);
- result.incoming.back() = RHEJ::to_ParticleID(particles[1]);
+ result.incoming.front() = HEJ::to_ParticleID(particles[0]);
+ result.incoming.back() = HEJ::to_ParticleID(particles[1]);
for(size_t i = 0; i < result.incoming.size(); ++i){
- const RHEJ::ParticleID in = result.incoming[i];
+ const HEJ::ParticleID in = result.incoming[i];
if(
- in != RHEJ::pid::proton && in != RHEJ::pid::p_bar
- && !RHEJ::is_parton(in)
+ in != HEJ::pid::proton && in != HEJ::pid::p_bar
+ && !HEJ::is_parton(in)
){
throw invalid_incoming(particles[i]);
}
}
result.njets = 0;
for(size_t i = result.incoming.size(); i < particles.size(); ++i){
assert(! particles[i].empty());
if(particles[i] == "j") ++result.njets;
else if(std::isdigit(particles[i].front())){
if(particles[i].back() != 'j'){
throw invalid_outgoing(particles[i]);
}
result.njets += std::stoi(particles[i]);
}
else{
- const auto pid = RHEJ::to_ParticleID(particles[i]);
- if(!RHEJ::is_AWZH_boson(pid)){
+ const auto pid = HEJ::to_ParticleID(particles[i]);
+ if(!HEJ::is_AWZH_boson(pid)){
throw invalid_outgoing(particles[i]);
}
if(result.boson){
throw std::invalid_argument{
"More than one outgoing boson is not supported"
};
}
result.boson = pid;
}
}
if(result.njets < 2){
throw std::invalid_argument{
"Process has to include at least two jets ('j')"
};
}
return result;
}
Decay get_decay(YAML::Node const & node){
Decay decay;
set_from_yaml(decay.products, node, "into");
set_from_yaml(decay.branching_ratio, node, "branching ratio");
return decay;
}
std::vector<Decay> get_decays(YAML::Node const & node){
using YAML::NodeType;
if(!node) return {};
switch(node.Type()){
case NodeType::Null:
case NodeType::Undefined:
return {};
case NodeType::Scalar:
- throw RHEJ::invalid_type{"value is not a list of decays"};
+ throw HEJ::invalid_type{"value is not a list of decays"};
case NodeType::Map:
return {get_decay(node)};
case NodeType::Sequence:
std::vector<Decay> result;
for(auto && decay_str: node){
result.emplace_back();
set_from_yaml(result.back().products, decay_str, "into");
set_from_yaml(result.back().branching_ratio, decay_str, "branching ratio");
}
return result;
}
throw std::logic_error{"unreachable"};
}
HiggsProperties get_higgs_properties(
YAML::Node const & node, std::string const & entry
){
HiggsProperties result;
set_from_yaml(result.mass, node, entry, "mass");
set_from_yaml(result.width, node, entry, "width");
try{
result.decays = get_decays(node[entry]["decays"]);
}
- catch(RHEJ::missing_option const & ex){
- throw RHEJ::missing_option{entry + ": decays: " + ex.what()};
+ catch(HEJ::missing_option const & ex){
+ throw HEJ::missing_option{entry + ": decays: " + ex.what()};
}
- catch(RHEJ::invalid_type const & ex){
- throw RHEJ::invalid_type{entry + ": decays: " + ex.what()};
+ catch(HEJ::invalid_type const & ex){
+ throw HEJ::invalid_type{entry + ": decays: " + ex.what()};
}
return result;
}
UnweightSettings get_unweight(
YAML::Node const & node, std::string const & entry
){
UnweightSettings result;
set_from_yaml(result.sample_size, node, entry, "sample size");
if(result.sample_size <= 0){
throw std::invalid_argument{
"negative sample size " + std::to_string(result.sample_size)
};
}
set_from_yaml(result.max_dev, node, entry, "max deviation");
return result;
}
Config to_Config(YAML::Node const & yaml){
try{
- RHEJ::assert_all_options_known(yaml, get_supported_options());
+ HEJ::assert_all_options_known(yaml, get_supported_options());
}
- catch(RHEJ::unknown_option const & ex){
- throw RHEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
+ catch(HEJ::unknown_option const & ex){
+ throw HEJ::unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
}
Config config;
config.process = get_process(yaml, "process");
set_from_yaml(config.events, yaml, "events");
config.jets = get_jet_parameters(yaml, "jets");
config.beam = get_Beam(yaml, "beam");
for(size_t i = 0; i < config.process.incoming.size(); ++i){
const auto & in = config.process.incoming[i];
- using namespace RHEJ::pid;
+ using namespace HEJ::pid;
if( (in == p || in == p_bar) && in != config.beam.particles[i]){
throw std::invalid_argument{
"Particle type of beam " + std::to_string(i+1) + " incompatible"
+ " with type of incoming particle " + std::to_string(i+1)
};
}
}
set_from_yaml(config.pdf_id, yaml, "pdf");
set_from_yaml(config.unordered_fraction, yaml, "unordered fraction");
if(config.unordered_fraction < 0 || config.unordered_fraction > 1){
throw std::invalid_argument{
"unordered fraction has to be between 0 and 1"
};
}
config.Higgs_properties = get_higgs_properties(yaml, "Higgs properties");
set_from_yaml_if_defined(config.analysis_parameters, yaml, "analysis");
- config.scales = RHEJ::to_ScaleConfig(yaml);
+ config.scales = HEJ::to_ScaleConfig(yaml);
set_from_yaml_if_defined(config.output, yaml, "event output");
- config.rng = RHEJ::to_RNGConfig(yaml, "random generator");
- config.Higgs_coupling = RHEJ::get_Higgs_coupling(yaml, "Higgs coupling");
+ config.rng = HEJ::to_RNGConfig(yaml, "random generator");
+ config.Higgs_coupling = HEJ::get_Higgs_coupling(yaml, "Higgs coupling");
if(yaml["unweight"]) config.unweight = get_unweight(yaml, "unweight");
return config;
}
}
Config load_config(std::string const & config_file){
try{
return to_Config(YAML::LoadFile(config_file));
}
catch(...){
std::cerr << "Error reading " << config_file << ":\n ";
throw;
}
}
}
diff --git a/FixedOrderGen/src/main.cc b/FixedOrderGen/src/main.cc
index e90f0e5..d9f5f8b 100644
--- a/FixedOrderGen/src/main.cc
+++ b/FixedOrderGen/src/main.cc
@@ -1,247 +1,247 @@
/**
* Name: main.cc
* Authors: Jeppe R. Andersen
*/
#include <fstream>
#include <algorithm>
#include <memory>
#include <chrono>
#include <iostream>
#include <map>
#include "yaml-cpp/yaml.h"
#include "config.hh"
#include "LHEF/LHEF.h"
#include "RHEJ/CombinedEventWriter.hh"
#include "RHEJ/get_analysis.hh"
#include "RHEJ/utility.hh"
//#include "RHEJ/EventReweighter.hh"
#include "RHEJ/stream.hh"
#include "RHEJ/LesHouchesWriter.hh"
#include "RHEJ/ProgressBar.hh"
#include "RHEJ/make_RNG.hh"
#include "EventGenerator.hh"
#include "PhaseSpacePoint.hh"
#include "Unweighter.hh"
#include "CrossSectionAccumulator.hh"
#include "Version.hh"
namespace{
constexpr auto banner =
" __ ___ __ ______ __ __ \n"
" / / / (_)___ _/ /_ / ____/___ ___ _________ ___ __ / /__ / /______ \n"
" / /_/ / / __ `/ __ \\ / __/ / __ \\/ _ \\/ ___/ __ `/ / / / __ / / _ \\/ __/ ___/ \n"
" / __ / / /_/ / / / / / /___/ / / / __/ / / /_/ / /_/ / / /_/ / __/ /_(__ ) \n"
" /_/ /_/_/\\__, /_/ /_/ /_____/_/ /_/\\___/_/ \\__, /\\__, / \\____/\\___/\\__/____/ \n"
" ____///__/ __ ____ ///__//____/ ______ __ \n"
" / ____(_) _____ ____/ / / __ \\_________/ /__ _____ / ____/__ ____ ___ _________ _/ /_____ _____\n"
" / /_ / / |/_/ _ \\/ __ / / / / / ___/ __ / _ \\/ ___/ / / __/ _ \\/ __ \\/ _ \\/ ___/ __ `/ __/ __ \\/ ___/\n"
" / __/ / /> </ __/ /_/ / / /_/ / / / /_/ / __/ / / /_/ / __/ / / / __/ / / /_/ / /_/ /_/ / / \n"
" /_/ /_/_/|_|\\___/\\__,_/ \\____/_/ \\__,_/\\___/_/ \\____/\\___/_/ /_/\\___/_/ \\__,_/\\__/\\____/_/ \n"
;
constexpr double invGeV2_to_pb = 389379292.;
constexpr long long max_warmup_events = 10000;
}
HEJFOG::Config load_config(char const * filename){
try{
return HEJFOG::load_config(filename);
}
catch(std::exception const & exc){
std::cerr << "Error: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
-std::unique_ptr<RHEJ::Analysis> get_analysis(
+std::unique_ptr<HEJ::Analysis> get_analysis(
YAML::Node const & parameters
){
try{
- return RHEJ::get_analysis(parameters);
+ return HEJ::get_analysis(parameters);
}
catch(std::exception const & exc){
std::cerr << "Failed to load analysis: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
-void rescale_weights(RHEJ::Event & ev, double factor) {
+void rescale_weights(HEJ::Event & ev, double factor) {
ev.central().weight *= factor;
for(auto & var: ev.variations()){
var.weight *= factor;
}
}
int main(int argn, char** argv) {
using namespace std::string_literals;
if (argn < 2) {
std::cerr << "\n# Usage:\n.FOgen config_file\n";
return EXIT_FAILURE;
}
std::cout << banner;
std::cout << "Version " << HEJFOG::Version::String()
<< ", revision " << HEJFOG::Version::revision() << std::endl;
fastjet::ClusterSequence::print_banner();
using clock = std::chrono::system_clock;
const auto start_time = clock::now();
// read configuration
auto config = load_config(argv[1]);
- std::unique_ptr<RHEJ::Analysis> analysis = get_analysis(
+ std::unique_ptr<HEJ::Analysis> analysis = get_analysis(
config.analysis_parameters
);
assert(analysis != nullptr);
- auto ran = RHEJ::make_RNG(config.rng.name, config.rng.seed);
+ auto ran = HEJ::make_RNG(config.rng.name, config.rng.seed);
assert(ran != nullptr);
- RHEJ::ScaleGenerator scale_gen{
+ HEJ::ScaleGenerator scale_gen{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
std::move(scale_gen),
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
*ran
};
LHEF::HEPRUP heprup;
heprup.IDBMUP=std::pair<long,long>(config.beam.particles[0], config.beam.particles[1]);
heprup.EBMUP=std::make_pair(config.beam.energy, config.beam.energy);
heprup.PDFGUP=std::make_pair(0,0);
heprup.PDFSUP=std::make_pair(config.pdf_id,config.pdf_id);
heprup.NPRUP=1;
heprup.XSECUP=std::vector<double>(1.);
heprup.XERRUP=std::vector<double>(1.);
heprup.LPRUP=std::vector<int>{1};
heprup.generators.emplace_back(LHEF::XMLTag{});
heprup.generators.back().name = HEJFOG::Version::package_name();
heprup.generators.back().version = HEJFOG::Version::String();
- RHEJ::CombinedEventWriter writer{config.output, heprup};
+ HEJ::CombinedEventWriter writer{config.output, heprup};
- RHEJ::optional<HEJFOG::Unweighter> unweighter{};
+ HEJ::optional<HEJFOG::Unweighter> unweighter{};
std::map<HEJFOG::Status, int> status_counter;
- std::vector<RHEJ::Event> events;
+ std::vector<HEJ::Event> events;
int trials = 0;
// warm-up phase to train unweighter
if(config.unweight) {
std::cout << "Calibrating unweighting ...\n";
const auto warmup_start = clock::now();
const size_t warmup_events = config.unweight->sample_size;
- RHEJ::ProgressBar<size_t> warmup_progress{std::cout, warmup_events};
+ HEJ::ProgressBar<size_t> warmup_progress{std::cout, warmup_events};
for(; events.size() < warmup_events; ++trials){
auto ev = generator.gen_event();
++status_counter[generator.status()];
if(generator.status() == HEJFOG::good && analysis->pass_cuts(ev, ev)) {
events.emplace_back(std::move(ev));
++warmup_progress;
}
}
std::cout << std::endl;
unweighter = HEJFOG::Unweighter{
begin(events), end(events), config.unweight->max_dev, *ran,
config.jets.peak_pt?(*config.jets.peak_pt):0.
};
- std::vector<RHEJ::Event> unweighted_events;
+ std::vector<HEJ::Event> unweighted_events;
for(auto && ev: events) {
auto unweighted = unweighter->unweight(std::move(ev));
if(unweighted) {
unweighted_events.emplace_back(std::move(*unweighted));
}
}
events = std::move(unweighted_events);
if(events.empty()) {
std::cerr <<
"Failed to generate events. Please increase \"unweight: sample size\""
" or reduce \"unweight: max deviation\"\n";
return EXIT_FAILURE;
}
const auto warmup_end = clock::now();
const double completion = static_cast<double>(events.size())/config.events;
const std::chrono::duration<double> remaining_time =
(warmup_end- warmup_start)*(1./completion - 1);
const auto finish = clock::to_time_t(
std::chrono::time_point_cast<std::chrono::seconds>(warmup_end + remaining_time)
);
std::cout
<< "Generated " << events.size() << "/" << config.events << " events ("
<< static_cast<int>(std::round(100*completion)) << "%)\n"
<< "Estimated remaining generation time: "
<< remaining_time.count() << " seconds ("
<< std::put_time(std::localtime(&finish), "%c") << ")\n\n";
}
- RHEJ::ProgressBar<long long> progress{std::cout, config.events};
+ HEJ::ProgressBar<long long> progress{std::cout, config.events};
progress.increment(events.size());
events.reserve(config.events);
for(; events.size() < static_cast<size_t>(config.events); ++trials){
auto ev = generator.gen_event();
++status_counter[generator.status()];
if(generator.status() == HEJFOG::good && analysis->pass_cuts(ev, ev)) {
if(unweighter) {
auto unweighted = unweighter->unweight(std::move(ev));
if(! unweighted) continue;
ev = std::move(*unweighted);
}
events.emplace_back(std::move(ev));
++progress;
}
}
std::cout << std::endl;
HEJFOG::CrossSectionAccumulator xs;
for(auto & ev: events){
rescale_weights(ev, invGeV2_to_pb/trials);
analysis->fill(ev, ev);
writer.write(ev);
xs.fill(ev);
}
analysis->finalise();
const std::chrono::duration<double> run_time = (clock::now() - start_time);
std::cout << "\nTask Runtime: " << run_time.count() << " seconds.\n\n";
std::cout.precision(10);
std::cout.setf(std::ios::fixed);
std::cout
<< " " << std::left << std::setw(20)
<< "Cross section: " << xs.total().value
<< " +- " << std::sqrt(xs.total().error) << " (pb)\n";
for(auto const & xs_type: xs) {
std::cout
<< " " << std::left << std::setw(20)
- << (RHEJ::event_type::names[xs_type.first] + ": "s)
+ << (HEJ::event_type::names[xs_type.first] + ": "s)
<< xs_type.second.value << " +- "
<< std::sqrt(xs_type.second.error) << " (pb)\n";
}
std::cout << '\n';
for(auto && entry: status_counter){
const double fraction = static_cast<double>(entry.second)/trials;
const int percent = std::round(100*fraction);
std::cout << "status "
<< std::left << std::setw(16) << (to_string(entry.first) + ":")
<< " [";
for(int i = 0; i < percent/2; ++i) std::cout << '#';
for(int i = percent/2; i < 50; ++i) std::cout << ' ';
std::cout << "] " << percent << "%\n";
}
}
diff --git a/FixedOrderGen/t/2j.cc b/FixedOrderGen/t/2j.cc
index 1e078c3..725ed9e 100644
--- a/FixedOrderGen/t/2j.cc
+++ b/FixedOrderGen/t/2j.cc
@@ -1,57 +1,57 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Mixmax.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 86.42031848*1e6; //calculated with "combined" HEJ svn r3480
auto config = load_config("config_2j.yml");
- RHEJ::Mixmax ran{};
+ HEJ::Mixmax ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.01*xs);
}
diff --git a/FixedOrderGen/t/4j.cc b/FixedOrderGen/t/4j.cc
index 5ff903c..fb23753 100644
--- a/FixedOrderGen/t/4j.cc
+++ b/FixedOrderGen/t/4j.cc
@@ -1,58 +1,58 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Mixmax.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 0.81063619*1e6; //calculated with "combined" HEJ svn r3480
auto config = load_config("config_2j.yml");
config.process.njets = 4;
- RHEJ::Mixmax ran{};
+ HEJ::Mixmax ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.03*xs);
}
diff --git a/FixedOrderGen/t/h_2j.cc b/FixedOrderGen/t/h_2j.cc
index d2fc7f4..9d61b6e 100644
--- a/FixedOrderGen/t/h_2j.cc
+++ b/FixedOrderGen/t/h_2j.cc
@@ -1,65 +1,65 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 2.04928; // +- 0.00377252
//calculated with rHEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
auto config = load_config("config_h_2j.yml");
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
const auto the_Higgs = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
- [](RHEJ::Particle const & p){ return p.type == RHEJ::ParticleID::h; }
+ [](HEJ::Particle const & p){ return p.type == HEJ::ParticleID::h; }
);
assert(the_Higgs != end(ev.outgoing()));
if(std::abs(the_Higgs->rapidity()) > 5.) continue;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.01*xs);
}
diff --git a/FixedOrderGen/t/h_2j_decay.cc b/FixedOrderGen/t/h_2j_decay.cc
index 28af1ac..443489d 100644
--- a/FixedOrderGen/t/h_2j_decay.cc
+++ b/FixedOrderGen/t/h_2j_decay.cc
@@ -1,83 +1,83 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
#include "RHEJ/utility.hh"
using namespace HEJFOG;
bool pass_dR_cut(
std::vector<fastjet::PseudoJet> const & jets,
- std::vector<RHEJ::Particle> const & photons
+ std::vector<HEJ::Particle> const & photons
){
constexpr double delta_R_min = 0.7;
for(auto const & jet: jets){
for(auto const & photon: photons){
if(jet.delta_R(photon.p) < delta_R_min) return false;
}
}
return true;
}
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 0.00429198; // +- 1.0488e-05
//calculated with rHEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
auto config = load_config("config_h_2j_decay.yml");
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
assert(ev.decays().size() == 1);
const auto decay = begin(ev.decays());
assert(ev.outgoing().size() > static_cast<size_t>(decay->first));
const auto & the_Higgs = ev.outgoing()[decay->first];
- assert(the_Higgs.type == RHEJ::pid::Higgs);
+ assert(the_Higgs.type == HEJ::pid::Higgs);
assert(decay->second.size() == 2);
auto const & gamma = decay->second;
- assert(gamma[0].type == RHEJ::pid::photon);
- assert(gamma[1].type == RHEJ::pid::photon);
- assert(RHEJ::nearby_ep(gamma[0].p + gamma[1].p, the_Higgs.p, 1e-6));
+ assert(gamma[0].type == HEJ::pid::photon);
+ assert(gamma[1].type == HEJ::pid::photon);
+ assert(HEJ::nearby_ep(gamma[0].p + gamma[1].p, the_Higgs.p, 1e-6));
if(!pass_dR_cut(ev.jets(), gamma)) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.012*xs);
}
diff --git a/FixedOrderGen/t/h_3j.cc b/FixedOrderGen/t/h_3j.cc
index db7cc0a..fb6c22f 100644
--- a/FixedOrderGen/t/h_3j.cc
+++ b/FixedOrderGen/t/h_3j.cc
@@ -1,66 +1,66 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 1.08083; // +- 0.00615934
//calculated with rHEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
auto config = load_config("config_h_2j.yml");
config.process.njets = 3;
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
const auto the_Higgs = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
- [](RHEJ::Particle const & p){ return p.type == RHEJ::ParticleID::h; }
+ [](HEJ::Particle const & p){ return p.type == HEJ::ParticleID::h; }
);
assert(the_Higgs != end(ev.outgoing()));
if(std::abs(the_Higgs->rapidity()) > 5.) continue;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.02*xs);
}
diff --git a/FixedOrderGen/t/h_3j_uno1.cc b/FixedOrderGen/t/h_3j_uno1.cc
index adf868b..0cfb656 100644
--- a/FixedOrderGen/t/h_3j_uno1.cc
+++ b/FixedOrderGen/t/h_3j_uno1.cc
@@ -1,69 +1,69 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
// check that adding uno emissions doesn't change the FKL cross section
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 0.0243548; // +- 0.000119862
//calculated with rHEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
auto config = load_config("config_h_2j.yml");
config.process.njets = 3;
- config.process.incoming = {RHEJ::pid::u, RHEJ::pid::u};
+ config.process.incoming = {HEJ::pid::u, HEJ::pid::u};
config.unordered_fraction = 0.37;
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
int uno_found = 0;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
- if(ev.type() != RHEJ::event_type::FKL){
+ if(ev.type() != HEJ::event_type::FKL){
++uno_found;
continue;
}
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
std::cout << uno_found << " events with unordered emission\n";
assert(uno_found > 0);
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.05*xs);
}
diff --git a/FixedOrderGen/t/h_3j_uno2.cc b/FixedOrderGen/t/h_3j_uno2.cc
index 394986a..292eabd 100644
--- a/FixedOrderGen/t/h_3j_uno2.cc
+++ b/FixedOrderGen/t/h_3j_uno2.cc
@@ -1,63 +1,63 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
// check uno cross section
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 0.00347538; // +- 3.85875e-05
//calculated with rHEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
auto config = load_config("config_h_2j.yml");
config.process.njets = 3;
- config.process.incoming = {RHEJ::pid::u, RHEJ::pid::u};
+ config.process.incoming = {HEJ::pid::u, HEJ::pid::u};
config.unordered_fraction = 1.;
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
- if(ev.type() == RHEJ::event_type::FKL) continue;
+ if(ev.type() == HEJ::event_type::FKL) continue;
if(generator.status() != good) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.05*xs);
}
diff --git a/FixedOrderGen/t/h_5j.cc b/FixedOrderGen/t/h_5j.cc
index 23198f9..6b06d51 100644
--- a/FixedOrderGen/t/h_5j.cc
+++ b/FixedOrderGen/t/h_5j.cc
@@ -1,61 +1,61 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
// This is a regression test
// the reference cross section has not been checked against any other program
#include <algorithm>
#include <cmath>
#include <cassert>
#include <iostream>
#include "config.hh"
#include "EventGenerator.hh"
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/MatrixElement.hh"
using namespace HEJFOG;
int main(){
constexpr double invGeV2_to_pb = 389379292.;
constexpr double xs_ref = 0.252273; // +- 0.00657742
//calculated with rHEJ revision 9570e3809613272ac4b8bf3236279ba23cf64d20
auto config = load_config("config_h_2j.yml");
config.process.njets = 5;
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
HEJFOG::EventGenerator generator{
config.process,
config.beam,
- RHEJ::ScaleGenerator{
+ HEJ::ScaleGenerator{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
},
config.jets,
config.pdf_id,
config.unordered_fraction,
config.Higgs_properties,
config.Higgs_coupling,
ran
};
double xs = 0., xs_err = 0.;
for (int trials = 0; trials < config.events; ++trials){
auto ev = generator.gen_event();
if(generator.status() != good) continue;
ev.central().weight *= invGeV2_to_pb;
ev.central().weight /= config.events;
xs += ev.central().weight;
xs_err += ev.central().weight*ev.central().weight;
}
xs_err = std::sqrt(xs_err);
std::cout << xs_ref << " ~ " << xs << " +- " << xs_err << '\n';
assert(std::abs(xs - xs_ref) < 3*xs_err);
assert(xs_err < 0.06*xs);
}
diff --git a/cmake/Templates/Version.hh.in b/cmake/Templates/Version.hh.in
index f10f760..5a3cebb 100644
--- a/cmake/Templates/Version.hh.in
+++ b/cmake/Templates/Version.hh.in
@@ -1,47 +1,47 @@
/** \file Version.hh
* \brief The file gives the current rHEJ Version
*/
#pragma once
#include <string>
/// @brief Full name of this package.
#define RHEJ_PACKAGE_NAME "@PROJECT_NAME@"
/// @brief rHEJ version string
#define RHEJ_VERSION "@PROJECT_VERSION@"
/// @brief Full name and version of this package.
#define RHEJ_PACKAGE_STRING "@PROJECT_NAME@ @PROJECT_VERSION@"
/// @brief Major version of this package
#define RHEJ_VERSION_MAJOR @PROJECT_VERSION_MAJOR@
/// @brief Minor version of this package
#define RHEJ_VERSION_MINOR @PROJECT_VERSION_MINOR@
/// @brief Patch version of this package
#define RHEJ_VERSION_PATCH @PROJECT_VERSION_PATCH@
/// @brief Git revision of this package
#define RHEJ_GIT_revision "@PROJECT_GIT_REVISION@"
/// @brief Git branch name of this package
#define RHEJ_GIT_branch "@PROJECT_GIT_BRANCH@"
-namespace RHEJ {
+namespace HEJ {
namespace Version {
inline std::string String() { return RHEJ_VERSION; }
inline std::string package_name() { return RHEJ_PACKAGE_NAME; }
inline std::string package_name_full() { return RHEJ_PACKAGE_STRING; }
inline int Major() { return RHEJ_VERSION_MAJOR; }
inline int Minor() { return RHEJ_VERSION_MINOR; }
inline int Patch() { return RHEJ_VERSION_PATCH; }
inline std::string revision() { return RHEJ_GIT_revision; }
};
}
diff --git a/doc/developer_manual/developer_manual.tex b/doc/developer_manual/developer_manual.tex
index 9e07796..44b2988 100644
--- a/doc/developer_manual/developer_manual.tex
+++ b/doc/developer_manual/developer_manual.tex
@@ -1,1170 +1,1170 @@
\documentclass[a4paper,11pt]{article}
\usepackage{fourier}
\usepackage[T1]{fontenc}
\usepackage{microtype}
\usepackage{geometry}
\usepackage{enumitem}
\setlist[description]{leftmargin=\parindent,labelindent=\parindent}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[utf8x]{inputenc}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{todonotes}
\usepackage{listings}
\usepackage{xspace}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usetikzlibrary{shapes}
\usetikzlibrary{calc}
\usepackage[colorlinks,linkcolor={blue!50!black}]{hyperref}
\graphicspath{{build/figures/}{figures/}}
\emergencystretch \hsize
\newcommand{\HEJ}{{\tt HEJ}\xspace}
\newcommand{\HIGHEJ}{\emph{High Energy Jets}\xspace}
\newcommand{\cmake}{\href{https://cmake.org/}{cmake}\xspace}
\newcommand{\html}{\href{https://www.w3.org/html/}{html}\xspace}
\newcommand{\YAML}{\href{http://yaml.org/}{YAML}\xspace}
\newcommand{\QCDloop}{\href{https://github.com/scarrazza/qcdloop}{QCDloop}\xspace}
\newcommand{\as}{\alpha_s}
\DeclareRobustCommand{\mathgraphics}[1]{\vcenter{\hbox{\includegraphics{#1}}}}
\def\spa#1.#2{\left\langle#1\,#2\right\rangle}
\def\spb#1.#2{\left[#1\,#2\right]} \def\spaa#1.#2.#3{\langle\mskip-1mu{#1} |
#2 | {#3}\mskip-1mu\rangle} \def\spbb#1.#2.#3{[\mskip-1mu{#1} | #2 |
{#3}\mskip-1mu]} \def\spab#1.#2.#3{\langle\mskip-1mu{#1} | #2 |
{#3}\mskip-1mu\rangle} \def\spba#1.#2.#3{\langle\mskip-1mu{#1}^+ | #2 |
{#3}^+\mskip-1mu\rangle} \def\spav#1.#2.#3{\|\mskip-1mu{#1} | #2 |
{#3}\mskip-1mu\|^2} \def\jc#1.#2.#3{j^{#1}_{#2#3}}
\definecolor{darkgreen}{rgb}{0,0.4,0}
\lstset{ %
backgroundcolor=\color{lightgray}, % choose the background color; you must add \usepackage{color} or \usepackage{xcolor}
basicstyle=\footnotesize\usefont{T1}{DejaVuSansMono-TLF}{m}{n}, % the size of the fonts that are used for the code
breakatwhitespace=false, % sets if automatic breaks should only happen at whitespace
breaklines=false, % sets automatic line breaking
captionpos=t, % sets the caption-position to bottom
commentstyle=\color{red}, % comment style
deletekeywords={...}, % if you want to delete keywords from the given language
escapeinside={\%*}{*)}, % if you want to add LaTeX within your code
extendedchars=true, % lets you use non-ASCII characters; for 8-bits encodings only, does not work with UTF-8
frame=false, % adds a frame around the code
keepspaces=true, % keeps spaces in text, useful for keeping indentation of code (possibly needs columns=flexible)
keywordstyle=\color{blue}, % keyword style
otherkeywords={}, % if you want to add more keywords to the set
numbers=none, % where to put the line-numbers; possible values are (none, left, right)
numbersep=5pt, % how far the line-numbers are from the code
rulecolor=\color{black}, % if not set, the frame-color may be changed on line-breaks within not-black text (e.g. comments (green here))
showspaces=false, % show spaces everywhere adding particular underscores; it overrides 'showstringspaces'
showstringspaces=false, % underline spaces within strings only
showtabs=false, % show tabs within strings adding particular underscores
stepnumber=2, % the step between two line-numbers. If it's 1, each line will be numbered
stringstyle=\color{gray}, % string literal style
tabsize=2, % sets default tabsize to 2 spaces
title=\lstname,
emph={},
emphstyle=\color{darkgreen}
}
\begin{document}
\tikzstyle{mynode}=[rectangle split,rectangle split parts=2, draw,rectangle split part fill={lightgray, none}]
\title{HEJ 2 developer manual}
\author{}
\maketitle
\tableofcontents
\newpage
\section{Overview}
\label{sec:overview}
HEJ 2 is a C++ program and library implementing an algorithm to
apply \HIGHEJ resummation~\cite{Andersen:2008ue,Andersen:2008gc} to
pre-generated fixed-order events. This document is intended to give an
overview over the concepts and structure of this implementation.
\subsection{Project structure}
\label{sec:project}
HEJ 2 is developed under the \href{https://git-scm.com/}{git}
version control system. The main repository is on the IPPP
\href{https://gitlab.com/}{gitlab} server under
\url{https://gitlab.dur.scotgrid.ac.uk/hej/reversed_hej}. To get a local
copy, get an account on the gitlab server and use
\begin{lstlisting}[language=sh,caption={}]
git clone git@gitlab.dur.scotgrid.ac.uk:hej/reversed_hej.git
\end{lstlisting}
This should create a directory \texttt{reversed\_hej} with the following
contents:
\begin{description}
\item[doc:] Contains additional documentation, see section~\ref{sec:doc}.
\item[include:] Contains the C++ header files.
\item[src:] Contains the C++ source files.
\item[t:] Contains the source code for the automated tests.
\item[CMakeLists.txt:] Configuration file for the \cmake build
system. See section~\ref{sec:cmake}.
\item[cmake:] Auxiliary files for \cmake. This includes modules for
finding installed software in \texttt{cmake/Modules} and templates for
code generation during the build process in \texttt{cmake/Templates}.
\item[config.yml:] Sample configuration file for running HEJ 2.
\item[events.lhe:] Fixed-order event sample that can be used as input
for HEJ 2.
\item[FixedOrderGen:] Contains the code for the fixed-order generator,
see section~\ref{sec:HEJFOG}.
\end{description}
In the following all paths are given relative to the
\texttt{reversed\_hej} directory.
\subsection{Documentation}
\label{sec:doc}
The \texttt{doc} directory contains user documentation in
\texttt{doc/sphinx} and the configuration to generate source code
documentation in \texttt{doc/doxygen}.
The user documentation explains how to install and run HEJ 2. The
format is
\href{http://docutils.sourceforge.net/rst.html}{reStructuredText}, which
is mostly human-readable. Other formats, like \html, can be generated with the
\href{http://www.sphinx-doc.org/en/master/}{sphinx} generator with
\begin{lstlisting}[language=sh,caption={}]
make html
\end{lstlisting}
To document the source code we use
\href{https://www.stack.nl/~dimitri/doxygen/}{doxygen}. To generate
\html documentation, use the command
\begin{lstlisting}[language=sh,caption={}]
doxygen Doxyfile
\end{lstlisting}
in the \texttt{doc/doxygen} directory.
\subsection{Build system}
\label{sec:cmake}
For the most part, HEJ 2 is a library providing classes and
functions that can be used to add resummation to fixed-order events. In
addition, there is a relatively small executable program leveraging this
library to read in events from an input file and produce resummation
events. Both the library and the program are built and installed with
the help of \cmake.
Debug information can be turned on by using
\begin{lstlisting}[language=sh,caption={}]
cmake base/directory -DCMAKE_BUILD_TYPE=Debug
make install
\end{lstlisting}
This facilitates the use of debuggers like \href{https://www.gnu.org/software/gdb/}{gdb}.
The main \cmake configuration file is \texttt{CMakeLists.txt}. It defines the
compiler flags, software prerequisites, header and source files used to
build HEJ 2, and the automated tests.
\texttt{cmake/Modules} contains module files that help with the
detection of the software prerequisites and \texttt{cmake/Templates}
template files for the automatic generation of header and
source files. For example, this allows to only keep the version
information in one central location (\texttt{CMakeLists.txt}) and
automatically generate a header file from the template \texttt{Version.hh.in} to propagate this to the C++ code.
\subsection{General coding guidelines}
\label{sec:notes}
The goal is to make the HEJ 2 code well-structured and
readable. Here are a number of guidelines to this end.
\begin{description}
\item[Observe the boy scout rule.] Always leave the code cleaner
than how you found it. Ugly hacks can be useful for testing, but
shouldn't make their way into the main branch.
\item[Ask if something is unclear.] Often there is a good reason why
code is written the way it is. Sometimes that reason is only obvious to
the original author (use \lstinline!git blame! to find them), in which
case they should be poked to add a comment. Sometimes there is no good
reason, but nobody has had the time to come up with something better,
yet. In some places the code might just be bad.
\item[Don't break tests.] There are a number of tests in the \texttt{t}
directory, which can be run with \lstinline!make test!. Ideally, all
tests should run successfully in each git revision. If your latest
commit broke a test and you haven't pushed to the central repository
yet, you can fix it with \lstinline!git commit --amend!. If an earlier
local commit broke a test, you can use \lstinline!git rebase -i! if
you feel confident.
\item[Test your new code.] When you add some new functionality, also add an
automated test. This can be useful even if you don't know the
``correct'' result because it prevents the code from changing its behaviour
silently in the future. \href{http://www.valgrind.org/}{valgrind} is a
very useful tool to detect potential memory leaks.
\item[Stick to the coding style.] It is somewhat easier to read code
that has a uniform coding and indentation style. We don't have a
strict style, but it helps if your code looks similar to what is
already there.
\end{description}
\section{Program flow}
\label{sec:flow}
A run of the HEJ 2 program has three stages: initialisation,
event processing, and cleanup. The following sections outline these
stages and their relations to the various classes and functions in the
code. Unless denoted otherwise, all classes and functions are part of
-the \lstinline!RHEJ! namespace. The code for the HEJ 2 program is
+the \lstinline!HEJ! namespace. The code for the HEJ 2 program is
in \texttt{src/main.cc}, all other code comprises the HEJ 2
library. Classes and free functions are usually implemented in header
and source files with a corresponding name, i.e. the code for
\lstinline!MyClass! can usually be found in
\texttt{include/RHEJ/MyClass.hh} and \texttt{src/MyClass.cc}.
\subsection{Initialisation}
\label{sec:init}
The first step is to load and parse the \YAML configuration file. The
entry point for this is the \lstinline!load_config! function and the
related code can be found in \texttt{include/RHEJ/YAMLreader.hh},
\texttt{include/RHEJ/config.hh} and the corresponding \texttt{.cc} files
in the \texttt{src} directory. The implementation is based on the
\href{https://github.com/jbeder/yaml-cpp}{yaml-cpp} library.
The \lstinline!load_config! function returns a \lstinline!Config! object
containing all settings. To detect potential mistakes as early as
possible, we throw an exception whenever one of the following errors
occurs:
\begin{itemize}
\item There is an unknown option in the \YAML file.
\item A setting is invalid, for example a string is given where a number
would be expected.
\item An option value is not set.
\end{itemize}
The third rule is sometimes relaxed for ``advanced'' settings with an
obvious default, like for importing custom scales or analyses.
The information stored in the \lstinline!Config! object is then used to
initialise various objects required for the event processing stage
described in section~\ref{sec:processing}. First, the
\lstinline!get_analysis! function creates an object that inherits from
the \lstinline!Analysis! interface.\footnote{In the context of C++ the
proper technical expression is ``pure abstract class''.} Using an
interface allows us to decide the concrete type of the analysis at run
time instead of having to make a compile-time decision. Depending on the
settings, \lstinline!get_analysis! creates either a user-defined
analysis loaded from an external library (see the user documentation
\todo{link}) or the default \lstinline!EmptyAnalysis!, which does
nothing.
Together with a number of further objects, whose roles are described in
section~\ref{sec:processing}, we also initialise the global random
number generator. We again use an interface to defer deciding the
concrete type until the program is actually run. Currently, we support the
\href{https://mixmax.hepforge.org/}{MIXMAX}
(\texttt{include/RHEJ/Mixmax.hh}) and Ranlux64
(\texttt{include/RHEJ/Ranlux64.hh}) random number generators, both are provided
by \href{http://proj-clhep.web.cern.ch/}{CLHEP}.
We also set up a \lstinline!LHEF::Reader! object (see
\href{http://home.thep.lu.se/~leif/LHEF/}{\texttt{include/LHEF/LHEF.h}}) for
reading events from a file in the Les
Houches event file format~\cite{Alwall:2006yp}. A small wrapper around
the
\href{https://www.boost.org/doc/libs/1_67_0/libs/iostreams/doc/index.html}{boost
iostreams} library allows us to also read event files compressed with
\href{https://www.gnu.org/software/gzip/}{gzip}. The wrapper code is in
\texttt{include/RHEJ/stream.hh} and the \texttt{src/stream.cc}.
\subsection{Event processing}
\label{sec:processing}
In the second stage events are continously read from the event
file. After jet clustering, a number of corresponding resummation events
are generated for each input event and fed into the analysis and a
number of output files. The roles of various classes and functions are
illustrated in the following flow chart:
\begin{center}
\begin{tikzpicture}[node distance=2cm and 5mm]
\node (reader) [mynode]
{\lstinline!LHEF::Reader::readEvent!\nodepart{second}{read event}};
\node
(cluster) [mynode,below=of reader]
{\lstinline!Event! constructor\nodepart{second}{cluster jets}};
\node
(resum) [mynode,below=of cluster]
{\lstinline!EventReweighter::reweight!\nodepart{second}{perform resummation}};
\node
(cut) [mynode,below=of resum]
{\lstinline!Analysis::pass_cuts!\nodepart{second}{apply cuts}};
\node
(fill) [mynode,below left=of cut]
{\lstinline!Analysis::fill!\nodepart{second}{analyse event}};
\node
(write) [mynode,below right=of cut]
{\lstinline!CombinedEventWriter::write!\nodepart{second}{write out event}};
\node
(control) [below=of cut] {};
\draw[-{Latex[length=3mm, width=1.5mm]}]
(reader.south) -- node[left] {\lstinline!LHEF::HEPEUP!} (cluster.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(cluster.south) -- node[left] {\lstinline!Event!} (resum.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(resum.south) -- (cut.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(resum.south)+(7mm, 0cm)$) -- ($(cut.north)+(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(resum.south)-(7mm, 0cm)$) -- node[left] {\lstinline!Event!} ($(cut.north)-(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(cut.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) ..node[left] {\lstinline!Event!} (fill.east);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(cut.south)-(3mm,0mm)$) .. controls ($(control)-(3mm,0mm)$) .. (write.west);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(cut.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) .. (fill.east);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(cut.south)+(3mm,0mm)$) .. controls ($(control)+(3mm,0mm)$) ..node[right] {\lstinline!Event!} (write.west);
\end{tikzpicture}
\end{center}
The resummation is performed by the \lstinline!EventReweighter! class,
which is described in more detail in section~\ref{sec:resum}. The
\lstinline!CombinedEventWriter! writes events to zero or more output
files. To this end, it contains a number of objects implementing the
\lstinline!EventWriter! interface. These event writers typically write
the events to a file in a given format. We currently have the
\lstinline!LesHouchesWriter! for event files in the Les Houches Event
File format and the \lstinline!HepMCWriter! for the
\href{https://hepmc.web.cern.ch/hepmc/}{HepMC} format (Version 2 and 3).
\subsection{Resummation}
\label{sec:resum}
In the \lstinline!EventReweighter::reweight! member function, we first
classify the input fixed-order event (FKL, unordered, non-HEJ, \dots)
and decide according to the user settings whether to discard, keep, or
resum the event. If we perform resummation for the given event, we
generate a number of trial \lstinline!PhaseSpacePoint! objects. Phase
space generation is discussed in more detail in
section~\ref{sec:pspgen}. We then perform jet clustering according to
the settings for the resummation jets on each
\lstinline!PhaseSpacePoint!, update the factorisation and
renormalisation scale in the resulting \lstinline!Event! and reweight it
according to the ratio of pdf factors and \HEJ matrix elements between
resummation and original fixed-order event:
\begin{center}
\begin{tikzpicture}[node distance=2cm and 5mm]
\node (in) {};
\node (treat) [diamond,draw,below=of in,minimum size=3.5cm,
label={[anchor=west, inner sep=8pt]west:discard},
label={[anchor=east, inner sep=14pt]east:keep},
label={[anchor=south, inner sep=20pt]south:reweight}
] {};
\draw (treat.north west) -- (treat.south east);
\draw (treat.north east) -- (treat.south west);
\node
(psp) [mynode,below=of treat]
{\lstinline!PhaseSpacePoint! constructor};
\node
(cluster) [mynode,below=of psp]
{\lstinline!Event! constructor\nodepart{second}{cluster jets}};
\node
(gen_scales) [mynode,below=of cluster]
{\lstinline!ScaleGenerator::operator()!\nodepart{second}{update scales}};
\node
(rescale) [mynode,below=of gen_scales]
{\lstinline!PDF::pdfpt!,
\lstinline!MatrixElement!\nodepart{second}{reweight}};
\node (out) [below of=rescale] {};
\draw[-{Latex[length=3mm, width=1.5mm]}]
(in.south) -- node[left] {\lstinline!Event!} (treat.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(treat.south) -- node[left] {\lstinline!Event!} (psp.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(psp.south) -- (cluster.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(psp.south)+(7mm, 0cm)$) -- ($(cluster.north)+(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(psp.south)-(7mm, 0cm)$) -- node[left]
{\lstinline!PhaseSpacePoint!} ($(cluster.north)-(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(cluster.south) -- (gen_scales.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(cluster.south)+(7mm, 0cm)$) -- ($(gen_scales.north)+(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(cluster.south)-(7mm, 0cm)$) -- node[left]
{\lstinline!Event!} ($(gen_scales.north)-(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(gen_scales.south) -- (rescale.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(gen_scales.south)+(7mm, 0cm)$) -- ($(rescale.north)+(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(gen_scales.south)-(7mm, 0cm)$) -- node[left]
{\lstinline!Event!} ($(rescale.north)-(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
(rescale.south) -- (out.north);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(rescale.south)+(7mm, 0cm)$) -- ($(out.north)+(7mm, 0cm)$);
\draw[-{Latex[length=3mm, width=1.5mm]}]
($(rescale.south)-(7mm, 0cm)$) -- node[left]
{\lstinline!Event!} ($(out.north)-(7mm, 0cm)$);
\node (helper) at ($(treat.east) + (15mm,0cm)$) {};
\draw[-{Latex[length=3mm, width=1.5mm]}]
(treat.east) -- ($(treat.east) + (15mm,0cm)$)
-- node[left] {\lstinline!Event!} (helper |- gen_scales.east) -- (gen_scales.east)
;
\end{tikzpicture}
\end{center}
\subsection{Phase space point generation}
\label{sec:pspgen}
The resummed and matched \HEJ cross section for pure jet production of
FKL configurations is given by (cf. eq. (3) of~\cite{Andersen:2018tnm})
\begin{align}
\label{eq:resumdijetFKLmatched2}
% \begin{split}
\sigma&_{2j}^\mathrm{resum, match}=\sum_{f_1, f_2}\ \sum_m
\prod_{j=1}^m\left(
\int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty}
\frac{\mathrm{d}^2\mathbf{p}_{j\perp}^B}{(2\pi)^3}\ \int
\frac{\mathrm{d} y_j^B}{2} \right) \
(2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^{m}
\mathbf{p}_{k\perp}^B\right)\nonumber\\
&\times\ x_a^B\ f_{a, f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b, f_2}(x_b^B, Q_b^B)\
\frac{\overline{\left|\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots
gf_2}\big(\big\{p^B_j\big\}\big)\right|}^2}{(\hat {s}^B)^2}\nonumber\\
& \times (2\pi)^{-4+3m}\ 2^m \nonumber\\
&\times\ \sum_{n=2}^\infty\
\int_{p_{1\perp}=p_{\perp,\mathrm{min}} }^{p_{1\perp}=\infty}
\frac{\mathrm{d}^2\mathbf{p}_{1\perp}}{(2\pi)^3}\
\int_{p_{n\perp}=p_{\perp,\mathrm{min}}}^{p_{n\perp}=\infty}
\frac{\mathrm{d}^2\mathbf{p}_{n\perp}}{(2\pi)^3}\
\prod_{i=2}^{n-1}\int_{p_{i\perp}=\lambda}^{p_{i\perp}=\infty}
\frac{\mathrm{d}^2\mathbf{p}_{i\perp}}{(2\pi)^3}\ (2\pi)^4\ \delta^{(2)}\!\!\left(\sum_{k=1}^n
\mathbf{p}_{k\perp}\right )\\
&\times \ \mathbf{T}_y \prod_{i=1}^n
\left(\int \frac{\mathrm{d} y_i}{2}\right)\
\mathcal{O}_{mj}^e\
\left(\prod_{l=1}^{m-1}\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l}\perp}^B -
\mathbf{j}_{l\perp})\right)\
\left(\prod_{l=1}^m\delta(y^B_{\mathcal{J}_l}-y_{\mathcal{J}_l})\right)
\ \mathcal{O}_{2j}(\{p_i\})\nonumber\\
&\times \frac{(\hat{s}^B)^2}{\hat{s}^2}\ \frac{x_a f_{a,f_1}(x_a, Q_a)\ x_b f_{b,f_2}(x_b, Q_b)}{x_a^B\ f_{a,f_1}(x_a^B, Q_a^B)\ x_b^B\ f_{b,f_2}(x_b^B, Q_b^B)}\ \frac{\overline{\left|\mathcal{M}_{\mathrm{HEJ}}^{f_1 f_2\to f_1 g\cdots
gf_2}(\{ p_i\})\right|}^2}{\overline{\left|\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots
gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}} \,.\nonumber
% \end{split}
\end{align}
The first two lines correspond to the generation of the fixed-order
input events with incoming partons $f_1, f_2$ and outgoing momenta
$p_j^B$, where $\mathbf{p}_{j\perp}^B$ and $y_j^B$ denote the respective
transverse momentum and rapidity. Note that, at leading order, these
coincide with the fixed-order jet momenta $p_{\mathcal{J}_j}^B$.
$f_{a,f_1}(x_a, Q_a),f_{b,f_2}(x_b, Q_b)$ are the pdf factors for the incoming partons with
momentum fractions $x_a$ and $x_b$. The square of the partonic
centre-of-mass energy is denoted by $\hat{s}^B$ and
$\mathcal{M}_\text{LO}^{f_1f_2\to f_1g\cdots gf_2}$ is the
leading-order matrix element.
The third line is a factor accounting for the different multiplicities
between fixed-order and resummation events. Lines four and five are
the integration over the resummation phase space described in this
section. $p_i$ are the momenta of the outgoing partons in resummation
phase space. $\mathbf{T}_y$ denotes rapidity
ordering and $\mathcal{O}_{mj}^e$ projects out the exclusive $m$-jet
component. The relation between resummation and fixed-order momenta is
fixed by the $\delta$ functions. The first sets each transverse fixed-order jet
momentum to some function $\mathbf{j_{l\perp}}$ of the resummation
momenta. The exact form is described in section~\ref{sec:ptj_res}. The second
$\delta$ forces the rapidities of resummation and fixed-order jets to be
the same. Finally, the last line is the reweighting of pdf and matrix
element factors already shown in section~\ref{sec:resum}.
There are two kinds of cut-off in the integration over the resummation
partons. $\lambda$ is a technical cut-off connected to the cancellation
of infrared divergencies between real and virtual corrections. Its
numerical value is set in
\texttt{include/RHEJ/Constants.h}. $p_{\perp,\mathrm{min}}$ regulates
and \emph{uncancelled} divergence in the extremal parton momenta. Its
size is set by the user configuration \todo{link}.
It is straightforward to generalise eq.~(\ref{eq:resumdijetFKLmatched2})
to unordered configurations and processes with additional colourless
emissions, for example a Higgs or electroweak boson. In the latter case only
the fixed-order integration and the matrix elements change.
\subsubsection{Gluon Multiplicity}
\label{sec:psp_ng}
The first step in evaluating the resummation phase space in
eq.~(\ref{eq:resumdijetFKLmatched2}) is to randomly pick terms in the
sum over the number of emissions. This sampling of the gluon
multiplicity is done in the \lstinline!PhaseSpacePoint::sample_ng!
function in \texttt{src/PhaseSpacePoint.cc}.
The typical number of extra emissions depends strongly on the rapidity
span of the underlying fixed-order event. Let us, for example, consider
a fixed-order FKL-type multi-jet configuration with rapidities
$y_{j_f},\,y_{j_b}$ of the most forward and backward jets,
respectively. By eq.~(\ref{eq:resumdijetFKLmatched2}), the jet
multiplicity and the rapidity of each jet are conserved when adding
resummation. This implies that additional hard radiation is restricted
to rapidities $y$ within a region $y_{j_b} \lesssim y \lesssim
y_{j_f}$. Within \HEJ, we require the most forward and most backward
emissions to be hard \todo{specify how hard} in order to avoid divergences, so this constraint
in fact applies to \emph{all} additional radiation.
To simplify the remaining discussion, let us remove the FKL rapidity
ordering
\begin{equation}
\label{eq:remove_y_order}
\mathbf{T}_y \prod_{i=1}^n\int \frac{\mathrm{d}y_i}{2} =
\frac{1}{n!}\prod_{i=1}^n\int
\frac{\mathrm{d}y_i}{2}\,,
\end{equation}
where all rapidity integrals now cover a region which is approximately
bounded by $y_{j_b}$ and $y_{j_f}$. Each of the $m$ jets has to contain at least
one parton; selecting random emissions we can rewrite the phase space
integrals as
\begin{equation}
\label{eq:select_jets}
\frac{1}{n!}\prod_{i=1}^n\int [\mathrm{d}p_i] =
\left(\prod_{i=1}^{m}\int [\mathrm{d}p_i]\ {\cal J}_i(p_i)\right)
\frac{1}{n_g!}\prod_{i=m+1}^{m+n_g}\int [\mathrm{d}p_i]
\end{equation}
with jet selection functions
\begin{equation}
\label{eq:def_jet_selection}
{\cal J}_i(p) =
\begin{cases}
1 &p\text{ clustered into jet }i\\
0 & \text{otherwise}
\end{cases}
\end{equation}
and $n_g \equiv n - m$. Here and in the following we use the short-hand
notation $[\mathrm{d}p_i]$ to denote the phase-space measure for parton
$i$. As is evident from eq.~\eqref{eq:select_jets}, adding an extra emission
$n_g+1$ introduces a suppression factor $\tfrac{1}{n_g+1}$. However, the
additional phase space integral also results in an enhancement proportional
to $\Delta y_{j_f j_b} = y_{j_f} - y_{j_b}$. This is a result of the
rapidity-independence of the MRK limit of the integrand, consisting of the
matrix elements divided by the flux factor. Indeed, we observe that the
typical number of gluon emissions is to a good approximation proportional to
the rapidity separation and the phase space integral is dominated by events
with $n_g \approx \Delta y_{j_f j_b}$.
For the actual phase space sampling, we assume a Poisson distribution
and extract the mean number of gluon emissions in different rapidity
bins and fit the results to a linear function in $\Delta y_{j_f j_b}$,
finding a coefficient of $0.975$ for the inclusive production of a Higgs
boson with two jets. Here are the observed and fitted average gluon
multiplicities as a function of $\Delta y_{j_f j_b}$:
\begin{center}
\includegraphics[width=.75\textwidth]{ng_mean}
\end{center}
As shown for two rapidity slices the assumption of a Poisson
distribution is also a good approximation:
\begin{center}
\includegraphics[width=.49\textwidth]{{ng_1.5}.pdf}\hfill
\includegraphics[width=.49\textwidth]{{ng_5.5}.pdf}
\end{center}
\subsubsection{Number of Gluons inside Jets}
\label{sec:psp_ng_jet}
For each of the $n_g$ gluon emissions we can split the phase-space
integral into a (disconnected) region inside the jets and a remainder:
\begin{equation}
\label{eq:psp_split}
\int [\mathrm{d}p_i] = \int [\mathrm{d}p_i]\,
\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg) + \int [\mathrm{d}p_i]\,
\bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg]\,.
\end{equation}
The next step is to decide how many of the gluons will form part of a
jet. This is done in the \lstinline!PhaseSpacePoint::sample_ng_jets!
function.
We choose an importance sampling which is flat in the plane
spanned by the azimuthal angle $\phi$ and the rapidity $y$. This is
observed in BFKL and valid in the limit of Multi-Regge-Kinematics
(MRK). Furthermore, we assume anti-$k_t$ jets, which cover an area of
$\pi R^2$.
In principle, the total accessible area in the $y$-$\phi$ plane is given
by $2\pi \Delta y_{fb}$, where $\Delta y_{fb}\geq \Delta y_{j_f j_b}$ is
the a priori unknown rapidity separation between the most forward and
backward partons. In most cases the extremal jets consist of single
partons, so that $\Delta y_{fb} = \Delta y_{j_f j_b}$. For the less common
case of two partons forming a jet we observe a maximum distance of $R$
between the constituents and the jet centre. In rare cases jets have
more than two constituents. Empirically, they are always within a
distance of $\tfrac{5}{3}R$ to the centre of the jet, so
$\Delta y_{fb} \leq \Delta y_{j_f j_b} + \tfrac{10}{3} R$. In practice, the
extremal partons are required to carry a large fraction of the jet
transverse momentum and will therefore be much closer to the jet axis.
In summary, for sufficiently large rapidity separations we can use the
approximation $\Delta y_{fb} \approx \Delta y_{j_f j_b}$. This scenario
is depicted here:
\begin{center}
\includegraphics[width=0.5\linewidth]{ps_large_y}
\end{center}
If there is no overlap between jets, the probability $p_{\cal J, >}$ for
an extra gluon to end up inside a jet is then given by
\begin{equation}
\label{eq:p_J_large}
p_{\cal J, >} = \frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}\,.
\end{equation}
For a very small rapidity separation, eq.~\eqref{eq:p_J_large}
obviously overestimates the true probability. The maximum phase space
covered by jets in the limit of a vanishing rapidity distance between
all partons is $2mR \Delta y_{fb}$:
\begin{center}
\includegraphics[width=0.5\linewidth]{ps_small_y}
\end{center}
We therefore estimate the probability for a parton to end up inside a jet as
\begin{equation}
\label{eq:p_J}
p_{\cal J} = \min\bigg(\frac{(m - 1)\*R^2}{2\Delta y_{j_f j_b}}, \frac{mR}{\pi}\bigg)\,.
\end{equation}
Here we compare this estimate with the actually observed
fraction of additional emissions into jets as a function of the rapidity
separation:
\begin{center}
\includegraphics[width=0.75\linewidth]{pJ}
\end{center}
\subsubsection{Gluons outside Jets}
\label{sec:gluons_nonjet}
Using our estimate for the probability of a gluon to be a jet
constituent, we choose a number $n_{g,{\cal J}}$ of gluons inside
jets, which also fixes the number $n_g - n_{g,{\cal J}}$ of gluons
outside jets. As explained later on, we need to generate the momenta of
the gluons outside jets first. This is done in
\lstinline!PhaseSpacePoint::gen_non_jet!.
The azimuthal angle $\phi$ is generated flat within $0\leq \phi \leq 2
\pi$. The allowed rapidity interval is set by the most forward and
backward partons, which are necessarily inside jets. Since these parton
rapidities are not known at this point, we also have to postpone the
rapidity generation for the gluons outside jets. For the scalar
transverse momentum $p_\perp = |\mathbf{p}_\perp|$ of a gluon outside
jets we use the parametrisation
\begin{equation}
\label{eq:p_nonjet}
p_\perp = \lambda + \tilde{p}_\perp\*\tan(\tau\*r)\,, \qquad
\tau = \arctan\bigg(\frac{p_{\perp{\cal J}_\text{min}} - \lambda}{\tilde{p}_\perp}\bigg)\,.
\end{equation}
For $r \in [0,1)$, $p_\perp$ is always less than the minimum momentum
$p_{\perp{\cal J}_\text{min}}$ required for a jet. $\tilde{p}_\perp$ is
a free parameter, a good empirical value is $\tilde{p}_\perp = [1.3 +
0.2\*(n_g - n_{g,\cal J})]\,$GeV
\subsubsection{Resummation jet momenta}
\label{sec:ptj_res}
On the one hand, each jet momentum is given by the sum of its
constituent momenta. On the other hand, the resummation jet momenta are
fixed by the constraints in line five of the master
equation~\eqref{eq:resumdijetFKLmatched2}. We therefore have to
calculate the resummation jet momenta from these constraints before
generating the momenta of the gluons inside jets. This is done in
\lstinline!PhaseSpacePoint::reshuffle! and in the free
\lstinline!resummation_jet_momenta! function.
The resummation jet momenta are determined by the $\delta$ functions in
line five of eq.~(\ref{eq:resumdijetFKLmatched2}). The rapidities are
fixed to the rapidities of the jets in the input fixed-order events, so
that the FKL ordering is guaranteed to be preserved.
In traditional \HEJ reshuffling the transverse momentum are given through
\begin{equation}
\label{eq:ptreassign_old}
\mathbf{p}^B_{\mathcal{J}_{l\perp}} = \mathbf{j}_{l\perp} \equiv \mathbf{p}_{\mathcal{J}_{l}\perp}
+ \mathbf{q}_\perp \,\frac{|\mathbf{p}_{\mathcal{J}_{l}\perp}|}{P_\perp},
\end{equation}
where $\mathbf{q}_\perp = \sum_{j=1}^n \mathbf{p}_{i\perp}
\bigg[1-\theta\bigg(\sum_{j=1}^{m}{\cal J}_j(p_i)\bigg)\bigg] $ is the
total transverse momentum of all partons \emph{outside} jets and
$P_\perp = \sum_{j=1}^m |\mathbf{p}_{\mathcal{J}_{j}\perp}|$. Since the
total transverse momentum of an event vanishes, we can also use
$\mathbf{q}_\perp = - \sum_{j=1}^m
\mathbf{p}_{\mathcal{J}_{j}\perp}$. Eq.~(\ref{eq:ptreassign}) is a
non-linear system of equations in the resummation jet momenta
$\mathbf{p}_{\mathcal{J}_{l}\perp}$. Hence we would have to solve
\begin{equation}
\label{eq:ptreassign_eq}
\mathbf{p}_{\mathcal{J}_{l}\perp}=\mathbf{j}^B_{l\perp} \equiv\mathbf{j}_{l\perp}^{-1}
\left(\mathbf{p}^B_{\mathcal{J}_{l\perp}}\right)
\end{equation}
numerically.
Since solving such a system is computationally expensive, we instead
change the reshuffling around to be linear in the resummation jet
momenta. Hence~\eqref{eq:ptreassign_eq} gets replaces by
\begin{equation}
\label{eq:ptreassign}
\mathbf{p}_{\mathcal{J}_{l\perp}} = \mathbf{j}^B_{l\perp} \equiv \mathbf{p}^B_{\mathcal{J}_{l}\perp}
- \mathbf{q}_\perp \,\frac{|\mathbf{p}^B_{\mathcal{J}_{l}\perp}|}{P^B_\perp},
\end{equation}
which is linear in the resummation momentum. Consequently the equivalent
of~\eqref{eq:ptreassign_old} is non-linear in the Born momentum. However
the exact form of~\eqref{eq:ptreassign_old} is not relevant for the resummation.
Both methods have been tested for two and three jets with the \textsc{rivet}
standard analysis \texttt{MC\_JETS}. They didn't show any differences even
after $10^9$ events.
The reshuffling relation~\eqref{eq:ptreassign} allows the transverse
momenta $p^B_{\mathcal{J}_{l\perp}}$ of the fixed-order jets to be
somewhat below the minimum transverse momentum of resummation jets. It
is crucial that this difference does not become too large, as the
fixed-order cross section diverges for vanishing transverse momenta. In
the production of a Higgs boson with resummation jets above $30\,$GeV we observe
that the contribution from fixed-order events with jets softer than
about $20\,$GeV can be safely neglected. This is shown in the following
plot of the differential cross section over the transverse momentum of
the softest fixed-order jet:
\begin{center}
\includegraphics[width=.75\textwidth]{ptBMin}
\end{center}
Finally, we have to account for the fact that the reshuffling
relation~\eqref{eq:ptreassign} is non-linear in the Born momenta. To
arrive at the master formula~\eqref{eq:resumdijetFKLmatched2} for the
cross section, we have introduced unity in the form of an integral over
the Born momenta with $\delta$ functions in the integrand, that is
\begin{equation}
\label{eq:delta_intro}
1 = \int_{p_{j\perp}^B=0}^{p_{j\perp}^B=\infty}
\mathrm{d}^2\mathbf{p}_{j\perp}^B\delta^{(2)}(\mathbf{p}_{\mathcal{J}_{j\perp}}^B -
\mathbf{j}_{j\perp})\,.
\end{equation}
If the arguments of the $\delta$ functions are not linear in the Born
momenta, we have to compensate with additional Jacobians as
factors. Explicitly, for the reshuffling relation~\eqref{eq:ptreassign}
we have
\begin{equation}
\label{eq:delta_rewrite}
\prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}}^B -
\mathbf{j}_{l\perp}) = \Delta \prod_{l=1}^m \delta^{(2)}(\mathbf{p}_{\mathcal{J}_{l\perp}} -
\mathbf{j}_{l\perp}^B)\,,
\end{equation}
where $\mathbf{j}_{l\perp}^B$ is given by~\eqref{eq:ptreassign_eq} and only
depends on the Born momenta. We have extended the product to run to $m$
instead of $m-1$ by eliminating the last $\delta$ function
$\delta^{(2)}\!\!\left(\sum_{k=1}^n \mathbf{p}_{k\perp}\right )$.
The Jacobian $\Delta$ is the determinant of a $2m \times 2m$ matrix with $l, l' = 1,\dots,m$
and $X, X' = x,y$.
\begin{equation}
\label{eq:jacobian}
\Delta = \left|\frac{\partial\,\mathbf{j}^B_{l'\perp}}{\partial\, \mathbf{p}^B_{{\cal J}_l \perp}} \right|
= \left| \delta_{l l'} \delta_{X X'} - \frac{q_X\, p^B_{{\cal
J}_{l'}X'}}{\left|\mathbf{p}^B_{{\cal J}_{l'} \perp}\right| P^B_\perp}\left(\delta_{l l'}
- \frac{\left|\mathbf{p}^B_{{\cal J}_l \perp}\right|}{P^B_\perp}\right)\right|\,.
\end{equation}
The Jacobian is calculated in \texttt{src/Jacobian.cc}.
\todo{Why is the Jacobian in its own header? Wouldn't it be nicer to have it
inside \texttt{resummation\_jet\_momenta.hh} and call it
\texttt{reshuffling\_weight}?}
Having to introduce this Jacobian is not a disadvantage specific to the new
reshuffling. If we instead use the old reshuffling
relation~\eqref{eq:ptreassign_old} we \emph{also} have to introduce a
similar Jacobian since we actually want to integrate over the
resummation phase space and need to transform the argument of the
$\delta$ function to be linear in the resummation momenta for this.
\subsubsection{Gluons inside Jets}
\label{sec:gluons_jet}
After the steps outlined in section~\ref{sec:psp_ng_jet}, we have a
total number of $m + n_{g,{\cal J}}$ constituents. In
\lstinline!PhaseSpacePoint::distribute_jet_partons! we distribute them
randomly among the jets such that each jet has at least one
constituent. We then generate their momenta in
\lstinline!PhaseSpacePoint::split! using the \lstinline!Splitter! class.
The phase space integral for a jet ${\cal J}$ is given by
\begin{equation}
\label{eq:ps_jetparton} \prod_{i\text{ in }{\cal J}} \bigg(\int
\mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i
\bigg)\delta^{(2)}\Big(\sum_{i\text{ in }{\cal J}} \mathbf{p}_{i\perp} -
\mathbf{j}_{\perp}^B\Big)\delta(y_{\mathcal{J}}-y^B_{\mathcal{J}})\,.
\end{equation}
For jets with a single constituent, the parton momentum is obiously equal to the
jet momentum. In the case of two constituents, we observe that the
partons are always inside the jet cone with radius $R$ and often very
close to the jet centre. The following plots show the typical relative
distance $\Delta R/R$ for this scenario:
\begin{center}
\includegraphics[width=0.45\linewidth]{dR_2}
\includegraphics[width=0.45\linewidth]{dR_2_small}
\end{center}
According to this preference for small values of $\Delta R$, we
parametrise the $\Delta R$ integrals as
\begin{equation}
\label{eq:dR_sampling}
\frac{\Delta R}{R} =
\begin{cases}
0.25\,x_R & x_R < 0.4 \\
1.5\,x_R - 0.5 & x_R \geq 0.4
\end{cases}\,.
\end{equation}
Next, we generate $\Theta_1 \equiv \Theta$ and use the constraint $\Theta_2 = \Theta
\pm \pi$. The transverse momentum of the first parton is then given by
\begin{equation}
\label{eq:delta_constraints}
p_{1\perp} =
\frac{p_{\mathcal{J} y} - \tan(\phi_2) p_{\mathcal{J} x}}{\sin(\phi_1)
- \tan(\phi_2)\cos(\phi_1)}\,.
\end{equation}
We get $p_{2\perp}$ by exchanging $1 \leftrightarrow 2$ in the
indices. To obtain the Jacobian of the transformation, we start from the
single jet phase space eq.~(\ref{eq:ps_jetparton}) with the rapidity
delta function already rewritten to be linear in the rapidity of the
last parton, i.e.
\begin{equation}
\label{eq:jet_2p}
\prod_{i=1,2} \bigg(\int
\mathrm{d}\mathbf{p}_{i\perp}\ \int \mathrm{d} y_i
\bigg)\delta^{(2)}\Big(\mathbf{p}_{1\perp} + \mathbf{p}_{2\perp} -
\mathbf{j}_{\perp}^B\Big)\delta(y_2- \dots)\,.
\end{equation}
The integral over the second parton momentum is now trivial; we can just replace
the integral over $y_2$ with the equivalent constraint
\begin{equation}
\label{eq:R2}
\int \mathrm{d}R_2 \ \delta\bigg(R_2 - \bigg[\phi_{\cal J} - \arctan
\bigg(\frac{p_{{\cal J}y} - p_{1y}}{p_{{\cal J}x} -
p_{1x}}\bigg)\bigg]/\cos \Theta\bigg) \,.
\end{equation}
In order to fix the integral over $p_{1\perp}$ instead, we rewrite this
$\delta$ function. This introduces the Jacobian
\begin{equation}
\label{eq:jac_pt1}
\bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg| =
\frac{\cos(\Theta)\mathbf{p}_{2\perp}^2}{p_{{\cal J}\perp}\sin(\phi_{\cal J}-\phi_1)}\,.
\end{equation}
The final form of the integral over the two parton momenta is then
\begin{equation}
\label{eq:ps_jet_2p}
\int \mathrm{d}R_1\ R_1 \int \mathrm{d}R_2 \int \mathrm{d}x_\Theta\ 2\pi \int
\mathrm{d}p_{1\perp}\ p_{1\perp} \int \mathrm{d}p_{2\perp}
\ \bigg|\frac{\partial p_{1\perp}}{\partial R_2} \bigg|\delta(p_{1\perp}
-\dots) \delta(p_{2\perp} - \dots)\,.
\end{equation}
As is evident from section~\ref{sec:psp_ng_jet}, jets with three or more
constituents are rare and an efficient phase-space sampling is less
important. For such jets, we exploit the observation that partons with a
distance larger than $R_{\text{max}} = \tfrac{5}{3} R$ to
the jet centre are never clustered into the jet. Assuming $N$
constituents, we generate all components
for the first $N-1$ partons and fix the remaining parton with the
$\delta$-functional. In order to end up inside the jet, we use the
parametrisation
\begin{align}
\label{eq:ps_jet_param}
\phi_i ={}& \phi_{\cal J} + \Delta \phi_i\,, & \Delta \phi_i ={}& \Delta
R_i
\cos(\Theta_i)\,, \\
y_i ={}& y_{\cal J} + \Delta y_i\,, & \Delta y_i ={}& \Delta
R_i
\sin(\Theta_i)\,,
\end{align}
and generate $\Theta_i$ and $\Delta R_i$ randomly with $\Delta R_i \leq
R_{\text{max}}$ and the empiric value $R_{\text{max}} = 5\*R/3$. We can
then write the phase space integral for a single parton as $(p_\perp = |\mathbf{p}_\perp|)$
\begin{equation}
\label{eq:ps_jetparton_x}
\int \mathrm{d}\mathbf{p}_{\perp}\ \int
\mathrm{d} y \approx \int_{\Box} \mathrm{d}x_{\perp}
\mathrm{d}x_{ R}
\mathrm{d}x_{\theta}\
2\*\pi\,\*R_{\text{max}}^2\,\*x_{R}\,\*p_{\perp}\,\*(p_{\perp,\text{max}}
- p_{\perp,\text{min}})
\end{equation}
with
\begin{align}
\label{eq:ps_jetparton_parameters}
\Delta \phi ={}& R_{\text{max}}\*x_{R}\*\cos(2\*\pi\*x_\theta)\,,&
\Delta y ={}& R_{\text{max}}\*x_{R}\*\sin(2\*\pi\*x_\theta)\,, \\
p_{\perp} ={}& (p_{\perp,\text{max}} - p_{\perp,\text{min}})\*x_\perp +
p_{\perp,\text{min}}\,.
\end{align}
$p_{\perp,\text{max}}$ is determined from the requirement that the total
contribution from the first $n-1$ partons --- i.e. the projection onto the
jet $p_{\perp}$ axis --- must never exceed the jet $p_\perp$. This gives
\todo{This bound is too high}
\begin{equation}
\label{eq:pt_max}
p_{i\perp,\text{max}} = \frac{p_{{\cal J}\perp} - \sum_{j<i} p_{j\perp}
\cos \Delta
\phi_j}{\cos \Delta
\phi_i}\,.
\end{equation}
The $x$ and $y$ components of the last parton follow immediately from
the first $\delta$ function. The last rapidity is fixed by the condition that
the jet rapidity is kept fixed by the reshuffling, i.e.
\begin{equation}
\label{eq:yJ_delta}
y^B_{\cal J} = y_{\cal J} = \frac 1 2 \ln \frac{\sum_{i=1}^n E_i+ p_{iz}}{\sum_{i=1}^n E_i - p_{iz}}\,.
\end{equation}
With $E_n \pm p_{nz} = p_{n\perp}\exp(\pm y_n)$ this can be rewritten to
\begin{equation}
\label{eq:yn_quad_eq}
\exp(2y_{\cal J}) = \frac{\sum_{i=1}^{n-1} E_i+ p_{iz}+p_{n\perp} \exp(y_n)}{\sum_{i=1}^{n-1} E_i - p_{iz}+p_{n\perp} \exp(-y_n)}\,,
\end{equation}
which is a quadratic equation in $\exp(y_n)$. The physical solution is
\begin{align}
\label{eq:yn}
y_n ={}& \log\Big(-b + \sqrt{b^2 + \exp(2y_{\cal J})}\,\Big)\,,\\
b ={}& \bigg(\sum_{i=1}^{n-1} E_i + p_{iz} - \exp(2y_{\cal J})
\sum_{i=1}^{n-1} E_i - p_{iz}\bigg)/(2 p_{n\perp})\,.
\end{align}
\todo{what's wrong with the following?} To eliminate the remaining rapidity
integral, we transform the $\delta$ function to be linear in the
rapidity $y$ of the last parton. The corresponding Jacobian is
\begin{equation}
\label{eq:jacobian_y}
\bigg|\frac{\partial y_{\cal J}}{\partial y_n}\bigg|^{-1} = 2 \bigg( \frac{E_n +
p_{nz}}{E_{\cal J} + p_{{\cal J}z}} + \frac{E_n - p_{nz}}{E_{\cal J} -
p_{{\cal J}z}}\bigg)^{-1}\,.
\end{equation}
Finally, we check that all designated constituents are actually
clustered into the considered jet.
\subsubsection{Final steps}
\label{sec:final}
Knowing the rapidity span covered by the extremal partons, we can now
generate the rapdities for the partons outside jets. We perform jet
clustering on all partons and check in
\lstinline!PhaseSpacePoint::jets_ok! that all the following criteria are
fulfilled:
\begin{itemize}
\item The number of resummation jets must match the number of
fixed-order jets.
\item No partons designated to be outside jets may end up inside jets.
\item All other outgoing partons \emph{must} end up inside jets.
\item The extremal (in rapidity) partons must be inside the extremal
jets. If there is, for example, an unordered forward emission, the
most forward parton must end up inside the most forward jet and the
next parton must end up inside second jet.
\item The rapidities of fixed-order and resummation jets must match.
\end{itemize}
After this, we adjust the phase-space normalisation according to the
third line of eq.~(\ref{eq:resumdijetFKLmatched2}), determine the
flavours of the outgoing partons, and adopt any additional colourless
bosons from the fixed-order input event. Finally, we use momentum
conservation to reconstruct the momenta of the incoming partons.
\subsection{The matrix element }
\label{sec:ME}
The derivation of the \HEJ matrix element is explained in some detail
in~\cite{Andersen:2017kfc}, where also results for leading and
subleading matrix elements for pure multijet production and production
of a Higgs boson with at least two associated jets are listed. Matrix
elements for $W$ and $Z/\gamma^*$ production together with jets are
given in~\cite{Andersen:2012gk,Andersen:2016vkp}, but not yet included.
The matrix elements are implemented in the \lstinline!MatrixElement!
class. To discuss the structure, let us consider the matrix element for
FKL multijet production:
\begin{align}
\label{eq:ME}
\begin{split}
\overline{\left|\mathcal{M}_\text{HEJ}^{f_1 f_2 \to f_1
g\cdots g f_2}\right|}^2 = \ &\frac 1 {4\
(N_c^2-1)}\ \left\|S_{f_1 f_2\to f_1 f_2}\right\|^2\\
&\cdot\ \left(g_s^2 K_{f_1}\ \frac 1 {t_1}\right) \cdot\ \left(g_s^2\ K_{f_2}\ \frac 1
{t_{n-1}}\right)\\
& \cdot \prod_{i=1}^{n-2} \left( \frac{-g_s^2 C_A}{t_it_{i+1}}\
V^\mu(q_i,q_{i+1})V_\mu(q_i,q_{i+1}) \right)\\
& \cdot \prod_{j=1}^{n-1} \exp\left[\omega^0(q_{j\perp})(y_{j+1}-y_j)\right].
\end{split}
\end{align}
The square of the complete matrix element as given in eq.~(\ref{eq:ME})
is calculated by \lstinline!MatrixElement::operator()!. The last line
of eq.~\eqref{eq:ME} constitutes the all-order virtual correction,
implemented in \lstinline!MatrixElement::virtual_corrections!. The
remaining parts, which correspond to the square of the leading-order HEJ
matrix element $\overline{\left|\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to
f_1g\cdots gf_2}\big(\big\{p^B_j\big\}\big)\right|}^{2}$, are computed
in \lstinline!MatrixElement::tree!. We can further factor off the
scale-dependent ``parametric'' part
\lstinline!MatrixElement::tree_param! containing all factors of the
strong coupling $g_s$. Using this function saves some CPU time when
adjusting the renormalisation scale, see section~\ref{sec:resum}.
The remaining ``kinematic'' factors are calculated in
\lstinline!MatrixElement::kin!. The currents $\frac{K_{f_1}K_{f_2}}{t_1
t_{n-1}}\left\|S_{f_1 f_2\to f_1 f_2}\right\|^2$ are implemented in the
\lstinline!jM2!$\dots$ functions of \texttt{src/currents.cc}
\footnote{The current implementation for Higgs production in
\texttt{src/currents.cc} includes the $1/4$ factor inside $S$, opposing
to~\eqref{eq:ME}. Thus the overall normalisation is unaffected.}.
\section{The fixed-order generator}
\label{sec:HEJFOG}
Even at leading order, standard fixed-order generators can only generate
events with a limited number of final-state particles within reasonable
CPU time. The purpose of the fixed-order generator is to supplement this
with high-multiplicity input events according to the first two lines of
eq.~\eqref{eq:resumdijetFKLmatched2} with the \HEJ approximation
$\mathcal{M}_\text{LO, HEJ}^{f_1f_2\to f_1g\cdots gf_2}$ instead of the
full fixed-order matrix element $\mathcal{M}_\text{LO}^{f_1f_2\to
f_1g\cdots gf_2}$. Its usage is described in the user
documentation\todo{link}.
\subsection{File structure}
\label{sec:HEJFOG_structure}
The code for the fixed-order generator is in the \texttt{FixedOrderGen}
directory, which contains the following:
\begin{description}
\item[include:] Contains the C++ header files.
\item[src:] Contains the C++ source files.
\item[t:] Contains the source code for the automated tests.
\item[CMakeLists.txt:] Configuration file for the \cmake build system.
\item[configFO.yml:] Sample configuration file for the fixed-order generator.
\end{description}
The code is generally in the \lstinline!HEJFOG! namespace. Functions and
classes \lstinline!MyClass! are usually declared in
\texttt{include/MyClass.hh} and implemented in \texttt{src/MyClass.cc}.
\subsection{Program flow}
\label{sec:prog_flow}
A single run of the fixed-order generator consists of three or four
stages.
First, we perform initialisation similar to HEJ 2, see
section~\ref{sec:init}. Since there is a lot of overlap we frequently
reuse classes and functions from HEJ 2, i.e. from the
-\lstinline!RHEJ! namespace. The code for parsing the configuration file
+\lstinline!HEJ! namespace. The code for parsing the configuration file
is in \texttt{include/config.hh} and implemented in
\texttt{src/config.cc}.
If partial unweighting is requested in the user settings \todo{link},
the initialisation is followed by a calibration phase. We use a
\lstinline!EventGenerator! to produce a number of trial
events. We use these to calibrate the \lstinline!Unweighter! in
its constructor and produce a first batch of partially unweighted
events. This also allows us to estimate our unweighting efficiency.
In the next step, we continue to generate events and potentially
unweight them. Once the user-defined target number of events is reached,
we adjust their weights according to the number of required trials. As
in HEJ 2 (see section~\ref{sec:processing}), we pass the final
-events to a \lstinline!RHEJ::Analysis! and a
-\lstinline!RHEJ::CombinedEventWriter!.
+events to a \lstinline!HEJ::Analysis! and a
+\lstinline!HEJ::CombinedEventWriter!.
\subsection{Event generation}
\label{sec:evgen}
Event generation is performed by the
\lstinline!EventGenerator::gen_event! member function. We begin by generating a
\lstinline!PhaseSpacePoint!. This is not to be confused with
the resummation phase space points represented by
-\lstinline!RHEJ::PhaseSpacePoint!! After jet clustering, we compute the
+\lstinline!HEJ::PhaseSpacePoint!! After jet clustering, we compute the
leading-order matrix element (see section~\ref{sec:ME}) and pdf factors.
The phase space point generation is performed in the
\lstinline!PhaseSpacePoint! constructor. We first construct the
user-defined number of $n_p$ partons (by default gluons) in
\lstinline!PhaseSpacePoint::gen_LO_partons!. We use flat sampling in
rapidity and azimuthal angle. For the scalar transverse momenta, we
distinguish between two cases. By default, they are generated based on a
random variable $x_{p_\perp}$ according to
\begin{equation}
\label{eq:pt_sampling}
p_\perp = p_{\perp,\text{min}} +
\begin{cases}
p_{\perp,\text{par}}
\tan\left(
x_{p_\perp}
\arctan\left(
\frac{p_{\perp,\text{max}} - p_{\perp,\text{min}}}{p_{\perp,\text{par}}}
\right)
\right)
& y < y_\text{cut}
\\
- \tilde{p}_{\perp,\text{par}}\log\left(1 - x_{p_\perp}\left[1 -
\exp\left(\frac{p_{\perp,\text{min}} -
p_{\perp,\text{max}}}{\tilde{p}_{\perp,\text{par}}}\right)\right]\right)
& y \geq y_\text{cut}
\end{cases}\,,
\end{equation}
where $p_{\perp,\text{min}}$ is the minimum jet transverse momentum,
$p_{\perp,\text{max}}$ is the maximum transverse parton momentum,
tentatively set to the beam energy, and $y_\text{cut}$, $p_{\perp,\text{par}}$
and $\tilde{p}_{\perp,\text{par}}$ are generation parameters set to
heuristically determined values of
\begin{align}
y_\text{cut}&=3,\\
p_{\perp,\text{par}}&=p_{\perp,\min}+\frac{n_p}{5}, \\
\tilde{p}_{\perp,\text{par}}&=\frac{p_{\perp,\text{par}}}{1 +
5(y-y_\text{cut})}.
\end{align}
The problem with this generation is that the transverse momenta peak at
the minimum transverse momentum required for fixed-order jets. However,
if we use the generated events as input for \HEJ resummation, events
with such soft transverse momenta hardly contribute, see
section~\ref{sec:ptj_res}. To generate efficient input for resummation,
there is the user option \texttt{peak pt}, which specifies the
dominant transverse momentum for resummation jets. If this option is
set, most jets will be generated as above, but with
$p_{\perp,\text{min}}$ set to the peak transverse momentum $p_{\perp,
\text{peak}}$. In addition, there is a small chance of around $2\%$ to
generate softer jets. The heuristic ansatz for the transverse momentum
distribution in the ``soft'' region is
\begin{equation}
\label{FO_pt_soft}
\frac{\partial \sigma}{\partial p_\perp} \propto e^{n_p\frac{p_\perp- p_{\perp,
\text{peak}}}{\bar{p}_\perp}}\,,
\end{equation}
where $n_p$ is the number of partons and $\bar{p}_\perp \approx
4\,$GeV. To achieve this distribution, we use
\begin{equation}
\label{eq:FO_pt_soft_sampling}
p_\perp = p_{\perp, \text{peak}} + \bar{p}_\perp \frac{\log x_{p_\perp}}{n_p}
\end{equation}
and discard the phase space point if the parton is too soft, i.e. below the threshold for
fixed-order jets.
After ensuring that all partons form separate jets, we generate any
potential colourless emissions. We then determine the incoming momenta
and flavours in \lstinline!PhaseSpacePoint::reconstruct_incoming! and
adjust the outgoing flavours to ensure an FKL configuration. Finally, we
may reassign outgoing flavours to generate suppressed (for example
unordered) configurations.
\subsection{Unweighting}
\label{sec:unweight}
Straightforward event generation tends to produce many events with small
weights. Those events have a negligible contribution to the final
observables, but can take up considerable storage space and CPU time in
later processing stages. This problem can be addressed by unweighting.
For naive unweighting, one would determine the maximum weight
$w_\text{max}$ of all events, discard each event with weight $w$ with a
probability $p=w/w_\text{max}$, and set the weights of all remaining
events to $w_\text{max}$. The downside to this procedure is that it also
eliminates a sizeable fraction of events with moderate weight, so that
the statistical convergence deteriorates.
To ameliorate this problem, we perform unweighting only for events with
sufficiently small weights. This is done by the
\lstinline!Unweighter! class. In the constructor we estimate the
mean and width of the weight-weight distribution from a sample of
events. We use these estimates to determine the maximum weight below
which unweighting is performed. The actual unweighting is the done in
the \lstinline!Unweighter::unweight! function.
\input{currents}
\bibliographystyle{JHEP}
\bibliography{biblio}
\end{document}
diff --git a/doc/doxygen/mainpage.dox b/doc/doxygen/mainpage.dox
index 6eb674d..6921c3e 100644
--- a/doc/doxygen/mainpage.dox
+++ b/doc/doxygen/mainpage.dox
@@ -1,44 +1,44 @@
-namespace RHEJ { // so that doxygen links names in this namespace
+namespace HEJ { // so that doxygen links names in this namespace
/**
* @mainpage
*
* @section intro Introduction
*
* HEJ 2 is a library for all-order resummation of high-energy
* logarithms. It includes a program to add resummation to fixed-order
* events. User documentation for the program can be found <a
* href="TODO">TODO: here</a>. This documentation is instead aimed at users
* of the library itself.
*
* @section overview Overview
*
* The main functionality is contained in the RHEJ namespace. Particles
* are defined via the Particle struct, which consists of the particle
* four-momentum and its identifier according to the <a
* href="http://pdg.lbl.gov/2017/reviews/rpp2017-rev-monte-carlo-numbering.pdf">
* PDG Monte Carlo numbering scheme </a>. Given a number of incoming and
* outgoing particles, the square of the resummation matrix element can
* be calculated with the help of the MatrixElement class.
*
* The EventReweighter class adds resummation to existing fixed-order
* events. Both fixed-order and resummation events are objects of the
* Event class, which are created from UnclusteredEvent objects with the
* help of a <a
* href="http://fastjet.fr/repo/doxygen-3.3.1/classfastjet_1_1JetDefinition.html">jet
* definition according to the fastjet</a> library. UnclusteredEvent
* objects can be assembled manually or converted from input events in
* the LesHouches standard, read from file with a LHEF::Reader.
*
* Events can be saved with one of the EventWriter classes. Currently,
* there is support for the Les Houches event file format with the
* LesHouchesWriter class. If HEJ 2 was installed with HepMC 2 or 3
* support, the respective format is available through the HepMCWriter
* class.
*
* Further classes of interest are the interfaces to the Mixmax and
* Ranlux64 random number generators, the PDF class to interact with <a
* href="https://lhapdf.hepforge.org/"> LHAPDF </a> and the ScaleGenerator
* and ScaleConfig classes to calculate renormalisation and factorisation
* scales for a given Event.
*/
}
diff --git a/doc/sphinx/analyses.rst b/doc/sphinx/analyses.rst
index 6e095b3..aa99467 100644
--- a/doc/sphinx/analyses.rst
+++ b/doc/sphinx/analyses.rst
@@ -1,179 +1,179 @@
.. _`Writing custom analyses`:
Writing custom analyses
=======================
HEJ 2 and the HEJ fixed-order generator can generate HepMC files, so you
can always run a `rivet <https://rivet.hepforge.org/>`_ analysis on
these. However if you compiled HEJ 2 with rivet you can use the native
rivet interface. For example
.. code-block:: YAML
analysis:
rivet: [MC_XS, MC_JETS]
output: RHEJ
would call the generic
`MC_XS <https://rivet.hepforge.org/analyses/MC_XS.html>`_ and
`MC_JETS <https://rivet.hepforge.org/analyses/MC_JETS.html>`_ analysis
and write the result into :code:`RHEJ[.Scalename].yoda`.
HEJ 2 will then run rivet over all different scales seperatly and
write out each into a different yoda file. Alternatively instead
of using rivet, you can provide a custom analysis inside a C++ library.
An analysis is a class that derives from the abstract :code:`Analysis`
base class provided by HEJ 2. It has to implement three public
functions:
* The :code:`pass_cuts` member function return true if and only if the
given event (first argument) passes the analysis cuts
* The :code:`fill` member function adds an event to the analysis, which
for example can be used to fill histograms. HEJ 2 will only
pass events for which :code:`pass_cuts` has returned true.
* The :code:`finalise` member function is called after all events have
been processed. It can be used, for example, to print out or save the
analysis results.
The :code:`pass_cuts` and :code:`fill` functions take two arguments: the
resummation event generated by HEJ 2 and the original fixed-order
input event. Usually, the second argument can be ignored. It can be
used, for example, for implementing cuts that depend on the ratio of the
weights between the fixed-order and the resummation event.
In addition to the two member functions, there has to be a global
make_analysis function that takes the analysis parameters in the form of
a YAML :code:`Node` and returns a :code:`std::unique_ptr` to the
Analysis.
The following code creates the simplest conceivable analysis.
::
#include <memory> // for std::unique_ptr
#include "RHEJ/Analysis.hh"
- class MyAnalysis: public RHEJ::Analysis {
+ class MyAnalysis: public HEJ::Analysis {
public:
MyAnalysis(YAML::Node const & /* config */) {}
void fill(
- RHEJ::Event const & /* event */,
- RHEJ::Event const & /* FO_event */
+ HEJ::Event const & /* event */,
+ HEJ::Event const & /* FO_event */
) override {
}
bool pass_cuts(
- RHEJ::Event const & /* event */,
- RHEJ::Event const & /* FO_event */
+ HEJ::Event const & /* event */,
+ HEJ::Event const & /* FO_event */
) override {
return true;
}
void finalise() override {
}
};
extern "C"
- std::unique_ptr<RHEJ::Analysis> make_analysis(
+ std::unique_ptr<HEJ::Analysis> make_analysis(
YAML::Node const & config
){
return std::make_unique<MyAnalysis>(config);
}
You can save this code to a file, for example :code:`myanalysis.cc`, and
compile it into a shared library. Using the :code:`g++` compiler, the
library can be built with
.. code-block:: sh
g++ -fPIC -shared -Wl,-soname,libmyanalysis.so -o libmyanalysis.so myanalysis.cc
With :code:`g++` it is also good practice to add
:code:`__attribute__((visibility("default")))` after :code:`extern "C"`
in the above code snippet and then compile with the additional flag
:code:`-fvisibility=hidden` to prevent name clashes.
You can use the analysis in HEJ 2 or the HEJ fixed-order
generator by adding
.. code-block:: YAML
analysis:
plugin: /path/to/libmyanalysis.so
to the .yml configuration file.
As a more interesting example, here is the code for an analysis that
sums up the total cross section and prints the result to both standard
output and a file specified in the .yml config with
.. code-block:: YAML
analysis:
plugin: analysis/build/directory/src/libmy_analysis.so
output: outfile
To access the configuration at run time, HEJ 2 uses the yaml-cpp
library; for more details see the `yaml-cpp tutorial
<https://github.com/jbeder/yaml-cpp/wiki/Tutorial>`_. The analysis code
itself is
::
#include <memory>
#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
#include "RHEJ/Analysis.hh"
#include "RHEJ/Event.hh"
#include "yaml-cpp/yaml.h"
- class MyAnalysis: public RHEJ::Analysis {
+ class MyAnalysis: public HEJ::Analysis {
public:
MyAnalysis(YAML::Node const & config):
xsection_{0.}, xsection_error_{0.},
outfile_{config["output"].as<std::string>()}
{}
void fill(
- RHEJ::Event const & event,
- RHEJ::Event const & /* FO_event */
+ HEJ::Event const & event,
+ HEJ::Event const & /* FO_event */
) override {
const double wt = event.central().weight;
xsection_ += wt;
xsection_error_ += wt*wt;
}
bool pass_cuts(
- RHEJ::Event const & /* event */,
- RHEJ::Event const & /* FO_event */
+ HEJ::Event const & /* event */,
+ HEJ::Event const & /* FO_event */
) override {
return true;
}
void finalise() override {
std::cout << "cross section: " << xsection_ << " +- "
<< std::sqrt(xsection_error_) << "\n";
std::ofstream fout{outfile_};
fout << "cross section: " << xsection_ << " +- "
<< std::sqrt(xsection_error_) << "\n";
}
private:
double xsection_, xsection_error_;
std::string outfile_;
};
extern "C"
- std::unique_ptr<RHEJ::Analysis> make_analysis(
+ std::unique_ptr<HEJ::Analysis> make_analysis(
YAML::Node const & config
){
return std::make_unique<MyAnalysis>(config);
}
diff --git a/doc/sphinx/scales.rst b/doc/sphinx/scales.rst
index 288a179..459913d 100644
--- a/doc/sphinx/scales.rst
+++ b/doc/sphinx/scales.rst
@@ -1,69 +1,69 @@
.. _`Custom scales`:
Custom scales
=============
HEJ 2 comes with a small selection of built-in renormalisation
and factorisation scales, as described in the :ref:`scales <scales>` setting. In
addition to this, user-defined scales can be imported from custom
libraries.
Writing the library
-------------------
Custom scales are defined through C++ functions that take an event and
compute the corresponding scale. As an example, let's consider a
function returning the transverse momentum of the softest jet in an
event. To make it accessible from HEJ 2, we have to prevent C++
name mangling with :code:`extern "C"`:
.. code-block:: C++
#include "RHEJ/Event.hh"
extern "C"
- double softest_jet_pt(RHEJ::Event const & ev){
+ double softest_jet_pt(HEJ::Event const & ev){
const auto softest_jet = sorted_by_pt(ev.jets()).back();
return softest_jet.perp();
}
After saving this code to some file :code:`myscales.cc`, we can compile
it to a shared library. With the :code:`g++` compiler this can be done
with the command
.. code-block:: sh
g++ -fPIC -shared -Wl,-soname,libmyscales.so -o libmyscales.so myscales.cc
If :code:`g++` is used and the library also contains other definitions,
it is recommended to add :code:`-fvisibility=hidden` to the compiler
flags and :code:`__attribute__((visibility("default")))` after
:code:`extern "C"` for each exported function in order to avoid possible
name clashes.
Importing the scale into HEJ 2
-------------------------------------
Our custom scale can now be imported into HEJ 2 by adding the
following lines to the `YAML <http://yaml.org/>`_ configuration file
.. code-block:: YAML
import scales:
/path/to/libmyscales.so: softest_jet_pt
It is also possible to import several scales from one or more libraries:
.. code-block:: YAML
import scales:
/path/to/libmyscales1.so: [first_scale, second_scale]
/path/to/libmyscales2.so: [another_scale, yet_another_scale]
The custom scales can then be used as usual in the :ref:`scales <scales>`
setting, for example
.. code-block:: YAML
scales: [H_T, softest_jet_pt, 2*softest_jet_pt]
diff --git a/include/RHEJ/Analysis.hh b/include/RHEJ/Analysis.hh
index 4d41749..604fb2c 100644
--- a/include/RHEJ/Analysis.hh
+++ b/include/RHEJ/Analysis.hh
@@ -1,50 +1,50 @@
/** \file
* \brief Header file for the Analysis interface
*
* This header contains declarations that faciliate creating custom analyses
* to be used with HEJ 2.
* \todo{link to user documentation}
*/
#pragma once
#include <vector>
#include <string>
namespace YAML{
class Node;
}
//! Main HEJ 2 Namespace
-namespace RHEJ{
+namespace HEJ{
class Event;
//! Analysis base class
/**
* This is the interface that all analyses should implement,
* i.e. all custom analyses have to be derived from this struct.
*/
struct Analysis{
//! Fill event into analysis (e.g. to histograms)
/**
* @param res_event The event in resummation phase space
* @param FO_event The original fixed-order event
*/
virtual void fill(Event const & res_event, Event const & FO_event) = 0;
//! Decide whether an event passes the cuts
/**
* @param res_event The event in resummation phase space
* @param FO_event The original fixed-order event
* @returns Whether the event passes all cuts
*/
virtual bool pass_cuts(Event const & res_event, Event const & FO_event) = 0;
//! Finalise analysis
/**
* This function is called after all events have been processed and
* can be used for example to print out or save the results.
*/
virtual void finalise() = 0;
virtual ~Analysis() = default;
};
}
diff --git a/include/RHEJ/CombinedEventWriter.hh b/include/RHEJ/CombinedEventWriter.hh
index 5527fac..0814982 100644
--- a/include/RHEJ/CombinedEventWriter.hh
+++ b/include/RHEJ/CombinedEventWriter.hh
@@ -1,41 +1,41 @@
/** \file
* \brief Declares the CombinedEventWriter class
*/
#pragma once
#include <memory>
#include <vector>
#include "RHEJ/EventWriter.hh"
#include "RHEJ/make_writer.hh"
namespace LHEF{
struct HEPRUP;
}
-namespace RHEJ{
+namespace HEJ{
//! Write event output to zero or more output files.
class CombinedEventWriter: public EventWriter{
public:
//!Constructor
/**
* @param outfiles Specifies files output should be written to.
* Each entry in the vector contains a file name
* and output format.
* @param heprup General process information
*/
CombinedEventWriter(
std::vector<OutputFile> const & outfiles,
LHEF::HEPRUP const & heprup
);
//! Write one event to all output files
void write(Event const &) override;
private:
std::vector<std::unique_ptr<EventWriter>> writers_;
};
}
diff --git a/include/RHEJ/Constants.hh b/include/RHEJ/Constants.hh
index 61103ef..5341020 100644
--- a/include/RHEJ/Constants.hh
+++ b/include/RHEJ/Constants.hh
@@ -1,21 +1,21 @@
/** \file
* \brief Header file defining all global constants used for HEJ
*/
#pragma once
-namespace RHEJ{
+namespace HEJ{
/// @name QCD parameters
//@{
constexpr double N_C = 3.; //!< number of Colors
constexpr double C_A = N_C; //!< \f$C_A\f$
constexpr double C_F = (N_C*N_C - 1.)/(2.*N_C); //!< \f$C_F\f$
constexpr double t_f = 0.5; //!< \f$t_f\f$
constexpr double n_f = 5.; //!< number light flavors
constexpr double beta0 = 11./3.*C_A - 4./3.*t_f*n_f; //!< \f$\beta_0\f$
//@}
/// @name Generation Parameters
//@{
constexpr double CLAMBDA = 0.2; //!< Scale for virtual correction, \f$\lambda\f$ cf. eq. (20) in \cite Andersen:2011hs
constexpr double CMINPT = CLAMBDA; //!< minimal \f$p_t\f$ of all partons
//@}
}
diff --git a/include/RHEJ/EmptyAnalysis.hh b/include/RHEJ/EmptyAnalysis.hh
index 5ece2a1..1ba7e60 100644
--- a/include/RHEJ/EmptyAnalysis.hh
+++ b/include/RHEJ/EmptyAnalysis.hh
@@ -1,44 +1,44 @@
/** \file
* \brief Declaration of the trivial (empty) analysis
*/
#pragma once
#include <memory>
#include "RHEJ/Analysis.hh"
//! YAML Namespace
namespace YAML{
class Node;
}
-namespace RHEJ{
+namespace HEJ{
/** An analysis that does nothing
*
* This analysis is used by default if no user analysis is specified.
* The member functions don't do anything and events passed to the
* analysis are simply ignored.
*/
struct EmptyAnalysis: Analysis{
static std::unique_ptr<Analysis> create(YAML::Node const & parameters);
//! Fill event into analysis (e.g. to histograms)
/**
* This function does nothing
*/
virtual void fill(Event const &, Event const &) override;
//! Whether a resummation event passes all cuts
/**
* There are no cuts, so all events pass
*/
virtual bool pass_cuts(Event const &, Event const &) override;
//! Finalise analysis
/**
* This function does nothing
*/
virtual void finalise() override;
virtual ~EmptyAnalysis() override = default;
};
}
diff --git a/include/RHEJ/Event.hh b/include/RHEJ/Event.hh
index 16b022f..cba7a49 100644
--- a/include/RHEJ/Event.hh
+++ b/include/RHEJ/Event.hh
@@ -1,186 +1,186 @@
/** \file
* \brief Declares the Event class and helpers
*
*/
#pragma once
#include <string>
#include <memory>
#include <unordered_map>
#include "RHEJ/utility.hh"
#include "RHEJ/event_types.hh"
#include "LHEF/LHEF.h"
#include "fastjet/JetDefinition.hh"
#include "fastjet/ClusterSequence.hh"
-namespace RHEJ{
+namespace HEJ{
struct ParameterDescription;
//! Event parameters
struct EventParameters{
double mur; /**< Value of the Renormalisation Scale */
double muf; /**< Value of the Factorisation Scale */
double weight; /**< Event Weight */
//! Optional description
std::shared_ptr<ParameterDescription> description = nullptr;
};
//! Description of event parameters
struct ParameterDescription {
//! Name of central scale choice (e.g. "H_T/2")
std::string scale_name;
//! Actual renormalisation scale divided by central scale
double mur_factor;
//! Actual factorisation scale divided by central scale
double muf_factor;
ParameterDescription() = default;
ParameterDescription(
std::string scale_name, double mur_factor, double muf_factor
):
scale_name{scale_name}, mur_factor{mur_factor}, muf_factor{muf_factor}
{};
};
//! An event before jet clustering
struct UnclusteredEvent{
//! Default Constructor
UnclusteredEvent() = default;
//! Constructor from LesHouches event information
UnclusteredEvent(LHEF::HEPEUP const & hepeup);
std::array<Particle, 2> incoming; /**< Incoming Particles */
std::vector<Particle> outgoing; /**< Outgoing Particles */
//! Particle decays in the format {outgoing index, decay products}
std::unordered_map<int, std::vector<Particle>> decays;
//! Central parameter (e.g. scale) choice
EventParameters central;
std::vector<EventParameters> variations; /**< For parameter variation */
};
/** An event with clustered jets
*
* This is the main HEJ 2 event class.
* It contains kinematic information including jet clustering,
* parameter (e.g. scale) settings and the event weight.
*/
class Event{
public:
//! Default Event Constructor
Event() = default;
//! Event Constructor adding jet clustering to an unclustered event
Event(
UnclusteredEvent ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
);
//! The jets formed by the outgoing partons
std::vector<fastjet::PseudoJet> jets() const;
//! The corresponding event before jet clustering
UnclusteredEvent const & unclustered() const {
return ev_;
}
//! Central parameter choice
EventParameters const & central() const{
return ev_.central;
}
//! Central parameter choice
EventParameters & central(){
return ev_.central;
}
//! Incoming particles
std::array<Particle, 2> const & incoming() const{
return ev_.incoming;
}
//! Outgoing particles
std::vector<Particle> const & outgoing() const{
return ev_.outgoing;
}
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<int, std::vector<Particle>> const & decays() const{
return ev_.decays;
}
//! Parameter (scale) variations
std::vector<EventParameters> const & variations() const{
return ev_.variations;
}
//! Parameter (scale) variations
std::vector<EventParameters> & variations(){
return ev_.variations;
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters const & variations(size_t i) const{
return ev_.variations[i];
}
//! Parameter (scale) variation
/**
* @param i Index of the requested variation
*/
EventParameters & variations(size_t i){
return ev_.variations[i];
}
//! Indices of the jets the outgoing partons belong to
/**
* @param jets Jets to be tested
* @returns A vector containing, for each outgoing parton,
* the index in the vector of jets the considered parton
* belongs to. If the parton is not inside any of the
* passed jets, the corresponding index is set to -1.
*/
std::vector<int> particle_jet_indices(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cs_.particle_jet_indices(jets);
}
//! Jet definition used for clustering
fastjet::JetDefinition const & jet_def() const{
return cs_.jet_def();
}
//! Minimum jet transverse momentum
double min_jet_pt() const{
return min_jet_pt_;
}
//! Event type
event_type::EventType type() const{
return type_;
}
private:
UnclusteredEvent ev_;
fastjet::ClusterSequence cs_;
double min_jet_pt_;
event_type::EventType type_;
};
//! Square of the partonic centre-of-mass energy
double shat(Event const & ev);
//! Convert an event to a LHEF::HEPEUP
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP *);
}
diff --git a/include/RHEJ/EventReweighter.hh b/include/RHEJ/EventReweighter.hh
index 1e134d4..ace703d 100644
--- a/include/RHEJ/EventReweighter.hh
+++ b/include/RHEJ/EventReweighter.hh
@@ -1,136 +1,136 @@
/** \file
* \brief Declares the EventReweighter class
*
* EventReweighter is the main class used within HEJ 2. It reweights the
* resummation events.
*/
#pragma once
#include "fastjet/PseudoJet.hh"
#include "fastjet/ClusterSequence.hh"
#include "LHEF/LHEF.h"
#include "RHEJ/config.hh"
#include "RHEJ/PDF.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/event_types.hh"
#include "RHEJ/PhaseSpacePoint.hh"
#include "RHEJ/MatrixElement.hh"
#include "RHEJ/RNG.hh"
-namespace RHEJ{
+namespace HEJ{
//! Beam parameters
/**
* Currently, only symmetric beams are supported,
* so there is a single beam energy.
*/
struct Beam{
double E; /**< Beam energy */
std::array<ParticleID, 2> type; /**< Beam particles */
};
//! Main class for reweighting events in reveresed HEJ.
class EventReweighter{
using EventType = event_type::EventType;
public:
EventReweighter(
Beam beam, /**< Beam Energy */
int pdf_id, /**< PDF ID */
ScaleGenerator scale_gen, /**< Scale settings */
EventReweighterConfig conf, /**< Configuration parameters */
- RHEJ::RNG & ran /**< Random number generator */
+ HEJ::RNG & ran /**< Random number generator */
);
EventReweighter(
LHEF::HEPRUP const & heprup, /**< LHEF event header */
ScaleGenerator scale_gen, /**< Scale settings */
EventReweighterConfig conf, /**< Configuration parameters */
- RHEJ::RNG & ran /**< Random number generator */
+ HEJ::RNG & ran /**< Random number generator */
);
//! Get the used pdf
PDF const & pdf() const;
//! Generate resummation events for a given fixed-order event
/**
* @param ev Fixed-order event corresponding
* to the resummation events
* @param num_events Number of trial resummation configurations.
* @returns A vector of resummation events.
*
* The result vector depends on the type of the input event and the
* treatment of different types as specified in the constructor:
*
* \ref reweight The result vector contains between
* 0 and num_events resummation events.
*
* \ref keep If the input event passes the resummation jet cuts
* the result vector contains one event. Otherwise it is empty.
*
* \ref discard The result vector is empty
*/
std::vector<Event> reweight(
Event const & ev,
int num_events
);
private:
struct EventFactors{
double central;
std::vector<double> variations;
};
template<typename... T>
PDF const & pdf(T&& ...);
std::vector<Event> gen_res_events(
Event const & ev, int num_events
);
std::vector<Event> rescale(
Event const & Born_ev, std::vector<Event> events
) const;
bool jets_pass_resummation_cuts(Event const & ev) const;
EventFactors pdf_factors(Event const & ev) const;
EventFactors matrix_elements(Event const & ev) const;
EventFactors fixed_order_scale_ME(Event const & ev) const;
double tree_matrix_element(Event const & ev) const;
//! \internal General parameters
EventReweighterConfig param_;
//! \internal Beam energy
double E_beam_;
//! \internal PDF
PDF pdf_;
//! \internal Object to calculate the square of the matrix element
MatrixElement MEt2_;
//! \internal Object to calculate event renormalisation and factorisation scales
ScaleGenerator scale_gen_;
//! \internal random number generator
/**
* \internal We use a reference_wrapper so that EventReweighter objects can
* still be copied (which would be impossible with a reference).
*/
- std::reference_wrapper<RHEJ::RNG> ran_;
+ std::reference_wrapper<HEJ::RNG> ran_;
};
template<typename... T>
PDF const & EventReweighter::pdf(T&&... t){
return pdf_ = PDF{std::forward<T>(t)...};
}
}
diff --git a/include/RHEJ/EventWriter.hh b/include/RHEJ/EventWriter.hh
index 4d9b89f..cd1714b 100644
--- a/include/RHEJ/EventWriter.hh
+++ b/include/RHEJ/EventWriter.hh
@@ -1,20 +1,20 @@
/** \file
* \brief Header file for the EventWriter interface.
*/
#pragma once
#include <string>
#include <exception>
-namespace RHEJ{
+namespace HEJ{
class Event;
//! Pure abstract base class for event writers
struct EventWriter{
//! Write an event
virtual void write(Event const &) = 0;
virtual ~EventWriter() = default;
};
}
diff --git a/include/RHEJ/HepMCInterface.hh b/include/RHEJ/HepMCInterface.hh
index 0f05e77..42e9157 100644
--- a/include/RHEJ/HepMCInterface.hh
+++ b/include/RHEJ/HepMCInterface.hh
@@ -1,71 +1,71 @@
/** \file
* \brief Header file for the HepMCInterface
*/
#pragma once
#include <cstddef>
#include "LHEF/LHEF.h"
namespace HepMC{
class GenEvent;
class GenCrossSection;
class GenRunInfo;
}
-namespace RHEJ{
+namespace HEJ{
class Event;
class EventParameters;
//! This class converts the Events into HepMC::GenEvents
/**
* \details The output is depended on the HepMC version rHEJ is compiled with,
* both HepMC 2 and HepMC 3 are supported. If HEJ 2 is compiled
* without HepMC calling this interface will throw an error.
*
* This interface will also keep track of the cross section of all the events that
* being fed into it.
*/
class HepMCInterface{
public:
HepMCInterface();
/**
* \brief main function to convert an event into HepMC::GenEvent
*
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives central weight)
*/
HepMC::GenEvent operator()(Event const & event, ssize_t weight_index = -1);
/**
* \brief initialise the event kinematics (everything but the weights)
*
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives central weight)
*/
HepMC::GenEvent init_kinematics(Event const & event);
/**
* \brief Sets the central value from \p event to \p out_ev
*
* \param out_ev HepMC::GenEvent to write to
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives "central")
*/
void set_central(HepMC::GenEvent & out_ev, Event const & event,
ssize_t weight_index = -1);
/**
* \brief Add the event \p variations to \p out_ev
*/
void add_variation(HepMC::GenEvent & out_ev,
std::vector<EventParameters> const & variations);
private:
size_t event_count_;
double tot_weight_;
double tot_weight2_;
HepMC::GenCrossSection cross_section() const;
};
}
diff --git a/include/RHEJ/HepMCWriter.hh b/include/RHEJ/HepMCWriter.hh
index e175e1c..b341884 100644
--- a/include/RHEJ/HepMCWriter.hh
+++ b/include/RHEJ/HepMCWriter.hh
@@ -1,48 +1,48 @@
/** \file
* \brief Contains the EventWriter for HepMC Output.
*/
#pragma once
#include <string>
#include "RHEJ/EventWriter.hh"
#include "LHEF/LHEF.h"
-namespace RHEJ{
+namespace HEJ{
class Event;
//! This is an event writer specifically for HepMC output.
/**
* \internal Implementation note:
* This uses the pimpl ("pointer to implementation") idiom.
* HepMC support is optional and the implementation depends on the
* HepMC version. Without pimpl, we would have to specify the HepMC version
* via the preprocessor whenever this header is included. We don't want to
* burden users of the rHEJ library (for example the HEJ fixed-order generator)
* with those details
*/
class HepMCWriter: public EventWriter{
public:
//! Constructor
/**
* @param file name of the output file
* @param heprup general process information
*/
HepMCWriter(std::string const & file, LHEF::HEPRUP heprup);
~HepMCWriter() override = default;
//! Write an event to the output file
void write(Event const & ev) override;
private:
struct HepMCWriterImpl;
struct HepMCWriterImplDeleter {
void operator()(HepMCWriterImpl* p);
};
std::unique_ptr<HepMCWriterImpl, HepMCWriterImplDeleter> impl_;
};
}
diff --git a/include/RHEJ/HiggsCouplingSettings.hh b/include/RHEJ/HiggsCouplingSettings.hh
index d31d915..206598a 100644
--- a/include/RHEJ/HiggsCouplingSettings.hh
+++ b/include/RHEJ/HiggsCouplingSettings.hh
@@ -1,20 +1,20 @@
/** \file
* \brief Defines the settings for Higgs boson coupling to gluons
*/
#pragma once
#include <limits>
-namespace RHEJ{
+namespace HEJ{
//! Settings for Higgs boson coupling to gluons
struct HiggsCouplingSettings{
//! Top quark mass
double mt = std::numeric_limits<double>::infinity();
//! Bottom quark mass
double mb = 4.7;
//! Whether to use impact factors
bool use_impact_factors = true;
//! Whether to include bottom quark effects
bool include_bottom = false;
};
}
diff --git a/include/RHEJ/Jacobian.hh b/include/RHEJ/Jacobian.hh
index ed20294..9d5dbe9 100644
--- a/include/RHEJ/Jacobian.hh
+++ b/include/RHEJ/Jacobian.hh
@@ -1,26 +1,26 @@
/** \file
* \brief Contains the Jacobian from changing arguments of a delta function
*
* The function contained computes the Jacobian which is gained from
* changing the delta function expressed in Jet momenta to Parton
* momenta. See Eqs. 10 and 11 in the developer manual.
*/
#pragma once
#include <vector>
#include "fastjet/PseudoJet.hh"
-namespace RHEJ{
+namespace HEJ{
/** \brief Computes Jacobian from changing delta functions
*
* Computes the Jacobian for changing the original delta functions
* expressed in terms of jet momenta to delta functions of the
* parton momenta in the resummation phase space
*/
double Jacobian(
std::vector<fastjet::PseudoJet> const & jets,
fastjet::PseudoJet const & q
);
}
diff --git a/include/RHEJ/JetSplitter.hh b/include/RHEJ/JetSplitter.hh
index 385870c..fe9b03f 100644
--- a/include/RHEJ/JetSplitter.hh
+++ b/include/RHEJ/JetSplitter.hh
@@ -1,57 +1,57 @@
/**
* \file
* \brief Declaration of the JetSplitter class
*/
#pragma once
#include "RHEJ/utility.hh"
#include "RHEJ/RNG.hh"
-namespace RHEJ {
+namespace HEJ {
//! Class to split jets into their constituents
class JetSplitter {
public:
struct SplitResult {
std::vector<fastjet::PseudoJet> constituents;
double weight;
};
//! Constructor
/**
* @param jet_def Jet definition
* @param min_pt Minimum jet transverse momentum
* @param ran Random number generator
*/
JetSplitter(
fastjet::JetDefinition jet_def, double min_pt,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
):
R_{jet_def.R()},
min_jet_pt_{min_pt},
jet_def_{jet_def},
ran_{ran}
{}
//! Split a get into constituents
/**
* @param j2split Jet to be split
* @param ncons Number of constituents
* @returns The constituent momenta
* together with the associated weight
*/
SplitResult split(fastjet::PseudoJet const & j2split, int ncons) const;
//! Maximum distance of constituents to jet axis
static constexpr double R_factor = 5./3.;
private:
SplitResult Split2(fastjet::PseudoJet const & j2split) const;
double sample_distance_2p(double & wt) const;
double R_;
double min_jet_pt_;
fastjet::JetDefinition jet_def_;
- std::reference_wrapper<RHEJ::RNG> ran_;
+ std::reference_wrapper<HEJ::RNG> ran_;
};
}
diff --git a/include/RHEJ/LesHouchesWriter.hh b/include/RHEJ/LesHouchesWriter.hh
index 06d3b30..8de8ddf 100644
--- a/include/RHEJ/LesHouchesWriter.hh
+++ b/include/RHEJ/LesHouchesWriter.hh
@@ -1,54 +1,54 @@
/** \file
* \brief Contains the writer for LesHouches output
*/
#pragma once
#include <fstream>
#include "RHEJ/EventWriter.hh"
#include "LHEF/LHEF.h"
-namespace RHEJ{
+namespace HEJ{
class Event;
//! Class for writing events to a file in the Les Houches Event File format
class LesHouchesWriter : public EventWriter{
public:
//! Constructor
/**
* @param file Name of output file
* @param heprup General process information
*/
LesHouchesWriter(std::string const & file, LHEF::HEPRUP heprup);
LesHouchesWriter(LesHouchesWriter const & other) = delete;
LesHouchesWriter & operator=(LesHouchesWriter const & other) = delete;
// TODO: in principle, this class should be movable
// but that somehow(?) breaks the write member function
LesHouchesWriter(LesHouchesWriter && other) = delete;
LesHouchesWriter & operator=(LesHouchesWriter && other) = delete;
~LesHouchesWriter() override;
//! Write an event to the file specified in the constructor
void write(Event const & ev) override;
private:
void write_init(){
writer_->init();
}
void rewrite_init();
LHEF::HEPRUP & heprup(){
return writer_->heprup;
}
LHEF::HEPEUP & hepeup(){
return writer_->hepeup;
}
std::fstream out_;
std::unique_ptr<LHEF::Writer> writer_;
};
}
diff --git a/include/RHEJ/MatrixElement.hh b/include/RHEJ/MatrixElement.hh
index 570c218..cad1e1b 100644
--- a/include/RHEJ/MatrixElement.hh
+++ b/include/RHEJ/MatrixElement.hh
@@ -1,208 +1,208 @@
/** \file
* \brief Contains the MatrixElement Class
*/
#pragma once
#include <functional>
#include "RHEJ/config.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/HiggsCouplingSettings.hh"
#include "CLHEP/Vector/LorentzVector.h"
-namespace RHEJ{
+namespace HEJ{
//! Class to calculate the squares of matrix elements
class MatrixElement{
public:
/** \brief MatrixElement Constructor
* @param alpha_s Function taking the renormalisation scale
* and returning the strong coupling constant
* @param conf General matrix element settings
*/
MatrixElement(
std::function<double (double)> alpha_s,
MatrixElementConfig conf
);
/**
* \brief regulated HEJ matrix element
* @param mur Value of the renormalisation scale
* @param incoming Incoming particles
* @param outgoing Outgoing particles
* @param check_momenta Special treatment for partons inside extremal jets
* @returns The HEJ matrix element including virtual corrections
*
* cf. eq. (22) in \cite Andersen:2011hs
* Incoming particles should be ordered by ascending z momentum.
* Outgoing particles should be ordered by ascending rapidity.
*
* \internal Relation to standard HEJ Met2: MatrixElement = Met2*shat^2/(pdfta*pdftb)
*/
double operator()(
double mur,
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
//! HEJ tree-level matrix element
/**
* @param mur Value of the renormalisation scale
* @param incoming Incoming particles
* @param outgoing Outgoing particles
* @param check_momenta Special treatment for partons inside extremal jets
* @returns The HEJ matrix element without virtual corrections
*
* cf. eq. (22) in \cite Andersen:2011hs
* Incoming particles should be ordered by ascending z momentum.
* Outgoing particles should be ordered by ascending rapidity.
*/
double tree(
double mur,
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
//! HEJ tree-level matrix element - parametric part
/**
* @param mur Value of the renormalisation scale
* @param incoming Incoming particles
* @param outgoing Outgoing particles
* @returns The parametric part of the tree matrix element
*
* cf. eq. (22) in \cite Andersen:2011hs
*
* The tree level matrix element factorises into a parametric part
* which depends on the theory parameters (alpha_s and scale)
* and a kinematic part comprising the dependence on the particle momenta
* and colour factors. This function returns the former.
*/
double tree_param(
double mur,
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
) const;
//! HEJ tree-level matrix element - kinematic part
/**
* @param incoming Incoming particles
* @param outgoing Outgoing particles
* @param check_momenta Special treatment for partons inside extremal jets
* @returns The kinematic part of the tree matrix element
*
* cf. eq. (22) in \cite Andersen:2011hs
* Incoming particles should be ordered by ascending z momentum.
* Outgoing particles should be ordered by ascending rapidity.
*
* The tree level matrix element factorises into a parametric part
* which depends on the theory parameters (alpha_s and scale)
* and a kinematic part comprising the dependence on the particle momenta
* and colour factors. This function returns the latter.
*/
double tree_kin(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
/**
* \brief Calculates the Virtual Corrections
* @param mur Value of the renormalisation scale
* @param in Incoming particles
* @param out Outgoing particles
* @returns The Virtual Corrections of the Matrix Element
*
* Incoming particles should be ordered by ascending z momentum.
* Outgoing particles should be ordered by ascending rapidity.
*
* The all order virtual corrections to LL in the MRK limit is
* given by replacing 1/t in the scattering amplitude according to the
* lipatov ansatz.
*
* cf. second-to-last line of eq. (22) in \cite Andersen:2011hs
* note that indices are off by one, i.e. out[0].p corresponds to p_1
*/
double virtual_corrections(
double mur,
std::array<Particle, 2> const & in,
std::vector<Particle> const & out
) const;
private:
//! \internal cf. last line of eq. (22) in \cite Andersen:2011hs
double omega0(
double alpha_s, double mur,
fastjet::PseudoJet const & q_j, double lambda
) const;
double tree_kin_jets(
std::array<Particle, 2> const & incoming,
std::vector<Particle> partons,
bool check_momenta
) const;
double tree_kin_Higgs(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
double tree_kin_Higgs_first(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
double tree_kin_Higgs_last(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
/**
* \internal
* \brief Higgs inbetween extremal partons.
*
* Note that in the case of unordered emission, the Higgs is *always*
* treated as if in between the extremal (FKL) partons, even if its
* rapidity is outside the extremal parton rapidities
*/
double tree_kin_Higgs_between(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const;
double tree_param_partons(
double alpha_s, double mur,
std::vector<Particle> const & partons
) const;
std::vector<int> in_extremal_jet_indices(
std::vector<fastjet::PseudoJet> const & partons
) const;
std::vector<Particle> tag_extremal_jet_partons(
std::array<Particle, 2> const & incoming,
std::vector<Particle> out_partons, bool check_momenta
) const;
double MH2_forwardH(
CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
pid::ParticleID type2,
CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
CLHEP::HepLorentzVector pH,
double t1, double t2
) const;
std::function<double (double)> alpha_s_;
MatrixElementConfig param_;
};
}
diff --git a/include/RHEJ/Mixmax.hh b/include/RHEJ/Mixmax.hh
index 60f2a4d..4fcaaba 100644
--- a/include/RHEJ/Mixmax.hh
+++ b/include/RHEJ/Mixmax.hh
@@ -1,31 +1,31 @@
/** \file
* \brief The Mixmax random number generator
*/
#pragma once
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/MixMaxRng.h>
#include "RHEJ/RNG.hh"
-namespace RHEJ {
+namespace HEJ {
//! MIXMAX random number generator
/**
* For details on MIXMAX, see \cite Savvidy:2014ana
*/
class Mixmax : public DefaultRNG {
public:
Mixmax() = default;
Mixmax(long seed): ran_{seed} {};
//! Generate pseudorandom number between 0 and 1
double flat() override {
return ran_.flat();
};
private:
CLHEP::MixMaxRng ran_;
};
}
diff --git a/include/RHEJ/PDF.hh b/include/RHEJ/PDF.hh
index 1dac8a4..a957ae5 100644
--- a/include/RHEJ/PDF.hh
+++ b/include/RHEJ/PDF.hh
@@ -1,73 +1,73 @@
/** \file
*
* \brief Contains all the necessary classes and functions for interaction with PDFs.
*/
#pragma once
#include <array>
#include "LHAPDF/LHAPDF.h"
#include "RHEJ/utility.hh"
#include "RHEJ/PDG_codes.hh"
-namespace RHEJ{
+namespace HEJ{
//! Class for interaction with a PDF set
class PDF {
public:
/**
* \brief PDF Constructor
* @param id Particle ID according to PDG
* @param beam1 Particle ID of particle in beam 1
* @param beam2 Particle ID of particle in beam 2
*/
PDF(int id, ParticleID beam1, ParticleID beam2);
/**
* \brief Calculate the pdf value x*f(x, q)
* @param beam_idx Beam number (0 or 1)
* @param x Momentum fraction
* @param q Energy scale
* @param id PDG particle id
* @returns x*f(x, q)
*
* Returns 0 if x or q are outside the range covered by the PDF set
*/
double pdfpt(size_t beam_idx, double x, double q, ParticleID id) const;
/**
* \brief Value of the strong coupling \f$\alpha_s(q)\f$ at the given scale
* @param q Renormalisation scale
* @returns Value of the strong coupling constant
*/
double Halphas(double q) const;
//! Check if the energy scale is within the range covered by the PDF set
/**
* @param q Energy Scale
* @returns true if q is within the covered range, false otherwise
*/
bool inRangeQ(double q) const;
//! Check if the momentum fraction is within the range covered by the PDF set
/**
* @param x Momentum Fraction
* @returns true if x is within the covered range, false otherwise
*/
bool inRangeX(double x) const;
#if defined LHAPDF_MAJOR_VERSION && LHAPDF_MAJOR_VERSION == 6
//! PDF id of the current set
int id() const;
#endif
private:
#if defined LHAPDF_MAJOR_VERSION && LHAPDF_MAJOR_VERSION == 6
std::unique_ptr<LHAPDF::PDF> pdf;
#endif
std::array<int, 2> beamtype;
};
}
diff --git a/include/RHEJ/PDG_codes.hh b/include/RHEJ/PDG_codes.hh
index 2294286..8b93ca3 100644
--- a/include/RHEJ/PDG_codes.hh
+++ b/include/RHEJ/PDG_codes.hh
@@ -1,92 +1,92 @@
/** \file PDG_codes.hh
* \brief Contains the Particle IDs of all relevant SM particles.
*
* Large enumeration included which has multiple entries for potential
* alternative names of different particles. There are also functions
* which can be used to determine if a particle is a parton or if
* it is a non-gluon boson.
*/
#pragma once
-namespace RHEJ {
+namespace HEJ {
//! particle ids according to PDG
namespace pid {
//! The possible particle identities. We use PDG IDs as standard.
enum ParticleID{
d = 1, /*!< Down Quark */
down = d, /*!< Down Quark */
u = 2, /*!< Up Quark */
up = u, /*!< Up Quark */
s = 3, /*!< Strange Quark */
strange = s, /*!< Strange Quark */
c = 4, /*!< Charm Quark */
charm = c, /*!< Charm Quark */
b = 5, /*!< Bottom Quark */
bottom = b, /*!< Bottom Quark */
t = 6, /*!< Top Quark */
top = t, /*!< Top Quark */
e = 11, /*!< Electron */
electron = e, /*!< Electron */
nu_e = 12, /*!< Electron Neutrino */
electron_neutrino = nu_e, /*!< Electron neutrino */
mu = 13, /*!< Muon */
muon = mu, /*!< Muon */
nu_mu = 14, /*!< Muon Neutrino */
muon_neutrino = nu_mu, /*!< Muon Neutrino */
tau = 15, /*!< Tau */
nu_tau = 16, /*!< Tau Neutrino */
tau_neutrino = nu_tau, /*!< Tau Neutrino */
d_bar = -d, /*!< Anti-Down Quark */
u_bar = -u, /*!< Anti-Up quark */
s_bar = -s, /*!< Anti-Strange Quark */
c_bar = -c, /*!< Anti-Charm Quark */
b_bar = -b, /*!< Anti-Bottom Quark */
t_bar = -t, /*!< Anti-Top Quark */
e_bar = -e, /*!< Positron */
nu_e_bar = -nu_e, /*!< Anti-Electron Neutrino */
mu_bar = -mu, /*!< Anti-Muon */
nu_mu_bar = -nu_mu, /*!< Anti-Muon Neutrino */
tau_bar = -tau, /*!< Anti-Tau */
nu_tau_bar = -nu_tau, /*!< Anti-Tau Neutrino */
gluon = 21, /*!< Gluon */
g = gluon, /*!< Gluon */
photon = 22, /*!< Photon */
gamma = photon, /*!< Photon */
Z = 23, /*!< Z Boson */
Wp = 24, /*!< W- Boson */
Wm = -Wp, /*!< W+ Boson */
h = 25, /*!< Higgs Boson */
Higgs = h, /*!< Higgs Boson */
higgs = h, /*!< Higgs Boson */
p = 2212, /*!< Proton */
proton = p, /*!< Proton */
p_bar = -p, /*!< Anti-Proton */
};
}
using ParticleID = pid::ParticleID;
/**
* \brief Function to determine if particle is a parton
* @param p PDG ID of particle
* @returns true if the particle is a parton, false otherwise
*/
inline
constexpr bool is_parton(ParticleID p){
return p == pid::gluon || std::abs(p) <= pid::top;
}
/**
* \brief function to determine if the particle is a photon, W, Z, or Higgs boson
* @param id PDG ID of particle
* @returns true if the partice is a A,W,Z, or H, false otherwise
*/
inline
constexpr bool is_AWZH_boson(ParticleID id){
return id == pid::Wm || (id >= pid::photon && id <= pid::Higgs);
}
}
diff --git a/include/RHEJ/PhaseSpacePoint.hh b/include/RHEJ/PhaseSpacePoint.hh
index 03f3917..3d6a60b 100644
--- a/include/RHEJ/PhaseSpacePoint.hh
+++ b/include/RHEJ/PhaseSpacePoint.hh
@@ -1,148 +1,148 @@
/** \file
* \brief Contains the PhaseSpacePoint Class
*/
#pragma once
#include <vector>
#include "RHEJ/utility.hh"
#include "RHEJ/config.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/JetSplitter.hh"
#include "RHEJ/RNG.hh"
-namespace RHEJ{
+namespace HEJ{
//! A point in resummation phase space
class PhaseSpacePoint{
public:
//! Default PhaseSpacePoint Constructor
PhaseSpacePoint() = default;
//! PhaseSpacePoint Constructor
/**
* @param ev Clustered Jet Event
* @param conf Configuration parameters
* @param ran Random number generator
*/
PhaseSpacePoint(
Event const & ev,
PhaseSpacePointConfig conf,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
);
//! Get phase space point weight
double weight() const{
return weight_;
}
//! Access incoming particles
std::array<Particle, 2> const & incoming() const{
return incoming_;
}
//! Access outgoing particles
std::vector<Particle> const & outgoing() const{
return outgoing_;
}
//! Particle decays
/**
* The key in the returned map corresponds to the index in the
* vector returned by outgoing()
*/
std::unordered_map<int, std::vector<Particle>> const & decays() const{
return decays_;
}
static constexpr int ng_max = 1000; //< maximum number of extra gluons
private:
std::vector<fastjet::PseudoJet> cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const;
bool pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const;
bool pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const;
int sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets);
int sample_ng_jets(int ng, std::vector<fastjet::PseudoJet> const & Born_jets);
double probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const;
std::vector<fastjet::PseudoJet> gen_non_jet(
int ng_non_jet,
double ptmin, double ptmax
);
void rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
);
std::vector<fastjet::PseudoJet> reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
);
bool jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const;
void reconstruct_incoming(std::array<Particle, 2> const & Born_incoming);
double phase_space_normalisation(
int num_Born_jets,
int num_res_partons
) const;
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets, int ng_jets
);
std::vector<int> distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
);
std::vector<fastjet::PseudoJet> split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np_in_jet
);
bool split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const;
template<class Particle>
Particle const & most_backward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle const & most_forward_FKL(
std::vector<Particle> const & partons
) const;
template<class Particle>
Particle & most_backward_FKL(std::vector<Particle> & partons) const;
template<class Particle>
Particle & most_forward_FKL(std::vector<Particle> & partons) const;
bool extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const;
void copy_AWZH_boson_from(Event const & event);
bool momentum_conserved() const;
bool unob_, unof_;
double weight_;
PhaseSpacePointConfig param_;
std::array<Particle, 2> incoming_;
std::vector<Particle> outgoing_;
//! \internal Particle decays in the format {outgoing index, decay products}
std::unordered_map<int, std::vector<Particle>> decays_;
- std::reference_wrapper<RHEJ::RNG> ran_;
+ std::reference_wrapper<HEJ::RNG> ran_;
};
}
diff --git a/include/RHEJ/ProgressBar.hh b/include/RHEJ/ProgressBar.hh
index 2105032..402c91f 100644
--- a/include/RHEJ/ProgressBar.hh
+++ b/include/RHEJ/ProgressBar.hh
@@ -1,89 +1,89 @@
/** \file
* \brief Contains the ProgressBar class
*/
#pragma once
#include <ostream>
#include <functional>
#include <stdexcept>
-namespace RHEJ {
+namespace HEJ {
//! Class representing (and printing) a progress bar
template<typename T>
class ProgressBar {
public:
//! Constructor
/**
* @param out Output stream
* @param max Maximum value of the progress parameter
*
* This will print a fixed-width progress bar, which is initially at 0%.
*/
ProgressBar(std::ostream & out, T max) :
out_{out}, max_{max}
{
if(max <= 0) {
throw std::invalid_argument{
"Maximum in progress bar has to be positive"
};
}
print_bar();
}
//! Increment progress
/**
* @param count Value to add to the current progress parameter
*
* After updating the progess parameter, the progress bar is updated
* to a percentage that corresponds to the ratio of the current and
* maximum progress parameters.
*/
ProgressBar & increment(T count) {
counter_ += count;
update_progress();
return *this;
}
//! Increase progress by one unit
/**
* After updating the progess parameter, the progress bar is updated
* to a percentage that corresponds to the ratio of the current and
* maximum progress parameters.
*/
ProgressBar & operator++() {
++counter_;
update_progress();
return *this;
}
private:
void update_progress() {
counter_ = std::min(counter_, max_);
const int ndots = (100*counter_)/max_;
const int new_dots = ndots - ndots_;
if(new_dots > 0) {
for(int dot = 0; dot < new_dots; ++dot) out_.get() << '.';
out_.get().flush();
ndots_ = ndots;
}
}
void print_bar() const {
out_.get() << "0% ";
for(int i = 10; i <= 100; i+= 10){
out_.get() << " " + std::to_string(i) + "%";
}
out_.get() << "\n|";
for(int i = 10; i <= 100; i+= 10){
out_.get() << "---------|";
}
out_.get() << '\n';
}
std::reference_wrapper<std::ostream> out_;
T counter_ = 0;
T ndots_ = 0;
T max_;
};
}
diff --git a/include/RHEJ/RNG.hh b/include/RHEJ/RNG.hh
index e1965a8..f479d8a 100644
--- a/include/RHEJ/RNG.hh
+++ b/include/RHEJ/RNG.hh
@@ -1,41 +1,41 @@
/** \file
* \brief Interface for pseudorandom number generators
*
* We select our random number generator at runtime according to the
* configuration file. This interface guarantees that we can use all
* generators in the same way.
*/
#pragma once
#include <limits>
-namespace RHEJ {
+namespace HEJ {
//! Interface for random number generator
struct RNG {
//! Generate random number in (0,1]
virtual double flat() = 0;
//! Minimum number that can be generated
virtual unsigned min() const = 0;
//! Maximum number that can be generated
virtual unsigned max() const = 0;
//! Generate random number in [min(), max()]
virtual unsigned operator()() = 0;
virtual ~RNG() = default;
};
//! Helper struct with default implementations
struct DefaultRNG : virtual RNG {
unsigned min() const override {
return 0u;
}
unsigned max() const override {
return std::numeric_limits<unsigned>::max() - 1;
}
unsigned operator()() override {
return flat()*std::numeric_limits<unsigned int>::max();
}
};
}
diff --git a/include/RHEJ/Ranlux64.hh b/include/RHEJ/Ranlux64.hh
index b634f6a..4bce5cb 100644
--- a/include/RHEJ/Ranlux64.hh
+++ b/include/RHEJ/Ranlux64.hh
@@ -1,29 +1,29 @@
/** \file
* \brief Contains a class for the ranlux64 random number generator
*/
#pragma once
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
#include "RHEJ/RNG.hh"
-namespace RHEJ {
+namespace HEJ {
//! Ranlux64 random number generator
/**
* For details on ranlux64, see \cite Luscher:1993dy, \cite James:1993np
*/
class Ranlux64 : public DefaultRNG {
public:
Ranlux64();
Ranlux64(std::string const & seed_file);
//! Generate pseudorandom number between 0 and 1
double flat() override;
private:
CLHEP::Ranlux64Engine ran_;
};
}
diff --git a/include/RHEJ/RivetAnalysis.hh b/include/RHEJ/RivetAnalysis.hh
index 512e326..e176dba 100644
--- a/include/RHEJ/RivetAnalysis.hh
+++ b/include/RHEJ/RivetAnalysis.hh
@@ -1,69 +1,69 @@
/** \file
* \brief HEJ 2 interface to rivet analyses
*/
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "RHEJ/Analysis.hh"
#include "RHEJ/HepMCInterface.hh"
-namespace RHEJ {
+namespace HEJ {
class Event;
}
namespace Rivet {
class AnalysisHandler;
}
namespace YAML {
class Node;
}
-namespace RHEJ {
+namespace HEJ {
/**
* @brief Class representing a Rivet analysis
*
* This class inherits from Analysis and can therefore be used
* like any other HEJ 2 analysis.
*/
- class RivetAnalysis: public RHEJ::Analysis {
+ class RivetAnalysis: public HEJ::Analysis {
public:
static std::unique_ptr<Analysis> create(YAML::Node const & config);
//! Constructor
/**
* @param config Configuration parameters
*
* config["analysis"] should be the name of a single Rivet analysis or
* a list of Rivet analyses. config["output"] is the prefix for
* the .yoda output files.
*/
RivetAnalysis(YAML::Node const & config);
//! Pass an event to the underlying Rivet analysis
- void fill(RHEJ::Event const & event, RHEJ::Event const &) override;
- bool pass_cuts(RHEJ::Event const &, RHEJ::Event const &) override
+ void fill(HEJ::Event const & event, HEJ::Event const &) override;
+ bool pass_cuts(HEJ::Event const &, HEJ::Event const &) override
{return true;} //< no additional cuts are applied
void finalise() override;
private:
std::vector<std::string> analyses_names_;
const std::string output_name_;
/// struct to organise the infos per rivet run/scale setting
struct rivet_info {
std::unique_ptr<Rivet::AnalysisHandler> handler;
std::string name;
- RHEJ::HepMCInterface hepmc;
+ HEJ::HepMCInterface hepmc;
};
std::vector<rivet_info> rivet_runs_;
/**
* \internal
* @brief Calculates the scale variation from the first event for the output file
*/
- void init(RHEJ::Event const & event);
+ void init(HEJ::Event const & event);
bool first_event_;
};
}
diff --git a/include/RHEJ/ScaleFunction.hh b/include/RHEJ/ScaleFunction.hh
index 43c88c9..c2cc22f 100644
--- a/include/RHEJ/ScaleFunction.hh
+++ b/include/RHEJ/ScaleFunction.hh
@@ -1,155 +1,155 @@
/** \file
* \brief Functions to calculate the (renormalisation and factorisation) scales for an event
*/
#pragma once
#include <functional>
#include <vector>
#include <string>
#include <memory>
-namespace RHEJ{
+namespace HEJ{
class Event;
//! Class to calculate the scale associated with an event
class ScaleFunction {
public:
//! Constructor
/**
* @param name Name of the scale choice (e.g. H_T)
* @param fun Function used to calculate the scale
*/
ScaleFunction(std::string name, std::function<double(Event const &)> fun):
name_{std::move(name)},
fun_{std::move(fun)}
{}
//! Name of the scale choice
std::string const & name() const {
return name_;
}
//! Calculate the scale associated with an event
double operator()(Event const & ev) const {
return fun_(ev);
}
private:
friend ScaleFunction operator*(double factor, ScaleFunction base_scale);
friend ScaleFunction operator/(ScaleFunction base_scale, double denom);
std::string name_;
std::function<double(Event const &)> fun_;
};
//! Multiply a scale choice by a constant factor
/**
* For example, multiplying 0.5 and a scale function for H_T
* will result in a scale function for H_T/2.
*/
ScaleFunction operator*(double factor, ScaleFunction base_scale);
//! Divide a scale choice by a constant factor
/**
* For example, dividing a scale function for H_T by 2
* will result in a scale function for H_T/2.
*/
ScaleFunction operator/(ScaleFunction base_scale, double denom);
//! Calculate \f$H_T\f$ for the input event
/**
* \f$H_T\f$ is the sum of the (scalar) transverse momenta of all
* final-state particles
*/
double H_T(Event const &);
//! The maximum of all (scalar) jet transverse momentum
double max_jet_pt(Event const &);
//! The invariant mass of the sum of all jet momenta
double jet_invariant_mass(Event const &);
//! Invariant mass of the two hardest jets
double m_j1j2(Event const &);
//! Functor that returns a fixed scale regardless of the input event
class FixedScale {
public:
explicit FixedScale(double mu): mu_{mu} {}
double operator()(Event const &) const {
return mu_;
}
private:
double mu_;
};
class ParameterDescription;
//! Generate combinations of renormalisation and factorisation scales
class ScaleGenerator{
public:
ScaleGenerator() = default;
/** \brief Constructor
* @param scale_functions_begin Iterator to first base scale
* @param scale_functions_end Iterator past last base scale
* @param scale_factors_begin Iterator to first scale factor
* @param scale_factors_end Iterator past last scale factor
* @param max_scale_ratio Maximum ratio between renormalisation
* and factorisation scale
*/
template<class ScaleFunIterator, class FactorIterator>
ScaleGenerator(
ScaleFunIterator scale_functions_begin,
ScaleFunIterator scale_functions_end,
FactorIterator scale_factors_begin,
FactorIterator scale_factors_end,
double max_scale_ratio
):
scales_(scale_functions_begin, scale_functions_end),
scale_factors_(scale_factors_begin, scale_factors_end),
max_scale_ratio_{max_scale_ratio}
{
gen_descriptions();
}
/** \brief Constructor
* @param scales Base scales
* @param scale_factors Factors to multiply the base scales
* @param max_scale_ratio Maximum ratio between renormalisation
* and factorisation scale
*/
ScaleGenerator(
std::vector<ScaleFunction> scales,
std::vector<double> scale_factors,
double max_scale_ratio
):
scales_(std::move(scales)),
scale_factors_(std::move(scale_factors)),
max_scale_ratio_{max_scale_ratio}
{
gen_descriptions();
}
/** \brief Adjust event parameters, adding scale variation
*
* The central renormalisation and factorisation scale of the returned
* event is given be the first base scale passed to the constructor.
* The scale variation (stored in event.variation()) is constructed as
* follows: For each base scale according to the arguments of the
* constructor we add one variation where both renormalisation and
* factorisation scale are set according to the current base scale.
* Then, all combinations where the base renormalisation and factorisation
* scales are multiplied by one of the scale factors are added.
* The case were both scales are multiplied by one is skipped.
* Scale combinations where the ratio is larger than the maximum scale ratio
* set in the constructor are likewise discarded.
*/
Event operator()(Event event) const;
private:
void gen_descriptions();
std::vector<ScaleFunction> scales_;
std::vector<double> scale_factors_;
std::vector<std::shared_ptr<ParameterDescription>> descriptions_;
double max_scale_ratio_;
};
}
diff --git a/include/RHEJ/YAMLreader.hh b/include/RHEJ/YAMLreader.hh
index a831cef..e2aaef9 100644
--- a/include/RHEJ/YAMLreader.hh
+++ b/include/RHEJ/YAMLreader.hh
@@ -1,244 +1,244 @@
/** \file
* \brief The file which handles the configuration file parameters
*
* The configuration files parameters are read and then stored
* within this objects.
*/
#pragma once
#include "yaml-cpp/yaml.h"
#include "RHEJ/config.hh"
#include "RHEJ/exceptions.hh"
-namespace RHEJ{
+namespace HEJ{
//! Load configuration from file
/**
* @param config_file Name of the YAML configuration file
* @returns The HEJ 2 configuration
*/
Config load_config(std::string const & config_file);
//! Set option using the corresponding YAML entry
/**
* @param setting Option variable to be set
* @param yaml Root of the YAML configuration
* @param names Name of the entry
*
* If the entry does not exist or has the wrong type or format
* an exception is thrown.
*
* For example
* @code
* set_from_yaml(foobar, yaml, "foo", "bar")
* @endcode
* is equivalent to
* @code
* foobar = yaml["foo"]["bar"].as<decltype(foobar)>()
* @endcode
* with improved diagnostics on errors.
*
* @see set_from_yaml_if_defined
*/
template<typename T, typename... YamlNames>
void set_from_yaml(
T & setting,
YAML::Node const & yaml, YamlNames const & ... names
);
//! Set option using the corresponding YAML entry, if present
/**
* @param setting Option variable to be set
* @param yaml Root of the YAML configuration
* @param names Name of the entry
*
* This function works similar to set_from_yaml, but does not
* throw any exception if the requested YAML entry does not exist.
*
* @see set_from_yaml
*/
template<typename T, typename... YamlNames>
void set_from_yaml_if_defined(
T & setting,
YAML::Node const & yaml, YamlNames const & ... names
);
//! Extract jet parameters from YAML configuration
JetParameters get_jet_parameters(
YAML::Node const & node, std::string const & entry
);
//! Extract Higgs coupling settings from YAML configuration
HiggsCouplingSettings get_Higgs_coupling(
YAML::Node const & node, std::string const & entry
);
//! Extract scale setting parameters from YAML configuration
ScaleConfig to_ScaleConfig(YAML::Node const & yaml);
//! Extract random number generator settings from YAML configuration
RNGConfig to_RNGConfig(YAML::Node const & node, std::string const & entry);
//! Convert a particle name to the corresponding PDG particle ID
ParticleID to_ParticleID(std::string const & particle_name);
//! Check whether all options in configuration are supported
/**
* @param conf Configuration to be checked
* @param supported Tree of supported options
*
* If conf contains an entry that does not appear in supported
* an unknown_option exception is thrown. Sub-entries of "analysis"
* (if present) are not checked.
*
* @see unknown_option
*/
void assert_all_options_known(
YAML::Node const & conf, YAML::Node const & supported
);
namespace detail{
void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml);
void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml);
void set_from_yaml(ParticleID & setting, YAML::Node const & yaml);
void set_from_yaml(OutputFile & setting, YAML::Node const & yaml);
inline
void set_from_yaml(YAML::Node & setting, YAML::Node const & yaml){
setting = yaml;
}
template<typename Scalar>
void set_from_yaml(Scalar & setting, YAML::Node const & yaml){
assert(yaml);
if(!yaml.IsScalar()){
throw invalid_type{"value is not a scalar"};
}
try{
setting = yaml.as<Scalar>();
}
catch(...){
throw invalid_type{
"value " + yaml.as<std::string>()
+ " cannot be converted to a " + type_string(setting)
};
}
}
template<typename T>
void set_from_yaml(optional<T> & setting, YAML::Node const & yaml){
T tmp;
set_from_yaml(tmp, yaml);
setting = tmp;
}
template<typename T>
void set_from_yaml(std::vector<T> & setting, YAML::Node const & yaml){
assert(yaml);
// special case: treat a single value like a vector with one element
if(yaml.IsScalar()){
setting.resize(1);
return set_from_yaml(setting.front(), yaml);
}
if(yaml.IsSequence()){
setting.resize(yaml.size());
for(size_t i = 0; i < setting.size(); ++i){
set_from_yaml(setting[i], yaml[i]);
}
return;
}
throw invalid_type{""};
}
template<typename T, typename FirstName, typename... YamlNames>
void set_from_yaml(
T & setting,
YAML::Node const & yaml, FirstName const & name,
YamlNames && ... names
){
if(!yaml[name]) throw missing_option{""};
set_from_yaml(
setting,
yaml[name], std::forward<YamlNames>(names)...
);
}
template<typename T>
void set_from_yaml_if_defined(T & setting, YAML::Node const & yaml){
return set_from_yaml(setting, yaml);
}
template<typename T, typename FirstName, typename... YamlNames>
void set_from_yaml_if_defined(
T & setting,
YAML::Node const & yaml, FirstName const & name,
YamlNames && ... names
){
if(!yaml[name]) return;
set_from_yaml_if_defined(
setting,
yaml[name], std::forward<YamlNames>(names)...
);
}
}
template<typename T, typename... YamlNames>
void set_from_yaml(
T & setting,
YAML::Node const & yaml, YamlNames const & ... names
){
try{
detail::set_from_yaml(setting, yaml, names...);
}
catch(invalid_type const & ex){
throw invalid_type{
"In option " + join(": ", names...) + ": " + ex.what()
};
}
catch(missing_option const &){
throw missing_option{
"No entry for mandatory option " + join(": ", names...)
};
}
catch(std::invalid_argument const & ex){
throw missing_option{
"In option " + join(": ", names...) + ":"
" invalid value " + ex.what()
};
}
}
template<typename T, typename... YamlNames>
void set_from_yaml_if_defined(
T & setting,
YAML::Node const & yaml, YamlNames const & ... names
){
try{
detail::set_from_yaml_if_defined(setting, yaml, names...);
}
catch(invalid_type const & ex){
throw invalid_type{
"In option " + join(": ", names...) + ": " + ex.what()
};
}
catch(std::invalid_argument const & ex){
throw missing_option{
"In option " + join(": ", names...) + ":"
" invalid value " + ex.what()
};
}
}
}
namespace YAML {
template<>
- struct convert<RHEJ::OutputFile> {
- static Node encode(RHEJ::OutputFile const & outfile);
- static bool decode(Node const & node, RHEJ::OutputFile & out);
+ struct convert<HEJ::OutputFile> {
+ static Node encode(HEJ::OutputFile const & outfile);
+ static bool decode(Node const & node, HEJ::OutputFile & out);
};
}
diff --git a/include/RHEJ/config.hh b/include/RHEJ/config.hh
index 1b6a2f8..36a7408 100644
--- a/include/RHEJ/config.hh
+++ b/include/RHEJ/config.hh
@@ -1,175 +1,175 @@
/** \file
* \brief HEJ 2 configuration parameters
*/
#pragma once
#include <string>
#include <memory>
#include "fastjet/JetDefinition.hh"
#include "yaml-cpp/yaml.h"
#include "RHEJ/event_types.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/HiggsCouplingSettings.hh"
#include "RHEJ/optional.hh"
#include "RHEJ/output_formats.hh"
#include "RHEJ/ScaleFunction.hh"
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
//! Jet parameters
struct JetParameters{
fastjet::JetDefinition def; /**< Jet Definition */
double min_pt; /**< Minimum Jet Transverse Momentum */
};
//! Settings for scale variation
struct ScaleConfig{
//! Base scale choices
std::vector<ScaleFunction> base;
//! Factors for multiplicative scale variation
std::vector<double> factors;
//! Maximum ratio between renormalisation and factorisation scale
double max_ratio;
};
//! Settings for random number generator
struct RNGConfig {
//! Random number generator name
std::string name;
//! Optional initial seed
optional<std::string> seed;
};
/**! Possible treatments for fixed-order input events.
*
* The program will decide on how to treat an event based on
* the value of this enumeration.
*/
enum class EventTreatment{
reweight, /**< Perform resummation */
keep, /**< Keep the event */
discard, /**< Discard the event */
};
//! Container to store the treatments for various event types
using EventTreatMap = std::map<event_type::EventType, EventTreatment>;
/**! Input parameters.
*
* This struct handles stores all configuration parameters
* needed in a HEJ 2 run.
*
* \internal To add a new option:
* 1. Add a member to the Config struct.
* 2. Inside "src/YAMLreader.cc":
* - Add the option name to the "supported" Node in
* get_supported_options.
* - Initialise the new Config member in to_Config.
* The functions set_from_yaml (for mandatory options) and
* set_from_yaml_if_defined (non-mandatory) may be helpful.
* 3. Add a new entry (with short description) to config.yaml
* 4. Update the user documentation in "doc/Sphinx/"
*/
struct Config {
//! Parameters for scale variation
ScaleConfig scales;
//! Resummation jet properties
JetParameters resummation_jets;
//! Fixed-order jet properties
JetParameters fixed_order_jets;
//! Minimum transverse momentum for extremal partons
double min_extparton_pt;
//! Maximum transverse momentum fraction from soft radiation in extremal jets
double max_ext_soft_pt_fraction;
//! Number of resummation configurations to generate per fixed-order event
int trials;
//! Whether to include the logarithmic correction from \f$\alpha_s\f$ running
bool log_correction;
//! Whether to perform unweighting
bool unweight;
//! Event output files names and formats
std::vector<OutputFile> output;
//! Parameters for random number generation
RNGConfig rng;
//! Map to decide what to do for different event types
EventTreatMap treat;
//! Parameters for custom analyses
YAML::Node analysis_parameters;
//! Settings for effective Higgs-gluon coupling
HiggsCouplingSettings Higgs_coupling;
};
//! Configuration options for the PhaseSpacePoint class
struct PhaseSpacePointConfig {
//! Properties of resummation jets
JetParameters jet_param;
//! Minimum transverse momentum for extremal partons
double min_extparton_pt;
//! Maximum transverse momentum fraction from soft radiation in extremal jets
double max_ext_soft_pt_fraction;
};
//! Configuration options for the MatrixElement class
struct MatrixElementConfig {
//! Jet properties
JetParameters jet_param;
//! Whether to include the logarithmic correction from \f$\alpha_s\f$ running
bool log_correction;
//! Settings for effective Higgs-gluon coupling
HiggsCouplingSettings Higgs_coupling;
};
//! Configuration options for the EventReweighter class
struct EventReweighterConfig {
//! Settings for phase space point generation
PhaseSpacePointConfig psp_config;
//! Settings for matrix element calculation
MatrixElementConfig ME_config;
//! Properties of resummation jets
JetParameters jet_param;
//! Treatment of the various event types
EventTreatMap treat;
};
/**! Extract PhaseSpacePointConfig from Config
*
* \internal We do not provide a PhaseSpacePointConfig constructor from Config
* so that PhaseSpacePointConfig remains an aggregate.
* This faciliates writing client code (e.g. the HEJ fixed-order generator)
* that creates a PhaseSpacePointConfig *without* a Config object.
*
* @see to_MatrixElementConfig, to_EventReweighterConfig
*/
inline
PhaseSpacePointConfig to_PhaseSpacePointConfig(Config const & conf) {
return {conf.resummation_jets, conf.min_extparton_pt, conf.max_ext_soft_pt_fraction};
}
/**! Extract MatrixElementConfig from Config
*
* @see to_PhaseSpacePointConfig, to_EventReweighterConfig
*/
inline
MatrixElementConfig to_MatrixElementConfig(Config const & conf) {
return {conf.resummation_jets, conf.log_correction, conf.Higgs_coupling};
}
/**! Extract EventReweighterConfig from Config
*
* @see to_PhaseSpacePointConfig, to_MatrixElementConfig
*/
inline
EventReweighterConfig to_EventReweighterConfig(Config const & conf) {
return {
to_PhaseSpacePointConfig(conf),
to_MatrixElementConfig(conf),
conf.resummation_jets, conf.treat
};
}
-} // namespace RHEJ
+} // namespace HEJ
diff --git a/include/RHEJ/event_types.hh b/include/RHEJ/event_types.hh
index 23ca618..992a3a6 100644
--- a/include/RHEJ/event_types.hh
+++ b/include/RHEJ/event_types.hh
@@ -1,42 +1,42 @@
/** \file
* \brief Define different types of events.
*
*/
#pragma once
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
//! Namespace for event types
namespace event_type{
//! Possible event types
enum EventType: size_t{
FKL, /**< FKL-type event */
unordered_backward, /**< event with unordered backward emission */
unordered_forward, /**< event with unordered forward emission */
nonHEJ, /**< event configuration not covered by HEJ */
no_2_jets, /**< event with less than two jets */
bad_final_state, /**< event with an unsupported final state */
unob = unordered_backward,
unof = unordered_forward,
first_type = FKL,
last_type = bad_final_state
};
//! Event type names
/**
* For example, names[FKL] is the string "FKL"
*/
static constexpr auto names = make_array(
"FKL",
"unordered backward",
"unordered forward",
"nonHEJ",
"no 2 jets",
"bad final state"
);
}
}
diff --git a/include/RHEJ/exceptions.hh b/include/RHEJ/exceptions.hh
index 74924d6..687edf1 100644
--- a/include/RHEJ/exceptions.hh
+++ b/include/RHEJ/exceptions.hh
@@ -1,53 +1,53 @@
/** \file
* \brief Custom exception classes
*/
#pragma once
#include <stdexcept>
-namespace RHEJ{
+namespace HEJ{
//! Exception indicating wrong option type
/**
* This exception is thrown if a configuration option has
* the wrong type (e.g. 'trials' is not set to a number)
*/
struct invalid_type: std::invalid_argument {
explicit invalid_type(std::string const & what):
std::invalid_argument{what} {};
explicit invalid_type(char const * what):
std::invalid_argument{what} {};
};
//! Exception indicating unknown option
/**
* This exception is thrown if an unknown configuration option
* is set (e.g. the 'trials' setting is misspelt as 'trails')
*/
struct unknown_option: std::invalid_argument {
explicit unknown_option(std::string const & what):
std::invalid_argument{what} {};
explicit unknown_option(char const * what):
std::invalid_argument{what} {};
};
//! Exception indicating missing option setting
/**
* This exception is thrown if a mandatory configuration option
* (e.g. 'trials') is not set.
*/
struct missing_option: std::logic_error {
explicit missing_option(std::string const & what):
std::logic_error{what} {};
explicit missing_option(char const * what):
std::logic_error{what} {};
};
//! Exception indicating functionality that has not been implemented yet
struct not_implemented: std::logic_error {
explicit not_implemented(std::string const & what):
std::logic_error{what} {};
explicit not_implemented(char const * what):
std::logic_error{what} {};
};
}
diff --git a/include/RHEJ/get_analysis.hh b/include/RHEJ/get_analysis.hh
index efff59b..8a3d46c 100644
--- a/include/RHEJ/get_analysis.hh
+++ b/include/RHEJ/get_analysis.hh
@@ -1,30 +1,30 @@
/** \file
* \brief Contains the get_analysis function
*/
#pragma once
#include <memory>
#include <string>
#include "RHEJ/optional.hh"
#include "RHEJ/Analysis.hh"
namespace YAML{
class Node;
}
-namespace RHEJ{
+namespace HEJ{
//! Load an analysis
/**
* @param parameters Analysis parameters
* @returns A pointer to an Analysis instance
*
* If parameters["plugin"] exists, an analysis (deriving from the
* \ref Analysis class) will be loaded from the library parameters["plugin"].
* Otherwise, if parameters["rivet"] exists, the corresponding RivetAnalysis
* will be loaded. If none of these parameters are specified, a pointer to
* the default EmptyAnalysis is returned.
*/
std::unique_ptr<Analysis> get_analysis(YAML::Node const & parameters);
}
diff --git a/include/RHEJ/kinematics.hh b/include/RHEJ/kinematics.hh
index 3debccf..01473ac 100644
--- a/include/RHEJ/kinematics.hh
+++ b/include/RHEJ/kinematics.hh
@@ -1,21 +1,21 @@
/** \file
* \brief Contains function to compute the incoming momentum from outgoing.
*/
#pragma once
#include <tuple>
#include <vector>
namespace fastjet{
class PseudoJet;
}
-namespace RHEJ{
+namespace HEJ{
class Particle;
/** \brief Compute the incoming momentum from momentum conservation.
*/
std::tuple<fastjet::PseudoJet, fastjet::PseudoJet> incoming_momenta(
std::vector<Particle> const & outgoing /**< Outgoing particles */
);
}
diff --git a/include/RHEJ/make_RNG.hh b/include/RHEJ/make_RNG.hh
index f3d94c9..3c8210e 100644
--- a/include/RHEJ/make_RNG.hh
+++ b/include/RHEJ/make_RNG.hh
@@ -1,28 +1,28 @@
/** \file
* \brief Declares a factory function for random number generators
*/
#pragma once
#include <memory>
#include <string>
#include "RHEJ/RNG.hh"
#include "RHEJ/optional.hh"
-namespace RHEJ {
+namespace HEJ {
//! Factory function for random number generators
/**
* @param name Name of the random number generator
* @param seed Optional seed
* @returns A pointer to an instance of a random number generator
*
* At present, name should be one of "ranlux64" or "mixmax" (case insensitive).
* The interpretation of the seed depends on the random number generator.
* For ranlux64, it is the name of a seed file. For mixmax it should be a
* string convertible to a long integer.
*/
- std::unique_ptr<RHEJ::RNG> make_RNG(
+ std::unique_ptr<HEJ::RNG> make_RNG(
std::string const & name,
optional<std::string> const & seed
);
}
diff --git a/include/RHEJ/make_writer.hh b/include/RHEJ/make_writer.hh
index 2e5d380..f53da6e 100644
--- a/include/RHEJ/make_writer.hh
+++ b/include/RHEJ/make_writer.hh
@@ -1,33 +1,33 @@
/** \file
* \brief Declares a factory function for event writers
*/
#pragma once
#include <string>
#include <memory>
#include "RHEJ/output_formats.hh"
#include "RHEJ/EventWriter.hh"
namespace LHEF{
struct HEPRUP;
}
-namespace RHEJ{
+namespace HEJ{
//! Factory function for event writers
/**
* @param format The format of the output file
* @param outfile The name of the output file
* @param heprup General process information
* @returns A pointer to an instance of an EventWriter
* for the desired format
*/
std::unique_ptr<EventWriter> make_format_writer(
FileFormat format,
std::string const & outfile,
LHEF::HEPRUP const & heprup
);
}
diff --git a/include/RHEJ/optional.hh b/include/RHEJ/optional.hh
index 5f2d6e6..2f57eab 100644
--- a/include/RHEJ/optional.hh
+++ b/include/RHEJ/optional.hh
@@ -1,24 +1,24 @@
/** \file
* \brief Defines the optional type
*
* The C++14 standard introduces the std::optional type.
* If C++14 is not available, we use the optional type from boost instead.
*/
#pragma once
#if __cplusplus <= 201402L
#include <boost/optional.hpp>
#else
#include <optional>
#endif
-namespace RHEJ{
+namespace HEJ{
#if __cplusplus <= 201402L
template<typename T>
using optional = boost::optional<T>;
#else
template<typename T>
using optional = std::optional<T>;
#endif
}
diff --git a/include/RHEJ/output_formats.hh b/include/RHEJ/output_formats.hh
index e60d65b..09cb884 100644
--- a/include/RHEJ/output_formats.hh
+++ b/include/RHEJ/output_formats.hh
@@ -1,34 +1,34 @@
/** \file
* \brief Defines formats for output to event files
*/
#pragma once
#include <string>
#include <stdexcept>
-namespace RHEJ{
+namespace HEJ{
//! Supported event file formats
enum FileFormat{
Les_Houches, /*!< Les Houches Output */
HepMC /*!< HepMC Output */
};
//! Convert a file format to a string
inline std::string to_string(FileFormat f){
switch(f){
case Les_Houches: return "Les Houches";
case HepMC: return "HepMC";
default:
throw std::logic_error("unhandled file format");
}
}
//! Output file specification
struct OutputFile{
std::string name; /**< Output File Name */
FileFormat format; /**< Output File Format */
};
}
diff --git a/include/RHEJ/resummation_jet_momenta.hh b/include/RHEJ/resummation_jet_momenta.hh
index 8e42f5b..2a9e529 100644
--- a/include/RHEJ/resummation_jet_momenta.hh
+++ b/include/RHEJ/resummation_jet_momenta.hh
@@ -1,20 +1,20 @@
/** \file
* \brief Function to calculate the momenta of resummation jets
*/
#pragma once
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
/**
* \brief Calculate the resummation jet momenta
* @param p_born born Jet Momenta
* @param qperp Sum of non-jet Parton Transverse Momenta
* @returns Resummation Jet Momenta
*/
std::vector<fastjet::PseudoJet> resummation_jet_momenta(
std::vector<fastjet::PseudoJet> const & p_born,
fastjet::PseudoJet const & qperp
);
}
diff --git a/include/RHEJ/stream.hh b/include/RHEJ/stream.hh
index 4a10a14..8f27516 100644
--- a/include/RHEJ/stream.hh
+++ b/include/RHEJ/stream.hh
@@ -1,33 +1,33 @@
/** \file
* \brief Declares input streams
*/
#pragma once
#include <memory>
#include <fstream>
#include <boost/iostreams/filtering_stream.hpp>
-namespace RHEJ{
+namespace HEJ{
//! Small wrapper around boost's filtering_istream
class istream {
using boost_istream = boost::iostreams::filtering_istream;
public:
//! Constructor
/**
* @param filename Name of input file
*/
explicit istream(std::string const & filename);
//! Conversion to boost_istream
operator boost_istream& () const noexcept {
return *stream_;
}
private:
std::ifstream file_;
std::unique_ptr<boost_istream> stream_;
};
}
diff --git a/include/RHEJ/uno.hh b/include/RHEJ/uno.hh
index b583642..550184d 100644
--- a/include/RHEJ/uno.hh
+++ b/include/RHEJ/uno.hh
@@ -1,65 +1,65 @@
/** \file uno.hh
* \brief Functions for determining if event is unordered.
*/
#pragma once
#include "RHEJ/utility.hh"
#include "RHEJ/PDG_codes.hh"
-namespace RHEJ{
+namespace HEJ{
//! Check if an event has an unordered backward gluon emission
/**
* @param incoming Incoming particles in ascending pz
* @param outgoing Outgoing particles in ascending rapidity
* @returns true iff the most backward outgoing particle is a
* gluon and the first incoming particle is not a gluon.
*
* If the incoming and outgoing particles are ordered such that HEJ resummation
* is possible, this function can help to distinguish between FKL and unordered
* events.
*/
inline
bool has_unob_gluon(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
){
return incoming.front().type != pid::gluon
&& outgoing.front().type == pid::gluon;
}
//! Check if an event has an unordered backward gluon emission
/**
* @param incoming Incoming particles in ascending pz
* @param outgoing Outgoing particles in ascending rapidity
* @returns true iff the most forward outgoing particle is a
* gluon and the last incoming particle is not a gluon.
*
* If the incoming and outgoing particles are ordered such that HEJ resummation
* is possible, this function can help to distinguish between FKL and unordered
* events.
*/
inline
bool has_unof_gluon(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
){
return incoming.back().type != pid::gluon
&& outgoing.back().type == pid::gluon;
}
//! Check if an event has an gluon emission
/**
* @see has_unob_gluon, has_unof_gluon
*/
inline
bool has_uno_gluon(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
){
return
has_unob_gluon(incoming, outgoing) || has_unof_gluon(incoming, outgoing);
}
}
diff --git a/include/RHEJ/utility.hh b/include/RHEJ/utility.hh
index c6ad7b4..562c0b8 100644
--- a/include/RHEJ/utility.hh
+++ b/include/RHEJ/utility.hh
@@ -1,198 +1,198 @@
/**
* \file
* \brief Contains various utilities
*/
#pragma once
#include <algorithm>
#include <cassert>
#include <boost/core/demangle.hpp>
// FastJet Includes
#include "fastjet/PseudoJet.hh"
#include "fastjet/ClusterSequence.hh"
#include "RHEJ/PDG_codes.hh"
-namespace RHEJ{
+namespace HEJ{
//! Class representing a particle
struct Particle {
//! particle type
ParticleID type;
//! particle momentum
fastjet::PseudoJet p;
//! get rapidity
double rapidity() const{
return p.rapidity();
}
//! get transverse momentum
double perp() const{
return p.perp();
}
//! get momentum in x direction
double px() const{
return p.px();
}
//! get momentum in y direction
double py() const{
return p.py();
}
//! get momentum in z direction
double pz() const{
return p.pz();
}
//! get energy
double E() const{
return p.E();
}
//! get mass
double m() const{
return p.m();
}
};
//! Functor to compare rapidities
/**
* This can be used whenever a rapidity comparison function is needed,
* for example in many standard library functions.
*
* @see pz_less
*/
struct rapidity_less{
template<class FourVector>
bool operator()(FourVector const & p1, FourVector const & p2){
return p1.rapidity() < p2.rapidity();
}
};
//! Functor to compare momenta in z direction
/**
* This can be used whenever a pz comparison function is needed,
* for example in many standard library functions.
*
* @see rapidity_less
*/
struct pz_less{
template<class FourVector>
bool operator()(FourVector const & p1, FourVector const & p2){
return p1.pz() < p2.pz();
}
};
//! Convert a vector of Particles to a vector of particle momenta
inline
std::vector<fastjet::PseudoJet> to_PseudoJet(
std::vector<Particle> const & v
){
std::vector<fastjet::PseudoJet> result;
for(auto && sp: v) result.emplace_back(sp.p);
return result;
}
//! Check if a particle is a parton, i.e. quark, antiquark, or gluon
inline
bool is_parton(Particle const & p){
return is_parton(p.type);
}
//! Check if a particle is a photon, W, Z, or Higgs boson
inline bool is_AWZH_boson(Particle const & particle){
return is_AWZH_boson(particle.type);
}
//! Extract all partons from a vector of particles
inline
std::vector<Particle> filter_partons(
std::vector<Particle> const & v
){
std::vector<Particle> result;
result.reserve(v.size());
std::copy_if(
begin(v), end(v), std::back_inserter(result),
[](Particle const & p){ return is_parton(p); }
);
return result;
}
//! Create a std::unique_ptr to a T object
/**
* For non-array types this works like std::make_unique,
* which is not available under C++11
*/
template<class T, class... Args>
std::unique_ptr<T> make_unique(Args&&... a){
return std::unique_ptr<T>{new T{std::forward<Args>(a)...}};
}
//! Create an array containing the passed arguments
template<typename T, typename... U>
constexpr
std::array<T, 1 + sizeof...(U)> make_array(T t, U&&... rest){
return {{t, std::forward<U>(rest)...}};
}
inline
std::string join(
std::string const & /* delim */, std::string const & str
){
return str;
}
//! Join strings with a delimiter
/**
* @param delim Delimiter to be put between consecutive strings
* @param first First string
* @param second Second string
* @param rest Remaining strings
*/
template<typename... Strings>
std::string join(
std::string const & delim,
std::string const & first, std::string const & second,
Strings&&... rest
){
return join(delim, first + delim + second, std::forward<Strings>(rest)...);
}
//! Return the name of the argument's type
template<typename T>
std::string type_string(T&&){
return boost::core::demangle(typeid(T).name());
}
//! Eliminate compiler warnings for unused variables
template<typename... T>
constexpr void ignore(T&&...) {}
//! Check whether two doubles are closer than ep > 0 to each other
inline
bool nearby_ep(double a, double b, double ep){
assert(ep > 0);
return std::abs(a-b) < ep;
}
//! Check whether all components of two PseudoJets are closer than ep to each other
inline
bool nearby_ep(
fastjet::PseudoJet const & pa, fastjet::PseudoJet const & pb,
double ep
){
assert(ep > 0);
for(size_t i = 0; i < 4; ++i){
if(!nearby_ep(pa[i], pb[i], ep)) return false;
}
return true;
}
inline
bool nearby(
fastjet::PseudoJet const & pa, fastjet::PseudoJet const & pb, double const norm = 1.
){
return nearby_ep(pa, pb, 1e-7*norm);
}
}
diff --git a/src/CombinedEventWriter.cc b/src/CombinedEventWriter.cc
index 5b1cf38..1ab00dd 100644
--- a/src/CombinedEventWriter.cc
+++ b/src/CombinedEventWriter.cc
@@ -1,21 +1,21 @@
#include "RHEJ/CombinedEventWriter.hh"
-namespace RHEJ{
+namespace HEJ{
CombinedEventWriter::CombinedEventWriter(
std::vector<OutputFile> const & outfiles,
LHEF::HEPRUP const & heprup
){
writers_.reserve(outfiles.size());
for(OutputFile const & outfile: outfiles){
writers_.emplace_back(
make_format_writer(outfile.format, outfile.name, heprup)
);
}
}
void CombinedEventWriter::write(Event const & ev){
for(auto & writer: writers_) writer->write(ev);
}
}
diff --git a/src/EmptyAnalysis.cc b/src/EmptyAnalysis.cc
index c6ea6a6..aad7844 100644
--- a/src/EmptyAnalysis.cc
+++ b/src/EmptyAnalysis.cc
@@ -1,62 +1,62 @@
#include "RHEJ/EmptyAnalysis.hh"
#include "RHEJ/exceptions.hh"
#include <iostream>
#include <string>
#include <vector>
#include "yaml-cpp/yaml.h"
-namespace RHEJ{
+namespace HEJ{
namespace{
std::vector<std::string> param_as_strings(YAML::Node const & parameters){
using YAML::NodeType;
switch(parameters.Type()){
case NodeType::Null:
case NodeType::Undefined:
return {};
case NodeType::Scalar:
return {parameters.as<std::string>()};
case NodeType::Sequence: {
std::vector<std::string> param_strings;
for(auto && param: parameters){
param_strings.emplace_back(param.as<std::string>());
}
return param_strings;
}
case NodeType::Map: {
std::vector<std::string> param_strings;
for(auto && param: parameters){
param_strings.emplace_back(param.first.as<std::string>());
}
return param_strings;
}
default:;
}
throw std::logic_error{"unreachable"};
}
}
std::unique_ptr<Analysis> EmptyAnalysis::create(
YAML::Node const & parameters
){
const auto param_strings = param_as_strings(parameters);
if(! param_strings.empty()){
std::string error{"Unknown analysis parameter(s):"};
for(auto && p: param_strings) error += " " + p;
throw unknown_option{error};
}
return std::unique_ptr<Analysis>{new EmptyAnalysis{}};
}
void EmptyAnalysis::fill(Event const &, Event const &){
// do nothing
}
bool EmptyAnalysis::pass_cuts(Event const &, Event const &){
return true;
}
void EmptyAnalysis::finalise(){
// do nothing
}
}
diff --git a/src/Event.cc b/src/Event.cc
index f2aaad2..158d905 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,343 +1,343 @@
#include "RHEJ/Event.hh"
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
namespace{
constexpr int status_in = -1;
constexpr int status_decayed = 2;
constexpr int status_out = 1;
// helper functions to determine event type
// check if there is at most one photon, W, H, Z in the final state
// and all the rest are quarks or gluons
bool final_state_ok(std::vector<Particle> const & outgoing){
bool has_AWZH_boson = false;
for(auto const & out: outgoing){
if(is_AWZH_boson(out.type)){
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
}
else if(! is_parton(out.type)) return false;
}
return true;
}
template<class Iterator>
Iterator remove_AWZH(Iterator begin, Iterator end){
return std::remove_if(
begin, end, [](Particle const & p){return is_AWZH_boson(p);}
);
}
template<class Iterator>
bool valid_outgoing(Iterator begin, Iterator end){
return std::distance(begin, end) >= 2
&& std::is_sorted(begin, end, rapidity_less{})
&& std::count_if(
begin, end, [](Particle const & s){return is_AWZH_boson(s);}
) < 2;
}
// Note that this changes the outgoing range!
template<class ConstIterator, class Iterator>
bool is_FKL(
ConstIterator begin_incoming, ConstIterator end_incoming,
Iterator begin_outgoing, Iterator end_outgoing
){
assert(std::distance(begin_incoming, end_incoming) == 2);
assert(std::distance(begin_outgoing, end_outgoing) >= 2);
// One photon, W, H, Z in the final state is allowed.
// Remove it for remaining tests,
end_outgoing = remove_AWZH(begin_outgoing, end_outgoing);
// Test if this is a standard FKL configuration.
return
(begin_incoming->type == begin_outgoing->type)
&& ((end_incoming-1)->type == (end_outgoing-1)->type)
&& std::all_of(
begin_outgoing + 1, end_outgoing - 1,
[](Particle const & p){ return p.type == pid::gluon; }
);
}
bool is_FKL(
std::array<Particle, 2> const & incoming,
std::vector<Particle> outgoing
){
assert(std::is_sorted(begin(incoming), end(incoming), pz_less{}));
assert(valid_outgoing(begin(outgoing), end(outgoing)));
return is_FKL(
begin(incoming), end(incoming),
begin(outgoing), end(outgoing)
);
}
bool has_2_jets(Event const & event){
return event.jets().size() >= 2;
}
/**
* \brief Checks whether event is unordered backwards
* @param ev Event
* @returns Is Event Unordered Backwards
*
* Checks there is more than 3 constuents in the final state
* Checks there is more than 3 jets
* Checks the most backwards parton is a gluon
* Checks the most forwards jet is not a gluon
* Checks the rest of the event is FKL
* Checks the second most backwards is not a different boson
* Checks the unordered gluon actually forms a jet
*/
bool is_unordered_backward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.front().type == pid::gluon) return false;
if(out.front().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) first outgoing particle must not be a A,W,Z,H.
const auto FKL_begin = next(begin(out));
if(is_AWZH_boson(*FKL_begin)) return false;
if(!is_FKL(in, {FKL_begin, end(out)})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.front()});
return indices[0] >= 0 && indices[1] == -1;
}
/**
* \brief Checks for a forward unordered gluon emission
* @param ev Event
* @returns Is the event a forward unordered emission
*
* \see is_unordered_backward
*/
bool is_unordered_forward(Event const & ev){
auto const & in = ev.incoming();
auto const & out = ev.outgoing();
assert(std::is_sorted(begin(in), end(in), pz_less{}));
assert(valid_outgoing(begin(out), end(out)));
if(out.size() < 3) return false;
if(ev.jets().size() < 3) return false;
if(in.back().type == pid::gluon) return false;
if(out.back().type != pid::gluon) return false;
// When skipping the unordered emission
// the remainder should be a regular FKL event,
// except that the (new) last outgoing particle must not be a A,W,Z,H.
const auto FKL_end = prev(end(out));
if(is_AWZH_boson(*prev(FKL_end))) return false;
if(!is_FKL(in, {begin(out), FKL_end})) return false;
// check that the unordered gluon forms an extra jet
const auto jets = sorted_by_rapidity(ev.jets());
const auto indices = ev.particle_jet_indices({jets.back()});
return indices.back() >= 0 && indices[indices.size()-2] == -1;
}
using event_type::EventType;
EventType classify(Event const & ev){
if(! final_state_ok(ev.outgoing())) return EventType::bad_final_state;
if(! has_2_jets(ev)) return EventType::no_2_jets;
if(is_FKL(ev.incoming(), ev.outgoing())) return EventType::FKL;
if(is_unordered_backward(ev)){
return EventType::unordered_backward;
}
if(is_unordered_forward(ev)){
return EventType::unordered_forward;
}
return EventType::nonHEJ;
}
Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
return Particle{
static_cast<ParticleID>(hepeup.IDUP[i]),
fastjet::PseudoJet{
hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3]
}
};
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
}
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup):
central(EventParameters{
hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
})
{
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == status_in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
std::sort(
begin(incoming), end(incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
std::sort(begin(outgoing), end(outgoing), rapidity_less{});
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
Event::Event(
UnclusteredEvent ev,
fastjet::JetDefinition const & jet_def, double min_jet_pt
):
ev_{std::move(ev)},
cs_{to_PseudoJet(filter_partons(ev_.outgoing)), jet_def},
min_jet_pt_{min_jet_pt}
{
type_ = classify(*this);
}
std::vector<fastjet::PseudoJet> Event::jets() const{
return cs_.inclusive_jets(min_jet_pt_);
}
/**
* \brief Returns the invarient mass of the event
* @param ev Event
* @returns s hat
*
* Makes use of the FastJet PseudoJet function m2().
* Applies this function to the sum of the incoming partons.
*/
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
namespace{
// colour flow according to Les Houches standard
// TODO: stub
std::vector<std::pair<int, int>> colour_flow(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
){
std::vector<std::pair<int, int>> result(
incoming.size() + outgoing.size()
);
for(auto & col: result){
col = std::make_pair(-1, -1);
}
return result;
}
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type()+1; // event ID
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
for(Particle const & in: event.incoming()){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(status_in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
}
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i)?status_decayed:status_out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
}
result.ICOLUP = colour_flow(
event.incoming(), filter_partons(event.outgoing())
);
if(result.ICOLUP.size() < num_particles){
const size_t AWZH_boson_idx = std::find_if(
begin(event.outgoing()), end(event.outgoing()),
[](Particle const & s){ return is_AWZH_boson(s); }
) - begin(event.outgoing()) + event.incoming().size();
assert(AWZH_boson_idx <= result.ICOLUP.size());
result.ICOLUP.insert(
begin(result.ICOLUP) + AWZH_boson_idx,
std::make_pair(0,0)
);
}
for(auto const & decay: event.decays()){
for(auto const out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(status_out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const int mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
}
diff --git a/src/EventReweighter.cc b/src/EventReweighter.cc
index f3563db..fdf126d 100644
--- a/src/EventReweighter.cc
+++ b/src/EventReweighter.cc
@@ -1,343 +1,343 @@
#include "RHEJ/EventReweighter.hh"
#include <string>
#include <unordered_map>
#include "RHEJ/PhaseSpacePoint.hh"
#include "RHEJ/PDG_codes.hh"
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
using EventType = event_type::EventType;
namespace {
static_assert(
std::numeric_limits<double>::has_quiet_NaN,
"no quiet NaN for double"
);
constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
UnclusteredEvent to_UnclusteredEvent(PhaseSpacePoint const & psp){
UnclusteredEvent result;
result.incoming = psp.incoming();
std::sort(
begin(result.incoming), end(result.incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
assert(result.incoming.size() == 2);
result.outgoing = psp.outgoing();
assert(
std::is_sorted(
begin(result.outgoing), end(result.outgoing),
rapidity_less{}
)
);
assert(result.outgoing.size() >= 2);
result.decays = psp.decays();
result.central.mur = NaN;
result.central.muf = NaN;
result.central.weight = psp.weight();
return result;
}
} // namespace anonymous
EventReweighter::EventReweighter(
LHEF::HEPRUP const & heprup,
ScaleGenerator scale_gen,
EventReweighterConfig conf,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
):
EventReweighter{
- RHEJ::Beam{
+ HEJ::Beam{
heprup.EBMUP.first,
{{
- static_cast<RHEJ::ParticleID>(heprup.IDBMUP.first),
- static_cast<RHEJ::ParticleID>(heprup.IDBMUP.second)
+ static_cast<HEJ::ParticleID>(heprup.IDBMUP.first),
+ static_cast<HEJ::ParticleID>(heprup.IDBMUP.second)
}}
},
heprup.PDFSUP.first,
std::move(scale_gen),
std::move(conf),
ran
}
{
if(heprup.EBMUP.second != E_beam_){
throw std::invalid_argument(
"asymmetric beam: " + std::to_string(E_beam_)
+ " ---> <--- " + std::to_string(heprup.EBMUP.second)
);
};
if(heprup.PDFSUP.second != pdf_.id()){
throw std::invalid_argument(
"conflicting PDF ids: " + std::to_string(pdf_.id())
+ " vs. " + std::to_string(heprup.PDFSUP.second)
);
}
}
EventReweighter::EventReweighter(
Beam beam,
int pdf_id,
ScaleGenerator scale_gen,
EventReweighterConfig conf,
- RHEJ::RNG & ran
+ HEJ::RNG & ran
):
param_{std::move(conf)},
E_beam_{beam.E},
pdf_{pdf_id, beam.type.front(), beam.type.back()},
MEt2_{
[this](double mu){ return pdf_.Halphas(mu); },
param_.ME_config
},
scale_gen_(std::move(scale_gen)),
ran_{ran}
{}
PDF const & EventReweighter::pdf() const{
return pdf_;
}
std::vector<Event> EventReweighter::reweight(
Event const & input_ev, int num_events
){
auto res_events = gen_res_events(input_ev, num_events);
if(res_events.empty()) return {};
for(auto & event: res_events) event = scale_gen_(event);
return rescale(input_ev, std::move(res_events));
}
/**
* \brief main generation/reweighting function:
* generate phase space points and divide out Born factors
*/
std::vector<Event> EventReweighter::gen_res_events(
Event const & ev,
int phase_space_points
){
assert(ev.variations().empty());
switch(param_.treat.at(ev.type())){
case EventTreatment::discard: return {};
case EventTreatment::keep:
if(! jets_pass_resummation_cuts(ev)) return {};
else return {ev};
default:;
}
const double Born_shat = shat(ev);
std::vector<Event> resummation_events;
for(int psp_number = 0; psp_number < phase_space_points; ++psp_number){
PhaseSpacePoint psp{ev, param_.psp_config, ran_};
if(psp.weight() == 0.) continue;
if(psp.incoming()[0].E() > E_beam_ || psp.incoming()[1].E() > E_beam_) continue;
resummation_events.emplace_back(
to_UnclusteredEvent(std::move(psp)),
param_.jet_param.def, param_.jet_param.min_pt
);
auto & new_event = resummation_events.back();
assert(new_event.variations().empty());
new_event.central().mur = ev.central().mur;
new_event.central().muf = ev.central().muf;
const double resum_shat = shat(new_event);
new_event.central().weight *= ev.central().weight*Born_shat*Born_shat/
(phase_space_points*resum_shat*resum_shat);
}
return resummation_events;
}
std::vector<Event> EventReweighter::rescale(
Event const & Born_ev,
std::vector<Event> events
) const{
const double Born_pdf = pdf_factors(Born_ev).central;
const double Born_ME = tree_matrix_element(Born_ev);
for(auto & cur_event: events){
const auto pdf = pdf_factors(cur_event);
assert(pdf.variations.size() == cur_event.variations().size());
const auto ME = matrix_elements(cur_event);
assert(ME.variations.size() == cur_event.variations().size());
cur_event.central().weight *= pdf.central*ME.central/(Born_pdf*Born_ME);
for(size_t i = 0; i < cur_event.variations().size(); ++i){
cur_event.variations(i).weight *=
pdf.variations[i]*ME.variations[i]/(Born_pdf*Born_ME);
}
}
return events;
};
/**
* \brief Do the Jets pass the resummation Cuts?
*
* @param ev Event in Question
* @returns 0 or 1 depending on if ev passes Jet Cuts
*/
bool EventReweighter::jets_pass_resummation_cuts(
Event const & ev
) const{
const auto out_as_PseudoJet = to_PseudoJet(filter_partons(ev.outgoing()));
fastjet::ClusterSequence cs{out_as_PseudoJet, param_.jet_param.def};
return cs.inclusive_jets(param_.jet_param.min_pt).size() == ev.jets().size();
}
/**
* \brief pdf_factors Function
*
* @param ev Event in Question
* @returns EventFactor due to PDFs
*
* Calculates the Central value and the variation due
* to the PDF choice made.
*/
EventReweighter::EventFactors
EventReweighter::pdf_factors(Event const & ev) const{
auto const & a = ev.incoming().front();
auto const & b = ev.incoming().back();
const double xa = a.p.e()/E_beam_;
const double xb = b.p.e()/E_beam_;
EventFactors result;
std::unordered_map<double, double> known_pdf;
result.central =
pdf_.pdfpt(0,xa,ev.central().muf,a.type)*
pdf_.pdfpt(1,xb,ev.central().muf,b.type);
known_pdf.emplace(ev.central().muf, result.central);
result.variations.reserve(ev.variations().size());
for(auto const & ev_param: ev.variations()){
const double muf = ev_param.muf;
auto cur_pdf = known_pdf.find(muf);
if(cur_pdf == known_pdf.end()){
cur_pdf = known_pdf.emplace(
muf,
pdf_.pdfpt(0,xa,muf,a.type)*pdf_.pdfpt(1,xb,muf,b.type)
).first;
}
result.variations.emplace_back(cur_pdf->second);
}
assert(result.variations.size() == ev.variations().size());
return result;
}
/**
* \brief matrix_elements Function
*
* @param ev Event in question
* @returns EventFactor due to MatrixElements
*
* Calculates the Central value and the variation due
* to the Matrix Element.
*/
EventReweighter::EventFactors
EventReweighter::matrix_elements(Event const & ev) const{
assert(param_.treat.count(ev.type()) > 0);
if(param_.treat.find(ev.type())->second == EventTreatment::keep){
return fixed_order_scale_ME(ev);
}
// precompute overall kinematic factor
const double ME_kin = MEt2_.tree_kin(ev.incoming(), ev.outgoing(), true);
EventFactors result;
std::unordered_map<double, double> known_ME;
result.central = MEt2_(
ev.central().mur,
ev.incoming(), ev.outgoing(),
true
);
known_ME.emplace(ev.central().mur, result.central);
result.variations.reserve(ev.variations().size());
for(auto const & param: ev.variations()){
const double mur = param.mur;
auto cur_ME = known_ME.find(mur);
if(cur_ME == known_ME.end()){
const double ME = MEt2_.tree_param(
mur, ev.incoming(), ev.outgoing()
)*ME_kin*MEt2_.virtual_corrections(
mur, ev.incoming(), ev.outgoing()
);
cur_ME = known_ME.emplace(mur, ME).first;
}
result.variations.emplace_back(cur_ME->second);
}
assert(result.variations.size() == ev.variations().size());
return result;
}
/**
* \brief Computes the tree level matrix element
*
* @param ev Event in Question
* @returns HEJ approximation to Tree level Matrix Element
*
* This computes the HEJ approximation to the tree level FO
* Matrix element which is used within the LO weighting process.
*/
double EventReweighter::tree_matrix_element(Event const & ev) const{
assert(ev.variations().empty());
assert(param_.treat.count(ev.type()) > 0);
if(param_.treat.find(ev.type())->second == EventTreatment::keep){
return fixed_order_scale_ME(ev).central;
}
return MEt2_.tree(
ev.central().mur,
ev.incoming(), ev.outgoing(),
false
);
}
/**
* \brief Scale-dependent part of fixed-order matrix element
*
* @param ev Event in question
* @returns EventFactor scale variation due to FO-ME.
*
* This is only called to compute the scale variation for events where
* we don't do resummation (e.g. non-FKL).
* Since at tree level the scale dependence is just due to alpha_s,
* it is enough to return the alpha_s(mur) factors in the matrix element.
* The rest drops out in the ratio of (output event ME)/(input event ME),
* so we never have to compute it.
*/
EventReweighter::EventFactors
EventReweighter::fixed_order_scale_ME(Event const & ev) const{
int alpha_s_power = 0;
for(auto const & part: ev.outgoing()){
if(is_parton(part))
++alpha_s_power;
else {
switch(part.type){
case pid::Higgs: {
alpha_s_power += 2;
break;
}
// TODO
case pid::Wp:
case pid::Wm:
case pid::photon:
case pid::Z:
default:
throw std::logic_error("Emission of boson of unsupported type");
}
}
}
EventFactors result;
result.central = pow(pdf_.Halphas(ev.central().mur), alpha_s_power);
for(auto const & var: ev.variations()){
result.variations.emplace_back(
pow(pdf_.Halphas(var.mur), alpha_s_power)
);
}
return result;
}
-} // namespace RHEJ
+} // namespace HEJ
diff --git a/src/HepMCInterface.cc b/src/HepMCInterface.cc
index 12b8d4a..5dd885e 100644
--- a/src/HepMCInterface.cc
+++ b/src/HepMCInterface.cc
@@ -1,170 +1,170 @@
#include "RHEJ/HepMCInterface.hh"
#include <cassert>
#ifdef RHEJ_BUILD_WITH_HepMC_VERSION
#include "RHEJ/Event.hh"
#include "HepMC/GenEvent.h"
#include "HepMC/GenVertex.h"
#include "HepMC/GenParticle.h"
#include "HepMC/GenCrossSection.h"
#include "LHEF/LHEF.h"
-namespace RHEJ{
+namespace HEJ{
namespace {
HepMC::FourVector to_FourVector(Particle const & sp){
return {sp.px(), sp.py(), sp.pz(), sp.E()};
}
constexpr int status_in = -1;
constexpr int status_decayed = 3;
constexpr int status_out = 1;
template<class HepMCClass, typename... Args>
auto make_ptr(Args&&... args){
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
return HepMC::make_shared<HepMCClass>(std::forward<Args>(args)...);
#else
return new HepMCClass(std::forward<Args>(args)...);
#endif
}
} // namespace anonymous
HepMCInterface::HepMCInterface():
event_count_(0.), tot_weight_(0.), tot_weight2_(0.)
{}
HepMC::GenCrossSection HepMCInterface::cross_section() const {
HepMC::GenCrossSection xs;
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
xs.set_cross_section(tot_weight_, sqrt(tot_weight2_), event_count_);
/// @TODO add number of attempted events
#else // HepMC 2
xs.set_cross_section(tot_weight_, sqrt(tot_weight2_));
#endif
return xs;
}
HepMC::GenEvent HepMCInterface::init_kinematics(Event const & event) {
HepMC::GenEvent out_ev{HepMC::Units::GEV, HepMC::Units::MM};
auto vx = make_ptr<HepMC::GenVertex>();
for(auto const & in: event.incoming()){
vx->add_particle_in(
make_ptr<HepMC::GenParticle>(
to_FourVector(in), static_cast<int>(in.type), status_in
)
);
}
for(size_t i=0; i < event.outgoing().size(); ++i){
auto const & out = event.outgoing()[i];
auto particle = make_ptr<HepMC::GenParticle>(
to_FourVector(out), static_cast<int>(out.type), status_out
);
const int status = event.decays().count(i)?status_decayed:status_out;
particle->set_status(status);
if( status == status_decayed){
auto vx_decay = make_ptr<HepMC::GenVertex>();
vx_decay->add_particle_in(particle);
for( auto const & out: event.decays().at(i)){
vx_decay->add_particle_out(
make_ptr<HepMC::GenParticle>(
to_FourVector(out), static_cast<int>(out.type), status_out
)
);
}
out_ev.add_vertex(vx_decay);
}
vx->add_particle_out(particle);
}
out_ev.add_vertex(vx);
return out_ev;
}
void HepMCInterface::set_central(HepMC::GenEvent & out_ev, Event const & event,
ssize_t const weight_index
) {
EventParameters event_param;
if(weight_index < 0)
event_param = event.central();
else if ( (size_t) weight_index < event.variations().size())
event_param = event.variations(weight_index);
else
throw std::invalid_argument{
"HepMCInterface tried to access a weight outside of the variation range."
};
const double wt = event_param.weight;
tot_weight_ += wt;
tot_weight2_ += wt * wt;
if(out_ev.weights().size() == 0){
out_ev.weights().push_back(wt);
} else { // central always on first
out_ev.weights()[0] = wt;
}
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
out_ev.set_cross_section(
HepMC::make_shared<HepMC::GenCrossSection>(cross_section()) );
#else // HepMC 2
out_ev.set_cross_section( cross_section() );
out_ev.set_signal_process_id(event.type()+1); // "+1": conistent with lhe
out_ev.set_event_scale(event_param.mur);
#endif
++event_count_;
out_ev.set_event_number(event_count_);
/// @TODO add alphaQCD (need function) and alphaQED
/// @TODO output pdf (currently not avaiable from event alone)
}
void HepMCInterface::add_variation(HepMC::GenEvent & out_ev,
std::vector<EventParameters> const & varis
) {
for(auto const & var: varis){
out_ev.weights().push_back(var.weight);
}
/// @TODO add name list for weights
}
HepMC::GenEvent HepMCInterface::operator()(Event const & event,
ssize_t const weight_index
) {
HepMC::GenEvent out_ev(init_kinematics(event));
set_central(out_ev, event, weight_index);
add_variation(out_ev, event.variations());
return out_ev;
}
}
#else // no HepMC => empty class
namespace HepMC {
class GenEvent {};
class GenCrossSection {};
}
-namespace RHEJ{
+namespace HEJ{
HepMCInterface::HepMCInterface(){
throw std::invalid_argument(
"Failed to create HepMCInterface: "
"HEJ 2 was built without HepMC support"
);
}
HepMC::GenEvent HepMCInterface::operator()(Event const &, ssize_t)
{return HepMC::GenEvent();}
HepMC::GenEvent HepMCInterface::init_kinematics(Event const &)
{return HepMC::GenEvent();}
void HepMCInterface::add_variation(HepMC::GenEvent &,
std::vector<EventParameters> const &){}
void HepMCInterface::set_central(HepMC::GenEvent &, Event const &, ssize_t) {}
HepMC::GenCrossSection HepMCInterface::cross_section() const
{return HepMC::GenCrossSection();}
}
#endif
diff --git a/src/HepMCWriter.cc b/src/HepMCWriter.cc
index 520a89b..437a2cc 100644
--- a/src/HepMCWriter.cc
+++ b/src/HepMCWriter.cc
@@ -1,139 +1,139 @@
#include "RHEJ/HepMCWriter.hh"
#include <cassert>
#ifdef RHEJ_BUILD_WITH_HepMC_VERSION
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
#include "HepMC/WriterAscii.h"
#include "HepMC/LHEFAttributes.h"
#include "RHEJ/Version.hh"
#else
#include "HepMC/IO_GenEvent.h"
#endif
#include "HepMC/GenVertex.h"
#include "HepMC/GenParticle.h"
#include "RHEJ/utility.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/exceptions.hh"
#include "RHEJ/HepMCInterface.hh"
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
namespace {
void reset_weight_info(LHEF::HEPRUP & heprup){
heprup.IDWTUP = 2;
// use placeholders for unknown init block values
// we can overwrite them after processing all events
heprup.XSECUP = {0.};
heprup.XERRUP = {0.};
heprup.XMAXUP = {0.};
}
HepMC::shared_ptr<HepMC::GenRunInfo> init_runinfo(LHEF::HEPRUP && heprup){
reset_weight_info(heprup);
HepMC::GenRunInfo runinfo;
auto hepr = HepMC::make_shared<HepMC::HEPRUPAttribute>();
hepr->heprup = heprup;
runinfo.add_attribute(std::string("HEPRUP"), hepr);
for (int i = 0, N = hepr->heprup.generators.size(); i < N; ++i ){
HepMC::GenRunInfo::ToolInfo tool;
tool.name = hepr->heprup.generators[i].name;
tool.version = hepr->heprup.generators[i].version;
tool.description = hepr->heprup.generators[i].contents;
runinfo.tools().push_back(tool);
}
return HepMC::make_shared<HepMC::GenRunInfo>(runinfo);
}
} // namespace anonymous
#endif // HepMC 3
-namespace RHEJ{
+namespace HEJ{
struct HepMCWriter::HepMCWriterImpl{
HepMCInterface hepmc_;
HepMCWriterImpl & operator=(HepMCWriterImpl const & other) = delete;
HepMCWriterImpl(HepMCWriterImpl const & other) = delete;
HepMCWriterImpl & operator=(HepMCWriterImpl && other) = delete;
HepMCWriterImpl(HepMCWriterImpl && other) = delete;
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
HepMC::WriterAscii writer_;
HepMCWriterImpl(
std::string const & file, LHEF::HEPRUP && heprup
):
hepmc_(),
writer_{file, init_runinfo(std::move(heprup))}
{}
~HepMCWriterImpl(){
writer_.close();
}
#else // HepMC 2
HepMC::IO_GenEvent writer_;
HepMCWriterImpl(
std::string const & file, LHEF::HEPRUP &&
):
hepmc_(),
writer_{file}
{}
#endif
void write(Event const & ev){
auto out_ev = hepmc_(ev);
#if RHEJ_BUILD_WITH_HepMC_VERSION >= 3
writer_.write_event(out_ev);
#else // HepMC 2
writer_.write_event(&out_ev);
#endif
}
};
void HepMCWriter::HepMCWriterImplDeleter::operator()(HepMCWriterImpl* p) {
delete p;
}
HepMCWriter::HepMCWriter(std::string const & file, LHEF::HEPRUP heprup):
impl_{std::unique_ptr<HepMCWriterImpl, HepMCWriterImplDeleter>{
new HepMCWriterImpl(file, std::move(heprup))
}}
{}
void HepMCWriter::write(Event const & ev){
impl_->write(ev);
}
-} // namespace RHEJ
+} // namespace HEJ
#else // no HepMC
-namespace RHEJ{
+namespace HEJ{
class HepMCWriter::HepMCWriterImpl{};
HepMCWriter::HepMCWriter(std::string const &, LHEF::HEPRUP){
throw std::invalid_argument(
"Failed to create HepMC writer: "
"HEJ 2 was built without HepMC support"
);
}
void HepMCWriter::write(Event const &){
assert(false);
}
void HepMCWriter::HepMCWriterImplDeleter::operator()(HepMCWriterImpl* p) {
delete p;
}
}
#endif
diff --git a/src/Jacobian.cc b/src/Jacobian.cc
index 1fa7d7f..abc1b8f 100644
--- a/src/Jacobian.cc
+++ b/src/Jacobian.cc
@@ -1,71 +1,71 @@
#include "RHEJ/Jacobian.hh"
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/lu.hpp>
-namespace RHEJ{
+namespace HEJ{
namespace{
enum coordinates : size_t {
x1, x2
};
namespace ublas = boost::numeric::ublas;
template<class Matrix>
double det(ublas::matrix_expression<Matrix> const& m) {
ublas::permutation_matrix<size_t> pivots{m().size1()};
Matrix mLu{m()};
const auto is_singular = lu_factorize(mLu, pivots);
if(is_singular) return 0.;
double det = 1.0;
for (std::size_t i = 0; i < pivots.size(); ++i){
if (pivots(i) != i) det = -det;
det *= mLu(i,i);
}
return det;
}
using ublas::matrix;
}
double Jacobian(
std::vector<fastjet::PseudoJet> const & jets,
fastjet::PseudoJet const & q
) {
static constexpr int num_coordinates = 2;
auto Jacobian = matrix<double>{
num_coordinates*jets.size(),
num_coordinates*jets.size()
};
double P_perp = 0.;
for(auto const & J: jets) P_perp += J.perp();
for(size_t l = 0; l < jets.size(); ++l){
const double Jl_perp = jets[l].perp();
for(size_t lp = 0; lp < jets.size(); ++lp){
const int delta_l = l == lp;
const double Jlp_perp = jets[lp].perp();
for(size_t x = x1; x <= x2; ++x){
for(size_t xp = x1; xp <= x2; ++xp){
const int delta_x = x == xp;
Jacobian(2*l + x, 2*lp + xp) =
+ delta_l*delta_x
- q[x]*jets[lp][xp]/(P_perp*Jlp_perp)*(
+ delta_l - Jl_perp/P_perp
);
}
}
}
}
return det(Jacobian);
}
}
diff --git a/src/JetSplitter.cc b/src/JetSplitter.cc
index 5ddc229..c5550dc 100644
--- a/src/JetSplitter.cc
+++ b/src/JetSplitter.cc
@@ -1,174 +1,174 @@
#include "RHEJ/JetSplitter.hh"
#include <numeric>
#include "RHEJ/Constants.hh"
#include "RHEJ/PhaseSpacePoint.hh"
-namespace RHEJ {
+namespace HEJ {
namespace{
- constexpr double ccut=RHEJ::CMINPT; // min parton pt
+ constexpr double ccut=HEJ::CMINPT; // min parton pt
template<class Iterator>
bool same_pt_and_rapidity(
Iterator begin, Iterator end,
fastjet::PseudoJet const & jet
){
static constexpr double ep = 1e-2;
const fastjet::PseudoJet reconstructed_jet = std::accumulate(
begin, end, fastjet::PseudoJet{}
);
return
(std::abs(reconstructed_jet.pt() - jet.pt()) < ep)
&& (std::abs(reconstructed_jet.rapidity() - jet.rapidity()) < ep)
;
}
bool all_in_one_jet(
std::vector<fastjet::PseudoJet> const & partons,
fastjet::JetDefinition jet_def, double min_jet_pt
){
fastjet::ClusterSequence ev(partons, jet_def);
const std::vector<fastjet::PseudoJet> testjet = ev.inclusive_jets(min_jet_pt);
return testjet.size() == 1u
&& testjet[0].constituents().size() == partons.size();
}
}
using SplitResult = JetSplitter::SplitResult;
SplitResult JetSplitter::split(
fastjet::PseudoJet const & j2split, int ncons
) const{
if(ncons <= 0) {
throw std::invalid_argument{
"number of requested jet constituents less than 1"
};
}
double swt = 1.;
std::vector<fastjet::PseudoJet> jcons;
if(ncons == 1){
jcons.emplace_back(j2split);
jcons.back().set_user_index(0);
return {jcons, swt};
}
if(ncons == 2){
return Split2(j2split);
}
const double R_max = R_factor*R_;
assert(R_max < M_PI);
double pt_remaining = j2split.pt();
const double phi_jet = j2split.phi();
const double y_jet = j2split.rapidity();
for(int i = 0; i < ncons - 1; ++i){
/**
* Generate rapidity and azimuthal angle with a distance
* R = sqrt(delta_y^2 + delta_phi^2) < R_max
* from the jet centre
*/
const double R = R_max*ran_.get().flat();
const double theta = 2*M_PI*ran_.get().flat();
const double delta_phi = R*cos(theta);
const double delta_y = R*sin(theta);
/**
* Generate pt such that the total contribution of all partons
* along the jet pt axis does not exceed the jet pt
*/
const double pt_max = pt_remaining/cos(delta_phi);
assert(pt_max > 0);
if(pt_max < ccut) return {}; // no pt remaining for this parton
const double pt = (pt_max - ccut)*ran_.get().flat() + ccut;
pt_remaining -= pt*cos(delta_phi);
jcons.emplace_back(
pt*cos(phi_jet + delta_phi), pt*sin(phi_jet + delta_phi),
pt*sinh(y_jet + delta_y), pt*cosh(y_jet + delta_y)
);
jcons.back().set_user_index(i);
swt *= 2*M_PI*R*R_max*pt*(pt_max - ccut);
}
const fastjet::PseudoJet p_total = std::accumulate(
jcons.begin(), jcons.end(), fastjet::PseudoJet{}
);
// Calculate the pt of the last parton
const double last_px = j2split.px() - p_total.px();
const double last_py = j2split.py() - p_total.py();
const double last_pt = sqrt(last_px*last_px + last_py*last_py);
if(last_pt < ccut) return {};
// Calculate the rapidity of the last parton using the requirement that the
// new jet must have the same rapidity as the LO jet.
const double exp_2y_jet = (j2split.e() + j2split.pz())/(j2split.e() - j2split.pz());
const double bb = (p_total.e()+p_total.pz()) - exp_2y_jet*(p_total.e()-p_total.pz());
const double lasty = log((-bb+sqrt(bb*bb+4.*exp_2y_jet*last_pt*last_pt))/(2.*last_pt));
jcons.emplace_back(
last_px, last_py, last_pt*sinh(lasty), last_pt*cosh(lasty)
);
jcons.back().set_user_index(ncons-1);
assert(same_pt_and_rapidity(begin(jcons), end(jcons), j2split));
// Test that the last parton is not too far away from the jet centre.
if (jcons.back().delta_R(j2split) > R_max) return {};
if(! all_in_one_jet(jcons, jet_def_, min_jet_pt_)) return {};
return {jcons, swt};
}
//! sample y-phi distance to jet pt axis for a jet splitting into two partons
/**
* @param wt Multiplied by the weight of the sampling point
* @returns The distance in units of the jet radius
*/
double JetSplitter::sample_distance_2p(double & wt) const{
static constexpr double x_small = 0.1;
static constexpr double p_small = 0.4;
const double pR = ran_.get().flat();
if(pR < p_small){
wt *= x_small/p_small;
return x_small/p_small*pR;
}
wt *= (1-x_small)/(1-p_small);
return (1-x_small)/(1-p_small)*(pR-p_small) + x_small;
}
// split jet into two partons
SplitResult JetSplitter::Split2(fastjet::PseudoJet const & j2split) const{
static constexpr size_t ncons = 2;
std::vector<fastjet::PseudoJet> jcons(ncons);
std::array<double, ncons> R, phi, y, pt;
double wt = 1;
const double theta = 2*M_PI*ran_.get().flat(); // angle in y-phi plane
// empiric observation: we are always within the jet radius
R[0] = sample_distance_2p(wt)*R_;
R[1] = -sample_distance_2p(wt)*R_;
for(size_t i = 0; i <= 1; ++i){
phi[i] = j2split.phi() + R[i]*cos(theta);
y[i] = j2split.rapidity() + R[i]*sin(theta);
}
for(size_t i = 0; i <= 1; ++i){
pt[i] = (j2split.py() - tan(phi[1-i])*j2split.px())/
(sin(phi[i]) - tan(phi[1-i])*cos(phi[i]));
if(pt[i] < ccut) return {};
jcons[i].reset_PtYPhiM(pt[i], y[i], phi[i]);
jcons[i].set_user_index(i);
}
assert(same_pt_and_rapidity(begin(jcons), end(jcons), j2split));
if(! all_in_one_jet(jcons, jet_def_, min_jet_pt_)) return {};
wt *= 2*M_PI*pt[0]*R[0]*R_*R_;
// from transformation of delta(R[1] - ...) to delta(pt[0] - ...)
const double dphi0 = phi[0] - j2split.phi();
const double ptJ = j2split.pt();
const double jacobian = cos(theta)*pt[1]*pt[1]/(ptJ*sin(dphi0));
return {jcons, jacobian*wt};
}
}
diff --git a/src/LesHouchesWriter.cc b/src/LesHouchesWriter.cc
index 57bd7bd..175bafc 100644
--- a/src/LesHouchesWriter.cc
+++ b/src/LesHouchesWriter.cc
@@ -1,90 +1,90 @@
#include <stdexcept>
#include <memory>
#include <cassert>
#include "RHEJ/LesHouchesWriter.hh"
#include "RHEJ/event_types.hh"
#include "RHEJ/Version.hh"
#include "RHEJ/Event.hh"
-namespace RHEJ{
+namespace HEJ{
namespace{
template<class T, class... Args>
std::unique_ptr<T> make_unique(Args&&... a){
return std::unique_ptr<T>{new T{std::forward<Args>(a)...}};
}
}
LesHouchesWriter::LesHouchesWriter(
std::string const & file, LHEF::HEPRUP heprup
):
out_{file, std::fstream::in | std::fstream::out | std::fstream::trunc},
- writer_{RHEJ::make_unique<LHEF::Writer>(out_)}
+ writer_{HEJ::make_unique<LHEF::Writer>(out_)}
{
if(! out_.is_open()){
throw std::ios_base::failure("Failed to open " + file);
};
writer_->heprup = std::move(heprup);
// lhe Stardard: IDWTUP (negative => weights = +/-)
// 1: weighted events, xs = mean(weight), XMAXUP given
// 2: weighted events, xs = XSECUP, XMAXUP given
// 3: unweighted events, no additional information given
// 4: unweighted events, xs = mean(weight), no additional information given
writer_->heprup.IDWTUP = 2;
// use placeholders for unknown init block values
// we can overwrite them after processing all events
writer_->heprup.XSECUP = std::vector<double>(event_type::last_type+1, 0.);
writer_->heprup.XERRUP = std::vector<double>(event_type::last_type+1, 0.);
writer_->heprup.XMAXUP = std::vector<double>(event_type::last_type+1, 0.);
write_init();
}
void LesHouchesWriter::write(Event const & ev){
assert(writer_ && out_.is_open());
const double wt = ev.central().weight;
- writer_->hepeup = RHEJ::to_HEPEUP(std::move(ev), &heprup());
+ writer_->hepeup = HEJ::to_HEPEUP(std::move(ev), &heprup());
writer_->writeEvent();
heprup().XSECUP[ev.type()] += wt;
heprup().XERRUP[ev.type()] += wt*wt;
if(wt > heprup().XMAXUP[ev.type()]){
heprup().XMAXUP[ev.type()] = wt;
}
}
// this function is called after overwritting the Les Houches init block
// assert that we have overwritten *exactly* the init block,
// i.e. an intact event block is next
void assert_next_event_intact(std::istream & out){
(void) out; // suppress compiler warnings if not in debug mode
#ifndef NDEBUG
std::string line;
getline(out, line);
assert(line == "<event>");
#endif
}
void LesHouchesWriter::rewrite_init(){
assert(writer_ && out_.is_open());
// replace placeholder entries
const auto pos = out_.tellp();
out_.seekp(0);
writer_->init();
assert_next_event_intact(out_);
out_.seekp(pos);
}
LesHouchesWriter::~LesHouchesWriter(){
assert(writer_ && out_.is_open());
for(auto & xs_err: heprup().XERRUP)
{
xs_err = sqrt(xs_err);
}
rewrite_init();
}
}
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index d8e89b8..cd986d5 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,825 +1,825 @@
#include "RHEJ/MatrixElement.hh"
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
#include "RHEJ/Constants.hh"
#include "RHEJ/currents.hh"
#include "RHEJ/PDG_codes.hh"
#include "RHEJ/uno.hh"
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
//cf. last line of eq. (22) in \ref Andersen:2011hs
double MatrixElement::omega0(
double alpha_s, double mur,
fastjet::PseudoJet const & q_j, double lambda
) const {
const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
if(! param_.log_correction) return result;
// use alpha_s(sqrt(q_j*lambda)), evolved to mur
return (
1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
)*result;
}
double MatrixElement::virtual_corrections(
double mur,
std::array<Particle, 2> const & in,
std::vector<Particle> const & out
) const{
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
assert(out.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - out[0].p;
size_t first_idx = 0;
size_t last_idx = out.size() - 1;
// if there is a Higgs or unordered gluon outside the extremal partons
// then it is not part of the FKL ladder and does not contribute
// to the virtual corrections
if(out.front().type == pid::Higgs || has_unob_gluon(in, out)){
q -= out[1].p;
++first_idx;
}
if(out.back().type == pid::Higgs || has_unof_gluon(in, out)){
--last_idx;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q, CLAMBDA)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
assert(
nearby(q, -1*pb, norm)
|| out.back().type == pid::Higgs
|| has_unof_gluon(in, out)
);
return exp(exponent);
}
-} // namespace RHEJ
+} // namespace HEJ
namespace {
//! Lipatov vertex for partons emitted into extremal jets
double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans
+ p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
- p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
// cout << "#Fadin qa : "<<qav<<endl;
// cout << "#Fadin qb : "<<qbv<<endl;
// cout << "#Fadin p1 : "<<p1<<endl;
// cout << "#Fadin p2 : "<<p2<<endl;
// cout << "#Fadin p5 : "<<p5<<endl;
// cout << "#Fadin Gauge Check : "<< CL.dot(p5)<<endl;
// cout << "#Fadin C2L : "<< -CL.dot(CL)<<" "<<-CL.dot(CL)/(qav.m2()*qbv.m2())/(4./p5.perp2())<<endl;
// TODO can this dead test go?
// if (-CL.dot(CL)<0.)
// if (fabs(CL.dot(p5))>fabs(CL.dot(CL))) // not sufficient!
// return 0.;
// else
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction for partons emitted into extremal jets
double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
double kperp=(qav-qbv).perp();
- if (kperp>RHEJ::CLAMBDA)
+ if (kperp>HEJ::CLAMBDA)
return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
else {
double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
return Cls-4./(kperp*kperp);
}
}
//! Lipatov vertex
double C2Lipatov(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector pim, CLHEP::HepLorentzVector pip,
CLHEP::HepLorentzVector pom, CLHEP::HepLorentzVector pop) // B
{
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans
+ qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
- qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
+ ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
+ pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
- pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
- pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction
double C2Lipatovots(CLHEP::HepLorentzVector qav, CLHEP::HepLorentzVector qbv,
CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,
CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector p2)
{
double kperp=(qav-qbv).perp();
- if (kperp>RHEJ::CLAMBDA)
+ if (kperp>HEJ::CLAMBDA)
return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
else {
double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
double temp=Cls-4./(kperp*kperp);
return temp;
}
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
if (aptype==21&&bptype==21) {
return jM2gg(pn,pb,p1,pa);
} else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jM2qg(pn,pb,p1,pa);
else
return jM2qbarg(pn,pb,p1,pa);
}
else if (bptype==21&&aptype!=21) { // ----- || -----
if (aptype > 0)
return jM2qg(p1,pa,pn,pb);
else
return jM2qbarg(p1,pa,pn,pb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return jM2qQ(pn,pb,p1,pa);
else
return jM2qQbar(pn,pb,p1,pa);
}
else {
if (aptype>0)
return jM2qQbar(p1,pa,pn,pb);
else
return jM2qbarQbar(pn,pb,p1,pa);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Matrix element squared for tree-level current-current scattering with Higgs
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared for Tree-Level Current-Current Scattering with Higgs
*/
double ME_Higgs_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (aptype==21&&bptype==21) // gg initial state
return MH2gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return MH2qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
else
return MH2qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4./9.;
}
else if (bptype==21&&aptype!=21) {
if (aptype > 0)
return MH2qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
else
return MH2qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4./9.;
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return MH2qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
else
return MH2qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
}
else {
if (aptype>0)
return MH2qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb)*4.*4./(9.*9.);
else
return MH2qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb)*4.*4./(9.*9.);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered forward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param punof Unordered Particle Momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered forward emission
*/
double ME_Higgs_current_unof(
int aptype, int bptype,
CLHEP::HepLorentzVector const & punof,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (aptype==21&&bptype!=21) {
if (bptype > 0)
return jM2unogqHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqbarHg(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return jM2unogqHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else {
if (aptype>0)
return jM2unogqbarHQ(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unogqbarHQbar(punof,pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered backward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param punob Unordered back Particle Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered backward emission
*/
double ME_Higgs_current_unob(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & punob,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb
){
if (bptype==21&&aptype!=21) {
if (aptype > 0)
return jM2unobgHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobgHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else { // they are both quark
if (aptype>0) {
if (bptype>0)
return jM2unobqHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobqbarHQg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
else {
if (bptype>0)
return jM2unobqHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
else
return jM2unobqbarHQbarg(pn,pb,punob,p1,pa,-qHp1,-qH,mt,include_bottom,mb);
}
}
throw std::logic_error("unknown particle types");
}
- CLHEP::HepLorentzVector to_HepLorentzVector(RHEJ::Particle const & particle){
+ CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){
return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
}
- void validate(RHEJ::MatrixElementConfig const & config) {
+ void validate(HEJ::MatrixElementConfig const & config) {
#ifndef RHEJ_BUILD_WITH_QCDLOOP
if(!config.Higgs_coupling.use_impact_factors) {
throw std::invalid_argument{
"Invalid Higgs coupling settings.\n"
"HEJ without QCDloop support can only use impact factors.\n"
"Set use_impact_factors to true or recompile HEJ.\n"
};
}
#endif
if(config.Higgs_coupling.use_impact_factors
&& config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
} // namespace anonymous
-namespace RHEJ{
+namespace HEJ{
MatrixElement::MatrixElement(
std::function<double (double)> alpha_s,
MatrixElementConfig conf
):
alpha_s_{std::move(alpha_s)},
param_{std::move(conf)}
{
validate(param_);
}
double MatrixElement::operator()(
double mur,
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
return tree(
mur,
incoming, outgoing,
check_momenta
)*virtual_corrections(
mur,
incoming, outgoing
);
}
double MatrixElement::tree_kin(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
assert(
std::is_sorted(
incoming.begin(), incoming.end(),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
)
);
assert(std::is_sorted(outgoing.begin(), outgoing.end(), rapidity_less{}));
auto AWZH_boson = std::find_if(
begin(outgoing), end(outgoing),
[](Particle const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(outgoing)){
return tree_kin_jets(incoming, outgoing, check_momenta);
}
switch(AWZH_boson->type){
case pid::Higgs: {
return tree_kin_Higgs(incoming, outgoing, check_momenta);
}
// TODO
case pid::Wp:
case pid::Wm:
case pid::photon:
case pid::Z:
default:
throw std::logic_error("Emission of boson of unsupported type");
}
}
namespace{
constexpr int extremal_jet_idx = 1;
constexpr int no_extremal_jet_idx = 0;
bool treat_as_extremal(Particle const & parton){
return parton.p.user_index() == extremal_jet_idx;
}
template<class InputIterator>
double FKL_ladder_weight(
InputIterator begin_gluon, InputIterator end_gluon,
CLHEP::HepLorentzVector const & q0,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn
){
double wt = 1;
auto qi = q0;
for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
assert(gluon_it->type == pid::gluon);
const auto g = to_HepLorentzVector(*gluon_it);
const auto qip1 = qi - g;
if(treat_as_extremal(*gluon_it)){
wt *= C2Lipatovots(qip1, qi, pa, pb)*C_A;
} else{
wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn)*C_A;
}
qi = qip1;
}
return wt;
}
} // namespace anonymous
std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
std::array<Particle, 2> const & incoming,
std::vector<Particle> out_partons, bool check_momenta
) const{
if(!check_momenta){
for(auto & parton: out_partons){
parton.p.set_user_index(no_extremal_jet_idx);
}
return out_partons;
}
fastjet::ClusterSequence cs(to_PseudoJet(out_partons), param_.jet_param.def);
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
assert(jets.size() >= 2);
auto most_backward = begin(jets);
auto most_forward = end(jets) - 1;
// skip jets caused by unordered emission
if(has_unob_gluon(incoming, out_partons)){
assert(jets.size() >= 3);
++most_backward;
}
else if(has_unof_gluon(incoming, out_partons)){
assert(jets.size() >= 3);
--most_forward;
}
const auto extremal_jet_indices = cs.particle_jet_indices(
{*most_backward, *most_forward}
);
assert(extremal_jet_indices.size() == out_partons.size());
for(size_t i = 0; i < out_partons.size(); ++i){
- assert(RHEJ::is_parton(out_partons[i]));
+ assert(HEJ::is_parton(out_partons[i]));
const int idx = (extremal_jet_indices[i]>=0)?
extremal_jet_idx:
no_extremal_jet_idx;
out_partons[i].p.set_user_index(idx);
}
return out_partons;
}
double MatrixElement::tree_kin_jets(
std::array<Particle, 2> const & incoming,
std::vector<Particle> partons,
bool check_momenta
) const {
partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
if(has_unob_gluon(incoming, partons) || has_unof_gluon(incoming, partons)){
throw std::logic_error("unordered emission not implemented for pure jets");
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
return ME_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa
)/(4*(N_C*N_C - 1))*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
pa - p1, pa, pb, p1, pn
);
}
double MatrixElement::tree_kin_Higgs(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
if(has_uno_gluon(incoming, outgoing)){
return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
}
if(outgoing.front().type == pid::Higgs){
return tree_kin_Higgs_first(incoming, outgoing, check_momenta);
}
if(outgoing.back().type == pid::Higgs){
return tree_kin_Higgs_last(incoming, outgoing, check_momenta);
}
return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
}
namespace {
// Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
// TODO: code duplication with currents.cc
double K_g(double p1minus, double paminus) {
return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
}
double K_g(
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
return K_g(pout.minus(), pin.minus());
}
double K(
ParticleID type,
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(type == ParticleID::gluon) return K_g(pout, pin);
return C_F;
}
// Colour factor in strict MRK limit
double K_MRK(ParticleID type) {
return (type == ParticleID::gluon)?C_A:C_F;
}
}
double MatrixElement::MH2_forwardH(
CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
ParticleID type2,
CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
CLHEP::HepLorentzVector pH,
double t1, double t2
) const{
ignore(p2out, p2in);
const double shat = p1in.invariantMass2(p2in);
// gluon case
#ifdef RHEJ_BUILD_WITH_QCDLOOP
if(!param_.Higgs_coupling.use_impact_factors){
return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*MH2gq_outsideH(
p1out, p1in, p2out, p2in, pH,
param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
param_.Higgs_coupling.mb
)/(4*(N_C*N_C - 1));
}
#endif
return K_MRK(type2)/C_A*9./2.*shat*shat*(
C2gHgp(p1in,p1out,pH) + C2gHgm(p1in,p1out,pH)
)/(t1*t2);
}
double MatrixElement::tree_kin_Higgs_first(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
assert(outgoing.front().type == pid::Higgs);
if(outgoing[1].type != pid::gluon) {
assert(incoming.front().type == outgoing[1].type);
return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
}
const auto pH = to_HepLorentzVector(outgoing.front());
const auto partons = tag_extremal_jet_partons(
incoming,
std::vector<Particle>(begin(outgoing) + 1, end(outgoing)),
check_momenta
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
const auto q0 = pa - p1 - pH;
const double t1 = q0.m2();
const double t2 = (pn - pb).m2();
return MH2_forwardH(
p1, pa, incoming[1].type, pn, pb, pH,
t1, t2
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn
);
}
double MatrixElement::tree_kin_Higgs_last(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
assert(outgoing.back().type == pid::Higgs);
if(outgoing[outgoing.size()-2].type != pid::gluon) {
assert(incoming.back().type == outgoing[outgoing.size()-2].type);
return tree_kin_Higgs_between(incoming, outgoing, check_momenta);
}
const auto pH = to_HepLorentzVector(outgoing.back());
const auto partons = tag_extremal_jet_partons(
incoming,
std::vector<Particle>(begin(outgoing), end(outgoing) - 1),
check_momenta
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
auto q0 = pa - p1;
const double t1 = q0.m2();
const double t2 = (pn + pH - pb).m2();
return MH2_forwardH(
pn, pb, incoming[0].type, p1, pa, pH,
t2, t1
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn
);
}
double MatrixElement::tree_kin_Higgs_between(
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
const auto the_Higgs = std::find_if(
begin(outgoing), end(outgoing),
[](Particle const & s){ return s.type == pid::Higgs; }
);
assert(the_Higgs != end(outgoing));
const auto pH = to_HepLorentzVector(*the_Higgs);
std::vector<Particle> partons(begin(outgoing), the_Higgs);
partons.insert(end(partons), the_Higgs + 1, end(outgoing));
partons = tag_extremal_jet_partons(incoming, partons, check_momenta);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(
partons[has_unob_gluon(incoming, outgoing)?1:0]
);
auto pn = to_HepLorentzVector(
partons[partons.size() - (has_unof_gluon(incoming, outgoing)?2:1)]
);
auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
assert(
(first_after_Higgs == end(partons) && (
has_unob_gluon(incoming, outgoing)
|| partons.back().type != pid::gluon
))
|| first_after_Higgs->rapidity() >= the_Higgs->rapidity()
);
assert(
(first_after_Higgs == begin(partons) && (
has_unof_gluon(incoming, outgoing)
|| partons.front().type != pid::gluon
))
|| (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
);
// always treat the Higgs as if it were in between the extremal FKL partons
if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
else if(first_after_Higgs == end(partons)) --first_after_Higgs;
// t-channel momentum before Higgs
auto qH = pa;
for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
qH -= to_HepLorentzVector(*parton_it);
}
auto q0 = pa - p1;
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 1;
double current_factor;
if(has_unob_gluon(incoming, outgoing)){
current_factor = C_A*C_A/2.*ME_Higgs_current_unob( // 1/2 = "K_uno"
incoming[0].type, incoming[1].type,
pn, pb, to_HepLorentzVector(partons.front()), p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
);
const auto p_unob = to_HepLorentzVector(partons.front());
q0 -= p_unob;
p1 += p_unob;
++begin_ladder;
}
else if(has_unof_gluon(incoming, outgoing)){
current_factor = C_A*C_A/2.*ME_Higgs_current_unof( // 1/2 = "K_uno"
incoming[0].type, incoming[1].type,
to_HepLorentzVector(partons.back()), pn, pb, p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
);
pn += to_HepLorentzVector(partons.back());
--end_ladder;
}
else{
current_factor = ME_Higgs_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb
);
}
const double ladder_factor = FKL_ladder_weight(
begin_ladder, first_after_Higgs,
q0, pa, pb, p1, pn
)*FKL_ladder_weight(
first_after_Higgs, end_ladder,
qH - pH, pa, pb, p1, pn
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double MatrixElement::tree_param_partons(
double alpha_s, double mur,
std::vector<Particle> const & partons
) const{
const double gs2 = 4.*M_PI*alpha_s;
double wt = std::pow(gs2, partons.size());
if(param_.log_correction){
// use alpha_s(q_perp), evolved to mur
assert(partons.size() >= 2);
for(size_t i = 1; i < partons.size()-1; ++i){
wt *= 1 + alpha_s/(2*M_PI)*beta0*log(mur/partons[i].p.perp());
}
}
return wt;
}
double MatrixElement::tree_param(
double mur,
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing
) const{
const double alpha_s = alpha_s_(mur);
auto AWZH_boson = std::find_if(
begin(outgoing), end(outgoing),
[](auto const & p){return is_AWZH_boson(p);}
);
double AWZH_coupling = 1.;
if(AWZH_boson != end(outgoing)){
switch(AWZH_boson->type){
case pid::Higgs: {
AWZH_coupling = alpha_s*alpha_s;
break;
}
// TODO
case pid::Wp:
case pid::Wm:
case pid::photon:
case pid::Z:
default:
throw std::logic_error("Emission of boson of unsupported type");
}
}
if(has_unob_gluon(incoming, outgoing)){
return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons(
alpha_s, mur, filter_partons({begin(outgoing) + 1, end(outgoing)})
);
}
if(has_unof_gluon(incoming, outgoing)){
return AWZH_coupling*4*M_PI*alpha_s*tree_param_partons(
alpha_s, mur, filter_partons({begin(outgoing), end(outgoing) - 1})
);
}
return AWZH_coupling*tree_param_partons(alpha_s, mur, filter_partons(outgoing));
}
double MatrixElement::tree(
double mur,
std::array<Particle, 2> const & incoming,
std::vector<Particle> const & outgoing,
bool check_momenta
) const {
return tree_param(mur, incoming, outgoing)*tree_kin(
incoming, outgoing, check_momenta
);
}
-} // namespace RHEJ
+} // namespace HEJ
diff --git a/src/PDF.cc b/src/PDF.cc
index 7b72c3f..3038fc9 100644
--- a/src/PDF.cc
+++ b/src/PDF.cc
@@ -1,113 +1,113 @@
/**
* \file PDF.cc
* Author: Tuomas Hapola
* \brief PDF source file
*/
#include <stdexcept>
#include <string>
#include "RHEJ/PDF.hh"
#include "RHEJ/PDG_codes.hh"
-namespace RHEJ{
+namespace HEJ{
namespace{
int to_beam(ParticleID id){
if(std::abs(id) == pid::proton){
return (id > 0)?1:-1;
}
throw std::invalid_argument(
"unknown beam type: " + std::to_string(id)
);
}
}
#if defined LHAPDF_MAJOR_VERSION && LHAPDF_MAJOR_VERSION == 6
PDF::PDF(int id, ParticleID beam1, ParticleID beam2):
pdf{LHAPDF::mkPDF(id)},
beamtype{{to_beam(beam1), to_beam(beam2)}}
{}
double PDF::pdfpt(size_t beam_idx, double x, double q, ParticleID id) const{
if(!(inRangeQ(q) && inRangeX(x))) return 0.;
if(id == pid::gluon){
return pdf->xfxQ(21,x,q);
}
else if(abs(id) < 7){
return pdf->xfxQ(id*beamtype[beam_idx],x,q);
}
else {
std::cerr << "particle type unknown: "<< id << std::endl;
return 0.0;
}
}
double PDF::Halphas(double q) const{
double as = pdf->alphasQ(q);
if (std::isnan(as) || as > 0.5) {
as = 0.5;
}
return as;
}
int PDF::id() const{
return pdf->lhapdfID();
};
bool PDF::inRangeQ(double q) const{
return pdf->inRangeQ(q);
}
bool PDF::inRangeX(double x) const{
return pdf->inRangeX(x);
}
#else /* LHAPDF version unknown or older than 6 */
PDF::PDF(std::string LHAPDFName, int LHAPDFsubset, ParticleID beam1, ParticleID beam2):
beamtype{{to_beam(beam1_type), to_beam(beam2_type)}}
{
LHAPDF::initPDFSet(LHAPDFName, LHAPDF::LHGRID, LHAPDFsubset);
}
double PDF::pdfpt(size_t beam_idx, double x, double q, ParticleID id) const{
if(!(inRangeQ(q) && inRangeX(x))) return 0.;
if (id == pid::gluon){
return LHAPDF::xfx(x,q,0);
}
else if (abs(id) < 7){
return LHAPDF::xfx(x,q,id*beamtype[beam_idx]);
}
else {
std::cerr << "particle type unknown: "<< id <<std::endl;
return 0.0;
}
}
double PDF::Halphas(double q) const{
double as = LHAPDF::alphasPDF(q);
if (isnan(as) || as > 0.5) as = 0.5;
return as;
}
bool PDF::inRangeQ(double q) const{
// here we assume that all members actually have the same range!
static constexpr int member = 0;
return (LHAPDF::getQ2min(member) < q*q) && (q*q < LHAPDF::getQ2max(member));
}
bool PDF::inRangeX(double x) const{
// here we assume that all members actually have the same range!
static constexpr int member = 0;
return (LHAPDF::getXmin(member) < x) && (x < LHAPDF::getXmax(member));
}
#endif
}
diff --git a/src/PhaseSpacePoint.cc b/src/PhaseSpacePoint.cc
index cad6a2a..40180d3 100644
--- a/src/PhaseSpacePoint.cc
+++ b/src/PhaseSpacePoint.cc
@@ -1,537 +1,537 @@
#include "RHEJ/PhaseSpacePoint.hh"
#include <random>
#include <CLHEP/Random/Randomize.h>
#include <CLHEP/Random/RanluxEngine.h>
#include "RHEJ/Constants.hh"
#include "RHEJ/resummation_jet_momenta.hh"
#include "RHEJ/Jacobian.hh"
#include "RHEJ/uno.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/kinematics.hh"
-namespace RHEJ{
+namespace HEJ{
namespace {
constexpr int max_jet_user_idx = PhaseSpacePoint::ng_max;
bool is_nonjet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() > max_jet_user_idx;
}
bool is_jet_parton(fastjet::PseudoJet const & parton){
assert(parton.user_index() != -1);
return parton.user_index() <= max_jet_user_idx;
}
// user indices for partons with extremal rapidity
constexpr int unob_idx = -5;
constexpr int unof_idx = -4;
constexpr int backward_FKL_idx = -3;
constexpr int forward_FKL_idx = -2;
}
namespace {
double estimate_ng_mean(std::vector<fastjet::PseudoJet> const & Born_jets){
const double delta_y =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
assert(delta_y > 0);
// Formula derived from fit in arXiv:1805.04446 (see Fig. 2)
return 0.975052*delta_y;
}
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::cluster_jets(
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
return cs.inclusive_jets(param_.jet_param.min_pt);
}
bool PhaseSpacePoint::pass_resummation_cuts(
std::vector<fastjet::PseudoJet> const & jets
) const{
return cluster_jets(jets).size() == jets.size();
}
int PhaseSpacePoint::sample_ng(std::vector<fastjet::PseudoJet> const & Born_jets){
const double ng_mean = estimate_ng_mean(Born_jets);
std::poisson_distribution<int> dist(ng_mean);
const int ng = dist(ran_.get());
assert(ng >= 0);
assert(ng < ng_max);
weight_ *= std::tgamma(ng + 1)*std::exp(ng_mean)*std::pow(ng_mean, -ng);
return ng;
}
void PhaseSpacePoint::copy_AWZH_boson_from(Event const & event){
auto const & from = event.outgoing();
const auto AWZH_boson = std::find_if(
begin(from), end(from),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson == end(from)) return;
auto insertion_point = std::lower_bound(
begin(outgoing_), end(outgoing_), *AWZH_boson, rapidity_less{}
);
outgoing_.insert(insertion_point, *AWZH_boson);
// copy decay products
const int idx = std::distance(begin(from), AWZH_boson);
const auto decay_it = event.decays().find(idx);
if(decay_it != end(event.decays())){
const int new_idx = std::distance(begin(outgoing_), insertion_point);
assert(outgoing_[new_idx].type == AWZH_boson->type);
decays_.emplace(new_idx, decay_it->second);
}
assert(std::is_sorted(begin(outgoing_), end(outgoing_), rapidity_less{}));
}
PhaseSpacePoint::PhaseSpacePoint(
- Event const & ev, PhaseSpacePointConfig conf, RHEJ::RNG & ran
+ Event const & ev, PhaseSpacePointConfig conf, HEJ::RNG & ran
):
unob_{has_unob_gluon(ev.incoming(), ev.outgoing())},
unof_{!unob_ && has_unof_gluon(ev.incoming(), ev.outgoing())},
param_{std::move(conf)},
ran_{ran}
{
weight_ = 1;
const auto Born_jets = sorted_by_rapidity(ev.jets());
const int ng = sample_ng(Born_jets);
weight_ /= std::tgamma(ng + 1);
const int ng_jets = sample_ng_jets(ng, Born_jets);
std::vector<fastjet::PseudoJet> out_partons = gen_non_jet(
ng - ng_jets, CMINPT, param_.jet_param.min_pt
);
{
const auto qperp = std::accumulate(
begin(out_partons), end(out_partons),
fastjet::PseudoJet{}
);
const auto jets = reshuffle(Born_jets, qperp);
if(weight_ == 0.) return;
if(! pass_resummation_cuts(jets)){
weight_ = 0.;
return;
}
std::vector<fastjet::PseudoJet> jet_partons = split(jets, ng_jets);
if(weight_ == 0.) return;
rescale_rapidities(
out_partons,
most_backward_FKL(jet_partons).rapidity(),
most_forward_FKL(jet_partons).rapidity()
);
if(! cluster_jets(out_partons).empty()){
weight_ = 0.;
return;
}
std::sort(begin(out_partons), end(out_partons), rapidity_less{});
assert(
std::is_sorted(begin(jet_partons), end(jet_partons), rapidity_less{})
);
const auto first_jet_parton = out_partons.insert(
end(out_partons), begin(jet_partons), end(jet_partons)
);
std::inplace_merge(
begin(out_partons), first_jet_parton, end(out_partons), rapidity_less{}
);
}
if(! jets_ok(Born_jets, out_partons)){
weight_ = 0.;
return;
}
weight_ *= phase_space_normalisation(Born_jets.size(), out_partons.size());
outgoing_.reserve(out_partons.size() + 1); // one slot for possible A, W, Z, H
for(auto & p: out_partons){
outgoing_.emplace_back(Particle{pid::gluon, std::move(p)});
}
most_backward_FKL(outgoing_).type = ev.incoming().front().type;
most_forward_FKL(outgoing_).type = ev.incoming().back().type;
copy_AWZH_boson_from(ev);
assert(!outgoing_.empty());
reconstruct_incoming(ev.incoming());
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::gen_non_jet(
int count, double ptmin, double ptmax
){
// heuristic parameters for pt sampling
const double ptpar = 1.3 + count/5.;
const double temp1 = atan((ptmax - ptmin)/ptpar);
std::vector<fastjet::PseudoJet> partons(count);
for(size_t i = 0; i < (size_t) count; ++i){
const double r1 = ran_.get().flat();
const double pt = ptmin + ptpar*tan(r1*temp1);
const double temp2 = cos(r1*temp1);
const double phi = 2*M_PI*ran_.get().flat();
weight_ *= 2.0*M_PI*pt*ptpar*temp1/(temp2*temp2);
// we don't know the allowed rapidity span yet,
// set a random value to be rescaled later on
const double y = ran_.get().flat();
partons[i].reset_PtYPhiM(pt, y, phi);
// Set user index higher than any jet-parton index
// in order to assert that these are not inside jets
partons[i].set_user_index(i + 1 + ng_max);
assert(ptmin-1e-5 <= partons[i].pt() && partons[i].pt() <= ptmax+1e-5);
}
assert(std::all_of(partons.cbegin(), partons.cend(), is_nonjet_parton));
return partons;
}
void PhaseSpacePoint::rescale_rapidities(
std::vector<fastjet::PseudoJet> & partons,
double ymin, double ymax
){
constexpr double ep = 1e-7;
for(auto & parton: partons){
assert(0 <= parton.rapidity() && parton.rapidity() <= 1);
const double dy = ymax - ymin - 2*ep;
const double y = ymin + ep + dy*parton.rapidity();
parton.reset_momentum_PtYPhiM(parton.pt(), y, parton.phi());
weight_ *= dy;
assert(ymin <= parton.rapidity() && parton.rapidity() <= ymax);
}
}
namespace {
template<typename T, typename... Rest>
auto min(T const & a, T const & b, Rest&&... r) {
using std::min;
return min(a, min(b, std::forward<Rest>(r)...));
}
}
double PhaseSpacePoint::probability_in_jet(
std::vector<fastjet::PseudoJet> const & Born_jets
) const{
assert(std::is_sorted(begin(Born_jets), end(Born_jets), rapidity_less{}));
assert(Born_jets.size() >= 2);
const double dy =
Born_jets.back().rapidity() - Born_jets.front().rapidity();
const double R = param_.jet_param.def.R();
const int njets = Born_jets.size();
const double p_J_y_large = (njets-1)*R*R/(2.*dy);
const double p_J_y0 = njets*R/M_PI;
return min(p_J_y_large, p_J_y0, 1.);
}
int PhaseSpacePoint::sample_ng_jets(
int ng, std::vector<fastjet::PseudoJet> const & Born_jets
){
const double p_J = probability_in_jet(Born_jets);
std::binomial_distribution<> bin_dist(ng, p_J);
const int ng_J = bin_dist(ran_.get());
weight_ *= std::pow(p_J, -ng_J)*std::pow(1 - p_J, ng_J - ng);
return ng_J;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::reshuffle(
std::vector<fastjet::PseudoJet> const & Born_jets,
fastjet::PseudoJet const & q
){
if(q == fastjet::PseudoJet{0, 0, 0, 0}) return Born_jets;
const auto jets = resummation_jet_momenta(Born_jets, q);
if(jets.empty()){
weight_ = 0;
return {};
}
// additional Jacobian to ensure Born integration over delta gives 1
weight_ *= Jacobian(Born_jets, q);
return jets;
}
std::vector<int> PhaseSpacePoint::distribute_jet_partons(
int ng_jets, std::vector<fastjet::PseudoJet> const & jets
){
size_t first_valid_jet = 0;
size_t num_valid_jets = jets.size();
const double R_eff = 5./3.*param_.jet_param.def.R();
// if there is an unordered jet too far away from the FKL jets
// then extra gluon constituents of the unordered jet would
// violate the FKL rapidity ordering
if(unob_ && jets[0].delta_R(jets[1]) > R_eff){
++first_valid_jet;
--num_valid_jets;
}
else if(unof_ && jets[jets.size()-1].delta_R(jets[jets.size()-2]) > R_eff){
--num_valid_jets;
}
std::vector<int> np(jets.size(), 1);
for(int i = 0; i < ng_jets; ++i){
++np[first_valid_jet + ran_.get().flat() * num_valid_jets];
}
weight_ *= std::pow(num_valid_jets, ng_jets);
return np;
}
#ifndef NDEBUG
namespace{
bool tagged_FKL_backward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return std::find_if(
begin(jet_partons), end(jet_partons),
[](fastjet::PseudoJet const & p){
return p.user_index() == backward_FKL_idx;
}
) != end(jet_partons);
}
bool tagged_FKL_forward(
std::vector<fastjet::PseudoJet> const & jet_partons
){
// the most forward FKL parton is most likely near the end of jet_partons;
// start search from there
return std::find_if(
jet_partons.rbegin(), jet_partons.rend(),
[](fastjet::PseudoJet const & p){
return p.user_index() == forward_FKL_idx;
}
) != jet_partons.rend();
}
bool tagged_FKL_extremal(
std::vector<fastjet::PseudoJet> const & jet_partons
){
return tagged_FKL_backward(jet_partons) && tagged_FKL_forward(jet_partons);
}
} // namespace anonymous
#endif
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
int ng_jets
){
return split(jets, distribute_jet_partons(ng_jets, jets));
}
bool PhaseSpacePoint::pass_extremal_cuts(
fastjet::PseudoJet const & ext_parton,
fastjet::PseudoJet const & jet
) const{
if(ext_parton.pt() < param_.min_extparton_pt) return false;
return (ext_parton - jet).pt()/jet.pt() < param_.max_ext_soft_pt_fraction;
}
std::vector<fastjet::PseudoJet> PhaseSpacePoint::split(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<int> const & np
){
assert(! jets.empty());
assert(jets.size() == np.size());
assert(pass_resummation_cuts(jets));
const size_t most_backward_FKL_idx = 0 + unob_;
const size_t most_forward_FKL_idx = jets.size() - 1 - unof_;
const auto & jet = param_.jet_param;
const JetSplitter jet_splitter{jet.def, jet.min_pt, ran_};
std::vector<fastjet::PseudoJet> jet_partons;
// randomly distribute jet gluons among jets
for(size_t i = 0; i < jets.size(); ++i){
auto split_res = jet_splitter.split(jets[i], np[i]);
weight_ *= split_res.weight;
if(weight_ == 0) return {};
assert(
std::all_of(
begin(split_res.constituents), end(split_res.constituents),
is_jet_parton
)
);
const auto first_new_parton = jet_partons.insert(
end(jet_partons),
begin(split_res.constituents), end(split_res.constituents)
);
// mark uno and extremal FKL emissions here so we can check
// their position once all emissions are generated
auto extremal = end(jet_partons);
if((unob_ && i == 0) || i == most_backward_FKL_idx){
// unordered or FKL backward emission
extremal = std::min_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(
(i == most_backward_FKL_idx)?backward_FKL_idx:unob_idx
);
}
else if((unof_ && i == jets.size() - 1) || i == most_forward_FKL_idx){
// unordered or FKL forward emission
extremal = std::max_element(
first_new_parton, end(jet_partons), rapidity_less{}
);
extremal->set_user_index(
(i == most_forward_FKL_idx)?forward_FKL_idx:unof_idx
);
}
if(
extremal != end(jet_partons)
&& !pass_extremal_cuts(*extremal, jets[i])
){
weight_ = 0;
return {};
}
}
assert(tagged_FKL_extremal(jet_partons));
std::sort(begin(jet_partons), end(jet_partons), rapidity_less{});
if(
!extremal_ok(jet_partons)
|| !split_preserved_jets(jets, jet_partons)
){
weight_ = 0.;
return {};
}
return jet_partons;
}
bool PhaseSpacePoint::extremal_ok(
std::vector<fastjet::PseudoJet> const & partons
) const{
assert(std::is_sorted(begin(partons), end(partons), rapidity_less{}));
if(unob_ && partons.front().user_index() != unob_idx) return false;
if(unof_ && partons.back().user_index() != unof_idx) return false;
return
most_backward_FKL(partons).user_index() == backward_FKL_idx
&& most_forward_FKL(partons).user_index() == forward_FKL_idx;
}
bool PhaseSpacePoint::split_preserved_jets(
std::vector<fastjet::PseudoJet> const & jets,
std::vector<fastjet::PseudoJet> const & jet_partons
) const{
assert(std::is_sorted(begin(jets), end(jets), rapidity_less{}));
const auto split_jets = sorted_by_rapidity(cluster_jets(jet_partons));
// this can happen if two overlapping jets
// are both split into more than one parton
if(split_jets.size() != jets.size()) return false;
for(size_t i = 0; i < split_jets.size(); ++i){
// this can happen if there are two overlapping jets
// and a parton is assigned to the "wrong" jet
if(!nearby_ep(jets[i].rapidity(), split_jets[i].rapidity(), 1e-2)){
return false;
}
}
return true;
}
template<class Particle>
Particle const & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> const & partons
) const{
return partons[0 + unob_];
}
template<class Particle>
Particle const & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> const & partons
) const{
const size_t idx = partons.size() - 1 - unof_;
assert(idx < partons.size());
return partons[idx];
}
template<class Particle>
Particle & PhaseSpacePoint::most_backward_FKL(
std::vector<Particle> & partons
) const{
return partons[0 + unob_];
}
template<class Particle>
Particle & PhaseSpacePoint::most_forward_FKL(
std::vector<Particle> & partons
) const{
const size_t idx = partons.size() - 1 - unof_;
assert(idx < partons.size());
return partons[idx];
}
namespace {
bool contains_idx(
fastjet::PseudoJet const & jet, fastjet::PseudoJet const & parton
){
auto const & constituents = jet.constituents();
const int idx = parton.user_index();
return std::find_if(
begin(constituents), end(constituents),
[idx](fastjet::PseudoJet const & con){return con.user_index() == idx;}
) != end(constituents);
}
}
/**
* final jet test:
* - number of jets must match Born kinematics
* - no partons designated as nonjet may end up inside jets
* - all other outgoing partons *must* end up inside jets
* - the extremal (in rapidity) partons must be inside the extremal jets
* - rapidities must be the same (by construction)
*/
bool PhaseSpacePoint::jets_ok(
std::vector<fastjet::PseudoJet> const & Born_jets,
std::vector<fastjet::PseudoJet> const & partons
) const{
fastjet::ClusterSequence cs(partons, param_.jet_param.def);
const auto jets = sorted_by_rapidity(cs.inclusive_jets(param_.jet_param.min_pt));
if(jets.size() != Born_jets.size()) return false;
int in_jet = 0;
for(size_t i = 0; i < jets.size(); ++i){
assert(jets[i].has_constituents());
for(auto && parton: jets[i].constituents()){
if(is_nonjet_parton(parton)) return false;
}
in_jet += jets[i].constituents().size();
}
const int expect_in_jet = std::count_if(
partons.cbegin(), partons.cend(), is_jet_parton
);
if(in_jet != expect_in_jet) return false;
// note that PseudoJet::contains does not work here
if(! (
contains_idx(most_backward_FKL(jets), most_backward_FKL(partons))
&& contains_idx(most_forward_FKL(jets), most_forward_FKL(partons))
)) return false;
if(unob_ && !contains_idx(jets.front(), partons.front())) return false;
if(unof_ && !contains_idx(jets.back(), partons.back())) return false;
for(size_t i = 0; i < jets.size(); ++i){
assert(nearby_ep(jets[i].rapidity(), Born_jets[i].rapidity(), 1e-2));
}
return true;
}
void PhaseSpacePoint::reconstruct_incoming(
std::array<Particle, 2> const & Born_incoming
){
std::tie(incoming_[0].p, incoming_[1].p) = incoming_momenta(outgoing_);
for(size_t i = 0; i < incoming_.size(); ++i){
incoming_[i].type = Born_incoming[i].type;
}
assert(momentum_conserved());
}
double PhaseSpacePoint::phase_space_normalisation(
int num_Born_jets, int num_out_partons
) const{
return pow(16*pow(M_PI,3), num_Born_jets - num_out_partons);
}
bool PhaseSpacePoint::momentum_conserved() const{
fastjet::PseudoJet diff;
for(auto const & in: incoming()) diff += in.p;
const double norm = diff.E();
for(auto const & out: outgoing()) diff -= out.p;
return nearby(diff, fastjet::PseudoJet{}, norm);
}
-} //namespace RHEJ
+} //namespace HEJ
diff --git a/src/Ranlux64.cc b/src/Ranlux64.cc
index 6cc4e49..f63e279 100644
--- a/src/Ranlux64.cc
+++ b/src/Ranlux64.cc
@@ -1,54 +1,54 @@
#include "RHEJ/Ranlux64.hh"
-namespace RHEJ {
+namespace HEJ {
namespace {
//! create Ranlux64Engine with state read from the given file
CLHEP::Ranlux64Engine make_Ranlux64Engine(std::string const & seed_file) {
CLHEP::Ranlux64Engine result;
result.restoreStatus(seed_file.c_str());
return result;
}
CLHEP::Ranlux64Engine make_Ranlux64Engine() {
/*
* some (all?) of the Ranlux64Engine constructors leave fields
* uninitialised, invoking undefined behaviour. This can be
* circumvented by restoring the state from a file
*/
static const std::string state =
"9876\n"
"0.91280703978419097666\n"
"0.41606065829518357191\n"
"0.99156342622341142601\n"
"0.030922955274050423213\n"
"0.16206278421638486975\n"
"0.76151768001958330956\n"
"0.43765760066092695979\n"
"0.42904698253748563275\n"
"0.11476317525663759511\n"
"0.026620053590963976831\n"
"0.65953715764414511114\n"
"0.30136722624439826745\n"
"3.5527136788005009294e-15 4\n"
"1 202\n";
const std::string file = std::tmpnam(nullptr);
{
std::ofstream out{file};
out << state;
}
auto result = make_Ranlux64Engine(file);
std::remove(file.c_str());
return result;
}
}
Ranlux64::Ranlux64(): ran_{make_Ranlux64Engine()} {}
Ranlux64::Ranlux64(std::string const & seed_file):
ran_{make_Ranlux64Engine(seed_file)}
{}
double Ranlux64::flat() {
return ran_.flat();
}
}
diff --git a/src/RivetAnalysis.cc b/src/RivetAnalysis.cc
index 6a8d749..2eeb55a 100644
--- a/src/RivetAnalysis.cc
+++ b/src/RivetAnalysis.cc
@@ -1,109 +1,109 @@
#include "RHEJ/RivetAnalysis.hh"
#ifdef RHEJ_BUILD_WITH_RIVET
#include <ostream>
#include "RHEJ/Event.hh"
#include "yaml-cpp/yaml.h"
#include "Rivet/AnalysisHandler.hh"
#endif
-namespace RHEJ{
+namespace HEJ{
std::unique_ptr<Analysis> RivetAnalysis::create(YAML::Node const & config){
return std::unique_ptr<Analysis>{new RivetAnalysis{config}};
}
}
#ifdef RHEJ_BUILD_WITH_RIVET
-namespace RHEJ {
+namespace HEJ {
RivetAnalysis::RivetAnalysis(YAML::Node const & config):
output_name_{config["output"].as<std::string>()},
first_event_(true)
{
// read in analyses
const auto & name_node = config["rivet"];
switch(name_node.Type()){
case YAML::NodeType::Scalar:
analyses_names_.push_back(name_node.as<std::string>());
break;
case YAML::NodeType::Sequence:
for(YAML::const_iterator it = name_node.begin(); it != name_node.end(); ++it){
analyses_names_.push_back(it->as<std::string>());
}
break;
default:
throw std::invalid_argument{
"No Analysis was provided to rivet. "
"Either give an analysis or deactivate rivet."
};
}
}
void RivetAnalysis::init(Event const & event){
rivet_runs_.push_back(
{std::make_unique<Rivet::AnalysisHandler>(), "", HepMCInterface()}
);
rivet_runs_.back().handler->addAnalyses(analyses_names_);
if( !event.variations().empty() ){
rivet_runs_.reserve(event.variations().size()+1);
for(auto const & vari : event.variations()){
std::ostringstream name;
name << ".Scale" << vari.description->scale_name
<< "_MuR" << vari.description->mur_factor
<< "_MuF" << vari.description->muf_factor;
rivet_runs_.push_back(
{std::make_unique<Rivet::AnalysisHandler>(), name.str(), HepMCInterface()}
);
rivet_runs_.back().handler->addAnalyses(analyses_names_);
}
}
}
void RivetAnalysis::fill(Event const & event, Event const &){
if(first_event_){
first_event_=false;
init(event);
}
HepMC::GenEvent hepmc_kin(rivet_runs_[0].hepmc.init_kinematics(event));
for(size_t i = 0; i < rivet_runs_.size(); ++i){
auto & run = rivet_runs_[i];
run.hepmc.set_central(hepmc_kin, event, i-1); // -1: first = central
run.handler->analyze(hepmc_kin);
}
}
void RivetAnalysis::finalise(){
for(auto const & run: rivet_runs_){
run.handler->finalize();
run.handler->writeData(output_name_+run.name+std::string(".yoda"));
}
}
-} // namespace RHEJ
+} // namespace HEJ
#else // no rivet => create empty analysis
namespace Rivet {
class AnalysisHandler {};
}
-namespace RHEJ {
+namespace HEJ {
RivetAnalysis::RivetAnalysis(YAML::Node const &)
{
throw std::invalid_argument(
"Failed to create RivetAnalysis: "
"HEJ 2 was built without rivet support"
);
}
void RivetAnalysis::init(Event const &){}
void RivetAnalysis::fill(Event const &, Event const &){}
void RivetAnalysis::finalise(){}
-} // namespace RHEJ
+} // namespace HEJ
#endif
diff --git a/src/ScaleFunction.cc b/src/ScaleFunction.cc
index aaedef8..b1db387 100644
--- a/src/ScaleFunction.cc
+++ b/src/ScaleFunction.cc
@@ -1,144 +1,144 @@
#include "RHEJ/ScaleFunction.hh"
#include <numeric>
#include <cassert>
#include "RHEJ/Event.hh"
-namespace RHEJ{
+namespace HEJ{
double H_T(Event const & ev){
double result = 0.;
for(size_t i = 0; i < ev.outgoing().size(); ++i){
auto const decay_products = ev.decays().find(i);
if(decay_products == end(ev.decays())){
result += ev.outgoing()[i].perp();
}
else{
for(auto const & particle: decay_products->second){
result += particle.perp();
}
}
}
return result;
}
double max_jet_pt(Event const & ev) {
return sorted_by_pt(ev.jets()).front().pt();
}
double jet_invariant_mass(Event const & ev) {
fastjet::PseudoJet sum;
for(const auto & jet: ev.jets()) sum+=jet;
return sum.m();
}
double m_j1j2(Event const & ev) {
const auto jets = sorted_by_pt(ev.jets());
assert(jets.size() >= 2);
return (jets[0] + jets[1]).m();
}
ScaleFunction operator*(double factor, ScaleFunction base_scale) {
base_scale.name_.insert(0, std::to_string(factor) + '*');
auto new_fun =
- [factor,fun{std::move(base_scale.fun_)}](RHEJ::Event const & ev) {
+ [factor,fun{std::move(base_scale.fun_)}](HEJ::Event const & ev) {
return factor*fun(ev);
};
base_scale.fun_ = std::move(new_fun);
return base_scale;
}
ScaleFunction operator/(ScaleFunction base_scale, double denom) {
base_scale.name_.append('/' + std::to_string(denom));
auto new_fun =
- [denom,fun{std::move(base_scale.fun_)}](RHEJ::Event const & ev) {
+ [denom,fun{std::move(base_scale.fun_)}](HEJ::Event const & ev) {
return fun(ev)/denom;
};
base_scale.fun_ = std::move(new_fun);
return base_scale;
}
// TODO: significant logic duplication with operator()
void ScaleGenerator::gen_descriptions() {
if(scales_.empty()) {
throw std::logic_error{"Need at least one scale"};
}
descriptions_.emplace_back(
std::make_shared<ParameterDescription>(scales_.front().name(), 1., 1.)
);
for(auto & base_scale: scales_){
const auto base_name = base_scale.name();
descriptions_.emplace_back(
std::make_shared<ParameterDescription>(base_name, 1., 1.)
);
//multiplicative scale variation
for(double mur_factor: scale_factors_){
for(double muf_factor: scale_factors_){
if(muf_factor == 1. && mur_factor == 1.) continue;
if(
mur_factor/muf_factor < 1/max_scale_ratio_
|| mur_factor/muf_factor > max_scale_ratio_
) continue;
descriptions_.emplace_back(
std::make_shared<ParameterDescription>(
base_name, mur_factor, muf_factor
)
);
}
}
}
}
Event ScaleGenerator::operator()(Event ev) const {
if(! ev.variations().empty()) {
throw std::invalid_argument{"Input event already has scale variation"};
}
assert(!scales_.empty());
assert(!descriptions_.empty());
size_t descr_idx = 0;
const double mu_central = (scales_.front())(ev);
ev.central().mur = mu_central;
ev.central().muf = mu_central;
assert(descr_idx < descriptions_.size());
assert(descriptions_[descr_idx]);
ev.central().description = descriptions_[descr_idx++];
// check if we are doing scale variation at all
if(scales_.size() == 1 && scale_factors_.empty()) return ev;
for(auto & base_scale: scales_){
const double mu_base = base_scale(ev);
assert(descr_idx < descriptions_.size());
assert(descriptions_[descr_idx]);
ev.variations().emplace_back(
EventParameters{
mu_base, mu_base, ev.central().weight, descriptions_[descr_idx++]
}
);
//multiplicative scale variation
for(double mur_factor: scale_factors_){
const double mur = mu_base*mur_factor;
for(double muf_factor: scale_factors_){
if(muf_factor == 1. && mur_factor == 1.) continue;
const double muf = mu_base*muf_factor;
if(
mur/muf < 1/max_scale_ratio_
|| mur/muf > max_scale_ratio_
) continue;
assert(descr_idx < descriptions_.size());
assert(descriptions_[descr_idx]);
ev.variations().emplace_back(
EventParameters{
mur, muf, ev.central().weight, descriptions_[descr_idx++]
}
);
}
}
};
return ev;
}
}
diff --git a/src/YAMLreader.cc b/src/YAMLreader.cc
index 7adad06..cab214d 100644
--- a/src/YAMLreader.cc
+++ b/src/YAMLreader.cc
@@ -1,486 +1,486 @@
#include "RHEJ/YAMLreader.hh"
#include <set>
#include <string>
#include <vector>
#include <iostream>
#include <stdexcept>
#include <dlfcn.h>
-namespace RHEJ{
+namespace HEJ{
namespace{
//! Get YAML tree of supported options
/**
* The configuration file is checked against this tree of options
* in assert_all_options_known.
*/
YAML::Node const & get_supported_options(){
const static YAML::Node supported = [](){
YAML::Node supported;
static const auto opts = {
"trials", "min extparton pt", "max ext soft pt fraction",
"FKL", "unordered", "non-HEJ",
"scales", "scale factors", "max scale ratio", "import scales",
"log correction", "unweight", "event output", "analysis"
};
// add subnodes to "supported" - the assigned value is irrelevant
for(auto && opt: opts) supported[opt] = "";
for(auto && jet_opt: {"min pt", "algorithm", "R"}){
supported["resummation jets"][jet_opt] = "";
supported["fixed order jets"][jet_opt] = "";
}
for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
supported["Higgs coupling"][opt] = "";
}
for(auto && opt: {"name", "seed"}){
supported["random generator"][opt] = "";
}
return supported;
}();
return supported;
}
fastjet::JetAlgorithm to_JetAlgorithm(std::string const & algo){
using namespace fastjet;
static const std::map<std::string, fastjet::JetAlgorithm> known = {
{"kt", kt_algorithm},
{"cambridge", cambridge_algorithm},
{"antikt", antikt_algorithm},
{"genkt", genkt_algorithm},
{"cambridge for passive", cambridge_for_passive_algorithm},
{"genkt for passive", genkt_for_passive_algorithm},
{"ee kt", ee_kt_algorithm},
{"ee genkt", ee_genkt_algorithm},
{"plugin", plugin_algorithm}
};
const auto res = known.find(algo);
if(res == known.end()){
throw std::invalid_argument("Unknown jet algorithm " + algo);
}
return res->second;
}
EventTreatment to_EventTreatment(std::string const & name){
static const std::map<std::string, EventTreatment> known = {
{"reweight", EventTreatment::reweight},
{"keep", EventTreatment::keep},
{"discard", EventTreatment::discard}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown event treatment " + name);
}
return res->second;
}
} // namespace anonymous
ParticleID to_ParticleID(std::string const & name){
- using namespace RHEJ::pid;
+ using namespace HEJ::pid;
static const std::map<std::string, ParticleID> known = {
{"d", d}, {"down", down}, {"u", u}, {"up", up}, {"s", s}, {"strange", strange},
{"c", c}, {"charm", charm}, {"b", b}, {"bottom", bottom}, {"t", t}, {"top", top},
{"e", e}, {"electron", electron}, {"nu_e", nu_e}, {"electron_neutrino", electron_neutrino},
{"mu", mu}, {"muon", muon}, {"nu_mu", nu_mu}, {"muon_neutrino", muon_neutrino},
{"tau", tau}, {"nu_tau", nu_tau}, {"tau_neutrino", tau_neutrino},
{"d_bar", d_bar}, {"u_bar", u_bar}, {"s_bar", s_bar}, {"c_bar", c_bar},
{"b_bar", b_bar}, {"t_bar", t_bar}, {"e_bar", e_bar},
{"nu_e_bar", nu_e_bar}, {"mu_bar", mu_bar}, {"nu_mu_bar", nu_mu_bar},
{"tau_bar", tau_bar}, {"nu_tau_bar", nu_tau_bar},
{"gluon", gluon}, {"g", g}, {"photon", photon}, {"gamma", gamma},
{"Z", Z}, {"Wp", Wp}, {"Wm", Wm}, {"W+", Wp}, {"W-", Wm},
{"h", h}, {"H", h}, {"Higgs", Higgs}, {"higgs", higgs},
{"p", p}, {"proton", proton}, {"p_bar", p_bar}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown particle " + name);
}
return res->second;
}
namespace detail{
void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml){
setting = to_JetAlgorithm(yaml.as<std::string>());
}
void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml){
setting = to_EventTreatment(yaml.as<std::string>());
}
void set_from_yaml(ParticleID & setting, YAML::Node const & yaml){
setting = to_ParticleID(yaml.as<std::string>());
}
} // namespace detail
JetParameters get_jet_parameters(
YAML::Node const & node,
std::string const & entry
){
assert(node);
JetParameters result;
fastjet::JetAlgorithm jet_algo = fastjet::antikt_algorithm;
double R;
set_from_yaml_if_defined(jet_algo, node, entry, "algorithm");
set_from_yaml(R, node, entry, "R");
result.def = fastjet::JetDefinition{jet_algo, R};
set_from_yaml(result.min_pt, node, entry, "min pt");
return result;
}
RNGConfig to_RNGConfig(
YAML::Node const & node,
std::string const & entry
){
assert(node);
RNGConfig result;
set_from_yaml(result.name, node, entry, "name");
set_from_yaml_if_defined(result.seed, node, entry, "seed");
return result;
}
HiggsCouplingSettings get_Higgs_coupling(
YAML::Node const & node,
std::string const & entry
){
assert(node);
static constexpr double mt_max = 2e4;
#ifndef RHEJ_BUILD_WITH_QCDLOOP
if(node[entry]){
throw std::invalid_argument{
"Higgs coupling settings require building HEJ 2 "
"with QCDloop support"
};
}
#endif
HiggsCouplingSettings settings;
set_from_yaml_if_defined(settings.mt, node, entry, "mt");
set_from_yaml_if_defined(settings.mb, node, entry, "mb");
set_from_yaml_if_defined(settings.include_bottom, node, entry, "include bottom");
set_from_yaml_if_defined(settings.use_impact_factors, node, entry, "use impact factors");
if(settings.use_impact_factors){
if(settings.mt != std::numeric_limits<double>::infinity()){
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
else{
// huge values of the top mass are numerically unstable
settings.mt = std::min(settings.mt, mt_max);
}
return settings;
}
FileFormat to_FileFormat(std::string const & name){
static const std::map<std::string, FileFormat> known = {
{"Les Houches", FileFormat::Les_Houches},
{"HepMC", FileFormat::HepMC}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown file format " + name);
}
return res->second;
}
std::string extract_suffix(std::string const & filename){
size_t separator = filename.rfind('.');
if(separator == filename.npos) return {};
return filename.substr(separator + 1);
}
FileFormat format_from_suffix(std::string const & filename){
const std::string suffix = extract_suffix(filename);
if(suffix == "lhe") return FileFormat::Les_Houches;
if(suffix == "hepmc") return FileFormat::HepMC;
throw std::invalid_argument{
"Can't determine format for output file " + filename
};
}
void assert_all_options_known(
YAML::Node const & conf, YAML::Node const & supported
){
if(!conf.IsMap()) return;
if(!supported.IsMap()) throw invalid_type{"must not have sub-entries"};
for(auto const & entry: conf){
const auto name = entry.first.as<std::string>();
if(! supported[name]) throw unknown_option{name};
/* check sub-options, e.g. 'resummation jets: min pt'
* we don't check analysis sub-options
* those depend on the analysis being used and should be checked there
* similar for "import scales"
*/
if(name != "analysis" && name != "import scales"){
try{
assert_all_options_known(conf[name], supported[name]);
}
catch(unknown_option const & ex){
throw unknown_option{name + ": " + ex.what()};
}
catch(invalid_type const & ex){
throw invalid_type{name + ": " + ex.what()};
}
}
}
}
-} // namespace RHEJ
+} // namespace HEJ
namespace YAML {
- Node convert<RHEJ::OutputFile>::encode(RHEJ::OutputFile const & outfile) {
+ Node convert<HEJ::OutputFile>::encode(HEJ::OutputFile const & outfile) {
Node node;
node[to_string(outfile.format)] = outfile.name;
return node;
};
- bool convert<RHEJ::OutputFile>::decode(Node const & node, RHEJ::OutputFile & out) {
+ bool convert<HEJ::OutputFile>::decode(Node const & node, HEJ::OutputFile & out) {
switch(node.Type()){
case NodeType::Map: {
YAML::const_iterator it = node.begin();
- out.format = RHEJ::to_FileFormat(it->first.as<std::string>());
+ out.format = HEJ::to_FileFormat(it->first.as<std::string>());
out.name = it->second.as<std::string>();
return true;
}
case NodeType::Scalar:
out.name = node.as<std::string>();
- out.format = RHEJ::format_from_suffix(out.name);
+ out.format = HEJ::format_from_suffix(out.name);
return true;
default:
return false;
}
}
} // namespace YAML
-namespace RHEJ{
+namespace HEJ{
namespace detail{
void set_from_yaml(OutputFile & setting, YAML::Node const & yaml){
setting = yaml.as<OutputFile>();
}
}
namespace{
void update_fixed_order_jet_parameters(
JetParameters & fixed_order_jets, YAML::Node const & yaml
){
if(!yaml["fixed order jets"]) return;
set_from_yaml_if_defined(
fixed_order_jets.min_pt, yaml, "fixed order jets", "min pt"
);
fastjet::JetAlgorithm algo = fixed_order_jets.def.jet_algorithm();
set_from_yaml_if_defined(algo, yaml, "fixed order jets", "algorithm");
double R = fixed_order_jets.def.R();
set_from_yaml_if_defined(R, yaml, "fixed order jets", "R");
fixed_order_jets.def = fastjet::JetDefinition{algo, R};
}
// like std::stod, but throw if not the whole string can be converted
double to_double(std::string const & str){
std::size_t pos;
const double result = std::stod(str, &pos);
if(pos < str.size()){
throw std::invalid_argument(str + " is not a valid double value");
}
return result;
}
using EventScale = double (*)(Event const &);
void import_scale_functions(
std::string const & file,
std::vector<std::string> const & scale_names,
std::unordered_map<std::string, EventScale> & known
) {
auto handle = dlopen(file.c_str(), RTLD_NOW);
char * error = dlerror();
if(error != nullptr) throw std::runtime_error{error};
for(auto const & scale: scale_names) {
void * sym = dlsym(handle, scale.c_str());
error = dlerror();
if(error != nullptr) throw std::runtime_error{error};
known.emplace(scale, reinterpret_cast<EventScale>(sym));
}
}
auto get_scale_map(
YAML::Node const & yaml
) {
std::unordered_map<std::string, EventScale> scale_map;
scale_map.emplace("H_T", H_T);
scale_map.emplace("max jet pperp", max_jet_pt);
scale_map.emplace("jet invariant mass", jet_invariant_mass);
scale_map.emplace("m_j1j2", m_j1j2);
if(yaml["import scales"]) {
if(! yaml["import scales"].IsMap()) {
throw invalid_type{"Entry 'import scales' is not a map"};
}
for(auto const & import: yaml["import scales"]) {
const auto file = import.first.as<std::string>();
const auto scale_names =
import.second.IsSequence()
?import.second.as<std::vector<std::string>>()
:std::vector<std::string>{import.second.as<std::string>()};
import_scale_functions(file, scale_names, scale_map);
}
}
return scale_map;
}
// simple (as in non-composite) scale functions
/**
* An example for a simple scale function would be H_T,
* H_T/2 is then composite (take H_T and then divide by 2)
*/
ScaleFunction parse_simple_ScaleFunction(
std::string const & scale_fun,
std::unordered_map<std::string, EventScale> const & known
) {
assert(
scale_fun.empty() ||
(!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
);
const auto it = known.find(scale_fun);
if(it != end(known)) return {it->first, it->second};
try{
const double scale = to_double(scale_fun);
return {scale_fun, FixedScale{scale}};
} catch(std::invalid_argument const &){}
throw std::invalid_argument{"Unknown scale choice: " + scale_fun};
}
std::string trim_front(std::string const & str){
const auto new_begin = std::find_if(
begin(str), end(str), [](char c){ return ! std::isspace(c); }
);
return std::string(new_begin, end(str));
}
std::string trim_back(std::string str){
size_t pos = str.size() - 1;
// use guaranteed wrap-around behaviour to check whether we have
// traversed the whole string
for(; pos < str.size() && std::isspace(str[pos]); --pos) {}
str.resize(pos + 1); // note that pos + 1 can be 0
return str;
}
ScaleFunction parse_ScaleFunction(
std::string const & scale_fun,
std::unordered_map<std::string, EventScale> const & known
){
assert(
scale_fun.empty() ||
(!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
);
const size_t delim = scale_fun.find_first_of("*/");
if(delim == scale_fun.npos){
return parse_simple_ScaleFunction(scale_fun, known);
}
const std::string first = trim_back(std::string{scale_fun, 0, delim});
const std::string second = trim_front(std::string{scale_fun, delim+1});
if(scale_fun[delim] == '/'){
return parse_simple_ScaleFunction(first, known)/to_double(second);
}
else{
assert(scale_fun[delim] == '*');
try{
const double factor = to_double(second);
return factor*parse_simple_ScaleFunction(first, known);
}
catch(std::invalid_argument const &){
const double factor = to_double(first);
return factor*parse_simple_ScaleFunction(first, known);
}
}
}
EventTreatMap get_event_treatment(
YAML::Node const & yaml
){
using namespace event_type;
EventTreatMap treat {
{no_2_jets, EventTreatment::discard},
{bad_final_state, EventTreatment::discard},
{FKL, EventTreatment::reweight},
{unob, EventTreatment::keep},
{unof, EventTreatment::keep},
{nonHEJ, EventTreatment::keep}
};
set_from_yaml(treat.at(FKL), yaml, "FKL");
set_from_yaml(treat.at(unob), yaml, "unordered");
treat.at(unof) = treat.at(unob);
set_from_yaml(treat.at(nonHEJ), yaml, "non-HEJ");
if(treat[nonHEJ] == EventTreatment::reweight){
throw std::invalid_argument{"Cannot reweight non-HEJ events"};
}
return treat;
}
Config to_Config(YAML::Node const & yaml){
try{
assert_all_options_known(yaml, get_supported_options());
}
catch(unknown_option const & ex){
throw unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
}
Config config;
config.resummation_jets = get_jet_parameters(yaml, "resummation jets");
config.fixed_order_jets = config.resummation_jets;
update_fixed_order_jet_parameters(config.fixed_order_jets, yaml);
set_from_yaml(config.min_extparton_pt, yaml, "min extparton pt");
config.max_ext_soft_pt_fraction = std::numeric_limits<double>::infinity();
set_from_yaml_if_defined(
config.max_ext_soft_pt_fraction, yaml, "max ext soft pt fraction"
);
set_from_yaml(config.trials, yaml, "trials");
set_from_yaml(config.log_correction, yaml, "log correction");
set_from_yaml(config.unweight, yaml, "unweight");
config.treat = get_event_treatment(yaml);
set_from_yaml_if_defined(config.output, yaml, "event output");
config.rng = to_RNGConfig(yaml, "random generator");
set_from_yaml_if_defined(config.analysis_parameters, yaml, "analysis");
config.scales = to_ScaleConfig(yaml);
config.Higgs_coupling = get_Higgs_coupling(yaml, "Higgs coupling");
return config;
}
} // namespace anonymous
ScaleConfig to_ScaleConfig(YAML::Node const & yaml){
ScaleConfig config;
auto scale_funs = get_scale_map(yaml);
std::vector<std::string> scales;
set_from_yaml(scales, yaml, "scales");
config.base.reserve(scales.size());
std::transform(
begin(scales), end(scales), std::back_inserter(config.base),
[scale_funs](auto const & entry){
return parse_ScaleFunction(entry, scale_funs);
}
);
set_from_yaml_if_defined(config.factors, yaml, "scale factors");
config.max_ratio = std::numeric_limits<double>::infinity();
set_from_yaml_if_defined(config.max_ratio, yaml, "max scale ratio");
return config;
}
Config load_config(std::string const & config_file){
try{
return to_Config(YAML::LoadFile(config_file));
}
catch(...){
std::cerr << "Error reading " << config_file << ":\n ";
throw;
}
}
-} // namespace RHEJ
+} // namespace HEJ
diff --git a/src/bin/rHEJ.cc b/src/bin/rHEJ.cc
index ec61201..03b736f 100644
--- a/src/bin/rHEJ.cc
+++ b/src/bin/rHEJ.cc
@@ -1,178 +1,178 @@
/**
* Name: main.cc
* Authors: Tuomas Hapola, Andreas Maier <andreas.maier@durham.ac.uk>
*
*/
#include <fstream>
#include <numeric>
#include <memory>
#include <chrono>
#include <iostream>
#include "yaml-cpp/yaml.h"
#include "RHEJ/CombinedEventWriter.hh"
#include "RHEJ/config.hh"
#include "RHEJ/EventReweighter.hh"
#include "RHEJ/get_analysis.hh"
#include "LHEF/LHEF.h"
#include "RHEJ/utility.hh"
#include "RHEJ/Version.hh"
#include "RHEJ/stream.hh"
#include "RHEJ/YAMLreader.hh"
#include "RHEJ/ProgressBar.hh"
#include "RHEJ/make_RNG.hh"
int event_number(std::string const & record){
size_t start = record.rfind("Number of Events");
start = record.find_first_of("123456789", start);
if(start == std::string::npos) {
throw std::invalid_argument("no event number record found");
}
const size_t end = record.find_first_not_of("0123456789", start);
return std::stoi(record.substr(start, end - start));
}
-RHEJ::Config load_config(char const * filename){
+HEJ::Config load_config(char const * filename){
try{
- return RHEJ::load_config(filename);
+ return HEJ::load_config(filename);
}
catch(std::exception const & exc){
std::cerr << "Error: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
-std::unique_ptr<RHEJ::Analysis> get_analysis(
+std::unique_ptr<HEJ::Analysis> get_analysis(
YAML::Node const & parameters
){
try{
- return RHEJ::get_analysis(parameters);
+ return HEJ::get_analysis(parameters);
}
catch(std::exception const & exc){
std::cerr << "Failed to load analysis: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
// unique_ptr is a workaround:
-// RHEJ::optional is a better fit, but gives spurious errors with g++ 7.3.0
-std::unique_ptr<RHEJ::ProgressBar<double>> make_progress_bar(
+// HEJ::optional is a better fit, but gives spurious errors with g++ 7.3.0
+std::unique_ptr<HEJ::ProgressBar<double>> make_progress_bar(
std::vector<double> const & xs
) {
if(xs.empty()) return {};
const double Born_xs = std::accumulate(begin(xs), end(xs), 0.);
- return std::make_unique<RHEJ::ProgressBar<double>>(std::cout, Born_xs);
+ return std::make_unique<HEJ::ProgressBar<double>>(std::cout, Born_xs);
}
std::string time_to_string(const time_t time){
char s[30];
struct tm * p = localtime(&time);
strftime(s, 30, "%a %b %d %Y %H:%M:%S", p);
return s;
}
int main(int argn, char** argv) {
using clock = std::chrono::system_clock;
if (argn < 3) {
std::cerr << "\n# Usage:\n."<< argv[0] <<" config_file input_file\n\n";
return EXIT_FAILURE;
}
const auto start_time = clock::now();
{
- std::cout << "Starting " << RHEJ::Version::package_name_full()
- << ", revision " << RHEJ::Version::revision() << " ("
+ std::cout << "Starting " << HEJ::Version::package_name_full()
+ << ", revision " << HEJ::Version::revision() << " ("
<< time_to_string(clock::to_time_t(start_time)) << ")" << std::endl;
}
fastjet::ClusterSequence::print_banner();
// read configuration
- const RHEJ::Config config = load_config(argv[1]);
+ const HEJ::Config config = load_config(argv[1]);
- RHEJ::istream in{argv[2]};
+ HEJ::istream in{argv[2]};
- std::unique_ptr<RHEJ::Analysis> analysis = get_analysis(
+ std::unique_ptr<HEJ::Analysis> analysis = get_analysis(
config.analysis_parameters
);
assert(analysis != nullptr);
LHEF::Reader reader{in};
auto heprup = reader.heprup;
heprup.generators.emplace_back(LHEF::XMLTag{});
- heprup.generators.back().name = RHEJ::Version::package_name();
- heprup.generators.back().version = RHEJ::Version::String();
- RHEJ::CombinedEventWriter writer{config.output, std::move(heprup)};
+ heprup.generators.back().name = HEJ::Version::package_name();
+ heprup.generators.back().version = HEJ::Version::String();
+ HEJ::CombinedEventWriter writer{config.output, std::move(heprup)};
double global_reweight = 1.;
int max_events = std::numeric_limits<int>::max();
if(argn > 3){
max_events = std::stoi(argv[3]);
const int input_events = event_number(reader.headerBlock);
global_reweight = input_events/static_cast<double>(max_events);
std::cout << "Processing " << max_events
<< " out of " << input_events << " events\n";
}
- RHEJ::ScaleGenerator scale_gen{
+ HEJ::ScaleGenerator scale_gen{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
};
- auto ran = RHEJ::make_RNG(config.rng.name, config.rng.seed);
+ auto ran = HEJ::make_RNG(config.rng.name, config.rng.seed);
assert(ran != nullptr);
- RHEJ::EventReweighter rhej{
+ HEJ::EventReweighter rhej{
reader.heprup,
std::move(scale_gen),
to_EventReweighterConfig(config),
*ran
};
int nevent = 0;
- std::array<int, RHEJ::event_type::last_type + 1>
+ std::array<int, HEJ::event_type::last_type + 1>
nevent_type{0}, nfailed_type{0};
auto progress = make_progress_bar(reader.heprup.XSECUP);
// Loop over the events in the inputfile
while(reader.readEvent()){
// reweight events so that the total cross section is conserved
reader.hepeup.setWeight(0, global_reweight * reader.hepeup.weight());
if(nevent == max_events) break;
++nevent;
// calculate rHEJ weight
- RHEJ::Event FO_event{
- RHEJ::UnclusteredEvent{reader.hepeup},
+ HEJ::Event FO_event{
+ HEJ::UnclusteredEvent{reader.hepeup},
config.fixed_order_jets.def, config.fixed_order_jets.min_pt,
};
auto resummed_events = rhej.reweight(FO_event, config.trials);
++nevent_type[FO_event.type()];
if(resummed_events.empty()) ++nfailed_type[FO_event.type()];
for(auto const & ev: resummed_events){
//TODO: move pass_cuts to after phase space point generation
if(analysis->pass_cuts(ev, FO_event)){
analysis->fill(ev, FO_event);
writer.write(ev);
}
}
if(progress) progress->increment(FO_event.central().weight);
} // main event loop
std::cout << '\n';
analysis->finalise();
- using namespace RHEJ::event_type;
+ using namespace HEJ::event_type;
std::cout<< "Events processed: " << nevent << '\n';
for(size_t ev_type = first_type; ev_type <= last_type; ++ev_type){
std::cout << '\t' << names[ev_type] << ": " << nevent_type[ev_type]
<< ", failed to reconstruct " << nfailed_type[ev_type]
<< '\n';
}
std::chrono::duration<double> run_time = (clock::now() - start_time);
- std::cout << "Finished " << RHEJ::Version::package_name() << " at "
+ std::cout << "Finished " << HEJ::Version::package_name() << " at "
<< time_to_string(clock::to_time_t(clock::now()))
<< "\n=> Runtime: " << run_time.count() << " sec ("
<< nevent/run_time.count() << " Events/sec).\n";
}
diff --git a/src/currents.cc b/src/currents.cc
index 3f4cc50..8e5fef0 100644
--- a/src/currents.cc
+++ b/src/currents.cc
@@ -1,3615 +1,3615 @@
//////////////////////////////////////////////////
//////////////////////////////////////////////////
// This source code is Copyright (2012) of //
// Jeppe R. Andersen and Jennifer M. Smillie //
// and is distributed under the //
// Gnu Public License version 2 //
// http://www.gnu.org/licenses/gpl-2.0.html //
// You are allowed to distribute and alter the //
// source under the conditions of the GPLv2 //
// as long as this copyright notice //
// is unaltered and distributed with the source //
// Any use should comply with the //
// MCNET GUIDELINES //
// for Event Generator Authors and Users //
// as distributed with this source code //
//////////////////////////////////////////////////
//////////////////////////////////////////////////
#include "RHEJ/currents.hh"
//#include "ZJets/Flags.h"
#include "RHEJ/Constants.hh"
#include "RHEJ/utility.hh"
#include "RHEJ/PDG_codes.hh"
const COM looprwfactor = (COM(0.,1.)*M_PI*M_PI)/pow((2.*M_PI),4);
//const double HVE = 246.21845810181637;
#ifdef RHEJ_BUILD_WITH_QCDLOOP
#include "qcdloop/qcdloop.h"
#endif
#include <iostream>
#include <utility>
namespace {
// Loop integrals
#ifdef RHEJ_BUILD_WITH_QCDLOOP
COM B0DD(CLHEP::HepLorentzVector q, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_B0 = [](){
ql::Bubble<std::complex<double>,double,double> ql_B0;
ql_B0.setCacheSize(100);
return ql_B0;
}();
static std::vector<double> masses(2);
static std::vector<double> momenta(1);
for(auto & m: masses) m = mq*mq;
momenta.front() = q.m2();
ql_B0.integral(result, 1, masses, momenta);
return result[0];
}
COM C0DD(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_C0 = [](){
ql::Triangle<std::complex<double>,double,double> ql_C0;
ql_C0.setCacheSize(100);
return ql_C0;
}();
static std::vector<double> masses(3);
static std::vector<double> momenta(3);
for(auto & m: masses) m = mq*mq;
momenta[0] = q1.m2();
momenta[1] = q2.m2();
momenta[2] = (q1+q2).m2();
ql_C0.integral(result, 1, masses, momenta);
return result[0];
}
COM D0DD(CLHEP::HepLorentzVector q1,CLHEP::HepLorentzVector q2, CLHEP::HepLorentzVector q3, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_D0 = [](){
ql::Box<std::complex<double>,double,double> ql_D0;
ql_D0.setCacheSize(100);
return ql_D0;
}();
static std::vector<double> masses(4);
static std::vector<double> momenta(6);
for(auto & m: masses) m = mq*mq;
momenta[0] = q1.m2();
momenta[1] = q2.m2();
momenta[2] = q3.m2();
momenta[3] = (q1+q2+q3).m2();
momenta[4] = (q1+q2).m2();
momenta[5] = (q2+q3).m2();
ql_D0.integral(result, 1, masses, momenta);
return result[0];
}
COM A1(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt)
// As given in Eq. (B.2) of VDD
{
double q12,q22,Q2;
CLHEP::HepLorentzVector Q;
double Delta3,mt2;
COM ans(COM(0.,0.));
q12=q1.m2();
q22=q2.m2();
Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
Q2=Q.m2();
Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
if (mt < 0.)
std::cerr<<"Problem in A1! mt = "<<mt<<std::endl;
mt2=mt*mt;
ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*( 4.*mt2/Delta3*(Q2-q12-q22)
-1.-4.*q12*q22/Delta3-12.*q12*q22*Q2/Delta3/Delta3*(q12+q22-Q2) )
- looprwfactor*COM(0,-1)*( B0DD(q2,mt)-B0DD(Q,mt) )
* ( 2.*q22/Delta3+12.*q12*q22/Delta3/Delta3*(q22-q12+Q2) )
- looprwfactor*COM(0,-1)*( B0DD(q1,mt)-B0DD(Q,mt) )
* ( 2.*q12/Delta3+12.*q12*q22/Delta3/Delta3*(q12-q22+Q2) )
- 2./Delta3/16/M_PI/M_PI*(q12+q22-Q2);
return ans;
}
COM A2(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt)
// As given in Eq. (B.2) of VDD, but with high energy limit
// of invariants taken.
{
double q12,q22,Q2;
CLHEP::HepLorentzVector Q;
double Delta3,mt2;
COM ans(COM(0.,0.));
if (mt < 0.)
std::cerr<<"Problem in A2! mt = "<<mt<<std::endl;
mt2=mt*mt;
q12=q1.m2();
q22=q2.m2();
Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
Q2=Q.m2();
Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*( 2.*mt2+1./2.*(q12+q22-Q2)
+2.*q12*q22*Q2/Delta3 )
+looprwfactor*COM(0,-1)*(B0DD(q2,mt)-B0DD(Q,mt))
*q22*(q22-q12-Q2)/Delta3
+looprwfactor*COM(0,-1)*(B0DD(q1,mt)-B0DD(Q,mt))
*q12*(q12-q22-Q2)/Delta3+1./16/M_PI/M_PI;
return ans;
}
#else // no QCDloop
COM A1(CLHEP::HepLorentzVector, CLHEP::HepLorentzVector, double) {
throw std::logic_error{"A1 called without QCDloop support"};
}
COM A2(CLHEP::HepLorentzVector, CLHEP::HepLorentzVector, double) {
throw std::logic_error{"A2 called without QCDloop support"};
}
#endif
void to_current(const CLHEP::HepLorentzVector & q, current & ret){
ret[0]=q.e();
ret[1]=q.x();
ret[2]=q.y();
ret[3]=q.z();
}
constexpr double C_A = 3.;
constexpr double C_F = 4./3.;
- using ParticleID = RHEJ::pid::ParticleID;
+ using ParticleID = HEJ::pid::ParticleID;
// Colour acceleration multiplier for gluons see eq. (7) in arXiv:0910.5113
// TODO: this is not a current and should be moved somewhere else
double K_g(double p1minus, double paminus) {
return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
}
double K_g(
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
return K_g(pout.minus(), pin.minus());
}
} // namespace anonymous
/// @TODO move all of these functions to header? clean up in general
COM cdot(const current & j1, const current & j2)
{
return j1[0]*j2[0]-j1[1]*j2[1]-j1[2]*j2[2]-j1[3]*j2[3];
}
COM cdot(const HLV & p, const current & j1) {
return j1[0]*p.e()-j1[1]*p.x()-j1[2]*p.y()-j1[3]*p.z();
}
void cmult(const COM & factor, const current & j1, current &cur)
{
cur[0]=factor*j1[0];
cur[1]=factor*j1[1];
cur[2]=factor*j1[2];
cur[3]=factor*j1[3];
}
// WHY!?!
void cadd(const current & j1, const current & j2, const current & j3,
const current & j4, const current & j5, current &sum)
{
sum[0]=j1[0]+j2[0]+j3[0]+j4[0]+j5[0];
sum[1]=j1[1]+j2[1]+j3[1]+j4[1]+j5[1];
sum[2]=j1[2]+j2[2]+j3[2]+j4[2]+j5[2];
sum[3]=j1[3]+j2[3]+j3[3]+j4[3]+j5[3];
}
void cadd(const current & j1, const current & j2, const current & j3,
const current & j4, current &sum) {
sum[0] = j1[0] + j2[0] + j3[0] + j4[0];
sum[1] = j1[1] + j2[1] + j3[1] + j4[1];
sum[2] = j1[2] + j2[2] + j3[2] + j4[2];
sum[3] = j1[3] + j2[3] + j3[3] + j4[3];
}
void cadd(const current & j1, const current & j2, const current & j3,
current &sum)
{
sum[0]=j1[0]+j2[0]+j3[0];
sum[1]=j1[1]+j2[1]+j3[1];
sum[2]=j1[2]+j2[2]+j3[2];
sum[3]=j1[3]+j2[3]+j3[3];
}
void cadd(const current & j1, const current & j2, current &sum)
{
sum[0]=j1[0]+j2[0];
sum[1]=j1[1]+j2[1];
sum[2]=j1[2]+j2[2];
sum[3]=j1[3]+j2[3];
}
double abs2(const COM & a)
{
return (a*conj(a)).real();
}
double vabs2(const CCurrent & cur)
{
return abs2(cur.c0)-abs2(cur.c1)-abs2(cur.c2)-abs2(cur.c3);
}
double vre(const CCurrent & a, const CCurrent & b)
{
return real(a.c0*conj(b.c0)-a.c1*conj(b.c1)-a.c2*conj(b.c2)-a.c3*conj(b.c3));
}
CCurrent CCurrent::operator+(const CCurrent& other)
{
COM result_c0=c0 + other.c0;
COM result_c1=c1 + other.c1;
COM result_c2=c2 + other.c2;
COM result_c3=c3 + other.c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator-(const CCurrent& other)
{
COM result_c0=c0 - other.c0;
COM result_c1=c1 - other.c1;
COM result_c2=c2 - other.c2;
COM result_c3=c3 - other.c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator*(const double x)
{
COM result_c0=x*CCurrent::c0;
COM result_c1=x*CCurrent::c1;
COM result_c2=x*CCurrent::c2;
COM result_c3=x*CCurrent::c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator/(const double x)
{
COM result_c0=CCurrent::c0/x;
COM result_c1=CCurrent::c1/x;
COM result_c2=CCurrent::c2/x;
COM result_c3=CCurrent::c3/x;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator*(const COM x)
{
COM result_c0=x*CCurrent::c0;
COM result_c1=x*CCurrent::c1;
COM result_c2=x*CCurrent::c2;
COM result_c3=x*CCurrent::c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator/(const COM x)
{
COM result_c0=(CCurrent::c0)/x;
COM result_c1=(CCurrent::c1)/x;
COM result_c2=(CCurrent::c2)/x;
COM result_c3=(CCurrent::c3)/x;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
std::ostream& operator <<(std::ostream& os, const CCurrent& cur)
{
os << "("<<cur.c0<< " ; "<<cur.c1<<" , "<<cur.c2<<" , "<<cur.c3<<")";
return os;
}
CCurrent operator * ( double x, CCurrent& m)
{
return m*x;
}
CCurrent operator * ( COM x, CCurrent& m)
{
return m*x;
}
CCurrent operator / ( double x, CCurrent& m)
{
return m/x;
}
CCurrent operator / ( COM x, CCurrent& m)
{
return m/x;
}
COM CCurrent::dot(CLHEP::HepLorentzVector p1)
{
// Current goes (E,px,py,pz)
// std::cout<<"current = ("<<c0<<","<<c1<<","<<c2<<","<<c3<<")\n";
// Vector goes (px,py,pz,E)
// std::cout<<"vector = ("<<p1[0]<<","<<p1[1]<<","<<p1[2]<<","<<p1[3]<<")\n";
return p1[3]*c0-p1[0]*c1-p1[1]*c2-p1[2]*c3;
}
COM CCurrent::dot(CCurrent p1)
{
return p1.c0*c0-p1.c1*c1-p1.c2*c2-p1.c3*c3;
}
//Current Functions
// Current for <outgoing state | mu | incoming state>
/// @TODO always use this instead of "j"
/// @TODO isn't this jio with flipt helicities?
void joi(HLV pout, bool helout, HLV pin, bool helin, current &cur) {
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
const double sqpop = sqrt(pout.plus());
const double sqpom = sqrt(pout.minus());
const COM poperp = pout.x() + COM(0, 1) * pout.y();
if (helout != helin) {
throw std::invalid_argument{"Non-matching helicities"};
} else if (helout == false) { // negative helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * poperp / abs(poperp);
cur[2] = -COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * poperp / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = COM(0,1) * cur[1];
cur[3] = -cur[0];
}
} else { // positive helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
cur[2] = COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = -COM(0,1) * cur[1];
cur[3] = -cur[0];
}
}
}
CCurrent joi (HLV pout, bool helout, HLV pin, bool helin)
{
current cur;
joi(pout, helout, pin, helin, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
/// @TODO remove this
void j (HLV pout, bool helout, HLV pin, bool helin,current &cur) {
joi(pout, helout, pin, helin, cur);
}
/// @TODO remove this
CCurrent j (HLV pout, bool helout, HLV pin, bool helin)
{
return joi(pout, helout, pin, helin);
}
// Current for <incoming state | mu | outgoing state>
void jio(HLV pin, bool helin, HLV pout, bool helout, current &cur) {
cur[0] = 0.0;
cur[1] = 0.0;
cur[2] = 0.0;
cur[3] = 0.0;
const double sqpop = sqrt(pout.plus());
const double sqpom = sqrt(pout.minus());
const COM poperp = pout.x() + COM(0, 1) * pout.y();
if (helout != helin) {
throw std::invalid_argument{"Non-matching helicities"};
} else if (helout == false) { // negative helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
cur[2] = COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = -COM(0,1) * cur[1];
cur[3] = -cur[0];
}
} else { // positive helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(pin.plus());
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * poperp / abs(poperp);
cur[2] = -COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(pin.minus());
cur[0] = -sqpom * sqpim * poperp / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = COM(0,1) * cur[1];
cur[3] = -cur[0];
}
}
}
CCurrent jio (HLV pin, bool helin, HLV pout, bool helout)
{
current cur;
jio(pin, helin, pout, helout, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
// Current for <outgoing state | mu | outgoing state>
void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) {
// Zero our current
cur[0] = 0.0;
cur[1] = 0.0;
cur[2] = 0.0;
cur[3] = 0.0;
if (heli!=helj) {
throw std::invalid_argument{"Non-matching helicities"};
} else if ( heli == true ) { // If positive helicity swap momenta
std::swap(pi,pj);
}
const double sqpjp = sqrt(pj.plus());
const double sqpjm = sqrt(pj.minus());
const double sqpip = sqrt(pi.plus());
const double sqpim = sqrt(pi.minus());
const COM piperp = pi.x() + COM(0,1) * pi.y();
const COM pjperp = pj.x() + COM(0,1) * pj.y();
const COM phasei = piperp / abs(piperp);
const COM phasej = pjperp / abs(pjperp);
cur[0] = sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
cur[1] = sqpim * sqpjp * phasei + sqpip * sqpjm * conj(phasej);
cur[2] = -COM(0, 1) * (sqpim * sqpjp * phasei - sqpip * sqpjm * conj(phasej));
cur[3] = -sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
}
CCurrent joo (HLV pi, bool heli, HLV pj, bool helj)
{
current cur;
joo(pi, heli, pj, helj, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
namespace {
/// @TODO unused function
// double jM2 (CLHEP::HepLorentzVector p1out, bool hel1out, CLHEP::HepLorentzVector p1in, bool hel1in, CLHEP::HepLorentzVector p2out, bool hel2out, CLHEP::HepLorentzVector p2in, bool hel2in)
// {
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
// current C1,C2;
// j (p1out,hel1out,p1in,hel1in, C1);
// j (p2out,hel2out,p2in,hel2in, C2);
// std::cout << "# From Currents, C1 : ("<<C1[0]<<","<<C1[1]<<","<<C1[2]<<","<<C1[3]<<"\n";
// std::cout << "# From Currents, C2 : ("<<C2[0]<<","<<C2[1]<<","<<C2[2]<<","<<C2[3]<<"\n";
// COM M=cdot(C1,C2);
// return (M*conj(M)).real()/(q1.m2()*q2.m2());
// }
void jW (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
{
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
current t65,vout,vin,temp2,temp3,temp5;
joo(pnu,helnu,pe,hele,t65);
vout[0]=pout.e();
vout[1]=pout.x();
vout[2]=pout.y();
vout[3]=pout.z();
vin[0]=pin.e();
vin[1]=pin.x();
vin[2]=pin.y();
vin[3]=pin.z();
COM brac615=cdot(t65,vout);
COM brac645=cdot(t65,vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
// noalias(temp)=prod(trans(CurrentOutOut(pout,helout,pnu,helout)),metric);
joo(pout,helout,pnu,helout,temp2);
// noalias(temp2)=prod(temp,ctemp);
COM prod1665=cdot(temp2,t65);
// noalias(temp)=prod(trans(Current(pe,helin,pin,helin)),metric);
// noalias(temp2)=prod(temp,ctemp);
j(pe,helin,pin,helin,temp3);
COM prod5465=cdot(temp3,t65);
// noalias(temp)=prod(trans(Current(pnu,helin,pin,helin)),metric);
// noalias(temp2)=prod(temp,ctemp);
joo(pout,helout,pe,helout,temp2);
j(pnu,helnu,pin,helin,temp3);
j(pout,helout,pin,helin,temp5);
current term1,term2,term3,sum;
cmult(2.*brac615/ta+2.*brac645/tb,temp5,term1);
cmult(prod1665/ta,temp3,term2);
cmult(-prod5465/tb,temp2,term3);
// cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
// cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
cadd(term1,term2,term3,sum);
// std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
cur[0]=sum[0];
cur[1]=sum[1];
cur[2]=sum[2];
cur[3]=sum[3];
}
}
void jWbar (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pe, bool hele, CLHEP::HepLorentzVector pnu, bool helnu, CLHEP::HepLorentzVector pin, bool helin, current cur)
{
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hele==helnu) {
CLHEP::HepLorentzVector qa=pout+pe+pnu;
CLHEP::HepLorentzVector qb=pin-pe-pnu;
double ta(qa.m2()),tb(qb.m2());
current t65,vout,vin,temp2,temp3,temp5;
joo(pnu,helnu,pe,hele,t65);
vout[0]=pout.e();
vout[1]=pout.x();
vout[2]=pout.y();
vout[3]=pout.z();
vin[0]=pin.e();
vin[1]=pin.x();
vin[2]=pin.y();
vin[3]=pin.z();
COM brac615=cdot(t65,vout);
COM brac645=cdot(t65,vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
joo(pe,helout,pout,helout,temp2); // temp2 is <5|alpha|1>
COM prod5165=cdot(temp2,t65);
jio(pin,helin,pnu,helin,temp3); // temp3 is <4|alpha|6>
COM prod4665=cdot(temp3,t65);
joo(pnu,helout,pout,helout,temp2); // temp2 is now <6|mu|1>
jio(pin,helin,pe,helin,temp3); // temp3 is now <4|mu|5>
jio(pin,helin,pout,helout,temp5); // temp5 is <4|mu|1>
current term1,term2,term3,sum;
cmult(-2.*brac615/ta-2.*brac645/tb,temp5,term1);
cmult(-prod5165/ta,temp3,term2);
cmult(prod4665/tb,temp2,term3);
// cur=((2.*brac615*Current(pout,helout,pin,helin)+prod1565*Current(pe,helin,pin,helin)+prod1665*Current(pnu,helin,pin,helin))/ta + (2.*brac645*Current(pout,helout,pin,helin)-prod5465*CurrentOutOut(pout,helout,pe,helout)-prod6465*CurrentOutOut(pout,helout,pnu,helout))/tb);
// cur=((2.*brac615*temp5+prod1565*temp3+prod1665*temp4)/ta + (2.*brac645*temp5-prod5465*temp1-prod6465*temp2)/tb);
cadd(term1,term2,term3,sum);
// std::cout<<"term1: ("<<temp5[0]<<" "<<temp5[1]<<" "<<temp5[2]<<" "<<temp5[3]<<")"<<std::endl;
// std::cout<<"sum: ("<<sum[0]<<","<<sum[1]<<","<<sum[2]<<","<<sum[3]<<")\n";
cur[0]=sum[0];
cur[1]=sum[1];
cur[2]=sum[2];
cur[3]=sum[3];
}
}
} // namespace anonymous
double jMWqQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
// std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
// std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
// std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
// std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
// std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
// std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
// std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
// std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
// std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qQ->qenuQ scattering
// p1: quark (with W emittance)
// p2: Quark
{
current mj1m,mj2p,mj2m;
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
// std::cout<<"jMW1: ("<<mj1m[0]<<","<<mj1m[1]<<","<<mj1m[2]<<","<<mj1m[3]<<")\n";
// std::cout<<"jMW2: ("<<mj2p[0]<<","<<mj2p[1]<<","<<mj2p[2]<<","<<mj2p[3]<<")\n";
// std::cout<<"jMW3: ("<<mj2m[0]<<","<<mj2m[1]<<","<<mj2m[2]<<","<<mj2m[3]<<")\n";
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf^2
return (4./3.)*(4./3.)*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2());
}
double jMWqg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg->qenug scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj2p,mj2m;
jW(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double sst = K/C_A*(a2Mmp+a2Mmm);
// double sstsave=sst;
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf*Ca=4
return 4.*sst/(q1.m2()*q2.m2());
}
double jMWqbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector pe, CLHEP::HepLorentzVector pnu,CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg->qenug scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out-pe-pnu;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj2p,mj2m;
jWbar(p1out,false,pe,false,pnu,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
// mj1m.mj2p
COM Mmp=cdot(mj1m,mj2p);
// mj1m.mj2m
COM Mmm=cdot(mj1m,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double sst = K/C_A*(a2Mmp+a2Mmm);
// double sstsave=sst;
// // Leave division by colour and Helicity avg until Tree files
// Leave multi. of couplings to later
// Multiply by Cf*Ca=4
return 4.*sst/(q1.m2()*q2.m2());
}
double jM2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
// std::cerr<<"Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
current mj1m,mj1p,mj2m,mj2p;
j(p1out,true,p1in,true,mj1p);
j(p1out,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
double sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
- return RHEJ::C_F*RHEJ::C_F*(sst)/(q1.m2()*q2.m2());
+ return HEJ::C_F*HEJ::C_F*(sst)/(q1.m2()*q2.m2());
}
double jM2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
j(p1out,true,p1in,true,mj1p);
j(p1out,false,p1in,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
double sumsq=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
return (4./3.)*(4./3.)*(sumsq)/(q1.m2()*q2.m2());
}
double jM2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
jio(p1in,true,p1out,true,mj1p);
jio(p1in,false,p1out,false,mj1m);
jio(p2in,true,p2out,true,mj2p);
jio(p2in,false,p2out,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
double sumsq=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
return (4./3.)*(4./3.)*(sumsq)/(q1.m2()*q2.m2());
}
double jM2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
j(p1out,true,p1in,true,mj1p);
j(p1out,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double a2Mpp=abs2(Mpp);
double a2Mpm=abs2(Mpm);
double sst = K/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
// double sstsave=sst;
// std::cout <<"ratio: "<<sst/sstsave<<std::endl;
// Cf*Ca=4
return 4.*sst/(q1.m2()*q2.m2());
}
double jM2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for qg scattering
// p1: quark
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
jio(p1in,true,p1out,true,mj1p);
jio(p1in,false,p1out,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
const double K = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double a2Mpp=abs2(Mpp);
double a2Mpm=abs2(Mpm);
double sst = K/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
// double sstsave=sst;
// std::cout <<"ratio: "<<sst/sstsave<<std::endl;
// Cf*Ca=4
return 4.*sst/(q1.m2()*q2.m2());
}
double jM2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in)
// Calculates the square of the current contractions for gg scattering
// p1: gluon
// p2: gluon
{
CLHEP::HepLorentzVector q1=p1in-p1out;
CLHEP::HepLorentzVector q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
j(p1out,true,p1in,true,mj1p);
j(p1out,false,p1in,false,mj1m);
j(p2out,true,p2in,true,mj2p);
j(p2out,false,p2in,false,mj2m);
COM Mmp=cdot(mj1m,mj2p);
COM Mmm=cdot(mj1m,mj2m);
COM Mpp=cdot(mj1p,mj2p);
COM Mpm=cdot(mj1p,mj2m);
const double K_g1 = K_g(p1out, p1in);
const double K_g2 = K_g(p2out, p2in);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double a2Mpp=abs2(Mpp);
double a2Mpm=abs2(Mpm);
double sst = K_g1/C_A*K_g2/C_A*(a2Mpp+a2Mpm+a2Mmp+a2Mmm);
// double sstsave=sst;
// std::cout <<"ratio: "<<sst/sstsave<<std::endl;
// Ca*Ca=9
return 9.*sst/(q1.m2()*q2.m2());
}
namespace {
/// @TODO what was this intended to do?
// double MH2helper(current C1, current C2, current q1, current q2)
// {
// COM M;
// COM temp1,temp2;
// // First the C1.q2 * C2.q1 - part
// temp1=cdot(C1,q2);
// temp2=cdot(C2,q1);
// M=temp1*temp2;
// // Then the C1.C2 * q1.q2
// temp1=cdot(C1,C2);
// temp2=cdot(q1,q2);
// M-=temp1*temp2;
// return (M*conj(M)).real();
// }
/**
* @brief Higgs vertex contracted with current @param C1 and @param C2
*/
COM cHdot(const current & C1, const current & C2, const current & q1,
const current & q2, double mt, bool incBot, double mb)
{
if (mt == infinity) {
return (cdot(C1,C2)*cdot(q1,q2)-cdot(C1,q2)*cdot(C2,q1))/(6*M_PI*v);
}
else {
CLHEP::HepLorentzVector vq1,vq2;
vq1.set(q1[1].real(),q1[2].real(),q1[3].real(),q1[0].real());
vq2.set(q2[1].real(),q2[2].real(),q2[3].real(),q2[0].real());
// first minus sign obtained because of q1-difference to VDD
// std::cout<<"A1 : " << A1(-vq1,vq2)<<std::endl;
// std::cout<<"A2 : " << A2(-vq1,vq2)<<std::endl;
if(!(incBot))
// Factor is because 4 mt^2 g^2/v A1 -> 16 pi mt^2/v alphas,
// and we divide by a factor 4 at the amp sqaured level later
// which I absorb here (i.e. I divide by 2)
/// @TODO move factor 1/2 from S to |ME|^2 => consistent with general notation
return 8.*M_PI*mt*mt/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt));
else
return 8.*M_PI*mt*mt/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)-cdot(C1,C2)*A2(-vq1,vq2,mt))
+ 8.*M_PI*mb*mb/v*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mb)-cdot(C1,C2)*A2(-vq1,vq2,mb));
}
}
} // namespace anonymous
double MH2qQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in,
CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in,
CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m, q1v, q2v;
j (p1out,true,p1in,true,j1p);
j (p1out,false,p1in,false,j1m);
j (p2out,true,p2in,true,j2p);
j (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m,q1v,q2v;
j (p1out,true,p1in,true,j1p);
j (p1out,false,p1in,false,j1m);
jio (p2in,true,p2out,true,j2p);
jio (p2in,false,p2out,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qbarQ (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m,q1v,q2v;
jio (p1in,true,p1out,true,j1p);
jio (p1in,false,p1out,false,j1m);
j (p2out,true,p2in,true,j2p);
j (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qbarQbar (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
{
// CLHEP::HepLorentzVector q1=p1in-p1out;
// CLHEP::HepLorentzVector q2=-(p2in-p2out);
current j1p,j1m,j2p,j2m,q1v,q2v;
jio (p1in,true,p1out,true,j1p);
jio (p1in,false,p1out,false,j1m);
jio (p2in,true,p2out,true,j2p);
jio (p2in,false,p2out,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
double sst=abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm);
// return (4./3.)*(4./3.)*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
// q~p1 g~p2 (i.e. ALWAYS p1 for quark, p2 for gluon)
// should be called with q1 meant to be contracted with p2 in first part of vertex
// (i.e. if g is backward, q1 is forward)
{
current j1p,j1m,j2p,j2m,q1v,q2v;
j (p1out,true,p1in,true,j1p);
j (p1out,false,p1in,false,j1m);
j (p2out,true,p2in,true,j2p);
j (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
// First, calculate the non-flipping amplitudes:
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
//cout << "Bits in MH2qg: " << Mpp << " " << Mpm << " " << Mmp << " " << Mmm << endl;
const double K = K_g(p2out, p2in);
double sst=K/C_A*(abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm));
// Cf*Ca=4
// return 4.*sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2qbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
// qbar~p1 g~p2 (i.e. ALWAYS p1 for anti-quark, p2 for gluon)
// should be called with q1 meant to be contracted with p2 in first part of vertex
// (i.e. if g is backward, q1 is forward)
{
current j1p,j1m,j2p,j2m,q1v,q2v;
jio (p1in,true,p1out,true,j1p);
jio (p1in,false,p1out,false,j1m);
j (p2out,true,p2in,true,j2p);
j (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
// First, calculate the non-flipping amplitudes:
COM amp,amm,apm,app;
app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp);
const double K = K_g(p2out, p2in);
MH2sum*=K/C_A;
// Cf*Ca=4
// return 4.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
double MH2gg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mt, bool incBot, double mb)
// g~p1 g~p2
// should be called with q1 meant to be contracted with p2 in first part of vertex
// (i.e. if g is backward, q1 is forward)
{
current j1p,j1m,j2p,j2m,q1v,q2v;
j (p1out,true,p1in,true,j1p);
j (p1out,false,p1in,false,j1m);
j (p2out,true,p2in,true,j2p);
j (p2out,false,p2in,false,j2m);
to_current(q1, q1v);
to_current(q2, q2v);
// First, calculate the non-flipping amplitudes:
COM amp,amm,apm,app;
app=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb);
apm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb);
amp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb);
amm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb);
double MH2sum = abs2(app)+abs2(amm)+abs2(apm)+abs2(amp);
const double K_g1 = K_g(p1out, p1in);
const double K_g2 = K_g(p2out, p2in);
MH2sum*=K_g1/C_A*K_g2/C_A;
// Ca*Ca=9
// return 9.*MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
return MH2sum/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
// // Z's stuff
// void jZ(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) {
// // Init current to zero
// cur[0] = 0.0;
// cur[1] = 0.0;
// cur[2] = 0.0;
// cur[3] = 0.0;
// // Temporary variables
// COM temp;
// current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2;
// // Momentum of virtual gluons aroun weak boson emission site
// HLV qa = pout + pep + pem;
// HLV qb = pin - pep - pem;
// double ta = qa.m2();
// double tb = qb.m2();
// // Out-Out currents:
// current Em_Ep, Out_Em, Out_Ep;
// // Other currents:
// current Out_In, Em_In, Ep_In;
// joi(pout, HelPartons, pin, HelPartons, Out_In);
// joi(pem, HelLeptons, pin, HelPartons, Em_In);
// joi(pep, HelLeptons, pin, HelPartons, Ep_In);
// joo(pem, HelLeptons, pep, HelLeptons, Em_Ep);
// joo(pout, HelPartons, pem, HelLeptons, Out_Em);
// joo(pout, HelPartons, pep, HelLeptons, Out_Ep);
// if (HelLeptons == HelPartons) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, Out_In, Term_1);
// temp = cdot(Out_Em, Em_Ep);
// cmult(temp / ta , Em_In, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, Out_In, Term_3);
// temp = -cdot(Ep_In, Em_Ep);
// cmult(temp / tb, Out_Ep, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// if (HelPartons == true) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, Out_In, Term_1);
// joo(pout, true, pep, true, TempCur1);
// joi(pep, true, pin, true, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta , TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, Out_In, Term_3);
// joo(pout, true, pem, true, TempCur1);
// joi(pem, true, pin, true, TempCur2);
// temp = -cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, Out_In, Term_1);
// joo(pout, false, pep, false, TempCur1);
// joi(pep, false, pin, false, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta, TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, Out_In, Term_3);
// joo(pout, false, pem, false, TempCur1);
// joi(pem, false, pin, false, TempCur2);
// temp = -cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// }
// }
// void jZbar(HLV pin, HLV pout, HLV pem, HLV pep, bool HelPartons, bool HelLeptons, current cur) {
// // Init current to zero
// cur[0] = 0.0;
// cur[1] = 0.0;
// cur[2] = 0.0;
// cur[3] = 0.0;
// // Temporary variables
// COM temp;
// current Term_1, Term_2, Term_3, Term_4, J_temp, TempCur1, TempCur2;
// // Transfered 4-momenta
// HLV qa = pout + pep + pem;
// HLV qb = pin - pep - pem;
// // The square of the transfered 4-momenta
// double ta = qa.m2();
// double tb = qb.m2();
// // Out-Out currents:
// current Em_Ep, Em_Out, Ep_Out;
// // In-Out currents:
// current In_Out, In_Em, In_Ep;
// // Safe to use the currents since helicity structure is ok
// if (HelPartons == HelLeptons) {
// jio(pin, HelPartons, pout, HelPartons, In_Out);
// joo(pem, HelLeptons, pep, HelLeptons, Em_Ep);
// jio(pin, HelPartons, pem, HelLeptons, In_Em);
// jio(pin, HelPartons, pep, HelLeptons, In_Ep);
// joo(pem, HelLeptons, pout, HelPartons, Em_Out);
// joo(pep, HelLeptons, pout, HelPartons, Ep_Out);
// }
// else {
// jio(pin, HelPartons, pout, HelPartons, In_Out);
// joo(pem, HelLeptons, pep, HelLeptons, Em_Ep);
// In_Em[0] = 0.0;
// In_Em[1] = 0.0;
// In_Em[2] = 0.0;
// In_Em[3] = 0.0;
// In_Ep[0] = 0.0;
// In_Ep[1] = 0.0;
// In_Ep[2] = 0.0;
// In_Ep[3] = 0.0;
// Em_Out[0] = 0.0;
// Em_Out[1] = 0.0;
// Em_Out[2] = 0.0;
// Em_Out[3] = 0.0;
// Ep_Out[0] = 0.0;
// Ep_Out[1] = 0.0;
// Ep_Out[2] = 0.0;
// Ep_Out[3] = 0.0;
// }
// if (HelLeptons == HelPartons) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, In_Out, Term_1);
// temp = cdot(Ep_Out, Em_Ep);
// cmult(temp / ta, In_Ep, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, In_Out, Term_3);
// temp = - cdot(In_Em, Em_Ep);
// cmult(temp / tb, Em_Out, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// if (HelPartons == true) {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, In_Out, Term_1);
// joo(pem, true, pout, true, TempCur1);
// jio(pin, true, pem, true, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta , TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, In_Out, Term_3);
// joo(pep, true, pout, true, TempCur1);
// jio(pin, true, pep, true, TempCur2);
// temp = - cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// else {
// temp = 2.0 * cdot(pout, Em_Ep);
// cmult(temp / ta, In_Out, Term_1);
// joo(pem, false, pout, false, TempCur1);
// jio(pin, false, pem, false, TempCur2);
// temp = cdot(TempCur1, Em_Ep);
// cmult(temp / ta , TempCur2, Term_2);
// temp = 2.0 * cdot(pin, Em_Ep);
// cmult(temp / tb, In_Out, Term_3);
// joo(pep, false, pout, false, TempCur1);
// jio(pin, false, pep, false, TempCur2);
// temp = - cdot(TempCur2, Em_Ep);
// cmult(temp / tb, TempCur1, Term_4);
// cadd(Term_1, Term_2, Term_3, Term_4, J_temp);
// cur[0] = J_temp[0];
// cur[1] = J_temp[1];
// cur[2] = J_temp[2];
// cur[3] = J_temp[3];
// }
// }
// }
// // Progagators
// COM PZ(double s) {
// double MZ, GammaZ;
// MZ = 9.118800e+01; // Mass of the mediating gauge boson
// GammaZ = 2.441404e+00; // Z peak width
// // Return Z Prop value
// return 1.0 / (s - MZ * MZ + COM(0.0, 1.0) * GammaZ * MZ);
// }
// COM PG(double s) {
// return 1.0 / s;
// }
// // Non-gluonic with pa emitting
// std::vector <double> jMZqQ (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector <double> VProducts, std::vector < std::vector <double> > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) {
// std::vector <double> ScaledWeights;
// double Sum;
// // Propagator factors
// COM PZs = PZ((pep + pem).m2());
// COM PGs = PG((pep + pem).m2());
// // Emitting current initialisation
// current j1pptop, j1pmtop; // Emission from top line
// current j1ppbot, j1pmbot; // Emission from bottom line
// // Non-emitting current initialisation
// current j2ptop, j2mtop; // Emission from top line
// current j2pbot, j2mbot; // Emission from bottom line
// // Currents for top emission
// // Upper current calculations
// // if a is a quark
// if (aptype > 0) {
// jZ(pa, p1, pem, pep, true, true, j1pptop);
// jZ(pa, p1, pem, pep, true, false, j1pmtop);
// }
// // if a is an antiquark
// else {
// jZbar(pa, p1, pem, pep, true, true, j1pptop);
// jZbar(pa, p1, pem, pep, true, false, j1pmtop);
// }
// // Lower current calculations
// // if b is a quark
// if (bptype > 0) {
// joi(p2, true, pb, true, j2ptop);
// joi(p2, false, pb, false, j2mtop);
// }
// // if b is an antiquark
// else {
// jio(pb, true, p2, true, j2ptop);
// jio(pb, false, p2, false, j2mtop);
// }
// // Currents for bottom emission
// // Lower current calculations
// if (bptype > 0) {
// jZ(pb, p2, pem, pep, true, true, j1ppbot);
// jZ(pb, p2, pem, pep, true, false, j1pmbot);
// }
// else {
// jZbar(pb, p2, pem, pep, true, true, j1ppbot);
// jZbar(pb, p2, pem, pep, true, false, j1pmbot);
// }
// // Upper current calculations
// if (aptype > 0) {
// joi(p1, true, pa, true, j2pbot);
// joi(p1, false, pa, false, j2mbot);
// }
// else {
// jio(pa, true, p1, true, j2pbot);
// jio(pa, false, p1, false, j2mbot);
// }
// COM Coeff[2][8];
// if (!Interference) {
// double ZCharge_a_P = Zq(aptype, true);
// double ZCharge_a_M = Zq(aptype, false);
// double ZCharge_b_P = Zq(bptype, true);
// double ZCharge_b_M = Zq(bptype, false);
// if (BottomLineEmit) {
// // Emission from top-line quark (pa/p1 line)
// Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop);
// Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop);
// Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop);
// Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop);
// Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
// Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
// Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
// Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
// }
// else {
// // Emission from bottom-line quark (pb/p2 line)
// Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2pbot);
// Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2mbot);
// Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2pbot);
// Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2mbot);
// Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot));
// Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot));
// Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot));
// Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot));
// }
// }
// // Else calculate all the possiblities
// else {
// double ZCharge_a_P = Zq(aptype, true);
// double ZCharge_a_M = Zq(aptype, false);
// double ZCharge_b_P = Zq(bptype, true);
// double ZCharge_b_M = Zq(bptype, false);
// // Emission from top-line quark (pa/p1 line)
// Coeff[0][0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop);
// Coeff[0][1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop);
// Coeff[0][2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop);
// Coeff[0][3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop);
// Coeff[0][4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
// Coeff[0][5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
// Coeff[0][6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
// Coeff[0][7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
// // Emission from bottom-line quark (pb/p2 line)
// Coeff[1][0] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2pbot);
// Coeff[1][7] = (ZCharge_b_P * Zep * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1ppbot, j2mbot);
// Coeff[1][2] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2pbot);
// Coeff[1][5] = (ZCharge_b_P * Zem * PZs * RWeak + Gq(bptype) * PGs) * cdot(j1pmbot, j2mbot);
// Coeff[1][4] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2pbot));
// Coeff[1][3] = (ZCharge_b_M * Zem * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1ppbot, j2mbot));
// Coeff[1][6] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2pbot));
// Coeff[1][1] = (ZCharge_b_M * Zep * PZs * RWeak + Gq(bptype) * PGs) * conj(cdot(j1pmbot, j2mbot));
// }
// // Find the numbers of scales
// int ScaleCount;
// #if calcscaleunc
// ScaleCount = 20;
// #else
// ScaleCount = 1;
// #endif
// // For each scale...
// for (int j = 0; j < ScaleCount; j++) {
// Sum = 0.0;
// // If we want to compare back to the W's code only emit from one quark and only couple to left handed particles
// // virtuals arent here since they are calculated and included in weight() call.
// if (!Interference) {
// if (BottomLineEmit) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[1][i]) * VProducts.at(1);
// else for (int i = 0; i < 8; i++) Sum += abs2(Coeff[0][i]) * VProducts.at(0);
// }
// // Else work out the full interference
// else {
// // For the full calculation...
// if (UseVirtuals) {
// for (int i = 0; i < 8; i++) {
// Sum += abs2(Coeff[0][i]) * VProducts.at(0) * Virtuals.at(j).at(0)
// + abs2(Coeff[1][i]) * VProducts.at(1) * Virtuals.at(j).at(1)
// + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2) * Virtuals.at(j).at(2);
// }
// }
// // For the tree level calculation...
// else {
// for (int i = 0; i < 8; i++) {
// Sum += abs2(Coeff[0][i]) * VProducts.at(0)
// + abs2(Coeff[1][i]) * VProducts.at(1)
// + 2.0 * real(Coeff[0][i] * conj(Coeff[1][i])) * VProducts.at(2);
// }
// }
// }
// // Add this to the vector to be returned with the other factors of C_A and the helicity sum/average factors.
// ScaledWeights.push_back(Sum / 18.0);
// }
// // Return all the scale values
// return ScaledWeights;
// }
// // Semi-gluonic with pa emitting
// std::vector <double> jMZqg (HLV pa, HLV pb, HLV p1, HLV p2, HLV pep, HLV pem, std::vector <double> VProducts, std::vector < std::vector <double> > Virtuals, int aptype, int bptype, bool UseVirtuals, bool BottomLineEmit) {
// COM Coeff[8];
// double Sum;
// std::vector <double> ScaledWeights;
// COM PZs = PZ((pep + pem).m2());
// COM PGs = PG((pep + pem).m2());
// // Emitting current initialisation - Emission from top line
// current j1pptop, j1pmtop;
// // Non-emitting current initialisation - Emission from top line
// current j2ptop, j2mtop;
// // Currents for top emission
// // Upper current calculations
// if (aptype > 0) {
// jZ (pa, p1, pem, pep, true, true, j1pptop);
// jZ (pa, p1, pem, pep, true, false, j1pmtop);
// }
// else {
// jZbar(pa, p1, pem, pep, true, true, j1pptop);
// jZbar(pa, p1, pem, pep, true, false, j1pmtop);
// }
// // Lower current calculations
// joi(p2, true, pb, true, j2ptop);
// joi(p2, false, pb, false, j2mtop);
// // Calculate all the possiblities
// double ZCharge_a_P = Zq(aptype, true);
// double ZCharge_a_M = Zq(aptype, false);
// // Emission from top-line quark (pa/p1 line)
// Coeff[0] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2ptop);
// Coeff[1] = (ZCharge_a_P * Zep * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pptop, j2mtop);
// Coeff[2] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2ptop);
// Coeff[3] = (ZCharge_a_P * Zem * PZs * RWeak + Gq(aptype) * PGs) * cdot(j1pmtop, j2mtop);
// Coeff[4] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2ptop));
// Coeff[5] = (ZCharge_a_M * Zem * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pptop, j2mtop));
// Coeff[6] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2ptop));
// Coeff[7] = (ZCharge_a_M * Zep * PZs * RWeak + Gq(aptype) * PGs) * conj(cdot(j1pmtop, j2mtop));
// // Calculate gluon colour accelerated factor
// double CAMFactor, z;
// // If b is a forward moving gluon define z (C.F. multiple jets papers)
// if (pb.pz() > 0) z = p2.plus() / pb.plus();
// else z = p2.minus() / pb.minus();
// CAMFactor = (1.0 - 1.0 / 9.0) / 2.0 * (z + 1.0 / z) + 1.0 / 9.0;
// // Find the numbers of scales
// int ScaleCount;
// #if calcscaleunc
// ScaleCount = 20;
// #else
// ScaleCount = 1;
// #endif
// // For each scale...
// for (int j = 0; j < ScaleCount; j++) {
// Sum = 0.0;
// // If we dont want the interference
// if (!Interference) for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0);
// // Else work out the full interference
// else {
// if (UseVirtuals) {
// for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0) * Virtuals.at(j).at(0);
// }
// else {
// for (int i = 0; i < 8; i++) Sum += abs2(Coeff[i]) * VProducts.at(0);
// }
// }
// // Add this to the vector to be returned with the other factors of C_A, the colour accelerated factor and the helicity sum/average factors.: (4/3)*3/32
// ScaledWeights.push_back(CAMFactor * Sum / 8.0);
// }
// return ScaledWeights;
// }
// // Electroweak Charge Functions
// double Zq (int PID, bool Helcitiy) {
// double temp;
// // Positive Spin
// if (Helcitiy == true) {
// if (PID == 1 || PID == 3 || PID == 5) temp = (+ 1.0 * stw2 / 3.0) / ctw;
// if (PID == 2 || PID == 4) temp = (- 2.0 * stw2 / 3.0) / ctw;
// if (PID == -1 || PID == -3 || PID == -5) temp = (- 1.0 * stw2 / 3.0) / ctw;
// if (PID == -2 || PID == -4) temp = (+ 2.0 * stw2 / 3.0) / ctw;
// // If electron or positron
// if (PID == 7 || PID == -7) temp = Zep;
// }
// // Negative Spin
// else {
// if (PID == 1 || PID == 3 || PID == 5) temp = (-0.5 + 1.0 * stw2 / 3.0) / ctw;
// if (PID == 2 || PID == 4) temp = ( 0.5 - 2.0 * stw2 / 3.0) / ctw;
// if (PID == -1 || PID == -3 || PID == -5) temp = ( 0.5 - 1.0 * stw2 / 3.0) / ctw;
// if (PID == -2 || PID == -4) temp = (-0.5 + 2.0 * stw2 / 3.0) / ctw;
// // If electron or positron
// if (PID == 7 || PID == -7) temp = Zem;
// }
// return temp;
// }
// double Gq (int PID) {
// if (!VirtualPhoton) return 0.0;
// if (PID == -1) return 1.0 * ee / 3.0;
// if (PID == -2) return -2.0 * ee / 3.0;
// if (PID == -3) return 1.0 * ee / 3.0;
// if (PID == -4) return -2.0 * ee / 3.0;
// if (PID == -5) return 1.0 * ee / 3.0;
// if (PID == 1) return -1.0 * ee / 3.0;
// if (PID == 2) return 2.0 * ee / 3.0;
// if (PID == 3) return -1.0 * ee / 3.0;
// if (PID == 4) return 2.0 * ee / 3.0;
// if (PID == 5) return -1.0 * ee / 3.0;
// std::cout << "ERROR! No Electroweak Charge Found at line " << __LINE__ << "..." << std::endl;
// return 0.0;
// }
namespace {
//@{
/// @brief Higgs vertex contracted with one current
CCurrent jH (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin,
bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j2 = j(pout,helout,pin,helin);
CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
if(mt == infinity)
return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*v);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/v*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j2*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
}
}
CCurrent jioH (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout,
bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j2 = jio(pin,helin,pout,helout);
CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
if(mt == infinity)
return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*v);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/v*j2.dot(q1)*jq2*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j2*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/v*j2.dot(q1)*jq2*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j2*A2(-q1,q2,mt));
}
}
CCurrent jHtop (CLHEP::HepLorentzVector pout, bool helout, CLHEP::HepLorentzVector pin,
bool helin, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j1 = j(pout,helout,pin,helin);
CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz());
if(mt == infinity)
return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*v);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/v*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j1*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
}
}
CCurrent jioHtop (CLHEP::HepLorentzVector pin, bool helin, CLHEP::HepLorentzVector pout,
bool helout, CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2,
double mt, bool incBot, double mb)
{
CCurrent j1 = jio(pin,helin,pout,helout);
CCurrent jq1(q1.e(),q1.px(),q1.py(),q1.pz());
if(mt == infinity)
return ((q1.dot(q2))*j1 - j1.dot(q2)*jq1)/(3*M_PI*v);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/v*j1.dot(q2)*jq1*A1(-q1,q2,mb)-16.*M_PI*mb*mb/v*j1*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/v*j1.dot(q2)*jq1*A1(-q1,q2,mt)-16.*M_PI*mt*mt/v*j1*A2(-q1,q2,mt));
}
}
//@}
} // namespace anonymous
double jM2unogqHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=j(p1out,true,p1in,true);
mj1m=j(p1out,false,p1in,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// std::cout<< p1out.rapidity() << " " << p2out.rapidity()<< " " << qH1 << " " << qH2 << "\n" <<MHmm << " " << MHmp << " " << MHpm << " " << MHpp << std::endl;
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=j(pg,true,p1in,true);
jgam=j(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
- ampsq*=RHEJ::C_F*RHEJ::C_F/RHEJ::C_A/RHEJ::C_A; // Factor of (Cf/Ca) for each quark to match MH2qQ.
+ ampsq*=HEJ::C_F*HEJ::C_F/HEJ::C_A/HEJ::C_A; // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unogqbarHQ (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unogqHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=j(p1out,true,p1in,true);
mj1m=j(p1out,false,p1in,false);
mjH2p=jioH(p2in,true,p2out,true,qH1,qH2, mt, incBot, mb);
mjH2m=jioH(p2in,false,p2out,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=j(pg,true,p1in,true);
jgam=j(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unogqbarHQbar (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
mjH2p=jioH(p2in,true,p2out,true,qH1,qH2, mt, incBot, mb);
mjH2m=jioH(p2in,false,p2out,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
//Higgs coupling is included in Hjets.C
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
return ampsq;
}
double jM2unogqHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=j(p1out,true,p1in,true);
mj1m=j(p1out,false,p1in,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(p1out,true,pg,true);
j2gm=joo(p1out,false,pg,false);
jgap=j(pg,true,p1in,true);
jgam=j(pg,false,p1in,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
// here we need 2 to match with the normalization
// gq is 9./4. times the qQ
//Higgs coupling is included in Hjets.C
const double K = K_g(p2out, p2in);
return ampsq*K/C_A*9./4.; //ca/cf = 9/4
}
double jM2unogqbarHg (CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// This construction is taking rapidity order: pg > p1out >> p2out
// std::cerr<<"This Uno Current: "<<p1out<<" "<<p1in<<" "<<p2out<<" "<<p2in<<" "<<pg<<std::endl;
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out); // Bottom End
CLHEP::HepLorentzVector qg=p1in-p1out-pg; // Extra bit post-gluon
CCurrent mj1m,mj1p,mj2m,mj2p,mjH2m,mjH2p;
mj1p=jio(p1in,true,p1out,true);
mj1m=jio(p1in,false,p1out,false);
mjH2p=jH(p2out,true,p2in,true,qH1,qH2, mt, incBot, mb);
mjH2m=jH(p2out,false,p2in,false,qH1,qH2, mt, incBot, mb);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p); // And now for the Higgs ones
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
// Currents with pg
CCurrent jgam,jgap,j2gm,j2gp;
j2gp=joo(pg,true,p1out,true);
j2gm=joo(pg,false,p1out,false);
jgap=jio(p1in,true,pg,true);
jgam=jio(p1in,false,pg,false);
CCurrent qsum(q1+qg);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p2o(p2out),p2i(p2in);
CCurrent p1o(p1out);
CCurrent p1i(p1in);
Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmm/2.))/q1.m2();
Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHmp/2.))/q1.m2();
Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2m+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpm/2.))/q1.m2();
Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mjH2p+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*MHpp/2.))/q1.m2();
U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH1.m2()*qg.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
// here we need 2 to match with the normalization
// gq is 9./4. times the qQ
//Higgs coupling is included in Hjets.C
const double K = K_g(p2out, p2in);
return ampsq*K/C_F;
}
double jM2unobqHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// std::cout << "####################\n";
// std::cout << "# p1in : "<<p1in<< " "<<p1in.plus()<<" "<<p1in.minus()<<std::endl;
// std::cout << "# p2in : "<<p2in<< " "<<p2in.plus()<<" "<<p2in.minus()<<std::endl;
// std::cout << "# p1out : "<<p1out<< " "<<p1out.rapidity()<<std::endl;
// std::cout << "# (qH1-qH2) : "<<(qH1-qH2)<< " "<<(qH1-qH2).rapidity()<<std::endl;
// std::cout << "# pg : "<<pg<< " "<<pg.rapidity()<<std::endl;
// std::cout << "# p2out : "<<p2out<< " "<<p2out.rapidity()<<std::endl;
// std::cout << "####################\n";
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2, mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2, mt, incBot, mb);
mj2p=j(p2out,true,p2in,true);
mj2m=j(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=j(pg,true,p2in,true);
jgbm=j(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m
+ (p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m
+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p
+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p
+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
// 1/3. = 1/C_A ?
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
const double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
- ampsq*=RHEJ::C_F*RHEJ::C_F/(RHEJ::C_A*RHEJ::C_A); // Factor of (Cf/Ca) for each quark to match MH2qQ.
+ ampsq*=HEJ::C_F*HEJ::C_F/(HEJ::C_A*HEJ::C_A); // Factor of (Cf/Ca) for each quark to match MH2qQ.
return ampsq;
}
double jM2unobqbarHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jioHtop(p1in,true,p1out,true,qH1,qH2, mt, incBot, mb);
mjH1m=jioHtop(p1in,false,p1out,false,qH1,qH2, mt, incBot, mb);
mj2p=j(p2out,true,p2in,true);
mj2m=j(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=j(pg,true,p2in,true);
jgbm=j(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unobqHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unobqbarHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jioHtop(p1in,true,p1out,true,qH1,qH2,mt, incBot, mb);
mjH1m=jioHtop(p1in,false,p1out,false,qH1,qH2,mt, incBot, mb);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4.*4./(9.*9.); // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
return ampsq;
}
double jM2unobgHQg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
// std::cout << "####################\n";
// std::cout << "# p1in : "<<p1in<< " "<<p1in.plus()<<" "<<p1in.minus()<<std::endl;
// std::cout << "# p2in : "<<p2in<< " "<<p2in.plus()<<" "<<p2in.minus()<<std::endl;
// std::cout << "# p1out : "<<p1out<< " "<<p1out.rapidity()<<std::endl;
// std::cout << "# (qH1-qH2) : "<<(qH1-qH2)<< " "<<(qH1-qH2).rapidity()<<std::endl;
// std::cout << "# pg : "<<pg<< " "<<pg.rapidity()<<std::endl;
// std::cout << "# p2out : "<<p2out<< " "<<p2out.rapidity()<<std::endl;
// std::cout << "####################\n";
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
mj2p=j(p2out,true,p2in,true);
mj2m=j(p2out,false,p2in,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=j(pg,true,p2in,true);
jgbm=j(pg,false,p2in,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
// need twice to match the normalization
//Higgs coupling is included in Hjets.C
const double K = K_g(p1out, p1in);
return ampsq*K/C_F;
}
double jM2unobgHQbarg (CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector pg, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector qH1, CLHEP::HepLorentzVector qH2, double mt, bool incBot, double mb)
{
CLHEP::HepLorentzVector q1=p1in-p1out; // Top End
CLHEP::HepLorentzVector q2=-(p2in-p2out-pg); // Extra bit pre-gluon
CLHEP::HepLorentzVector q3=-(p2in-p2out); // Bottom End
// std::cerr<<"Current: "<<q1.m2()<<" "<<q2.m2()<<std::endl;
CCurrent mjH1m,mjH1p,mj2m,mj2p;
mjH1p=jHtop(p1out,true,p1in,true,qH1,qH2,mt, incBot, mb);
mjH1m=jHtop(p1out,false,p1in,false,qH1,qH2,mt, incBot, mb);
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
// Dot products of these which occur again and again
COM MHmp=mjH1m.dot(mj2p); // And now for the Higgs ones
COM MHmm=mjH1m.dot(mj2m);
COM MHpp=mjH1p.dot(mj2p);
COM MHpm=mjH1p.dot(mj2m);
// Currents with pg
CCurrent jgbm,jgbp,j2gm,j2gp;
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
CCurrent pplus((p1in+p1out)/2.);
CCurrent pminus((p2in+p2out)/2.);
// COM test=pminus.dot(p1in);
Lmm=((-1.)*qsum*(MHmm) + (-2.*mjH1m.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmm/2.))/q3.m2();
Lmp=((-1.)*qsum*(MHmp) + (-2.*mjH1m.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1m+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHmp/2.))/q3.m2();
Lpm=((-1.)*qsum*(MHpm) + (-2.*mjH1p.dot(pg))*mj2m+2.*mj2m.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpm/2.))/q3.m2();
Lpp=((-1.)*qsum*(MHpp) + (-2.*mjH1p.dot(pg))*mj2p+2.*mj2p.dot(pg)*mjH1p+(p1o/pg.dot(p1out) + p1i/pg.dot(p1in))*(q2.m2()*MHpp/2.))/q3.m2();
U1mm=(jgbm.dot(mjH1m)*j2gm+2.*p2o*MHmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mjH1m)*j2gp+2.*p2o*MHmp)/(p2out+pg).m2();
U1pm=(jgbm.dot(mjH1p)*j2gm+2.*p2o*MHpm)/(p2out+pg).m2();
U1pp=(jgbp.dot(mjH1p)*j2gp+2.*p2o*MHpp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mjH1m)*jgbm+2.*p2i*MHmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mjH1m)*jgbp+2.*p2i*MHmp)/(p2in-pg).m2();
U2pm=((-1.)*j2gm.dot(mjH1p)*jgbm+2.*p2i*MHpm)/(p2in-pg).m2();
U2pp=((-1.)*j2gp.dot(mjH1p)*jgbp+2.*p2i*MHpp)/(p2in-pg).m2();
- const double cf=RHEJ::C_F;
+ const double cf=HEJ::C_F;
double amm,amp,apm,app;
amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q1.m2()*qH1.m2());
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) > 1.0000001)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// if ((vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm))/(2*vre(Lmm-U1mm,Lmm+U2mm)) < 0.9999999)
// std::cout << " Big Problem!! " << vabs2(Lmm-U1mm+U2mm)+vabs2(Lmm)-vabs2(U1mm)-vabs2(U2mm) << " " << 2*vre(Lmm-U1mm,Lmm+U2mm) << std::endl;
// Now add the t-channels for the Higgs
double th=qH2.m2()*q2.m2();
ampsq/=th;
ampsq/=16.;
ampsq*=4./9.*4./9.; // Factor of (Cf/Ca) for each quark to match MH2qQ.
//Higgs coupling is included in Hjets.C
const double K = K_g(p1out, p1in);
return ampsq*K/C_F; //ca/cf = 9/4
}
// Begin finite mass stuff
#ifdef RHEJ_BUILD_WITH_QCDLOOP
namespace {
// All the stuff needed for the box functions in qg->qgH now...
//COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM E1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2=-(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*(1 - 8.*mq*mq/s12 + S2/(2.*s12) +
S2*(s12 - 8.*mq*mq)*(s34 + S1)/(2.*s12*Delta) +
2.*(s34 + S1)*(s34 + S1)/Delta +
S2*pow((s34 + S1),3)/Delta/Delta) - ((s12 + S2)*C0DD(k2,
k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2,
mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
2.*(s34 + S1)/Delta +
S2*pow((s34 + S1),2)/Delta/Delta) + (C0DD(k1, q2, mq) -
C0DD(k1 + k2, q2, mq))*(1. - 4.*mq*mq/s12) -
C0DD(k1 + k2, q2, mq)*2.*s34/
S1 - (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*s34*(s34 +
S1)/(S1*Delta) + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*(2.*s34*(s34 +
S1)*(S1 - S2)/(Delta*Sigma) +
2.*s34*(s34 + S1)/(S1*Delta)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2,
mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
S1)*(2.*s12*s34 -
S2*(S1 + S2))/(Delta*Sigma));
}
//COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM F1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-S2*D0DD(k1, k2, q2,
mq)*(0.5 - (s12 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) -
s12*pow((s34 + S2),3)/Delta/Delta) + ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2,
mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
S2*pow((s34 + S2),2)/Delta/Delta) - (C0DD(k1 + k2, q2, mq) - C0DD(k1, k2 + q2, mq))*(1. - 4.*mq*mq/s12) -
C0DD(k1, k2 + q2, mq) + (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2,
mq))*2.*pow((s34 + S2),2)/((s12 + S1)*Delta) - (B0DD(
q2, mq) - B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*2.*s34*(s34 +
S2)*(S2 - S1)/(Delta*Sigma) + (B0DD(
k1 + k2, mq) -
B0DD(k1 + k2 + q2,
mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
S2)*(2.*s12*s34 -
S2*(S1 + S2))/(Delta*Sigma));
}
//COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM G1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor*(S2*D0DD(k1, q2, k2,
mq)*(Delta/s12/s12 - 4.*mq*mq/s12) -
S2*((s12 + S1)*C0DD(k1, k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./
s12/s12 - (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
S2*((s12 + S2)*C0DD(k1 + q2, k2, mq) -
S2*C0DD(k2, q2, mq))*(1./
s12/s12 + (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
C0DD(k1, q2, mq) - (C0DD(k1, k2 + q2, mq) -
C0DD(k1, q2, mq))*4.*mq*mq/
s12 + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2./
s12 + (B0DD(k1 + q2, mq) -
B0DD(q2, mq))*2.*s34/(s12*S1) + (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*(s34 + S2)/(s12*(s12 + S1)));
}
//COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM E4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (-s12*D0DD(k2, k1, q2,
mq)*(0.5 - (S1 - 8.*mq*mq)*(s34 + S1)/(2.*Delta) -
s12*pow((s34 + S1),3)/Delta/Delta) + ((s12 + S2)*C0DD(k2,
k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
s12*pow((s34 + S1),2)/Delta/Delta) -
C0DD(k1 + k2, q2, mq) + (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(2.*s34/Delta +
2.*s12*(s34 + S1)/((s12 + S2)*Delta)) - (B0DD(
q2, mq) - B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*((2.*s34*(2.*s12*s34 - S2*(S1 + S2) +
s12*(S1 -
S2)))/(Delta*Sigma)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*((2.*s12*(2.*s12*s34 - S1*(S1 + S2) +
s34*(S2 - S1)))/(Delta*Sigma)));
}
//COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM F4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (-s12*D0DD(k1, k2, q2,
mq)*(0.5 + (S1 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) +
s12*pow((s34 + S2),3)/Delta/Delta) - ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
s12*pow((s34 + S2),2)/Delta/Delta) -
C0DD(k1 + k2, q2, mq) - (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*(s34 +
S2)/Delta + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*2.*s34*(2.*s12*s34 -
S1*(S1 + S2) +
s12*(S2 - S1))/(Delta*Sigma) - (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(2.*s12*(2.*s12*s34 - S2*(S1 + S2) +
s34*(S1 - S2))/(Delta*Sigma)));
}
//COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM G4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor* (-D0DD(k1, q2, k2,
mq)*(Delta/s12 + (s12 + S1)/2. -
4.*mq*mq) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./
s12 - (S1 - 4.*mq*mq)/(2.*Delta)) + ((s12 + S2)*C0DD(
k1 + q2, k2, mq) -
S2*C0DD(k2, q2, mq))*(1./
s12 + (S1 - 4.*mq*mq)/(2.*Delta)) + (B0DD(
k1 + k2 + q2, mq) -
B0DD(k1 + q2, mq))*2./(s12 + S2));
}
//COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM E10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*((s34 + S1)/Delta +
12.*mq*mq*S1*(s34 + S1)/Delta/Delta -
4.*s12*S1*pow((s34 + S1),3)/Delta/Delta/Delta) - ((s12 + S2)*C0DD(k2, k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2, mq))*(1./Delta +
4.*mq*mq*S1/Delta/Delta -
4.*s12*S1*pow((s34 + S1),2)/Delta/Delta/Delta) +
C0DD(k1 + k2, q2, mq)*(4.*s12*s34*(S1 - S2)/(Delta*Sigma) -
4.*(s12 -
2.*mq*mq)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma)) + (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(4.*(s34 + S1)/((s12 + S2)*Delta) +
8.*S1*(s34 + S1)/Delta/Delta) + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*(12.*s34*(2.*s12 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) -
4.*s34*(4.*s12 + 3.*S1 +
S2)/(Delta*Sigma) +
8.*s12*s34*(s34*(s12 + S2) -
S1*(s34 +
S1))/(Delta*Delta*Sigma)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2,
mq))*(12.*s12*(2.*s34 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) +
8.*s12*S1*(s34*(s12 + S2) -
S1*(s34 +
S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma));
}
//COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM F10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (s12*D0DD(k1, k2, q2,
mq)*((s34 + S2)/Delta - 4.*mq*mq/Delta +
12.*mq*mq*s34*(s12 + S1)/Delta/Delta -
4.*s12*pow((s34 + S2),2)/Delta/Delta -
4.*s12*S1*pow((s34 + S2),3)/Delta/Delta/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2, mq))*(1./Delta +
4.*mq*mq*S1/Delta/Delta -
4.*s12*(s34 + S2)/Delta/Delta -
4.*s12*S1*pow((s34 + S2),2)/Delta/Delta/Delta) -
C0DD(k1 + k2, q2, mq)*(4.*s12*s34/(S2*Delta) +
4.*s12*s34*(S2 - S1)/(Delta*Sigma) +
4.*(s12 -
2.*mq*mq)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma)) - (B0DD(
k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(4.*s34/(S2*Delta) +
8.*s34*(s12 + S1)/Delta/Delta) - (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*(-12*s34*(2*s12 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) -
4.*s12*s34*s34/(S2*Delta*Delta) +
4.*s34*S1/(Delta*Sigma) -
4.*s34*(s12*s34*(2.*s12 + S2) -
S1*S1*(2.*s12 +
S1))/(Delta*Delta*Sigma)) - (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(-12.*s12*(2.*s34 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) +
8.*s12*(2.*s34 + S1)/(Delta*Sigma) -
8.*s12*s34*(2.*s12*s34 - S1*(S1 + S2) +
s12*(S2 -
S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma));
}
//COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM G10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//CLHEP::HepLorentzVector q2=k3+k4;
CLHEP::HepLorentzVector q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
//s34 = 2.*k3.dot(k4);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor* (-D0DD(k1, q2, k2, mq)*(1. +
4.*S1*mq*mq/Delta) + ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./Delta +
4.*S1*mq*mq/Delta/Delta) - ((s12 + S2)*C0DD(k1 + q2,
k2, mq) - S2*C0DD(k2, q2, mq))*(1./Delta +
4.*S1*mq*mq/Delta/Delta) + (B0DD(k1 + k2 + q2, mq) -
B0DD(k1 + q2, mq))*4.*(s34 +
S1)/(Delta*(s12 + S2)) + (B0DD(q2, mq) -
B0DD(k2 + q2, mq))*4.*s34/(Delta*S2));
}
//COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H1(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return E1(k1,k2,k3,k4,mq)+F1(k1,k2,k3,k4,mq)+G1(k1,k2,k3,k4,mq);
return E1(k1,k2,kh,mq)+F1(k1,k2,kh,mq)+G1(k1,k2,kh,mq);
}
//COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H4(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return E4(k1,k2,k3,k4,mq)+F4(k1,k2,k3,k4,mq)+G4(k1,k2,k3,k4,mq);
return E4(k1,k2,kh,mq)+F4(k1,k2,kh,mq)+G4(k1,k2,kh,mq);
}
//COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H10(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return E10(k1,k2,k3,k4,mq)+F10(k1,k2,k3,k4,mq)+G10(k1,k2,k3,k4,mq);
return E10(k1,k2,kh,mq)+F10(k1,k2,kh,mq)+G10(k1,k2,kh,mq);
}
//COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H2(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return -1.*H1(k2,k1,k3,k4,mq);
return -1.*H1(k2,k1,kh,mq);
}
//COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H5(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return -1.*H4(k2,k1,k3,k4,mq);
return -1.*H4(k2,k1,kh,mq);
}
//COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector k3, CLHEP::HepLorentzVector k4, double mq)
COM H12(CLHEP::HepLorentzVector k1, CLHEP::HepLorentzVector k2, CLHEP::HepLorentzVector kh, double mq)
{
//return -1.*H10(k2,k1,k3,k4,mq);
return -1.*H10(k2,k1,kh,mq);
}
// FL and FT functions
COM FL(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
{
CLHEP::HepLorentzVector Q = q1 + q2;
double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
return -1./(2.*detQ2)*((2.-
3.*q1.m2()*q2.dot(Q)/detQ2)*(B0DD(q1, mq) -
B0DD(Q, mq)) + (2. -
3.*q2.m2()*q1.dot(Q)/detQ2)*(B0DD(q2, mq) -
B0DD(Q, mq)) - (4.*mq*mq + q1.m2() + q2.m2() +
Q.m2() - 3.*q1.m2()*q2.m2()*Q.m2()/detQ2)*C0DD(
q1, q2, mq) - 2.);
}
COM FT(CLHEP::HepLorentzVector q1, CLHEP::HepLorentzVector q2, double mq)
{
CLHEP::HepLorentzVector Q = q1 + q2;
double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
return -1./(2.*detQ2)*(Q.m2()*(B0DD(q1, mq) + B0DD(q2, mq) - 2.*B0DD(Q, mq) -
2.*q1.dot(q2)*C0DD(q1, q2, mq)) + (q1.m2() -
q2.m2()) *(B0DD(q1, mq) - B0DD(q2, mq))) -
q1.dot(q2)*FL(q1, q2, mq);
}
CLHEP::HepLorentzVector ParityFlip(CLHEP::HepLorentzVector p)
{
CLHEP::HepLorentzVector flippedVector;
flippedVector.setE(p.e());
flippedVector.setX(-p.x());
flippedVector.setY(-p.y());
flippedVector.setZ(-p.z());
return flippedVector;
}
/// @brief HC amp for qg->qgH with finite top (i.e. j^{++}_H)
void g_gH_HC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1,
CLHEP::HepLorentzVector pH, double mq, current &retAns)
{
current cura1,pacur,p1cur,pHcur,conjeps1,conjepsH1,epsa,epsHa,epsHapart1,
epsHapart2,conjepsH1part1,conjepsH1part2;
COM ang1a,sqa1;
const double F = 4.*mq*mq/v;
// Easier to have the whole thing as current object so I can use cdot functionality.
// Means I need to write pa,p1 as current objects
to_current(pa, pacur);
to_current(p1,p1cur);
to_current(pH,pHcur);
bool gluonforward = true;
if(pa.z() < 0)
gluonforward = false;
//HEJ gauge
jio(pa,false,p1,false,cura1);
if(gluonforward){
// sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
// sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
} else {
ang1a = sqrt(pa.minus()*p1.plus());
sqa1 = sqrt(pa.minus()*p1.plus());
}
const double prop = (pa-p1-pH).m2();
cmult(-1./sqrt(2)/ang1a,cura1,conjeps1);
cmult(1./sqrt(2)/sqa1,cura1,epsa);
const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
const COM h4 = H4(p1,-pa,pH,mq);
const COM h5 = H5(p1,-pa,pH,mq);
const COM h10 = H10(p1,-pa,pH,mq);
const COM h12 = H12(p1,-pa,pH,mq);
cmult(Fta*pa.dot(pH), epsa, epsHapart1);
cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
cadd(epsHapart1, epsHapart2, epsHa);
cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
const COM aH1 = cdot(pHcur, cura1);
current T1,T2,T3,T4,T5,T6,T7,T8,T9,T10;
if(gluonforward){
cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/ang1a, epsHa, T2);
}
else{
cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())
*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/sqa1, conjepsH1, T1);
cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())
*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/ang1a, epsHa, T2);
}
cmult(sqrt(2.)/ang1a*aH1, epsHa, T3);
cmult(sqrt(2.)/sqa1*aH1, conjepsH1, T4);
cmult(-sqrt(2.)*Fta*pa.dot(p1)*aH1/sqa1, conjeps1, T5);
cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/ang1a, epsa, T6);
cmult(-aH1/sqrt(2.)/sqa1*h4*8.*COM(0.,1.)*M_PI*M_PI, conjeps1, T7);
cmult(aH1/sqrt(2.)/ang1a*h5*8.*COM(0.,1.)*M_PI*M_PI, epsa, T8);
cmult(aH1*aH1/2./ang1a/sqa1*h10*8.*COM(0.,1.)*M_PI*M_PI, pacur, T9);
cmult(-aH1*aH1/2./ang1a/sqa1*h12*8.*COM(0.,1.)*M_PI*M_PI, p1cur, T10);
current ans;
for(int i=0;i<4;i++)
{
ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5[i]+T6[i]+T7[i]+T8[i]+T9[i]+T10[i];
}
retAns[0] = F/prop*ans[0];
retAns[1] = F/prop*ans[1];
retAns[2] = F/prop*ans[2];
retAns[3] = F/prop*ans[3];
}
/// @brief HNC amp for qg->qgH with finite top (i.e. j^{+-}_H)
void g_gH_HNC(CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH, double mq, current &retAns)
{
const double F = 4.*mq*mq/v;
COM ang1a,sqa1;
current conjepsH1,epsHa,p1cur,pacur,pHcur,conjeps1,epsa,paplusp1cur,
p1minuspacur,cur1a,cura1,epsHapart1,epsHapart2,conjepsH1part1,
conjepsH1part2;
// Find here if pa, meaning the gluon, is forward or backward
bool gluonforward = true;
if(pa.z() < 0)
gluonforward = false;
jio(pa,true,p1,true,cura1);
j(p1,true,pa,true,cur1a);
to_current(pa,pacur);
to_current(p1,p1cur);
to_current(pH,pHcur);
to_current(pa+p1,paplusp1cur);
to_current(p1-pa,p1minuspacur);
const COM aH1 = cdot(pHcur,cura1);
const COM oneHa = std::conj(aH1); // = cdot(pHcur,cur1a)
if(gluonforward){
// sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
// sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
}
else {
ang1a = sqrt(pa.minus()*p1.plus());
sqa1 = sqrt(pa.minus()*p1.plus());
}
const double prop = (pa-p1-pH).m2();
cmult(1./sqrt(2)/sqa1, cur1a, epsa);
cmult(-1./sqrt(2)/sqa1, cura1, conjeps1);
const COM phase = cdot(conjeps1, epsa);
const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
const COM Falpha = FT(p1-pa,pa-p1-pH,mq);
const COM Fbeta = FL(p1-pa,pa-p1-pH,mq);
const COM h1 = H1(p1,-pa, pH, mq);
const COM h2 = H2(p1,-pa, pH, mq);
const COM h4 = H4(p1,-pa, pH, mq);
const COM h5 = H5(p1,-pa, pH, mq);
const COM h10 = H10(p1,-pa, pH, mq);
const COM h12 = H12(p1,-pa, pH, mq);
cmult(Fta*pa.dot(pH), epsa, epsHapart1);
cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
cadd(epsHapart1, epsHapart2, epsHa);
cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
current T1,T2,T3,T4,T5a,T5b,T6,T7,T8a,T8b,T9,T10,T11a,
T11b,T12a,T12b,T13;
if(gluonforward){
cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/sqa1, epsHa, T2);
}
else{
cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())
*prop/sqa1, conjepsH1, T1);
cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())*((p1.x()+COM(0.,1.)*p1.y())/p1.perp())
*prop/sqa1, epsHa, T2);
}
const COM boxdiagFact = 8.*COM(0.,1.)*M_PI*M_PI;
cmult(aH1*sqrt(2.)/sqa1, epsHa, T3);
cmult(oneHa*sqrt(2.)/sqa1, conjepsH1, T4);
cmult(-2.*phase*Fta*pa.dot(pH), p1cur, T5a);
cmult(2.*phase*Ft1*p1.dot(pH), pacur, T5b);
cmult(-sqrt(2.)*Fta*p1.dot(pa)*oneHa/sqa1, conjeps1, T6);
cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/sqa1, epsa, T7);
cmult(-boxdiagFact*phase*h2, pacur, T8a);
cmult(boxdiagFact*phase*h1, p1cur, T8b);
cmult(boxdiagFact*aH1/sqrt(2.)/sqa1*h5, epsa, T9);
cmult(-boxdiagFact*oneHa/sqrt(2.)/sqa1*h4, conjeps1, T10);
cmult(boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h10, pacur, T11a);
cmult(-boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h12, p1cur, T11b);
cmult(-phase/(pa-p1).m2()*Falpha*(p1-pa).dot(pa-p1-pH), paplusp1cur, T12a);
cmult(phase/(pa-p1).m2()*Falpha*(pa+p1).dot(pa-p1-pH), p1minuspacur, T12b);
cmult(-phase*Fbeta*(pa-p1-pH).m2(), paplusp1cur, T13);
current ans;
for(int i=0;i<4;i++)
{
ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5a[i]+T5b[i]+T6[i]+T7[i]+T8a[i]+T8b[i]+T9[i]+T10[i]+T11a[i]+T11b[i]+T12a[i]+T12b[i]+T13[i];
}
retAns[0] = F/prop*ans[0];
retAns[1] = F/prop*ans[1];
retAns[2] = F/prop*ans[2];
retAns[3] = F/prop*ans[3];
}
} // namespace anonymous
// JDC - new amplitude with Higgs emitted close to gluon with full mt effects. Keep usual HEJ-style function call
double MH2gq_outsideH(CLHEP::HepLorentzVector p1out, CLHEP::HepLorentzVector p1in, CLHEP::HepLorentzVector p2out, CLHEP::HepLorentzVector p2in, CLHEP::HepLorentzVector pH, double mq, bool includeBottom, double mq2)
{
current cur2bplus,cur2bminus, cur2bplusFlip, cur2bminusFlip;
current retAns,retAnsb;
j(p2out,true,p2in,true,cur2bplus);
j(p2out,false,p2in,false,cur2bminus);
j(ParityFlip(p2out),true,ParityFlip(p2in),true,cur2bplusFlip);
j(ParityFlip(p2out),false,ParityFlip(p2in),false,cur2bminusFlip);
COM app1,app2,apm1,apm2;
COM app3, app4, apm3, apm4;
if(!includeBottom)
{
g_gH_HC(p1in,p1out,pH,mq,retAns);
app1=cdot(retAns,cur2bplus);
app2=cdot(retAns,cur2bminus);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
app3=cdot(retAns,cur2bplusFlip);
app4=cdot(retAns,cur2bminusFlip);
// And non-conserving bits
g_gH_HNC(p1in,p1out,pH,mq,retAns);
apm1=cdot(retAns,cur2bplus);
apm2=cdot(retAns,cur2bminus);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
apm3=cdot(retAns,cur2bplusFlip);
apm4=cdot(retAns,cur2bminusFlip);
} else {
g_gH_HC(p1in,p1out,pH,mq,retAns);
g_gH_HC(p1in,p1out,pH,mq2,retAnsb);
app1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
app2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb);
app3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
app4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
// And non-conserving bits
g_gH_HNC(p1in,p1out,pH,mq,retAns);
g_gH_HNC(p1in,p1out,pH,mq2,retAnsb);
apm1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
apm2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,retAns);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,retAnsb);
apm3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
apm4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
}
return abs2(app1) + abs2(app2) + abs2(app3) + abs2(app4) + abs2(apm1)
+ abs2(apm2) + abs2(apm3) + abs2(apm4);
}
#endif // RHEJ_BUILD_WITH_QCDLOOP
double C2gHgm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
{
static double A=1./(3.*M_PI*v);
// Implements Eq. (4.22) in hep-ph/0301013 with modifications to incoming plus momenta
double s12,p1p,p2p;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p og the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
p1p=p1.plus();
p2p=p2.plus();
} else { // opposite case
p1p=p1.minus();
p2p=p2.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=COM(0,1)*A/(2.*s12)*(p2p/p1p*conj(p1perp)*p3perp+p1p/p2p*p1perp*conj(p3perp));
temp=temp*conj(temp);
return temp.real();
}
double C2gHgp(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
{
static double A=1./(3.*M_PI*v);
// Implements Eq. (4.23) in hep-ph/0301013
double s12,php,p1p,phm;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
php=pH.plus();
phm=pH.minus();
p1p=p1.plus();
} else { // opposite case
php=pH.minus();
phm=pH.plus();
p1p=p1.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=-COM(0,1)*A/(2.*s12)*( conj(p1perp*p3perp)*pow(php/p1p,2)/(1.+php/p1p)
+s12*(pow(conj(phperp),2)/(pow(abs(phperp),2)+p1p*phm)
-pow(conj(p3perp)
+(1.+php/p1p)*conj(p1perp),2)/((1.+php/p1p)*(pH.m2()+2.*p1.dot(pH)))) );
temp=temp*conj(temp);
return temp.real();
}
double C2qHqm(CLHEP::HepLorentzVector p2, CLHEP::HepLorentzVector p1, CLHEP::HepLorentzVector pH)
{
static double A=1./(3.*M_PI*v);
// Implements Eq. (4.22) in hep-ph/0301013
double s12,p2p,p1p;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
p2p=p2.plus();
p1p=p1.plus();
} else { // opposite case
p2p=p2.minus();
p1p=p1.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=A/(2.*s12)*( sqrt(p2p/p1p)*p3perp*conj(p1perp)
+sqrt(p1p/p2p)*p1perp*conj(p3perp) );
temp=temp*conj(temp);
return temp.real();
}
diff --git a/src/get_analysis.cc b/src/get_analysis.cc
index aeb3689..21b3414 100644
--- a/src/get_analysis.cc
+++ b/src/get_analysis.cc
@@ -1,32 +1,32 @@
#include "RHEJ/get_analysis.hh"
#include <dlfcn.h>
#include "yaml-cpp/yaml.h"
#include "RHEJ/RivetAnalysis.hh"
#include "RHEJ/EmptyAnalysis.hh"
-namespace RHEJ{
+namespace HEJ{
std::unique_ptr<Analysis> get_analysis(YAML::Node const & parameters){
if(!parameters["plugin"]){
if(parameters["rivet"])
return RivetAnalysis::create(parameters);
return EmptyAnalysis::create(parameters);
}
using AnalysisMaker = std::unique_ptr<Analysis> (*)(YAML::Node);
const auto plugin_name = parameters["plugin"].as<std::string>();
auto handle = dlopen(plugin_name.c_str(), RTLD_NOW);
char * error = dlerror();
if(error != nullptr) throw std::runtime_error(error);
void * sym = dlsym(handle, "make_analysis");
error = dlerror();
if(error != nullptr) throw std::runtime_error(error);
auto make_analysis = reinterpret_cast<AnalysisMaker>(sym);
return make_analysis(parameters);
}
}
diff --git a/src/kinematics.cc b/src/kinematics.cc
index 689b071..7af6bd8 100644
--- a/src/kinematics.cc
+++ b/src/kinematics.cc
@@ -1,22 +1,22 @@
#include "RHEJ/kinematics.hh"
#include "fastjet/PseudoJet.hh"
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
//reconstruct incoming momenta from momentum conservation
std::tuple<fastjet::PseudoJet, fastjet::PseudoJet> incoming_momenta(
std::vector<Particle> const & outgoing
){
double xa(0.), xb(0.);
for(auto const & out: outgoing){
xa += out.p.e() - out.p.pz();
xb += out.p.e() + out.p.pz();
}
return std::tuple<fastjet::PseudoJet, fastjet::PseudoJet>{
{0,0,-xa/2.,xa/2.},
{0,0,xb/2.,xb/2.}
};
}
}
diff --git a/src/make_RNG.cc b/src/make_RNG.cc
index b4c3e56..23c1f0c 100644
--- a/src/make_RNG.cc
+++ b/src/make_RNG.cc
@@ -1,28 +1,28 @@
#include "RHEJ/make_RNG.hh"
#include <locale>
#include "RHEJ/Ranlux64.hh"
#include "RHEJ/Mixmax.hh"
-namespace RHEJ {
- std::unique_ptr<RHEJ::RNG> make_RNG(
+namespace HEJ {
+ std::unique_ptr<HEJ::RNG> make_RNG(
std::string const & name,
optional<std::string> const & seed
) {
std::string lname;
std::transform(
begin(name), end(name), std::back_inserter(lname),
[](char c) { return std::tolower(c, std::locale()); }
);
if(lname == "mixmax") {
if(seed) return std::make_unique<Mixmax>(std::stol(*seed));
return std::make_unique<Mixmax>();
}
if(lname == "ranlux64") {
if(seed) return std::make_unique<Ranlux64>(*seed);
return std::make_unique<Ranlux64>();
}
throw std::invalid_argument{"Unknown random number generator: " + name};
}
}
diff --git a/src/make_writer.cc b/src/make_writer.cc
index 430863f..c5e54ae 100644
--- a/src/make_writer.cc
+++ b/src/make_writer.cc
@@ -1,25 +1,25 @@
#include "RHEJ/make_writer.hh"
#include "RHEJ/LesHouchesWriter.hh"
#include "RHEJ/HepMCWriter.hh"
-namespace RHEJ{
+namespace HEJ{
std::unique_ptr<EventWriter> make_format_writer(
FileFormat format, std::string const & outfile,
LHEF::HEPRUP const & heprup
){
switch(format){
case Les_Houches:
return std::unique_ptr<EventWriter>{
new LesHouchesWriter{outfile, heprup}
};
case HepMC:
return std::unique_ptr<EventWriter>{
new HepMCWriter{outfile, heprup}
};
default:
throw std::logic_error("unhandled file format");
}
}
}
diff --git a/src/resummation_jet_momenta.cc b/src/resummation_jet_momenta.cc
index 7e335ce..956a3f3 100644
--- a/src/resummation_jet_momenta.cc
+++ b/src/resummation_jet_momenta.cc
@@ -1,41 +1,41 @@
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <vector>
#include <array>
#include <algorithm>
#include "RHEJ/resummation_jet_momenta.hh"
#include "RHEJ/utility.hh"
-namespace RHEJ{
+namespace HEJ{
std::vector<fastjet::PseudoJet> resummation_jet_momenta(
std::vector<fastjet::PseudoJet> const & p_born,
fastjet::PseudoJet const & q
) {
// for "new" reshuffling p^B = p + q*|p^B|/P^B
double Pperp_born = 0.;
for(auto const & p: p_born) Pperp_born += p.perp();
std::vector<fastjet::PseudoJet> p_res;
p_res.reserve(p_born.size());
for(auto & pB: p_born) {
const double px = pB.px() - q.px()*pB.perp()/Pperp_born;
const double py = pB.py() - q.py()*pB.perp()/Pperp_born;
const double pperp = sqrt(px*px + py*py);
// keep the rapidities fixed
const double pz = pperp*sinh(pB.rapidity());
const double E = pperp*cosh(pB.rapidity());
p_res.emplace_back(px, py, pz, E);
assert(
- RHEJ::nearby_ep(
+ HEJ::nearby_ep(
p_res.back().rapidity(),
pB.rapidity(),
1e-5
)
);
}
return p_res;
}
}
diff --git a/src/stream.cc b/src/stream.cc
index eefa169..5908825 100644
--- a/src/stream.cc
+++ b/src/stream.cc
@@ -1,27 +1,27 @@
#include "RHEJ/stream.hh"
#include <boost/iostreams/filter/gzip.hpp>
-namespace RHEJ{
+namespace HEJ{
namespace{
bool is_gzip(std::ifstream & file){
static constexpr char magic_bytes[] = {'\x1f', '\x8b'};
if(file.peek() != magic_bytes[0]) return false;
file.get();
const char second = file.peek();
file.unget();
return second == magic_bytes[1];
}
}
istream::istream(std::string const & filename):
file_{filename, std::ios_base::in | std::ios_base::binary},
stream_{new boost_istream()}
{
if(is_gzip(file_)){
stream_->push(boost::iostreams::gzip_decompressor{});
}
stream_->push(file_);
}
}
diff --git a/t/check_lhe.cc b/t/check_lhe.cc
index 0b89740..295ceb1 100644
--- a/t/check_lhe.cc
+++ b/t/check_lhe.cc
@@ -1,29 +1,29 @@
#include <iostream>
#include "RHEJ/stream.hh"
#include "LHEF/LHEF.h"
static constexpr double ep = 1e-3;
int main(int argn, char** argv) {
if(argn != 2){
std::cerr << "Usage: check_lhe lhe_file\n";
return EXIT_FAILURE;
}
- RHEJ::istream in{argv[1]};
+ HEJ::istream in{argv[1]};
LHEF::Reader reader{in};
std::vector<double> xsec_ref(reader.heprup.NPRUP, 0.);
while(reader.readEvent()){
xsec_ref[reader.hepeup.IDPRUP-1] += reader.hepeup.weight();
}
for(size_t i = 0; i < xsec_ref.size(); ++i){
std::cout << xsec_ref[i] << '\t' << reader.heprup.XSECUP[i] << '\n';
if(std::abs(xsec_ref[i]/reader.heprup.XSECUP[i] - 1) > ep){
std::cerr << "Cross sections deviate substantially";
return EXIT_FAILURE;
}
}
}
diff --git a/t/check_res.cc b/t/check_res.cc
index d351cb5..869a735 100644
--- a/t/check_res.cc
+++ b/t/check_res.cc
@@ -1,97 +1,97 @@
#include <iostream>
#include "LHEF/LHEF.h"
#include "RHEJ/stream.hh"
#include "RHEJ/EventReweighter.hh"
#include "RHEJ/Mixmax.hh"
namespace{
const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.4};
const fastjet::JetDefinition Born_jet_def{jet_def};
constexpr double Born_jetptmin = 30;
constexpr double extpartonptmin = 30;
constexpr double max_ext_soft_pt_fraction =
std::numeric_limits<double>::infinity();
constexpr double jetptmin = 35;
constexpr bool log_corr = false;
- using EventTreatment = RHEJ::EventTreatment;
- using namespace RHEJ::event_type;
- RHEJ::EventTreatMap treat{
+ using EventTreatment = HEJ::EventTreatment;
+ using namespace HEJ::event_type;
+ HEJ::EventTreatMap treat{
{no_2_jets, EventTreatment::discard},
{bad_final_state, EventTreatment::discard},
{nonHEJ, EventTreatment::discard},
{unof, EventTreatment::discard},
{unob, EventTreatment::discard},
{FKL, EventTreatment::reweight}
};
};
int main(int argn, char** argv) {
if(argn == 5 && std::string(argv[4]) == "uno"){
--argn;
treat[unof] = EventTreatment::reweight;
treat[unob] = EventTreatment::reweight;
treat[FKL] = EventTreatment::discard;
}
if(argn != 4){
std::cerr << "Usage: check_res eventfile xsection tolerance [uno]";
return EXIT_FAILURE;
}
const double xsec_ref = std::stod(argv[2]);
const double tolerance = std::stod(argv[3]);
- RHEJ::istream in{argv[1]};
+ HEJ::istream in{argv[1]};
LHEF::Reader reader{in};
- RHEJ::PhaseSpacePointConfig psp_conf;
- psp_conf.jet_param = RHEJ::JetParameters{jet_def, jetptmin};
+ HEJ::PhaseSpacePointConfig psp_conf;
+ psp_conf.jet_param = HEJ::JetParameters{jet_def, jetptmin};
psp_conf.min_extparton_pt = extpartonptmin;
psp_conf.max_ext_soft_pt_fraction = max_ext_soft_pt_fraction;
- RHEJ::MatrixElementConfig ME_conf;
+ HEJ::MatrixElementConfig ME_conf;
ME_conf.jet_param = psp_conf.jet_param;
ME_conf.log_correction = log_corr;
- ME_conf.Higgs_coupling = RHEJ::HiggsCouplingSettings{};
- RHEJ::EventReweighterConfig conf;
+ ME_conf.Higgs_coupling = HEJ::HiggsCouplingSettings{};
+ HEJ::EventReweighterConfig conf;
conf.psp_config = std::move(psp_conf);
conf.ME_config = std::move(ME_conf);
conf.jet_param = psp_conf.jet_param;
conf.treat = treat;
reader.readEvent();
const bool has_Higgs = std::find(
begin(reader.hepeup.IDUP),
end(reader.hepeup.IDUP),
25
) != end(reader.hepeup.IDUP);
const double mu = has_Higgs?125.:91.188;
- RHEJ::ScaleGenerator scale_gen{
- {{std::to_string(mu), RHEJ::FixedScale{mu}}}, {}, 1.
+ HEJ::ScaleGenerator scale_gen{
+ {{std::to_string(mu), HEJ::FixedScale{mu}}}, {}, 1.
};
- RHEJ::Mixmax ran{};
- RHEJ::EventReweighter rhej{reader.heprup, std::move(scale_gen), conf, ran};
+ HEJ::Mixmax ran{};
+ HEJ::EventReweighter rhej{reader.heprup, std::move(scale_gen), conf, ran};
double xsec = 0.;
double xsec_err = 0.;
do{
- RHEJ::Event ev{
- RHEJ::UnclusteredEvent{reader.hepeup},
+ HEJ::Event ev{
+ HEJ::UnclusteredEvent{reader.hepeup},
Born_jet_def, Born_jetptmin
};
auto resummed_events = rhej.reweight(ev, 20);
for(auto const & ev: resummed_events) {
xsec += ev.central().weight;
xsec_err += ev.central().weight*ev.central().weight;
}
} while(reader.readEvent());
xsec_err = std::sqrt(xsec_err);
const double significance =
std::abs(xsec - xsec_ref) / std::sqrt( xsec_err*xsec_err + tolerance*tolerance );
std::cout << xsec_ref << " +/- " << tolerance << " ~ "
<< xsec << " +- " << xsec_err << " => " << significance << " sigma\n";
if(significance > 3.){
std::cerr << "Cross section is off by over 3 sigma!\n";
return EXIT_FAILURE;
}
}
diff --git a/t/scales.cc b/t/scales.cc
index 4636443..9327252 100644
--- a/t/scales.cc
+++ b/t/scales.cc
@@ -1,8 +1,8 @@
#include "RHEJ/Event.hh"
extern "C"
__attribute__((visibility("default")))
-double softest_jet_pt(RHEJ::Event const & ev){
+double softest_jet_pt(HEJ::Event const & ev){
const auto softest_jet = sorted_by_pt(ev.jets()).back();
return softest_jet.perp();
}
diff --git a/t/test_ME_generic.cc b/t/test_ME_generic.cc
index 7975cdd..a033dfa 100644
--- a/t/test_ME_generic.cc
+++ b/t/test_ME_generic.cc
@@ -1,104 +1,104 @@
// Generic tester for the ME for a given set of PSP
// reference weights and PSP (as LHE file) have to be given as _individual_ files
#include <fstream>
#include "LHEF/LHEF.h"
#include "RHEJ/MatrixElement.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/YAMLreader.hh"
#include "RHEJ/stream.hh"
constexpr double alpha_s = 0.118;
constexpr double mu = 1234.; // coupling fixed, mu doesn't matter
constexpr double ep = 1e-6;
-void dump(RHEJ::UnclusteredEvent const & ev, RHEJ::Config config){
+void dump(HEJ::UnclusteredEvent const & ev, HEJ::Config config){
{
LHEF::Writer writer{std::cout};
std::cout << std::setprecision(6);
- RHEJ::Event out_ev{ev, config.resummation_jets.def, config.resummation_jets.min_pt};
+ HEJ::Event out_ev{ev, config.resummation_jets.def, config.resummation_jets.min_pt};
writer.hepeup = to_HEPEUP(std::move(out_ev), nullptr);
writer.writeEvent();
}
std::cout << "Rapidity ordering:\n";
for(const auto & part: ev.outgoing){
std::cout << std::setw(2) << part.type << ": "<< std::setw(7) << part.rapidity() << std::endl;
}
}
int main(int argn, char** argv){
if(argn != 4 && argn != 5){
std::cerr << "\n# Usage:\n."<< argv[0] <<" config.yml ME_weights input_file.lhe\n\n";
return EXIT_FAILURE;
}
bool OUTPUT_MODE = false;
if(argn == 5 && std::string("OUTPUT")==std::string(argv[4]))
OUTPUT_MODE = true;
- const RHEJ::Config config = RHEJ::load_config(argv[1]);
+ const HEJ::Config config = HEJ::load_config(argv[1]);
std::fstream wgt_file;
if ( OUTPUT_MODE ) {
std::cout << "_______________________USING OUTPUT MODE!_______________________" << std::endl;
wgt_file.open(argv[2], std::fstream::out);
wgt_file.precision(10);
} else {
wgt_file.open(argv[2], std::fstream::in);
}
- RHEJ::istream in{argv[3]};
+ HEJ::istream in{argv[3]};
LHEF::Reader reader{in};
- RHEJ::MatrixElement ME{
+ HEJ::MatrixElement ME{
[](double){ return alpha_s; },
- RHEJ::to_MatrixElementConfig(config)
+ HEJ::to_MatrixElementConfig(config)
};
double max_ratio = 0.;
size_t idx_max_ratio = 0;
- RHEJ::UnclusteredEvent ev_max_ratio;
+ HEJ::UnclusteredEvent ev_max_ratio;
double av_ratio = 0;
size_t i = 0;
while(reader.readEvent()){
++i;
- RHEJ::UnclusteredEvent event{reader.hepeup};
+ HEJ::UnclusteredEvent event{reader.hepeup};
const double our_ME = ME.tree(
mu, event.incoming, event.outgoing, true
);
if ( OUTPUT_MODE ) {
wgt_file << our_ME << std::endl;
} else {
std::string line;
if(!std::getline(wgt_file,line)) break;
const double ref_ME = std::stod(line);
const double diff = std::abs(our_ME/ref_ME-1.);
av_ratio+=diff;
if( diff > max_ratio ) {
max_ratio = diff;
idx_max_ratio = i;
ev_max_ratio = event;
}
if( diff > ep ){
size_t precision(std::cout.precision());
std::cout.precision(16);
std::cout<< "Large difference in PSP " << i << "\nis: "<<our_ME << " should: " << ref_ME << " => difference: " << diff << std::endl;
std::cout.precision(precision);
dump(event, config);
return EXIT_FAILURE;
}
}
}
wgt_file.close();
if ( !OUTPUT_MODE ) {
size_t precision(std::cout.precision());
std::cout.precision(16);
std::cout << "Avg ratio after " << i << " PSP: " << av_ratio/i << std::endl;
std::cout << "maximal ratio at " << idx_max_ratio << ": " << max_ratio << std::endl;
std::cout.precision(precision);
}
return EXIT_SUCCESS;
}
diff --git a/t/test_ME_jets.cc b/t/test_ME_jets.cc
index 091297b..9fb8a18 100644
--- a/t/test_ME_jets.cc
+++ b/t/test_ME_jets.cc
@@ -1,81 +1,81 @@
#include "LHEF/LHEF.h"
#include "RHEJ/MatrixElement.hh"
#include "RHEJ/Event.hh"
struct Event{
double weight;
- std::array<RHEJ::Particle, 2> incoming;
- std::vector<RHEJ::Particle> outgoing;
+ std::array<HEJ::Particle, 2> incoming;
+ std::vector<HEJ::Particle> outgoing;
Event(
double wt,
- RHEJ::Particle in1, RHEJ::Particle in2,
- std::initializer_list<RHEJ::Particle> out
+ HEJ::Particle in1, HEJ::Particle in2,
+ std::initializer_list<HEJ::Particle> out
):
weight{wt},
incoming{std::move(in1), std::move(in2)},
outgoing{out}
{}
};
constexpr
-RHEJ::pid::ParticleID PDG(int id){
- return static_cast<RHEJ::pid::ParticleID>(id);
+HEJ::pid::ParticleID PDG(int id){
+ return static_cast<HEJ::pid::ParticleID>(id);
}
constexpr double alpha_s = 0.119002421608181;
constexpr double mu = 91.188;
constexpr double R = 0.4;
constexpr double min_jet_pt = 20.;
constexpr auto jet_def = fastjet::antikt_algorithm;
constexpr double ep = 1e-9;
void dump(Event const & ev){
LHEF::Writer writer{std::cerr};
std::cerr << std::setprecision(15);
- RHEJ::UnclusteredEvent tmp;
+ HEJ::UnclusteredEvent tmp;
tmp.incoming = ev.incoming;
tmp.outgoing = ev.outgoing;
tmp.central = {mu, mu, 0.};
- RHEJ::Event out_ev{std::move(tmp), {jet_def, R}, min_jet_pt};
+ HEJ::Event out_ev{std::move(tmp), {jet_def, R}, min_jet_pt};
writer.hepeup = to_HEPEUP(std::move(out_ev), nullptr);
writer.writeEvent();
}
int main(){
std::vector<Event> events = {
/*
* reference matrix elements obtained from traditional HEJ
* weights correspond to wt the end of MEt2 in Jets.cxx
*/
#include "ME_jets.dat"
};
- RHEJ::MatrixElementConfig config;
+ HEJ::MatrixElementConfig config;
config.jet_param.def = fastjet::JetDefinition(jet_def, R);
config.jet_param.min_pt = min_jet_pt;
config.log_correction = false;
- RHEJ::MatrixElement ME{
+ HEJ::MatrixElement ME{
[](double){ return alpha_s; },
config
};
for(size_t i = 0; i < events.size(); ++i){
std::sort(
begin(events[i].outgoing), end(events[i].outgoing),
- RHEJ::rapidity_less{}
+ HEJ::rapidity_less{}
);
const double our_ME = ME.tree(
mu, events[i].incoming, events[i].outgoing, true
);
const double deviation = our_ME/events[i].weight - 1.;
if(std::abs(deviation) > ep){
std::cerr
<< "Matrix element deviates by factor of " << 1+deviation << ":\n"
"Is " << our_ME << ", should be " << events[i].weight << "\n"
"Event:\n";
dump(events[i]);
return EXIT_FAILURE;
}
}
}
diff --git a/t/test_classify.cc b/t/test_classify.cc
index 3d68d0e..2dd3e34 100644
--- a/t/test_classify.cc
+++ b/t/test_classify.cc
@@ -1,50 +1,50 @@
#include "LHEF/LHEF.h"
#include "RHEJ/stream.hh"
#include "RHEJ/event_types.hh"
#include "RHEJ/Event.hh"
namespace{
constexpr double min_jet_pt = 30.;
const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.4};
- using namespace RHEJ::event_type;
+ using namespace HEJ::event_type;
static const std::vector<EventType> results{
unob,FKL,FKL,FKL,FKL,FKL,FKL,unob,FKL,unob,FKL,FKL,FKL,unof,FKL,unob,FKL,
FKL,unob,unob,FKL,FKL,unob,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,unof,
FKL,FKL,unof,FKL,FKL,FKL,FKL,FKL,unof,FKL,FKL,FKL,unof,FKL,FKL,unob,unof,
FKL,unof,FKL,unob,FKL,FKL,unob,FKL,unob,unof,unob,unof,FKL,FKL,FKL,FKL,FKL,
FKL,FKL,FKL,FKL,FKL,FKL,FKL,unob,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,unob,FKL,
FKL,FKL,FKL,unof,FKL,unob,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,unob,FKL,
FKL,FKL,FKL,FKL,unob,FKL,unob,unob,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,FKL,unof,unob,FKL
};
}
int main(int argn, char** argv) {
if(argn != 2){
std::cerr << "Usage: test_classify eventfile";
return EXIT_FAILURE;
}
- RHEJ::istream in{argv[1]};
+ HEJ::istream in{argv[1]};
LHEF::Reader reader{in};
LHEF::Writer writer{std::cerr};
writer.heprup = reader.heprup;
for(auto const & expected: results){
reader.readEvent();
- const RHEJ::Event ev{
- RHEJ::UnclusteredEvent{reader.hepeup},
+ const HEJ::Event ev{
+ HEJ::UnclusteredEvent{reader.hepeup},
jet_def, min_jet_pt
};
if(ev.type() != expected){
- using RHEJ::event_type::names;
+ using HEJ::event_type::names;
writer.hepeup = reader.hepeup;
std::cerr << "wrong classification of event:\n";
writer.writeEvent();
std::cerr << "classified as " << names[ev.type()]
<< ", is " << names[expected] << '\n';
return EXIT_FAILURE;
}
}
}
diff --git a/t/test_descriptions.cc b/t/test_descriptions.cc
index be6a61b..a0f8015 100644
--- a/t/test_descriptions.cc
+++ b/t/test_descriptions.cc
@@ -1,61 +1,61 @@
#include <iostream>
#include <cstddef>
#include "RHEJ/ScaleFunction.hh"
#include "RHEJ/EventReweighter.hh"
#define ASSERT(x) if(!(x)) { \
std::cerr << "Assertion '" #x "' failed.\n"; \
return EXIT_FAILURE; \
}
int main() {
constexpr double mu = 125.;
- RHEJ::ScaleFunction fun{"125", RHEJ::FixedScale{mu}};
+ HEJ::ScaleFunction fun{"125", HEJ::FixedScale{mu}};
ASSERT(fun.name() == "125");
- RHEJ::ScaleGenerator scale_gen{
+ HEJ::ScaleGenerator scale_gen{
{std::move(fun)}, {0.5, 1, 2.}, 2.1
};
- RHEJ::UnclusteredEvent tmp;
+ HEJ::UnclusteredEvent tmp;
tmp.outgoing.push_back(
- {RHEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.)}
+ {HEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.)}
);
tmp.outgoing.push_back(
- {RHEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.)}
+ {HEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.)}
);
- RHEJ::Event ev{
+ HEJ::Event ev{
std::move(tmp),
fastjet::JetDefinition{fastjet::kt_algorithm, 0.4},
20.
};
auto rescaled = scale_gen(std::move(ev));
ASSERT(rescaled.central().description->scale_name == "125");
for(auto const & var: rescaled.variations()) {
ASSERT(var.description->scale_name == "125");
}
ASSERT(rescaled.central().description->mur_factor == 1.);
ASSERT(rescaled.central().description->muf_factor == 1.);
ASSERT(rescaled.variations(0).description->mur_factor == 1.);
ASSERT(rescaled.variations(0).description->muf_factor == 1.);
ASSERT(rescaled.variations(1).description->mur_factor == 0.5);
ASSERT(rescaled.variations(1).description->muf_factor == 0.5);
ASSERT(rescaled.variations(2).description->mur_factor == 0.5);
ASSERT(rescaled.variations(2).description->muf_factor == 1.);
ASSERT(rescaled.variations(3).description->mur_factor == 1.);
ASSERT(rescaled.variations(3).description->muf_factor == 0.5);
ASSERT(rescaled.variations(4).description->mur_factor == 1.);
ASSERT(rescaled.variations(4).description->muf_factor == 2.);
ASSERT(rescaled.variations(5).description->mur_factor == 2.);
ASSERT(rescaled.variations(5).description->muf_factor == 1.);
ASSERT(rescaled.variations(6).description->mur_factor == 2.);
ASSERT(rescaled.variations(6).description->muf_factor == 2.);
}
diff --git a/t/test_psp.cc b/t/test_psp.cc
index 0f0db88..e4dd0ce 100644
--- a/t/test_psp.cc
+++ b/t/test_psp.cc
@@ -1,69 +1,69 @@
#include "LHEF/LHEF.h"
#include "RHEJ/stream.hh"
#include "RHEJ/config.hh"
#include "RHEJ/event_types.hh"
#include "RHEJ/Event.hh"
#include "RHEJ/PhaseSpacePoint.hh"
#include "RHEJ/Ranlux64.hh"
namespace{
constexpr int max_trials = 100;
constexpr double extpartonptmin = 45.;
constexpr double max_ext_soft_pt_fraction =
std::numeric_limits<double>::infinity();
const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.4};
constexpr double min_jet_pt = 50;
};
int main(int argn, char** argv) {
if(argn != 2){
std::cerr << "Usage: test_psp eventfile";
return EXIT_FAILURE;
}
- RHEJ::istream in{argv[1]};
+ HEJ::istream in{argv[1]};
LHEF::Reader reader{in};
LHEF::Writer writer{std::cerr};
writer.heprup = reader.heprup;
- RHEJ::PhaseSpacePointConfig conf;
- conf.jet_param = RHEJ::JetParameters{jet_def, min_jet_pt};
+ HEJ::PhaseSpacePointConfig conf;
+ conf.jet_param = HEJ::JetParameters{jet_def, min_jet_pt};
conf.min_extparton_pt = extpartonptmin;
conf.max_ext_soft_pt_fraction = max_ext_soft_pt_fraction;
- RHEJ::Ranlux64 ran{};
+ HEJ::Ranlux64 ran{};
while(reader.readEvent()){
- const RHEJ::Event ev{
- RHEJ::UnclusteredEvent{reader.hepeup},
+ const HEJ::Event ev{
+ HEJ::UnclusteredEvent{reader.hepeup},
jet_def, min_jet_pt
};
for(int trial = 0; trial < max_trials; ++trial){
- RHEJ::PhaseSpacePoint psp{ev, conf, ran};
+ HEJ::PhaseSpacePoint psp{ev, conf, ran};
if(psp.weight() != 0){
- RHEJ::UnclusteredEvent tmp_ev;
+ HEJ::UnclusteredEvent tmp_ev;
tmp_ev.incoming = psp.incoming();
tmp_ev.outgoing = psp.outgoing();
tmp_ev.central = {0,0,0};
- RHEJ::Event out_ev{
+ HEJ::Event out_ev{
std::move(tmp_ev),
jet_def, min_jet_pt
};
if(out_ev.type() != ev.type()){
- using RHEJ::event_type::names;
+ using HEJ::event_type::names;
std::cerr << "Wrong class of phase space point:\n"
"original event of class " << names[ev.type()] << ":\n";
writer.hepeup = reader.hepeup;
writer.writeEvent();
std::cerr << "Phase space point of class " << names[out_ev.type()] << ":\n";
writer.hepeup = to_HEPEUP(out_ev, &writer.heprup);
writer.writeEvent();
return EXIT_FAILURE;
}
}
}
}
}
diff --git a/t/test_scale_import.cc b/t/test_scale_import.cc
index b16a3b2..b1199bc 100644
--- a/t/test_scale_import.cc
+++ b/t/test_scale_import.cc
@@ -1,31 +1,31 @@
#include <stdexcept>
#include <iostream>
#include "RHEJ/YAMLreader.hh"
#include "RHEJ/Event.hh"
int main(int argc, char** argv) {
constexpr double ep = 1e-7;
if (argc != 2) {
throw std::logic_error{"wrong number of args"};
}
- const RHEJ::Config config = RHEJ::load_config(argv[1]);
+ const HEJ::Config config = HEJ::load_config(argv[1]);
- RHEJ::UnclusteredEvent tmp;
+ HEJ::UnclusteredEvent tmp;
tmp.outgoing.push_back(
- {RHEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.)}
+ {HEJ::ParticleID::gluon, fastjet::PtYPhiM(50., -1., 0.3, 0.)}
);
tmp.outgoing.push_back(
- {RHEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.)}
+ {HEJ::ParticleID::gluon, fastjet::PtYPhiM(30., 1., -0.3, 0.)}
);
- RHEJ::Event ev{
+ HEJ::Event ev{
std::move(tmp),
fastjet::JetDefinition{fastjet::kt_algorithm, 0.4},
20.
};
const double softest_pt = config.scales.base[0](ev);
if(std::abs(softest_pt-30.) > ep){
throw std::logic_error{"wrong softest pt"};
}
}

File Metadata

Mime Type
text/x-diff
Expires
Mon, Jan 20, 8:39 PM (12 h, 10 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4242304
Default Alt Text
(521 KB)

Event Timeline