Page MenuHomeHEPForge

No OneTemporary

diff --git a/Hadronization/LightClusterDecayer.cc b/Hadronization/LightClusterDecayer.cc
--- a/Hadronization/LightClusterDecayer.cc
+++ b/Hadronization/LightClusterDecayer.cc
@@ -1,409 +1,409 @@
// -*- C++ -*-
//
// LightClusterDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2019 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the LightClusterDecayer class.
//
#include "LightClusterDecayer.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Interface/Parameter.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Interface/Switch.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/Repository/EventGenerator.h>
#include "Cluster.h"
#include "Herwig/Utilities/Kinematics.h"
#include <ThePEG/Utilities/DescribeClass.h>
using namespace Herwig;
DescribeClass<LightClusterDecayer,Interfaced>
describeLightClusterDecayer("Herwig::LightClusterDecayer","Herwig.so");
IBPtr LightClusterDecayer::clone() const {
return new_ptr(*this);
}
IBPtr LightClusterDecayer::fullclone() const {
return new_ptr(*this);
}
void LightClusterDecayer::persistentOutput(PersistentOStream & os) const {
os << _hadronSpectrum;
}
void LightClusterDecayer::persistentInput(PersistentIStream & is, int) {
is >> _hadronSpectrum;
}
void LightClusterDecayer::Init() {
static ClassDocumentation<LightClusterDecayer> documentation
("There is the class responsible for the one-hadron decay of light clusters");
static Reference<LightClusterDecayer,HadronSpectrum>
interfaceHadronSpectrum("HadronSpectrum",
"A reference to the HadronSpectrum object",
&Herwig::LightClusterDecayer::_hadronSpectrum,
false, false, true, false);
}
bool LightClusterDecayer::decay(ClusterVector & clusters, tPVector & finalhadrons) {
// Loop over all clusters, and for those that were not heavy enough
// to undergo to fission, check if they are below the threshold
// for normal two-hadron decays. If this is the case, then the cluster
// should be decayed into a single hadron: this can happen only if
// it is possible to reshuffle momenta between the cluster and
// another one; in the rare occasions in which such exchange of momenta
// is not possible (because all of the clusters are too light) then
// the event is skipped.
// Notice that, differently from what happens in Fortran Herwig,
// light (that is below the threshold for the production of the lightest
// pair of hadrons with the proper flavours) fission products, produced
// by the fission of heavy clusters in class ClusterFissioner
// have been already "decayed" into single hadron (the lightest one
// with proper flavour) by the same latter class, without requiring
// any reshuffling. Therefore the light clusters that are treated in
// this LightClusterDecayer class are produced directly
// (originally) by the class ClusterFinder.
// To preserve all of the information, the cluster partner with which
// the light cluster (that decays into a single hadron) exchanges
// momentum in the reshuffling procedure is redefined and inserted
// in the vector vecNewRedefinedCluPtr. Only at the end, when all
// light clusters have been examined, the elements this vector will be
// copied in collecCluPtr (the reason is that it is not allowed to
// modify a STL container while iterating over it. At the same time,
// this ensures that a cluster can be redefined only once, which seems
// sensible although not strictly necessary).
// Notice that the cluster reshuffling partner is normally redefined
// and inserted in the vector vecNewRedefinedCluPtr, but not always:
// in the case it is also light, then it is also decayed immediately
// into a single hadron, without redefining it (the reason being that,
// otherwise, the would-be redefined cluster could have undefined
// components).
vector<tClusterPtr> redefinedClusters;
for (ClusterVector::const_iterator it = clusters.begin();
it != clusters.end(); ++it) {
// Skip the clusters that are not available or that are
// heavy, intermediate, clusters that have undergone to fission,
if ( ! (*it)->isAvailable() || ! (*it)->isReadyToDecay() ){
continue;
}
// We need to require (at least at the moment, maybe in the future we
// could change it) that the cluster has exactly two components,
// because otherwise we don't know how to deal with the kinematics.
// If this is not the case, then send a warning because it is not suppose
// to happen, and then do nothing with (ignore) such cluster.
if ( (*it)->numComponents() != 2 ) {
generator()->logWarning( Exception("LightClusterDecayer::decay "
"***Still cluster with not exactly"
" 2 components*** ",
Exception::warning) );
continue;
}
if ( DiquarkMatcher::Check((*it)->particle(0)->dataPtr()->id()) && DiquarkMatcher::Check((*it)->particle(1)->dataPtr()->id())) {
// TODO We should never get Diquark Clusters in the LightClusterDecayer
- throw Exception() << "LightClusterDecayer::decay\n"
- "*** Diquark Cluster in LightClusterDecayer ***\n"
- "Cluster = ( "<< (*it)->particle(0)->dataPtr()->id()<<", " << (*it)->particle(1)->dataPtr()->id()<<" )\nMC = " << (*it)->mass()/GeV << " GeV MLHP = "
- << _hadronSpectrum->massLightestHadronPair((*it)->particle(0)->dataPtr(),(*it)->particle(1)->dataPtr())/GeV <<" GeV"
- << Exception::runerror;
- // continue;
+ // throw Exception() << "LightClusterDecayer::decay\n"
+ // "*** Diquark Cluster in LightClusterDecayer ***\n"
+ // "Cluster = ( "<< (*it)->particle(0)->dataPtr()->id()<<", " << (*it)->particle(1)->dataPtr()->id()<<" )\nMC = " << (*it)->mass()/GeV << " GeV MLHP = "
+ // << _hadronSpectrum->massLightestHadronPair((*it)->particle(0)->dataPtr(),(*it)->particle(1)->dataPtr())/GeV <<" GeV"
+ // << Exception::runerror;
+ continue;
}
// select the hadron for single hadron decay
tcPDPtr hadron = _hadronSpectrum->chooseSingleHadron((*it)->particle(0)->dataPtr(),
(*it)->particle(1)->dataPtr(),
(**it).mass());
// if not single decay continue
if(!hadron){
continue;
}
// We assume that the candidate reshuffling cluster partner,
// with whom the light cluster can exchange momenta,
// is chosen as the closest in space-time between the available
// clusters. Notice that an alternative, sensible approach
// could be to consider instead the "closeness" in the colour
// structure...
// Notice that nor a light cluster (which decays into a single hadron)
// neither its cluster reshuffling partner (which either has a
// redefined cluster or also decays into a single hadron) can be
// a reshuffling partner of another light cluster.
// This because we are requiring that the considered candidate cluster
// reshuffling partner has the status "isAvailable && isReadyToDecay" true;
// furthermore, the new redefined clusters are not added to the collection
// of cluster before the end of the entire reshuffling procedure, avoiding
// in this way that the redefined cluster of a cluster reshuffling partner
// is used again later. Needless to say, this is just an assumption,
// although reasonable, but nothing more than that!
// Build a multimap of available reshuffling cluster partners,
// with key given by the module of the invariant space-time distance
// w.r.t. the light cluster, so that this new collection is automatically
// ordered in increasing distance values.
// We use a multimap, rather than a map, just for precaution against not properly
// defined cluster positions which could produce all identical (null) distances.
multimap<Length,tClusterPtr> candidates;
for ( ClusterVector::iterator jt = clusters.begin();
jt != clusters.end(); ++jt ) {
if ( (*jt)->numComponents() != 2 )
continue;
// if (DiquarkMatcher::Check(*(*jt)->particle(0)->dataPtr())
// && DiquarkMatcher::Check(*(*jt)->particle(1)->dataPtr()))
// continue;
// if ( DiquarkMatcher::Check(*(*jt)->particle(0)->dataPtr())
// && DiquarkMatcher::Check(*(*jt)->particle(1)->dataPtr()))
// continue;
if ((*jt)->isAvailable() && (*jt)->isReadyToDecay() && jt != it) {
Length distance = abs (((*it)->vertex() - (*jt)->vertex()).m());
candidates.insert(pair<Length,tClusterPtr>(distance,*jt));
}
}
// Loop sequentially the multimap.
multimap<Length,tClusterPtr>::const_iterator mmapIt = candidates.begin();
bool found = false;
while (!found && mmapIt != candidates.end()) {
found = reshuffling(hadron, *it, (*mmapIt).second, redefinedClusters, finalhadrons);
if (!found) ++mmapIt;
}
if (!found) return partonicReshuffle(hadron,*it,finalhadrons);
} // end loop over collecCluPtr
// Add to collecCluPtr all of the redefined new clusters (indeed the
// pointers to them are added) contained in vecNewRedefinedCluPtr.
for (tClusterVector::const_iterator it = redefinedClusters.begin();
it != redefinedClusters.end(); ++it) {
clusters.push_back(*it);
}
return true;
}
bool LightClusterDecayer::reshuffling(const tcPDPtr pdata1,
tClusterPtr cluPtr1,
tClusterPtr cluPtr2,
tClusterVector & redefinedClusters,
tPVector & finalhadrons)
{
// don't reshuffle with beam clusters
if(cluPtr2->isBeamCluster()) return false;
// This method does the reshuffling of momenta between the cluster "1",
// that must decay into a single hadron (with id equal to idhad1), and
// the candidate cluster "2". It returns true if the reshuffling succeed,
// false otherwise.
PPtr ptrhad1 = pdata1->produceParticle();
if ( ! ptrhad1 ) {
generator()->logWarning( Exception("LightClusterDecayer::reshuffling"
"***Cannot create a particle with specified id***",
Exception::warning) );
return false;
}
Energy mhad1 = ptrhad1->mass();
// Let's call "3" and "4" the two constituents of the second cluster
tPPtr part3 = cluPtr2->particle(0);
tPPtr part4 = cluPtr2->particle(1);
// Check if the system of the two clusters can kinematically be replaced by
// an hadron of mass mhad1 (which is the lightest single hadron with the
// same flavour numbers as the first cluster) and the second cluster.
// If not, then try to replace the second cluster with the lightest hadron
// with the same flavour numbers; if it still fails, then give up!
Lorentz5Momentum pSystem = cluPtr1->momentum() + cluPtr2->momentum();
pSystem.rescaleMass(); // set the mass as the invariant of the quadri-vector
Energy mSystem = pSystem.mass();
Energy mclu2 = cluPtr2->mass();
bool singleHadron = false;
bool isDiquarkCluster = DiquarkMatcher::Check(part3->dataPtr()->id()) && DiquarkMatcher::Check(part4->dataPtr()->id());
Energy mLHP2 = _hadronSpectrum->massLightestHadronPair(part3->dataPtr(),part4->dataPtr());
// avoid calling massLightestHadron for Diquark clusters and only allow kinematic reshuffling
// for diquark clusters (no singleHadron)
Energy mLH2 = isDiquarkCluster ? mSystem:_hadronSpectrum->massLightestHadron(part3->dataPtr(),part4->dataPtr());
if(mSystem > mhad1 + mclu2 && mclu2 > mLHP2) { singleHadron = false; }
else if(mSystem > mhad1 + mLH2) { singleHadron = true; mclu2 = mLH2; }
else return false;
// Let's call from now on "Sys" the system of the two clusters, and
// had1 (of mass mhad1) the lightest hadron in which the first
// cluster decays, and clu2 (of mass mclu2) either the second
// cluster or the lightest hadron in which it decays (depending
// which one is kinematically allowed, see above).
// The idea behind the reshuffling is to replace the system of the
// two clusters by the system of the hadron had1 and (cluster or hadron) clu2,
// but leaving the overall system unchanged. Furthermore, the motion
// of had1 and clu2 in the Sys frame is assumed to be parallel to, respectively,
// those of the original cluster1 and cluster2 in the same Sys frame.
// Calculate the unit three-vector, in the frame "Sys" along which the
// two initial clusters move.
Lorentz5Momentum u( cluPtr1->momentum() );
u.boost( - pSystem.boostVector() ); // boost from LAB to Sys
// Calculate the momenta of had1 and clu2 in the Sys frame first,
// and then boost back in the LAB frame.
Lorentz5Momentum phad1, pclu2;
if (pSystem.m() < mhad1 + mclu2 ) {
throw Exception() << "Impossible Kinematics in LightClusterDecayer::reshuffling()"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pSystem, mhad1, mclu2, u.vect().unit(), phad1, pclu2);
ptrhad1->set5Momentum( phad1 ); // set momentum of first hadron.
ptrhad1->setVertex(cluPtr1->vertex()); // set hadron vertex position to the
// parent cluster position.
cluPtr1->addChild(ptrhad1);
finalhadrons.push_back(ptrhad1);
cluPtr1->flagAsReshuffled();
cluPtr2->flagAsReshuffled();
if(singleHadron) {
// In the case that also the cluster reshuffling partner is light
// it is decayed into a single hadron, *without* creating the
// redefined cluster (this choice is justified in order to avoid
// clusters that could have undefined components).
PPtr ptrhad2 = _hadronSpectrum->lightestHadron(part3->dataPtr(),part4->dataPtr())
->produceParticle();
ptrhad2->set5Momentum( pclu2 );
ptrhad2->setVertex( cluPtr2->vertex() ); // set hadron vertex position to the
// parent cluster position.
cluPtr2->addChild(ptrhad2);
finalhadrons.push_back(ptrhad2);
} else {
// Create the new cluster which is the redefinitions of the cluster
// partner (cluster "2") used in the reshuffling procedure of the
// light cluster (cluster "1").
// The rationale of this is to preserve completely all of the information.
ClusterPtr cluPtr2new = ClusterPtr();
if(part3 && part4) cluPtr2new = new_ptr(Cluster(part3,part4));
cluPtr2new->set5Momentum( pclu2 );
cluPtr2new->setVertex( cluPtr2->vertex() );
cluPtr2->addChild( cluPtr2new );
redefinedClusters.push_back( cluPtr2new );
// Set consistently the momenta of the two components of the second cluster
// after the reshuffling. To do that we first calculate the momenta of the
// constituents in the initial cluster rest frame; then we boost them back
// in the lab but using this time the new cluster rest frame. Finally we store
// these information in the new cluster. Notice that we do *not* set
// consistently also the momenta of the (eventual) particles pointed by the
// two components: that's because we do not need to do so, being the momentum
// an explicit private member of the class Component (which is set equal
// to the momentum of the eventual particle pointed only in the constructor,
// but then later should not necessary be the same), and furthermore it allows
// us not to loose any information, in the sense that we can always, later on,
// to find the original momenta of the two components before the reshuffling.
Lorentz5Momentum p3 = part3->momentum(); //p3new->momentum();
p3.boost( - (cluPtr2->momentum()).boostVector() ); // from LAB to clu2 (old) frame
p3.boost( pclu2.boostVector() ); // from clu2 (new) to LAB frame
Lorentz5Momentum p4 = part4->momentum(); //p4new->momentum();
p4.boost( - (cluPtr2->momentum()).boostVector() ); // from LAB to clu2 (old) frame
p4.boost( pclu2.boostVector() ); // from clu2 (new) to LAB frame
cluPtr2new->particle(0)->set5Momentum(p3);
cluPtr2new->particle(1)->set5Momentum(p4);
} // end of if (singleHadron)
return true;
}
bool LightClusterDecayer::partonicReshuffle(const tcPDPtr had,
const PPtr cluster,
tPVector & finalhadrons) {
tPPtr meson(cluster);
if(!meson->parents().empty()) meson=meson->parents()[0];
if(!meson->parents().empty()) meson=meson->parents()[0];
// check b/c hadron decay
int ptype(abs(meson->id())%10000);
bool heavy = (ptype/1000 == 5 || ptype/1000 ==4 );
heavy |= (ptype/100 == 5 || ptype/100 ==4 );
heavy |= (ptype/10 == 5 || ptype/10 ==4 );
if(!heavy) return false;
// find the leptons
tPVector leptons;
for(unsigned int ix=0;ix<meson->children().size();++ix) {
if(!(meson->children()[ix]->dataPtr()->coloured())) {
leptons.push_back(meson->children()[ix]);
}
}
if(leptons.size()==1) {
tPPtr w=leptons[0];
leptons.pop_back();
for(unsigned int ix=0;ix<w->children().size();++ix) {
if(!w->children()[ix]->dataPtr()->coloured()) {
leptons.push_back(w->children()[ix]);
}
}
}
if(leptons.size()!=2) return false;
// get momentum of leptonic system and the its minimum possible mass
Energy mmin(ZERO);
Lorentz5Momentum pw;
for(unsigned int ix=0;ix<leptons.size();++ix) {
pw+=leptons[ix]->momentum();
mmin+=leptons[ix]->mass();
}
pw.rescaleMass();
// check we can do the reshuffling
PPtr ptrhad = had->produceParticle();
// total momentum fo the system
Lorentz5Momentum pSystem = pw + cluster->momentum();
pSystem.rescaleMass();
// normal case get additional energy by rescaling momentum in rest frame of
// system
if(pSystem.mass()>ptrhad->mass()+pw.mass()&&pw.mass()>mmin) {
// Calculate the unit three-vector, in the frame "Sys" along which the
// two initial clusters move.
Lorentz5Momentum u(cluster->momentum());
u.boost( - pSystem.boostVector() );
// Calculate the momenta of had1 and clu2 in the Sys frame first,
// and then boost back in the LAB frame.
Lorentz5Momentum phad1, pclu2;
Kinematics::twoBodyDecay(pSystem, ptrhad->mass(), pw.mass(),
u.vect().unit(), phad1, pclu2);
// set momentum of first hadron.
ptrhad->set5Momentum( phad1 );
// set hadron vertex position to the parent cluster position.
ptrhad->setLabVertex(cluster->vertex());
// add hadron
cluster->addChild(ptrhad);
finalhadrons.push_back(ptrhad);
// reshuffle the leptons
// boost the leptons to the rest frame of the system
Boost boost1(-pw.boostVector());
Boost boost2( pclu2.boostVector());
for(unsigned int ix=0;ix<leptons.size();++ix) {
leptons[ix]->deepBoost(boost1);
leptons[ix]->deepBoost(boost2);
}
return true;
}
else {
return false;
}
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 6:27 PM (4 h, 3 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023799
Default Alt Text
(18 KB)

Event Timeline