Page MenuHomeHEPForge

No OneTemporary

diff --git a/Decay/General/VSSDecayer.cc b/Decay/General/VSSDecayer.cc
--- a/Decay/General/VSSDecayer.cc
+++ b/Decay/General/VSSDecayer.cc
@@ -1,364 +1,364 @@
// -*- C++ -*-
//
// VSSDecayer.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
// This is the implementation of the non-inlined, non-templated member
// functions of the VSSDecayer class.
//
#include "VSSDecayer.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig/Utilities/Kinematics.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "Herwig/Decay/GeneralDecayMatrixElement.h"
using namespace Herwig;
using namespace ThePEG::Helicity;
IBPtr VSSDecayer::clone() const {
return new_ptr(*this);
}
IBPtr VSSDecayer::fullclone() const {
return new_ptr(*this);
}
void VSSDecayer::doinit() {
_perturbativeVertex = dynamic_ptr_cast<VSSVertexPtr> (getVertex());
_abstractVertex = dynamic_ptr_cast<AbstractVSSVertexPtr>(getVertex());
_abstractIncomingVertex = dynamic_ptr_cast<AbstractVVVVertexPtr>(getIncomingVertex());
_abstractOutgoingVertex1 = dynamic_ptr_cast<AbstractVSSVertexPtr>(getOutgoingVertices()[0]);
_abstractOutgoingVertex2 = dynamic_ptr_cast<AbstractVSSVertexPtr>(getOutgoingVertices()[1]);
GeneralTwoBodyDecayer::doinit();
}
void VSSDecayer::persistentOutput(PersistentOStream & os) const {
os << _abstractVertex << _perturbativeVertex
<< _abstractIncomingVertex << _abstractOutgoingVertex1
<< _abstractOutgoingVertex2;
}
void VSSDecayer::persistentInput(PersistentIStream & is, int) {
is >> _abstractVertex >> _perturbativeVertex
>> _abstractIncomingVertex >> _abstractOutgoingVertex1
>> _abstractOutgoingVertex2;
}
ClassDescription<VSSDecayer> VSSDecayer::initVSSDecayer;
// Definition of the static class description member.
void VSSDecayer::Init() {
static ClassDocumentation<VSSDecayer> documentation
("This implements the decay of a vector to 2 scalars");
}
double VSSDecayer::me2(const int , const Particle & inpart,
const ParticleVector & decay,
MEOption meopt) const {
if(!ME())
ME(new_ptr(GeneralDecayMatrixElement(PDT::Spin1,PDT::Spin0,PDT::Spin0)));
if(meopt==Initialize) {
VectorWaveFunction::calculateWaveFunctions(_vectors,_rho,
const_ptr_cast<tPPtr>(&inpart),
incoming,false);
}
if(meopt==Terminate) {
VectorWaveFunction::constructSpinInfo(_vectors,const_ptr_cast<tPPtr>(&inpart),
incoming,true,false);
for(unsigned int ix=0;ix<2;++ix)
ScalarWaveFunction::
constructSpinInfo(decay[ix],outgoing,true);
return 0.;
}
ScalarWaveFunction sca1(decay[0]->momentum(),decay[0]->dataPtr(),outgoing);
ScalarWaveFunction sca2(decay[1]->momentum(),decay[1]->dataPtr(),outgoing);
Energy2 scale(sqr(inpart.mass()));
for(unsigned int ix=0;ix<3;++ix) {
(*ME())(ix,0,0) = _abstractVertex->evaluate(scale,_vectors[ix],sca1,sca2);
}
double output=(ME()->contract(_rho)).real()/scale*UnitRemoval::E2;
// colour and identical particle factors
output *= colourFactor(inpart.dataPtr(),decay[0]->dataPtr(),
decay[1]->dataPtr());
// return the answer
return output;
}
Energy VSSDecayer::partialWidth(PMPair inpart, PMPair outa,
PMPair outb) const {
if( inpart.second < outa.second + outb.second ) return ZERO;
if(_perturbativeVertex) {
tcPDPtr in = inpart.first->CC() ? tcPDPtr(inpart.first->CC()) : inpart.first;
_perturbativeVertex->setCoupling(sqr(inpart.second), in, outa.first,
outb.first);
Energy pcm = Kinematics::pstarTwoBodyDecay(inpart.second,outa.second,
outb.second);
double me2 = 4.*sqr(pcm/inpart.second);
- Energy output = norm(perturbativeVertex_->norm())*me2*pcm /
+ Energy output = norm(_perturbativeVertex->norm())*me2*pcm /
(24.*Constants::pi);
// colour factor
output *= colourFactor(inpart.first,outa.first,outb.first);
// return the answer
return output;
}
else {
return GeneralTwoBodyDecayer::partialWidth(inpart,outa,outb);
}
}
double VSSDecayer::threeBodyME(const int , const Particle & inpart,
const ParticleVector & decay, MEOption meopt) {
bool massless = inpart.mass()==ZERO;
// work out which is the scalar and anti-scalar
int ianti(0), iscal(1), iglu(2);
int itype[2];
for(unsigned int ix=0;ix<2;++ix) {
if(decay[ix]->dataPtr()->CC()) itype[ix] = decay[ix]->id()>0 ? 0:1;
else itype[ix] = 2;
}
if(itype[0]==0 && itype[1]!=0) swap(ianti, iscal);
if(itype[0]==2 && itype[1]==1) swap(ianti, iscal);
if(itype[0]==0 && itype[1]==0 && abs(decay[0]->dataPtr()->id())>abs(decay[1]->dataPtr()->id()))
swap(iscal, ianti);
if(itype[0]==1 && itype[1]==1 && abs(decay[0]->dataPtr()->id())<abs(decay[1]->dataPtr()->id()))
swap(iscal, ianti);
if(meopt==Initialize) {
// create vector wavefunction for decaying particle
VectorWaveFunction::calculateWaveFunctions(_vector3, _rho3, const_ptr_cast<tPPtr>(&inpart),
incoming, massless);
}
// setup spin information when needed
if(meopt==Terminate) {
VectorWaveFunction::
constructSpinInfo(_vector3 ,const_ptr_cast<tPPtr>(&inpart),outgoing,true,massless);
ScalarWaveFunction::constructSpinInfo( decay[iscal],outgoing,true);
ScalarWaveFunction::constructSpinInfo( decay[ianti],outgoing,true);
VectorWaveFunction::constructSpinInfo(_gluon,decay[iglu ],outgoing,true,false);
return 0.;
}
// calculate colour factors and number of colour flows
unsigned int nflow;
vector<DVector> cfactors = getColourFactors(inpart, decay, nflow);
if(nflow==2) cfactors[0][1]=cfactors[1][0];
vector<GeneralDecayMEPtr> ME(nflow,new_ptr(GeneralDecayMatrixElement(PDT::Spin1, PDT::Spin0,
PDT::Spin0, PDT::Spin1)));
// create wavefunctions
ScalarWaveFunction scal(decay[iscal]->momentum(), decay[iscal]->dataPtr(),outgoing);
ScalarWaveFunction anti(decay[ianti]->momentum(), decay[ianti]->dataPtr(),outgoing);
VectorWaveFunction::calculateWaveFunctions(_gluon,decay[iglu ],outgoing,true);
// gauge test
// _gluon.clear();
// for(unsigned int ix=0;ix<3;++ix) {
// if(ix==1) _gluon.push_back(VectorWaveFunction());
// else {
// _gluon.push_back(VectorWaveFunction(decay[iglu ]->momentum(),
// decay[iglu ]->dataPtr(),10,
// outgoing));
// }
// }
// identify scalar and/or anti-scalar vertex
AbstractVSSVertexPtr abstractOutgoingVertexS;
AbstractVSSVertexPtr abstractOutgoingVertexA;
identifyVertices(iscal, ianti, inpart, decay, abstractOutgoingVertexS, abstractOutgoingVertexA);
Energy2 scale(sqr(inpart.mass()));
const GeneralTwoBodyDecayer::CFlow & colourFlow
= colourFlows(inpart, decay);
for(unsigned int iv = 0; iv < 3; ++iv) {
for(unsigned int ig = 0; ig < 2; ++ig) {
// radiation from the incoming vector
if(inpart.dataPtr()->coloured()) {
assert(_abstractIncomingVertex);
VectorWaveFunction vectorInter =
_abstractIncomingVertex->evaluate(scale,3,inpart.dataPtr(),_vector3[iv],
_gluon[2*ig],inpart.mass());
if (_vector3[iv].particle()->PDGName()!=vectorInter.particle()->PDGName())
throw Exception()
<< _vector3[iv].particle()->PDGName() << " was changed to "
<< vectorInter .particle()->PDGName() << " in VSSDecayer::threeBodyME"
<< Exception::runerror;
double gs = _abstractIncomingVertex->strongCoupling(scale);
Complex diag = _abstractVertex->evaluate(scale,vectorInter,scal,anti)/gs;
for(unsigned int ix=0;ix<colourFlow[0].size();++ix) {
(*ME[colourFlow[0][ix].first])(iv, 0, 0, ig) +=
colourFlow[0][ix].second*diag;
}
}
// radiation from the outgoing scalar
if(decay[iscal]->dataPtr()->coloured()) {
assert(abstractOutgoingVertexS);
// ensure you get correct outgoing particle from first vertex
tcPDPtr off = decay[iscal]->dataPtr();
if(off->CC()) off = off->CC();
ScalarWaveFunction scalarInter =
abstractOutgoingVertexS->evaluate(scale,3,off,_gluon[2*ig],scal,decay[iscal]->mass());
if (scal.particle()->PDGName()!=scalarInter.particle()->PDGName())
throw Exception()
<< scal .particle()->PDGName() << " was changed to "
<< scalarInter.particle()->PDGName() << " in VSSDecayer::threeBodyME"
<< Exception::runerror;
double gs = abstractOutgoingVertexS->strongCoupling(scale);
Complex diag =_abstractVertex->evaluate(scale,_vector3[iv],anti,scalarInter)/gs;
for(unsigned int ix=0;ix<colourFlow[1].size();++ix) {
(*ME[colourFlow[1][ix].first])(iv, 0, 0, ig) +=
colourFlow[1][ix].second*diag;
}
}
if(decay[ianti]->dataPtr()->coloured()) {
assert(abstractOutgoingVertexA);
// ensure you get correct outgoing particle from first vertex
tcPDPtr off = decay[ianti]->dataPtr();
if(off->CC()) off = off->CC();
ScalarWaveFunction scalarInter =
abstractOutgoingVertexA->evaluate(scale,3,off, _gluon[2*ig],anti,decay[ianti]->mass());
if (anti.particle()->PDGName()!=scalarInter.particle()->PDGName())
throw Exception()
<< anti .particle()->PDGName() << " was changed to "
<< scalarInter.particle()->PDGName() << " in VSSDecayer::threeBodyME"
<< Exception::runerror;
double gs = abstractOutgoingVertexA->strongCoupling(scale);
Complex diag =_abstractVertex->evaluate(scale,_vector3[iv],scal,scalarInter)/gs;
for(unsigned int ix=0;ix<colourFlow[2].size();++ix) {
(*ME[colourFlow[2][ix].first])(iv, 0, 0, ig) +=
colourFlow[2][ix].second*diag;
}
}
}
if(massless) ++iv;
}
// contract matrices
double output=0.;
for(unsigned int ix=0; ix<nflow; ++ix){
for(unsigned int iy=0; iy<nflow; ++iy){
output+=cfactors[ix][iy]*(ME[ix]->contract(*ME[iy],_rho3)).real();
}
}
output*=(4.*Constants::pi);
// return the answer
return output;
}
void VSSDecayer::identifyVertices(const int iscal, const int ianti,
const Particle & inpart, const ParticleVector & decay,
AbstractVSSVertexPtr & abstractOutgoingVertexS,
AbstractVSSVertexPtr & abstractOutgoingVertexA){
// work out which scalar each outgoing vertex corresponds to
// two outgoing vertices
if( inpart.dataPtr() ->iColour()==PDT::Colour0 &&
((decay[iscal]->dataPtr()->iColour()==PDT::Colour3 &&
decay[ianti]->dataPtr()->iColour()==PDT::Colour3bar) ||
(decay[iscal]->dataPtr()->iColour()==PDT::Colour8 &&
decay[ianti]->dataPtr()->iColour()==PDT::Colour8))){
if(_abstractOutgoingVertex1==_abstractOutgoingVertex2){
abstractOutgoingVertexS = _abstractOutgoingVertex1;
abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
else if (_abstractOutgoingVertex1->isIncoming(getParticleData(decay[iscal]->id()))){
abstractOutgoingVertexS = _abstractOutgoingVertex1;
abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
else if (_abstractOutgoingVertex2->isIncoming(getParticleData(decay[iscal]->id()))){
abstractOutgoingVertexS = _abstractOutgoingVertex2;
abstractOutgoingVertexA = _abstractOutgoingVertex1;
}
}
else if(inpart.dataPtr() ->iColour()==PDT::Colour8 &&
decay[iscal]->dataPtr()->iColour()==PDT::Colour3 &&
decay[ianti]->dataPtr()->iColour()==PDT::Colour3bar){
if(_abstractOutgoingVertex1==_abstractOutgoingVertex2){
abstractOutgoingVertexS = _abstractOutgoingVertex1;
abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
else if (_abstractOutgoingVertex1->isIncoming(getParticleData(decay[iscal]->id()))){
abstractOutgoingVertexS = _abstractOutgoingVertex1;
abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
else if (_abstractOutgoingVertex2->isIncoming(getParticleData(decay[iscal]->id()))){
abstractOutgoingVertexS = _abstractOutgoingVertex2;
abstractOutgoingVertexA = _abstractOutgoingVertex1;
}
}
// one outgoing vertex
else if(inpart.dataPtr()->iColour()==PDT::Colour3){
if(decay[iscal]->dataPtr()->iColour()==PDT::Colour3 &&
decay[ianti]->dataPtr()->iColour()==PDT::Colour0){
if (_abstractOutgoingVertex1) abstractOutgoingVertexS = _abstractOutgoingVertex1;
else if(_abstractOutgoingVertex2) abstractOutgoingVertexS = _abstractOutgoingVertex2;
}
else if (decay[iscal]->dataPtr()->iColour()==PDT::Colour3 &&
decay[ianti]->dataPtr()->iColour()==PDT::Colour8){
if (_abstractOutgoingVertex1->isIncoming(getParticleData(decay[ianti]->dataPtr()->id()))){
abstractOutgoingVertexS = _abstractOutgoingVertex2;
abstractOutgoingVertexA = _abstractOutgoingVertex1;
}
else {
abstractOutgoingVertexS = _abstractOutgoingVertex1;
abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
}
}
else if(inpart.dataPtr()->iColour()==PDT::Colour3bar){
if(decay[ianti]->dataPtr()->iColour()==PDT::Colour3bar &&
decay[iscal]->dataPtr()->iColour()==PDT::Colour0){
if (_abstractOutgoingVertex1) abstractOutgoingVertexA = _abstractOutgoingVertex1;
else if(_abstractOutgoingVertex2) abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
else if (decay[iscal]->dataPtr()->iColour()==PDT::Colour8 &&
decay[ianti]->dataPtr()->iColour()==PDT::Colour3bar){
if (_abstractOutgoingVertex1->isIncoming(getParticleData(decay[iscal]->dataPtr()->id()))){
abstractOutgoingVertexS = _abstractOutgoingVertex1;
abstractOutgoingVertexA = _abstractOutgoingVertex2;
}
else {
abstractOutgoingVertexS = _abstractOutgoingVertex2;
abstractOutgoingVertexA = _abstractOutgoingVertex1;
}
}
}
if (! ((_abstractIncomingVertex && (abstractOutgoingVertexS || abstractOutgoingVertexA)) ||
( abstractOutgoingVertexS && abstractOutgoingVertexA)))
throw Exception()
<< "Invalid vertices for QCD radiation in VSS decay in VSSDecayer::identifyVertices"
<< Exception::runerror;
// // prohibit all for now since all unchecked
// if (true)
// throw Exception()
// << "Invalid vertices for QCD radiation in VSS decay in VSSDecayer::identifyVertices"
// << Exception::runerror;
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 5:37 PM (9 h, 21 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023665
Default Alt Text
(14 KB)

Event Timeline