Page MenuHomeHEPForge

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/MatrixElement/Matchbox/External/MadGraph/MadGraphAmplitude.cc b/MatrixElement/Matchbox/External/MadGraph/MadGraphAmplitude.cc
--- a/MatrixElement/Matchbox/External/MadGraph/MadGraphAmplitude.cc
+++ b/MatrixElement/Matchbox/External/MadGraph/MadGraphAmplitude.cc
@@ -1,844 +1,849 @@
// -*- C++ -*-
//
// MadGraphAmplitude.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MadGraphAmplitude class.
//
#include "MadGraphAmplitude.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig/MatrixElement/Matchbox/MatchboxFactory.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDT/EnumParticles.h"
#include <boost/lexical_cast.hpp>
#include <boost/filesystem.hpp>
#include <cstdlib>
#include <dlfcn.h>
#include <errno.h>
#include <sstream>
using namespace Herwig;
#ifndef HERWIG_BINDIR
#error Makefile.am needs to define HERWIG_BINDIR
#endif
#ifndef HERWIG_PKGDATADIR
#error Makefile.am needs to define HERWIG_PKGDATADIR
#endif
#ifndef MADGRAPH_PREFIX
#error Makefile.am needs to define MADGRAPH_PREFIX
#endif
extern "C" void mginitproc_(char *i,int);
extern "C" void MG_Calculate_wavefunctions_virt(int* proc,double*,double*);
extern "C" void MG_Calculate_wavefunctions_born(int* proc,double*, int*);
extern "C" void MG_Jamp (int* proc,int*, double*);
extern "C" void MG_LNJamp (int* proc,int*, double*);
extern "C" void MG_Virt (int* proc,double*);
extern "C" void MG_NCol (int* proc,int*);
extern "C" void MG_vxxxxx (double* p,double* n,int* inc,double* );
extern "C" void MG_Colour (int* proc,int* i,int* j ,int* color);
MadGraphAmplitude::MadGraphAmplitude()
: theMGmodel("loop_sm"),keepinputtopmass(false),
bindir_(HERWIG_BINDIR), includedir_(HERWIG_INCLUDEDIR), pkgdatadir_(HERWIG_PKGDATADIR), madgraphPrefix_(MADGRAPH_PREFIX)
{}
MadGraphAmplitude::~MadGraphAmplitude() {
}
IBPtr MadGraphAmplitude::clone() const {
return new_ptr(*this);
}
IBPtr MadGraphAmplitude::fullclone() const {
return new_ptr(*this);
}
bool MadGraphAmplitude::initializedMad=false;
vector<string> MadGraphAmplitude::BornAmplitudes=vector<string>();
vector<string> MadGraphAmplitude::VirtAmplitudes=vector<string>();
void MadGraphAmplitude::initProcess(const cPDVector& ) {
if ( lastMatchboxXComb()->initialized() )
return;
if ( !DynamicLoader::load(mgProcLibPath()+"InterfaceMadGraph.so") )
throw Exception() << "MadGraphAmplitude: Failed to load MadGraph amplitudes\n"
<< DynamicLoader::lastErrorMessage
<< Exception::runerror;
if (!initializedMad){
string mstr=(factory()->runStorage()+"MadGraphAmplitudes"+"/param_card"+((theMGmodel=="loop_sm")?"":("_"+theMGmodel))+".dat");
if( theMGmodel[0]=='/')mstr="param_card.dat";
size_t len = mstr.size();
mginitproc_(const_cast<char*>(mstr.c_str()),len);
initializedMad=true;
}
lastMatchboxXComb()->isInitialized();
}
bool MadGraphAmplitude::writeAmplitudesDat(){
bool res=false;
string born= mgProcLibPath()+"BornAmplitudes.dat";
if ( !boost::filesystem::exists(born) ) {
ofstream borns(born.c_str());
for (vector<string>::iterator amps=BornAmplitudes.begin();amps!=BornAmplitudes.end();amps++)
borns<<*amps<<endl;
borns.close();
res=true;
}
string virt= mgProcLibPath()+"VirtAmplitudes.dat";
if ( !boost::filesystem::exists(virt) ) {
ofstream virts(virt.c_str());
for (vector<string>::iterator amps=VirtAmplitudes.begin();amps!=VirtAmplitudes.end();amps++)
virts<<*amps<<endl;
virts.flush();
virts.close();
res=true;
}
return res;
}
bool MadGraphAmplitude::checkAmplitudes(){
string born= mgProcLibPath()+"BornAmplitudes.dat";
string virt= mgProcLibPath()+"VirtAmplitudes.dat";
assert ( boost::filesystem::exists(born)|| boost::filesystem::exists(virt));
bool foundallborns=true;
for (vector<string>::iterator amps=BornAmplitudes.begin();amps!=BornAmplitudes.end();amps++){
ifstream borns(born.c_str());
string line;
bool foundthisborn=false;
while (std::getline(borns, line)) {
if(line==*amps)foundthisborn=true;
}
foundallborns&=foundthisborn;
}
bool foundallvirts=true;
for (vector<string>::iterator amps=VirtAmplitudes.begin();amps!=VirtAmplitudes.end();amps++){
ifstream virts(virt.c_str());
string line;
bool foundthisvirt=false;
while (std::getline(virts, line)) {
if(line==*amps)foundthisvirt=true;
}
foundallvirts&=foundthisvirt;
}
if (!foundallborns||!foundallvirts)
- throw Exception() << "MadGraphAmplitude: One amplitude has no externalId. Please remove the MadGraphAmplitude-folder and rebuild.\n" << Exception::runerror;
+
+ throw Exception() << "MadGraphAmplitude: The MadGraph amplitudes did not match the process.\n"
+ << " Please remove:"<<mgProcLibPath()<< "\n"
+ << " or set a process path via the interface:\n"
+ << " set /Herwig/MatrixElements/Matchbox/Amplitudes/MadGraph:ProcessPath ..."
+ << Exception::runerror;
return foundallborns && foundallvirts;
}
string MadGraphAmplitude::mgProcLibPath(){
string res=theProcessPath == "" ? factory()->buildStorage()+"MadGraphAmplitudes" : theProcessPath;
if (res.at(res.length()-1) != '/') res.append("/");
return res;
}
bool MadGraphAmplitude::initializeExternal() {
if ( boost::filesystem::exists(mgProcLibPath()) ) {
if ( !boost::filesystem::is_directory(mgProcLibPath()) )
throw Exception() << "MadGraphAmplitude: MadGraph amplitude storage '"
<< mgProcLibPath() << "' existing but not a directory."
<< Exception::runerror;
} else {
boost::filesystem::create_directories(mgProcLibPath());
}
string runAmplitudes = factory()->runStorage() + "/MadGraphAmplitudes";
if ( boost::filesystem::exists(runAmplitudes) ) {
if ( !boost::filesystem::is_directory(runAmplitudes) )
throw Exception() << "MadGraphAmplitude: MadGraph amplitude storage '"
<< runAmplitudes << "' existing but not a directory."
<< Exception::runerror;
} else {
boost::filesystem::create_directories(runAmplitudes);
}
//EW-consistency check:
Energy MW=getParticleData(ParticleID::Wplus)->hardProcessMass();
Energy MZ=getParticleData(ParticleID::Z0)->hardProcessMass();
if( MW!= sqrt(MZ*MZ/2.0+sqrt(MZ*MZ*MZ*MZ/4.0-Constants::pi*SM().alphaEMMZ()*MZ*MZ/ sqrt(2.0)/SM().fermiConstant()))){
generator()->log()<<"\n\n-----!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!-----";
generator()->log() << "\nYou are using a EW scheme which is inconsistent with the MadGraph parametisation:\n\n"
<<MW/GeV<< " GeV==MW!= sqrt(MZ^2/2+sqrt(MZ^4/4.0-pi*alphaEMMZ*MZ^2/ sqrt(2)/G_f))=="<<
sqrt(MZ*MZ/2.0+sqrt(MZ*MZ*MZ*MZ/4.0-Constants::pi*SM().alphaEMMZ()*MZ*MZ/ sqrt(2.0)/SM().fermiConstant()))/GeV
<<" GeV\n\n-----!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!-----\n";
}
string para= factory()->runStorage()+"/MadGraphAmplitudes"+"/MG-Parameter.dat";
ofstream params(para.c_str());
params<<"$WZ$ " <<std::setiosflags(ios::scientific) <<getParticleData(ParticleID::Z0)->hardProcessWidth() /GeV;
params<<"\n$WW$ " <<std::setiosflags(ios::scientific) <<getParticleData(ParticleID::Wplus)->hardProcessWidth()/GeV;
params<<"\n$alphas$ " <<std::setiosflags(ios::scientific) <<SM().alphaS();
params<<"\n$GF$ " <<std::setiosflags(ios::scientific) <<SM().fermiConstant()*GeV2 ;
params<<"\n$alphaMZ$ " <<std::setiosflags(ios::scientific) <<1/SM().alphaEMMZ();
params<<"\n$MZ$ " <<std::setiosflags(ios::scientific) <<getParticleData(ParticleID::Z0)->hardProcessMass() /GeV<<flush;
params<<"\n$MW$ " <<std::setiosflags(ios::scientific) <<getParticleData(ParticleID::Wplus)->hardProcessMass() /GeV<<flush;
params<<"\n$sw2$ " <<std::setiosflags(ios::scientific) << SM().sin2ThetaW() <<flush;
if(theMGmodel=="heft"&&!keepinputtopmass){
if ( factory()->initVerbose() ) {
generator()->log()<<"\n---------------------------------------------------------------";
generator()->log()<<"\n---------------------------------------------------------------";
generator()->log()<<"\nNote: You are using the Higgs Effective model (heft) in ";
generator()->log()<<"\n Madgraph. We assume you try to calculate NLO with ";
generator()->log()<<"\n the GoSam virtual amplitudes. To match the models we ";
generator()->log()<<"\n therefore set the topmass to 10000000 GeV.";
generator()->log()<<"\n\n For more information see the \\tau parameter in:";
generator()->log()<<"\n https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Models/HiggsEffective";
generator()->log()<<"\n\n The Effective Higgs model in Gosam is using mT=infinity";
generator()->log()<<"\n\n\n If you want to use the LO matrixelements of MadGraph with finite' topmass you need to add: ";
generator()->log()<<"\n\n set Madgraph:KeepInputTopMass True";
generator()->log()<<"\n\n to your input file.";
generator()->log()<<"\n---------------------------------------------------------------";
generator()->log()<<"\n---------------------------------------------------------------\n";
}
params<<"\n$MT$ 10000000." <<flush;
}else{
params<<"\n$MT$ " <<std::setiosflags(ios::scientific) << getParticleData(ParticleID::t)->hardProcessMass() /GeV <<flush;
}
params<<"\n$WT$ " <<std::setiosflags(ios::scientific) << getParticleData(ParticleID::t)->hardProcessWidth() /GeV <<flush;
params<<"\n$MB$ " <<std::setiosflags(ios::scientific) << getParticleData(ParticleID::b)->hardProcessMass() /GeV <<flush;
params<<"\n$MH$ " <<std::setiosflags(ios::scientific) << getParticleData(ParticleID::h0)->hardProcessMass() /GeV <<flush;
params<<"\n$WH$ " <<std::setiosflags(ios::scientific) << getParticleData(ParticleID::h0)->hardProcessWidth() /GeV <<flush;
params<<"\n$MTA$ " <<std::setiosflags(ios::scientific) << getParticleData(ParticleID::tauplus)->hardProcessMass() /GeV <<flush;
string cmd = "python " + bindir_ + "/mg2herwig ";
cmd +=" --buildpath "+mgProcLibPath();
cmd += !theProcessPath.empty() ? " --absolute-links" : "";
cmd +=" --model "+theMGmodel;
cmd +=" --runpath "+factory()->runStorage()+"/MadGraphAmplitudes ";
cmd +=" --datadir "+pkgdatadir_;
cmd +=" --includedir "+includedir_;
std::stringstream as,aem;
as << factory()->orderInAlphaS();
cmd +=" --orderas "+as.str() ;
aem <<factory()->orderInAlphaEW();
cmd +=" --orderew "+aem.str();
// TODO move to boost::system
writeAmplitudesDat();
if (boost::filesystem::exists(mgProcLibPath()+"InterfaceMadGraph.so") ){
//set the parameters
checkAmplitudes();
std::system(cmd.c_str());
ranMadGraphInitializeExternal = true;
return true;
}
char cwd[1024];
if ( !getcwd(cwd,sizeof(cwd)) )
throw Exception() << "MadGraphAmplitude: failed to determine current working directory\n"
<< Exception::runerror;
cmd +=" --madgraph " + madgraphPrefix_ + "/bin " ;
cmd +="--build > ";
cmd += mgProcLibPath()+"MG.log 2>&1";
generator()->log() << "\n>>> Compiling MadGraph amplitudes. This may take some time -- please be patient.\n"
<< ">>> In case of problems see " << mgProcLibPath() << "MG.log for details.\n\n"
<< flush;
std::system(cmd.c_str());
cmd = "python " + bindir_ + "/mg2herwig ";
cmd +=" --buildpath "+mgProcLibPath();
cmd +=" --model "+theMGmodel;
cmd +=" --runpath "+factory()->runStorage()+"/MadGraphAmplitudes ";
cmd +=" --datadir "+pkgdatadir_;
as.clear();
aem.clear();
as << factory()->orderInAlphaS();
cmd +=" --orderas "+as.str() ;
aem <<factory()->orderInAlphaEW();
cmd +=" --orderew "+aem.str();
std::system(cmd.c_str());
ranMadGraphInitializeExternal = true;
return boost::filesystem::exists(mgProcLibPath()+"InterfaceMadGraph.so");
}
int MadGraphAmplitude::externalId(const cPDVector& proc) {
for (int i=0;i<100;i++){
colourindex.push_back(-2);
}
assert(!BornAmplitudes.empty()||!VirtAmplitudes.empty());
writeAmplitudesDat();
int res=0;
string amp="";
int k=0;
for (cPDVector::const_iterator it=proc.begin();it!=proc.end();it++,k++){
amp+=boost::lexical_cast<string>( (*it)->id())+" ";if (k==1)amp+=" > ";
}
string born= mgProcLibPath()+"BornAmplitudes.dat";
string virt= mgProcLibPath()+"VirtAmplitudes.dat";
assert ( boost::filesystem::exists(born)|| boost::filesystem::exists(virt));
ifstream borns(born.c_str());
string line;
while (std::getline(borns, line)) {
res+=1;
if(line==amp)return res;
}
ifstream virts(virt.c_str());
while (std::getline(virts, line)) {
res+=1;
if(line==amp)return res;
}
throw Exception() << "MadGraphAmplitude: One amplitude has no externalId. Please remove the MadGraphAmplitude-folder and rebuild.\n" << Exception::runerror;
return res;
}
bool MadGraphAmplitude::ranMadGraphInitializeExternal = false;
void MadGraphAmplitude::doinit() {
if ( !ranMadGraphInitializeExternal ) {
initializeExternal();
}
MatchboxAmplitude::doinit();
}
void MadGraphAmplitude::doinitrun() {
if ( !ranMadGraphInitializeExternal ) {
initializeExternal();
}
MatchboxAmplitude::doinitrun();
}
bool MadGraphAmplitude::canHandle(const PDVector& p,
Ptr<MatchboxFactory>::tptr factory,
bool virt) const {
if ( factory->processData()->diagramMap().find(p) !=
factory->processData()->diagramMap().end() )
return true;
vector<Ptr<Tree2toNDiagram>::ptr> diags =
factory->diagramGenerator()->generate(p,orderInGs(),orderInGem());
if ( diags.empty() )
return false;
factory->processData()->diagramMap()[p] = diags;
string amp="";
int k=0;
for (PDVector::const_iterator it=p.begin();it!=p.end();it++,k++){
amp+=boost::lexical_cast<string>( (*it)->id())+" ";if (k==1)amp+=" > ";
}
if (virt && factory->highestVirt()>=p.size()){
VirtAmplitudes.push_back(amp);
}else{
BornAmplitudes.push_back(amp);
}
return true;
}
void MadGraphAmplitude::prepareAmplitudes(Ptr<MatchboxMEBase>::tcptr me) {
useMe();
if ( !calculateTreeAmplitudes() ) {
MatchboxAmplitude::prepareAmplitudes(me);
return;
}
if (colourindex.empty()) {
for (int i=0;i<100;i++){
colourindex.push_back(-2);
}
}
lastMatchboxXComb()->clearheljamp();
lastMatchboxXComb()->clearhelLNjamp();
initProcess(mePartonData());
MatchboxAmplitude::prepareAmplitudes(me);
}
Complex MadGraphAmplitude::evaluate(size_t i, const vector<int>& hel, Complex& largeN) {
//find the colourline:
int ii = -1;
int xx=lastMatchboxXComb()->externalId();
if (colourindex.size()<=i) {
colourindex.clear();
for (size_t l=0;l<=i+10;l++){
colourindex.push_back(-2);
}
}
if(colourindex[i]!=-2){
ii = colourindex[i];
if (ii==-1) {
largeN = Complex(0.0);
return Complex(0.0);
}
} else {
set<vector<size_t> > a = colourOrdering(i);
int ncol=-1;
MG_NCol(&xx,&ncol);
assert(ncol!=-1);
for( int it = 0; it < ncol; it++ ){
int n = 0;
for ( cPDVector::const_iterator nx = mePartonData().begin();
nx != mePartonData().end(); nx++ )
if ( (*nx)->coloured() ) n++;
set<vector<size_t> > tmpset;
vector<size_t> tmpvek;
for ( int it2 = 0; it2 < n; it2++ ) {
int ret=-2;
MG_Colour(&xx,&it,&it2,&ret);
assert(ret !=-2);
if (ret== -1)
break;
if ( ret == 0 ) {
n++;
tmpset.insert(tmpvek);
tmpvek.clear();
} else {
tmpvek.push_back(ret-1);
}
if( it2 == n-1 ) tmpset.insert(tmpvek);
}
bool found_all = true;
for ( set<vector<size_t> >::iterator it3 = a.begin(); it3 != a.end(); it3++ ) {
bool found_it3=false;
for ( set<vector<size_t> >::iterator it4 = tmpset.begin(); it4 != tmpset.end(); it4++ ) {
vector<size_t> it3tmp = gluonsFirst(*it3);
vector<size_t> it4tmp = (*it4);
if ( it3tmp.size() != it4tmp.size() ) continue;
if ( it3tmp == it4tmp ) found_it3 = true;
}
found_all = found_all && found_it3;
}
if ( found_all ) {
colourindex[i]=it;
ii=it;
}
}
}
if ( ii == -1 ){
colourindex[i]=ii;
largeN = Complex(0.0);
return Complex(0.0);
}
const map<vector<int>,vector < complex<double> > >& tmp = lastMatchboxXComb()->heljamp();
const map<vector<int>,vector < complex<double> > >& tmpLN = lastMatchboxXComb()->helLNjamp();
if( tmp.find(hel) != tmp.end()) {
largeN = tmpLN.find(hel)->second[ii];
return tmp.find(hel)->second[ii];;
}
double units = pow(sqrt(lastSHat())/GeV,int(hel.size())-4);
int heltmp[10];
for(size_t j=0;j<hel.size();j++){
int cross=crossingMap()[j];
if( (cross>1&&j<=1)||(cross<=1&&j>1)){
heltmp[cross]=-1*hel[j];}
else{heltmp[cross]=hel[j];}
}
vector<Lorentz5Momentum> reshuffled = meMomenta();
if ( !reshuffleMasses().empty() && reshuffled.size() > 3 ) {
const cPDVector& pdata = mePartonData();
const map<long,Energy>& masses = reshuffleMasses();
lastMatchboxXComb()->reshuffle(reshuffled,pdata,masses);
}
double momenta[50];
size_t j=0;
for (size_t i=0;i<mePartonData().size();i++){
momenta[j]=abs(reshuffled[i].e()/GeV)<1.e-13?0.:double(reshuffled[i].e()/GeV);
momenta[j+1]=abs(reshuffled[i].x()/GeV)<1.e-13?0.:double(reshuffled[i].x()/GeV);
momenta[j+2]=abs(reshuffled[i].y()/GeV)<1.e-13?0.:double(reshuffled[i].y()/GeV);
momenta[j+3]=abs(reshuffled[i].z()/GeV)<1.e-13?0.:double(reshuffled[i].z()/GeV);
if(momenta[j ] == 0. && momenta[j+1] == 0. &&
momenta[j+2] == 0. && momenta[j+3] == 0. )
return 0.;
j+=4;
}
MG_Calculate_wavefunctions_born(&xx, &momenta[0], &heltmp[0]);
int ncol=-1;
MG_NCol(&xx,&ncol);
Complex res;
Complex resLN;
for( int it = 0; it < ncol; it++ ){
double dd[2];
MG_Jamp(&xx,&it,&dd[0]);
Complex d(dd[0],dd[1]);
if(it==ii)res=d*units;
lastMatchboxXComb()->pushheljamp(hel,d*units);
double ddLN[2];
MG_LNJamp(&xx,&it,&ddLN[0]);
Complex dLN(ddLN[0],ddLN[1]);
if(it==ii)resLN=dLN*units;
lastMatchboxXComb()->pushhelLNjamp(hel,dLN*units);
}
largeN = resLN;
return res;
}
vector<unsigned int> MadGraphAmplitude::physicalHelicities(const vector<int>& hel) const {
vector<unsigned int> res(hel.size(),0);
for ( size_t j = 0; j < hel.size(); ++j ) {
int cross = crossingMap()[j];
int xhel = 0;
if ( (cross > 1 && j <= 1) || (cross <= 1 && j > 1) )
xhel = -1*hel[j];
else
xhel = hel[j];
if ( mePartonData()[cross]->iSpin() == PDT::Spin1Half )
res[cross] = (xhel == -1 ? 0 : 1);
else if ( mePartonData()[cross]->iSpin() == PDT::Spin1 )
res[cross] = (unsigned int)(xhel + 1);
else if ( mePartonData()[cross]->iSpin() == PDT::Spin0 )
res[cross] = 0;
else assert(false);
}
return res;
}
LorentzVector<Complex> MadGraphAmplitude::plusPolarization(const Lorentz5Momentum& p,
const Lorentz5Momentum& n,
int i) const {
int tmp=i;
double pg[4],ng[4],poltmp[8];
pg[0]=p.e()/GeV;pg[1]=p.x()/GeV;pg[2]=p.y()/GeV;pg[3]=p.z()/GeV;
ng[0]=n.e()/GeV;ng[1]=n.x()/GeV;ng[2]=n.y()/GeV;ng[3]=n.z()/GeV;
MG_vxxxxx(&pg[0],&ng[0],&tmp,&poltmp[0]);
complex<double> pol[6];
pol[0]=Complex(poltmp[0],poltmp[1]);
pol[1]=Complex(poltmp[2],poltmp[3]);
pol[2]=Complex(poltmp[4],poltmp[5]);
pol[3]=Complex(poltmp[6],poltmp[7]);
LorentzVector<Complex> polarization(pol[1],pol[2],pol[3],pol[0]);
return polarization;
}
bool equalsModulo(unsigned int i, const vector<int>& a, const vector<int>& b) {
assert(a.size()==b.size());
if ( a[i] == b[i] )
return false;
for ( unsigned int k = 0; k < a.size(); ++k ) {
if ( k == i )
continue;
if ( a[k] != b[k] )
return false;
}
return true;
}
vector<size_t> MadGraphAmplitude::gluonsFirst(vector<size_t> vec) {
vector<size_t> vecout;
for(vector<size_t>::iterator it= vec.begin();it!= vec.end();++it)
if ( mePartonData()[crossingMap()[*it]]->id()==21)
vecout.push_back(crossingMap()[*it]);
for(vector<size_t>::iterator it= vec.begin();it!= vec.end();++it)
if ( mePartonData()[crossingMap()[*it]]->id()!=21)
vecout.push_back(crossingMap()[*it]);
return vecout;
}
double MadGraphAmplitude::spinColourCorrelatedME2(pair<int,int> ij,
const SpinCorrelationTensor& c) const {
vector<Lorentz5Momentum> reshuffled = meMomenta();
if ( !reshuffleMasses().empty() && reshuffled.size() > 3 ) {
const cPDVector& pdata = mePartonData();
const map<long,Energy>& masses = reshuffleMasses();
lastMatchboxXComb()->reshuffle(reshuffled,pdata,masses);
}
Lorentz5Momentum p = reshuffled[ij.first];
Lorentz5Momentum n = reshuffled[ij.second];
LorentzVector<Complex> polarization = plusPolarization(p,n,ij.first<2?-1:1);
int iCrossed = -1;
for ( unsigned int k = 0; k < crossingMap().size(); ++k )
if ( crossingMap()[k] == ij.first ) {
iCrossed = k;
break;
}
assert(iCrossed!=-1);
if(ij.first>1) polarization =polarization.conjugate();
if(iCrossed<2) polarization =polarization.conjugate();
Complex pFactor = (polarization*c.momentum())/sqrt(abs(c.scale()));
double avg =
colourCorrelatedME2(ij)*(-c.diagonal()+ (c.scale() > ZERO ? 1. : -1.)*norm(pFactor));
Complex csCorr = 0.0;
if ( calculateColourSpinCorrelator(ij) ) {
set<const CVector*> done;
for ( AmplitudeConstIterator a = lastAmplitudes().begin();
a != lastAmplitudes().end(); ++a ) {
if ( done.find(&(a->second)) != done.end() )
continue;
AmplitudeConstIterator b = lastAmplitudes().begin();
while ( !equalsModulo(iCrossed,a->first,b->first) )
if ( ++b == lastAmplitudes().end() )
break;
if ( b == lastAmplitudes().end() || done.find(&(b->second)) != done.end() )
continue;
done.insert(&(a->second)); done.insert(&(b->second));
if ( a->first[iCrossed] == 1 )
swap(a,b);
csCorr -= colourBasis()->colourCorrelatedInterference(ij,mePartonData(),a->second,b->second);
}
lastColourSpinCorrelator(ij,csCorr);
} else {
csCorr = lastColourSpinCorrelator(ij);
}
double corr =
2.*real(csCorr*sqr(pFactor));
double Nc = generator()->standardModel()->Nc();
double cfac = 1.;
if ( mePartonData()[ij.first]->iColour() == PDT::Colour8 ) {
cfac = Nc;
} else if ( mePartonData()[ij.first]->iColour() == PDT::Colour3 ||
mePartonData()[ij.first]->iColour() == PDT::Colour3bar ) {
cfac = (sqr(Nc)-1.)/(2.*Nc);
} else assert(false);
return
( avg +(c.scale() > ZERO ? 1. : -1.)*corr/cfac);
}
void MadGraphAmplitude::prepareOneLoopAmplitudes(Ptr<MatchboxMEBase>::tcptr ){
assert(false);
}
double MadGraphAmplitude::oneLoopInterference() const {
if ( !calculateOneLoopInterference() )
return lastOneLoopInterference();
evaloneLoopInterference();
return lastOneLoopInterference();
}
void MadGraphAmplitude::evaloneLoopInterference() const {
double units = pow(lastSHat()/GeV2,int(mePartonData().size())-4);
vector<Lorentz5Momentum> reshuffled = meMomenta();
if ( !reshuffleMasses().empty() && reshuffled.size() > 3 ) {
const cPDVector& pdata = mePartonData();
const map<long,Energy>& masses = reshuffleMasses();
lastMatchboxXComb()->reshuffle(reshuffled,pdata,masses);
}
double virt[20];
double momenta[50];
size_t j=0;
for (size_t i=0;i<mePartonData().size();i++){
momenta[j]=abs(reshuffled[i].e()/GeV)<1.e-13?0.:double(reshuffled[i].e()/GeV);
momenta[j+1]=abs(reshuffled[i].x()/GeV)<1.e-13?0.:double(reshuffled[i].x()/GeV);
momenta[j+2]=abs(reshuffled[i].y()/GeV)<1.e-13?0.:double(reshuffled[i].y()/GeV);
momenta[j+3]=abs(reshuffled[i].z()/GeV)<1.e-13?0.:double(reshuffled[i].z()/GeV);
j+=4;
}
int xx=lastMatchboxXComb()->externalId();
MG_Calculate_wavefunctions_virt(&xx,&momenta[0],&virt[0]);
double ifact = 1.;
ifact = 1./4.;
if (lastMatchboxXComb()->matchboxME()->mePartonData()[0]->iColour() == PDT::Colour3 ||
lastMatchboxXComb()->matchboxME()->mePartonData()[0]->iColour() == PDT::Colour3bar )
ifact /= SM().Nc();
else if ( lastMatchboxXComb()->matchboxME()->mePartonData()[0]->iColour() == PDT::Colour8 )
ifact /= (SM().Nc()*SM().Nc()-1.);
if ( lastMatchboxXComb()->matchboxME()->mePartonData()[1]->iColour() == PDT::Colour3 ||
lastMatchboxXComb()->matchboxME()->mePartonData()[1]->iColour() == PDT::Colour3bar )
ifact /= SM().Nc();
else if ( mePartonData()[1]->iColour() == PDT::Colour8 )
ifact /= (SM().Nc()*SM().Nc()-1.);
ifact *= lastMatchboxXComb()->matchboxME()->finalStateSymmetry();
lastOneLoopInterference(virt[1]/ifact*units);
lastOneLoopPoles(pair<double, double>(virt[2]/ifact*units,virt[3]/ifact*units));
}
void MadGraphAmplitude::persistentOutput(PersistentOStream & os) const {
os << theOrderInGs << theOrderInGem << BornAmplitudes << VirtAmplitudes
<< colourindex<<crossing << theProcessPath << theMGmodel << bindir_
<< pkgdatadir_ << madgraphPrefix_;
}
void MadGraphAmplitude::persistentInput(PersistentIStream & is, int) {
is >> theOrderInGs >> theOrderInGem >> BornAmplitudes >> VirtAmplitudes
>> colourindex>>crossing >> theProcessPath >> theMGmodel >> bindir_
>> pkgdatadir_ >> madgraphPrefix_;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MadGraphAmplitude,MatchboxAmplitude>
describeHerwigMadGraphAmplitude("Herwig::MadGraphAmplitude", "HwMatchboxMadGraph.so");
void MadGraphAmplitude::Init() {
static ClassDocumentation<MadGraphAmplitude>
documentation("MadGraphAmplitude",
"Matrix elements have been calculated using MadGraph5 \\cite{Alwall:2011uj}",
"%\\cite{Alwall:2011uj}\n"
"\\bibitem{Alwall:2011uj}\n"
"J. Alwall et al.,\n"
"``MadGraph 5 : Going Beyond,''\n"
"arXiv:1106.0522 [hep-ph].\n"
"%%CITATION = ARXIV:1106.0522;%%");
static Parameter<MadGraphAmplitude,string> interfaceProcessPath
("ProcessPath",
"The Process Path.",
&MadGraphAmplitude::theProcessPath, "",false, false);
static Parameter<MadGraphAmplitude,string> interfaceModel
("Model",
"The MadGraph-Model.",
&MadGraphAmplitude::theMGmodel, "loop_sm",false, false);
static Switch<MadGraphAmplitude,bool> interfacekeepinputtopmass
("KeepInputTopMass",
"Switch On/Off formopt",
&MadGraphAmplitude::keepinputtopmass, false, false, false);
static SwitchOption interfacekeepinputtopmassTrue
(interfacekeepinputtopmass,
"On",
"On",
true);
static SwitchOption interfacekeepinputtopmassFalse
(interfacekeepinputtopmass,
"Off",
"Off",
false);
static Parameter<MadGraphAmplitude,string> interfaceBinDir
("BinDir",
"The location for the installed executable",
&MadGraphAmplitude::bindir_, string(HERWIG_BINDIR),
false, false);
static Parameter<MadGraphAmplitude,string> interfacePKGDATADIR
("DataDir",
"The location for the installed Herwig data files",
&MadGraphAmplitude::pkgdatadir_, string(HERWIG_PKGDATADIR),
false, false);
static Parameter<MadGraphAmplitude,string> interfaceMadgraphPrefix
("MadgraphPrefix",
"The prefix for the location of MadGraph",
&MadGraphAmplitude::madgraphPrefix_, string(MADGRAPH_PREFIX),
false, false);
}
diff --git a/MatrixElement/Matchbox/External/MadGraph/mg2herwig.py.in b/MatrixElement/Matchbox/External/MadGraph/mg2herwig.py.in
--- a/MatrixElement/Matchbox/External/MadGraph/mg2herwig.py.in
+++ b/MatrixElement/Matchbox/External/MadGraph/mg2herwig.py.in
@@ -1,387 +1,392 @@
#! /usr/bin/env python
import os,sys,glob,errno,shutil,time,fnmatch #argparse
from optparse import OptionParser
# helper to replace all sourceText in fileName with replaceText
def replacetext(fileName, sourceText, replaceText):
file = open(fileName, "r")
text = file.read()
file.close()
file = open(fileName, "w")
file.write(text.replace(sourceText, replaceText))
file.close()
# helper to build recursivly path
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else: raise
# helper to find all files of with name in path
def find(name, path):
for root, dirs, files in os.walk(path):
if name in files:
return os.path.join(root, name)
# helper to find all file paths which contain file names matching filepattern
def finddirs(filepattern, path):
founddirs = []
for root, dirs, files in os.walk(path):
if fnmatch.filter(files, filepattern):
founddirs.append(root)
return founddirs
# fill the proc.dat file from BornAmplitudes.dat and VirtAmplitudes.dat.
def fillprocs(model,oras,orew):
bornlist=[]
virtlist=[]
fileproc=open("proc.dat","w")
fileproc.write("set fortran_compiler @FC@ --no_save\n")
fileproc.write("import model "+model+"\n")
borns="BornAmplitudes.dat"
virts="VirtAmplitudes.dat"
first=True
procnr=0
virtlines=""
bornlines=""
minlegs=100
legs=0
for i in [borns, virts]:
file = open(i, "r")
for line in file:
if (len(line.split(" "))<minlegs):
minlegs=len(line.split(" "))
for it in line.split(" "):
if it.replace("-","").isdigit():
legs+=1
file.close()
#conversion for heft model to go from (2QCD+1QED)->1HIG for each FS HIGGS.
HIG=0
if (model=="heft"):
HIG=(int(oras)+int(orew)-legs+2)/2
if (int(oras)+int(orew)-legs+2)%2!=0:
print "Warning: No possible coupling power:(int(oras)+int(orew)-legs+2)%2!=0 "
exit()
return
file = open(borns, "r")
for line in file:
#this assumes extra QCD emmissions
addalphas=len(line.split(" "))-minlegs
linetmp=line.rstrip()
procnr+=1
bornlist+=[str(procnr)]
if first:
if HIG ==0 :
bornlines+="generate "+linetmp+" QCD="+str(int(oras)+addalphas)+" QED="+str(orew)+" @"+str(procnr)+"\n"
else:
bornlines+="generate "+linetmp+" HIG="+str(HIG)+" QCD="+str(int(oras)+addalphas-2*HIG)+" QED="+str(int(orew)-HIG)+" @"+str(procnr)+"\n"
first=False
else:
if HIG ==0 :
bornlines+="add process "+linetmp+" QCD="+str(int(oras)+addalphas)+" QED="+str(orew)+" @"+str(procnr)+"\n"
else:
bornlines+="add process "+linetmp+" HIG="+str(HIG)+" QCD="+str(int(oras)+addalphas-2*HIG)+" QED="+str(int(orew)-HIG)+" @"+str(procnr)+"\n"
file.close()
first=True
file = open(virts, "r")
for line in file:
addalphas=len(line.split(" "))-minlegs
linetmp=line.rstrip()+" QCD="+str(int(oras)+addalphas)+" QED="+str(int(orew))+" [ virt=QCD ]"
procnr+=1
virtlist+=[str(procnr)]
if first:
virtlines+="generate "+linetmp+" @"+str(procnr)+"\n"
first=False
else:
virtlines+="add process "+linetmp+" @"+str(procnr)+"\n"
file.close()
fileproc.write(bornlines)
if virtlines!="" and bornlines!="":
fileproc.write("output matchbox MG5 --postpone_model\n")
fileproc.write(virtlines)
fileproc.write("output matchbox MG5 -f\n")
fileproc.close()
return bornlist,virtlist
def build_matchbox_tmp(pwd,buildpath,absolute_links):
cwd=os.getcwd()
os.chdir(pwd)
mkdir_p(pwd+"/Herwig-scratch/MG_tmp/")
if not buildpath.startswith("/"):
buildpath=pwd+"/"+buildpath.lstrip("./")
if not buildpath.endswith("/"):
buildpath=buildpath + "/"
resources=glob.glob(buildpath +"MG5/SubProcesses/MadLoop5_resources/*")
resources+=glob.glob(buildpath +"MG5/Cards/*")
resources+=glob.glob(buildpath +"MG5/Cards/SubProcesses/*")
for i in resources:
if not os.path.isfile( pwd+"/Herwig-scratch/MG_tmp/"+os.path.basename(i)) \
and not os.path.islink( pwd+"/Herwig-scratch/MG_tmp/"+os.path.basename(i)):
if not absolute_links:
source=os.path.dirname(i)
dest=pwd+"/Herwig-scratch/MG_tmp/"
os.chdir(dest)
os.symlink(os.path.relpath(source,dest)+"/"+os.path.basename(i),"./" + os.path.basename(i))
else:
os.symlink(i, pwd+"/Herwig-scratch/MG_tmp/"+os.path.basename(i))
os.chdir(cwd)
parser = OptionParser()
parser.add_option("-a", "--buildpath", dest="buildpath",help="Do not use this script. Only for Herwig internal use. ")
parser.add_option("-b", "--build", action="store_true", dest="build", default=True,help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-c", "--madgraph", dest="madgraph",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-d", "--runpath", dest="runpath",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-e", "--model", dest="model",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-f", "--orderas", dest="orderas",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-g", "--orderew", dest="orderew",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-i", "--datadir",dest="datadir",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-I", "--includedir",dest="includedir",help="Do not use this script. Only for Herwig internal use.")
parser.add_option("-l", "--absolute-links",action="store_true", dest="absolute_links", default=False,\
help="Do not use this script. Only for Herwig internal use.")
(options, args) = parser.parse_args()
#parser = argparse.ArgumentParser()
#parser.add_argument('--buildpath', help='installpath')
#parser.add_argument('--build', help='build', action="store_true")
#parser.add_argument('--madgraph', help='madgraph_installpath')
#parser.add_argument('--runpath', help='runpath')
#parser.add_argument('--model', help='model')
#parser.add_argument('--orderas', help='orderas')
#parser.add_argument('--orderew', help='orderew')
#parser.add_argument('--datadir', help='datadir')
#args = parser.parse_args()
pwd=os.getcwd()
param_card=""
mkdir_p(pwd+"/Herwig-scratch/MG_tmp/")
if options.model=="loop_sm" or options.model=="heft":
if options.model=="loop_sm":
param_card="param_card.dat"
else:
param_card="param_card_"+options.model+".dat"
file = open("%s/MadGraphInterface/%s.in" % (options.datadir,param_card) , "r")
paramcard = file.read()
file.close()
file = open(options.runpath+"/"+param_card, "w")
params=open(options.runpath+"/MG-Parameter.dat", "r")
for line in params:
a=line.split()
paramcard=paramcard.replace(a[0],a[1])
params.close()
file.write(paramcard)
file.close()
elif options.model.startswith("/"):
os.system("python %s/write_param_card.py " % options.model)
else:
print "---------------------------------------------------------------"
print "---------------------------------------------------------------"
print "Warning: The model set for the MadGraph Interface "
print " needs a parameter setting by hand."
print " Please fill the param_card_"+options.model+".dat"
print " with your favourite assumptions."
print " And make sure Herwig uses the same parameters."
print "---------------------------------------------------------------"
print "---------------------------------------------------------------"
if os.path.isfile(options.buildpath +"/MG5/Cards/param_card.dat") and not os.path.isfile(options.runpath+"/"+"param_card_"+options.model+".dat"):
shutil.copyfile(options.buildpath +"/MG5/Cards/param_card.dat", options.runpath+"/"+"param_card_"+options.model+".dat")
time.sleep(1)
if not os.path.isdir(options.buildpath):
print "The MadGraph Install path was not existend. It has been created for you."
print "Just start Herwig read again.."
mkdir_p(options.buildpath)
exit()
os.chdir(options.buildpath)
if os.path.isfile("InterfaceMadGraph.so"):
build_matchbox_tmp(pwd,options.buildpath,options.absolute_links)
exit()
Bornlist,Virtlist=fillprocs(options.model,options.orderas,options.orderew)
if not options.madgraph and not os.path.isfile("InterfaceMadGraph.so"):
print "*** warning *** MadGraph build failed, check logfile for details"
+ print "Known issue: If this is your first NLO calculation with pure Madgraph Amplitudes"
+ print " the CutTools compilation can result in a non usable configuration."
+ print " Please open $HERWIG_ENV/opt/madgraph/vendor/CutTools/makefile"
+ print " and add a \\ after FC=gfortran... in the ARGS variable."
+ print " Then run make clean && make in the CutTools folder. "
exit()
os.system("python "+options.madgraph+"/mg5_aMC proc.dat")
routines=[["","BORN(momenta,hel)"],
["","SLOOPMATRIX(momenta,virt)"],
["","GET_JAMP(color,Jamp)"],
["","GET_LNJAMP(color,Jamp)"],
["","GET_NCOL(color)"],
["","GET_NCOLOR(i,j,color)"]]
for routine in routines:
for i in Bornlist + list(set(Virtlist) - set(Bornlist)):
if routine[1]=="Virt(amp)" or routine[1]=="SLOOPMATRIX(momenta,virt)" and i not in Virtlist:
continue
if routine[0]=="":
routine[0]+=" SELECT CASE (proc) \n"
routine[0]+=" CASE("+i+") \n CALL "
routine[0]+= "MG5_"+i+"_"+routine[1]+"\n"
else:
routine[0]+=" CASE("+i+") \n"\
" CALL "
routine[0]+= "MG5_"+i+"_"+routine[1]+"\n"
if routine[0]!="":
routine[0]+=" CASE DEFAULT\n"
routine[0]+=" WRITE(*,*) '##W02A WARNING No id found '\n"
routine[0]+=" END SELECT \n"
shutil.copyfile("%s/MadGraphInterface/InterfaceMadGraph.f.in" % options.datadir, "InterfaceMadGraph.f")
replacetext("InterfaceMadGraph.f","MG_CalculateBORNtxt",routines[0][0])
replacetext("InterfaceMadGraph.f","MG_CalculateVIRTtxt",routines[1][0])
replacetext("InterfaceMadGraph.f","MG_Jamptxt", routines[2][0])
replacetext("InterfaceMadGraph.f","MG_LNJamptxt", routines[3][0])
replacetext("InterfaceMadGraph.f","MG_NColtxt", routines[4][0])
replacetext("InterfaceMadGraph.f","MG_ColourMattxt",routines[5][0])
MG_vxxxxxtxt=""
if routines[1][0]!="":
MG_vxxxxxtxt=""" subroutine MG_vxxxxx(p, n,inc,VC)
$ bind(c, name='MG_vxxxxx')
IMPLICIT NONE
double precision p(0:3)
double precision n(0:3)
INTEGER inc
double precision VC(0:7)
double complex VCtmp(8)
call vxxxxx(p, 0d0,1,inc ,VCtmp)
VC(0)= real(VCtmp(5))
VC(1)=aimag(VCtmp(5))
VC(2)= real(VCtmp(6))
VC(3)=aimag(VCtmp(6))
VC(4)= real(VCtmp(7))
VC(5)=aimag(VCtmp(7))
VC(6)= real(VCtmp(8))
VC(7)=aimag(VCtmp(8))
END"""
else:
MG_vxxxxxtxt=""" subroutine MG_vxxxxx(p, n,inc,VC)
$ bind(c, name='MG_vxxxxx')
IMPLICIT NONE
double precision p(0:3)
double precision n(0:3)
INTEGER inc
double precision VC(0:7)
double complex VCtmp(6)
call vxxxxx(p, 0d0,1,inc ,VCtmp)
VC(0)= real(VCtmp(3))
VC(1)=aimag(VCtmp(3))
VC(2)= real(VCtmp(4))
VC(3)=aimag(VCtmp(4))
VC(4)= real(VCtmp(5))
VC(5)=aimag(VCtmp(5))
VC(6)= real(VCtmp(6))
VC(7)=aimag(VCtmp(6))
END"""
replacetext("InterfaceMadGraph.f","MG_vxxxxxtxt",MG_vxxxxxtxt)
make=" "
fortanfiles=glob.glob('*/*/*.f')+glob.glob('*/*/*/*.f')
for i in fortanfiles:
if "check_sa" not in i:
if not os.path.islink(i):
make += " "+i+"\\\n "
incfiles=glob.glob('*/*/*.inc')+glob.glob('*/*/*/*.inc')
coefdir=""
for i in incfiles:
if "nexternal.inc" in i:
coefdir+=" -I"+i.replace("nexternal.inc"," ")
file=open("makefile","w")
file.write("include MG5/Source/make_opts ")
if Virtlist!=[]:
file.write("\nLIBDIR = MG5/lib\nLINKLIBS = -L$(LIBDIR) -lcts -liregi -L$(LIBDIR)/golem95_lib -lgolem")
file.write("\nLIBS = $(LIBDIR)libcts.$(libext) $(LIBDIR)libgolem.$(libext) $(LIBDIR)libiregi.$(libext)")
file.write("\nPROCESS= InterfaceMadGraph.f "+make+"\n\nall: \n\t @FC@ @FFLAGS@ -w -fbounds-check -ffixed-line-length-132 -fPIC -fno-f2c -shared -s -o InterfaceMadGraph.so -IMG5/SubProcesses/" )
if Virtlist!=[]:
file.write(" -IMG5/lib/golem95_include ")
# Find all .mod files also in /usr/include if golem was build there.
# There can be an error message in the MadGraph output to add the golem include path to the makefiles.
# Usually MadGraph finds the path if its Golem was build in an separate dictionary.
# Our bootstrap script installs golem with gosam beside boost. Here MadGraph creates a link (->errormessage).
# If we can find the modfiles easily the user doesn't need to change the makefiles.
moddirs=finddirs('*.mod',options.includedir)
for moddir in moddirs:
file.write(" -I%s " % moddir)
if os.path.isdir("/usr/include"):
moddirs=finddirs('*.mod',"/usr/include")
for moddir in moddirs:
file.write(" -I%s " % moddir)
if coefdir != "":
file.write(coefdir)
file.write(" $(PROCESS) $(LINKLIBS) ")
file.close()
os.chdir(pwd)
os.chdir(options.buildpath)
replacetext("MG5/Source/MODEL/lha_read.f", "ident_card.dat","Herwig-scratch/MG_tmp/ident_card.dat")
replacetext("MG5/Source/MODEL/lha_read.f", "param.log","Herwig-scratch/MG_tmp/param.log")
if Virtlist!=[]:
replacetext("MG5/SubProcesses/MadLoopCommons.f", "PREFIX='./'","PREFIX='./Herwig-scratch/MG_tmp/'")
os.system("make")
build_matchbox_tmp(pwd,options.buildpath,options.absolute_links)
diff --git a/MatrixElement/Matchbox/MatchboxFactory.cc b/MatrixElement/Matchbox/MatchboxFactory.cc
--- a/MatrixElement/Matchbox/MatchboxFactory.cc
+++ b/MatrixElement/Matchbox/MatchboxFactory.cc
@@ -1,2109 +1,2226 @@
// -*- C++ -*-
//
// MatchboxFactory.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MatchboxFactory class.
//
#include "MatchboxFactory.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Command.h"
#include "ThePEG/Utilities/StringUtils.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Handlers/SamplerBase.h"
#include "Herwig/MatrixElement/Matchbox/Base/DipoleRepository.h"
#include "Herwig/MatrixElement/Matchbox/Utility/SU2Helper.h"
#include "Herwig/Utilities/RunDirectories.h"
#include <boost/progress.hpp>
#include <boost/filesystem.hpp>
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
using std::ostream_iterator;
MatchboxFactory::MatchboxFactory()
: SubProcessHandler(), theNLight(0),
theOrderInAlphaS(0), theOrderInAlphaEW(0),
theBornContributions(true), theVirtualContributions(true),
theRealContributions(true), theIndependentVirtuals(false),
theIndependentPKs(false),
theSubProcessGroups(false),
theFactorizationScaleFactor(1.0), theRenormalizationScaleFactor(1.0),
theFixedCouplings(false), theFixedQEDCouplings(false), theVetoScales(false),
theDipoleSet(0), theVerbose(false), theDiagramWeightVerbose(false),
theDiagramWeightVerboseNBins(200),
theInitVerbose(false),
theSubtractionData(""), theSubtractionPlotType(1), theSubtractionScatterPlot(false),
thePoleData(""), theRealEmissionScales(false), theAllProcesses(false),
theMECorrectionsOnly(false), theLoopSimCorrections(false), ranSetup(false),
theFirstPerturbativePDF(true), theSecondPerturbativePDF(true),
inProductionMode(false), theSpinCorrelations(false),theAlphaParameter(1.),
theEnforceChargeConservation(true), theEnforceColourConservation(false),
theEnforceLeptonNumberConservation(false), theEnforceQuarkNumberConservation(false),
theLeptonFlavourDiagonal(false), theQuarkFlavourDiagonal(false) {}
MatchboxFactory::~MatchboxFactory() {}
bool& MatchboxFactory::theIsMatchboxRun() {
static bool flag = false;
return flag;
}
IBPtr MatchboxFactory::clone() const {
return new_ptr(*this);
}
IBPtr MatchboxFactory::fullclone() const {
return new_ptr(*this);
}
void MatchboxFactory::prepareME(Ptr<MatchboxMEBase>::ptr me) {
Ptr<MatchboxAmplitude>::ptr amp =
dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>((*me).amplitude());
me->matchboxAmplitude(amp);
me->factory(this);
if ( phasespace() && !me->phasespace() )
me->phasespace(phasespace());
if ( scaleChoice() && !me->scaleChoice() )
me->scaleChoice(scaleChoice());
if ( !reweighters().empty() ) {
for ( vector<ReweightPtr>::const_iterator rw = reweighters().begin();
rw != reweighters().end(); ++rw )
me->addReweighter(*rw);
}
if ( !preweighters().empty() ) {
for ( vector<ReweightPtr>::const_iterator rw = preweighters().begin();
rw != preweighters().end(); ++rw )
me->addPreweighter(*rw);
}
}
string pid(const PDVector& key) {
ostringstream res;
res << "[" << key[0]->PDGName() << ","
<< key[1]->PDGName() << "->";
for ( PDVector::const_iterator k =
key.begin() + 2; k != key.end(); ++k )
res << (**k).PDGName() << (k != --key.end() ? "," : "");
res << "]";
return res.str();
}
vector<Ptr<MatchboxMEBase>::ptr> MatchboxFactory::
makeMEs(const vector<string>& proc, unsigned int orderas, bool virt) {
generator()->log() << "determining subprocesses for ";
copy(proc.begin(),proc.end(),ostream_iterator<string>(generator()->log()," "));
generator()->log() << "\n" << flush;
map<Ptr<MatchboxAmplitude>::ptr,set<Process> > ampProcs;
map<Process,set<Ptr<MatchboxAmplitude>::ptr> > procAmps;
set<PDVector> processes = makeSubProcesses(proc);
// TODO Fix me for 3.0.x
// At the moment we got troubles with processes with no coloured
// legs so they will not be supported
set<PDVector> colouredProcesses;
for ( set<PDVector>::const_iterator pr = processes.begin();
pr != processes.end(); ++pr ) {
for ( PDVector::const_iterator pp = pr->begin();
pp != pr->end(); ++pp ) {
if ( (**pp).coloured() ) {
colouredProcesses.insert(*pr);
break;
}
}
}
if ( colouredProcesses.size() != processes.size() ) {
generator()->log()
<< "Some or all of the generated subprocesses do not contain coloured legs.\n"
<< "Processes of this kind are currently not supported.\n" << flush;
}
if ( colouredProcesses.empty() ) {
throw Exception() << "MatchboxFactory::makeMEs(): No processes with coloured legs have been found. "
<< "This run will be aborted." << Exception::runerror;
}
processes = colouredProcesses;
// end unsupported processes
// detect external particles with non-zero width for the hard process
bool trouble = false;
string troubleMaker;
for ( set<PDVector>::const_iterator pr = processes.begin();
pr != processes.end(); ++pr ) {
for ( PDVector::const_iterator pp = pr->begin();
pp != pr->end(); ++pp ) {
if ( (**pp).hardProcessWidth() != ZERO ) {
trouble = true;
troubleMaker = (**pp).PDGName();
break;
}
}
}
if ( trouble ) {
throw Exception()
<< "MatchboxFactory::makeMEs(): Particle '"
<< troubleMaker << "' appears as external\nprocess leg with non-zero "
<< "width to be used in the hard process calculation.\n"
<< "Please check your setup and consider setting HardProcessWidth to zero."
<< Exception::runerror;
}
vector<Ptr<MatchboxAmplitude>::ptr> matchAmplitudes;
unsigned int lowestAsOrder =
allProcesses() ? 0 : orderas;
unsigned int highestAsOrder = orderas;
unsigned int lowestAeOrder =
allProcesses() ? 0 : orderInAlphaEW();
unsigned int highestAeOrder = orderInAlphaEW();
for ( unsigned int oas = lowestAsOrder; oas <= highestAsOrder; ++oas ) {
for ( unsigned int oae = lowestAeOrder; oae <= highestAeOrder; ++oae ) {
for ( vector<Ptr<MatchboxAmplitude>::ptr>::const_iterator amp
= amplitudes().begin(); amp != amplitudes().end(); ++amp ) {
if ( !theSelectedAmplitudes.empty() ) {
if ( find(theSelectedAmplitudes.begin(),theSelectedAmplitudes.end(),*amp)
== theSelectedAmplitudes.end() )
continue;
}
if ( !theDeselectedAmplitudes.empty() ) {
if ( find(theDeselectedAmplitudes.begin(),theDeselectedAmplitudes.end(),*amp)
!= theDeselectedAmplitudes.end() )
continue;
}
(**amp).orderInGs(oas);
(**amp).orderInGem(oae);
if ( (**amp).orderInGs() != oas ||
(**amp).orderInGem() != oae ) {
continue;
}
matchAmplitudes.push_back(*amp);
}
}
}
size_t combinations = processes.size()*matchAmplitudes.size();
size_t procCount = 0;
generator()->log() << "building matrix elements." << flush;
boost::progress_display * progressBar =
new boost::progress_display(combinations,generator()->log());
for ( unsigned int oas = lowestAsOrder; oas <= highestAsOrder; ++oas ) {
for ( unsigned int oae = lowestAeOrder; oae <= highestAeOrder; ++oae ) {
for ( vector<Ptr<MatchboxAmplitude>::ptr>::const_iterator amp
= matchAmplitudes.begin(); amp != matchAmplitudes.end(); ++amp ) {
(**amp).orderInGs(oas);
(**amp).orderInGem(oae);
for ( set<PDVector>::const_iterator p = processes.begin();
p != processes.end(); ++p ) {
++(*progressBar);
if ( !(**amp).canHandle(*p,this,virt) )
continue;
if ( (**amp).isExternal() )
externalAmplitudes().insert(*amp);
++procCount;
Process proc(*p,oas,oae);
ampProcs[*amp].insert(proc);
procAmps[proc].insert(*amp);
}
}
}
}
delete progressBar;
generator()->log() << flush;
bool clash = false;
for ( map<Process,set<Ptr<MatchboxAmplitude>::ptr> >::const_iterator check =
procAmps.begin(); check != procAmps.end(); ++check ) {
if ( check->second.size() > 1 ) {
clash = true;
generator()->log() << "Several different amplitudes have been found for: "
<< check->first.legs[0]->PDGName() << " "
<< check->first.legs[1]->PDGName() << " -> ";
for ( PDVector::const_iterator p = check->first.legs.begin() + 2;
p != check->first.legs.end(); ++p )
generator()->log() << (**p).PDGName() << " ";
generator()->log() << "at alpha_s^" << check->first.orderInAlphaS
<< " and alpha_ew^" << check->first.orderInAlphaEW
<< "\n";
generator()->log() << "The following amplitudes claim responsibility:\n";
for ( set<Ptr<MatchboxAmplitude>::ptr>::const_iterator a = check->second.begin();
a != check->second.end(); ++a ) {
generator()->log() << (**a).name() << " ";
}
generator()->log() << "\n";
}
}
if ( clash ) {
throw Exception() << "MatchboxFactory: Ambiguous amplitude setup - please check your input files.\n"
<< "To avoid this problem use the SelectAmplitudes or DeselectAmplitudes interfaces.\n"
<< Exception::runerror;
}
bool canDoSpinCorrelations = true;
vector<Ptr<MatchboxMEBase>::ptr> res;
for ( map<Ptr<MatchboxAmplitude>::ptr,set<Process> >::const_iterator
ap = ampProcs.begin(); ap != ampProcs.end(); ++ap ) {
canDoSpinCorrelations &= ap->first->canFillRhoMatrix();
for ( set<Process>::const_iterator m = ap->second.begin();
m != ap->second.end(); ++m ) {
Ptr<MatchboxMEBase>::ptr me = ap->first->makeME(m->legs);
me->subProcess() = *m;
me->amplitude(ap->first);
me->matchboxAmplitude(ap->first);
prepareME(me);
string pname = "ME" + ap->first->name() + pid(m->legs);
if ( ! (generator()->preinitRegister(me,pname) ) )
throw Exception() << "MatchboxFactory: Matrix element " << pname << " already existing."
<< Exception::runerror;
if ( me->diagrams().empty() )continue;
res.push_back(me);
if ( theFirstPerturbativePDF )
theIncoming.insert(m->legs[0]->id());
if ( theSecondPerturbativePDF )
theIncoming.insert(m->legs[1]->id());
}
}
if ( spinCorrelations() && !canDoSpinCorrelations ) {
generator()->log() << "Warning: Spin correlations have been requested, but no amplitude is "
<< "capable of performing these.\n";
theSpinCorrelations = false;
}
generator()->log() << "created "
<< procCount << " subprocesses.\n";
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
return res;
}
int MatchboxFactory::orderOLPProcess(const Process& proc,
Ptr<MatchboxAmplitude>::tptr amp,
int type) {
map<pair<Process,int>,int>& procs =
olpProcesses()[amp];
map<pair<Process,int>,int>::const_iterator it =
procs.find(make_pair(proc,type));
if ( it != procs.end() )
return it->second;
int id = procs.size();
procs[make_pair(proc,type)] = id + 1;
return id + 1;
}
void MatchboxFactory::productionMode() {
if ( inProductionMode )
return;
if ( !bornContributions() && !virtualContributions() && !realContributions() )
throw Exception() << "MatchboxFactory: At least one cross section contribution needs to be enabled.\n"
<< "Please check your setup.\n"
<< Exception::runerror;
bool needTrueVirtuals =
virtualContributions() && !meCorrectionsOnly() && !loopSimCorrections();
for ( vector<Ptr<MatchboxAmplitude>::ptr>::iterator amp
= amplitudes().begin(); amp != amplitudes().end(); ++amp ) {
if ( !needTrueVirtuals && (**amp).oneLoopAmplitude() ) {
Repository::clog() << "One-loop contributions from '"
<< (**amp).name()
<< "' are not required and will be disabled.\n"
<< flush;
(**amp).disableOneLoop();
}
}
if ( subtractionData() != "" && !subProcessGroups() ) {
throw Exception() << "MatchboxFactory: Plain NLO settings are required for subtraction checks.\n"
<< "Please check your setup.\n"
<< Exception::runerror;
}
if ( showerApproximation() && !virtualContributions() && !realContributions() ) {
Repository::clog() << "Warning: Matching requested for LO run. Matching disabled.\n" << flush;
showerApproximation(Ptr<ShowerApproximation>::tptr());
}
if ( showerApproximation() && (subtractionData() != "" || subProcessGroups()) ) {
Repository::clog() << "Warning: Matching requested for plain NLO run. Matching disabled.\n" << flush;
showerApproximation(Ptr<ShowerApproximation>::tptr());
}
if ( showerApproximation() ) {
if ( spinCorrelations() && !showerApproximation()->hasSpinCorrelations() ) {
Repository::clog() << "Warning: Spin correlations have been requested but the matching "
<< "object is not capable of these. Spin correlations will be turned of.\n"
<< flush;
theSpinCorrelations = false;
}
}
inProductionMode = true;
}
void MatchboxFactory::setup() {
useMe();
if ( !ranSetup ) {
if ( !inProductionMode )
throw Exception() << "MatchboxFactory: The MatchboxFactory object '"
<< name() << "' has not been switched to production mode.\n"
<< "Did you use 'do "
<< name() << ":ProductionMode' before isolating the event generator?\n"
<< Exception::runerror;
olpProcesses().clear();
externalAmplitudes().clear();
theHighestVirtualsize = 0;
theIncoming.clear();
bool needTrueVirtuals =
virtualContributions() && !meCorrectionsOnly() && !loopSimCorrections();
for ( vector<Ptr<MatchboxAmplitude>::ptr>::iterator amp
= amplitudes().begin(); amp != amplitudes().end(); ++amp )
(**amp).factory(this);
if ( bornMEs().empty() ) {
if ( particleGroups().find("j") == particleGroups().end() )
throw Exception() << "MatchboxFactory: Could not find a jet particle group named 'j'"
<< Exception::runerror;
// rebind the particle data objects
for ( map<string,PDVector>::iterator g = particleGroups().begin();
g != particleGroups().end(); ++g )
for ( PDVector::iterator p = g->second.begin();
p != g->second.end(); ++p ) {
#ifndef NDEBUG
long checkid = (**p).id();
#endif
*p = getParticleData((**p).id());
assert((**p).id() == checkid);
}
const PDVector& partons = particleGroups()["j"];
unsigned int nl = 0;
for ( PDVector::const_iterator p = partons.begin();
p != partons.end(); ++p ) {
if ( abs((**p).id()) < 7 && (**p).hardProcessMass() == ZERO )
++nl;
if ( (**p).id() > 0 && (**p).id() < 7 && (**p).hardProcessMass() == ZERO )
nLightJetVec( (**p).id() );
if ( (**p).id() > 0 && (**p).id() < 7 && (**p).hardProcessMass() != ZERO )
nHeavyJetVec( (**p).id() );
}
nLight(nl/2);
if ( particleGroups().find("p") == particleGroups().end() )
throw Exception() << "MatchboxFactory: Could not find a hadron particle group named 'p'"
<< Exception::runerror;
const PDVector& partonsInP = particleGroups()["p"];
for ( PDVector::const_iterator pip = partonsInP.begin();
pip != partonsInP.end(); ++pip ) {
if ( (**pip).id() > 0 && (**pip).id() < 7 && (**pip).hardProcessMass() == ZERO )
nLightProtonVec( (**pip).id() );
}
vector<Ptr<MatchboxMEBase>::ptr> mes;
for ( vector<vector<string> >::const_iterator p = processes.begin();
p != processes.end(); ++p ) {
if( needTrueVirtuals ) {
theHighestVirtualsize = max(theHighestVirtualsize,(int((*p).size())));
}
mes = makeMEs(*p,orderInAlphaS(),needTrueVirtuals);
copy(mes.begin(),mes.end(),back_inserter(bornMEs()));
if ( realContributions() || meCorrectionsOnly() ||
(showerApproximation() && virtualContributions()) ||
(showerApproximation() && loopSimCorrections()) ) {
if ( realEmissionProcesses.empty() ) {
vector<string> rproc = *p;
rproc.push_back("j");
mes = makeMEs(rproc,orderInAlphaS()+1,false);
copy(mes.begin(),mes.end(),back_inserter(realEmissionMEs()));
}
}
}
if ( realContributions() || meCorrectionsOnly() ||
(showerApproximation() && virtualContributions()) ||
(showerApproximation() && loopSimCorrections()) ) {
if ( !realEmissionProcesses.empty() ) {
for ( vector<vector<string> >::const_iterator q =
realEmissionProcesses.begin(); q != realEmissionProcesses.end(); ++q ) {
mes = makeMEs(*q,orderInAlphaS()+1,false);
copy(mes.begin(),mes.end(),back_inserter(realEmissionMEs()));
}
}
}
}
if ( loopInducedMEs().empty() ) {
for ( vector<vector<string> >::const_iterator p = loopInducedProcesses.begin();
p != loopInducedProcesses.end(); ++p ) {
vector<Ptr<MatchboxMEBase>::ptr> mes = makeMEs(*p,orderInAlphaS(),false);
copy(mes.begin(),mes.end(),back_inserter(loopInducedMEs()));
}
}
if( bornMEs().empty() && realEmissionMEs().empty() && loopInducedMEs().empty() )
throw Exception() << "MatchboxFactory: No matrix elements have been found.\n\
Please check if your order of Alpha_s and Alpha_ew have the right value.\n"
<< Exception::runerror;
// check if we have virtual contributions
bool haveVirtuals = true;
// check DR conventions of virtual contributions
bool virtualsAreDR = false;
bool virtualsAreCDR = false;
// check finite term conventions of virtual contributions
bool virtualsAreCS = false;
bool virtualsAreBDK = false;
bool virtualsAreExpanded = false;
// renormalization scheme
bool virtualsAreDRbar = false;
// check and prepare the Born and virtual matrix elements
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
prepareME(*born);
haveVirtuals &= (**born).haveOneLoop();
if ( needTrueVirtuals ) {
if ( (**born).haveOneLoop() ) {
virtualsAreDRbar |= (**born).isDRbar();
virtualsAreDR |= (**born).isDR();
virtualsAreCDR |= !(**born).isDR();
virtualsAreCS |= (**born).isCS();
virtualsAreBDK |= (**born).isBDK();
virtualsAreExpanded |= (**born).isExpanded();
}
}
}
// prepare the loop induced matrix elements
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator looped
= loopInducedMEs().begin(); looped != loopInducedMEs().end(); ++looped ) {
prepareME(*looped);
}
if ( needTrueVirtuals ) {
// check the additional insertion operators
if ( !virtuals().empty() )
haveVirtuals = true;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= virtuals().begin(); virt != virtuals().end(); ++virt ) {
virtualsAreDRbar |= (**virt).isDRbar();
virtualsAreDR |= (**virt).isDR();
virtualsAreCDR |= !(**virt).isDR();
virtualsAreCS |= (**virt).isCS();
virtualsAreBDK |= (**virt).isBDK();
virtualsAreExpanded |= (**virt).isExpanded();
}
// check for consistent conventions on virtuals, if we are to include them
if ( virtualContributions() ) {
if ( !haveVirtuals ) {
throw Exception() << "MatchboxFactory: Could not find amplitudes for all virtual contributions needed.\n"
<< Exception::runerror;
}
if ( virtualsAreDR && virtualsAreCDR ) {
throw Exception() << "MatchboxFactory: Virtual corrections use inconsistent regularization schemes.\n"
<< Exception::runerror;
}
if ( (virtualsAreCS && virtualsAreBDK) ||
(virtualsAreCS && virtualsAreExpanded) ||
(virtualsAreBDK && virtualsAreExpanded) ||
(!virtualsAreCS && !virtualsAreBDK && !virtualsAreExpanded) ) {
throw Exception() << "MatchboxFactory: Virtual corrections use inconsistent conventions on finite terms.\n"
<< Exception::runerror;
}
}
// prepare dipole insertion operators
if ( virtualContributions() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionIOperators(dipoleSet()).begin();
virt != DipoleRepository::insertionIOperators(dipoleSet()).end(); ++virt ) {
(**virt).factory(this);
if ( virtualsAreDRbar )
(**virt).useDRbar();
if ( virtualsAreDR )
(**virt).useDR();
else
(**virt).useCDR();
if ( virtualsAreCS )
(**virt).useCS();
if ( virtualsAreBDK )
(**virt).useBDK();
if ( virtualsAreExpanded )
(**virt).useExpanded();
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionPKOperators(dipoleSet()).begin();
virt != DipoleRepository::insertionPKOperators(dipoleSet()).end(); ++virt ) {
(**virt).factory(this);
if ( virtualsAreDRbar )
(**virt).useDRbar();
if ( virtualsAreDR )
(**virt).useDR();
else
(**virt).useCDR();
if ( virtualsAreCS )
(**virt).useCS();
if ( virtualsAreBDK )
(**virt).useBDK();
if ( virtualsAreExpanded )
(**virt).useExpanded();
}
}
}
// prepare the real emission matrix elements
if ( realContributions() || meCorrectionsOnly() ||
(showerApproximation() && virtualContributions()) ||
(showerApproximation() && loopSimCorrections()) ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator real
= realEmissionMEs().begin(); real != realEmissionMEs().end(); ++real ) {
prepareME(*real);
}
}
// start creating matrix elements
MEs().clear();
// setup born and virtual contributions
if ( bornContributions() || virtualContributions() ) {
generator()->log() << "preparing Born"
<< (virtualContributions() ? " and virtual" : "")
<< " matrix elements.\n" << flush;
}
if ( (bornContributions() && !virtualContributions()) ||
(bornContributions() && meCorrectionsOnly()) ||
(bornContributions() && virtualContributions() && independentVirtuals()) ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
if ( (**born).onlyOneLoop() )
continue;
Ptr<MatchboxMEBase>::ptr bornme = (**born).cloneMe();
string pname = fullName() + "/" + (**born).name();
if ( virtualContributions() && independentVirtuals() )
pname += ".Born";
if ( ! (generator()->preinitRegister(bornme,pname) ) )
throw Exception() << "MatchboxFactory: Matrix element " << pname << " already existing."
<< Exception::runerror;
if ( bornme->isOLPTree() ) {
int id = orderOLPProcess(bornme->subProcess(),
(**born).matchboxAmplitude(),
ProcessType::treeME2);
bornme->olpProcess(ProcessType::treeME2,id);
}
bornme->needsNoCorrelations();
bornme->cloneDependencies();
MEs().push_back(bornme);
}
}
if ( bornContributions() && !loopInducedMEs().empty() ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator looped
= loopInducedMEs().begin(); looped != loopInducedMEs().end(); ++looped ) {
Ptr<MatchboxMEBase>::ptr loopme = (**looped).cloneMe();
string pname = fullName() + "/" + (**looped).name() + ".LoopInduced";
if ( ! (generator()->preinitRegister(loopme,pname) ) )
throw Exception() << "MatchboxFactory: Matrix element " << pname << " already existing."
<< Exception::runerror;
if ( loopme->isOLPTree() ) {
int id = orderOLPProcess(loopme->subProcess(),
(**looped).matchboxAmplitude(),
ProcessType::loopInducedME2);
loopme->olpProcess(ProcessType::loopInducedME2,id);
}
loopme->needsNoCorrelations();
loopme->cloneDependencies();
MEs().push_back(loopme);
}
}
if ( needTrueVirtuals ) {
bornVirtualMEs().clear();
boost::progress_display * progressBar =
new boost::progress_display(bornMEs().size(),generator()->log());
if ( thePoleData != "" )
if ( thePoleData[thePoleData.size()-1] != '/' )
thePoleData += "/";
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
Ptr<MatchboxMEBase>::ptr nlo = (**born).cloneMe();
string pname = fullName() + "/" + (**born).name();
if ( !independentVirtuals() && !(!bornContributions() && virtualContributions()) )
pname += ".BornVirtual";
else if ( independentPKs() && !nlo->onlyOneLoop() )
pname += ".VirtualVI";
else
pname += ".Virtual";
if ( ! (generator()->preinitRegister(nlo,pname) ) )
throw Exception() << "MatchboxFactory: NLO ME " << pname << " already existing."
<< Exception::runerror;
nlo->virtuals().clear();
if ( !nlo->onlyOneLoop() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= virtuals().begin(); virt != virtuals().end(); ++virt ) {
if ( (**virt).apply((**born).diagrams().front()->partons()) )
nlo->virtuals().push_back(*virt);
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionIOperators(dipoleSet()).begin();
virt != DipoleRepository::insertionIOperators(dipoleSet()).end(); ++virt ) {
if ( (**virt).apply((**born).diagrams().front()->partons()) )
nlo->virtuals().push_back(*virt);
}
if ( !independentVirtuals() || ( independentVirtuals() && !independentPKs() ) ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionPKOperators(dipoleSet()).begin();
virt != DipoleRepository::insertionPKOperators(dipoleSet()).end(); ++virt ) {
if ( (**virt).apply((**born).diagrams().front()->partons()) )
nlo->virtuals().push_back(*virt);
}
}
if ( nlo->virtuals().empty() )
throw Exception() << "MatchboxFactory: No insertion operators have been found for "
<< (**born).name() << "\n"
<< Exception::runerror;
if ( checkPoles() ) {
if ( !virtualsAreExpanded ) {
throw Exception()
<< "MatchboxFactory: Cannot check epsilon poles if virtuals are not in `expanded' convention.\n"
<< Exception::runerror;
}
}
}
if ( !bornContributions() || independentVirtuals() ) {
nlo->doOneLoopNoBorn();
} else {
nlo->doOneLoop();
}
if ( nlo->isOLPLoop() ) {
int id = orderOLPProcess(nlo->subProcess(),
(**born).matchboxAmplitude(),
ProcessType::oneLoopInterference);
nlo->olpProcess(ProcessType::oneLoopInterference,id);
if ( !nlo->onlyOneLoop() && nlo->needsOLPCorrelators() ) {
id = orderOLPProcess(nlo->subProcess(),
(**born).matchboxAmplitude(),
ProcessType::colourCorrelatedME2);
nlo->olpProcess(ProcessType::colourCorrelatedME2,id);
}
}
nlo->needsCorrelations();
nlo->cloneDependencies();
bornVirtualMEs().push_back(nlo);
MEs().push_back(nlo);
if ( independentVirtuals() && independentPKs() && !nlo->onlyOneLoop() ) {
Ptr<MatchboxMEBase>::ptr nlopk = (**born).cloneMe();
string pnamepk = fullName() + "/" + (**born).name();
pnamepk += ".VirtualPK";
if ( ! (generator()->preinitRegister(nlopk,pnamepk) ) )
throw Exception() << "MatchboxFactory: NLO ME " << pnamepk << " already existing."
<< Exception::runerror;
nlopk->virtuals().clear();
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionPKOperators(dipoleSet()).begin();
virt != DipoleRepository::insertionPKOperators(dipoleSet()).end(); ++virt ) {
if ( (**virt).apply((**born).diagrams().front()->partons()) )
nlopk->virtuals().push_back(*virt);
}
if ( !nlopk->virtuals().empty() ) {
nlopk->doOneLoopNoBorn();
nlopk->doOneLoopNoLoops();
if ( nlopk->isOLPLoop() ) {
int id = orderOLPProcess(nlopk->subProcess(),
(**born).matchboxAmplitude(),
ProcessType::treeME2);
nlopk->olpProcess(ProcessType::treeME2,id);
if ( nlopk->needsOLPCorrelators() ) {
id = orderOLPProcess(nlopk->subProcess(),
(**born).matchboxAmplitude(),
ProcessType::colourCorrelatedME2);
nlopk->olpProcess(ProcessType::colourCorrelatedME2,id);
}
}
nlopk->needsCorrelations();
nlopk->cloneDependencies();
bornVirtualMEs().push_back(nlopk);
MEs().push_back(nlopk);
}
}
++(*progressBar);
}
delete progressBar;
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
}
theSplittingDipoles.clear();
set<cPDVector> bornProcs;
if ( showerApproximation() ) {
if ( showerApproximation()->needsSplittingGenerator() ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born )
for ( MEBase::DiagramVector::const_iterator d = (**born).diagrams().begin();
d != (**born).diagrams().end(); ++d )
bornProcs.insert((**d).partons());
}
}
if ( realContributions() || meCorrectionsOnly() ||
(showerApproximation() && virtualContributions()) ||
(showerApproximation() && loopSimCorrections()) ) {
generator()->log() << "preparing subtracted matrix elements.\n" << flush;
if ( theSubtractionData != "" )
if ( theSubtractionData[theSubtractionData.size()-1] != '/' )
theSubtractionData += "/";
subtractedMEs().clear();
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
if ( (**born).onlyOneLoop() )
continue;
(**born).needsCorrelations();
if ( (**born).isOLPTree() ) {
int id = orderOLPProcess((**born).subProcess(),
(**born).matchboxAmplitude(),
ProcessType::colourCorrelatedME2);
(**born).olpProcess(ProcessType::colourCorrelatedME2,id);
bool haveGluon = false;
for ( PDVector::const_iterator p = (**born).subProcess().legs.begin();
p != (**born).subProcess().legs.end(); ++p )
if ( (**p).id() == 21 ) {
haveGluon = true;
break;
}
if ( haveGluon ) {
id = orderOLPProcess((**born).subProcess(),
(**born).matchboxAmplitude(),
ProcessType::spinColourCorrelatedME2);
(**born).olpProcess(ProcessType::spinColourCorrelatedME2,id);
}
if ( showerApproximation() ) {
id = orderOLPProcess((**born).subProcess(),
(**born).matchboxAmplitude(),
ProcessType::treeME2);
(**born).olpProcess(ProcessType::treeME2,id);
}
}
}
boost::progress_display * progressBar =
new boost::progress_display(realEmissionMEs().size(),generator()->log());
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator real
= realEmissionMEs().begin(); real != realEmissionMEs().end(); ++real ) {
Ptr<SubtractedME>::ptr sub = new_ptr(SubtractedME());
string pname = fullName() + "/" + (**real).name() + ".SubtractedReal";
if ( ! (generator()->preinitRegister(sub,pname) ) )
throw Exception() << "MatchboxFactory: Subtracted ME " << pname << " already existing."
<< Exception::runerror;
sub->factory(this);
(**real).needsNoCorrelations();
if ( (**real).isOLPTree() ) {
int id = orderOLPProcess((**real).subProcess(),
(**real).matchboxAmplitude(),
ProcessType::treeME2);
(**real).olpProcess(ProcessType::treeME2,id);
}
sub->head(*real);
sub->dependent().clear();
sub->getDipoles();
if ( sub->dependent().empty() ) {
// finite real contribution
if ( realContributions() ) {
Ptr<MatchboxMEBase>::ptr fme =
dynamic_ptr_cast<Ptr<MatchboxMEBase>::ptr>(sub->head())->cloneMe();
string qname = fullName() + "/" + (**real).name() + ".FiniteReal";
if ( ! (generator()->preinitRegister(fme,qname) ) )
throw Exception() << "MatchboxFactory: ME " << qname << " already existing."
<< Exception::runerror;
MEs().push_back(fme);
finiteRealMEs().push_back(fme);
}
sub->head(tMEPtr());
++(*progressBar);
continue;
}
if ( realEmissionScales() )
sub->doRealEmissionScales();
subtractedMEs().push_back(sub);
if ( realContributions() )
if ( !showerApproximation() || (showerApproximation() && showerApproximation()->hasHEvents()) )
MEs().push_back(sub);
if ( showerApproximation() ) {
if ( virtualContributions() && !meCorrectionsOnly() && !loopSimCorrections() ) {
Ptr<SubtractedME>::ptr subv = new_ptr(*sub);
string vname = sub->fullName() + ".SubtractionIntegral";
if ( ! (generator()->preinitRegister(subv,vname) ) )
throw Exception() << "MatchboxFactory: Subtracted ME " << vname << " already existing."
<< Exception::runerror;
subv->cloneDependencies(vname);
subv->doVirtualShowerSubtraction();
subtractedMEs().push_back(subv);
MEs().push_back(subv);
}
if ( loopSimCorrections() ) {
Ptr<SubtractedME>::ptr subv = new_ptr(*sub);
string vname = sub->fullName() + ".SubtractionIntegral";
if ( ! (generator()->preinitRegister(subv,vname) ) )
throw Exception() << "MatchboxFactory: Subtracted ME " << vname << " already existing."
<< Exception::runerror;
subv->cloneDependencies(vname);
subv->doLoopSimSubtraction();
subtractedMEs().push_back(subv);
MEs().push_back(subv);
}
sub->doRealShowerSubtraction();
if ( showerApproximation()->needsSplittingGenerator() )
for ( set<cPDVector>::const_iterator p = bornProcs.begin();
p != bornProcs.end(); ++p ) {
vector<Ptr<SubtractionDipole>::ptr> sdip = sub->splitDipoles(*p);
set<Ptr<SubtractionDipole>::ptr>& dips = theSplittingDipoles[*p];
copy(sdip.begin(),sdip.end(),inserter(dips,dips.begin()));
}
}
++(*progressBar);
}
delete progressBar;
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
}
if ( !theSplittingDipoles.empty() ) {
map<Ptr<SubtractionDipole>::ptr,Ptr<SubtractionDipole>::ptr> cloneMap;
for ( map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >::const_iterator sd = theSplittingDipoles.begin();
sd != theSplittingDipoles.end(); ++sd ) {
for ( set<Ptr<SubtractionDipole>::ptr>::const_iterator d = sd->second.begin();
d != sd->second.end(); ++d ) {
cloneMap[*d] = Ptr<SubtractionDipole>::ptr();
}
}
for ( map<Ptr<SubtractionDipole>::ptr,Ptr<SubtractionDipole>::ptr>::iterator cd =
cloneMap.begin(); cd != cloneMap.end(); ++cd ) {
Ptr<SubtractionDipole>::ptr cloned = cd->first->cloneMe();
string dname = cd->first->fullName() + ".splitting";
if ( ! (generator()->preinitRegister(cloned,dname)) )
throw Exception() << "MatchboxFactory: Dipole '" << dname << "' already existing."
<< Exception::runerror;
cloned->cloneDependencies();
cloned->showerApproximation(Ptr<ShowerApproximation>::tptr());
cloned->doSplitting();
cd->second = cloned;
}
for ( map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >::iterator sd = theSplittingDipoles.begin();
sd != theSplittingDipoles.end(); ++sd ) {
set<Ptr<SubtractionDipole>::ptr> cloned;
for ( set<Ptr<SubtractionDipole>::ptr>::iterator d = sd->second.begin();
d != sd->second.end(); ++d ) {
cloned.insert(cloneMap[*d]);
}
sd->second = cloned;
}
}
if ( !externalAmplitudes().empty() ) {
generator()->log() << "Initializing external amplitudes.\n" << flush;
for ( set<Ptr<MatchboxAmplitude>::tptr>::const_iterator ext =
externalAmplitudes().begin(); ext != externalAmplitudes().end(); ++ext ) {
if ( !(**ext).initializeExternal() ) {
throw Exception() << "Failed to initialize amplitude '" << (**ext).name() << "'\n"
<< Exception::runerror;
}
}
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
}
if ( !olpProcesses().empty() ) {
generator()->log() << "Initializing one-loop provider(s).\n" << flush;
map<Ptr<MatchboxAmplitude>::tptr,map<pair<Process,int>,int> > olps;
for ( map<Ptr<MatchboxAmplitude>::tptr,map<pair<Process,int>,int> >::const_iterator
oit = olpProcesses().begin(); oit != olpProcesses().end(); ++oit ) {
olps[oit->first] = oit->second;
}
for ( map<Ptr<MatchboxAmplitude>::tptr,map<pair<Process,int>,int> >::const_iterator
olpit = olps.begin(); olpit != olps.end(); ++olpit ) {
if ( !olpit->first->startOLP(olpit->second) ) {
throw Exception() << "MatchboxFactory: Failed to start OLP for amplitude '" << olpit->first->name() << "'\n"
<< Exception::runerror;
}
}
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
}
generator()->log() << "Process setup finished.\n" << flush;
ranSetup = true;
}
}
void MatchboxFactory::SplittingChannel::print(ostream& os) const {
os << "--- SplittingChannel setup -----------------------------------------------------\n";
os << " Born process ";
const StandardXComb& bxc = *bornXComb;
os << bxc.mePartonData()[0]->PDGName() << " "
<< bxc.mePartonData()[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = bxc.mePartonData().begin() + 2;
p != bxc.mePartonData().end(); ++p ) {
os << (**p).PDGName() << " ";
}
os << "\n";
os << " to real emission process ";
const StandardXComb& rxc = *realXComb;
os << rxc.mePartonData()[0]->PDGName() << " "
<< rxc.mePartonData()[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = rxc.mePartonData().begin() + 2;
p != rxc.mePartonData().end(); ++p ) {
os << (**p).PDGName() << " ";
}
os << "\n";
os << " with dipole:\n";
dipole->print(os);
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
list<MatchboxFactory::SplittingChannel>
MatchboxFactory::getSplittingChannels(tStdXCombPtr xcptr) const {
if ( xcptr->lastProjector() )
xcptr = xcptr->lastProjector();
const StandardXComb& xc = *xcptr;
cPDVector proc = xc.mePartonData();
map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >::const_iterator splitEntries
= splittingDipoles().find(proc);
list<SplittingChannel> res;
if ( splitEntries == splittingDipoles().end() )
return res;
const set<Ptr<SubtractionDipole>::ptr>& splitDipoles = splitEntries->second;
SplittingChannel channel;
if ( !splitDipoles.empty() ) {
Ptr<MatchboxMEBase>::tptr bornME =
const_ptr_cast<Ptr<MatchboxMEBase>::tptr>((**splitDipoles.begin()).underlyingBornME());
channel.bornXComb =
bornME->makeXComb(xc.maxEnergy(),xc.particles(),xc.eventHandlerPtr(),
const_ptr_cast<tSubHdlPtr>(xc.subProcessHandler()),
xc.pExtractor(),xc.CKKWHandler(),
xc.partonBins(),xc.cuts(),xc.diagrams(),xc.mirror(),
PartonPairVec());
}
for ( set<Ptr<SubtractionDipole>::ptr>::const_iterator sd =
splitDipoles.begin(); sd != splitDipoles.end(); ++sd ) {
channel.dipole = *sd;
vector<StdXCombPtr> realXCombs = (**sd).makeRealXCombs(channel.bornXComb);
for ( vector<StdXCombPtr>::const_iterator rxc = realXCombs.begin();
rxc != realXCombs.end(); ++rxc ) {
channel.realXComb = *rxc;
if ( showerApproximation()->needsTildeXCombs() ) {
channel.tildeXCombs.clear();
assert(!channel.dipole->partnerDipoles().empty());
for ( vector<Ptr<SubtractionDipole>::tptr>::const_iterator p =
channel.dipole->partnerDipoles().begin();
p != channel.dipole->partnerDipoles().end(); ++p ) {
StdXCombPtr txc = channel.dipole->makeBornXComb(channel.realXComb);
if ( txc )
channel.tildeXCombs.push_back(txc);
}
}
res.push_back(channel);
}
}
if ( initVerbose() ) {
generator()->log()
<< "--- MatchboxFactory splitting channels ----------------------------------------------\n";
const StandardXComb& bxc = *xcptr;
generator()->log() << " hard process handled is: ";
generator()->log() << bxc.mePartonData()[0]->PDGName() << " "
<< bxc.mePartonData()[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = bxc.mePartonData().begin() + 2;
p != bxc.mePartonData().end(); ++p ) {
generator()->log() << (**p).PDGName() << " ";
}
generator()->log() << "\n";
for ( list<MatchboxFactory::SplittingChannel>::const_iterator sp =
res.begin(); sp != res.end(); ++sp ) {
sp->print(generator()->log());
}
generator()->log()
<< "-------------------------------------------------------------------------------------\n"
<< flush;
}
return res;
}
void MatchboxFactory::print(ostream& os) const {
os << "--- MatchboxFactory setup -----------------------------------------------------------\n";
if ( !amplitudes().empty() ) {
os << " generated Born matrix elements:\n";
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator m = bornMEs().begin();
m != bornMEs().end(); ++m ) {
(**m).print(os);
}
os << flush;
os << " generated real emission matrix elements:\n";
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator m = realEmissionMEs().begin();
m != realEmissionMEs().end(); ++m ) {
(**m).print(os);
}
os << flush;
}
os << " generated Born+virtual matrix elements:\n";
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator bv
= bornVirtualMEs().begin(); bv != bornVirtualMEs().end(); ++bv ) {
(**bv).print(os);
}
os << " generated subtracted matrix elements:\n";
for ( vector<Ptr<SubtractedME>::ptr>::const_iterator sub
= subtractedMEs().begin(); sub != subtractedMEs().end(); ++sub ) {
os << " '" << (**sub).name() << "'\n";
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
+void MatchboxFactory::summary(ostream& os) const {
+ os << "\n\n================================================================================\n"
+ << " Matchbox hard process summary\n"
+ << "================================================================================\n\n";
+
+ os << " Electro-weak parameter summary:\n"
+ << "--------------------------------------------------------------------------------\n\n";
+
+ os << " Electro-weak scheme : ";
+ switch ( SM().ewScheme() ) {
+
+ case 0: os << "Default"; break;
+ case 1: os << "GMuScheme"; break;
+ case 2: os << "alphaMZScheme"; break;
+ case 3: os << "NoMass"; break;
+ case 4: os << "mW"; break;
+ case 5: os << "mZ"; break;
+ case 6: os << "Independent"; break;
+ case 7: os << "FeynRulesUFO"; break;
+ default: assert(false);
+
+ }
+
+ os << "\n";
+
+ os << " alphaEM is "
+ << (SM().ewScheme() == 0 && !theFixedQEDCouplings ? "running" : "fixed at alphaEM(m(Z))") << "\n";
+
+ if ( SM().ewScheme() == 0 && !theFixedQEDCouplings )
+ os << " alphaEM is running at " << SM().alphaEMPtr()->nloops()
+ << " loops\n\n";
+ else
+ os << "\n";
+
+ os << (SM().ewScheme() != 0 ? " Tree level relations " : " Best values ")
+ << "yield:\n\n"
+ << " m(Z)/GeV = "
+ << getParticleData(ParticleID::Z0)->hardProcessMass()/GeV
+ << "\n"
+ << " g(Z)/GeV = "
+ << getParticleData(ParticleID::Z0)->hardProcessWidth()/GeV
+ << "\n"
+ << " m(W)/GeV = "
+ << getParticleData(ParticleID::Wplus)->hardProcessMass()/GeV
+ << "\n"
+ << " g(W)/GeV = "
+ << getParticleData(ParticleID::Wplus)->hardProcessWidth()/GeV
+ << "\n"
+ << " m(H)/GeV = "
+ << getParticleData(ParticleID::h0)->hardProcessMass()/GeV
+ << "\n"
+ << " g(H)/GeV = "
+ << getParticleData(ParticleID::h0)->hardProcessWidth()/GeV
+ << "\n"
+ << " alphaEM(m(Z)) = "
+ << SM().alphaEMME(sqr(getParticleData(ParticleID::Z0)->hardProcessMass())) << "\n"
+ << " sin^2(theta) = " << SM().sin2ThetaW()
+ << "\n"
+ << " GeV^2 GF = " << GeV2*SM().fermiConstant()
+ << "\n\n";
+
+ os << " Quark masses and widths are:\n"
+ << "--------------------------------------------------------------------------------\n\n"
+ << " m(u)/GeV = " << getParticleData(ParticleID::u)->hardProcessMass()/GeV << "\n"
+ << " m(d)/GeV = " << getParticleData(ParticleID::d)->hardProcessMass()/GeV << "\n"
+ << " m(c)/GeV = " << getParticleData(ParticleID::c)->hardProcessMass()/GeV << "\n"
+ << " m(s)/GeV = " << getParticleData(ParticleID::s)->hardProcessMass()/GeV << "\n"
+ << " m(t)/GeV = " << getParticleData(ParticleID::t)->hardProcessMass()/GeV << "\n"
+ << " g(t)/GeV = " << getParticleData(ParticleID::t)->hardProcessWidth()/GeV << "\n"
+ << " m(b)/GeV = " << getParticleData(ParticleID::b)->hardProcessMass()/GeV << "\n\n";
+
+ os << " Lepton masses and widths are:\n"
+ << "--------------------------------------------------------------------------------\n\n"
+ << " m(n_e)/GeV = " << getParticleData(ParticleID::nu_e)->hardProcessMass()/GeV << "\n"
+ << " m(e)/GeV = " << getParticleData(ParticleID::eminus)->hardProcessMass()/GeV << "\n"
+ << " m(n_mu)/GeV = " << getParticleData(ParticleID::nu_mu)->hardProcessMass()/GeV << "\n"
+ << " m(mu)/GeV = " << getParticleData(ParticleID::muminus)->hardProcessMass()/GeV << "\n"
+ << " m(nu_tau)/GeV = " << getParticleData(ParticleID::nu_tau)->hardProcessMass()/GeV << "\n"
+ << " m(tau)/GeV = " << getParticleData(ParticleID::tauminus)->hardProcessMass()/GeV << "\n\n";
+
+
+ os << " Strong coupling summary:\n"
+ << "--------------------------------------------------------------------------------\n\n";
+
+ os << " alphaS is";
+ if ( !theFixedCouplings ) {
+ os << " running at " << SM().alphaSPtr()->nloops()
+ << " loops with\n"
+ << " alphaS(m(Z)) = " << SM().alphaSPtr()->value(sqr(getParticleData(ParticleID::Z0)->mass()))
+ << "\n\n";
+ } else {
+ os << " fixed at "
+ << SM().alphaS()
+ << "\n\n";
+ }
+
+ if ( !theFixedCouplings ) {
+ os << " flavour thresholds are matched at\n";
+ for ( long id = 1; id <= 6; ++id ) {
+ os << " m(" << id << ")/GeV = "
+ << (SM().alphaSPtr()->quarkMasses().empty() ?
+ getParticleData(id)->mass()/GeV :
+ SM().alphaSPtr()->quarkMasses()[id-1]/GeV)
+ << "\n";
+ }
+ }
+
+ os << "\n\n" << flush;
+
+}
+
+
void MatchboxFactory::doinit() {
theIsMatchboxRun() = true;
if ( RunDirectories::empty() )
RunDirectories::pushRunId(generator()->runName());
setup();
if ( theShowerApproximation )
theShowerApproximation->init();
if ( initVerbose() && !ranSetup )
print(Repository::clog());
Ptr<StandardEventHandler>::tptr eh =
dynamic_ptr_cast<Ptr<StandardEventHandler>::tptr>(generator()->eventHandler());
assert(eh);
+ if ( initVerbose() && !ranSetup ) {
+ assert(standardModel());
+ standardModel()->init();
+ summary(Repository::clog());
+ }
SubProcessHandler::doinit();
}
void MatchboxFactory::doinitrun() {
theIsMatchboxRun() = true;
if ( theShowerApproximation )
theShowerApproximation->initrun();
Ptr<StandardEventHandler>::tptr eh =
dynamic_ptr_cast<Ptr<StandardEventHandler>::tptr>(generator()->eventHandler());
assert(eh);
SubProcessHandler::doinitrun();
}
const string& MatchboxFactory::buildStorage() {
return RunDirectories::buildStorage();
}
const string& MatchboxFactory::runStorage() {
return RunDirectories::runStorage();
}
void MatchboxFactory::persistentOutput(PersistentOStream & os) const {
os << theDiagramGenerator << theProcessData
<< theNLight
<< theNLightJetVec << theNHeavyJetVec << theNLightProtonVec
<< theOrderInAlphaS << theOrderInAlphaEW
<< theBornContributions << theVirtualContributions
<< theRealContributions << theIndependentVirtuals << theIndependentPKs
<< theSubProcessGroups
<< thePhasespace << theScaleChoice
<< theFactorizationScaleFactor << theRenormalizationScaleFactor
<< theFixedCouplings << theFixedQEDCouplings << theVetoScales
<< theAmplitudes
<< theBornMEs << theVirtuals << theRealEmissionMEs << theLoopInducedMEs
<< theBornVirtualMEs << theSubtractedMEs << theFiniteRealMEs
<< theVerbose<<theDiagramWeightVerbose
<<theDiagramWeightVerboseNBins
<< theInitVerbose << theSubtractionData << theSubtractionPlotType
<< theSubtractionScatterPlot << thePoleData
<< theParticleGroups << processes << loopInducedProcesses << realEmissionProcesses
<< theShowerApproximation << theSplittingDipoles
<< theRealEmissionScales << theAllProcesses
<< theOLPProcesses << theExternalAmplitudes
<< theSelectedAmplitudes << theDeselectedAmplitudes
<< theDipoleSet << theReweighters << thePreweighters
<< theMECorrectionsOnly<< theLoopSimCorrections<<theHighestVirtualsize << ranSetup
<< theIncoming << theFirstPerturbativePDF << theSecondPerturbativePDF
<< inProductionMode << theSpinCorrelations << theAlphaParameter
<< theEnforceChargeConservation << theEnforceColourConservation
<< theEnforceLeptonNumberConservation << theEnforceQuarkNumberConservation
<< theLeptonFlavourDiagonal << theQuarkFlavourDiagonal;
}
void MatchboxFactory::persistentInput(PersistentIStream & is, int) {
is >> theDiagramGenerator >> theProcessData
>> theNLight
>> theNLightJetVec >> theNHeavyJetVec >> theNLightProtonVec
>> theOrderInAlphaS >> theOrderInAlphaEW
>> theBornContributions >> theVirtualContributions
>> theRealContributions >> theIndependentVirtuals >> theIndependentPKs
>> theSubProcessGroups
>> thePhasespace >> theScaleChoice
>> theFactorizationScaleFactor >> theRenormalizationScaleFactor
>> theFixedCouplings >> theFixedQEDCouplings >> theVetoScales
>> theAmplitudes
>> theBornMEs >> theVirtuals >> theRealEmissionMEs >> theLoopInducedMEs
>> theBornVirtualMEs >> theSubtractedMEs >> theFiniteRealMEs
>> theVerbose >> theDiagramWeightVerbose
>> theDiagramWeightVerboseNBins
>> theInitVerbose >> theSubtractionData >> theSubtractionPlotType
>> theSubtractionScatterPlot >> thePoleData
>> theParticleGroups >> processes >> loopInducedProcesses >> realEmissionProcesses
>> theShowerApproximation >> theSplittingDipoles
>> theRealEmissionScales >> theAllProcesses
>> theOLPProcesses >> theExternalAmplitudes
>> theSelectedAmplitudes >> theDeselectedAmplitudes
>> theDipoleSet >> theReweighters >> thePreweighters
>> theMECorrectionsOnly>> theLoopSimCorrections>>theHighestVirtualsize >> ranSetup
>> theIncoming >> theFirstPerturbativePDF >> theSecondPerturbativePDF
>> inProductionMode >> theSpinCorrelations >> theAlphaParameter
>> theEnforceChargeConservation >> theEnforceColourConservation
>> theEnforceLeptonNumberConservation >> theEnforceQuarkNumberConservation
>> theLeptonFlavourDiagonal >> theQuarkFlavourDiagonal;
}
string MatchboxFactory::startParticleGroup(string name) {
particleGroupName = StringUtils::stripws(name);
particleGroup.clear();
return "";
}
string MatchboxFactory::endParticleGroup(string) {
if ( particleGroup.empty() )
throw Exception() << "MatchboxFactory: Empty particle group."
<< Exception::runerror;
particleGroups()[particleGroupName] = particleGroup;
particleGroup.clear();
return "";
}
vector<string> MatchboxFactory::parseProcess(string in) {
vector<string> process = StringUtils::split(in);
if ( process.size() < 3 )
throw Exception() << "MatchboxFactory: Invalid process."
<< Exception::runerror;
for ( vector<string>::iterator p = process.begin();
p != process.end(); ++p ) {
*p = StringUtils::stripws(*p);
}
vector<string> pprocess;
for ( vector<string>::const_iterator p = process.begin();
p != process.end(); ++p ) {
if ( *p == "->" )
continue;
pprocess.push_back(*p);
}
return pprocess;
}
string MatchboxFactory::doProcess(string in) {
processes.push_back(parseProcess(in));
return "";
}
string MatchboxFactory::doLoopInducedProcess(string in) {
loopInducedProcesses.push_back(parseProcess(in));
return "";
}
string MatchboxFactory::doSingleRealProcess(string in) {
realEmissionProcesses.push_back(parseProcess(in));
return "";
}
struct SortPID {
inline bool operator()(PDPtr a, PDPtr b) const {
return a->id() < b->id();
}
};
//
// @TODO
//
// SP: After improving this for standard model process building this should
// actually got into a separate process builder class or something along these
// lines to have it better factored for use with BSM models.
//
//
set<PDVector> MatchboxFactory::
makeSubProcesses(const vector<string>& proc) const {
if ( proc.empty() )
throw Exception() << "MatchboxFactory: No process specified."
<< Exception::runerror;
vector<PDVector> groups;
typedef map<string,PDVector>::const_iterator GroupIterator;
for ( vector<string>::const_iterator gr = proc.begin();
gr != proc.end(); ++gr ) {
GroupIterator git = particleGroups().find(*gr);
if ( git == particleGroups().end() ) {
throw Exception() << "MatchboxFactory: Particle group '"
<< *gr << "' not defined." << Exception::runerror;
}
groups.push_back(git->second);
}
vector<size_t> counts(groups.size(),0);
PDVector proto(groups.size());
set<PDVector> allProcs;
while ( true ) {
for ( size_t k = 0; k < groups.size(); ++k )
proto[k] = groups[k][counts[k]];
int charge = 0;
int colour = 0;
int nleptons = 0;
int nquarks = 0;
int ncolour = 0;
int nleptonsGen[4];
int nquarksGen[4];
for ( size_t i = 0; i < 4; ++i ) {
nleptonsGen[i] = 0;
nquarksGen[i] = 0;
}
for ( size_t k = 0; k < proto.size(); ++k ) {
int sign = k > 1 ? 1 : -1;
charge += sign * proto[k]->iCharge();
colour += sign * proto[k]->iColour();
if ( abs(proto[k]->id()) <= 8 ) {
int generation = (abs(proto[k]->id()) - 1)/2;
nquarks += sign * ( proto[k]->id() < 0 ? -1 : 1);
nquarksGen[generation] += sign * ( proto[k]->id() < 0 ? -1 : 1);
}
if ( abs(proto[k]->id()) > 10 &&
abs(proto[k]->id()) <= 18 ) {
int generation = (abs(proto[k]->id()) - 11)/2;
nleptons += sign * ( proto[k]->id() < 0 ? -1 : 1);
nleptonsGen[generation] += sign * ( proto[k]->id() < 0 ? -1 : 1);
}
if ( proto[k]->coloured() )
++ncolour;
}
bool pass = true;
if ( theEnforceChargeConservation )
pass &= (charge == 0);
if ( theEnforceColourConservation )
pass &= (colour % 8 == 0) && (ncolour > 1);
if ( theEnforceLeptonNumberConservation ) {
pass &= (nleptons == 0);
if ( theLeptonFlavourDiagonal ) {
for ( size_t i = 0; i < 4; ++i )
pass &= (nleptonsGen[i] == 0);
}
}
if ( theEnforceQuarkNumberConservation ) {
pass &= (nquarks == 0);
if ( theQuarkFlavourDiagonal ) {
for ( size_t i = 0; i < 4; ++i )
pass &= (nquarksGen[i] == 0);
}
}
if ( pass ) {
for ( int i = 0; i < 2; ++i ) {
if ( proto[i]->coloured() &&
proto[i]->hardProcessMass() != ZERO )
throw Exception()
<< "Inconsistent flavour scheme detected with massive incoming "
<< proto[i]->PDGName() << ". Check your setup."
<< Exception::runerror;
}
sort(proto.begin()+2,proto.end(),SortPID());
allProcs.insert(proto);
}
vector<size_t>::reverse_iterator c = counts.rbegin();
vector<PDVector>::const_reverse_iterator g = groups.rbegin();
while ( c != counts.rend() ) {
if ( ++(*c) == g->size() ) {
*c = 0;
++c; ++g;
} else {
break;
}
}
if ( c == counts.rend() )
break;
}
return allProcs;
}
void MatchboxFactory::Init() {
static ClassDocumentation<MatchboxFactory> documentation
("MatchboxFactory",
"NLO QCD corrections have been calculated "
"using Matchbox \\cite{Platzer:2011bc}, \\cite{Matchbox:2015}",
"%\\cite{Platzer:2011bc}\n"
"\\bibitem{Platzer:2011bc}\n"
"S.~Platzer and S.~Gieseke,\n"
"``Dipole Showers and Automated NLO Matching in Herwig,''\n"
"arXiv:1109.6256 [hep-ph].\n"
"%%CITATION = ARXIV:1109.6256;%%\n"
"%\\cite{Matchbox:2015}\n"
"\\bibitem{Matchbox:2015}\n"
"Herwig collaboration,\n"
"``Precision LHC Event Generation with Herwig,''\n"
"in preparation.");
static Reference<MatchboxFactory,Tree2toNGenerator> interfaceDiagramGenerator
("DiagramGenerator",
"Set the diagram generator.",
&MatchboxFactory::theDiagramGenerator, false, false, true, true, false);
static Reference<MatchboxFactory,ProcessData> interfaceProcessData
("ProcessData",
"Set the process data object to be used.",
&MatchboxFactory::theProcessData, false, false, true, true, false);
static Parameter<MatchboxFactory,unsigned int> interfaceOrderInAlphaS
("OrderInAlphaS",
"The order in alpha_s to consider.",
&MatchboxFactory::theOrderInAlphaS, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<MatchboxFactory,unsigned int> interfaceOrderInAlphaEW
("OrderInAlphaEW",
"The order in alpha_EW",
&MatchboxFactory::theOrderInAlphaEW, 2, 0, 0,
false, false, Interface::lowerlim);
static Switch<MatchboxFactory,bool> interfaceBornContributions
("BornContributions",
"Switch on or off the Born contributions.",
&MatchboxFactory::theBornContributions, true, false, false);
static SwitchOption interfaceBornContributionsOn
(interfaceBornContributions,
"On",
"Switch on Born contributions.",
true);
static SwitchOption interfaceBornContributionsOff
(interfaceBornContributions,
"Off",
"Switch off Born contributions.",
false);
static Switch<MatchboxFactory,bool> interfaceVirtualContributions
("VirtualContributions",
"Switch on or off the virtual contributions.",
&MatchboxFactory::theVirtualContributions, true, false, false);
static SwitchOption interfaceVirtualContributionsOn
(interfaceVirtualContributions,
"On",
"Switch on virtual contributions.",
true);
static SwitchOption interfaceVirtualContributionsOff
(interfaceVirtualContributions,
"Off",
"Switch off virtual contributions.",
false);
static Switch<MatchboxFactory,bool> interfaceRealContributions
("RealContributions",
"Switch on or off the real contributions.",
&MatchboxFactory::theRealContributions, true, false, false);
static SwitchOption interfaceRealContributionsOn
(interfaceRealContributions,
"On",
"Switch on real contributions.",
true);
static SwitchOption interfaceRealContributionsOff
(interfaceRealContributions,
"Off",
"Switch off real contributions.",
false);
static Switch<MatchboxFactory,bool> interfaceIndependentVirtuals
("IndependentVirtuals",
"Switch on or off virtual contributions as separate subprocesses.",
&MatchboxFactory::theIndependentVirtuals, true, false, false);
static SwitchOption interfaceIndependentVirtualsOn
(interfaceIndependentVirtuals,
"On",
"Switch on virtual contributions as separate subprocesses.",
true);
static SwitchOption interfaceIndependentVirtualsOff
(interfaceIndependentVirtuals,
"Off",
"Switch off virtual contributions as separate subprocesses.",
false);
static Switch<MatchboxFactory,bool> interfaceIndependentPKs
("IndependentPKOperators",
"Switch on or off PK oeprators as separate subprocesses.",
&MatchboxFactory::theIndependentPKs, true, false, false);
static SwitchOption interfaceIndependentPKsOn
(interfaceIndependentPKs,
"On",
"Switch on PK operators as separate subprocesses.",
true);
static SwitchOption interfaceIndependentPKsOff
(interfaceIndependentPKs,
"Off",
"Switch off PK operators as separate subprocesses.",
false);
static Switch<MatchboxFactory,bool> interfaceSubProcessGroups
("SubProcessGroups",
"Switch on or off production of sub-process groups.",
&MatchboxFactory::theSubProcessGroups, false, false, false);
static SwitchOption interfaceSubProcessGroupsOn
(interfaceSubProcessGroups,
"On",
"On",
true);
static SwitchOption interfaceSubProcessGroupsOff
(interfaceSubProcessGroups,
"Off",
"Off",
false);
static Reference<MatchboxFactory,MatchboxPhasespace> interfacePhasespace
("Phasespace",
"Set the phasespace generator.",
&MatchboxFactory::thePhasespace, false, false, true, true, false);
static Reference<MatchboxFactory,MatchboxScaleChoice> interfaceScaleChoice
("ScaleChoice",
"Set the scale choice object.",
&MatchboxFactory::theScaleChoice, false, false, true, true, false);
static Parameter<MatchboxFactory,double> interfaceFactorizationScaleFactor
("FactorizationScaleFactor",
"The factorization scale factor.",
&MatchboxFactory::theFactorizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<MatchboxFactory,double> interfaceRenormalizationScaleFactor
("RenormalizationScaleFactor",
"The renormalization scale factor.",
&MatchboxFactory::theRenormalizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Switch<MatchboxFactory,bool> interfaceFixedCouplings
("FixedCouplings",
"Switch on or off fixed couplings.",
&MatchboxFactory::theFixedCouplings, true, false, false);
static SwitchOption interfaceFixedCouplingsOn
(interfaceFixedCouplings,
"On",
"On",
true);
static SwitchOption interfaceFixedCouplingsOff
(interfaceFixedCouplings,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceFixedQEDCouplings
("FixedQEDCouplings",
"Switch on or off fixed QED couplings.",
&MatchboxFactory::theFixedQEDCouplings, true, false, false);
static SwitchOption interfaceFixedQEDCouplingsOn
(interfaceFixedQEDCouplings,
"On",
"On",
true);
static SwitchOption interfaceFixedQEDCouplingsOff
(interfaceFixedQEDCouplings,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceVetoScales
("VetoScales",
"Switch on or setting veto scales.",
&MatchboxFactory::theVetoScales, false, false, false);
static SwitchOption interfaceVetoScalesOn
(interfaceVetoScales,
"On",
"On",
true);
static SwitchOption interfaceVetoScalesOff
(interfaceVetoScales,
"Off",
"Off",
false);
static RefVector<MatchboxFactory,MatchboxAmplitude> interfaceAmplitudes
("Amplitudes",
"The amplitude objects.",
&MatchboxFactory::theAmplitudes, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceBornMEs
("BornMEs",
"The Born matrix elements to be used",
&MatchboxFactory::theBornMEs, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxInsertionOperator> interfaceVirtuals
("Virtuals",
"The virtual corrections to include",
&MatchboxFactory::theVirtuals, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceRealEmissionMEs
("RealEmissionMEs",
"The RealEmission matrix elements to be used",
&MatchboxFactory::theRealEmissionMEs, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceBornVirtuals
("BornVirtualMEs",
"The generated Born/virtual contributions",
&MatchboxFactory::theBornVirtualMEs, -1, false, true, true, true, false);
static RefVector<MatchboxFactory,SubtractedME> interfaceSubtractedMEs
("SubtractedMEs",
"The generated subtracted real emission contributions",
&MatchboxFactory::theSubtractedMEs, -1, false, true, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceFiniteRealMEs
("FiniteRealMEs",
"The generated finite real contributions",
&MatchboxFactory::theFiniteRealMEs, -1, false, true, true, true, false);
static Switch<MatchboxFactory,bool> interfaceVerbose
("Verbose",
"Print full infomation on each evaluated phase space point.",
&MatchboxFactory::theVerbose, false, false, false);
static SwitchOption interfaceVerboseOn
(interfaceVerbose,
"On",
"On",
true);
static SwitchOption interfaceVerboseOff
(interfaceVerbose,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceVerboseDia
("DiagramWeightVerbose",
"Print full infomation on each evaluated phase space point.",
&MatchboxFactory::theDiagramWeightVerbose, false, false, false);
static SwitchOption interfaceVerboseDiaOn
(interfaceVerboseDia,
"On",
"On",
true);
static SwitchOption interfaceVerboseDiaOff
(interfaceVerboseDia,
"Off",
"Off",
false);
static Parameter<MatchboxFactory,int> interfaceVerboseDiaNbins
("DiagramWeightVerboseNBins",
"No. of Bins for DiagramWeightVerbose Diagrams.",
&MatchboxFactory::theDiagramWeightVerboseNBins, 200, 0, 0,
false, false, Interface::lowerlim);
static Switch<MatchboxFactory,bool> interfaceInitVerbose
("InitVerbose",
"Print setup information.",
&MatchboxFactory::theInitVerbose, false, false, false);
static SwitchOption interfaceInitVerboseOn
(interfaceInitVerbose,
"On",
"On",
true);
static SwitchOption interfaceInitVerboseOff
(interfaceInitVerbose,
"Off",
"Off",
false);
static Parameter<MatchboxFactory,string> interfaceSubtractionData
("SubtractionData",
"Prefix for subtraction check data.",
&MatchboxFactory::theSubtractionData, "",
false, false);
static Switch<MatchboxFactory,int> interfaceSubtractionPlotType
("SubtractionPlotType",
"Switch for controlling what kind of plot is generated for checking the subtraction",
&MatchboxFactory::theSubtractionPlotType, 1, false, false);
static SwitchOption interfaceSubtractionPlotTypeLinearRatio
(interfaceSubtractionPlotType,
"LinRatio",
"Switch on the linear plot of the ratio",
1);
static SwitchOption interfaceSubtractionPlotTypeLogRelDiff
(interfaceSubtractionPlotType,
"LogRelDiff",
"Switch on the logarithmic plot of the relative difference",
2);
static Switch<MatchboxFactory,bool> interfaceSubtractionScatterPlot
("SubtractionScatterPlot",
"Switch for controlling whether subtraction data should be plotted for each phase space point individually",
&MatchboxFactory::theSubtractionScatterPlot, false, false, false);
static SwitchOption interfaceSubtractionScatterPlotOff
(interfaceSubtractionScatterPlot,
"Off", "Switch off the scatter plot", false);
static SwitchOption interfaceSubtractionScatterPlotOn
(interfaceSubtractionScatterPlot,
"On", "Switch on the scatter plot", true);
static Parameter<MatchboxFactory,string> interfacePoleData
("PoleData",
"Prefix for subtraction check data.",
&MatchboxFactory::thePoleData, "",
false, false);
static RefVector<MatchboxFactory,ParticleData> interfaceParticleGroup
("ParticleGroup",
"The particle group just started.",
&MatchboxFactory::particleGroup, -1, false, false, true, false, false);
static Command<MatchboxFactory> interfaceStartParticleGroup
("StartParticleGroup",
"Start a particle group.",
&MatchboxFactory::startParticleGroup, false);
static Command<MatchboxFactory> interfaceEndParticleGroup
("EndParticleGroup",
"End a particle group.",
&MatchboxFactory::endParticleGroup, false);
static Command<MatchboxFactory> interfaceProcess
("Process",
"Set the process(es) to consider.",
&MatchboxFactory::doProcess, false);
static Command<MatchboxFactory> interfaceLoopInducedProcess
("LoopInducedProcess",
"Set the loop induced process(es) to consider.",
&MatchboxFactory::doLoopInducedProcess, false);
static Command<MatchboxFactory> interfaceSingleRealProcess
("SingleRealProcess",
"Set the real emission process(es) to consider.",
&MatchboxFactory::doSingleRealProcess, false);
static Reference<MatchboxFactory,ShowerApproximation> interfaceShowerApproximation
("ShowerApproximation",
"Set the shower approximation to be considered.",
&MatchboxFactory::theShowerApproximation, false, false, true, true, false);
static Switch<MatchboxFactory,bool> interfaceRealEmissionScales
("RealEmissionScales",
"Switch on or off calculation of subtraction scales from real emission kinematics.",
&MatchboxFactory::theRealEmissionScales, false, false, false);
static SwitchOption interfaceRealEmissionScalesOn
(interfaceRealEmissionScales,
"On",
"On",
true);
static SwitchOption interfaceRealEmissionScalesOff
(interfaceRealEmissionScales,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceAllProcesses
("AllProcesses",
"Consider all processes up to a maximum coupling order specified by the coupling order interfaces.",
&MatchboxFactory::theAllProcesses, false, false, false);
static SwitchOption interfaceAllProcessesYes
(interfaceAllProcesses,
"Yes",
"Include all processes.",
true);
static SwitchOption interfaceAllProcessesNo
(interfaceAllProcesses,
"No",
"Only consider processes matching the exact order in the couplings.",
false);
static RefVector<MatchboxFactory,MatchboxAmplitude> interfaceSelectAmplitudes
("SelectAmplitudes",
"The amplitude objects to be favoured in clashing responsibilities.",
&MatchboxFactory::theSelectedAmplitudes, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxAmplitude> interfaceDeselectAmplitudes
("DeselectAmplitudes",
"The amplitude objects to be disfavoured in clashing responsibilities.",
&MatchboxFactory::theDeselectedAmplitudes, -1, false, false, true, true, false);
static Switch<MatchboxFactory,int> interfaceDipoleSet
("DipoleSet",
"The set of subtraction terms to be considered.",
&MatchboxFactory::theDipoleSet, 0, false, false);
static SwitchOption interfaceDipoleSetCataniSeymour
(interfaceDipoleSet,
"CataniSeymour",
"Use default Catani-Seymour dipoles.",
0);
static RefVector<MatchboxFactory,ReweightBase> interfaceReweighters
("Reweighters",
"Reweight objects for matrix elements.",
&MatchboxFactory::theReweighters, -1, false, false, true, false, false);
static RefVector<MatchboxFactory,ReweightBase> interfacePreweighters
("Preweighters",
"Preweight objects for matrix elements.",
&MatchboxFactory::thePreweighters, -1, false, false, true, false, false);
static Switch<MatchboxFactory,bool> interfaceMECorrectionsOnly
("MECorrectionsOnly",
"Prepare only ME corrections, but no NLO calculation.",
&MatchboxFactory::theMECorrectionsOnly, false, false, false);
static SwitchOption interfaceMECorrectionsOnlyYes
(interfaceMECorrectionsOnly,
"Yes",
"Produce only ME corrections.",
true);
static SwitchOption interfaceMECorrectionsOnlyNo
(interfaceMECorrectionsOnly,
"No",
"Produce full NLO.",
false);
static Switch<MatchboxFactory,bool> interfaceLoopSimCorrections
("LoopSimCorrections",
"Prepare LoopSim corrections.",
&MatchboxFactory::theLoopSimCorrections, false, false, false);
static SwitchOption interfaceLoopSimCorrectionsYes
(interfaceLoopSimCorrections,
"Yes",
"Produce loopsim corrections.",
true);
static SwitchOption interfaceLoopSimCorrectionsNo
(interfaceLoopSimCorrections,
"No",
"Produce full NLO.",
false);
static Switch<MatchboxFactory,bool> interfaceFirstPerturbativePDF
("FirstPerturbativePDF",
"",
&MatchboxFactory::theFirstPerturbativePDF, true, false, false);
static SwitchOption interfaceFirstPerturbativePDFYes
(interfaceFirstPerturbativePDF,
"Yes",
"",
true);
static SwitchOption interfaceFirstPerturbativePDFNo
(interfaceFirstPerturbativePDF,
"No",
"",
false);
static Switch<MatchboxFactory,bool> interfaceSecondPerturbativePDF
("SecondPerturbativePDF",
"",
&MatchboxFactory::theSecondPerturbativePDF, true, false, false);
static SwitchOption interfaceSecondPerturbativePDFYes
(interfaceSecondPerturbativePDF,
"Yes",
"",
true);
static SwitchOption interfaceSecondPerturbativePDFNo
(interfaceSecondPerturbativePDF,
"No",
"",
false);
static Command<MatchboxFactory> interfaceProductionMode
("ProductionMode",
"Switch this factory to production mode.",
&MatchboxFactory::doProductionMode, false);
static Switch<MatchboxFactory,bool> interfaceSpinCorrelations
("SpinCorrelations",
"Fill information for the spin correlations, if possible.",
&MatchboxFactory::theSpinCorrelations, false, false, false);
static SwitchOption interfaceSpinCorrelationsYes
(interfaceSpinCorrelations,
"Yes",
"",
true);
static SwitchOption interfaceSpinCorrelationsNo
(interfaceSpinCorrelations,
"No",
"",
false);
static Parameter<MatchboxFactory,double> interfaceAlphaParameter
("AlphaParameter",
"Nagy-AlphaParameter.",
&MatchboxFactory::theAlphaParameter, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Switch<MatchboxFactory,bool> interfaceEnforceChargeConservation
("EnforceChargeConservation",
"Enforce charge conservation while generating the hard process.",
&MatchboxFactory::theEnforceChargeConservation, true, false, false);
static SwitchOption interfaceEnforceChargeConservationYes
(interfaceEnforceChargeConservation,
"Yes",
"Enforce charge conservation.",
true);
static SwitchOption interfaceEnforceChargeConservationNo
(interfaceEnforceChargeConservation,
"No",
"Do not enforce charge conservation.",
false);
static Switch<MatchboxFactory,bool> interfaceEnforceColourConservation
("EnforceColourConservation",
"Enforce colour conservation while generating the hard process.",
&MatchboxFactory::theEnforceColourConservation, false, false, false);
static SwitchOption interfaceEnforceColourConservationYes
(interfaceEnforceColourConservation,
"Yes",
"Enforce colour conservation.",
true);
static SwitchOption interfaceEnforceColourConservationNo
(interfaceEnforceColourConservation,
"No",
"Do not enforce colour conservation.",
false);
static Switch<MatchboxFactory,bool> interfaceEnforceLeptonNumberConservation
("EnforceLeptonNumberConservation",
"Enforce lepton number conservation while generating the hard process.",
&MatchboxFactory::theEnforceLeptonNumberConservation, false, false, false);
static SwitchOption interfaceEnforceLeptonNumberConservationYes
(interfaceEnforceLeptonNumberConservation,
"Yes",
"Enforce lepton number conservation.",
true);
static SwitchOption interfaceEnforceLeptonNumberConservationNo
(interfaceEnforceLeptonNumberConservation,
"No",
"Do not enforce lepton number conservation.",
false);
static Switch<MatchboxFactory,bool> interfaceEnforceQuarkNumberConservation
("EnforceQuarkNumberConservation",
"Enforce quark number conservation while generating the hard process.",
&MatchboxFactory::theEnforceQuarkNumberConservation, false, false, false);
static SwitchOption interfaceEnforceQuarkNumberConservationYes
(interfaceEnforceQuarkNumberConservation,
"Yes",
"Enforce quark number conservation.",
true);
static SwitchOption interfaceEnforceQuarkNumberConservationNo
(interfaceEnforceQuarkNumberConservation,
"No",
"Do not enforce quark number conservation.",
false);
static Switch<MatchboxFactory,bool> interfaceLeptonFlavourDiagonal
("LeptonFlavourDiagonal",
"Assume that lepton interactions are flavour diagonal while generating the hard process.",
&MatchboxFactory::theLeptonFlavourDiagonal, false, false, false);
static SwitchOption interfaceLeptonFlavourDiagonalYes
(interfaceLeptonFlavourDiagonal,
"Yes",
"Assume that lepton interactions are flavour diagonal.",
true);
static SwitchOption interfaceLeptonFlavourDiagonalNo
(interfaceLeptonFlavourDiagonal,
"No",
"Do not assume that lepton interactions are flavour diagonal.",
false);
static Switch<MatchboxFactory,bool> interfaceQuarkFlavourDiagonal
("QuarkFlavourDiagonal",
"Assume that quark interactions are flavour diagonal while generating the hard process.",
&MatchboxFactory::theQuarkFlavourDiagonal, false, false, false);
static SwitchOption interfaceQuarkFlavourDiagonalYes
(interfaceQuarkFlavourDiagonal,
"Yes",
"Assume that quark interactions are flavour diagonal.",
true);
static SwitchOption interfaceQuarkFlavourDiagonalNo
(interfaceQuarkFlavourDiagonal,
"No",
"Do not assume that quark interactions are flavour diagonal.",
false);
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MatchboxFactory,SubProcessHandler>
describeHerwigMatchboxFactory("Herwig::MatchboxFactory", "Herwig.so");
diff --git a/MatrixElement/Matchbox/MatchboxFactory.h b/MatrixElement/Matchbox/MatchboxFactory.h
--- a/MatrixElement/Matchbox/MatchboxFactory.h
+++ b/MatrixElement/Matchbox/MatchboxFactory.h
@@ -1,1285 +1,1292 @@
// -*- C++ -*-
//
// MatchboxFactory.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MatchboxFactory_H
#define HERWIG_MatchboxFactory_H
//
// This is the declaration of the MatchboxFactory class.
//
#include "ThePEG/Handlers/SubProcessHandler.h"
#include "Herwig/MatrixElement/Matchbox/Base/MatchboxAmplitude.h"
#include "Herwig/MatrixElement/Matchbox/Utility/Tree2toNGenerator.h"
#include "Herwig/MatrixElement/Matchbox/Utility/ProcessData.h"
#include "Herwig/MatrixElement/Matchbox/Utility/MatchboxScaleChoice.h"
#include "Herwig/MatrixElement/Matchbox/Phasespace/MatchboxPhasespace.h"
#include "Herwig/MatrixElement/Matchbox/Base/MatchboxMEBase.h"
#include "Herwig/MatrixElement/Matchbox/Base/SubtractedME.h"
#include "Herwig/MatrixElement/Matchbox/MatchboxFactory.fh"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief MatchboxFactory automatically sets up a NLO
* QCD calculation carried out in dipole subtraction.
*
* @see \ref MatchboxFactoryInterfaces "The interfaces"
* defined for MatchboxFactory.
*/
class MatchboxFactory: public SubProcessHandler {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MatchboxFactory();
/**
* The destructor.
*/
virtual ~MatchboxFactory();
//@}
public:
/**
* Flag to indicate that at least one MatchboxFactory object is in action
*/
static bool isMatchboxRun() {
return theIsMatchboxRun();
}
/** @name Process and diagram information */
//@{
/**
* Return the diagram generator.
*/
Ptr<Tree2toNGenerator>::tptr diagramGenerator() const { return theDiagramGenerator; }
/**
* Set the diagram generator.
*/
void diagramGenerator(Ptr<Tree2toNGenerator>::ptr dg) { theDiagramGenerator = dg; }
/**
* Return the process data.
*/
Ptr<ProcessData>::tptr processData() const { return theProcessData; }
/**
* Set the process data.
*/
void processData(Ptr<ProcessData>::ptr pd) { theProcessData = pd; }
/**
* Return the number of light flavours, this matrix
* element is calculated for.
*/
unsigned int nLight() const { return theNLight; }
/**
* Set the number of light flavours, this matrix
* element is calculated for.
*/
void nLight(unsigned int n) { theNLight = n; }
/**
* Return the vector that contains the PDG ids of
* the light flavours, which are contained in the
* jet particle group.
*/
vector<int> nLightJetVec() const { return theNLightJetVec; }
/**
* Set the elements of the vector that contains the PDG
* ids of the light flavours, which are contained in the
* jet particle group.
*/
void nLightJetVec(int n) { theNLightJetVec.push_back(n); }
/**
* Return the vector that contains the PDG ids of
* the heavy flavours, which are contained in the
* jet particle group.
*/
vector<int> nHeavyJetVec() const { return theNHeavyJetVec; }
/**
* Set the elements of the vector that contains the PDG
* ids of the heavy flavours, which are contained in the
* jet particle group.
*/
void nHeavyJetVec(int n) { theNHeavyJetVec.push_back(n); }
/**
* Return the vector that contains the PDG ids of
* the light flavours, which are contained in the
* proton particle group.
*/
vector<int> nLightProtonVec() const { return theNLightProtonVec; }
/**
* Set the elements of the vector that contains the PDG
* ids of the light flavours, which are contained in the
* proton particle group.
*/
void nLightProtonVec(int n) { theNLightProtonVec.push_back(n); }
/**
* Return the order in \f$\alpha_S\f$.
*/
unsigned int orderInAlphaS() const { return theOrderInAlphaS; }
/**
* Set the order in \f$\alpha_S\f$.
*/
void orderInAlphaS(unsigned int o) { theOrderInAlphaS = o; }
/**
* Return the order in \f$\alpha_{EM}\f$.
*/
unsigned int orderInAlphaEW() const { return theOrderInAlphaEW; }
/**
* Set the order in \f$\alpha_{EM}\f$.
*/
void orderInAlphaEW(unsigned int o) { theOrderInAlphaEW = o; }
/**
* Return true, if all processes up to a maximum order are considered
*/
bool allProcesses() const { return theAllProcesses; }
/**
* Switch on/off inclusino off all processes up to a maximum order
*/
void setAllProcesses(bool on = true) { theAllProcesses = on; }
/**
* Return true, if Born contributions should be included.
*/
bool bornContributions() const { return theBornContributions; }
/**
* Switch on or off Born contributions
*/
void setBornContributions(bool on = true) { theBornContributions = on; }
/**
* Return true, if virtual contributions should be included.
*/
bool virtualContributions() const { return theVirtualContributions; }
/**
* Switch on or off virtual contributions
*/
void setVirtualContributions(bool on = true) { theVirtualContributions = on; }
/**
* Produce matrix element corrections, but no NLO
*/
bool meCorrectionsOnly() const { return theMECorrectionsOnly; }
/**
* Switch to produce matrix element corrections, but no NLO
*/
void setMECorrectionsOnly(bool on = true) { theMECorrectionsOnly = on; }
/**
* Produce matrix element corrections, with LoopSim NLO
*/
bool loopSimCorrections() const { return theLoopSimCorrections; }
/**
* Switch to produce matrix element corrections, with LoopSim NLO
*/
void setLoopSimCorrections(bool on = true) { theLoopSimCorrections = on; }
/**
* Return true, if subtracted real emission contributions should be included.
*/
bool realContributions() const { return theRealContributions; }
/**
* Switch on or off subtracted real emission contributions
*/
void setRealContributions(bool on = true) { theRealContributions = on; }
/**
* Return true, if virtual contributions should be treated as independent subprocesses
*/
bool independentVirtuals() const { return theIndependentVirtuals; }
/**
* Switch on/off virtual contributions should be treated as independent subprocesses
*/
void setIndependentVirtuals(bool on = true) { theIndependentVirtuals = on; }
/**
* Return true, if PK operator contributions should be treated as independent subprocesses
*/
bool independentPKs() const { return theIndependentPKs; }
/**
* Switch on/off PK operator contributions should be treated as independent subprocesses
*/
void setIndependentPKs(bool on = true) { theIndependentPKs = on; }
/**
* Return true, if SubProcessGroups should be
* setup from this MEGroup. If not, a single SubProcess
* is constructed from the data provided by the
* head matrix element.
*/
bool subProcessGroups() const { return theSubProcessGroups; }
/**
* Switch on or off producing subprocess groups.
*/
void setSubProcessGroups(bool on = true) { theSubProcessGroups = on; }
/**
* Return true, if subtraction scales should be caluclated from real emission kinematics
*/
bool realEmissionScales() const { return theRealEmissionScales; }
/**
* Switch on/off that subtraction scales should be caluclated from real emission kinematics
*/
void setRealEmissionScales(bool on = true) { theRealEmissionScales = on; }
/**
* Set the shower approximation.
*/
void showerApproximation(Ptr<ShowerApproximation>::tptr app) { theShowerApproximation = app; }
/**
* Return the shower approximation.
*/
Ptr<ShowerApproximation>::tptr showerApproximation() const { return theShowerApproximation; }
//@}
/** @name Phasespace generation and scale choice */
//@{
/**
* Return the phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::tptr phasespace() const { return thePhasespace; }
/**
* Set the phase space generator to be used.
*/
void phasespace(Ptr<MatchboxPhasespace>::ptr ps) { thePhasespace = ps; }
/**
* Set the scale choice object
*/
void scaleChoice(Ptr<MatchboxScaleChoice>::ptr sc) { theScaleChoice = sc; }
/**
* Return the scale choice object
*/
Ptr<MatchboxScaleChoice>::tptr scaleChoice() const { return theScaleChoice; }
/**
* Get the factorization scale factor
*/
double factorizationScaleFactor() const { return theFactorizationScaleFactor; }
/**
* Set the factorization scale factor
*/
void factorizationScaleFactor(double f) { theFactorizationScaleFactor = f; }
/**
* Get the renormalization scale factor
*/
double renormalizationScaleFactor() const { return theRenormalizationScaleFactor; }
/**
* Set the renormalization scale factor
*/
void renormalizationScaleFactor(double f) { theRenormalizationScaleFactor = f; }
/**
* Return true, if fixed couplings are used.
*/
bool fixedCouplings() const { return theFixedCouplings; }
/**
* Switch on fixed couplings.
*/
void setFixedCouplings(bool on = true) { theFixedCouplings = on; }
/**
* Return true, if fixed couplings are used.
*/
bool fixedQEDCouplings() const { return theFixedQEDCouplings; }
/**
* Switch on fixed couplings.
*/
void setFixedQEDCouplings(bool on = true) { theFixedQEDCouplings = on; }
/**
* Return true, if veto scales should be set
* for the real emission
*/
bool vetoScales() const { return theVetoScales; }
/**
* Switch on setting veto scales
*/
void doVetoScales() { theVetoScales = true; }
/**
* Switch off setting veto scales
*/
void noVetoScales() { theVetoScales = true; }
//@}
/** @name Amplitudes and caching */
//@{
/**
* Return the amplitudes to be considered
*/
const vector<Ptr<MatchboxAmplitude>::ptr>& amplitudes() const { return theAmplitudes; }
/**
* Access the amplitudes to be considered
*/
vector<Ptr<MatchboxAmplitude>::ptr>& amplitudes() { return theAmplitudes; }
//@}
/** @name Matrix element objects. */
//@{
/**
* Return the Born matrix elements to be considered
*/
const vector<Ptr<MatchboxMEBase>::ptr>& bornMEs() const { return theBornMEs; }
/**
* Access the Born matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr>& bornMEs() { return theBornMEs; }
/**
* Return the loop induced matrix elements to be considered
*/
const vector<Ptr<MatchboxMEBase>::ptr>& loopInducedMEs() const { return theLoopInducedMEs; }
/**
* Access the loop induced matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr>& loopInducedMEs() { return theLoopInducedMEs; }
/**
* Return the processes to be ordered from an OLP
*/
const map<Ptr<MatchboxAmplitude>::tptr,
map<pair<Process,int>,int> >&
olpProcesses() const { return theOLPProcesses; }
/**
* Access the processes to be ordered from an OLP
*/
map<Ptr<MatchboxAmplitude>::tptr,
map<pair<Process,int>,int> >&
olpProcesses() { return theOLPProcesses; }
/**
* Order an OLP process and return its id
*/
int orderOLPProcess(const Process& p,
Ptr<MatchboxAmplitude>::tptr amp,
int type);
/**
* Return the amplitudes which need external initialization
*/
const set<Ptr<MatchboxAmplitude>::tptr>& externalAmplitudes() const {
return theExternalAmplitudes;
}
/**
* Access the amplitudes which need external initialization
*/
set<Ptr<MatchboxAmplitude>::tptr>& externalAmplitudes() {
return theExternalAmplitudes;
}
/**
* Return the virtual corrections to be considered
*/
const vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() const { return theVirtuals; }
/**
* Access the virtual corrections to be considered
*/
vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() { return theVirtuals; }
/**
* Return the produced NLO matrix elements
*/
const vector<Ptr<MatchboxMEBase>::ptr>& bornVirtualMEs() const { return theBornVirtualMEs; }
/**
* Access the produced NLO matrix elements
*/
vector<Ptr<MatchboxMEBase>::ptr>& bornVirtualMEs() { return theBornVirtualMEs; }
/**
* Return the real emission matrix elements to be considered
*/
const vector<Ptr<MatchboxMEBase>::ptr>& realEmissionMEs() const { return theRealEmissionMEs; }
/**
* Access the real emission matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr>& realEmissionMEs() { return theRealEmissionMEs; }
/**
* Return, which set of dipoles should be considered
*/
int dipoleSet() const { return theDipoleSet; }
/**
* Return, which set of dipoles should be considered
*/
void dipoleSet(int s) { theDipoleSet = s; }
/**
* Return the produced subtracted matrix elements
*/
const vector<Ptr<SubtractedME>::ptr>& subtractedMEs() const { return theSubtractedMEs; }
/**
* Access the produced subtracted matrix elements
*/
vector<Ptr<SubtractedME>::ptr>& subtractedMEs() { return theSubtractedMEs; }
/**
* Return the produced finite real emission matrix elements
*/
const vector<Ptr<MatchboxMEBase>::ptr>& finiteRealMEs() const { return theFiniteRealMEs; }
/**
* Access the produced finite real emission elements
*/
vector<Ptr<MatchboxMEBase>::ptr>& finiteRealMEs() { return theFiniteRealMEs; }
/**
* Return the map of Born processes to splitting dipoles
*/
const map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >& splittingDipoles() const {
return theSplittingDipoles;
}
/**
* Identify a splitting channel
*/
struct SplittingChannel {
/**
* The Born XComb
*/
StdXCombPtr bornXComb;
/**
* The real XComb
*/
StdXCombPtr realXComb;
/**
* The set of tilde XCombs to consider for the real xcomb
*/
vector<StdXCombPtr> tildeXCombs;
/**
* The dipole in charge of the splitting
*/
Ptr<SubtractionDipole>::ptr dipole;
/**
* Dump the setup
*/
void print(ostream&) const;
};
/**
* Generate all splitting channels for the Born process handled by
* the given XComb
*/
list<SplittingChannel> getSplittingChannels(tStdXCombPtr xc) const;
/**
* Return the reweight objects for matrix elements
*/
const vector<ReweightPtr>& reweighters() const { return theReweighters; }
/**
* Access the reweight objects for matrix elements
*/
vector<ReweightPtr>& reweighters() { return theReweighters; }
/**
* Return the preweight objects for matrix elements
*/
const vector<ReweightPtr>& preweighters() const { return thePreweighters; }
/**
* Access the preweight objects for matrix elements
*/
vector<ReweightPtr>& preweighters() { return thePreweighters; }
//@}
/** @name Setup the matrix elements */
//@{
/**
* Return true if this object needs to be initialized before all
* other objects (except those for which this function also returns
* true). This default version always returns false, but subclasses
* may override it to return true.
*/
virtual bool preInitialize() const { return true; }
/**
* Prepare a matrix element.
*/
void prepareME(Ptr<MatchboxMEBase>::ptr);
/**
* Check consistency and switch to porduction mode.
*/
void productionMode();
/**
* Setup everything
*/
virtual void setup();
/**
* The highest multiplicity of legs having virtual contributions.(needed for madgraph)
*/
size_t highestVirt(){return theHighestVirtualsize;}
//@}
/** @name Diagnostic information */
//@{
/**
* Return true, if verbose
*/
bool verbose() const { return theVerbose; }
/**
* Switch on diagnostic information.
*/
void setVerbose(bool on = true) { theVerbose = on; }
/**
* Return true, if diagram weight is verbose
*/
bool verboseDia() const { return theDiagramWeightVerbose; }
/**
* Number of bins for diagram weight verbosity
*/
int diagramWeightVerboseNBins() const {return theDiagramWeightVerboseNBins;}
/**
* Return true, if verbose while initializing
*/
bool initVerbose() const { return theInitVerbose || verbose(); }
/**
* Switch on diagnostic information while initializing
*/
void setInitVerbose(bool on = true) { theInitVerbose = on; }
/**
* Dump the setup
*/
void print(ostream&) const;
/**
* Return the subtraction data prefix.
*/
const string& subtractionData() const { return theSubtractionData; }
/**
* Set the subtraction data prefix.
*/
void subtractionData(const string& s) { theSubtractionData = s; }
/**
* Return the subtraction plot type.
*/
const int& subtractionPlotType() const { return theSubtractionPlotType; }
/**
* Set the subtraction plot type.
*/
void subtractionPlotType(const int& t) { theSubtractionPlotType = t; }
/**
* Return whether subtraction data should be plotted for all phase space points individually
*/
const bool& subtractionScatterPlot() const { return theSubtractionScatterPlot; }
/**
* Set whether subtraction data should be plotted for all phase space points individually
*/
void subtractionScatterPlot(const bool& s) { theSubtractionScatterPlot = s; }
/**
* Return the pole data prefix.
*/
const string& poleData() const { return thePoleData; }
/**
* Set the pole data prefix.
*/
void poleData(const string& s) { thePoleData = s; }
/**
* Return true, if cancellationn of epsilon poles should be checked.
*/
bool checkPoles() const { return poleData() != ""; }
//@}
/** @name Process generation */
//@{
/**
* Return the particle groups.
*/
const map<string,PDVector>& particleGroups() const { return theParticleGroups; }
/**
* Access the particle groups.
*/
map<string,PDVector>& particleGroups() { return theParticleGroups; }
/**
* Return true, if the given particle is incoming
*/
bool isIncoming(cPDPtr p) const {
return theIncoming.find(p->id()) != theIncoming.end();
}
/**
* Return true, if spin correlation information should be provided, if possible.
*/
bool spinCorrelations() const { return theSpinCorrelations; }
/**
* Indicate that spin correlation information should be provided, if possible.
*/
void setSpinCorrelations(bool yes) { theSpinCorrelations = yes; }
//@}
/** @name Truncated qtilde shower information */
//@{
/**
* Return the subprocess of the real emission
*/
tSubProPtr hardTreeSubprocess() { return theHardtreeSubprocess; }
/**
* Set the subprocess of the real emission for use in calculating the shower hardtree
*/
void setHardTreeSubprocess(tSubProPtr hardTree) { theHardtreeSubprocess = hardTree; }
/**
* Return the born emitter
*/
int hardTreeEmitter() { return theHardtreeEmitter; }
/**
* Set the born emitter for use in calculating the shower hardtree
*/
void setHardTreeEmitter(int emitter) { theHardtreeEmitter = emitter; }
/**
* Return the born spectator
*/
int hardTreeSpectator() { return theHardtreeSpectator; }
/**
* Set the born spectator for use in calculating the shower hardtree
*/
void setHardTreeSpectator(int spectator) { theHardtreeSpectator = spectator; }
//@}
/** @name Data handling */
//@{
/**
* Return (and possibly create) a directory to contain amplitude
* information.
*/
const string& buildStorage();
/**
* Return (and possibly create) a directory to contain integration grid
* information.
*/
const string& runStorage();
/**
* alpha of http://arxiv.org/pdf/hep-ph/0307268v2.pdf to restrict
* dipole phase space
*/
double alphaParameter() const { return theAlphaParameter; }
/**
* set the alpha parameter (needed for massive PK-Operator)
*/
void setAlphaParameter(double a) { theAlphaParameter = a; }
//@}
public:
+ /**
+ * Print a summary of the parameters used
+ */
+ void summary(ostream&) const;
+
+public:
+
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Initialize this object. Called in the run phase just before
* a run begins.
*/
virtual void doinitrun();
//@}
private:
/**
* Flag to indicate that at least one MatchboxFactory object is in action
*/
static bool& theIsMatchboxRun();
/**
* The diagram generator.
*/
Ptr<Tree2toNGenerator>::ptr theDiagramGenerator;
/**
* The process data object to be used
*/
Ptr<ProcessData>::ptr theProcessData;
/**
* The number of light flavours, this matrix
* element is calculated for.
*/
unsigned int theNLight;
/**
* Vector with the PDG ids of the light quark flavours,
* which are contained in the jet particle group.
*/
vector<int> theNLightJetVec;
/**
* Vector with the PDG ids of the heavy quark flavours,
* which are contained in the jet particle group.
*/
vector<int> theNHeavyJetVec;
/**
* Vector with the PDG ids of the light quark flavours,
* which are contained in the proton particle group.
*/
vector<int> theNLightProtonVec;
/**
* The order in \f$\alpha_S\f$.
*/
unsigned int theOrderInAlphaS;
/**
* The order in \f$\alpha_{EM}\f$.
*/
unsigned int theOrderInAlphaEW;
/**
* Switch on or off Born contributions
*/
bool theBornContributions;
/**
* Switch on or off virtual contributions
*/
bool theVirtualContributions;
/**
* Switch on or off subtracted real emission contributions should be included.
*/
bool theRealContributions;
/**
* True if virtual contributions should be treated as independent subprocesses
*/
bool theIndependentVirtuals;
/**
* True if PK operator contributions should be treated as independent subprocesses
*/
bool theIndependentPKs;
/**
* True, if SubProcessGroups should be
* setup from this MEGroup. If not, a single SubProcess
* is constructed from the data provided by the
* head matrix element.
*/
bool theSubProcessGroups;
/**
* The phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::ptr thePhasespace;
/**
* The scale choice object
*/
Ptr<MatchboxScaleChoice>::ptr theScaleChoice;
/**
* The factorization scale factor.
*/
double theFactorizationScaleFactor;
/**
* The renormalization scale factor.
*/
double theRenormalizationScaleFactor;
/**
* Use non-running couplings.
*/
bool theFixedCouplings;
/**
* Use non-running couplings.
*/
bool theFixedQEDCouplings;
/**
* True, if veto scales should be set
* for the real emission
*/
bool theVetoScales;
/**
* The amplitudes to be considered
*/
vector<Ptr<MatchboxAmplitude>::ptr> theAmplitudes;
/**
* The Born matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr> theBornMEs;
/**
* The loop induced matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr> theLoopInducedMEs;
/**
* The virtual corrections to be considered
*/
vector<Ptr<MatchboxInsertionOperator>::ptr> theVirtuals;
/**
* The real emission matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr> theRealEmissionMEs;
/**
* The produced NLO matrix elements
*/
vector<Ptr<MatchboxMEBase>::ptr> theBornVirtualMEs;
/**
* The produced subtracted matrix elements
*/
vector<Ptr<SubtractedME>::ptr> theSubtractedMEs;
/**
* The produced finite real emission matrix elements
*/
vector<Ptr<MatchboxMEBase>::ptr> theFiniteRealMEs;
/**
* Which set of dipoles should be considered
*/
int theDipoleSet;
/**
* Switch on or off verbosity
*/
bool theVerbose;
/**
* Switch on or off diagram weight verbosity
*/
bool theDiagramWeightVerbose;
/**
* Number of bins for diagram weight verbosity
*/
int theDiagramWeightVerboseNBins;
/**
* True, if verbose while initializing
*/
bool theInitVerbose;
/**
* Prefix for subtraction data
*/
string theSubtractionData;
/**
* Set the type of plot that is to be generated for subtraction checking
*/
int theSubtractionPlotType;
/**
* Set whether subtraction data should be plotted for all phase space points individually
*/
bool theSubtractionScatterPlot;
/**
* Prefix for pole data.
*/
string thePoleData;
/**
* Command to limit the real emission process to be considered.
*/
string doSingleRealProcess(string);
/**
* The real emission process to be included; if empty, all possible
* ones will be considered.
*/
vector<vector<string> > realEmissionProcesses;
/**
* Particle groups.
*/
map<string,PDVector> theParticleGroups;
/**
* Command to start a particle group.
*/
string startParticleGroup(string);
/**
* The name of the particle group currently edited.
*/
string particleGroupName;
/**
* The particle group currently edited.
*/
PDVector particleGroup;
/**
* Command to end a particle group.
*/
string endParticleGroup(string);
/**
* Parse a process description
*/
vector<string> parseProcess(string);
/**
* Command to set the process.
*/
string doProcess(string);
/**
* Command to set the process.
*/
string doLoopInducedProcess(string);
/**
* The process to consider in terms of particle groups.
*/
vector<vector<string> > processes;
/**
* The loop induced process to consider in terms of particle groups.
*/
vector<vector<string> > loopInducedProcesses;
/**
* Generate subprocesses.
*/
set<PDVector> makeSubProcesses(const vector<string>&) const;
/**
* Generate matrix element objects for the given process.
*/
vector<Ptr<MatchboxMEBase>::ptr> makeMEs(const vector<string>&,
unsigned int orderas,
bool virt);
/**
* The shower approximation.
*/
Ptr<ShowerApproximation>::ptr theShowerApproximation;
/**
* The map of Born processes to splitting dipoles
*/
map<cPDVector,set<Ptr<SubtractionDipole>::ptr> > theSplittingDipoles;
/**
* True, if subtraction scales should be caluclated from real emission kinematics
*/
bool theRealEmissionScales;
/**
* Consider all processes with order in couplings specifying the
* maximum order.
*/
bool theAllProcesses;
/**
* The processes to be ordered from an OLP
*/
map<Ptr<MatchboxAmplitude>::tptr,map<pair<Process,int>,int> > theOLPProcesses;
/**
* Amplitudes which need external initialization
*/
set<Ptr<MatchboxAmplitude>::tptr> theExternalAmplitudes;
/**
* Amplitudes to be selected on clashing responsibilities.
*/
vector<Ptr<MatchboxAmplitude>::ptr> theSelectedAmplitudes;
/**
* Amplitudes to be deselected on clashing responsibilities.
*/
vector<Ptr<MatchboxAmplitude>::ptr> theDeselectedAmplitudes;
/**
* Reweight objects for matrix elements
*/
vector<ReweightPtr> theReweighters;
/**
* Preweight objects for matrix elements
*/
vector<ReweightPtr> thePreweighters;
/**
* Produce matrix element corrections, but no NLO
*/
bool theMECorrectionsOnly;
/**
* The highest multiplicity of legs having virtual contributions.(needed for madgraph)
*/
int theHighestVirtualsize;
/**
* Produce matrix element corrections, with LoopSim NLO
*/
bool theLoopSimCorrections;
/**
* True, if the setup has already been run.
*/
bool ranSetup;
/**
* PDG ids of incoming particles
*/
set<long> theIncoming;
/**
* True, if first incoming partons originate from perturbative PDF
*/
bool theFirstPerturbativePDF;
/**
* True, if second incoming partons originate from perturbative PDF
*/
bool theSecondPerturbativePDF;
/**
* True, if this Factory is in production mode.
*/
bool inProductionMode;
/**
* The real emission subprocess used when calculating the hardtree
* in the truncated qtilde shower
*/
tSubProPtr theHardtreeSubprocess;
/**
* The born emitter used when calculating the hardtree in
* the truncated shower
*/
int theHardtreeEmitter;
/**
* The born spectator used when calculating the hardtree in
* the truncated shower
*/
int theHardtreeSpectator;
/**
* True, if spin correlation information should be provided, if possible.
*/
bool theSpinCorrelations;
/**
* The alpha parameter to be used for the dipole subtraction
*/
double theAlphaParameter;
/**
* Wether or not charge conservation should be enforced for the processes
* constructed.
*/
bool theEnforceChargeConservation;
/**
* Wether or not colour conservation should be enforced for the processes
* constructed.
*/
bool theEnforceColourConservation;
/**
* Wether or not lepton number conservation should be enforced for the processes
* constructed.
*/
bool theEnforceLeptonNumberConservation;
/**
* Wether or not quark number conservation should be enforced for the processes
* constructed.
*/
bool theEnforceQuarkNumberConservation;
/**
* Assume flavour diagonal lepton interactions
*/
bool theLeptonFlavourDiagonal;
/**
* Assume flavour diagonal quark interactions
*/
bool theQuarkFlavourDiagonal;
/**
* Command for production mode
*/
string doProductionMode(string) {
productionMode(); return "";
}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MatchboxFactory & operator=(const MatchboxFactory &);
};
}
#endif /* HERWIG_MatchboxFactory_H */
diff --git a/MatrixElement/Matchbox/Scales/MatchboxHtScale.cc b/MatrixElement/Matchbox/Scales/MatchboxHtScale.cc
--- a/MatrixElement/Matchbox/Scales/MatchboxHtScale.cc
+++ b/MatrixElement/Matchbox/Scales/MatchboxHtScale.cc
@@ -1,164 +1,164 @@
// -*- C++ -*-
//
// MatchboxHtScale.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MatchboxHtScale class.
//
#include "MatchboxHtScale.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
using namespace Herwig;
MatchboxHtScale::MatchboxHtScale()
: theIncludeMT(false), theHTFactor(1.0),
theMTFactor(1.0),theScalePtCut(15.*GeV) {}
MatchboxHtScale::~MatchboxHtScale() {}
IBPtr MatchboxHtScale::clone() const {
return new_ptr(*this);
}
IBPtr MatchboxHtScale::fullclone() const {
return new_ptr(*this);
}
Energy2 MatchboxHtScale::renormalizationScale() const {
tcPDVector pd (mePartonData().begin() + 2, mePartonData().end());
vector<LorentzMomentum> p (meMomenta().begin() + 2, meMomenta().end());
tcPDPtr t1 = mePartonData()[0];
tcPDPtr t2 = mePartonData()[1];
tcCutsPtr cuts = lastCutsPtr();
theJetFinder->cluster(pd, p, cuts, t1, t2);
initWeightFactors(pd,p,theJetFinder);
// momentum of the non-jet system
LorentzMomentum nonJetMomentum(ZERO,ZERO,ZERO,ZERO);
// (weighted) pt of the jet systems
Energy ptJetSum = ZERO;
bool gotone = false;
tcPDVector::const_iterator pdata = pd.begin();
vector<LorentzMomentum>::const_iterator mom = p.begin();
for ( ; mom != p.end(); ++pdata, ++mom ) {
if ( theJetFinder->unresolvedMatcher()->check(**pdata)&&
mom->perp()>theScalePtCut){
//abs(mom->rapidity()+(!lastXCombPtr()->head()?lastXCombPtr()->lastY():lastXCombPtr()->head()->lastY()))<5.01
gotone = true;
ptJetSum += jetPtWeight(*mom)*mom->perp();
} else if ( theIncludeMT ) {
nonJetMomentum += *mom;
}
}
if ( !gotone && lastXCombPtr()->willPassCuts() )
throw Exception() << "MatchboxHtScale::renormalizationScale(): "
<< "No jets could be found. Check your setup."
<< "\nHint: The HT scale is defined with a PtMin cut on jets. (default:) "
<< "\n set /Herwig/MatrixElements/Matchbox/ScalesHTScale:JetPtCut 15.*GeV "
<< Exception::runerror;
Energy mtNonJetSum =
sqrt(nonJetMomentum.perp2() + nonJetMomentum.m2());
mtNonJetSum *= theMTFactor;
ptJetSum *= theHTFactor;
return sqr(ptJetSum + mtNonJetSum);
}
Energy2 MatchboxHtScale::factorizationScale() const {
return renormalizationScale();
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void MatchboxHtScale::persistentOutput(PersistentOStream & os) const {
os << theJetFinder << theIncludeMT << theHTFactor << theMTFactor << ounit(theScalePtCut,GeV);
}
void MatchboxHtScale::persistentInput(PersistentIStream & is, int) {
is >> theJetFinder >> theIncludeMT >> theHTFactor >> theMTFactor >> iunit(theScalePtCut,GeV);
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MatchboxHtScale,MatchboxScaleChoice>
describeHerwigMatchboxHtScale("Herwig::MatchboxHtScale", "HwMatchboxScales.so");
void MatchboxHtScale::Init() {
static ClassDocumentation<MatchboxHtScale> documentation
("MatchboxHtScale implements scale choices related to transverse momenta.");
static Reference<MatchboxHtScale,JetFinder> interfaceJetFinder
("JetFinder",
"A reference to the jet finder.",
&MatchboxHtScale::theJetFinder, false, false, true, false, false);
static Switch<MatchboxHtScale,bool> interfaceIncludeMT
("IncludeMT",
"Include the transverse masses of the non-jet objects.",
&MatchboxHtScale::theIncludeMT, false, false, false);
static SwitchOption interfaceIncludeMTYes
(interfaceIncludeMT,
"Yes",
"",
true);
static SwitchOption interfaceIncludeMTNo
(interfaceIncludeMT,
"No",
"",
false);
static Parameter<MatchboxHtScale,double> interfaceHTFactor
("HTFactor",
"A factor to scale the HT contribution.",
&MatchboxHtScale::theHTFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<MatchboxHtScale,double> interfaceMTFactor
("MTFactor",
"A factor to scale the MT contribution.",
&MatchboxHtScale::theMTFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<MatchboxHtScale,Energy> interfaceScalePtCut
("JetPtCut",
"The Pt cut to define jets in the sum.",
- &MatchboxHtScale::theScalePtCut, 15.*GeV, 0.*GeV, 0.*GeV,
+ &MatchboxHtScale::theScalePtCut, GeV, 15.*GeV, 0.*GeV, 0.*GeV,
false, false, Interface::lowerlim);
}
diff --git a/MatrixElement/Matchbox/Utility/AmplitudeCache.h b/MatrixElement/Matchbox/Utility/AmplitudeCache.h
--- a/MatrixElement/Matchbox/Utility/AmplitudeCache.h
+++ b/MatrixElement/Matchbox/Utility/AmplitudeCache.h
@@ -1,346 +1,346 @@
// -*- C++ -*-
//
// AmplitudeCache.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_AmplitudeCache_H
#define HERWIG_AmplitudeCache_H
#include "Herwig/MatrixElement/Matchbox/Utility/SpinorHelicity.h"
#include "ThePEG/Config/algorithm.h"
+#include <array>
namespace Herwig {
using namespace ThePEG;
+using std::array;
namespace SpinorHelicity {
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief Caching for amplitudes using spinor helicity techniques.
*
*/
-template<class AmplitudeKey>
+template<typename AmplitudeKey>
class AmplitudeCache {
typedef map<AmplitudeKey,pair<bool,Complex> > AmplitudeCacheMap;
typedef map<AmplitudeKey,pair<bool,LorentzVector<Complex> > > CurrentCacheMap;
/**
+ * Maximum N we can handle, SYM_N is storage size for a symmetric matrix of N * N elements
+ */
+ enum { MAX_N = 7, SYM_N = MAX_N*(MAX_N+1)/2 };
+
+ /**
* The number of points
*/
int theNPoints;
/**
* The energy scale to obtain dimensionless
* quantities.
*/
mutable Energy theScale;
/**
* Masses indexed by partons
*/
- mutable vector<double> theMasses;
+ mutable array<double,MAX_N> theMasses;
/**
* Momenta indexed by partons
*/
- mutable vector<LorentzMomentum> theMomenta;
+ mutable array<LorentzMomentum,MAX_N> theMomenta;
/**
* Crossing signs indexed by partons
*/
- mutable vector<int> theCrossingSigns;
+ mutable array<int,MAX_N> theCrossingSigns;
/**
* Plus spinors indexed by partons
*/
- mutable vector<PlusSpinor> thePlusSpinors;
+ mutable array<PlusSpinor,MAX_N> thePlusSpinors;
/**
* Plus conjugate spinors indexed by partons
*/
- mutable vector<PlusConjugateSpinor> thePlusConjugateSpinors;
+ mutable array<PlusConjugateSpinor,MAX_N> thePlusConjugateSpinors;
/**
* Invariants indexed by partons
*/
- mutable vector<vector<double> > theInvariants;
+ mutable array<double,SYM_N> theInvariants;
/**
* Flag products to be recalculated
*/
- mutable vector<vector<bool> > getInvariant;
+ mutable array<bool,SYM_N> getInvariant;
/**
* Spinor products indexed by partons
*/
- mutable vector<vector<Complex> > thePlusProducts;
+ mutable array<Complex,SYM_N> thePlusProducts;
/**
* Flag products to be recalculated
*/
- mutable vector<vector<bool> > getPlusProduct;
+ mutable array<bool,SYM_N> getPlusProduct;
/**
* Spinor currents indexed by partons
*/
- mutable vector<vector<LorentzVector<Complex> > > thePlusCurrents;
+ mutable array<LorentzVector<Complex>,SYM_N> thePlusCurrents;
/**
* Flag currents to be recalculated
*/
- mutable vector<vector<bool> > getPlusCurrent;
+ mutable array<bool,SYM_N> getPlusCurrent;
/**
* Cache intermediate amplitudes by index
*/
mutable AmplitudeCacheMap theCachedAmplitudes;
/**
* The last query for a cached amplitude
*/
mutable typename AmplitudeCacheMap::iterator theLastAmplitude;
/**
* Cache intermediate currents by index
*/
mutable CurrentCacheMap theCachedCurrents;
/**
* The last query for a cached current
*/
mutable typename CurrentCacheMap::iterator theLastCurrent;
/**
+ * Helper function to index symmetric arrays, assumes i <= j.
+ * Usual indexing function (N*i + j) corrected by triangle number for i-th row.
+ */
+ inline size_t idx(size_t i, size_t j) const {
+ return MAX_N * i - (i + 1) * i / 2 + j;
+ }
+
+ /**
* Helper to reset flags
*/
struct boolResetter {
- void operator()(vector<bool>::reference flag) const {
- flag = true;
- }
void operator()(pair<const AmplitudeKey,pair<bool,Complex> >& flag) const {
flag.second.first = true;
}
void operator()(pair<const AmplitudeKey,pair<bool,LorentzVector<Complex> > >& flag) const {
flag.second.first = true;
}
};
- /**
- * Helper to reset flags
- */
- struct boolVectorResetter {
- void operator()(vector<bool>& flags) const {
- for_each(flags.begin(),flags.end(),boolResetter());
- }
- };
-
public:
/**
* Constructor
*/
- AmplitudeCache()
- : theNPoints(0) {}
+ AmplitudeCache() : theNPoints(0) {}
/**
* Prepare for n-point amplitude
*/
void nPoints(int n);
/**
* Return the number of points
*/
int nPoints() const {
return theNPoints;
}
/**
* Set the energy scale to obtain dimensionless
* quantities and flag all quantities to be recalculated.
*/
void amplitudeScale(Energy s) const;
/**
* Set the momentum for the k'th parton
* and its associated mass.
*/
void momentum(int k, const LorentzMomentum& p,
bool getSpinors = true,
Energy mass = ZERO) const;
/**
* Reset flags
*/
void reset() const;
public:
/**
* Return the momentum for the k'th parton
*/
LorentzVector<double> momentum(int k) const { return theMomenta[k]/theScale; }
/**
* Get the energy scale to obtain dimensionless
* quantities and flag all quantities to be recalculated.
*/
Energy amplitudeScale() const { return theScale; }
/**
* Return the mass associated to the k'th parton
*/
double mass(int k) const { return theMasses[k]; }
/**
* Return the crossing sign for the
* i'th parton
*/
int crossingSign(int i) const { return theCrossingSigns[i]; }
/**
* Return the crossing sign for the
* i'th and j'th parton
*/
double crossingSign(int i, int j) const { return theCrossingSigns[i]*theCrossingSigns[j]; }
/**
* Return (ij)
*/
double invariant(int i, int j) const {
- if ( i== j )
- return 0.;
- if ( i > j )
- swap(i,j);
- if ( getInvariant[i][j] ) {
- getInvariant[i][j] = false;
- theInvariants[i][j] = 2.*(momentum(i)*momentum(j));
+ if ( i == j ) return 0.;
+ if ( i > j ) swap(i,j);
+ if ( getInvariant[idx(i,j)] ) {
+ getInvariant[idx(i,j)] = false;
+ theInvariants[idx(i,j)] = 2.*(momentum(i)*momentum(j));
}
- return theInvariants[i][j];
+ return theInvariants[idx(i,j)];
}
/**
* Return <ij>
*/
Complex plusProduct(int i, int j) const {
if ( i== j )
return 0.;
bool swapij = (i > j);
if ( swapij )
swap(i,j);
- if ( getPlusProduct[i][j] ) {
- getPlusProduct[i][j] = false;
- thePlusProducts[i][j] =
+ if ( getPlusProduct[idx(i,j)] ) {
+ getPlusProduct[idx(i,j)] = false;
+ thePlusProducts[idx(i,j)] =
PlusSpinorProduct(thePlusConjugateSpinors[i],
thePlusSpinors[j]).eval() / theScale;
}
- return swapij ? -thePlusProducts[i][j] : thePlusProducts[i][j];
+ return swapij ? -thePlusProducts[idx(i,j)] : thePlusProducts[idx(i,j)];
}
/**
* Return [ij]
*/
Complex minusProduct(int i, int j) const {
if ( i== j )
return 0.;
return -crossingSign(i,j)*conj(plusProduct(i,j));
}
/**
* Return <i|\gamma^\mu|j]
*/
LorentzVector<Complex> plusCurrent(int i, int j) const {
bool swapij = (i > j);
if ( swapij )
swap(i,j);
- if ( getPlusCurrent[i][j] ) {
- getPlusCurrent[i][j] = false;
+ if ( getPlusCurrent[idx(i,j)] ) {
+ getPlusCurrent[idx(i,j)] = false;
if ( i != j ) {
- thePlusCurrents[i][j] =
+ thePlusCurrents[idx(i,j)] =
PlusSpinorCurrent(thePlusConjugateSpinors[i],
MinusSpinor(theMomenta[j])).eval() / theScale;
} else {
- thePlusCurrents[i][j] = 2.*momentum(i);
+ thePlusCurrents[idx(i,j)] = 2.*momentum(i);
}
}
- return swapij ? crossingSign(i,j)*thePlusCurrents[i][j].conjugate() : thePlusCurrents[i][j];
+ return swapij ? crossingSign(i,j)*thePlusCurrents[idx(i,j)].conjugate() : thePlusCurrents[idx(i,j)];
}
/**
* Return [i|\gamma^\mu|j>
*/
LorentzVector<Complex> minusCurrent(int i, int j) const {
return plusCurrent(j,i);
}
public:
/**
* Return true, if the given amplitude
* needs to be recalculated.
*/
bool getAmplitude(const AmplitudeKey& key) const {
static Complex czero;
if ( ( theLastAmplitude = theCachedAmplitudes.find(key) )
== theCachedAmplitudes.end() ) {
theLastAmplitude = theCachedAmplitudes.insert(make_pair(key,make_pair(true,czero))).first;
}
return theLastAmplitude->second.first;
}
/**
* Cache an amplitude
*/
void cacheAmplitude(Complex amp) const {
theLastAmplitude->second = make_pair(false,amp);
}
/**
* Return a cached amplitude
*/
const Complex& cachedAmplitude() const {
return theLastAmplitude->second.second;
}
/**
* Return true, if the given current
* needs to be recalculated.
*/
bool getCurrent(const AmplitudeKey& key) const {
static LorentzVector<Complex> czero;
if ( ( theLastCurrent = theCachedCurrents.find(key) )
== theCachedCurrents.end() ) {
theLastCurrent = theCachedCurrents.insert(make_pair(key,make_pair(true,czero))).first;
}
return theLastCurrent->second.first;
}
/**
* Cache an current
*/
void cacheCurrent(const LorentzVector<Complex>& curr) const {
theLastCurrent->second = make_pair(false,curr);
}
/**
* Return a cached current
*/
const LorentzVector<Complex>& cachedCurrent() const {
return theLastCurrent->second.second;
}
};
}
}
#include "AmplitudeCache.tcc"
#endif // HERWIG_AmplitudeCache_H
diff --git a/MatrixElement/Matchbox/Utility/AmplitudeCache.tcc b/MatrixElement/Matchbox/Utility/AmplitudeCache.tcc
--- a/MatrixElement/Matchbox/Utility/AmplitudeCache.tcc
+++ b/MatrixElement/Matchbox/Utility/AmplitudeCache.tcc
@@ -1,73 +1,60 @@
// -*- C++ -*-
//
// AmplitudeCache.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
namespace Herwig {
namespace SpinorHelicity {
-template<class AmplitudeKey>
+template<typename AmplitudeKey>
void AmplitudeCache<AmplitudeKey>::nPoints(int n) {
+ assert( n <= MAX_N );
+
theNPoints = n;
- theMasses.clear();
- theMomenta.clear();
- theCrossingSigns.clear();
- thePlusSpinors.clear();
- thePlusConjugateSpinors.clear();
- theInvariants.clear();
- thePlusProducts.clear();
- thePlusCurrents.clear();
- getInvariant.clear();
- getPlusProduct.clear();
- getPlusCurrent.clear();
-
- theMasses.resize(n);
- theMomenta.resize(n);
- theCrossingSigns.resize(n);
- thePlusSpinors.resize(n);
- thePlusConjugateSpinors.resize(n);
- theInvariants.resize(n,vector<double>(n));
- thePlusProducts.resize(n,vector<Complex>(n));
- thePlusCurrents.resize(n,vector<LorentzVector<Complex> >(n));
- getInvariant.resize(n,vector<bool>(n));
- getPlusProduct.resize(n,vector<bool>(n));
- getPlusCurrent.resize(n,vector<bool>(n));
+ theMasses.fill({});
+ theMomenta.fill({});
+ theCrossingSigns.fill({});
+ thePlusSpinors.fill(PlusSpinor());
+ thePlusConjugateSpinors.fill(PlusConjugateSpinor());
+ theInvariants.fill({});
+ thePlusProducts.fill({});
+ thePlusCurrents.fill({});
reset();
}
-template<class AmplitudeKey>
+template<typename AmplitudeKey>
void AmplitudeCache<AmplitudeKey>::amplitudeScale(Energy s) const {
theScale = s;
reset();
}
-template<class AmplitudeKey>
+template<typename AmplitudeKey>
void AmplitudeCache<AmplitudeKey>::momentum(int k, const LorentzMomentum& p,
bool getSpinors,
Energy mass) const {
theMasses[k] = mass/theScale;
theMomenta[k] = p;
if ( getSpinors ) {
theCrossingSigns[k] = p.t() > ZERO ? 1 : -1;
thePlusSpinors[k] = PlusSpinor(p);
thePlusConjugateSpinors[k] = PlusConjugateSpinor(p);
}
}
-template<class AmplitudeKey>
+template<typename AmplitudeKey>
void AmplitudeCache<AmplitudeKey>::reset() const {
- for_each(getInvariant.begin(),getInvariant.end(),boolVectorResetter());
- for_each(getPlusProduct.begin(),getPlusProduct.end(),boolVectorResetter());
- for_each(getPlusCurrent.begin(),getPlusCurrent.end(),boolVectorResetter());
+ getInvariant.fill(true);
+ getPlusProduct.fill(true);
+ getPlusCurrent.fill(true);
for_each(theCachedAmplitudes.begin(),theCachedAmplitudes.end(),boolResetter());
for_each(theCachedCurrents.begin(),theCachedCurrents.end(),boolResetter());
}
}}
diff --git a/Sampling/BinSampler.cc b/Sampling/BinSampler.cc
--- a/Sampling/BinSampler.cc
+++ b/Sampling/BinSampler.cc
@@ -1,717 +1,728 @@
// -*- C++ -*-
//
// BinSampler.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the BinSampler class.
//
#include "BinSampler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include <boost/progress.hpp>
#include "GeneralSampler.h"
using namespace Herwig;
BinSampler::BinSampler()
: MultiIterationStatistics(),
theBias(1.),
theWeighted(false),
theInitialPoints(1000000),
theNIterations(1),
theEnhancementFactor(1.0),
theNonZeroInPresampling(false),
theHalfPoints(false),
theMaxNewMax(30),
theReferenceWeight(1.0),
theBin(-1),
theInitialized(false),
theRemapperPoints(0),
theRemapChannelDimension(false),
theLuminosityMapperBins(0),
theGeneralMapperBins(0),
theRemapperMinSelection(0.00001),
theIntegrated(false),
theRemappersFilled(false),
- theHasGrids(false) {}
+ theHasGrids(false),
+ theKappa(1.){}
BinSampler::~BinSampler() {}
IBPtr BinSampler::clone() const {
return new_ptr(*this);
}
IBPtr BinSampler::fullclone() const {
return new_ptr(*this);
}
void BinSampler::sampler(Ptr<GeneralSampler>::tptr s) {
theSampler = s;
}
Ptr<GeneralSampler>::tptr BinSampler::sampler() const {
return theSampler;
}
string BinSampler::process() const {
ostringstream os("");
const StandardEventHandler& eh = *theEventHandler;
const StandardXComb& xc = *eh.xCombs()[theBin];
os << xc.matrixElement()->name() << " : ";
os << xc.mePartonData()[0]->PDGName() << " "
<< xc.mePartonData()[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator pid =
xc.mePartonData().begin() + 2;
pid != xc.mePartonData().end(); ++pid )
os << (**pid).PDGName() << " ";
return os.str();
}
string BinSampler::shortprocess() const {
ostringstream os("");
const StandardEventHandler& eh = *theEventHandler;
const StandardXComb& xc = *eh.xCombs()[theBin];
os << xc.mePartonData()[0]->id() << " "
<< xc.mePartonData()[1]->id() << " : ";
for ( cPDVector::const_iterator pid =
xc.mePartonData().begin() + 2;
pid != xc.mePartonData().end(); ++pid )
os << (**pid).id() << " ";
return os.str();
}
string BinSampler::id() const {
ostringstream os("");
const StandardEventHandler& eh = *theEventHandler;
const StandardXComb& xc = *eh.xCombs()[theBin];
string name = xc.matrixElement()->name();
string::size_type i = name.find_first_of("[");
string nameFirst = name.substr(0,i);
i = name.find_first_of("]");
string nameSecond = name.substr(i+1);
os << nameFirst << nameSecond << ":";
for ( cPDVector::const_iterator pid =
xc.mePartonData().begin();
pid != xc.mePartonData().end(); ++pid )
os << (**pid).id() << (pid != (--xc.mePartonData().end()) ? "," : "");
return os.str();
}
double BinSampler::evaluate(vector<double> p,
bool remap) {
double w = 1.0;
if ( remap && !remappers.empty() ) {
for ( size_t k = 0; k < p.size(); ++k ) {
map<size_t,Remapper>::const_iterator r =
remappers.find(k);
if ( r != remappers.end() ) {
pair<double,double> f = r->second.generate(p[k]);
p[k] = f.first;
w /= f.second;
}
}
}
try {
w *= eventHandler()->dSigDR(p) / nanobarn;
} catch (Veto&) {
w = 0.0;
} catch (...) {
throw;
}
if (randomNumberString()!="")
for ( size_t k = 0; k < p.size(); ++k ) {
RandomNumberHistograms[RandomNumberIndex(id(),k)].first.book(p[k],w);
RandomNumberHistograms[RandomNumberIndex(id(),k)].second+=w;
}
return w;
}
double BinSampler::generate() {
double w = 1.;
for ( size_t k = 0; k < lastPoint().size(); ++k ) {
lastPoint()[k] = UseRandom::rnd();
}
try {
w = evaluate(lastPoint());
} catch (Veto&) {
w = 0.0;
} catch (...) {
throw;
}
if ( !weighted() && initialized() ) {
- double p = min(abs(w),referenceWeight())/referenceWeight();
+ double p = min(abs(w),kappa()*referenceWeight())/(kappa()*referenceWeight());
double sign = w >= 0. ? 1. : -1.;
if ( p < 1 && UseRandom::rnd() > p )
w = 0.;
else
- w = sign*max(abs(w),referenceWeight());
+ w = sign*max(abs(w),referenceWeight()*kappa());
}
select(w);
if ( w != 0.0 )
accept();
+ assert(kappa()==1.||sampler()->almostUnweighted());
return w;
}
void BinSampler::fillRemappers(bool progress) {
if ( remappers.empty() )
return;
unsigned long nanPoints = 0;
boost::progress_display* progressBar = 0;
if ( progress ) {
Repository::clog() << "warming up " << process();
progressBar = new boost::progress_display(theRemapperPoints,Repository::clog());
}
unsigned long countzero =0;
for ( unsigned long k = 0; k < theRemapperPoints; ++k,++countzero ) {
if (countzero>=theRemapperPoints)break;
double w = 1.;
for ( size_t j = 0; j < lastPoint().size(); ++j ) {
lastPoint()[j] = UseRandom::rnd();
}
try {
w = evaluate(lastPoint(),false);
} catch (Veto&) {
w = 0.0;
} catch (...) {
throw;
}
if ( isnan(w) || isinf(w) )
++nanPoints;
if ( theNonZeroInPresampling && w==0. ){
k--;
continue;
}
if ( w != 0.0 ) {
countzero=0;
for ( map<size_t,Remapper>::iterator r = remappers.begin();
r != remappers.end(); ++r )
r->second.fill(lastPoint()[r->first],w);
}
if ( progressBar )
++(*progressBar);
}
if ( progressBar ) {
delete progressBar;
}
if ( nanPoints ) {
Repository::clog() << "Warning: " << nanPoints
<< " out of " << theRemapperPoints << " points with nan or inf "
<< "weight encountered while filling remappers.\n" << flush;
}
}
void BinSampler::saveIntegrationData() const {
XML::Element stats = MultiIterationStatistics::toXML();
stats.appendAttribute("process",id());
sampler()->grids().append(stats);
}
void BinSampler::readIntegrationData() {
if ( theIntegrated )
return;
bool haveStats = false;
list<XML::Element>::iterator sit = sampler()->grids().children().begin();
for ( ; sit != sampler()->grids().children().end(); ++sit ) {
if ( sit->type() != XML::ElementTypes::Element )
continue;
if ( sit->name() != "MultiIterationStatistics" )
continue;
string proc;
sit->getFromAttribute("process",proc);
if ( proc == id() ) {
haveStats = true;
break;
}
}
if ( haveStats ) {
MultiIterationStatistics::fromXML(*sit);
sampler()->grids().erase(sit);
theIntegrated = true;
} else {
throw Exception()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Expected integration data.\n\n"
<< "* When using the build setup make sure the integrate command has been run.\n\n"
<< "* Check the [EventGenerator].log file for further information.\n\n"
<< "* Make sure that the Herwig folder can be found and that it contains a HerwigGrids.xml file.\n\n"
<< "* If you have split the integration jobs, make sure that each integration job was finished.\n"
<< " Afterwards delete the global HerwigGrids.xml file in the Herwig subfolder\n"
<< " to automatically create an updated version of the global HerwigGrids.xml file.\n\n"
<< "--------------------------------------------------------------------------------\n"
<< Exception::abortnow;
}
}
void BinSampler::saveRemappers() const {
if ( remappers.empty() )
return;
XML::Element maps(XML::ElementTypes::Element,"Remappers");
maps.appendAttribute("process",id());
for ( map<size_t,Remapper>::const_iterator r = remappers.begin();
r != remappers.end(); ++r ) {
XML::Element rmap = r->second.toXML();
rmap.appendAttribute("dimension",r->first);
maps.append(rmap);
}
sampler()->grids().append(maps);
}
void BinSampler::setupRemappers(bool progress) {
if ( !theRemapperPoints )
return;
if ( theRemappersFilled )
return;
lastPoint().resize(dimension());
bool haveGrid = false;
list<XML::Element>::iterator git = sampler()->grids().children().begin();
for ( ; git != sampler()->grids().children().end(); ++git ) {
if ( git->type() != XML::ElementTypes::Element )
continue;
if ( git->name() != "Remappers" )
continue;
string proc;
git->getFromAttribute("process",proc);
if ( proc == id() ) {
haveGrid = true;
break;
}
}
if ( haveGrid ) {
for ( list<XML::Element>::iterator cit = git->children().begin();
cit != git->children().end(); ++cit ) {
if ( cit->type() != XML::ElementTypes::Element )
continue;
if ( cit->name() != "Remapper" )
continue;
size_t dimension = 0;
cit->getFromAttribute("dimension",dimension);
remappers[dimension].fromXML(*cit);
}
sampler()->grids().erase(git);
}
if ( !haveGrid ) {
const StandardEventHandler& eh = *eventHandler();
const StandardXComb& xc = *eh.xCombs()[bin()];
const pair<int,int>& pdims = xc.partonDimensions();
set<int> remapped;
if ( theRemapChannelDimension && xc.diagrams().size() > 1 &&
dimension() > pdims.first + pdims.second ) {
remappers[pdims.first] = Remapper(xc.diagrams().size(),theRemapperMinSelection,false);
remapped.insert(pdims.first);
}
if ( theLuminosityMapperBins > 1 && dimension() >= pdims.first + pdims.second ) {
for ( int n = 0; n < pdims.first; ++n ) {
remappers[n] = Remapper(theLuminosityMapperBins,theRemapperMinSelection,true);
remapped.insert(n);
}
for ( int n = dimension() - pdims.second; n < dimension(); ++n ) {
remappers[n] = Remapper(theLuminosityMapperBins,theRemapperMinSelection,true);
remapped.insert(n);
}
}
if ( theGeneralMapperBins > 1 ) {
for ( int n = 0; n < dimension(); n++ ) {
if ( remapped.find(n) == remapped.end() ) {
remappers[n] = Remapper(theGeneralMapperBins,theRemapperMinSelection,true);
remapped.insert(n);
}
}
}
fillRemappers(progress);
for ( map<size_t,Remapper>::iterator r = remappers.begin();
r != remappers.end(); ++r ) {
r->second.finalize();
}
}
theRemappersFilled = true;
}
void BinSampler::runIteration(unsigned long points, bool progress) {
boost::progress_display* progressBar = 0;
if ( progress ) {
Repository::clog() << "integrating " << process() << " , iteration "
<< (iterations().size() + 1);
progressBar = new boost::progress_display(points,Repository::clog());
}
double w=0.;
double maxweight=0;
int numlastmax=0;
unsigned long countzero =0;
int newmax=0;
for ( unsigned long k = 0; k < points; ++k,++countzero ) {
if (countzero>=points)break;
w=abs(generate());
if(theNonZeroInPresampling && w==0.0){
k--;
continue;
}
if (w!=0.0)
countzero =0;
numlastmax++;
if (theHalfPoints&&maxweight<w&&
numlastmax<(int)(points/2.)){
if(++newmax>theMaxNewMax){
throw Exception()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "To many new Maxima.\n\n"
<< "* With the option:\n\n"
<< "* set Sampler:BinSampler:HalfPoints Yes\n\n"
<< "* for every new maximum weight found until the half of the persampling points\n"
<< "* the counter is set to zero. We count the number of new maxima.\n"
<< "* You have reached: "<<newmax<<"\n"
<< "* Did you apply reasonable cuts to the process?\n"
<< "* You can set the maximum allowed new maxima by:"
<< "* set Sampler:BinSampler:MaxNewMax N\n\n"
<< "--------------------------------------------------------------------------------\n"
<< Exception::abortnow;
}
maxweight=w;
k=0;
numlastmax=0;
}
if ( progress ) {
++(*progressBar);
}
}
if ( progress ) {
Repository::clog() << "integrated ( "
<< averageWeight() << " +/- " << sqrt(averageWeightVariance())
<< " ) nb\nepsilon = "
<< (abs(maxWeight()) != 0. ? averageAbsWeight()/abs(maxWeight()) : 0.);
if ( !iterations().empty() )
Repository::clog() << " chi2 = " << chi2();
Repository::clog() << "\n";
Repository::clog() << "--------------------------------------------------------------------------------\n";
}
if ( progressBar )
delete progressBar;
}
void BinSampler::initialize(bool progress) {
lastPoint().resize(dimension());
if (randomNumberString()!="")
for(size_t i=0;i<lastPoint().size();i++){
RandomNumberHistograms[RandomNumberIndex(id(),i)] = make_pair( RandomNumberHistogram(),0.);
}
if ( initialized() )
return;
if ( !sampler()->grids().children().empty() ) {
nIterations(1);
}
if ( !integrated() ) {
unsigned long points = initialPoints();
for ( unsigned long k = 0; k < nIterations(); ++k ) {
runIteration(points,progress);
if ( k < nIterations() - 1 ) {
points = (unsigned long)(points*enhancementFactor());
adapt();
nextIteration();
}
}
}
isInitialized();
}
void BinSampler::finalize(bool){
if (theRandomNumbers!="")
for ( map<RandomNumberIndex,pair<RandomNumberHistogram,double> >::
const_iterator b = RandomNumberHistograms.begin();
b != RandomNumberHistograms.end(); ++b ) {
b->second.first.dump(randomNumberString(), b->first.first,shortprocess(),b->first.second);
}
}
BinSampler::RandomNumberHistogram::
RandomNumberHistogram(double low,
double up,
unsigned int nbins)
: lower(low) {
nbins = nbins + 1;
double c = up / (nbins-1.);
for ( unsigned int k = 1; k < nbins; ++k ) {
bins[low+c*k] = 0.;
binsw1[low+c*k] = 0.;
}
}
void BinSampler::RandomNumberHistogram::
dump(const std::string& folder,const std::string& prefix, const std::string& process,
const int NR) const {
ostringstream fname("");
std::string prefix2;
std::string prefix3=prefix;
std::remove_copy(prefix.begin(), prefix.end(), std::back_inserter(prefix2), '.');
prefix3=prefix2;prefix2.clear();
std::remove_copy(prefix3.begin(), prefix3.end(), std::back_inserter(prefix2), ':');
prefix3=prefix2;prefix2.clear();
std::remove_copy(prefix3.begin(), prefix3.end(), std::back_inserter(prefix2), ',');
fname << "RN-"<< NR ;
ofstream out((folder+"/"+prefix2+fname.str()+".dat").c_str());
double sumofweights=0.;
for ( map<double,double >::const_iterator b = bins.begin();b != bins.end(); ++b )
sumofweights+=b->second;
double sumofweights2=0.;
for ( map<double,double >::const_iterator b = binsw1.begin();b != binsw1.end(); ++b )
sumofweights2+=b->second;
map<double,double >::const_iterator b2 = binsw1.begin();
if ( sumofweights == 0 ) {
cerr << "Not enough statistic accumulated for "
<< process << " skipping random number diagnostic.\n"
<< flush;
return;
}
for ( map<double,double >::const_iterator b = bins.begin();
b != bins.end(); ++b, ++b2) {
out << " " << b->first
<< " " << b->second/sumofweights*100.
<< " " << b2->second/sumofweights2*100.
<< "\n" << flush;
}
double xmin = -0.01;
double xmax = 1.01;
ofstream gpout((folder+"/"+prefix2+fname.str()+".gp").c_str());
gpout << "set terminal epslatex color solid\n"
<< "set output '" << prefix2+fname.str() << "-plot.tex'\n"
<< "set xrange [" << xmin << ":" << xmax << "]\n";
gpout << "set xlabel 'rn "<<NR <<"' \n";
gpout << "set size 0.5,0.6\n";
gpout << "plot '" << prefix2+fname.str()
<< ".dat' u ($1):($2) w boxes lc rgbcolor \"blue\" t '{\\tiny "<<process <<" }',";
gpout << " '" << prefix2+fname.str();
gpout << ".dat' u ($1):($3) w boxes lc rgbcolor \"red\" t '';";
gpout << "reset\n";
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void BinSampler::persistentOutput(PersistentOStream & os) const {
MultiIterationStatistics::put(os);
os << theBias << theWeighted << theInitialPoints << theNIterations
<< theEnhancementFactor << theNonZeroInPresampling << theHalfPoints
<< theMaxNewMax << theReferenceWeight
<< theBin << theInitialized << theLastPoint
<< theEventHandler << theSampler << theRandomNumbers
<< theRemapperPoints << theRemapChannelDimension
- << theLuminosityMapperBins << theGeneralMapperBins;
+ << theLuminosityMapperBins << theGeneralMapperBins << theKappa;
}
void BinSampler::persistentInput(PersistentIStream & is, int) {
MultiIterationStatistics::get(is);
is >> theBias >> theWeighted >> theInitialPoints >> theNIterations
>> theEnhancementFactor >> theNonZeroInPresampling >> theHalfPoints
>> theMaxNewMax >> theReferenceWeight
>> theBin >> theInitialized >> theLastPoint
>> theEventHandler >> theSampler >> theRandomNumbers
>> theRemapperPoints >> theRemapChannelDimension
- >> theLuminosityMapperBins >> theGeneralMapperBins;
+ >> theLuminosityMapperBins >> theGeneralMapperBins >> theKappa;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<BinSampler,MultiIterationStatistics>
describeHerwigBinSampler("Herwig::BinSampler", "HwSampling.so");
void BinSampler::Init() {
static ClassDocumentation<BinSampler> documentation
("BinSampler samples XCombs bins. This default implementation performs flat MC integration.");
static Parameter<BinSampler,unsigned long> interfaceInitialPoints
("InitialPoints",
"The number of points to use for initial integration.",
&BinSampler::theInitialPoints, 1000000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<BinSampler,size_t> interfaceNIterations
("NIterations",
"The number of iterations to perform initially.",
&BinSampler::theNIterations, 1, 1, 0,
false, false, Interface::lowerlim);
static Parameter<BinSampler,double> interfaceEnhancementFactor
("EnhancementFactor",
"The enhancement factor for the number of points in the next iteration.",
&BinSampler::theEnhancementFactor, 2.0, 1.0, 0,
false, false, Interface::lowerlim);
static Switch<BinSampler,bool> interfaceNonZeroInPresampling
("NonZeroInPresampling",
"Switch on to count only non zero weights in presampling.",
&BinSampler::theNonZeroInPresampling, true, false, false);
static SwitchOption interfaceNonZeroInPresamplingYes
(interfaceNonZeroInPresampling,
"Yes",
"",
true);
static SwitchOption interfaceNonZeroInPresamplingNo
(interfaceNonZeroInPresampling,
"No",
"",
false);
static Switch<BinSampler,bool> interfaceHalfPoints
("HalfPoints",
"Switch on to reset the counter of points if new maximumis was found in the first 1/2 points.",
&BinSampler::theHalfPoints, true, false, false);
static SwitchOption interfaceHalfPointsYes
(interfaceHalfPoints,
"Yes",
"",
true);
static SwitchOption interfaceHalfPointsNo
(interfaceHalfPoints,
"No",
"",
false);
static Parameter<BinSampler,int> interfaceMaxNewMax
("MaxNewMax",
"The maximum number of allowed new maxima in combination with the HalfPoints option.",
&BinSampler::theMaxNewMax, 30, 1, 0,
false, false, Interface::lowerlim);
static Parameter<BinSampler,string> interfaceRandomNumbers
("RandomNumbers",
"Prefix for distributions of the random numbers.",
&BinSampler::theRandomNumbers, "",
false, false);
static Parameter<BinSampler,unsigned long> interfaceRemapperPoints
("RemapperPoints",
"The number of points to be used for filling remappers.",
&BinSampler::theRemapperPoints, 10000, 0, 0,
false, false, Interface::lowerlim);
static Switch<BinSampler,bool> interfaceRemapChannelDimension
("RemapChannelDimension",
"Switch on remapping of the channel dimension.",
&BinSampler::theRemapChannelDimension, true, false, false);
static SwitchOption interfaceRemapChannelDimensionYes
(interfaceRemapChannelDimension,
"Yes",
"",
true);
static SwitchOption interfaceRemapChannelDimensionNo
(interfaceRemapChannelDimension,
"No",
"",
false);
static Parameter<BinSampler,unsigned long> interfaceLuminosityMapperBins
("LuminosityMapperBins",
"The number of bins to be used for remapping parton luminosities.",
&BinSampler::theLuminosityMapperBins, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<BinSampler,unsigned long> interfaceGeneralMapperBins
("GeneralMapperBins",
"The number of bins to be used for remapping other phase space dimensions.",
&BinSampler::theGeneralMapperBins, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<BinSampler,double> interfaceRemapperMinSelection
("RemapperMinSelection",
"The minimum bin selection probability for remappers.",
&BinSampler::theRemapperMinSelection, 0.00001, 0.0, 1.0,
false, false, Interface::limited);
+
+ static Parameter<BinSampler,double> interfaceKappa
+ ("Kappa",
+ "In AllmostUnweighted mode unweight to Kappa ReferenceWeight.",
+ &BinSampler::theKappa, 1., 0.000001, 1.0,
+ false, false, Interface::limited);
+
+
+
}
diff --git a/Sampling/BinSampler.h b/Sampling/BinSampler.h
--- a/Sampling/BinSampler.h
+++ b/Sampling/BinSampler.h
@@ -1,567 +1,587 @@
// -*- C++ -*-
//
// BinSampler.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef Herwig_BinSampler_H
#define Herwig_BinSampler_H
//
// This is the declaration of the BinSampler class.
//
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Utilities/Exception.h"
#include "ThePEG/Repository/UseRandom.h"
#include "MultiIterationStatistics.h"
#include "Remapper.h"
namespace Herwig {
using namespace ThePEG;
class GeneralSampler;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief BinSampler samples XCombs bins. This default implementation
* performs flat MC integration.
*
* @see \ref BinSamplerInterfaces "The interfaces"
* defined for BinSampler.
*/
class BinSampler: public Herwig::MultiIterationStatistics {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
BinSampler();
/**
* The destructor.
*/
virtual ~BinSampler();
//@}
public:
/**
* Clone this object.
*/
Ptr<BinSampler>::ptr cloneMe() const {
return dynamic_ptr_cast<Ptr<BinSampler>::ptr>(clone());
}
public:
/**
* Evaluate the cross section
*/
double evaluate(vector<double> p,
bool remap = true);
/**
* Return the bias with which this sampler is selected. The sampler
* needs to divide out this bias in its weight calculation.
*/
double bias() const { return theBias; }
/**
* Set the bias with which this sampler is selected.
*/
void bias(double b) { theBias = b; }
/**
* Set the event handler
*/
void eventHandler(tStdEHPtr eh) { theEventHandler = eh; }
/**
* Return the event handler
*/
tStdEHPtr eventHandler() const { return theEventHandler; }
/**
* Set the containing sampler
*/
void sampler(Ptr<GeneralSampler>::tptr);
/**
* Get the containing sampler
*/
Ptr<GeneralSampler>::tptr sampler() const;
/**
* Return the bin
*/
int bin() const { return theBin; }
/**
* Set the bin
*/
void bin(int b) { theBin = b; }
/**
* Return a string describing the process handled by this sampler.
*/
string process() const;
/**
* Return a short string describing the process handled by this sampler.
*/
string shortprocess() const;
/**
* Return a string identifying the process handled by this sampler.
*/
string id() const;
/**
* Return the last generated point.
*/
const vector<double>& lastPoint() const { return theLastPoint; }
/**
* Access the last generated point.
*/
vector<double>& lastPoint() { return theLastPoint; }
/**
* Return the reference weight to be used
*/
double referenceWeight() const { return theReferenceWeight; }
/**
* Set the reference weight to be used
*/
void referenceWeight(double w) { theReferenceWeight = w; }
/**
* Return true, if this sampler can provide unweighted events; if
* the proposal density is not an overestimate, weights larger than
* one can be generated, the handling of these points being subject
* to the GeneralSampler class.
*/
virtual bool canUnweight() const { return true; }
/**
* Return true, if this sampler adapts on the fly while generating
* events. Cross sections in the GeneralSampler class are calculated
* from adding up the cross sections quoted by individual samplers.
*/
virtual bool adaptsOnTheFly() const { return false; }
/**
* If this sampler features a compensation algorithm, return true if
* more events need to be generated to finish the compensation.
*/
virtual bool compensating() const { return false; }
/**
* Return true, if weighted events should be generated
*/
bool weighted() const { return theWeighted; }
/**
* Indicate that weighted events should be generated
*/
void doWeighted(bool yes = true) { theWeighted = yes; }
/**
* Exception to be thrown if cross section information should be updated.
*/
struct NextIteration {};
/**
* Generate the next point and return its weight; store the point in
* lastPoint().
*/
virtual double generate();
/**
* Fill and finalize the remappers present
*/
void fillRemappers(bool progress);
/**
* Write remappers to grid file
*/
void saveRemappers() const;
/**
* Write integration data to grid files
*/
void saveIntegrationData() const;
/**
* Save grid data
*/
virtual void saveGrid() const {}
/**
* Read integration data from grid files
*/
void readIntegrationData();
/**
* Read remappers from grid file
*/
void setupRemappers(bool progress);
/**
* Run a single iteration of n points, optionally printing a
* progress bar to cout. Calls generate n times.
*/
void runIteration(unsigned long n, bool progress);
/**
* Adapt this sampler after an iteration has been run
*/
virtual void adapt() {}
/**
* Initialize this bin sampler. This default version calls runIteration.
*/
virtual void initialize(bool progress);
/**
* Return true, if this sampler has already been initialized.
*/
bool initialized() const { return theInitialized; }
/**
* Indicate that this sampler has already been initialized.
*/
void isInitialized() { theInitialized = true; }
/**
* Return true, if integration has already been performed
*/
bool integrated() const { return theIntegrated; }
/**
* Return true, if remappers have been set up
*/
bool remappersFilled() const { return theRemappersFilled; }
/**
* Return true, if this sampler has already read grid data.
*/
bool hasGrids() const { return theHasGrids; }
/**
* Indicate that this sampler has already read grid data.
*/
void didReadGrids() { theHasGrids = true; }
/**
* Finalize this sampler.
*/
virtual void finalize(bool);
/**
* Return the total integrated cross section determined from the
* Monte Carlo sampling so far.
*/
virtual CrossSection integratedXSec() const {
return averageWeight()*nanobarn;
}
/**
* Return the error on the total integrated cross section determined
* from the Monte Carlo sampling so far.
*/
virtual CrossSection integratedXSecErr() const {
return sqrt(abs(averageWeightVariance()))*nanobarn;
}
/**
* Define the key for the collinear subtraction data.
*/
struct RandomNumberHistogram {
/**
* The lower bound
*/
double lower;
/**
* The bins, indexed by upper bound.
*/
map<double,double > bins;
map<double,double > binsw1;
/**
* Constructor
*/
RandomNumberHistogram(double low = 0.0,
double up = 1.,
unsigned int nbins = 20);
/**
* Book an event.
*/
void book(double inv, double weight) {
map<double,double>::iterator b = bins.upper_bound(inv);
if ( b == bins.end() ) return;
b->second = b->second+weight;
map<double,double>::iterator b2 = binsw1.upper_bound(inv);
if ( b2 == binsw1.end() ) return;
b2->second = b2->second+1.;
}
/**
* Write to file given name and invariant.
*/
void dump(const std::string& folder,const std::string& prefix, const std::string& process,const int NR)const;
};
typedef pair<string,size_t > RandomNumberIndex;
map<RandomNumberIndex,pair<RandomNumberHistogram,double> > RandomNumberHistograms;
public:
/**
* Return the dimension.
*/
int dimension() const { return theEventHandler->nDim(bin()); }
/**
* Return the number of points to be used for initial integration.
*/
unsigned long initialPoints() const { return theInitialPoints; }
/**
* Set the number of points to be used for initial integration.
*/
void initialPoints(unsigned long n) { theInitialPoints = n; }
/**
* Return the number of iterations to be considered for initialization.
*/
size_t nIterations() const { return theNIterations; }
/**
* Set the number of iterations to be considered for initialization.
*/
void nIterations(size_t n) { theNIterations = n; }
/**
* Set the factor to enhance the number of points for the next
* iteration.
*/
void enhancementFactor(double f) { theEnhancementFactor = f; }
/**
* Return the factor to enhance the number of points for the next
* iteration.
*/
double enhancementFactor() const { return theEnhancementFactor; }
/**
* Return the folder for the random number plots.
*/
string randomNumberString() const {return theRandomNumbers;}
+ /**
+ * In the AlmostUnweighted mode we do not need to unweight
+ * the events to the reference weight.
+ * Kappa reduces effectivly the reference weight.
+ * This can be used for processes, where unweighting
+ * is hardly feasable.
+ */
+ double kappa() const {return theKappa;}
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
private:
/**
* The bias with which this sampler is selected.
*/
double theBias;
/**
* True, if weighted events should be generated
*/
bool theWeighted;
/**
* The number of points to use for initial integration.
*/
unsigned long theInitialPoints;
/**
* The number of iterations to be considered for initialization.
*/
size_t theNIterations;
/**
* Factor to enhance the number of points for the next iteration.
*/
double theEnhancementFactor;
/**
* Switch to count only non zero weights in presampling.
*/
bool theNonZeroInPresampling;
/**
* Switch to require that we get half of the points
* in each iteration below the maximum weight of the iteration.
*/
bool theHalfPoints;
/**
* The maximum number of allowed new maxima,
* in combination with HalfPoints, in order to prevent unstable
* processes.
*/
int theMaxNewMax;
/**
* The reference weight to be used
*/
double theReferenceWeight;
/**
* The bin to be sampled.
*/
int theBin;
/**
* Wether or not this sampler has already been initialized.
*/
bool theInitialized;
/**
* The last generated point.
*/
vector<double> theLastPoint;
/**
* The event handler to be used.
*/
tStdEHPtr theEventHandler;
/**
* The containing sampler
*/
Ptr<GeneralSampler>::tptr theSampler;
/**
* Folder for the random number plots.
*/
string theRandomNumbers;
/**
* Remapper objects indexed by dimension
*/
map<size_t,Remapper> remappers;
/**
* The number of points to be used for initial filling of the remappers
*/
unsigned long theRemapperPoints;
/**
* True if channels should get a remapper
*/
bool theRemapChannelDimension;
/**
* The number of bins to be used for luminosity dimensions
*/
unsigned long theLuminosityMapperBins;
/**
* The number of bins to be used for any other dimension
*/
unsigned long theGeneralMapperBins;
/**
* The minimum selection probability for remapper bins
*/
double theRemapperMinSelection;
/**
* True, if integration has already be performed
*/
bool theIntegrated;
/**
* True, if remappers have been set up
*/
bool theRemappersFilled;
/**
* True, if this sampler has already read grid data.
*/
bool theHasGrids;
+
+
+ /**
+ * In the AlmostUnweighted mode we do not need to unweight
+ * the events to the reference weight.
+ * Kappa reduces effectivly the reference weight.
+ * This can be used for processes, where unweighting
+ * is hardly feasable.
+ */
+ double theKappa;
+
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
BinSampler & operator=(const BinSampler &);
};
}
#endif /* Herwig_BinSampler_H */
diff --git a/Sampling/CellGrids/CellGridSampler.cc b/Sampling/CellGrids/CellGridSampler.cc
--- a/Sampling/CellGrids/CellGridSampler.cc
+++ b/Sampling/CellGrids/CellGridSampler.cc
@@ -1,344 +1,345 @@
// -*- C++ -*-
//
// CellGridSampler.cpp is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the CellGridSampler class.
//
#include "CellGridSampler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/ParVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include <boost/progress.hpp>
#include "CellGridSampler.h"
#include "Herwig/Sampling/GeneralSampler.h"
using namespace Herwig;
using namespace ExSample;
CellGridSampler::CellGridSampler()
: BinSampler(), SimpleCellGrid(),
theExplorationPoints(1000), theExplorationSteps(8),
theGain(0.3), theEpsilon(0.01),
theMinimumSelection(0.0001), theLuminositySplits(0),
theChannelSplits(0), theAllChannelSplits(false),
theUnweightCells(true) {}
CellGridSampler::~CellGridSampler() {}
IBPtr CellGridSampler::clone() const {
return new_ptr(*this);
}
IBPtr CellGridSampler::fullclone() const {
return new_ptr(*this);
}
double CellGridSampler::generate() {
UseRandom rnd;
double w = SimpleCellGrid::sample(rnd,*this,lastPoint(),
!weighted() && initialized() && theUnweightCells,
!initialized());
if ( !weighted() && initialized() ) {
- double p = min(abs(w),referenceWeight())/referenceWeight();
+ double p = min(abs(w),kappa()*referenceWeight())/(kappa()*referenceWeight());
double sign = w >= 0. ? 1. : -1.;
if ( p < 1 && UseRandom::rnd() > p )
w = 0.;
else
- w = sign*max(abs(w),referenceWeight());
+ w = sign*max(abs(w),referenceWeight()*kappa());
}
select(w);
if ( w != 0.0 )
accept();
+ assert(kappa()==1.||sampler()->almostUnweighted());
return w;
}
void CellGridSampler::adapt() {
UseRandom rnd;
set<SimpleCellGrid*> newCells;
SimpleCellGrid::adapt(theGain,theEpsilon,newCells);
SimpleCellGrid::explore(theExplorationPoints,rnd,*this,newCells,Repository::clog());
SimpleCellGrid::setWeights();
SimpleCellGrid::updateIntegral();
SimpleCellGrid::minimumSelection(theMinimumSelection);
}
void CellGridSampler::saveGrid() const {
XML::Element grid = SimpleCellGrid::toXML();
grid.appendAttribute("process",id());
sampler()->grids().append(grid);
}
void CellGridSampler::initialize(bool progress) {
bool haveGrid = false;
list<XML::Element>::iterator git = sampler()->grids().children().begin();
for ( ; git != sampler()->grids().children().end(); ++git ) {
if ( git->type() != XML::ElementTypes::Element )
continue;
if ( git->name() != "CellGrid" )
continue;
string proc;
git->getFromAttribute("process",proc);
if ( proc == id() ) {
haveGrid = true;
break;
}
}
if ( haveGrid ) {
SimpleCellGrid::fromXML(*git);
sampler()->grids().erase(git);
didReadGrids();
}
lastPoint().resize(dimension());
if (randomNumberString()!="")
for(size_t i=0;i<lastPoint().size();i++){
RandomNumberHistograms[RandomNumberIndex(id(),i)] = make_pair( RandomNumberHistogram(),0.);
}
if ( initialized() ) {
if ( !hasGrids() )
throw Exception() << "CellGridSampler: Require existing grid when starting to run.\n"
<< "Did you miss setting --setupfile?"
<< Exception::abortnow;
return;
}
if ( haveGrid ) {
if ( !integrated() )
runIteration(initialPoints(),progress);
isInitialized();
return;
}
SimpleCellGrid::boundaries(vector<double>(dimension(),0.0),vector<double>(dimension(),1.0));
SimpleCellGrid::weightInformation().resize(dimension());
UseRandom rnd;
boost::progress_display* progressBar = 0;
if ( progress ) {
Repository::clog() << "exploring " << process();
progressBar = new boost::progress_display(theExplorationSteps,Repository::clog());
}
std::set<SimpleCellGrid*> newCells;
if ( pre_adaption_splits().empty() &&
(theLuminositySplits || theChannelSplits || theAllChannelSplits) ) {
const StandardEventHandler& eh = *eventHandler();
const StandardXComb& xc = *eh.xCombs()[bin()];
the_pre_adaption_splits.resize(dimension(),0);
const pair<int,int>& pdims = xc.partonDimensions();
if ( theLuminositySplits && dimension() >= pdims.first + pdims.second ) {
for ( int n = 0; n < pdims.first; ++n )
the_pre_adaption_splits[n] = theLuminositySplits;
for ( int n = dimension() - pdims.second; n < dimension(); ++n )
the_pre_adaption_splits[n] = theLuminositySplits;
}
if ( theChannelSplits && xc.diagrams().size() &&
dimension() > pdims.first + pdims.second ) {
the_pre_adaption_splits[pdims.first] = theChannelSplits;
}
if ( theAllChannelSplits && xc.diagrams().size() > 1 &&
dimension() > pdims.first + pdims.second ) {
the_pre_adaption_splits[pdims.first] = xc.diagrams().size() - 1;
}
}
for(int splitdim=0; splitdim<min(dimension(),(int)pre_adaption_splits().size());splitdim++)
SimpleCellGrid::splitter(splitdim,pre_adaption_splits()[splitdim]);
SimpleCellGrid::explore(theExplorationPoints,rnd,*this,newCells,Repository::clog());
bool notAll = false;
for ( std::size_t step = 1; step < theExplorationSteps; ++step ) {
newCells.clear();
SimpleCellGrid::adapt(theGain,theEpsilon,newCells);
if ( progressBar )
++(*progressBar);
if ( newCells.empty() ) {
notAll = true;
break;
}
SimpleCellGrid::explore(theExplorationPoints,rnd,*this,newCells,Repository::clog());
}
if ( progressBar )
++(*progressBar);
SimpleCellGrid::setWeights();
SimpleCellGrid::updateIntegral();
SimpleCellGrid::minimumSelection(theMinimumSelection);
if ( progressBar ) {
if ( notAll )
cout << "\n" << flush;
delete progressBar;
}
unsigned long points = initialPoints();
for ( unsigned long k = 0; k < nIterations(); ++k ) {
runIteration(points,progress);
if ( k < nIterations() - 1 ) {
points = (unsigned long)(points*enhancementFactor());
adapt();
nextIteration();
}
}
didReadGrids();
isInitialized();
}
void CellGridSampler::finalize(bool) {
XML::Element grid = SimpleCellGrid::toXML();
grid.appendAttribute("process",id());
sampler()->grids().append(grid);
if (randomNumberString()!="")
for ( map<RandomNumberIndex,pair<RandomNumberHistogram,double> >::
const_iterator b = RandomNumberHistograms.begin();
b != RandomNumberHistograms.end(); ++b ) {
b->second.first.dump(randomNumberString(), b->first.first,shortprocess(),b->first.second);
}
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void CellGridSampler::persistentOutput(PersistentOStream & os) const {
os << theExplorationPoints << theExplorationSteps
<< theGain << theEpsilon << theMinimumSelection
<< the_pre_adaption_splits
<< theLuminositySplits << theChannelSplits
<< theAllChannelSplits << theUnweightCells;
}
void CellGridSampler::persistentInput(PersistentIStream & is, int) {
is >> theExplorationPoints >> theExplorationSteps
>> theGain >> theEpsilon >> theMinimumSelection
>> the_pre_adaption_splits
>> theLuminositySplits >> theChannelSplits
>> theAllChannelSplits >> theUnweightCells;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<CellGridSampler,BinSampler>
describeHerwigCellGridSampler("Herwig::CellGridSampler", "HwSampling.so");
void CellGridSampler::Init() {
static ClassDocumentation<CellGridSampler> documentation
("CellGridSampler samples XCombs bins using CellGrids.");
static Parameter<CellGridSampler,size_t> interfaceExplorationPoints
("ExplorationPoints",
"The number of points to use for cell exploration.",
&CellGridSampler::theExplorationPoints, 1000, 1, 0,
false, false, Interface::lowerlim);
static Parameter<CellGridSampler,size_t> interfaceExplorationSteps
("ExplorationSteps",
"The number of exploration steps to perform.",
&CellGridSampler::theExplorationSteps, 8, 1, 0,
false, false, Interface::lowerlim);
static Parameter<CellGridSampler,double> interfaceGain
("Gain",
"The gain factor used for adaption.",
&CellGridSampler::theGain, 0.3, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<CellGridSampler,double> interfaceEpsilon
("Epsilon",
"The efficieny threshold used for adaption.",
&CellGridSampler::theEpsilon, 0.01, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<CellGridSampler,double> interfaceMinimumSelection
("MinimumSelection",
"The minimum cell selection probability.",
&CellGridSampler::theMinimumSelection, 0.0001, 0.0, 1.0,
false, false, Interface::limited);
static ParVector<CellGridSampler,int> interfacethe_pre_adaption_splits
("preadaptionsplit",
"The splittings for each dimension befor adaption.",
&CellGridSampler::the_pre_adaption_splits, 1., -1, 0.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<CellGridSampler,int> interfaceLuminositySplits
("LuminositySplits",
"",
&CellGridSampler::theLuminositySplits, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<CellGridSampler,int> interfaceChannelSplits
("ChannelSplits",
"",
&CellGridSampler::theChannelSplits, 0, 0, 0,
false, false, Interface::lowerlim);
static Switch<CellGridSampler,bool> interfaceAllChannelSplits
("AllChannelSplits",
"",
&CellGridSampler::theAllChannelSplits, false, false, false);
static SwitchOption interfaceAllChannelSplitsOn
(interfaceAllChannelSplits,
"On",
"",
true);
static SwitchOption interfaceAllChannelSplitsOff
(interfaceAllChannelSplits,
"Off",
"",
false);
static Switch<CellGridSampler,bool> interfaceUnweightCells
("UnweightCells",
"",
&CellGridSampler::theUnweightCells, true, false, false);
static SwitchOption interfaceUnweightCellsYes
(interfaceUnweightCells,
"Yes",
"",
true);
static SwitchOption interfaceUnweightCellsNo
(interfaceUnweightCells,
"No",
"",
false);
}
diff --git a/Sampling/GeneralSampler.cc b/Sampling/GeneralSampler.cc
--- a/Sampling/GeneralSampler.cc
+++ b/Sampling/GeneralSampler.cc
@@ -1,1029 +1,1036 @@
// -*- C++ -*-
//
// GeneralSampler.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the GeneralSampler class.
//
#include "GeneralSampler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Utilities/LoopGuard.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "Herwig/Utilities/RunDirectories.h"
#include "Herwig/Utilities/XML/ElementIO.h"
#include <boost/progress.hpp>
#include <boost/filesystem.hpp>
#include <cstdlib>
#include <sstream>
using namespace Herwig;
GeneralSampler::GeneralSampler()
: theVerbose(false),
theIntegratedXSec(ZERO), theIntegratedXSecErr(ZERO),
theUpdateAfter(1), crossSectionCalls(0), gotCrossSections(false),
theSumWeights(0.), theSumWeights2(0.),
theAttempts(0), theAccepts(0),
theMaxWeight(0.0), theAddUpSamplers(false),
theGlobalMaximumWeight(true), theFlatSubprocesses(false),
isSampling(false), theMinSelection(0.01), runCombinationData(false),
theAlmostUnweighted(false), maximumExceeds(0),
maximumExceededBy(0.), correctWeights(0.),theMaxEnhancement(1.05), didReadGrids(false),
theParallelIntegration(false),
theIntegratePerJob(0), theIntegrationJobs(0), theIntegrationJobsCreated(0),
justAfterIntegrate(false), theWriteGridsOnFinish(false) {}
GeneralSampler::~GeneralSampler() {}
IBPtr GeneralSampler::clone() const {
return new_ptr(*this);
}
IBPtr GeneralSampler::fullclone() const {
return new_ptr(*this);
}
double sign(double x) {
return x >= 0. ? 1. : -1.;
}
void GeneralSampler::initialize() {
if ( theParallelIntegration &&
runLevel() == ReadMode )
throw Exception()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Parallel integration is only supported in the build/integrate/run mode\n\n"
<< "--------------------------------------------------------------------------------\n"
<< Exception::abortnow;
if ( runLevel() == ReadMode ||
runLevel() == IntegrationMode ) {
assert(theSamplers.empty());
if ( !theGrids.children().empty() )
Repository::clog()
<< "--------------------------------------------------------------------------------\n\n"
<< "Using an existing grid. Please consider re-running the grid adaption\n"
<< "when there have been significant changes to parameters, cuts, etc.\n\n"
<< "--------------------------------------------------------------------------------\n"
<< flush;
}
if ( theParallelIntegration ) {
if ( !theIntegratePerJob && !theIntegrationJobs )
throw Exception()
<< "Please specify the number of subprocesses per integration job or the "
<< "number of integration jobs to be created."
<< Exception::abortnow;
if ( theIntegrationJobs ) {
unsigned int nintegrate = eventHandler()->nBins()/theIntegrationJobs;
if ( eventHandler()->nBins() % theIntegrationJobs != 0 )
++nintegrate;
theIntegratePerJob = max(theIntegratePerJob,nintegrate);
}
unsigned int jobCount = 0;
ofstream* jobList = 0;
generator()->log()
<< "--------------------------------------------------------------------------------\n"
<< "preparing integration jobs ...\n" << flush;
vector<int> randomized;
vector<int> pickfrom;
for ( int b = 0; b < eventHandler()->nBins(); ++b )
pickfrom.push_back(b);
//set<int> check;
while ( !pickfrom.empty() ) {
size_t idx = UseRandom::irnd(pickfrom.size());
randomized.push_back(pickfrom[idx]);
pickfrom.erase(pickfrom.begin() + idx);
}
int b = 0;
for ( vector<int>::const_iterator bx = randomized.begin();
bx != randomized.end(); ++bx, ++b ) {
if ( b == 0 || b % theIntegratePerJob == 0 ) {
if ( jobList ) {
jobList->close();
delete jobList;
jobList = 0;
}
ostringstream name;
string prefix = RunDirectories::buildStorage();
if ( prefix.empty() )
prefix = "./";
else if ( *prefix.rbegin() != '/' )
prefix += "/";
name << prefix << "integrationJob" << jobCount;
++jobCount;
string fname = name.str();
jobList = new ofstream(fname.c_str());
if ( !*jobList ) {
delete jobList;
throw Exception() << "Failed to write integration job list"
<< Exception::abortnow;
}
}
*jobList << *bx << " ";
}
theIntegrationJobsCreated = jobCount;
generator()->log()
<< "--------------------------------------------------------------------------------\n\n"
<< "Wrote " << jobCount << " integration jobs\n"
<< "Please submit integration jobs with the\nintegrate --jobid=x\ncommand for job ids "
<< "from 0 to " << (jobCount-1) << "\n\n"
+ << "e.g.:\n\n"
+ << " for i in $(seq 0 "<< (jobCount-1) <<");do Herwig integrate --jobid=$i "<<generator()->runName()<<".run & done\n\n"
<< "--------------------------------------------------------------------------------\n"
<< flush;
if ( jobList ) {
jobList->close();
delete jobList;
jobList = 0;
}
theParallelIntegration = false;
return;
}
if ( runLevel() == BuildMode )
return;
if ( !samplers().empty() )
return;
if ( binSampler()->adaptsOnTheFly() ) {
if ( !theAddUpSamplers ) {
Repository::clog() << "Warning: On-the-fly adapting samplers require cross section calculation from "
<< "adding up individual samplers. The AddUpSamplers flag will be switched on.";
}
theAddUpSamplers = true;
}
if ( !weighted() && !binSampler()->canUnweight() )
throw Exception() << "Unweighted events requested from weighted bin sampler object.";
if ( theFlatSubprocesses && !theGlobalMaximumWeight ) {
Repository::clog() << "Warning: Can only use a global maximum weight when selecting subprocesses "
<< "uniformly. The GlobalMaximumWeight flag will be switched on.";
theGlobalMaximumWeight = true;
}
set<int> binsToIntegrate;
if ( integrationList() != "" ) {
string prefix = RunDirectories::buildStorage();
if ( prefix.empty() )
prefix = "./";
else if ( *prefix.rbegin() != '/' )
prefix += "/";
string fname = prefix + integrationList();
ifstream jobList(fname.c_str());
if ( jobList ) {
int b = 0;
while ( jobList >> b )
binsToIntegrate.insert(b);
} else {
Repository::clog()
<< "Job list '"
<< integrationList() << "' not found.\n"
<< "Assuming empty integration job\n" << flush;
return;
}
}
if ( binsToIntegrate.empty() ) {
for ( int b = 0; b < eventHandler()->nBins(); ++b )
binsToIntegrate.insert(b);
}
boost::progress_display* progressBar = 0;
if ( !theVerbose && !justAfterIntegrate ) {
Repository::clog() << "integrating subprocesses";
progressBar = new boost::progress_display(binsToIntegrate.size(),Repository::clog());
}
-
+ int count=0;
for ( set<int>::const_iterator bit = binsToIntegrate.begin(); bit != binsToIntegrate.end(); ++bit ) {
+ count++;
+ if(theVerbose&&
+ (runLevel() == ReadMode ||
+ runLevel() == IntegrationMode))
+ cout<<"\nIntegrate "<< count <<" of "<<binsToIntegrate.size() <<":\n"<<flush;
Ptr<BinSampler>::ptr s = theBinSampler->cloneMe();
s->eventHandler(eventHandler());
s->sampler(this);
s->bin(*bit);
lastSampler(s);
s->doWeighted(eventHandler()->weighted());
s->setupRemappers(theVerbose);
if ( justAfterIntegrate )
s->readIntegrationData();
s->initialize(theVerbose);
samplers()[*bit] = s;
if ( !theVerbose && !justAfterIntegrate )
++(*progressBar);
if ( s->nanPoints() && theVerbose ) {
Repository::clog() << "warning: "
<< s->nanPoints() << " of "
<< s->allPoints() << " points with nan or inf weight.\n"
<< flush;
}
}
if ( progressBar ) {
delete progressBar;
progressBar = 0;
}
if ( runLevel() == IntegrationMode ) {
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->saveGrid();
s->second->saveRemappers();
s->second->saveIntegrationData();
}
writeGrids();
return;
}
if ( theVerbose ) {
bool oldAdd = theAddUpSamplers;
theAddUpSamplers = true;
try {
Repository::clog() << "estimated total cross section is ( "
<< integratedXSec()/nanobarn << " +/- "
<< integratedXSecErr()/nanobarn << " ) nb\n" << flush;
} catch (...) {
theAddUpSamplers = oldAdd;
throw;
}
theAddUpSamplers = oldAdd;
}
updateSamplers();
if ( samplers().empty() ) {
throw Exception() << "No processes with non-zero cross section present."
<< Exception::abortnow;
}
if ( !justAfterIntegrate ) {
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->saveGrid();
s->second->saveRemappers();
}
writeGrids();
}
}
double GeneralSampler::generate() {
long excptTries = 0;
gotCrossSections = false;
lastSampler(samplers().upper_bound(UseRandom::rnd())->second);
double weight = 0.;
while ( true ) {
try {
weight = 1.0;
double p = lastSampler()->referenceWeight()/lastSampler()->bias()/theMaxWeight;
if ( weighted() )
weight *= p;
else if ( p < UseRandom::rnd() ){
weight = 0.0;
// The lastSampler was picked according to the bias of the process.
--excptTries;
}
if ( weight != 0.0 )
weight *= lastSampler()->generate()/lastSampler()->referenceWeight();
} catch(BinSampler::NextIteration) {
updateSamplers();
lastSampler(samplers().upper_bound(UseRandom::rnd())->second);
if ( ++excptTries == eventHandler()->maxLoop() )
break;
continue;
} catch (...) {
throw;
}
if ( isnan(lastSampler()->lastWeight()) || isinf(lastSampler()->lastWeight()) ) {
lastSampler() = samplers().upper_bound(UseRandom::rnd())->second;
if ( ++excptTries == eventHandler()->maxLoop() )
break;
continue;
}
theAttempts += 1;
if ( abs(weight) == 0.0 ) {
lastSampler(samplers().upper_bound(UseRandom::rnd())->second);
if ( ++excptTries == eventHandler()->maxLoop() )
break;
continue;
}
if ( !eventHandler()->weighted() && !theAlmostUnweighted ) {
if ( abs(weight) > 1. ) {
++maximumExceeds;
maximumExceededBy += abs(weight)-1.;
}
correctWeights+=weight;
if ( weight > 0.0 )
weight = 1.;
else
weight = -1.;
}
break;
}
theAccepts += 1;
if ( excptTries == eventHandler()->maxLoop() )
throw Exception()
<< "GeneralSampler::generate() : Maximum number of tries to re-run event "
<< "selection reached. Aborting now." << Exception::runerror;
lastPoint() = lastSampler()->lastPoint();
lastSampler()->accept();
theSumWeights += weight;
theSumWeights2 += sqr(weight);
return weight;
}
void GeneralSampler::rejectLast() {
if ( !lastSampler() )
return;
double w = 0.0;
if ( weighted() )
w = lastSampler()->lastWeight()/lastSampler()->bias()/theMaxWeight;
else
w = lastSampler()->lastWeight()/lastSampler()->referenceWeight();
lastSampler()->reject();
theSumWeights -= w;
theSumWeights2 -= sqr(w);
theAttempts -= 1;
theAccepts -= 1;
}
void GeneralSampler::updateSamplers() {
map<double,Ptr<BinSampler>::ptr> checkedSamplers;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
if ( s->second->averageAbsWeight() == 0.0 ) {
generator()->log() << "Warning: no phase space points with non-zero cross section\n"
<< "could be obtained for the process: "
<< s->second->process() << "\n"
<< "This process will not be considered. Try increasing InitialPoints.\n"
<< flush;
if ( s->second->nanPoints() ) {
generator()->log() << "Warning: "
<< s->second->nanPoints() << " of "
<< s->second->allPoints() << " points with nan or inf weight\n"
<< "in " << s->second->process() << "\n" << flush;
}
continue;
}
checkedSamplers.insert(*s);
}
theSamplers = checkedSamplers;
if ( samplers().empty() )
return;
double allMax = 0.0;
double sumbias = 0.;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
double bias = 1.;
if ( !theFlatSubprocesses )
bias *= s->second->averageAbsWeight();
s->second->bias(bias);
sumbias += bias;
allMax = max(allMax,s->second->maxWeight()*theMaxEnhancement);
}
double nsumbias = 0.0;
bool needAdjust = false;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
needAdjust |= s->second->bias()/sumbias < theMinSelection;
s->second->bias(max(s->second->bias()/sumbias,theMinSelection));
nsumbias += s->second->bias();
}
if ( nsumbias == 0.0 ) {
samplers().clear();
return;
}
if ( needAdjust ) {
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->bias(s->second->bias()/nsumbias);
}
}
theMaxWeight = 0.0;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
double wref = theGlobalMaximumWeight ? allMax :
s->second->maxWeight()*theMaxEnhancement;
s->second->referenceWeight(wref);
theMaxWeight = max(theMaxWeight,wref/s->second->bias());
if ( (isSampling && s->second == lastSampler()) ||
!isSampling )
s->second->nextIteration();
}
map<double,Ptr<BinSampler>::ptr> newSamplers;
double current = 0.;
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
if ( s->second->bias() == 0.0 )
continue;
current += s->second->bias();
newSamplers[current] = s->second;
}
samplers() = newSamplers;
}
void GeneralSampler::currentCrossSections() const {
if ( !theAddUpSamplers ) {
double n = attempts();
if ( n > 1 ) {
theIntegratedXSec = sumWeights()*maxXSec()/attempts();
double sw = sumWeights(); double sw2 = sumWeights2();
theIntegratedXSecErr = maxXSec()*sqrt(abs(sw2/n-sqr(sw/n))/(n-1));
} else {
theIntegratedXSec = ZERO;
theIntegratedXSecErr = ZERO;
}
return;
}
if ( gotCrossSections )
return;
if ( crossSectionCalls > 0 ) {
if ( ++crossSectionCalls == theUpdateAfter ) {
crossSectionCalls = 0;
} else return;
}
++crossSectionCalls;
gotCrossSections = true;
theIntegratedXSec = ZERO;
double var = 0.0;
for ( map<double,Ptr<BinSampler>::ptr>::const_iterator s = samplers().begin();
s != samplers().end(); ++s ) {
theIntegratedXSec += s->second->integratedXSec();
var += sqr(s->second->integratedXSecErr()/nanobarn);
}
theIntegratedXSecErr = sqrt(var)*nanobarn;
}
void GeneralSampler::prepare() {
readGrids();
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void GeneralSampler::doinit() {
if ( RunDirectories::empty() )
RunDirectories::pushRunId(generator()->runName());
if ( integratePerJob() || integrationJobs() ) {
theParallelIntegration = true;
theIntegratePerJob = integratePerJob();
theIntegrationJobs = integrationJobs();
}
readGrids();
if ( theGrids.children().empty() && runLevel() == RunMode )
generator()->log()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Warning: No grid file could be found at the start of this run.\n\n"
<< "* For a read/run setup intented to be used with --setupfile please consider\n"
<< " using the build/integrate/run setup.\n"
<< "* For a build/integrate/run setup to be used with --setupfile please ensure\n"
<< " that the same setupfile is provided to both, the integrate and run steps.\n\n"
<< "--------------------------------------------------------------------------------\n" << flush;
if ( samplers().empty() && runLevel() == RunMode )
justAfterIntegrate = true;
SamplerBase::doinit();
}
void GeneralSampler::dofinish() {
set<string> compensating;
for ( map<double,Ptr<BinSampler>::ptr>::const_iterator s =
samplers().begin(); s != samplers().end(); ++s ) {
if ( s->second->compensating() ) {
compensating.insert(s->second->process());
}
if ( s->second->nanPoints() ) {
generator()->log() << "warning: "
<< s->second->nanPoints() << " of "
<< s->second->allPoints() << " points with nan or inf weight\n"
<< "in " << s->second->process() << "\n" << flush;
}
s->second->finalize(theVerbose);
}
if ( theVerbose ) {
if ( !compensating.empty() ) {
generator()->log() << "warning: sampling for the following processes is still compensating:\n";
for ( set<string>::const_iterator c = compensating.begin();
c != compensating.end(); ++c )
generator()->log() << *c << "\n";
}
generator()->log() << "final integrated cross section is ( "
<< integratedXSec()/nanobarn << " +/- "
<< integratedXSecErr()/nanobarn << " ) nb\n" << flush;
}
if ( !compensating.empty() ) {
generator()->log() << "Warning: Some samplers are still in compensating mode.\n" << flush;
}
if ( maximumExceeds != 0 ) {
//generator()->log() << maximumExceeds << " of " << theAttempts
// << " attempted points exceeded the guessed maximum weight\n"
// << "with an average relative deviation of "
// << maximumExceededBy/maximumExceeds << "\n\n" << flush;
generator()->log() <<"\n\n\nNote: In this run "<<maximumExceeds<<" of the "<<theAccepts<<" accepted events\n"
<<"were found with a weight W larger than the expected Wmax.\n";
generator()->log() <<"This corresponds to a cross section difference between:\n"
<<" UnitWeights: "<< theMaxWeight*theSumWeights/theAttempts<<"nb\n"
<<" AlmostUnweighted: "<< theMaxWeight*correctWeights/theAttempts<< "nb\n"<<
" use 'set Sampler:AlmostUnweighted On' to switch to non-unit weights.\n\n";
generator()->log() <<"The maximum weight determined in the read/integrate step has been enhanced by \n"<<
" set /Herwig/Samplers/Sampler:MaxEnhancement "<< theMaxEnhancement<<
".\nIf the rate of excessions ("<<(double)maximumExceeds*100/(double)theAccepts<<
"%) or the change of the cross section is large,\nyou can try to:\n\n"<<
"Enhance the number of points used in the read/integrate step\n"<<
" set /Herwig/Samplers/Sampler:BinSampler:InitialPoints ...\n\n"<<
"and/or enhance the reference weight found in the read/integrate step\n"<<
" set /Herwig/Samplers/Sampler:MaxEnhancement 1.x\n\n"<<
"If this does not help (and your process is well defined by cuts)\n"<<
"don't hesitate to contact herwig@projects.hepforge.org.\n\n";
}
if ( runCombinationData ) {
string dataName = RunDirectories::runStorage();
if ( dataName.empty() )
dataName = "./";
else if ( *dataName.rbegin() != '/' )
dataName += "/";
dataName += "HerwigSampling.dat";
ofstream data(dataName.c_str());
double runXSec =
theMaxWeight*theSumWeights/theAttempts;
double runXSecErr =
sqr(theMaxWeight)*(1./theAttempts)*(1./(theAttempts-1.))*
abs(theSumWeights2 - sqr(theSumWeights)/theAttempts);
data << setprecision(17);
data << "CrossSectionCombined "
<< (integratedXSec()/nanobarn) << " +/- "
<< (integratedXSecErr()/nanobarn) << "\n"
<< "CrossSectionRun "
<< runXSec << " +/- " << sqrt(runXSecErr) << "\n"
<< "PointsAttempted " << theAttempts << "\n"
<< "PointsAccepted " << theAccepts << "\n"
<< "SumWeights " << theSumWeights*theMaxWeight << "\n"
<< "SumWeights2 " << theSumWeights2*sqr(theMaxWeight) << "\n"
<< flush;
}
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->saveGrid();
s->second->saveRemappers();
if ( justAfterIntegrate )
s->second->saveIntegrationData();
}
if ( theWriteGridsOnFinish )
writeGrids();
SamplerBase::dofinish();
}
void GeneralSampler::doinitrun() {
readGrids();
if ( theGrids.children().empty() && !didReadGrids )
generator()->log()
<< "\n--------------------------------------------------------------------------------\n\n"
<< "Warning:No grid file could be found at the start of this run.\n\n"
<< "* For a read/run setup intented to be used with --setupfile please consider\n"
<< " using the build/integrate/run setup.\n"
<< "* For a build/integrate/run setup to be used with --setupfile please ensure\n"
<< " that the same setupfile is provided to both, the integrate and run steps.\n\n"
<< "--------------------------------------------------------------------------------\n" << flush;
if ( samplers().empty() ) {
justAfterIntegrate = true;
if ( !hasSetupFile() )
initialize();
} else {
for ( map<double,Ptr<BinSampler>::ptr>::iterator s = samplers().begin();
s != samplers().end(); ++s ) {
s->second->setupRemappers(theVerbose);
if ( justAfterIntegrate )
s->second->readIntegrationData();
s->second->initialize(theVerbose);
}
}
isSampling = true;
SamplerBase::doinitrun();
}
void GeneralSampler::rebind(const TranslationMap & trans) {
for ( map<double,Ptr<BinSampler>::ptr>::iterator s =
samplers().begin(); s != samplers().end(); ++s )
s->second = trans.translate(s->second);
SamplerBase::rebind(trans);
}
IVector GeneralSampler::getReferences() {
IVector ret = SamplerBase::getReferences();
for ( map<double,Ptr<BinSampler>::ptr>::iterator s =
samplers().begin(); s != samplers().end(); ++s )
ret.push_back(s->second);
return ret;
}
void GeneralSampler::writeGrids() const {
if ( theGrids.children().empty() )
return;
string dataName = RunDirectories::runStorage();
if ( dataName.empty() )
dataName = "./";
else if ( *dataName.rbegin() != '/' )
dataName += "/";
dataName += "HerwigGrids.xml";
ofstream out(dataName.c_str());
XML::ElementIO::put(theGrids,out);
}
void GeneralSampler::readGrids() {
// return if grids were already read
if ( didReadGrids )
return;
// check for global HerwigGrids.xml file or combine integration jobs to a global HerwigGrids.xml file
// Show messages of integration job combination only in the first run (if no global HerwigGrids.xml file is found in one of the directories)
// or in case of an error
// Check if a globalHerwigGridsFileFound was found and keep messages in a stringstream buffer beforehand
bool globalHerwigGridsFileFound = false;
bool integrationJobCombinationSuccessful = true;
std::stringstream messageBuffer;
RunDirectories directories;
while ( directories && !didReadGrids ) {
string dataName = directories.nextRunStorage();
if ( dataName.empty() )
dataName = "./";
else if ( *dataName.rbegin() != '/' )
dataName += "/";
string directoryName = dataName;
dataName += "HerwigGrids.xml";
ifstream in(dataName.c_str());
if ( in ) {
theGrids = XML::ElementIO::get(in);
didReadGrids = true;
// Set to true if in any of the directories a global HerwigGrid.xml file was found
globalHerwigGridsFileFound = true;
}
else {
// Check if integrationJob was split and try to merge single integrationJobs together
// integrationJobsCreated() == 0 indicates that parallel integration has not been
// requested, while the parallel integration parameters may well yield a single job
if(integrationJobsCreated() >= 1 && runLevel() == RunMode) {
messageBuffer << "\n\n* Global HerwigGrids.xml file does not exist yet"
<< "\n and integration jobs were split into " << integrationJobsCreated() << " integration jobs."
<< "\n Trying to combine single integration jobs to a global HerwigGrids.xml file"
<< "\n using the following directory " << directoryName << ".";
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
integrationJobCombinationSuccessful = true;
for(unsigned int currentProcessedIntegrationJobNum = 0; currentProcessedIntegrationJobNum < integrationJobsCreated(); ++currentProcessedIntegrationJobNum) {
ostringstream currentProcessedIntegrationJob;
currentProcessedIntegrationJob << directoryName << "integrationJob" << currentProcessedIntegrationJobNum << "/HerwigGrids.xml";
if(boost::filesystem::exists(boost::filesystem::path(currentProcessedIntegrationJob.str()))) {
ifstream localGridFileIN(currentProcessedIntegrationJob.str().c_str());
if(localGridFileIN) {
theGrids = theGrids + XML::ElementIO::get(localGridFileIN);
messageBuffer << "\n* Added integration job " << currentProcessedIntegrationJobNum << " to global HerwigGrids.xml file.";
}
else {
integrationJobCombinationSuccessful = false;
messageBuffer << "\n* Could not open/add integration job " << currentProcessedIntegrationJobNum << " to global HerwigGrids.xml file.";
}
}
else {
integrationJobCombinationSuccessful = false;
messageBuffer << "\n* Could not find integration job " << currentProcessedIntegrationJob.str();
}
}
if(integrationJobCombinationSuccessful) {
string globalGridFile = directoryName + "HerwigGrids.xml";
ofstream globalGridFileOF(globalGridFile.c_str());
XML::ElementIO::put(theGrids,globalGridFileOF);
messageBuffer << "\n* Global HerwigGrids.xml file was created, the integration jobs 0 to " << integrationJobsCreated()-1
<< " were combined."
<< "\n* If previous warnings in regards to the HerwigGrids.xml file occured, these can be safely ignored."
<< "\n* Note: This message will occur only in the first run and will be suppressed in further runs.\n"
<< flush;
didReadGrids = true;
}
else {
messageBuffer << "\n* Global HerwigGrids.xml file could not be created due to failed combination of integration jobs."
<< "\n Please check the above-mentioned missing/failed integration jobs which are needed for the combination."
<< "\n* Note: It can be that the HerwigGrids.xml file is searched and can be found in further directories."
<< "\n In this case you can ignore this warning message.\n" << flush;
}
}
}
}
// Show messages if global HerwigGrids.xml file was not found or first combination run
if (!globalHerwigGridsFileFound && (theVerbose || !integrationJobCombinationSuccessful))
BaseRepository::cout() << messageBuffer.str() << "\n" << flush;
if ( !didReadGrids )
theGrids = XML::Element(XML::ElementTypes::Element,"Grids");
}
void GeneralSampler::persistentOutput(PersistentOStream & os) const {
os << theVerbose << theBinSampler << theSamplers << theLastSampler
<< theUpdateAfter << crossSectionCalls << gotCrossSections
<< ounit(theIntegratedXSec,nanobarn)
<< ounit(theIntegratedXSecErr,nanobarn)
<< theSumWeights << theSumWeights2
<< theAttempts << theAccepts << theMaxWeight
<< theAddUpSamplers << theGlobalMaximumWeight
<< theFlatSubprocesses << isSampling << theMinSelection
<< runCombinationData << theAlmostUnweighted << maximumExceeds
<< maximumExceededBy << correctWeights << theMaxEnhancement
<< theParallelIntegration
<< theIntegratePerJob << theIntegrationJobs
<< theIntegrationJobsCreated << theWriteGridsOnFinish;
}
void GeneralSampler::persistentInput(PersistentIStream & is, int) {
is >> theVerbose >> theBinSampler >> theSamplers >> theLastSampler
>> theUpdateAfter >> crossSectionCalls >> gotCrossSections
>> iunit(theIntegratedXSec,nanobarn)
>> iunit(theIntegratedXSecErr,nanobarn)
>> theSumWeights >> theSumWeights2
>> theAttempts >> theAccepts >> theMaxWeight
>> theAddUpSamplers >> theGlobalMaximumWeight
>> theFlatSubprocesses >> isSampling >> theMinSelection
>> runCombinationData >> theAlmostUnweighted >> maximumExceeds
>> maximumExceededBy >> correctWeights >> theMaxEnhancement
>> theParallelIntegration
>> theIntegratePerJob >> theIntegrationJobs
>> theIntegrationJobsCreated >> theWriteGridsOnFinish;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<GeneralSampler,SamplerBase>
describeHerwigGeneralSampler("Herwig::GeneralSampler", "HwSampling.so");
void GeneralSampler::Init() {
static ClassDocumentation<GeneralSampler> documentation
("A GeneralSampler class");
static Reference<GeneralSampler,BinSampler> interfaceBinSampler
("BinSampler",
"The bin sampler to be used.",
&GeneralSampler::theBinSampler, false, false, true, false, false);
static Parameter<GeneralSampler,size_t> interfaceUpdateAfter
("UpdateAfter",
"Update cross sections every number of events.",
&GeneralSampler::theUpdateAfter, 1, 1, 0,
false, false, Interface::lowerlim);
static Switch<GeneralSampler,bool> interfaceVerbose
("Verbose",
"",
&GeneralSampler::theVerbose, false, false, false);
static SwitchOption interfaceVerboseOn
(interfaceVerbose,
"On",
"",
true);
static SwitchOption interfaceVerboseOff
(interfaceVerbose,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceAddUpSamplers
("AddUpSamplers",
"Calculate cross sections from adding up individual samplers.",
&GeneralSampler::theAddUpSamplers, false, false, false);
static SwitchOption interfaceAddUpSamplersOn
(interfaceAddUpSamplers,
"On",
"",
true);
static SwitchOption interfaceAddUpSamplersOff
(interfaceAddUpSamplers,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceGlobalMaximumWeight
("GlobalMaximumWeight",
"Use a global maximum weight instead of partial unweighting.",
&GeneralSampler::theGlobalMaximumWeight, true, false, false);
static SwitchOption interfaceGlobalMaximumWeightOn
(interfaceGlobalMaximumWeight,
"On",
"",
true);
static SwitchOption interfaceGlobalMaximumWeightOff
(interfaceGlobalMaximumWeight,
"Off",
"",
false);
static Parameter<GeneralSampler,double> interfaceMaxEnhancement
("MaxEnhancement",
"Enhance the maximum reference weight found in the read step.",
&GeneralSampler::theMaxEnhancement, 1.1, 1.0, 1.5,
false, false, Interface::limited);
static Switch<GeneralSampler,bool> interfaceFlatSubprocesses
("FlatSubprocesses",
"[debug] Perform a flat subprocess selection.",
&GeneralSampler::theFlatSubprocesses, false, false, false);
static SwitchOption interfaceFlatSubprocessesOn
(interfaceFlatSubprocesses,
"On",
"",
true);
static SwitchOption interfaceFlatSubprocessesOff
(interfaceFlatSubprocesses,
"Off",
"",
false);
static Parameter<GeneralSampler,double> interfaceMinSelection
("MinSelection",
"A minimum subprocess selection probability.",
&GeneralSampler::theMinSelection, 0.01, 0.0, 1.0,
false, false, Interface::limited);
static Switch<GeneralSampler,bool> interfaceRunCombinationData
("RunCombinationData",
"",
&GeneralSampler::runCombinationData, false, false, false);
static SwitchOption interfaceRunCombinationDataOn
(interfaceRunCombinationData,
"On",
"",
true);
static SwitchOption interfaceRunCombinationDataOff
(interfaceRunCombinationData,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceAlmostUnweighted
("AlmostUnweighted",
"",
&GeneralSampler::theAlmostUnweighted, false, false, false);
static SwitchOption interfaceAlmostUnweightedOn
(interfaceAlmostUnweighted,
"On",
"",
true);
static SwitchOption interfaceAlmostUnweightedOff
(interfaceAlmostUnweighted,
"Off",
"",
false);
static Switch<GeneralSampler,bool> interfaceParallelIntegration
("ParallelIntegration",
"Prepare parallel jobs for integration.",
&GeneralSampler::theParallelIntegration, false, false, false);
static SwitchOption interfaceParallelIntegrationYes
(interfaceParallelIntegration,
"Yes",
"",
true);
static SwitchOption interfaceParallelIntegrationNo
(interfaceParallelIntegration,
"No",
"",
false);
static Parameter<GeneralSampler,unsigned int> interfaceIntegratePerJob
("IntegratePerJob",
"The number of subprocesses to integrate per job.",
&GeneralSampler::theIntegratePerJob, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<GeneralSampler,unsigned int> interfaceIntegrationJobs
("IntegrationJobs",
"The maximum number of integration jobs to create.",
&GeneralSampler::theIntegrationJobs, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<GeneralSampler,unsigned int> interfaceIntegrationJobsCreated
("IntegrationJobsCreated",
"The number of integration jobs which were actually created.",
&GeneralSampler::theIntegrationJobsCreated, 1, 1, 0,
false, false, Interface::lowerlim);
static Switch<GeneralSampler,bool> interfaceWriteGridsOnFinish
("WriteGridsOnFinish",
"Write grids on finishing a run.",
&GeneralSampler::theWriteGridsOnFinish, false, false, false);
static SwitchOption interfaceWriteGridsOnFinishYes
(interfaceWriteGridsOnFinish,
"Yes",
"",
true);
static SwitchOption interfaceWriteGridsOnFinishNo
(interfaceWriteGridsOnFinish,
"No",
"",
false);
}
diff --git a/Sampling/GeneralSampler.h b/Sampling/GeneralSampler.h
--- a/Sampling/GeneralSampler.h
+++ b/Sampling/GeneralSampler.h
@@ -1,489 +1,496 @@
// -*- C++ -*-
//
// GeneralSampler.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef Herwig_GeneralSampler_H
#define Herwig_GeneralSampler_H
//
// This is the declaration of the GeneralSampler class.
//
#include "ThePEG/Handlers/SamplerBase.h"
#include "BinSampler.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief A GeneralSampler class
*
* @see \ref GeneralSamplerInterfaces "The interfaces"
* defined for GeneralSampler.
*/
class GeneralSampler: public SamplerBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
GeneralSampler();
/**
* The destructor.
*/
virtual ~GeneralSampler();
//@}
public:
/** @name Virtual functions from SamplerBase. */
//@{
/**
* Initialize the the sampler, possibly doing presampling of the
* phase space.
*/
virtual void initialize();
/**
* Generarate a new phase space point and return a weight associated
* with it. This weight should preferably be 1.
*/
virtual double generate();
/**
* Reject the last chosen phase space point.
*/
virtual void rejectLast();
/**
* If the sampler is able to sample several different functions
* separately, this function should return the last chosen
* function. This default version always returns 0.
*/
virtual int lastBin() const { return lastSampler() ? lastSampler()->bin() : 0; }
/**
* Return the total integrated cross section determined from the
* Monte Carlo sampling so far.
*/
virtual CrossSection integratedXSec() const {
currentCrossSections();
return theIntegratedXSec;
}
/**
* Return the error on the total integrated cross section determined
* from the Monte Carlo sampling so far.
*/
virtual CrossSection integratedXSecErr() const {
currentCrossSections();
return theIntegratedXSecErr;
}
/**
* Return the overestimated integrated cross section.
*/
virtual CrossSection maxXSec() const {
if ( theAddUpSamplers )
return SamplerBase::maxXSec();
return theMaxWeight*nanobarn;
}
/**
* Return the sum of the weights returned by generate() so far (of
* the events that were not rejeted).
*/
virtual double sumWeights() const { return theSumWeights; }
/**
* Return the sum of the weights squaredreturned by generate() so far (of
* the events that were not rejeted).
*/
virtual double sumWeights2() const { return theSumWeights2; }
/**
* Return the number of attempts
*/
virtual double attempts() const {
if ( theAddUpSamplers )
return SamplerBase::attempts();
return theAttempts;
}
/**
* Return the number of accepts
*/
double accepts() const { return theAccepts; }
//@}
/**
* Return the samplers
*/
const map<double,Ptr<BinSampler>::ptr>& samplers() const { return theSamplers; }
/**
* Return the bin sampler
*/
Ptr<BinSampler>::ptr binSampler() const { return theBinSampler; }
/**
* Return the last selected bin sampler
*/
Ptr<BinSampler>::tptr lastSampler() const { return theLastSampler; }
/**
* True if we should do weighted events
*/
bool weighted() const { return eventHandler()->weighted(); }
+
+ /**
+ * True if the sampler runs in Allmostunweighted mode.
+ */
+
+ bool almostUnweighted() const { return theAlmostUnweighted; }
+
public:
/**
* Return the XML element containing the grids
*/
const XML::Element& grids() const { return theGrids; }
/**
* Access the XML element containing the grids
*/
XML::Element& grids() { return theGrids; }
/**
* Write out grids
*/
void writeGrids() const;
/**
* Read in grids
*/
void readGrids();
/**
* Return the number of integration jobs which were actually created.
*/
unsigned int integrationJobsCreated() {
return theIntegrationJobsCreated;
}
/**
* An external hook to prepare the sampler for generating events, e.g. by
* combining grid files from parallel integration runs.
*/
virtual void prepare();
protected:
/**
* Access the samplers
*/
map<double,Ptr<BinSampler>::ptr>& samplers() { return theSamplers; }
/**
* Set the last selected bin sampler
*/
void lastSampler(Ptr<BinSampler>::tptr s) { theLastSampler = s; }
/**
* Calculate cross sections from samplers at current state.
*/
void currentCrossSections() const;
/**
* Update the sampler selection
*/
void updateSamplers();
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
// If needed, insert declarations of virtual function defined in the
// InterfacedBase class here (using ThePEG-interfaced-decl in Emacs).
protected:
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Initialize this object. Called in the run phase just before
* a run begins.
*/
virtual void doinitrun();
/**
* Finalize this object. Called in the run phase just after a
* run has ended. Used eg. to write out statistics.
*/
virtual void dofinish();
/**
* Rebind pointer to other Interfaced objects. Called in the setup phase
* after all objects used in an EventGenerator has been cloned so that
* the pointers will refer to the cloned objects afterwards.
* @param trans a TranslationMap relating the original objects to
* their respective clones.
* @throws RebindException if no cloned object was found for a given
* pointer.
*/
virtual void rebind(const TranslationMap & trans);
/**
* Return a vector of all pointers to Interfaced objects used in this
* object.
* @return a vector of pointers.
*/
virtual IVector getReferences();
private:
/**
* Whether or not additional information should be printed to cout.
*/
bool theVerbose;
/**
* The XML element containing the grids
*/
XML::Element theGrids;
/**
* The bin sampler to use.
*/
Ptr<BinSampler>::ptr theBinSampler;
/**
* The selector map for the bin samplers.
*/
map<double,Ptr<BinSampler>::ptr> theSamplers;
/**
* The last selected bin sampler.
*/
Ptr<BinSampler>::tptr theLastSampler;
/**
* The integrated cross section
*/
mutable CrossSection theIntegratedXSec;
/**
* The integrated cross section error
*/
mutable CrossSection theIntegratedXSecErr;
/**
* The number of events after which cross sections should truly be
* updated. This is used to prevent exhaustive combination of
* statistics when HepMC events are written out.
*/
size_t theUpdateAfter;
/**
* The number of calls to currentCrossSections since the last
* update.
*/
mutable size_t crossSectionCalls;
/**
* True, if currentCrossSections has been called since the last call
* to generate.
*/
mutable bool gotCrossSections;
/**
* The sum of weights
*/
double theSumWeights;
/**
* The sum of weights squared
*/
double theSumWeights2;
/**
* The number of attempts
*/
double theAttempts;
/**
* The number of accepts
*/
double theAccepts;
/**
* The maximum weight encountered
*/
double theMaxWeight;
/**
* True, if cross sections are to be combined from each sampler
* individually
*/
bool theAddUpSamplers;
/**
* True, if the global maximum weight should be used as
* reference. If not, the maximum weights of individual samplers are
* used, and selection probabilities fro the samplers are adjusted
* accordingly.
*/
bool theGlobalMaximumWeight;
/**
* True, if subprocesses should be selected flat. This is a debug
* flag, cross section information and distributions will not be
* correct.
*/
bool theFlatSubprocesses;
/**
* True, if we are generating events.
*/
bool isSampling;
/**
* A minimum selection probability for each sampler
*/
double theMinSelection;
/**
* True, if information for combining unnormalized runs should be
* printed out
*/
bool runCombinationData;
/**
* True, if we should perform an almost unweighted sampling
*/
bool theAlmostUnweighted;
/**
* Number of points which exceeded the maximum
*/
unsigned long maximumExceeds;
/**
* The average relative deviation from the maximum weight
*/
double maximumExceededBy;
/**
* The correct cross section as one would exspect with
* almostUnweighted.
*/
double correctWeights;
/**
* Enhancement factor to the maximum weight.
* This is to get less maximumExceeds.
*/
double theMaxEnhancement;
/**
* True, if grids have already been read.
*/
bool didReadGrids;
/**
* True, if parallel subprocess integration should be enabled
*/
bool theParallelIntegration;
/**
* The number of subprocesses to integrate per job
*/
unsigned int theIntegratePerJob;
/**
* The maximum number of integration jobs to be created
*/
unsigned int theIntegrationJobs;
/**
* The number of integration jobs which were actually created
*/
unsigned int theIntegrationJobsCreated;
/**
* Indicate that initialization is only reading a grid.
*/
bool justAfterIntegrate;
/**
* True, if grids should be written at the end of a run
*/
bool theWriteGridsOnFinish;
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
GeneralSampler & operator=(const GeneralSampler &);
};
}
#endif /* Herwig_GeneralSampler_H */
diff --git a/Sampling/MonacoSampler.cc b/Sampling/MonacoSampler.cc
--- a/Sampling/MonacoSampler.cc
+++ b/Sampling/MonacoSampler.cc
@@ -1,398 +1,399 @@
// -*- C++ -*-
//
// MonacoSampler.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MonacoSampler class.
//
#include "MonacoSampler.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Handlers/StandardEventHandler.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include <boost/progress.hpp>
#include "MonacoSampler.h"
#include "Herwig/Sampling/GeneralSampler.h"
using namespace Herwig;
MonacoSampler::MonacoSampler()
: BinSampler(),
theAlpha(0.875),
theGridDivisions(48),
theIterationPoints(0) {}
MonacoSampler::~MonacoSampler() {}
IBPtr MonacoSampler::clone() const {
return new_ptr(*this);
}
IBPtr MonacoSampler::fullclone() const {
return new_ptr(*this);
}
double MonacoSampler::generate() {
double w = 1.;
// cout<<"\npoint: ";
std::valarray<int> upperb(dimension());
for ( int k = 0; k < dimension(); ++k ) {
double div = (1 - UseRandom::rnd()) * theGridDivisions;
upperb[k] = static_cast<int>(div);
double gupper, glower;
if ( upperb[k] <= 0 ) {
upperb[k] = 0;
glower = 0.;
gupper = theGrid(k,0);
} else if (upperb[k] >= static_cast<int>(theGridDivisions)) {
upperb[k] = theGridDivisions-1;
glower = theGrid(k,theGridDivisions-2);
gupper = theGrid(k,theGridDivisions-1);
} else {
glower = theGrid(k,upperb[k]-1);
gupper = theGrid(k,upperb[k]);
}
double gdiff = gupper - glower;
lastPoint()[k] = glower + (div-upperb[k])*gdiff;
w *= gdiff * theGridDivisions;
}
// cout<<lastPoint()[k]<<" ";
try {
w *= eventHandler()->dSigDR(lastPoint()) / nanobarn;
} catch (Veto&) {
w = 0.0;
} catch (...) {
throw;
}
// only store numbers
double wgt = w;
if ( isnan(wgt) || isinf(wgt) ) wgt = 0;
// save results for later grid optimization
theIterationPoints++;
for ( int k = 0; k < dimension(); ++k ) {
theGridData(k,upperb[k]) += wgt*wgt;
}
if (randomNumberString()!="")
for ( size_t k = 0; k < lastPoint().size(); ++k ) {
RandomNumberHistograms[RandomNumberIndex(id(),k)].first.book(lastPoint()[k],wgt);
RandomNumberHistograms[RandomNumberIndex(id(),k)].second+=wgt;
}
if ( !weighted() && initialized() ) {
- double p = min(abs(w),referenceWeight())/referenceWeight();
+ double p = min(abs(w),kappa()*referenceWeight())/(kappa()*referenceWeight());
double sign = w >= 0. ? 1. : -1.;
if ( p < 1 && UseRandom::rnd() > p )
w = 0.;
else
- w = sign*max(abs(w),referenceWeight());
+ w = sign*max(abs(w),kappa()*referenceWeight());
}
select(w);
+ assert(kappa()==1.||sampler()->almostUnweighted());
if ( w != 0.0 )
accept();
return w;
}
void MonacoSampler::saveGrid() const {
XML::Element grid = toXML();
grid.appendAttribute("process",id());
sampler()->grids().append(grid);
}
void MonacoSampler::initialize(bool progress) {
//read in grid
bool haveGrid = false;
list<XML::Element>::iterator git = sampler()->grids().children().begin();
for ( ; git != sampler()->grids().children().end(); ++git ) {
if ( git->type() != XML::ElementTypes::Element )
continue;
if ( git->name() != "Monaco" )
continue;
string proc;
git->getFromAttribute("process",proc);
if ( proc == id() ) {
haveGrid = true;
break;
}
}
if ( haveGrid ) {
fromXML(*git);
sampler()->grids().erase(git);
didReadGrids();
} else {
// flat grid
theGrid.resize(dimension(),theGridDivisions);
for (int k = 0; k < dimension(); k++)
for (size_t l = 0; l < theGridDivisions; l++)
theGrid(k,l) = (l+1)/static_cast<double>(theGridDivisions);
theGridData = boost::numeric::ublas::zero_matrix<double>(dimension(),theGridDivisions);
theIterationPoints = 0;
}
lastPoint().resize(dimension());
if (randomNumberString()!="")
for(size_t i=0;i<lastPoint().size();i++){
RandomNumberHistograms[RandomNumberIndex(id(),i)] = make_pair( RandomNumberHistogram(),0.);
}
if ( initialized() ) {
if ( !hasGrids() )
throw Exception() << "MonacoSampler: Require existing grid when starting to run.\n"
<< "Did you miss setting --setupfile?"
<< Exception::abortnow;
return;
}
if ( haveGrid ) {
if ( !integrated() ) {
runIteration(initialPoints(),progress);
adapt();
}
isInitialized();
return;
}
// if ( !sampler()->grids().children().empty() ) {
// nIterations(1);
// }
unsigned long points = initialPoints();
for ( unsigned long k = 0; k < nIterations(); ++k ) {
runIteration(points,progress);
if ( k < nIterations() - 1 ) {
points = (unsigned long)(points*enhancementFactor());
adapt();
nextIteration();
}
}
adapt();
didReadGrids();
isInitialized();
}
void MonacoSampler::adapt() {
int dim = dimension();
// refine grid
std::valarray<double> gridcumul(dim);
for (int k=0; k<dim; ++k) {
double gridold = theGridData(k,0);
double gridnew = theGridData(k,1);
theGridData(k,0) = (gridold + gridnew) / 2.0;
gridcumul[k] = theGridData(k,0);
for (size_t l=1; l<theGridDivisions-1; ++l) {
theGridData(k,l) = gridold + gridnew;
gridold = gridnew;
gridnew = theGridData(k,l+1);
theGridData(k,l) = (theGridData(k,l) + gridnew) / 3.0;
gridcumul[k] += theGridData(k,l);
}
theGridData(k,theGridDivisions-1) = (gridnew + gridold) / 2.0;
gridcumul[k] += theGridData(k,theGridDivisions-1);
}
for (int k=0; k<dim; ++k) {
double rc = 0.;
std::valarray<double> ri(theGridDivisions);
for (size_t l=0; l<theGridDivisions; ++l) {
ri[l] = 0.;
if ((theGridData(k,l) >= 0) && (gridcumul[k] != 0)) {
theGridData(k,l) = max( 1.0e-30, theGridData(k,l) );
double gpart = gridcumul[k] / theGridData(k,l);
ri[l] = pow( (gpart - 1.0) / (gpart * log( gpart )), theAlpha);
} else {
ri[l] = pow( 1. / log( 1e30 ), theAlpha);
}
rc += ri[l];
}
rc /= theGridDivisions;
double gridold = 0, gridnew = 0.;
double deltar = 0.;
unsigned int m = 0;
std::valarray<double> theGridRowNew(theGridDivisions);
for (size_t l = 0; l < theGridDivisions; ++l) {
deltar += ri[l];
gridold = gridnew;
gridnew = theGrid(k,l);
for (; deltar > rc; m++) {
deltar -= rc;
theGridRowNew[m] = gridnew - (gridnew - gridold) * deltar / ri[l];
}
}
for (size_t l = 0; l < theGridDivisions-1; ++l) {
theGrid(k,l) = theGridRowNew[l];
}
theGrid(k,theGridDivisions-1) = 1.0;
}
theGridData = boost::numeric::ublas::zero_matrix<double>(dimension(),theGridDivisions);
theIterationPoints = 0;
}
void MonacoSampler::finalize(bool) {
// save grid
adapt();
XML::Element grid = MonacoSampler::toXML();
grid.appendAttribute("process",id());
sampler()->grids().append(grid);
if (randomNumberString()!="")
for ( map<RandomNumberIndex,pair<RandomNumberHistogram,double> >::
const_iterator b = RandomNumberHistograms.begin();
b != RandomNumberHistograms.end(); ++b ) {
b->second.first.dump(randomNumberString(), b->first.first,shortprocess(),b->first.second);
}
}
void MonacoSampler::fromXML(const XML::Element& grid) {
int dim = 0;
grid.getFromAttribute("Dimension",dim);
if ( dim != dimension() ) {
throw std::runtime_error("[MonacoSampler] Number of dimensions in grid file does not match expectation.");
}
size_t griddivisions = 0;
grid.getFromAttribute("GridDivisions",griddivisions);
boost::numeric::ublas::matrix<double> tmpgrid(dim,griddivisions);
pair<multimap<pair<int,string>,list<XML::Element>::iterator>::const_iterator,multimap<pair<int,string>,list<XML::Element>::iterator>::const_iterator> cit;
cit = grid.findAll(XML::ElementTypes::Element,"GridVector");
if ( cit.first->second == grid.children().end() )
throw std::runtime_error("[MonacoSampler] Expected a GridVector element.");
for (multimap<pair<int,string>,list<XML::Element>::iterator>::const_iterator iit=cit.first; iit!=cit.second; ++iit) {
const XML::Element& gridvector = *iit->second;
int k = 0;
gridvector.getFromAttribute("Index",k);
if ( k >= dim ) {
throw std::runtime_error("[MonacoSampler] Index of grid dimension larger than grid size.");
} else {
list<XML::Element>::const_iterator git;
git = gridvector.findFirst(XML::ElementTypes::ParsedCharacterData,"");
if ( git == gridvector.children().end() )
throw std::runtime_error("[MonacoSampler] Expected grid data.");
istringstream bdata(git->content());
for ( size_t l = 0; l < griddivisions; ++l ) {
bdata >> tmpgrid(k,l);
}
}
}
// store back into main variable
// if griddivisions do not match, rebin preserving bin density
theGrid.resize(dim,theGridDivisions);
theIterationPoints = 0;
double divratio = griddivisions / static_cast<double>(theGridDivisions);
for (int k = 0; k < dim; k++) {
double xold = 0, xnew = 0, deltar = 0;
size_t l = 0;
for (size_t m = 0; m < griddivisions; m++) {
deltar += 1;
xold = xnew;
xnew = tmpgrid(k,m);
for (; deltar > divratio; l++) {
deltar -= divratio;
theGrid(k,l) = xnew - (xnew - xold) * deltar;
}
}
theGrid(k,theGridDivisions-1) = 1.0;
}
theGridData = boost::numeric::ublas::zero_matrix<double>(dimension(),theGridDivisions);
}
XML::Element MonacoSampler::toXML() const {
XML::Element grid(XML::ElementTypes::Element,"Monaco");
grid.appendAttribute("Dimension",dimension());
grid.appendAttribute("GridDivisions",theGridDivisions);
for ( int k = 0; k < dimension(); ++k ) {
XML::Element gridvector(XML::ElementTypes::Element,"GridVector");
gridvector.appendAttribute("Index",k);
ostringstream bdata;
bdata << setprecision(17);
for ( size_t l = 0; l < theGridDivisions; ++l )
bdata << theGrid(k,l) << " ";
XML::Element belem(XML::ElementTypes::ParsedCharacterData,bdata.str());
gridvector.append(belem);
grid.append(gridvector);
}
return grid;
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void MonacoSampler::persistentOutput(PersistentOStream & os) const {
BinSampler::put(os);
os << theAlpha << theGridDivisions;
}
void MonacoSampler::persistentInput(PersistentIStream & is, int) {
BinSampler::get(is);
is >> theAlpha >> theGridDivisions;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MonacoSampler,BinSampler>
describeHerwigMonacoSampler("Herwig::MonacoSampler", "HwSampling.so");
void MonacoSampler::Init() {
static ClassDocumentation<MonacoSampler> documentation
("MonacoSampler samples XCombs bins. This implementation performs weighted MC integration using Monaco, an adapted Vegas algorithm.");
static Parameter<MonacoSampler,double> interfaceAlpha
("Alpha",
"Rate of grid modification (0 for no modification).",
&MonacoSampler::theAlpha, 0.875, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<MonacoSampler,size_t> interfaceGridDivisions
("GridDivisions",
"The number of divisions per grid dimension.",
&MonacoSampler::theGridDivisions, 48, 1, 0,
false, false, Interface::lowerlim);
}
diff --git a/Shower/Dipole/AlphaS/lo_alpha_s.h b/Shower/Dipole/AlphaS/lo_alpha_s.h
--- a/Shower/Dipole/AlphaS/lo_alpha_s.h
+++ b/Shower/Dipole/AlphaS/lo_alpha_s.h
@@ -1,164 +1,167 @@
// -*- C++ -*-
// couplings/lo_alpha_s.h is part of matchbox
// (C) 2008 Simon Platzer -- sp@particle.uni-karlsruhe.de
#ifndef matchbox_couplings_lo_alpha_s_h
#define matchbox_couplings_lo_alpha_s_h
#include "alpha_s.h"
namespace matchbox {
using namespace ThePEG;
/**
* LO running alpha_s
*
* @see \ref lo_alpha_sInterfaces "The interfaces"
* defined for lo_alpha_s.
*/
class lo_alpha_s
: public alpha_s {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
lo_alpha_s();
/**
* The destructor.
*/
virtual ~lo_alpha_s();
//@}
public:
/// return alpha_s as function of scale, QCD scale
/// and number of active flavours
virtual double operator () (Energy2 scale,
Energy2 lambda2,
unsigned int nf) const;
+ /// return the number of loops which determine this running
+ virtual unsigned int nloops () const { return 1; }
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @name os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @name is the persistent input stream read from.
* @name version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual inline void doinit() throw(InitException) {
freezing_scale_ *= scale_factor();
alpha_s::doinit();
}
//@}
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static ClassDescription<lo_alpha_s> initlo_alpha_s;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
lo_alpha_s & operator=(const lo_alpha_s &);
private:
Energy freezing_scale_;
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of lo_alpha_s. */
template <>
struct BaseClassTrait<matchbox::lo_alpha_s,1> {
/** Typedef of the first base class of lo_alpha_s. */
typedef matchbox::alpha_s NthBase;
};
/** This template specialization informs ThePEG about the name of
* the lo_alpha_s class and the shared object where it is defined. */
template <>
struct ClassTraits<matchbox::lo_alpha_s>
: public ClassTraitsBase<matchbox::lo_alpha_s> {
/** Return a platform-independent class name */
static string className() { return "matchbox::lo_alpha_s"; }
/**
* The name of a file containing the dynamic library where the class
* lo_alpha_s is implemented. It may also include several, space-separated,
* libraries if the class lo_alpha_s depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShowerAlphaS.so"; }
};
/** @endcond */
}
#endif /* matchbox_couplings_lo_alpha_s_h */
diff --git a/Shower/Dipole/AlphaS/nlo_alpha_s.h b/Shower/Dipole/AlphaS/nlo_alpha_s.h
--- a/Shower/Dipole/AlphaS/nlo_alpha_s.h
+++ b/Shower/Dipole/AlphaS/nlo_alpha_s.h
@@ -1,194 +1,197 @@
// -*- C++ -*-
// couplings/nlo_alpha_s.h is part of matchbox
// (C) 2008 Simon Platzer -- sp@particle.uni-karlsruhe.de
#ifndef matchbox_couplings_nlo_alpha_s_h
#define matchbox_couplings_nlo_alpha_s_h
#include "alpha_s.h"
namespace matchbox {
using namespace ThePEG;
/**
* NLO running alpha_s
*
* @see \ref nlo_alpha_sInterfaces "The interfaces"
* defined for nlo_alpha_s.
*/
class nlo_alpha_s
: public alpha_s {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
nlo_alpha_s();
/**
* The destructor.
*/
virtual ~nlo_alpha_s();
//@}
public:
/// return alpha_s as function of scale, QCD scale
/// and number of active flavours
virtual double operator () (Energy2 scale,
Energy2 lambda2,
unsigned int nf) const;
+ /// return the number of loops which determine this running
+ virtual unsigned int nloops () const { return 2; }
+
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @name os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @name is the persistent input stream read from.
* @name version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual inline void doinit() throw(InitException) {
freezing_scale_ *= scale_factor();
alpha_s::doinit();
}
//@}
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is an abstract class with persistent data.
*/
static ClassDescription<nlo_alpha_s> initnlo_alpha_s;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
nlo_alpha_s & operator=(const nlo_alpha_s &);
private:
struct rg_solution {
inline double operator () (double alpha) {
double beta0 = (33.-2.*nf)/(12.*Constants::pi);
double beta1 = (153.-19.*nf)/(24.*sqr(Constants::pi));
return ((1./alpha)+(beta1/beta0)*log(alpha/(beta0+beta1*alpha))- beta0*slog);
}
double slog;
unsigned int nf;
};
Energy freezing_scale_;
bool exact_evaluation_;
static rg_solution& rg () {
static rg_solution rg_;
return rg_;
}
static gsl::bisection_root_solver<rg_solution,100>& rg_solver () {
static gsl::bisection_root_solver<rg_solution,100> rg_solver_(rg());
return rg_solver_;
}
bool two_largeq_terms_;
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of nlo_alpha_s. */
template <>
struct BaseClassTrait<matchbox::nlo_alpha_s,1> {
/** Typedef of the first base class of nlo_alpha_s. */
typedef matchbox::alpha_s NthBase;
};
/** This template specialization informs ThePEG about the name of
* the nlo_alpha_s class and the shared object where it is defined. */
template <>
struct ClassTraits<matchbox::nlo_alpha_s>
: public ClassTraitsBase<matchbox::nlo_alpha_s> {
/** Return a platform-independent class name */
static string className() { return "matchbox::nlo_alpha_s"; }
/**
* The name of a file containing the dynamic library where the class
* nlo_alpha_s is implemented. It may also include several, space-separated,
* libraries if the class nlo_alpha_s depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static string library() { return "HwDipoleShowerAlphaS.so"; }
};
/** @endcond */
}
#endif /* matchbox_couplings_nlo_alpha_s_h */
diff --git a/Utilities/Makefile.am b/Utilities/Makefile.am
--- a/Utilities/Makefile.am
+++ b/Utilities/Makefile.am
@@ -1,50 +1,51 @@
SUBDIRS = XML Statistics
noinst_LTLIBRARIES = libHwUtils.la
pkglib_LTLIBRARIES = libHwRunDirectories.la
libHwUtils_la_SOURCES = \
EnumParticles.h \
Interpolator.tcc Interpolator.h \
Kinematics.cc Kinematics.h \
Maths.h Maths.cc \
StandardSelectors.cc StandardSelectors.h\
Histogram.cc Histogram.fh Histogram.h \
GaussianIntegrator.cc GaussianIntegrator.h \
GaussianIntegrator.tcc \
Statistic.h HerwigStrategy.cc HerwigStrategy.h \
GSLIntegrator.h GSLIntegrator.tcc \
-GSLBisection.h GSLBisection.tcc GSLHelper.h
+GSLBisection.h GSLBisection.tcc GSLHelper.h \
+expm-1.h
nodist_libHwUtils_la_SOURCES = hgstamp.inc
BUILT_SOURCES = hgstamp.inc
CLEANFILES = hgstamp.inc
AUTOMAKE_OPTIONS = -Wno-portability
HGVERSION := $(shell hg -R $(top_srcdir) parents --template '"Herwig {node|short} ({branch})"' 2> /dev/null || echo \"$(PACKAGE_STRING)\" || true )
.PHONY: update_hgstamp
hgstamp.inc: update_hgstamp
@[ -f $@ ] || touch $@
@echo '$(HGVERSION)' | cmp -s $@ - || echo '$(HGVERSION)' > $@
libHwUtils_la_LIBADD = \
XML/libHwXML.la \
Statistics/libHwStatistics.la
libHwRunDirectories_la_SOURCES = \
RunDirectories.h RunDirectories.cc
libHwRunDirectories_la_LDFLAGS = $(AM_LDFLAGS) -version-info 1:0:0
check_PROGRAMS = utilities_test
utilities_test_SOURCES = \
tests/utilitiesTestsMain.cc \
tests/utilitiesTestsGlobalFixture.h \
tests/utilitiesTestsKinematics.h \
tests/utilitiesTestMaths.h \
tests/utilitiesTestsStatistic.h
utilities_test_LDADD = $(BOOST_UNIT_TEST_FRAMEWORK_LIBS) $(BOOST_FILESYSTEM_LIBS) $(BOOST_SYSTEM_LIBS) $(THEPEGLIB) -ldl libHwUtils.la
utilities_test_LDFLAGS = $(AM_LDFLAGS) -export-dynamic $(BOOST_UNIT_TEST_FRAMEWORK_LDFLAGS) $(BOOST_SYSTEM_LDFLAGS) $(BOOST_FILESYSTEM_LDFLAGS) $(THEPEGLDFLAGS)
utilities_test_CPPFLAGS = $(AM_CPPFLAGS) $(BOOST_CPPFLAGS) -DHERWIG_PKGDATADIR="\"$(pkgdatadir)\"" -DHERWIG_PKGLIBDIR="\"$(pkglibdir)\"" -DTHEPEG_PKGLIBDIR="\"$(THEPEGLIBPATH)\""
TESTS = utilities_test
diff --git a/Utilities/expm-1.h b/Utilities/expm-1.h
new file mode 100644
--- /dev/null
+++ b/Utilities/expm-1.h
@@ -0,0 +1,147 @@
+//
+// Copyright (c) 2007
+// Tsai, Dung-Bang
+// National Taiwan University, Department of Physics
+//
+// E-Mail : dbtsai (at) gmail.com
+// Begine : 2007/11/20
+// Last modify : 2007/11/22
+// Version : v0.1
+//
+// EXPGM_PAD computes the matrix exponential exp(H) for general matrixs,
+// including complex and real matrixs using the irreducible (p,p) degree
+// rational Pade approximation to the exponential
+// exp(z) = r(z)=(+/-)( I+2*(Q(z)/P(z))).
+//
+// Usage :
+//
+// U = expm_pad(H)
+// U = expm_pad(H, p)
+//
+// where p is internally set to 6 (recommended and gererally satisfactory).
+//
+// See also MATLAB supplied functions, EXPM and EXPM1.
+//
+// Reference :
+// EXPOKIT, Software Package for Computing Matrix Exponentials.
+// ACM - Transactions On Mathematical Software, 24(1):130-156, 1998
+//
+// Permission to use, copy, modify, distribute and sell this software
+// and its documentation for any purpose is hereby granted without fee,
+// provided that the above copyright notice appear in all copies and
+// that both that copyright notice and this permission notice appear
+// in supporting documentation. The authors make no representations
+// about the suitability of this software for any purpose.
+// It is provided "as is" without express or implied warranty.
+//
+
+#ifndef _BOOST_UBLAS_EXPM_
+#define _BOOST_UBLAS_EXPM_
+#include <complex>
+#include <boost/numeric/ublas/vector.hpp>
+#include <boost/numeric/ublas/matrix.hpp>
+#include <boost/numeric/ublas/lu.hpp>
+
+namespace boost { namespace numeric { namespace ublas {
+
+template<typename MATRIX> MATRIX expm_pad(const MATRIX &H, const int p = 6) {
+ typedef typename MATRIX::value_type value_type;
+ typedef typename MATRIX::size_type size_type;
+ typedef double real_value_type; // Correct me. Need to modify.
+ assert(H.size1() == H.size2());
+ const size_type n = H.size1();
+ const identity_matrix<value_type> I(n);
+ matrix<value_type> U(n,n),H2(n,n),P(n,n),Q(n,n);
+ real_value_type norm = 0.0;
+
+ // Calcuate Pade coefficients (1-based instead of 0-based as in the c vector)
+ vector<real_value_type> c(p+2);
+ c(1)=1;
+ for(size_type i = 1; i <= p; ++i)
+ c(i+1) = c(i) * ((p + 1.0 - i)/(i * (2.0 * p + 1 - i)));
+ // Calcuate the infinty norm of H, which is defined as the largest row sum of a matrix
+ for(size_type i=0; i<n; ++i)
+ {
+ real_value_type temp = 0.0;
+ for(size_type j=0;j<n;j++)
+ temp += std::abs<real_value_type>(H(j,i)); // Correct me, if H is complex, can I use that abs?
+ norm = std::max<real_value_type>(norm, temp);
+ }
+ if (norm == 0.0)
+ {
+ boost::throw_exception(boost::numeric::ublas::bad_argument());
+ std::cerr<<"Error! Null input in the routine EXPM_PAD.\n";
+ exit(0);
+ }
+ // Scaling, seek s such that || H*2^(-s) || < 1/2, and set scale = 2^(-s)
+ int s = 0;
+ real_value_type scale = 1.0;
+ if(norm > 0.5) {
+ s = std::max<int>(0, static_cast<int>((log(norm) / log(2.0) + 2.0)));
+ scale /= static_cast<real_value_type>(std::pow(2.0, s));
+ U.assign(scale * H); // Here U is used as temp value due to that H is const
+ }
+ else
+ U.assign(H);
+ // Horner evaluation of the irreducible fraction, see the following ref above.
+ // Initialise P (numerator) and Q (denominator)
+ H2.assign( prod(U, U) );
+ Q.assign( c(p+1)*I );
+ P.assign( c(p)*I );
+ size_type odd = 1;
+ for( size_type k = p - 1; k > 0; --k)
+ {
+ if( odd == 1)
+ {
+ Q = ( prod(Q, H2) + c(k) * I );
+ }
+ else
+ {
+ P = ( prod(P, H2) + c(k) * I );
+ }
+ odd = 1 - odd;
+ }
+ if( odd == 1)
+ {
+ Q = ( prod(Q, U) );
+ Q -= P ;
+ //U.assign( -(I + 2*(Q\P)));
+ }
+ else
+ {
+ P = (prod(P, U));
+ Q -= P;
+ //U.assign( I + 2*(Q\P));
+ }
+ // In origine expokit package, they use lapack ZGESV to obtain inverse matrix,
+ // and in that ZGESV routine, it uses LU decomposition for obtaing inverse matrix.
+ // Since in ublas, there is no matrix inversion template, I simply use the build-in
+ // LU decompostion package in ublas, and back substitute by myself.
+ //
+ //////////////// Implement Matrix Inversion ///////////////////////
+ permutation_matrix<size_type> pm(n);
+ int res = lu_factorize(Q, pm);
+ if( res != 0)
+ {
+ std::cerr << "Error in the matrix inversion in template expm_pad.\n";
+ exit(0);
+ }
+ H2 = I; // H2 is not needed anymore, so it is temporary used as identity matrix for substituting.
+
+ lu_substitute(Q, pm, H2);
+ if( odd == 1)
+ U.assign( -(I + 2.0 * prod(H2, P)));
+ else
+ U.assign( I + 2.0 * prod(H2, P));
+ // Squaring
+ for(size_t i = 0; i < s; ++i)
+ {
+ U = (prod(U,U));
+ }
+ return U;
+ }
+
+}}}
+
+
+#endif
diff --git a/src/defaults/MatchboxDefaults.in.in b/src/defaults/MatchboxDefaults.in.in
--- a/src/defaults/MatchboxDefaults.in.in
+++ b/src/defaults/MatchboxDefaults.in.in
@@ -1,781 +1,781 @@
# -*- ThePEG-repository -*-
################################################################################
#
# Default setup for Matchbox matrix element generation.
# You do not need to make any change in here; processes of
# interest can be chosen in the standard input files.
#
################################################################################
################################################################################
# Load libraries
################################################################################
library JetCuts.so
library FastJetFinder.so
library HwMatchboxScales.so
library HwMatchboxCuts.so
library HwSampling.so
library HwColorFull.so
library HwMatchboxBuiltin.so
################################################################################
# Integration/sampling
################################################################################
mkdir /Herwig/Samplers
cd /Herwig/Samplers
create Herwig::BinSampler FlatBinSampler
set FlatBinSampler:InitialPoints 1000
set FlatBinSampler:UseAllIterations No
create Herwig::CellGridSampler CellGridSampler
set CellGridSampler:InitialPoints 10000
set CellGridSampler:ExplorationPoints 500
set CellGridSampler:ExplorationSteps 4
set CellGridSampler:Gain 0.3
set CellGridSampler:Epsilon 1.0
set CellGridSampler:MinimumSelection 0.000001
set CellGridSampler:NIterations 1
set CellGridSampler:EnhancementFactor 1
set CellGridSampler:UseAllIterations No
set CellGridSampler:RemapperPoints 50000
set CellGridSampler:RemapperMinSelection 0.00001
set CellGridSampler:RemapChannelDimension Yes
set CellGridSampler:LuminosityMapperBins 20
set CellGridSampler:GeneralMapperBins 0
set CellGridSampler:HalfPoints No
set CellGridSampler:MaxNewMax 30
set CellGridSampler:NonZeroInPresampling Yes
create Herwig::MonacoSampler MonacoSampler
set MonacoSampler:InitialPoints 15000
set MonacoSampler:NIterations 4
set MonacoSampler:EnhancementFactor 1.2
set MonacoSampler:UseAllIterations No
set MonacoSampler:RemapChannelDimension No
set MonacoSampler:LuminosityMapperBins 0
set MonacoSampler:HalfPoints No
set MonacoSampler:MaxNewMax 30
set MonacoSampler:NonZeroInPresampling Yes
create Herwig::GeneralSampler Sampler
set Sampler:UpdateAfter 1000
set Sampler:BinSampler CellGridSampler
set Sampler:AddUpSamplers Off
set Sampler:GlobalMaximumWeight Off
set Sampler:FlatSubprocesses Off
set Sampler:MinSelection 0.000001
set Sampler:AlmostUnweighted Off
set Sampler:RunCombinationData Off
set Sampler:WriteGridsOnFinish No
set Sampler:MaxEnhancement 1.1
################################################################################
# Setup the factory object
################################################################################
mkdir /Herwig/MatrixElements/Matchbox
cd /Herwig/MatrixElements/Matchbox
create Herwig::MatchboxFactory Factory
do Factory:StartParticleGroup p
insert Factory:ParticleGroup 0 /Herwig/Particles/b
insert Factory:ParticleGroup 0 /Herwig/Particles/bbar
insert Factory:ParticleGroup 0 /Herwig/Particles/c
insert Factory:ParticleGroup 0 /Herwig/Particles/cbar
insert Factory:ParticleGroup 0 /Herwig/Particles/s
insert Factory:ParticleGroup 0 /Herwig/Particles/sbar
insert Factory:ParticleGroup 0 /Herwig/Particles/d
insert Factory:ParticleGroup 0 /Herwig/Particles/dbar
insert Factory:ParticleGroup 0 /Herwig/Particles/u
insert Factory:ParticleGroup 0 /Herwig/Particles/ubar
insert Factory:ParticleGroup 0 /Herwig/Particles/g
do Factory:EndParticleGroup
do Factory:StartParticleGroup pbar
insert Factory:ParticleGroup 0 /Herwig/Particles/b
insert Factory:ParticleGroup 0 /Herwig/Particles/bbar
insert Factory:ParticleGroup 0 /Herwig/Particles/c
insert Factory:ParticleGroup 0 /Herwig/Particles/cbar
insert Factory:ParticleGroup 0 /Herwig/Particles/s
insert Factory:ParticleGroup 0 /Herwig/Particles/sbar
insert Factory:ParticleGroup 0 /Herwig/Particles/d
insert Factory:ParticleGroup 0 /Herwig/Particles/dbar
insert Factory:ParticleGroup 0 /Herwig/Particles/u
insert Factory:ParticleGroup 0 /Herwig/Particles/ubar
insert Factory:ParticleGroup 0 /Herwig/Particles/g
do Factory:EndParticleGroup
do Factory:StartParticleGroup j
insert Factory:ParticleGroup 0 /Herwig/Particles/b
insert Factory:ParticleGroup 0 /Herwig/Particles/bbar
insert Factory:ParticleGroup 0 /Herwig/Particles/c
insert Factory:ParticleGroup 0 /Herwig/Particles/cbar
insert Factory:ParticleGroup 0 /Herwig/Particles/s
insert Factory:ParticleGroup 0 /Herwig/Particles/sbar
insert Factory:ParticleGroup 0 /Herwig/Particles/d
insert Factory:ParticleGroup 0 /Herwig/Particles/dbar
insert Factory:ParticleGroup 0 /Herwig/Particles/u
insert Factory:ParticleGroup 0 /Herwig/Particles/ubar
insert Factory:ParticleGroup 0 /Herwig/Particles/g
do Factory:EndParticleGroup
do Factory:StartParticleGroup u
insert Factory:ParticleGroup 0 /Herwig/Particles/u
do Factory:EndParticleGroup
do Factory:StartParticleGroup ubar
insert Factory:ParticleGroup 0 /Herwig/Particles/ubar
do Factory:EndParticleGroup
do Factory:StartParticleGroup d
insert Factory:ParticleGroup 0 /Herwig/Particles/d
do Factory:EndParticleGroup
do Factory:StartParticleGroup dbar
insert Factory:ParticleGroup 0 /Herwig/Particles/dbar
do Factory:EndParticleGroup
do Factory:StartParticleGroup s
insert Factory:ParticleGroup 0 /Herwig/Particles/s
do Factory:EndParticleGroup
do Factory:StartParticleGroup sbar
insert Factory:ParticleGroup 0 /Herwig/Particles/sbar
do Factory:EndParticleGroup
do Factory:StartParticleGroup c
insert Factory:ParticleGroup 0 /Herwig/Particles/c
do Factory:EndParticleGroup
do Factory:StartParticleGroup cbar
insert Factory:ParticleGroup 0 /Herwig/Particles/cbar
do Factory:EndParticleGroup
do Factory:StartParticleGroup b
insert Factory:ParticleGroup 0 /Herwig/Particles/b
do Factory:EndParticleGroup
do Factory:StartParticleGroup bbar
insert Factory:ParticleGroup 0 /Herwig/Particles/bbar
do Factory:EndParticleGroup
do Factory:StartParticleGroup t
insert Factory:ParticleGroup 0 /Herwig/Particles/t
do Factory:EndParticleGroup
do Factory:StartParticleGroup tbar
insert Factory:ParticleGroup 0 /Herwig/Particles/tbar
do Factory:EndParticleGroup
do Factory:StartParticleGroup g
insert Factory:ParticleGroup 0 /Herwig/Particles/g
do Factory:EndParticleGroup
do Factory:StartParticleGroup gamma
insert Factory:ParticleGroup 0 /Herwig/Particles/gamma
do Factory:EndParticleGroup
do Factory:StartParticleGroup h0
insert Factory:ParticleGroup 0 /Herwig/Particles/h0
do Factory:EndParticleGroup
do Factory:StartParticleGroup W+
insert Factory:ParticleGroup 0 /Herwig/Particles/W+
do Factory:EndParticleGroup
do Factory:StartParticleGroup W-
insert Factory:ParticleGroup 0 /Herwig/Particles/W-
do Factory:EndParticleGroup
do Factory:StartParticleGroup Z0
insert Factory:ParticleGroup 0 /Herwig/Particles/Z0
do Factory:EndParticleGroup
do Factory:StartParticleGroup e+
insert Factory:ParticleGroup 0 /Herwig/Particles/e+
do Factory:EndParticleGroup
do Factory:StartParticleGroup e-
insert Factory:ParticleGroup 0 /Herwig/Particles/e-
do Factory:EndParticleGroup
do Factory:StartParticleGroup mu+
insert Factory:ParticleGroup 0 /Herwig/Particles/mu+
do Factory:EndParticleGroup
do Factory:StartParticleGroup mu-
insert Factory:ParticleGroup 0 /Herwig/Particles/mu-
do Factory:EndParticleGroup
do Factory:StartParticleGroup tau+
insert Factory:ParticleGroup 0 /Herwig/Particles/tau+
do Factory:EndParticleGroup
do Factory:StartParticleGroup tau-
insert Factory:ParticleGroup 0 /Herwig/Particles/tau-
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu_e
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_e
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu_mu
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_mu
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu_tau
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_tau
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu_ebar
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_ebar
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu_mubar
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_mubar
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu_taubar
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_taubar
do Factory:EndParticleGroup
do Factory:StartParticleGroup l
insert Factory:ParticleGroup 0 /Herwig/Particles/e+
insert Factory:ParticleGroup 0 /Herwig/Particles/mu+
insert Factory:ParticleGroup 0 /Herwig/Particles/e-
insert Factory:ParticleGroup 0 /Herwig/Particles/mu-
do Factory:EndParticleGroup
do Factory:StartParticleGroup nu
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_e
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_mu
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_ebar
insert Factory:ParticleGroup 0 /Herwig/Particles/nu_mubar
do Factory:EndParticleGroup
do Factory:StartParticleGroup l+
insert Factory:ParticleGroup 0 /Herwig/Particles/e+
insert Factory:ParticleGroup 0 /Herwig/Particles/mu+
do Factory:EndParticleGroup
do Factory:StartParticleGroup l-
insert Factory:ParticleGroup 0 /Herwig/Particles/e-
insert Factory:ParticleGroup 0 /Herwig/Particles/mu-
do Factory:EndParticleGroup
################################################################################
# Default settings for hard process widths
################################################################################
set /Herwig/Particles/mu+:HardProcessWidth 0*GeV
set /Herwig/Particles/mu-:HardProcessWidth 0*GeV
set /Herwig/Particles/tau+:HardProcessWidth 0*GeV
set /Herwig/Particles/tau-:HardProcessWidth 0*GeV
################################################################################
# Setup amplitudes
################################################################################
cd /Herwig/MatrixElements/Matchbox
mkdir Amplitudes
cd Amplitudes
create ColorFull::TraceBasis TraceBasis
create Herwig::MatchboxHybridAmplitude GenericProcesses
@LOAD_MADGRAPH@ HwMatchboxMadGraph.so
@CREATE_MADGRAPH@ Herwig::MadGraphAmplitude MadGraph
@SET_MADGRAPH@ MadGraph:ColourBasis TraceBasis
@LOAD_GOSAM@ HwMatchboxGoSam.so
@CREATE_GOSAM@ Herwig::GoSamAmplitude GoSam
@LOAD_NJET@ HwMatchboxNJet.so
@CREATE_NJET@ Herwig::NJetsAmplitude NJet
@DO_NJET@ NJet:Massless 5
@DO_NJET@ NJet:Massless -5
@LOAD_OPENLOOPS@ HwMatchboxOpenLoops.so
@CREATE_OPENLOOPS@ Herwig::OpenLoopsAmplitude OpenLoops
@LOAD_VBFNLO@ HwMatchboxVBFNLO.so
@CREATE_VBFNLO@ Herwig::VBFNLOAmplitude VBFNLO
mkdir Builtin
cd Builtin
create Herwig::SimpleColourBasis SimpleColourBasis
create Herwig::SimpleColourBasis2 SimpleColourBasis2
create Herwig::MatchboxAmplitudellbarqqbar Amplitudellbarqqbar
set Amplitudellbarqqbar:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudellbarqqbarg Amplitudellbarqqbarg
set Amplitudellbarqqbarg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudellbarqqbargg Amplitudellbarqqbargg
set Amplitudellbarqqbargg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudellbarqqbarqqbar Amplitudellbarqqbarqqbar
set Amplitudellbarqqbarqqbar:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudelnuqqbar Amplitudelnuqqbar
set Amplitudelnuqqbar:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudelnuqqbarg Amplitudelnuqqbarg
set Amplitudelnuqqbarg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudelnuqqbargg Amplitudelnuqqbargg
set Amplitudelnuqqbargg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudelnuqqbarqqbar Amplitudelnuqqbarqqbar
set Amplitudelnuqqbarqqbar:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudehgg Amplitudehgg
set Amplitudehgg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudehggg Amplitudehggg
set Amplitudehggg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudehqqbarg Amplitudehqqbarg
set Amplitudehqqbarg:ColourBasis SimpleColourBasis
create Herwig::MatchboxAmplitudeqqbarttbar Amplitudeqqbarttbar
set Amplitudeqqbarttbar:ColourBasis SimpleColourBasis2
create Herwig::MatchboxAmplitudeqqbarttbarg Amplitudeqqbarttbarg
set Amplitudeqqbarttbarg:ColourBasis SimpleColourBasis2
create Herwig::MatchboxAmplitudeggttbar Amplitudeggttbar
set Amplitudeggttbar:ColourBasis SimpleColourBasis2
create Herwig::MatchboxAmplitudeggttbarg Amplitudeggttbarg
set Amplitudeggttbarg:ColourBasis SimpleColourBasis2
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudellbarqqbar
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudellbarqqbarg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudellbarqqbargg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudellbarqqbarqqbar
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudelnuqqbar
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudelnuqqbarg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudelnuqqbargg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudelnuqqbarqqbar
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudehgg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudehggg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudehqqbarg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudeqqbarttbar
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudeqqbarttbarg
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudeggttbar
insert /Herwig/MatrixElements/Matchbox/Factory:Amplitudes 0 Amplitudeggttbarg
################################################################################
# Setup phasespace generators
################################################################################
cd /Herwig/MatrixElements/Matchbox
mkdir Phasespace
cd Phasespace
create Herwig::PhasespaceCouplings PhasespaceCouplings
create Herwig::MatchboxRambo Rambo
set Rambo:CouplingData PhasespaceCouplings
create Herwig::FlatInvertiblePhasespace InvertiblePhasespace
set InvertiblePhasespace:CouplingData PhasespaceCouplings
create Herwig::FlatInvertibleLabframePhasespace InvertibleLabframePhasespace
set InvertibleLabframePhasespace:CouplingData PhasespaceCouplings
set InvertibleLabframePhasespace:LogSHat False
create Herwig::TreePhasespaceChannels TreePhasespaceChannels
create Herwig::TreePhasespace TreePhasespace
set TreePhasespace:ChannelMap TreePhasespaceChannels
set TreePhasespace:M0 0.0001*GeV
-set TreePhasespace:MC 0.000001*GeV
+set TreePhasespace:MC 0.00005*GeV
set TreePhasespace:CouplingData PhasespaceCouplings
do TreePhasespace:SetPhysicalCoupling 21 -1 1 0.059
do TreePhasespace:SetPhysicalCoupling 21 -2 2 0.059
do TreePhasespace:SetPhysicalCoupling 21 -3 3 0.059
do TreePhasespace:SetPhysicalCoupling 21 -4 4 0.059
do TreePhasespace:SetPhysicalCoupling 21 -5 5 0.059
do TreePhasespace:SetPhysicalCoupling 21 -6 6 0.059
do TreePhasespace:SetPhysicalCoupling 21 1 -1 0.059
do TreePhasespace:SetPhysicalCoupling 21 2 -2 0.059
do TreePhasespace:SetPhysicalCoupling 21 3 -3 0.059
do TreePhasespace:SetPhysicalCoupling 21 4 -4 0.059
do TreePhasespace:SetPhysicalCoupling 21 5 -5 0.059
do TreePhasespace:SetPhysicalCoupling 21 6 -6 0.059
do TreePhasespace:SetPhysicalCoupling 1 21 1 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 2 21 2 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 3 21 3 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 4 21 4 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 5 21 5 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 6 21 6 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -1 21 -1 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -2 21 -2 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -3 21 -3 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -4 21 -4 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -5 21 -5 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -6 21 -6 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 1 1 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 2 2 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 3 3 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 4 4 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 5 5 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling 6 6 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -1 -1 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -2 -2 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -3 -3 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -4 -4 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -5 -5 21 0.15733333333333333333
do TreePhasespace:SetPhysicalCoupling -6 -6 21 0.15733333333333333333
do TreePhasespace:SetCoupling 25 -1 1 0
do TreePhasespace:SetCoupling 25 -2 2 0
do TreePhasespace:SetCoupling 25 -3 3 0.00000001184279069851
do TreePhasespace:SetCoupling 25 -4 4 0.00000205034465001885
do TreePhasespace:SetCoupling 25 -5 5 0.00002314757096085280
do TreePhasespace:SetCoupling 25 -6 6 0.03982017320025470767
do TreePhasespace:SetCoupling 25 -11 11 0.00000000000034264835
do TreePhasespace:SetCoupling 25 -12 12 0
do TreePhasespace:SetCoupling 25 -13 13 0.00000001464912263400
do TreePhasespace:SetCoupling 25 -14 14 0
do TreePhasespace:SetCoupling 25 -15 15 0.00000414359033108195
do TreePhasespace:SetCoupling 25 -16 16 0
do TreePhasespace:SetCoupling 22 -1 1 0.00083932358497608365
do TreePhasespace:SetCoupling 22 -2 2 0.00335729433990433461
do TreePhasespace:SetCoupling 22 -3 3 0.00083932358497608365
do TreePhasespace:SetCoupling 22 -4 4 0.00335729433990433461
do TreePhasespace:SetCoupling 22 -5 5 0.00083932358497608365
do TreePhasespace:SetCoupling 22 -6 6 0.00335729433990433461
do TreePhasespace:SetCoupling 22 -11 11 0.00755391226478475287
do TreePhasespace:SetCoupling 22 -13 13 0.00755391226478475287
do TreePhasespace:SetCoupling 22 -15 15 0.00755391226478475287
do TreePhasespace:SetCoupling 24 -2 1 0.01652748072644379386
do TreePhasespace:SetCoupling 24 -4 1 0.00382028458188709739
do TreePhasespace:SetCoupling 24 -6 1 0.00014707756360995175
do TreePhasespace:SetCoupling 24 -2 3 0.00382265953677814621
do TreePhasespace:SetCoupling 24 -4 3 0.01651340063673257587
do TreePhasespace:SetCoupling 24 -6 3 0.00068534412570265868
do TreePhasespace:SetCoupling 24 -2 5 0.00005954351191129535
do TreePhasespace:SetCoupling 24 -4 5 0.00069891529650865192
do TreePhasespace:SetCoupling 24 -6 5 0.01694947628265615369
do TreePhasespace:SetCoupling 24 -12 11 0.01696396350749155147
do TreePhasespace:SetCoupling 24 -14 13 0.01696396350749155147
do TreePhasespace:SetCoupling 24 -16 15 0.01696396350749155147
do TreePhasespace:SetCoupling -24 2 -1 0.01652748072644379386
do TreePhasespace:SetCoupling -24 4 -1 0.00382028458188709739
do TreePhasespace:SetCoupling -24 6 -1 0.00014707756360995175
do TreePhasespace:SetCoupling -24 2 -3 0.00382265953677814621
do TreePhasespace:SetCoupling -24 4 -3 0.01651340063673257587
do TreePhasespace:SetCoupling -24 6 -3 0.00068534412570265868
do TreePhasespace:SetCoupling -24 2 -5 0.00005954351191129535
do TreePhasespace:SetCoupling -24 4 -5 0.00069891529650865192
do TreePhasespace:SetCoupling -24 6 -5 0.01694947628265615369
do TreePhasespace:SetCoupling -24 12 -11 0.01696396350749155147
do TreePhasespace:SetCoupling -24 14 -13 0.01696396350749155147
do TreePhasespace:SetCoupling -24 16 -15 0.01696396350749155147
do TreePhasespace:SetCoupling 23 -1 1 0.00407649129960709158
do TreePhasespace:SetCoupling 23 -2 2 0.00317809816318353030
do TreePhasespace:SetCoupling 23 -3 3 0.00407649129960709158
do TreePhasespace:SetCoupling 23 -4 4 0.00317809816318353030
do TreePhasespace:SetCoupling 23 -5 5 0.00407649129960709158
do TreePhasespace:SetCoupling 23 -6 6 0.00317809816318353030
do TreePhasespace:SetCoupling 23 -11 11 0.00276049468148072129
do TreePhasespace:SetCoupling 23 -12 12 0.00545567409075140513
do TreePhasespace:SetCoupling 23 -13 13 0.00276049468148072129
do TreePhasespace:SetCoupling 23 -14 14 0.00545567409075140513
do TreePhasespace:SetCoupling 23 -15 15 0.00276049468148072129
do TreePhasespace:SetCoupling 23 -16 16 0.00545567409075140513
do TreePhasespace:SetCoupling 21 21 21 0.354
do TreePhasespace:SetCoupling 25 21 21 0.00000000016160437564
do TreePhasespace:SetCoupling 25 25 25 0.18719783125611995353
do TreePhasespace:SetCoupling 25 22 22 0.00000000006295673620
do TreePhasespace:SetCoupling 25 24 -24 219.30463760755686425818
do TreePhasespace:SetCoupling 25 23 23 362.91922658249853887524
do TreePhasespace:SetCoupling 22 24 -24 0.00755391226478475287
do TreePhasespace:SetCoupling 23 24 -24 0.02637401475019835008
@CREATE_VBFNLO@ Herwig::VBFNLOPhasespace VBFNLOPhasespace
@SET_VBFNLO@ VBFNLOPhasespace:CouplingData PhasespaceCouplings
set /Herwig/MatrixElements/Matchbox/Factory:Phasespace TreePhasespace
################################################################################
# Setup utilities for matching
################################################################################
cd /Herwig/MatrixElements/Matchbox
create Herwig::HardScaleProfile HardScaleProfile
create Herwig::MEMatching MEMatching
set MEMatching:RestrictPhasespace On
set MEMatching:HardScaleProfile /Herwig/MatrixElements/Matchbox/HardScaleProfile
set MEMatching:BornScaleInSubtraction BornScale
set MEMatching:RealEmissionScaleInSubtraction RealScale
set MEMatching:EmissionScaleInSubtraction RealScale
set MEMatching:BornScaleInSplitting ShowerScale
set MEMatching:RealEmissionScaleInSplitting ShowerScale
set MEMatching:EmissionScaleInSplitting ShowerScale
set MEMatching:TruncatedShower Yes
set MEMatching:MaxPtIsMuF Yes
set MEMatching:FFPtCut 1.0*GeV
set MEMatching:FIPtCut 1.0*GeV
set MEMatching:IIPtCut 1.0*GeV
set MEMatching:SafeCut 0.*GeV
create Herwig::ShowerApproximationGenerator MECorrectionHandler
set MECorrectionHandler:ShowerApproximation MEMatching
set MECorrectionHandler:Phasespace /Herwig/MatrixElements/Matchbox/Phasespace/InvertiblePhasespace
set MECorrectionHandler:PresamplingPoints 50000
set MECorrectionHandler:FreezeGrid 100000
create Herwig::DipoleMatching DipoleMatching HwDipoleMatching.so
# set in DipoleShowerDefaults.in as not available at this point
# set DipoleMatching:ShowerHandler /Herwig/DipoleShower/DipoleShowerHandler
set DipoleMatching:BornScaleInSubtraction BornScale
set DipoleMatching:RealEmissionScaleInSubtraction BornScale
set DipoleMatching:EmissionScaleInSubtraction BornScale
set DipoleMatching:FFPtCut 1.0*GeV
set DipoleMatching:FIPtCut 1.0*GeV
set DipoleMatching:IIPtCut 1.0*GeV
set DipoleMatching:SafeCut 4.*GeV
create Herwig::QTildeMatching QTildeMatching HwQTildeMatching.so
set QTildeMatching:ShowerHandler /Herwig/Shower/ShowerHandler
set QTildeMatching:BornScaleInSubtraction BornScale
set QTildeMatching:RealEmissionScaleInSubtraction BornScale
set QTildeMatching:EmissionScaleInSubtraction BornScale
set QTildeMatching:QTildeFinder /Herwig/Shower/PartnerFinder
set QTildeMatching:SafeCut 4.*GeV
# just a dummy, since SudakovCommonn can't be used
# it's only used to get the value of the kinCutoffScale
set QTildeMatching:QTildeSudakov /Herwig/Shower/QtoQGSudakov
################################################################################
# Setup utilities for process generation
################################################################################
cd /Herwig/MatrixElements/Matchbox
mkdir Utility
cd Utility
create Herwig::Tree2toNGenerator DiagramGenerator
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/FFGVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/GGGVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/FFPVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/FFZVertex
cp /Herwig/Vertices/FFWVertex /Herwig/Vertices/FFWMatchboxVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/FFWMatchboxVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/WWHVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/WWWVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/HGGVertex
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/HHHVertex
cp /Herwig/Vertices/FFHVertex /Herwig/Vertices/TTHVertex
set /Herwig/Vertices/TTHVertex:Fermion 6
insert DiagramGenerator:Vertices 0 /Herwig/Vertices/TTHVertex
cp /Herwig/Vertices/FFHVertex /Herwig/Vertices/BBHVertex
set /Herwig/Vertices/BBHVertex:Fermion 5
create Herwig::ProcessData ProcessData
set /Herwig/MatrixElements/Matchbox/Factory:DiagramGenerator DiagramGenerator
set /Herwig/MatrixElements/Matchbox/Factory:ProcessData ProcessData
################################################################################
# Setup jet cuts
################################################################################
cd /Herwig/Cuts
create Herwig::MatchboxFactoryMatcher MatchboxJetMatcher
set MatchboxJetMatcher:Group j
create ThePEG::FastJetFinder JetFinder
set JetFinder:UnresolvedMatcher MatchboxJetMatcher
set JetFinder:Variant AntiKt
set JetFinder:RecombinationScheme E
set JetFinder:Mode Inclusive
set JetFinder:ConeRadius 0.7
create ThePEG::JetRegion FirstJet
set FirstJet:PtMin 20.*GeV
do FirstJet:YRange -5.0 5.0
set FirstJet:Fuzzy Yes
set FirstJet:EnergyCutWidth 4.0*GeV
set FirstJet:RapidityCutWidth 0.4
insert FirstJet:Accepts[0] 1
create ThePEG::JetRegion SecondJet
set SecondJet:PtMin 20.*GeV
do SecondJet:YRange -5.0 5.0
set SecondJet:Fuzzy Yes
set SecondJet:EnergyCutWidth 4.0*GeV
set SecondJet:RapidityCutWidth 0.4
insert SecondJet:Accepts[0] 2
create ThePEG::JetRegion ThirdJet
set ThirdJet:PtMin 20.*GeV
do ThirdJet:YRange -5.0 5.0
set ThirdJet:Fuzzy Yes
set ThirdJet:EnergyCutWidth 4.0*GeV
set ThirdJet:RapidityCutWidth 0.4
insert ThirdJet:Accepts[0] 3
create ThePEG::JetRegion FourthJet
set FourthJet:PtMin 20.*GeV
do FourthJet:YRange -5.0 5.0
set FourthJet:Fuzzy Yes
set FourthJet:EnergyCutWidth 4.0*GeV
set FourthJet:RapidityCutWidth 0.4
insert FourthJet:Accepts[0] 4
create ThePEG::FuzzyTheta FuzzyTheta
set FuzzyTheta:EnergyWidth 4.0*GeV
set FuzzyTheta:RapidityWidth 0.4
set FuzzyTheta:AngularWidth 0.4
create ThePEG::NJetsCut NJetsCut
set NJetsCut:UnresolvedMatcher MatchboxJetMatcher
set NJetsCut:NJetsMin 2
create ThePEG::JetCuts JetCuts
set JetCuts:UnresolvedMatcher MatchboxJetMatcher
set JetCuts:Ordering OrderPt
create Herwig::IdentifiedParticleCut IdentifiedParticleCut
cp IdentifiedParticleCut LeptonCut
set LeptonCut:Matcher /Herwig/Matchers/Lepton
cp IdentifiedParticleCut ChargedLeptonCut
set ChargedLeptonCut:Matcher /Herwig/Matchers/ChargedLepton
cp IdentifiedParticleCut BottomQuarkCut
set BottomQuarkCut:Matcher /Herwig/Matchers/Bottom
cp IdentifiedParticleCut TopQuarkCut
set TopQuarkCut:Matcher /Herwig/Matchers/Top
cp IdentifiedParticleCut WBosonCut
set WBosonCut:Matcher /Herwig/Matchers/WBoson
cp IdentifiedParticleCut ZBosonCut
set ZBosonCut:Matcher /Herwig/Matchers/ZBoson
cp IdentifiedParticleCut HiggsBosonCut
set HiggsBosonCut:Matcher /Herwig/Matchers/HiggsBoson
cp IdentifiedParticleCut PhotonCut
set PhotonCut:Matcher /Herwig/Matchers/Photon
create Herwig::FrixionePhotonSeparationCut PhotonIsolationCut
set PhotonIsolationCut:UnresolvedMatcher MatchboxJetMatcher
create Herwig::MatchboxDeltaRCut MatchboxDeltaRCut
cp MatchboxDeltaRCut LeptonDeltaRCut
set LeptonDeltaRCut:FirstMatcher /Herwig/Matchers/Lepton
set LeptonDeltaRCut:SecondMatcher /Herwig/Matchers/Lepton
cp MatchboxDeltaRCut ChargedLeptonDeltaRCut
set ChargedLeptonDeltaRCut:FirstMatcher /Herwig/Matchers/ChargedLepton
set ChargedLeptonDeltaRCut:SecondMatcher /Herwig/Matchers/ChargedLepton
create Herwig::InvariantMassCut InvariantMassCut
cp InvariantMassCut LeptonPairMassCut
set LeptonPairMassCut:FirstMatcher /Herwig/Matchers/Lepton
set LeptonPairMassCut:SecondMatcher /Herwig/Matchers/Lepton
cp InvariantMassCut ChargedLeptonPairMassCut
set ChargedLeptonPairMassCut:FirstMatcher /Herwig/Matchers/ChargedLepton
set ChargedLeptonPairMassCut:SecondMatcher /Herwig/Matchers/ChargedLepton
create Herwig::MissingPtCut MissingPtCut
set MissingPtCut:Matcher /Herwig/Matchers/Neutrino
################################################################################
# Setup scale choices
################################################################################
cd /Herwig/MatrixElements/Matchbox
mkdir Scales
cd Scales
create Herwig::MatchboxScaleChoice SHatScale
cp SHatScale FixedScale
set FixedScale:FixedScale 100.*GeV
create Herwig::MatchboxPtScale MaxJetPtScale
set MaxJetPtScale:JetFinder /Herwig/Cuts/JetFinder
create Herwig::MatchboxLeptonMassScale LeptonPairMassScale
create Herwig::MatchboxLeptonPtScale LeptonPairPtScale
create Herwig::MatchboxHtScale HTScale
create Herwig::MatchboxTopMassScale TopPairMassScale
create Herwig::MatchboxTopMTScale TopPairMTScale
set HTScale:JetFinder /Herwig/Cuts/JetFinder
set HTScale:IncludeMT No
set HTScale:JetPtCut 15.*GeV
cp HTScale HTPrimeScale
set HTPrimeScale:IncludeMT Yes
set HTPrimeScale:JetPtCut 15.*GeV
cp LeptonPairMassScale LeptonQ2Scale
set /Herwig/MatrixElements/Matchbox/Factory:ScaleChoice LeptonPairMassScale
################################################################################
# Factories for different colliders
# only provided for backwards compatibility; refer to Matchbox/*.in input file
# snippets for generic handling
################################################################################
cd /Herwig/MatrixElements/Matchbox
cp Factory EEFactory
set EEFactory:PartonExtractor /Herwig/Partons/EEExtractor
set EEFactory:Cuts /Herwig/Cuts/EECuts
set EEFactory:FirstPerturbativePDF No
set EEFactory:SecondPerturbativePDF No
cp Factory DISFactory
set DISFactory:PartonExtractor /Herwig/Partons/DISExtractor
set DISFactory:Cuts /Herwig/Cuts/DISCuts
set DISFactory:FirstPerturbativePDF No
set DISFactory:SecondPerturbativePDF Yes
cp Factory PPFactory
set PPFactory:PartonExtractor /Herwig/Partons/QCDExtractor
set PPFactory:Cuts /Herwig/Cuts/QCDCuts
set PPFactory:FirstPerturbativePDF Yes
set PPFactory:SecondPerturbativePDF Yes
cd /

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 5:04 PM (15 h, 11 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023565
Default Alt Text
(326 KB)

Event Timeline