Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/EW/ElectroWeakReweighter.cc b/MatrixElement/EW/ElectroWeakReweighter.cc
--- a/MatrixElement/EW/ElectroWeakReweighter.cc
+++ b/MatrixElement/EW/ElectroWeakReweighter.cc
@@ -1,1938 +1,1985 @@
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ElectroWeakReweighter class.
//
#include "ElectroWeakReweighter.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
+#include "ThePEG/Interface/Switch.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "boost/numeric/ublas/matrix.hpp"
#include "boost/numeric/ublas/operation.hpp"
#include "EWProcess.h"
#include "HighEnergyMatching.h"
#include "ElectroWeakMatching.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/epsilon.h"
+#include "Herwig/MatrixElement/Matchbox/Base/SubtractedME.h"
+#include "Herwig/MatrixElement/Matchbox/MatchboxFactory.h"
+#include "ThePEG/Handlers/StandardXComb.h"
using namespace Herwig;
tEWCouplingsPtr ElectroWeakReweighter::staticEWCouplings_ = tEWCouplingsPtr();
-ElectroWeakReweighter::ElectroWeakReweighter() {}
+ElectroWeakReweighter::ElectroWeakReweighter() : testing_(false)
+{}
ElectroWeakReweighter::~ElectroWeakReweighter() {}
IBPtr ElectroWeakReweighter::clone() const {
return new_ptr(*this);
}
IBPtr ElectroWeakReweighter::fullclone() const {
return new_ptr(*this);
}
void ElectroWeakReweighter::persistentOutput(PersistentOStream & os) const {
- os << EWCouplings_ << collinearSudakov_ << softSudakov_;
+ os << EWCouplings_ << collinearSudakov_ << softSudakov_ << testing_;
}
void ElectroWeakReweighter::persistentInput(PersistentIStream & is, int) {
- is >> EWCouplings_ >> collinearSudakov_ >> softSudakov_;
+ is >> EWCouplings_ >> collinearSudakov_ >> softSudakov_ >> testing_;
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<ElectroWeakReweighter,ReweightBase>
- describeHerwigElectroWeakReweighter("Herwig::ElectroWeakReweighter", "HwMEEW.so");
+describeHerwigElectroWeakReweighter("Herwig::ElectroWeakReweighter", "HwMEEW.so");
void ElectroWeakReweighter::Init() {
static ClassDocumentation<ElectroWeakReweighter> documentation
("There is no documentation for the ElectroWeakReweighter class");
static Reference<ElectroWeakReweighter,EWCouplings> interfaceEWCouplings
("EWCouplings",
"The object to calculate the electroweak couplings",
&ElectroWeakReweighter::EWCouplings_, false, false, true, false, false);
static Reference<ElectroWeakReweighter,CollinearSudakov> interfaceCollinearSudakov
("CollinearSudakov",
"The collinear Sudakov",
&ElectroWeakReweighter::collinearSudakov_, false, false, true, false, false);
static Reference<ElectroWeakReweighter,SoftSudakov> interfaceSoftSudakov
("SoftSudakov",
"The soft Sudakov",
&ElectroWeakReweighter::softSudakov_, false, false, true, false, false);
+ static Switch<ElectroWeakReweighter,bool> interfaceTesting
+ ("Testing",
+ "Whether or not to output testing information",
+ &ElectroWeakReweighter::testing_, false, false, false);
+ static SwitchOption interfaceTestingYes
+ (interfaceTesting,
+ "Yes",
+ "Output the information",
+ true);
+ static SwitchOption interfaceTestingNo
+ (interfaceTesting,
+ "No",
+ "Don't output the information",
+ false);
+
+}
+
+void ElectroWeakReweighter::doinit() {
+ ReweightBase::doinit();
+ if(!testing_) return;
+ // testing output
+ cerr << "aEM\n";
+ for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.1) {
+ cerr << scale/GeV << " "
+ << EWCouplings_->aEM(scale) << "\n";
+ }
+ cerr << "aS\n";
+ for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.4) {
+ cerr << scale/GeV << " "
+ << EWCouplings_->aS(scale) << "\n";
+ }
+ cerr << "y_t\n";
+ for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.4) {
+ cerr << scale/GeV << " "
+ << EWCouplings_->y_t(scale) << "\n";
+ }
+ cerr << "lambda\n";
+ for(Energy scale=91.2*GeV; scale<10*TeV; scale *= 1.4) {
+ cerr << scale/GeV << " "
+ << EWCouplings_->lambda(scale) << "\n";
+ }
+ cerr << "vev\n";
+ for(Energy scale=91.2*GeV; scale<10*TeV; scale *= 1.4) {
+ cerr << scale/GeV << " "
+ << EWCouplings_->vev(scale)/GeV << "\n";
+ }
+ collinearSudakov_->makePlots();
+ Energy2 s = sqr(5000.*GeV);
+ Energy2 t = -0.25*s;
+ Energy2 u = -0.75*s;
+ testEvolution(s,t,u);
}
namespace {
#ifdef ThePEG_HAS_UNITS_CHECKING
void axpy_prod_local(const boost::numeric::ublas::matrix<Complex> & A,
const boost::numeric::ublas::matrix<complex<InvEnergy2> > & B,
boost::numeric::ublas::matrix<complex<InvEnergy2> > & C) {
assert(A.size2()==B.size1());
C.resize(A.size1(),B.size2());
for(unsigned int ix=0;ix<A.size1();++ix) {
for(unsigned int iy=0;iy<B.size2();++iy) {
C(ix,iy) = ZERO;
for(unsigned int iz=0;iz<A.size2();++iz) {
C(ix,iy) += A(ix,iz)*B(iz,iy);
}
}
}
}
void axpy_prod_local(const boost::numeric::ublas::matrix<complex<InvEnergy2> > & A,
const boost::numeric::ublas::vector<complex<Energy2> > & B,
boost::numeric::ublas::vector<Complex > & C) {
assert(A.size2()==B.size());
C.resize(A.size1());
for(unsigned int ix=0;ix<A.size1();++ix) {
C(ix) = ZERO;
for(unsigned int iz=0;iz<A.size2();++iz) {
C(ix) += A(ix,iz)*B(iz);
}
}
}
void axpy_prod_local(const boost::numeric::ublas::matrix<complex<InvEnergy2> > & A,
const boost::numeric::ublas::matrix<Complex> & B,
boost::numeric::ublas::matrix<complex<InvEnergy2> > & C) {
assert(A.size2()==B.size1());
C.resize(A.size1(),B.size2());
for(unsigned int ix=0;ix<A.size1();++ix) {
for(unsigned int iy=0;iy<B.size2();++iy) {
C(ix,iy) = ZERO;
for(unsigned int iz=0;iz<A.size2();++iz) {
C(ix,iy) += A(ix,iz)*B(iz,iy);
}
}
}
}
#else
void axpy_prod_local(const boost::numeric::ublas::matrix<Complex> & A,
const boost::numeric::ublas::matrix<Complex> & B,
boost::numeric::ublas::matrix<Complex> & C) {
axpy_prod(A,B,C);
}
void axpy_prod_local(const boost::numeric::ublas::matrix<Complex> & A,
const boost::numeric::ublas::vector<Complex> & B,
boost::numeric::ublas::vector<Complex> & C) {
axpy_prod(A,B,C);
}
#endif
}
double ElectroWeakReweighter::weight() const {
EWCouplings_->initialize();
staticEWCouplings_ = EWCouplings_;
- // cerr << "aEM\n";
- // for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.1) {
- // cerr << scale/GeV << " "
- // << EWCouplings_->aEM(scale) << "\n";
- // }
- // cerr << "aS\n";
- // for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.4) {
- // cerr << scale/GeV << " "
- // << EWCouplings_->aS(scale) << "\n";
- // }
- // cerr << "y_t\n";
- // for(Energy scale=10.*GeV; scale<10*TeV; scale *= 1.4) {
- // cerr << scale/GeV << " "
- // << EWCouplings_->y_t(scale) << "\n";
- // }
- // cerr << "lambda\n";
- // for(Energy scale=91.2*GeV; scale<10*TeV; scale *= 1.4) {
- // cerr << scale/GeV << " "
- // << EWCouplings_->lambda(scale) << "\n";
- // }
- // cerr << "vev\n";
- // for(Energy scale=91.2*GeV; scale<10*TeV; scale *= 1.4) {
- // cerr << scale/GeV << " "
- // << EWCouplings_->vev(scale)/GeV << "\n";
- // }
- // collinearSudakov_->makePlots();
- // Energy2 s = sqr(5000.*GeV);
- // Energy2 t = -0.25*s;
- // Energy2 u = -0.75*s;
- // testEvolution(s,t,u);
-
-
-
-
+ // cast the XComb
+ Ptr<StandardXComb>::ptr sxc = dynamic_ptr_cast<Ptr<StandardXComb>::ptr>(lastXCombPtr());
+ // if the Herwig XComb
+ if(sxc) {
+ // get information about the type of event
+ Ptr<SubtractedME>::tptr subme = dynamic_ptr_cast<Ptr<SubtractedME>::tptr>(sxc->matrixElement());
+ Ptr<MatchboxMEBase>::tptr me = dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(sxc->matrixElement());
+ Ptr<SubtractionDipole>::tptr dipme = dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(sxc->matrixElement());
+ bool isHEvent(false),isSEvent(false);
+ if(subme) {
+ if ( subme->realShowerSubtraction() )
+ isHEvent = true;
+ else if ( subme->virtualShowerSubtraction() || subme->loopSimSubtraction() )
+ isSEvent = true;
+ }
+ // H or S event of virtual return 1.
+ if(isHEvent || isSEvent || (me && me->oneLoopNoBorn()))
+ return 1.;
+ // cerr << "testing after type check\n";
+ // cerr << "testing pointers " << subme << " " << me << " " << dipme << "\n";
+ // cerr << "testing event type " << isHEvent << " " << isSEvent << " " << "\n";
+ // if(subme) cerr << subme->fullName() << "\n";
+ // if( me) {
+ // cerr << me->fullName() << "\n";
+ // cerr << me->oneLoopNoBorn() << " " << me->oneLoopNoLoops() << "\n";
+ // }
+ // if(dipme) cerr << dipme->fullName() << "\n";
+ }
// cerr << subProcess() << "\n";
// cerr << *subProcess() << "\n";
- // cerr << subProcess()->outgoing()[0] << *subProcess()->outgoing()[0] << "\n";
- // cerr << subProcess()->outgoing()[0]->spinInfo() << "\n";
- // cerr << subProcess()->outgoing()[0]->spinInfo()->productionVertex() << "\n";
- if(subProcess()->outgoing().size()!=2)
- return 1.;
+ // only 2->2 processes
+ if(subProcess()->outgoing().size()!=2) return 1.;
// processes with gg initial-state
if(subProcess()->incoming().first->id()==ParticleID::g &&
subProcess()->incoming().second->id()==ParticleID::g) {
if(subProcess()->outgoing()[0]->id()==ParticleID::g &&
subProcess()->outgoing()[1]->id()==ParticleID::g)
return 1.;
else if(abs(subProcess()->outgoing()[0]->id())<=6 &&
subProcess()->outgoing()[0]->id()==-subProcess()->outgoing()[1]->id()) {
return reweightggqqbar();
}
else
assert(false);
}
// processes with q qbar initial-state
else if((subProcess()->incoming().first ->id() > 0 &&
subProcess()->incoming().first ->id()<= 5 &&
subProcess()->incoming().second->id() < 0 &&
subProcess()->incoming().second->id()>=-5) ||
(subProcess()->incoming().second->id() > 0 &&
subProcess()->incoming().second->id()<= 5 &&
subProcess()->incoming().first ->id() < 0 &&
subProcess()->incoming().first ->id()>=-5)) {
// identical flavour q qbar
if(subProcess()->incoming().first ->id() == -subProcess()->incoming().second->id()) {
// q qbar -> gg
if(subProcess()->outgoing()[0]->id()==ParticleID::g &&
subProcess()->outgoing()[1]->id()==ParticleID::g)
return reweightqqbargg();
// q qbar -> q' q'bar
else if(subProcess()->outgoing()[0]->id() == -subProcess()->outgoing()[1]->id() &&
abs(subProcess()->outgoing()[0]->id())<=6)
return reweightqqbarqqbarS();
}
// different flavour q qbar
else {
if((subProcess()->outgoing()[0]->id() > 0 &&
subProcess()->outgoing()[0]->id()<= 5 &&
subProcess()->outgoing()[1]->id() < 0 &&
subProcess()->outgoing()[1]->id()>=-5) ||
(subProcess()->outgoing()[1]->id() > 0 &&
subProcess()->outgoing()[1]->id()<= 5 &&
subProcess()->outgoing()[0]->id() < 0 &&
subProcess()->outgoing()[0]->id()>=-5)) {
return reweightqqbarqqbarT();
}
else
assert(false);
}
}
// processes with q g initial-state
else if((subProcess()->incoming().first ->id()> 0 &&
subProcess()->incoming().first ->id()<=5 &&
subProcess()->incoming().second->id()==ParticleID::g) ||
(subProcess()->incoming().second->id()> 0 &&
subProcess()->incoming().second->id()<=5 &&
subProcess()->incoming().first ->id()==ParticleID::g)) {
// qg -> qg
if((subProcess()->outgoing()[0]->id()> 0 &&
subProcess()->outgoing()[0]->id()<=5 &&
subProcess()->outgoing()[1]->id()==ParticleID::g) ||
(subProcess()->outgoing()[1]->id()> 0 &&
subProcess()->outgoing()[1]->id()<=5 &&
subProcess()->outgoing()[0]->id()==ParticleID::g))
return reweightqgqg();
// unknown
else
assert(false);
}
// processes with qbar g initial-state
else if((subProcess()->incoming().first ->id()>=-5 &&
subProcess()->incoming().first ->id()< 0 &&
subProcess()->incoming().second->id()==ParticleID::g) ||
(subProcess()->incoming().second->id()>=-5 &&
subProcess()->incoming().second->id()< 0 &&
subProcess()->incoming().first ->id()==ParticleID::g)) {
if((subProcess()->outgoing()[0]->id()>=-5 &&
subProcess()->outgoing()[0]->id()< 0 &&
subProcess()->outgoing()[1]->id()==ParticleID::g) ||
(subProcess()->outgoing()[1]->id()>=-5 &&
subProcess()->outgoing()[1]->id()< 0 &&
subProcess()->outgoing()[0]->id()==ParticleID::g))
return reweightqbargqbarg();
else
assert(false);
}
// processes with q q initial-state
else if( subProcess()->incoming().first ->id()> 0 &&
subProcess()->incoming().first ->id()<=5 &&
subProcess()->incoming().second->id()> 0 &&
subProcess()->incoming().second->id()<=5 ) {
if(subProcess()->outgoing()[0]->id()> 0 &&
subProcess()->outgoing()[0]->id()<=5 &&
subProcess()->outgoing()[1]->id()> 0 &&
subProcess()->outgoing()[1]->id()<=5)
return reweightqqqq();
else
assert(false);
}
// processes with qbar qbar initial-state
else if( subProcess()->incoming().first ->id()< 0 &&
subProcess()->incoming().first ->id()>= -5 &&
subProcess()->incoming().second->id()< 0 &&
subProcess()->incoming().second->id()>= -5 ) {
if(subProcess()->outgoing()[0]->id()< 0 &&
subProcess()->outgoing()[0]->id()>= -5 &&
subProcess()->outgoing()[1]->id()< 0 &&
subProcess()->outgoing()[1]->id()>= -5)
return reweightqbarqbarqbarqbar();
else
assert(false);
}
// unknown initial-state
else
assert(false);
assert(false);
staticEWCouplings_ = tEWCouplingsPtr();
}
void ElectroWeakReweighter::testEvolution(Energy2 s,Energy2 t, Energy2 u) const {
Energy highScale = sqrt(s);
Energy ewScale = coupling()->mZ();
Energy lowScale = 50.0*GeV;
for (unsigned int i=0; i<45;++i) {
EWProcess::Process process = (EWProcess::Process)i;
cerr << "process " << process << "\n";
// result for all EW and QCD SCET contributions:
boost::numeric::ublas::matrix<complex<InvEnergy2> > highMatch_val
= HighEnergyMatching::highEnergyMatching(highScale,s,t,u,process,true,true);
boost::numeric::ublas::matrix<Complex> highRunning_val
= softSudakov_->highEnergyRunning(highScale,ewScale,s,t,u,process,0);
boost::numeric::ublas::matrix<Complex> ewMatch_val =
ElectroWeakMatching::electroWeakMatching(ewScale,s,t,u,process,true,0);
boost::numeric::ublas::matrix<Complex> lowRunning_val =
softSudakov_->lowEnergyRunning(ewScale,lowScale,s,t,u,process,0);
boost::numeric::ublas::matrix<Complex> collinearHighRunning_val =
collinearSudakov_->highEnergyRunning(highScale,ewScale,s,process,false);
boost::numeric::ublas::matrix<Complex> collinearEWMatch_val =
collinearSudakov_->electroWeakMatching(ewScale,s,process,true);
boost::numeric::ublas::matrix<Complex> collinearLowRunning_val =
collinearSudakov_->lowEnergyRunning(ewScale,lowScale,s,process);
boost::numeric::ublas::matrix<Complex> lowMatchTemp_val =
boost::numeric::ublas::zero_matrix<Complex>(ewMatch_val.size1(),ewMatch_val.size2());
for (unsigned int ii=0; ii<ewMatch_val.size1(); ++ii) {
for (unsigned int jj=0; jj<ewMatch_val.size2(); ++jj) {
lowMatchTemp_val(ii,jj) = collinearEWMatch_val(ii,jj)*ewMatch_val(ii,jj);
}
}
boost::numeric::ublas::matrix<Complex> temp(highRunning_val.size1(),collinearHighRunning_val.size2());
boost::numeric::ublas::axpy_prod(highRunning_val,collinearHighRunning_val,temp);
boost::numeric::ublas::matrix<Complex> temp2(collinearLowRunning_val.size1(),lowRunning_val.size2());
boost::numeric::ublas::axpy_prod(collinearLowRunning_val,lowRunning_val,temp2);
boost::numeric::ublas::matrix<Complex> temp3(temp2.size1(),lowMatchTemp_val.size2());
boost::numeric::ublas::axpy_prod(temp2,lowMatchTemp_val,temp3);
temp2.resize(temp3.size1(),temp.size2());
boost::numeric::ublas::axpy_prod(temp3,temp,temp2);
boost::numeric::ublas::matrix<complex<InvEnergy2> > result(temp2.size1(),highMatch_val.size2());
axpy_prod_local(temp2,highMatch_val,result);
for(unsigned int ix=0;ix<result.size1();++ix) {
for(unsigned int iy=0;iy<result.size2();++iy) {
cerr << s*result(ix,iy) << " ";
}
cerr << "\n";
}
}
}
namespace {
void SackGluonPolarizations(Lorentz5Momentum &p1,
Lorentz5Momentum &p2,
Lorentz5Momentum &p3,
Lorentz5Momentum &p4,
Energy2 s, Energy2 t, Energy2 u, Energy2 m2,
vector<LorentzVector<Complex> > & eps3,
vector<LorentzVector<Complex> > & eps4,
unsigned int iopt) {
static const Complex I(0.,1.);
// p1 is p-, p2 is p+
// p3 is k-, p4 is k+
// both final-state
if(iopt==0) {
// swap t and u due Aneesh's defn
Energy3 den1 = sqrt((u*t-sqr(m2))*(s-4.*m2));
Energy3 den2 = sqrt(s*(u*t-sqr(m2)));
LorentzVector<Complex> eps3Para = (m2+t)/den1*p1 -(m2+u)/den1*p2 +(u-t)/den1*p3;
LorentzVector<Complex> eps3Perp = 2./den2*epsilon(p1,p2,p3);
LorentzVector<Complex> eps4Para = (m2+t)/den1*p2 -(m2+u)/den1*p1 +(u-t)/den1*p4;
LorentzVector<Complex> eps4Perp = 2./den2*epsilon(p1,p2,p4);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
if(m2!=ZERO) assert(false);
}
// both initial-state
else if(iopt==1) {
if(m2!=ZERO) assert(false);
LorentzVector<Complex> eps3Para( 1., 0.,0.,0.);
LorentzVector<Complex> eps3Perp( 0.,-1.,0.,0.);
LorentzVector<Complex> eps4Para(-1.,0.,0., 0.);
LorentzVector<Complex> eps4Perp( 0., 1.,0.,0.);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
}
else if(iopt==2) {
// rotation into the 2,3 Breit frame
Lorentz5Momentum pa = p3-p2;
Axis axis(pa.vect().unit());
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
if ( sinth > 1.e-9 )
rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
rot.rotateX(Constants::pi);
rot.boostZ( pa.e()/pa.vect().mag());
Lorentz5Momentum ptemp=rot*p2;
Boost trans = -1./ptemp.e()*ptemp.vect();
trans.setZ(0.);
rot.boost(trans);
LorentzVector<Complex> eps3Para( 1., 0.,0.,0.);
LorentzVector<Complex> eps3Perp( 0.,-1.,0.,0.);
LorentzVector<Complex> eps4Para(-1.,0.,0., 0.);
LorentzVector<Complex> eps4Perp( 0., 1.,0.,0.);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
rot = rot.invert();
for(unsigned int ix=0;ix<2;++ix) {
eps3[ix] *=rot;
eps4[ix] *=rot;
}
}
else if(iopt==3) {
// rotation into the 1,4 Breit frame
Lorentz5Momentum pa = p4-p1;
Axis axis(pa.vect().unit());
LorentzRotation rot;
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
if ( sinth > 1.e-9 )
rot.setRotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
rot.rotateX(Constants::pi);
rot.boostZ( pa.e()/pa.vect().mag());
Lorentz5Momentum ptemp=rot*p1;
Boost trans = -1./ptemp.e()*ptemp.vect();
trans.setZ(0.);
rot.boost(trans);
LorentzVector<Complex> eps3Para( 1., 0.,0.,0.);
LorentzVector<Complex> eps3Perp( 0.,-1.,0.,0.);
LorentzVector<Complex> eps4Para(-1.,0.,0., 0.);
LorentzVector<Complex> eps4Perp( 0., 1.,0.,0.);
eps3.push_back(sqrt(0.5)*(eps3Para+I*eps3Perp));
eps3.push_back(sqrt(0.5)*(eps3Para-I*eps3Perp));
eps4.push_back(sqrt(0.5)*(eps4Para+I*eps4Perp));
eps4.push_back(sqrt(0.5)*(eps4Para-I*eps4Perp));
rot = rot.invert();
for(unsigned int ix=0;ix<2;++ix) {
eps3[ix] *=rot;
eps4[ix] *=rot;
}
}
else
assert(false);
}
}
double ElectroWeakReweighter::reweightqqbargg() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
tcPDPtr q = subProcess()->incoming().first ->dataPtr();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr qbar = subProcess()->incoming().second->dataPtr();
if(subProcess()->incoming().first->id()<0) {
swap(p1,p2 );
swap(q ,qbar);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
tcPDPtr g = subProcess()->outgoing()[1]->dataPtr();
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(q->id()!=5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,0);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,0);
}
// quark right singlet
if(abs(subProcess()->incoming().first->id())%2==0) {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,0);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,0);
}
SpinorWaveFunction qw(p1,q ,incoming);
SpinorBarWaveFunction qbarw(p2,qbar,incoming);
vector<LorentzVector<Complex> > eps3,eps4;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps3,eps4,0);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (0);
qbarw.reset(1);
}
else {
qw.reset (1);
qbarw.reset(0);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps3[i1].dot(p1);
for(unsigned int i2=0;i2<2;++i2) {
// g1w.reset(2*i1);
// g2w.reset(2*i2);
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps3[i1].dot(eps4[i2]);
complex<Energy> d42 = eps4[i2].dot(p2);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps3[i1])
.slash(p4-p2).vectorCurrent(qbarw.dimensionedWave()).dot(eps4[i2]);
// M4 in paper
M(2) = current.dot(eps4[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps3[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p4);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3),Ctest(3);
// Ctest(0) = 1./6.*( MEU+MET);
// Ctest(1) = 0.5*( MEU+MET);
// Ctest(2) = 0.5*(MEU+MES-MET+MES);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && q->id()%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
boost::numeric::ublas::matrix<complex<InvEnergy2> >
ElectroWeakReweighter::evaluateRunning(EWProcess::Process process, Energy2 s,
Energy2 t, Energy2 u, bool born,
unsigned int iswap) const {
using namespace boost::numeric::ublas;
bool SU3save = coupling()->SU3();
bool EWsave = coupling()-> EW();
Energy highScale = sqrt(s);
Energy ewScale = coupling()->mZ();
Energy lowScale = ewScale;
// result for all EW and QCD SCET contributions:
// MATCHING CONTRIBUTIONS
// high energy matching
matrix<complex<InvEnergy2> > highMatch_val;
if(iswap==0)
highMatch_val = HighEnergyMatching::highEnergyMatching(highScale,s,t,u,process,!born,false);
else if(iswap==1)
highMatch_val = HighEnergyMatching::highEnergyMatching(highScale,t,s,u,process,!born,false);
else if(iswap==2)
highMatch_val = HighEnergyMatching::highEnergyMatching(highScale,u,t,s,process,!born,false);
else
assert(false);
// low energy matching
matrix<Complex>
ewMatch_val = ElectroWeakMatching::electroWeakMatching(ewScale,s,t,u,process,!born,iswap);
matrix<Complex> collinearEWMatch_val =
collinearSudakov_->electroWeakMatching(ewScale,s,process,!born);
// EVOLUTION
matrix<Complex> highRunning_val,lowRunning_val,
collinearHighRunning_val,collinearLowRunning_val;
// born process
if(born) {
highRunning_val = identity_matrix<Complex>(softSudakov_->numberGauge(process));
lowRunning_val = identity_matrix<Complex>(softSudakov_->numberBrokenGauge(process));
collinearHighRunning_val = identity_matrix<Complex>(softSudakov_->numberGauge(process));
collinearLowRunning_val = identity_matrix<Complex>(softSudakov_->numberBrokenGauge(process));
}
// EW corrected
else {
coupling()->SU3(false);
coupling()-> EW( true);
highRunning_val = softSudakov_->highEnergyRunning(highScale, ewScale,s,t,u,process,iswap);
lowRunning_val = softSudakov_->lowEnergyRunning ( ewScale,lowScale,s,t,u,process,iswap);
collinearHighRunning_val = collinearSudakov_->highEnergyRunning(highScale,ewScale,s,process,false);
collinearLowRunning_val = collinearSudakov_->lowEnergyRunning(ewScale,lowScale,s,process);
};
matrix<Complex> lowMatchTemp_val =
zero_matrix<Complex>(ewMatch_val.size1(),ewMatch_val.size2());
for (unsigned int ii=0; ii<ewMatch_val.size1(); ++ii) {
for (unsigned int jj=0; jj<ewMatch_val.size2(); ++jj) {
lowMatchTemp_val(ii,jj) = collinearEWMatch_val(ii,jj)*ewMatch_val(ii,jj);
}
}
// perform all the multiplications
matrix<Complex> temp(highRunning_val.size1(),collinearHighRunning_val.size2());
axpy_prod(highRunning_val,collinearHighRunning_val,temp);
matrix<Complex> temp2(collinearLowRunning_val.size1(),lowRunning_val.size2());
axpy_prod(collinearLowRunning_val,lowRunning_val,temp2);
matrix<Complex> temp3(temp2.size1(),lowMatchTemp_val.size2());
axpy_prod(temp2,lowMatchTemp_val,temp3);
temp2.resize(temp3.size1(),temp.size2());
axpy_prod(temp3,temp,temp2);
matrix<complex<InvEnergy2> > result(temp2.size1(),highMatch_val.size2());
axpy_prod_local(temp2,highMatch_val,result);
// reset the couplings
coupling()->SU3(SU3save);
coupling()-> EW( EWsave);
// return the answer
return result;
}
double ElectroWeakReweighter::reweightggqqbar() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
tcPDPtr qbar = subProcess()->outgoing()[0]->dataPtr();
tcPDPtr q = subProcess()->outgoing()[1]->dataPtr();
if(q->id()<0) {
swap(p3,p4 );
swap(q ,qbar);
}
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonic rest frame and rescale momenta of outgoing
// so zero mass
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
p3.setMass(ZERO);
p3.rescaleRho();
p4.setMass(ZERO);
p4.rescaleRho();
// LO and EW matrix element coefficents
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(q->id()<5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,0);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,0);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,0);
}
// quark right singlet
if(q->id()==0) {
if(q->id()==6) {
bornRRGGweights = evaluateRunning(EWProcess::tRtRGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::tRtRGG,s,t,u,false,0);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,0);
}
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,0);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,0);
}
SpinorWaveFunction qw(p4,qbar,incoming);
SpinorBarWaveFunction qbarw(p3,q ,incoming);
vector<LorentzVector<Complex> > eps1,eps2;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps1,eps2,1);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
// helicities of outgoing quarks
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (0);
qbarw.reset(1);
}
else {
qw.reset (1);
qbarw.reset(0);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps1[i1].dot(p3);
for(unsigned int i2=0;i2<2;++i2) {
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps1[i1].dot(eps2[i2]);
complex<Energy> d42 = eps2[i2].dot(p4);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps1[i1])
.slash(p2-p4).vectorCurrent(qbarw.dimensionedWave()).dot(eps2[i2]);
// M4 in paper
M(2) = current.dot(eps2[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps1[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p2);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && q->id()%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
double ElectroWeakReweighter::reweightqgqg() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr q;
if(subProcess()->incoming().first->id()!=ParticleID::g) {
q = subProcess()->incoming().first ->dataPtr();
}
else {
q = subProcess()->incoming().second->dataPtr();
swap(p1,p2);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
if(subProcess()->outgoing()[0]->id()!=ParticleID::g)
swap(p3,p4);
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonic rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(q->id()!=5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,1);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,1);
}
// quark right singlet
if(abs(q->id())%2==0) {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,1);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,1);
}
SpinorWaveFunction qw(p1,q,incoming);
SpinorBarWaveFunction qbarw(p4,q,outgoing);
vector<LorentzVector<Complex> > eps2,eps3;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps2,eps3,2);
// compute the matrix elements
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
testME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (0);
qbarw.reset(0);
}
else {
qw.reset (1);
qbarw.reset(1);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps3[i1].dot(p1);
for(unsigned int i2=0;i2<2;++i2) {
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps3[i1].dot(eps2[i2]);
complex<Energy> d42 = eps2[i2].dot(p4);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps3[i1])
.slash(p2-p4).vectorCurrent(qbarw.dimensionedWave()).dot(eps2[i2]);
// M4 in paper
M(2) = current.dot(eps2[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps3[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p2);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && q->id()%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
double ElectroWeakReweighter::reweightqbargqbarg() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr qbar;
if(subProcess()->incoming().first->id()==ParticleID::g) {
qbar = subProcess()->incoming().second->dataPtr();
}
else {
qbar = subProcess()->incoming().first ->dataPtr();
swap(p1,p2);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
if(subProcess()->outgoing()[0]->id()==ParticleID::g)
swap(p3,p4);
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornQQGGweights,bornRRGGweights,EWQQGGweights,EWRRGGweights;
// quark left doublet
if(qbar->id()!=-5) {
bornQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QQGG,s,t,u,false,1);
}
else {
bornQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,true ,1);
EWQQGGweights = evaluateRunning(EWProcess::QtQtGG,s,t,u,false,1);
}
// quark right singlet
if(abs(qbar->id())%2==0) {
bornRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::UUGG,s,t,u,false,1);
}
else {
bornRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,true ,1);
EWRRGGweights = evaluateRunning(EWProcess::DDGG,s,t,u,false,1);
}
SpinorWaveFunction qw(p3,qbar,outgoing);
SpinorBarWaveFunction qbarw(p2,qbar,incoming);
vector<LorentzVector<Complex> > eps1,eps4;
SackGluonPolarizations(p1,p2,p3,p4,s,t,u,ZERO,eps1,eps4,3);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(3,3),
EWME = boost::numeric::ublas::zero_matrix<Complex>(3,3);
for(unsigned int iq=0;iq<2;++iq) {
if(iq==0) {
qw.reset (1);
qbarw.reset(1);
}
else {
qw.reset (0);
qbarw.reset(0);
}
LorentzVector<complex<Energy> > current = iq==0 ?
qw.dimensionedWave(). leftCurrent(qbarw.dimensionedWave()) :
qw.dimensionedWave().rightCurrent(qbarw.dimensionedWave());
for(unsigned int i1=0;i1<2;++i1) {
complex<Energy> d31 = eps1[i1].dot(p3);
for(unsigned int i2=0;i2<2;++i2) {
boost::numeric::ublas::vector<complex<Energy2> > M(5);
Complex d34 = eps1[i1].dot(eps4[i2]);
complex<Energy> d42 = eps4[i2].dot(p2);
// M0 in paper
M(0) = qw.dimensionedWave().slash(eps1[i1])
.slash(p4-p2).vectorCurrent(qbarw.dimensionedWave()).dot(eps4[i2]);
// M4 in paper
M(2) = current.dot(eps4[i2])*d31;
// M5 in paper
M(3) = -current.dot(eps1[i1])*d42;
// M1 in paper (missing factor)
M(1) = current.dot(p4);
// M6 in paper
M(4) = M(1)*d31*d42/GeV2;
// M1 final factor
M(1) *= d34;
// coefficient of different contributions
boost::numeric::ublas::vector<Complex> Cborn(3),CEW(3);
if(iq==0) {
axpy_prod_local(bornQQGGweights,M,Cborn);
axpy_prod_local(EWQQGGweights ,M,CEW );
}
else {
axpy_prod_local(bornRRGGweights,M,Cborn);
axpy_prod_local(EWRRGGweights ,M,CEW );
}
unsigned int ioff = (Cborn.size()==6 && abs(qbar->id())%2!=0) ? 3 : 0;
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
bornME(ix,iy) += Cborn(ix+ioff)*conj(Cborn(iy+ioff));
EWME (ix,iy) += CEW (ix+ioff)*conj(CEW (iy+ioff));
}
}
}
}
}
double born = 24.*real(bornME(0,0))+20./3.*real(bornME(1,1))+12.*real(bornME(2,2));
double EW = 24.*real(EWME(0,0))+20./3.*real(EWME(1,1))+12.*real(EWME(2,2));
return EW/born;
}
double ElectroWeakReweighter::reweightqqbarqqbarS() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
tcPDPtr q1 = subProcess()->incoming().first ->dataPtr();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr q1bar = subProcess()->incoming().second->dataPtr();
if(q1->id()<0) {
swap(p1,p2 );
swap(q1 ,q1bar);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
tcPDPtr q2bar = subProcess()->outgoing()[0]->dataPtr();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
tcPDPtr q2 = subProcess()->outgoing()[1]->dataPtr();
if(q2bar->id()>0) {
swap(p3,p4 );
swap(q2 ,q2bar);
}
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
p3.setMass(ZERO);
p3.rescaleRho();
p4.setMass(ZERO);
p4.rescaleRho();
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
bool ident = q1->id()==q2->id();
// LL -> LL
if((q1->id()<=4&& q2->id()<=4)|| (q1->id()==5 && q2->id()==5)) {
if(!ident) {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,0);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,0);
}
else {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,true ,0);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,false,0);
}
}
else if(q1->id()==5 || q2->id()>=5) {
bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,0);
EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,0);
}
else
assert(false);
// RR -> LL
if(q1->id()%2==0) {
if(q2->id()<5) {
bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,0);
EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,0);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,0);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,0);
}
}
else {
if(q2->id()<5) {
bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,0);
EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,0);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,0);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,0);
}
}
// LL -> RR
if(q1->id()<=4) {
if(q2->id()%2!=0) {
bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,0);
EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,0);
}
else if (q2->id()==6) {
bornLLRRWeights = evaluateRunning(EWProcess::QQtRtR,s,t,u,true ,0);
EWLLRRWeights = evaluateRunning(EWProcess::QQtRtR,s,t,u,false,0);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,0);
EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,0);
}
}
else {
if(q2->id()%2!=0) {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,0);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,0);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,0);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,0);
}
}
// RR -> RR
if(q1->id()%2==0) {
if(q2->id()==6) {
bornRRRRWeights = evaluateRunning(EWProcess::tRtRUU,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::tRtRUU,s,t,u,false,0);
}
else if(q2->id()%2==0) {
if(ident) {
bornRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,false,0);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,0);
}
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,0);
}
}
else {
if(q2->id()==6) {
bornRRRRWeights = evaluateRunning(EWProcess::tRtRDD,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::tRtRDD,s,t,u,false,0);
}
else if(q2->id()%2==0) {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,0);
}
else {
if(ident) {
bornRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,false,0);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,0);
EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,0);
}
}
}
// extra terms for identical particles
boost::numeric::ublas::matrix<complex<InvEnergy2> >
borntChannelWeights,EWtChannelWeights;
if(ident) {
if(q1->id()%2==0) {
borntChannelWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,1);
EWtChannelWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,1);
}
else if(q1->id()==5) {
borntChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,1);
EWtChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,1);
}
else {
borntChannelWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,1);
EWtChannelWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,1);
}
}
SpinorWaveFunction q1w(p1,q1 ,incoming);
SpinorBarWaveFunction q1barw(p2,q1bar,incoming);
SpinorWaveFunction q2barw(p3,q2bar,outgoing);
SpinorBarWaveFunction q2w(p4,q2 ,outgoing);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
for(unsigned int iq1=0;iq1<2;++iq1) {
if(iq1==0) {
q1w.reset (0);
q1barw.reset(1);
}
else {
q1w.reset (1);
q1barw.reset(0);
}
LorentzVector<complex<Energy> > current1 =
q1w.dimensionedWave().vectorCurrent(q1barw.dimensionedWave());
for(unsigned int iq2=0;iq2<2;++iq2) {
if(iq2==0) {
q2w.reset (0);
q2barw.reset(1);
}
else {
q2w.reset (1);
q2barw.reset(0);
}
LorentzVector<complex<Energy> > current2 =
q2barw.dimensionedWave().vectorCurrent(q2w.dimensionedWave());
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
// amplitudes
if(iq1==0) {
// LL
if(iq2==0) {
unsigned int ioff;
if(q1->id()%2==0) {
ioff = q2->id()%2==0 ? 0 : 2;
}
else {
ioff = q2->id()%2==0 ? 1 : 3;
}
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
}
}
// LR
else {
unsigned int ioff = q1->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
}
}
}
else {
if(iq2==0) {
unsigned int ioff=q2->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
}
}
else {
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRRRWeights(ix,0);
CEW [ix] = amp* EWRRRRWeights(ix,0);
}
}
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// extra t-channel pieces if identical flavours
if(ident) {
for(unsigned int iq1=0;iq1<2;++iq1) {
q1w.reset(iq1);
q2w.reset(iq1);
LorentzVector<complex<Energy> > current1 =
q1w.dimensionedWave().vectorCurrent(q2w.dimensionedWave());
q1barw.reset(iq1);
q2barw.reset(iq1);
LorentzVector<complex<Energy> > current2 =
q2barw.dimensionedWave().vectorCurrent(q1barw.dimensionedWave());
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
unsigned int ioff = q1->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*borntChannelWeights(2*ix+ioff,0);
CEW [ix] = amp* EWtChannelWeights(2*ix+ioff,0);
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// colour factors
double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
return EW/born;
}
double ElectroWeakReweighter::reweightqqbarqqbarT() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
tcPDPtr q1 = subProcess()->incoming().first ->dataPtr();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr q1bar = subProcess()->incoming().second->dataPtr();
if(q1->id()<0) {
swap(p1,p2 );
swap(q1 ,q1bar);
}
Lorentz5Momentum p3 = subProcess()->outgoing()[0]->momentum();
tcPDPtr q2bar = subProcess()->outgoing()[0]->dataPtr();
Lorentz5Momentum p4 = subProcess()->outgoing()[1]->momentum();
tcPDPtr q2 = subProcess()->outgoing()[1]->dataPtr();
if(q2bar->id()>0) {
swap(p3,p4 );
swap(q2 ,q2bar);
}
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
p3.setMass(ZERO);
p3.rescaleRho();
p4.setMass(ZERO);
p4.rescaleRho();
assert(q1==q2 && q1bar==q2bar);
assert( q1->id() != -q1bar->id() && q2->id() != -q2bar->id() );
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
// LL
if( q1->id() == ParticleID::b ||
q1bar->id() == ParticleID::bbar ) {
bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,1);
EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,1);
}
else {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,1);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,1);
}
// RR -> LL
if(q1->id()%2==0) {
if(q1bar->id()==ParticleID::bbar) {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,1);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,1);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,1);
EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,1);
}
}
else {
if(q1bar->id()==ParticleID::bbar) {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,1);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,1);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,1);
EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,1);
}
}
// LL -> RR
if(abs(q1bar->id())%2==0) {
if(q1->id()==ParticleID::b) {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,1);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,1);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,1);
EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,1);
}
}
else {
if(q1->id()==ParticleID::b) {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,1);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,1);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,1);
EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,1);
}
}
// RR -> RR
if(q1->id()%2==0) {
if(abs(q1bar->id())%2==0) {
bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,1);
EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,1);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,1);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,1);
}
}
else {
if(abs(q1bar->id())%2==0) {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,1);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,1);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,1);
EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,1);
}
}
// calculate the spinors
SpinorWaveFunction q1w(p1,q1 ,incoming);
SpinorBarWaveFunction q1barw(p2,q1bar,incoming);
SpinorWaveFunction q2barw(p3,q2bar,outgoing);
SpinorBarWaveFunction q2w(p4,q2 ,outgoing);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
for(unsigned int iq1=0;iq1<2;++iq1) {
q1w.reset(iq1);
q2w.reset(iq1);
LorentzVector<complex<Energy> > current1 =
q1w.dimensionedWave().vectorCurrent(q2w.dimensionedWave());
for(unsigned int iq2=0;iq2<2;++iq2) {
q1barw.reset(iq2);
q2barw.reset(iq2);
LorentzVector<complex<Energy> > current2 =
q2barw.dimensionedWave().vectorCurrent(q1barw.dimensionedWave());
// calculate the amplitude
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
if(iq1==0) {
// LL RR
if(iq2==0) {
unsigned int ioff = q1->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
}
}
// LL LL
else {
unsigned int ioff;
if(q1->id()%2==0) {
ioff = abs(q1bar->id())%2==0 ? 0 : 2;
}
else {
ioff = abs(q1bar->id())%2==0 ? 1 : 3;
}
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
}
}
}
else {
// RR RR
if(iq2==0) {
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRRRWeights(ix,0);
CEW [ix] = amp* EWRRRRWeights(ix,0);
}
}
// RR LL
else {
unsigned int ioff=abs(q1bar->id())%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
}
}
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// colour factors
double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
return EW/born;
}
double ElectroWeakReweighter::reweightqqqq() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
tcPDPtr q1 = subProcess()->incoming().first ->dataPtr();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr q2 = subProcess()->incoming().second->dataPtr();
Lorentz5Momentum p3 = subProcess()->outgoing()[0] ->momentum();
tcPDPtr q3 = subProcess()->outgoing()[0] ->dataPtr();
Lorentz5Momentum p4 = subProcess()->outgoing()[1] ->momentum();
tcPDPtr q4 = subProcess()->outgoing()[1] ->dataPtr();
if(q1->id()!=q3->id()) {
swap(q3,q4);
swap(p3,p4);
}
assert(q1->id()==q3->id());
assert(q2->id()==q4->id());
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonci rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
p3.setMass(ZERO);
p3.rescaleRho();
p4.setMass(ZERO);
p4.rescaleRho();
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
bool ident = q1->id()==q2->id();
// LL -> LL
if((q1->id()<=4&& q2->id()<=4)|| (q1->id()==5 && q2->id()==5)) {
if(!ident) {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,2);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,2);
}
else {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,true ,2);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,false,2);
}
}
else if(q1->id()==5 || q2->id()==5) {
bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,2);
EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,2);
}
else
assert(false);
// RR -> LL
if(q1->id()%2==0) {
if(q2->id()<5) {
bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
}
}
else {
if(q2->id()<5) {
bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
}
}
// LL -> RR
if(q1->id()<=4) {
if(q2->id()%2!=0) {
bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
}
}
else {
if(q2->id()%2!=0) {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
}
}
// RR -> RR
if(q1->id()%2==0) {
if(q2->id()%2==0) {
if(ident) {
bornRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,false,2);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,2);
}
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
}
}
else {
if(q2->id()%2==0) {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
}
else {
if(ident) {
bornRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,false,2);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,2);
}
}
}
// extra terms for identical particles
boost::numeric::ublas::matrix<complex<InvEnergy2> >
borntChannelWeights,EWtChannelWeights;
if(ident) {
if(q1->id()%2==0) {
borntChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,true ,2);
EWtChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,false,2);
}
else if(q1->id()==5) {
borntChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,true ,2);
EWtChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,false,2);
}
else {
borntChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,true ,2);
EWtChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,false,2);
}
}
SpinorWaveFunction q1w(p1,q1,incoming);
SpinorWaveFunction q2w(p2,q2,incoming);
SpinorBarWaveFunction q3w(p3,q3,outgoing);
SpinorBarWaveFunction q4w(p4,q4,outgoing);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
for(unsigned int iq1=0;iq1<2;++iq1) {
q1w.reset(iq1);
q3w.reset(iq1);
LorentzVector<complex<Energy> > current1 =
q1w.dimensionedWave().vectorCurrent(q3w.dimensionedWave());
for(unsigned int iq2=0;iq2<2;++iq2) {
q2w.reset(iq2);
q4w.reset(iq2);
LorentzVector<complex<Energy> > current2 =
q2w.dimensionedWave().vectorCurrent(q4w.dimensionedWave());
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
// amplitudes
if(iq1==0) {
// LL
if(iq2==0) {
unsigned int ioff;
if(q1->id()%2==0) {
ioff = q2->id()%2==0 ? 0 : 2;
}
else {
ioff = q2->id()%2==0 ? 1 : 3;
}
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
}
}
// LR
else {
unsigned int ioff = q1->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
}
}
}
else {
if(iq2==0) {
unsigned int ioff=q2->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
}
}
else {
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRRRWeights(ix,0);
CEW [ix] = amp* EWRRRRWeights(ix,0);
}
}
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// extra u-channel pieces if identical flavours
if(ident) {
for(unsigned int iq1=0;iq1<2;++iq1) {
q1w.reset(iq1);
q4w.reset(iq1);
LorentzVector<complex<Energy> > current1 =
q1w.dimensionedWave().vectorCurrent(q4w.dimensionedWave());
if(iq1==0) {
q2w.reset(1);
q3w.reset(1);
}
else {
q2w.reset(0);
q3w.reset(0);
}
LorentzVector<complex<Energy> > current2 =
q2w.dimensionedWave().vectorCurrent(q3w.dimensionedWave());
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
unsigned int ioff = q1->id()%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*borntChannelWeights(2*ix+ioff,0);
CEW [ix] = amp* EWtChannelWeights(2*ix+ioff,0);
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// colour factors
double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
return EW/born;
}
double ElectroWeakReweighter::reweightqbarqbarqbarqbar() const {
// momenta and invariants
Lorentz5Momentum p1 = subProcess()->incoming().first ->momentum();
tcPDPtr qbar1 = subProcess()->incoming().first ->dataPtr();
Lorentz5Momentum p2 = subProcess()->incoming().second->momentum();
tcPDPtr qbar2 = subProcess()->incoming().second->dataPtr();
Lorentz5Momentum p3 = subProcess()->outgoing()[0] ->momentum();
tcPDPtr qbar3 = subProcess()->outgoing()[0] ->dataPtr();
Lorentz5Momentum p4 = subProcess()->outgoing()[1] ->momentum();
tcPDPtr qbar4 = subProcess()->outgoing()[1] ->dataPtr();
if(qbar1->id()!=qbar3->id()) {
swap(qbar3,qbar4);
swap(p3,p4);
}
assert(qbar1->id()==qbar3->id());
assert(qbar2->id()==qbar4->id());
Energy2 s = (p1+p2).m2();
Energy2 t = (p1-p4).m2();
Energy2 u = (p1-p3).m2();
// boost to partonic rest frame
Lorentz5Momentum psum=p1+p2;
LorentzRotation boost(-psum.boostVector());
p1 *= boost;
p2 *= boost;
p3 *= boost;
p4 *= boost;
p3.setMass(ZERO);
p3.rescaleRho();
p4.setMass(ZERO);
p4.rescaleRho();
// LO and EW corrected matrix element coefficients
boost::numeric::ublas::matrix<complex<InvEnergy2> >
bornLLLLWeights,bornLLRRWeights,bornRRLLWeights,bornRRRRWeights,
EWLLLLWeights,EWLLRRWeights,EWRRLLWeights,EWRRRRWeights;
bool ident = qbar1->id()==qbar2->id();
// LL -> LL
if((abs(qbar1->id())<=4 && abs(qbar2->id())<=4) ||
(abs(qbar1->id())==5 && abs(qbar2->id())==5)) {
if(!ident) {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,true ,2);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQ,s,t,u,false,2);
}
else {
bornLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,true ,2);
EWLLLLWeights = evaluateRunning(EWProcess::QQQQiden,s,t,u,false,2);
}
}
else if(abs(qbar1->id())==5 || abs(qbar2->id())==5) {
bornLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,true ,2);
EWLLLLWeights = evaluateRunning(EWProcess::QtQtQQ,s,t,u,false,2);
}
else
assert(false);
// RR -> LL
if(abs(qbar1->id())%2==0) {
if(abs(qbar2->id())<5) {
bornRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
}
}
else {
if(abs(qbar2->id())<5) {
bornRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
}
else {
bornRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
EWRRLLWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
}
}
// LL -> RR
if(abs(qbar1->id())<=4) {
if(abs(qbar2->id())%2!=0) {
bornLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QQDD,s,t,u,false,2);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QQUU,s,t,u,false,2);
}
}
else {
if(abs(qbar2->id())%2!=0) {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtDD,s,t,u,false,2);
}
else {
bornLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,true ,2);
EWLLRRWeights = evaluateRunning(EWProcess::QtQtUU,s,t,u,false,2);
}
}
// RR -> RR
if(abs(qbar1->id())%2==0) {
if(abs(qbar2->id())%2==0) {
if(ident) {
bornRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUUUiden,s,t,u,false,2);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUUU,s,t,u,false,2);
}
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
}
}
else {
if(abs(qbar2->id())%2==0) {
bornRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::UUDD,s,t,u,false,2);
}
else {
if(ident) {
bornRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::DDDDiden,s,t,u,false,2);
}
else {
bornRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,true ,2);
EWRRRRWeights = evaluateRunning(EWProcess::DDDD,s,t,u,false,2);
}
}
}
// extra terms for identical particles
boost::numeric::ublas::matrix<complex<InvEnergy2> >
borntChannelWeights,EWtChannelWeights;
if(ident) {
if(abs(qbar1->id())%2==0) {
borntChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,true ,2);
EWtChannelWeights = evaluateRunning(EWProcess::QQUU,s,u,t,false,2);
}
else if(abs(qbar1->id())==5) {
borntChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,true ,2);
EWtChannelWeights = evaluateRunning(EWProcess::QtQtDD,s,u,t,false,2);
}
else {
borntChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,true ,2);
EWtChannelWeights = evaluateRunning(EWProcess::QQDD,s,u,t,false,2);
}
}
SpinorBarWaveFunction qbar1w(p1,qbar1,incoming);
SpinorBarWaveFunction qbar2w(p2,qbar2,incoming);
SpinorWaveFunction qbar3w(p3,qbar3,outgoing);
SpinorWaveFunction qbar4w(p4,qbar4,outgoing);
boost::numeric::ublas::matrix<Complex>
bornME = boost::numeric::ublas::zero_matrix<Complex>(2,2),
EWME = boost::numeric::ublas::zero_matrix<Complex>(2,2);
for(unsigned int iq1=0;iq1<2;++iq1) {
qbar1w.reset(iq1);
qbar3w.reset(iq1);
LorentzVector<complex<Energy> > current1 =
qbar3w.dimensionedWave().vectorCurrent(qbar1w.dimensionedWave());
for(unsigned int iq2=0;iq2<2;++iq2) {
qbar2w.reset(iq2);
qbar4w.reset(iq2);
LorentzVector<complex<Energy> > current2 =
qbar4w.dimensionedWave().vectorCurrent(qbar2w.dimensionedWave());
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
// amplitudes
if(iq1==1) {
// LL
if(iq2==1) {
unsigned int ioff;
if(abs(qbar1->id())%2==0) {
ioff = abs(qbar2->id())%2==0 ? 0 : 2;
}
else {
ioff = abs(qbar2->id())%2==0 ? 1 : 3;
}
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLLLWeights(6*ix+ioff,0);
CEW [ix] = amp* EWLLLLWeights(6*ix+ioff,0);
}
}
// LR
else {
unsigned int ioff = abs(qbar1->id())%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornLLRRWeights(2*ix+ioff,0);
CEW [ix] = amp* EWLLRRWeights(2*ix+ioff,0);
}
}
}
else {
if(iq2==1) {
unsigned int ioff=abs(qbar2->id())%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRLLWeights(2*ix+ioff,0);
CEW [ix] = amp* EWRRLLWeights(2*ix+ioff,0);
}
}
else {
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*bornRRRRWeights(ix,0);
CEW [ix] = amp* EWRRRRWeights(ix,0);
}
}
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// extra u-channel pieces if identical flavours
if(ident) {
for(unsigned int iq1=0;iq1<2;++iq1) {
qbar1w.reset(iq1);
qbar4w.reset(iq1);
LorentzVector<complex<Energy> > current1 =
qbar4w.dimensionedWave().vectorCurrent(qbar1w.dimensionedWave());
if(iq1==0) {
qbar2w.reset(1);
qbar3w.reset(1);
}
else {
qbar2w.reset(0);
qbar3w.reset(0);
}
LorentzVector<complex<Energy> > current2 =
qbar3w.dimensionedWave().vectorCurrent(qbar2w.dimensionedWave());
complex<Energy2> amp = current1.dot(current2);
vector<Complex> Cborn(2),CEW(2);
unsigned int ioff = abs(qbar1->id())%2==0 ? 0 : 1;
for(unsigned int ix=0;ix<2;++ix) {
Cborn[ix] = amp*borntChannelWeights(2*ix+ioff,0);
CEW [ix] = amp* EWtChannelWeights(2*ix+ioff,0);
}
// square
for(unsigned int ix=0;ix<2;++ix) {
for(unsigned int iy=0;iy<2;++iy) {
bornME(ix,iy) += Cborn[ix]*conj(Cborn[iy]);
EWME (ix,iy) += CEW [ix]*conj(CEW [iy]);
}
}
}
}
// colour factors
double born = 2.*real(bornME(0,0))+9.*real(bornME(1,1));
double EW = 2.*real( EWME(0,0))+9.*real( EWME(1,1));
return EW/born;
}
diff --git a/MatrixElement/EW/ElectroWeakReweighter.h b/MatrixElement/EW/ElectroWeakReweighter.h
--- a/MatrixElement/EW/ElectroWeakReweighter.h
+++ b/MatrixElement/EW/ElectroWeakReweighter.h
@@ -1,195 +1,212 @@
// -*- C++ -*-
#ifndef Herwig_ElectroWeakReweighter_H
#define Herwig_ElectroWeakReweighter_H
//
// This is the declaration of the ElectroWeakReweighter class.
//
#include "ThePEG/MatrixElement/ReweightBase.h"
#include "EWCouplings.h"
#include "CollinearSudakov.h"
#include "SoftSudakov.h"
namespace Herwig {
using namespace ThePEG;
/**
* The ElectroWeakReweighter class.
*
* @see \ref ElectroWeakReweighterInterfaces "The interfaces"
* defined for ElectroWeakReweighter.
*/
class ElectroWeakReweighter: public ReweightBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
ElectroWeakReweighter();
/**
* The destructor.
*/
virtual ~ElectroWeakReweighter();
//@}
public:
/**
* Return the weight for the kinematical configuation provided by
* the assigned XComb object (in the LastXCombInfo base class).
*/
virtual double weight() const;
/**
*
*/
static tEWCouplingsPtr coupling() {
assert(staticEWCouplings_);
return staticEWCouplings_;
}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/**
* Functions to reweight specific processes
*/
//@{
/**
* Reweight \f$g g\to q\bar{q}\f$
*/
double reweightggqqbar() const;
/**
* Reweight \f$q\bar{q}\to g g\f$
*/
double reweightqqbargg() const;
/**
* Reweight \f$q g\to qg\f$
*/
double reweightqgqg() const;
/**
* Reweight \f$q g\to qg\f$
*/
double reweightqbargqbarg() const;
/**
* Reweight \f$q\bar{q}\to q'\bar{q'}\f$ (s-channel)
*/
double reweightqqbarqqbarS() const;
/**
* Reweight \f$q\bar{q}\to q'\bar{q'}\f$ (t-channel)
*/
double reweightqqbarqqbarT() const;
/**
* Reweight \f$qq \to qq\f$
*/
double reweightqqqq() const;
/**
* Reweight \f$\bar{q}\bar{q} \to \bar{q}\bar{q}\f$
*/
double reweightqbarqbarqbarqbar() const;
//@}
protected:
/**
* Check the evolution for a fixed s,t,u
*/
void testEvolution(Energy2 s,Energy2 t, Energy2 u) const;
/**
* Evalaute the running
*/
boost::numeric::ublas::matrix<complex<InvEnergy2> >
evaluateRunning(EWProcess::Process process, Energy2 s,
Energy2 t, Energy2 u, bool born,
unsigned int iswap) const;
protected:
+ /** @name Standard Interfaced functions. */
+ //@{
+ /**
+ * Initialize this object after the setup phase before saving an
+ * EventGenerator to disk.
+ * @throws InitException if object could not be initialized properly.
+ */
+ virtual void doinit();
+ //@}
+
+protected:
+
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
ElectroWeakReweighter & operator=(const ElectroWeakReweighter &);
private:
/**
* The Electroweak Couplings
*/
EWCouplingsPtr EWCouplings_;
/**
* The Collinear Sudakov
*/
CollinearSudakovPtr collinearSudakov_;
/**
* The Soft Sudakov
*/
SoftSudakovPtr softSudakov_;
/**
* The couplings to allow global access
*/
static tEWCouplingsPtr staticEWCouplings_;
+ /**
+ * Whether or not to output testing information
+ */
+ bool testing_;
+
};
}
#endif /* Herwig_ElectroWeakReweighter_H */

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 4:56 PM (14 h, 48 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023543
Default Alt Text
(77 KB)

Event Timeline