Page MenuHomeHEPForge

No OneTemporary

diff --git a/Hadronization/ClusterFissioner.cc b/Hadronization/ClusterFissioner.cc
--- a/Hadronization/ClusterFissioner.cc
+++ b/Hadronization/ClusterFissioner.cc
@@ -1,1677 +1,1677 @@
// -*- C++ -*-
//
// ClusterFissioner.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2019 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// Thisk is the implementation of the non-inlined, non-templated member
// functions of the ClusterFissioner class.
//
#include "ClusterFissioner.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Interface/Parameter.h>
#include <ThePEG/Interface/Switch.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/PDT/EnumParticles.h>
#include "Herwig/Utilities/Kinematics.h"
#include "Cluster.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include <ThePEG/Utilities/DescribeClass.h>
#include "ThePEG/Interface/ParMap.h"
#include "Herwig/Utilities/AlphaS.h"
// #include <boost/numeric/ublas/matrix.hpp>
// #include <boost/numeric/ublas/io.hpp>
// #include <boost/numeric/ublas/lu.hpp>
// #include <cassert>
// #include <vector>
using namespace Herwig;
DescribeClass<ClusterFissioner,Interfaced>
describeClusterFissioner("Herwig::ClusterFissioner","Herwig.so");
ClusterFissioner::ClusterFissioner() :
_clMaxLight(3.35*GeV),
_clMaxDiquark(3.35*GeV),
_clMaxExotic(3.35*GeV),
_clPowLight(2.0),
_clPowDiquark(2.0),
_clPowExotic(2.0),
_pSplitLight(1.0),
_pSplitExotic(1.0),
_phaseSpaceWeights(0),
_dim(4),
_fissionCluster(0),
_kinematicThresholdChoice(0),
_pwtDIquark(0.0),
_diquarkClusterFission(0),
_btClM(1.0*GeV),
_iopRem(1),
_kappa(1.0e15*GeV/meter),
_enhanceSProb(0),
_m0Fission(2.*GeV),
_massMeasure(0),
_probPowFactor(4.0),
_probShift(0.0),
_kinThresholdShift(1.0*sqr(GeV)),
_strictDiquarkKinematics(0),
_covariantBoost(false),
_hadronizingStrangeDiquarks(2),
_writeOut(0)
{
}
ClusterFissioner::~ClusterFissioner(){
}
IBPtr ClusterFissioner::clone() const {
return new_ptr(*this);
}
IBPtr ClusterFissioner::fullclone() const {
return new_ptr(*this);
}
void ClusterFissioner::persistentOutput(PersistentOStream & os) const {
os << ounit(_clMaxLight,GeV) << ounit(_clMaxHeavy,GeV) << ounit(_clMaxDiquark,GeV) << ounit(_clMaxExotic,GeV)
<< _clPowLight << _clPowHeavy << _clPowDiquark << _clPowExotic
<< _pSplitLight << _pSplitHeavy << _pSplitExotic
<< _fissionCluster << _fissionPwt
<< _pwtDIquark
<< _diquarkClusterFission
<< ounit(_btClM,GeV)
<< _iopRem << ounit(_kappa, GeV/meter)
<< _enhanceSProb << ounit(_m0Fission,GeV) << _massMeasure
<< _dim << _phaseSpaceWeights
<< _hadronSpectrum << _kinematicThresholdChoice
<< _probPowFactor << _probShift << ounit(_kinThresholdShift,sqr(GeV))
<< _strictDiquarkKinematics
<< _covariantBoost
<< _hadronizingStrangeDiquarks
<< _writeOut
;
}
void ClusterFissioner::persistentInput(PersistentIStream & is, int) {
is >> iunit(_clMaxLight,GeV) >> iunit(_clMaxHeavy,GeV) >> iunit(_clMaxDiquark,GeV) >> iunit(_clMaxExotic,GeV)
>> _clPowLight >> _clPowHeavy >> _clPowDiquark >> _clPowExotic
>> _pSplitLight >> _pSplitHeavy >> _pSplitExotic
>> _fissionCluster >> _fissionPwt
>> _pwtDIquark
>> _diquarkClusterFission
>> iunit(_btClM,GeV)
>> _iopRem >> iunit(_kappa, GeV/meter)
>> _enhanceSProb >> iunit(_m0Fission,GeV) >> _massMeasure
>> _dim >> _phaseSpaceWeights
>> _hadronSpectrum >> _kinematicThresholdChoice
>> _probPowFactor >> _probShift >> iunit(_kinThresholdShift,sqr(GeV))
>> _strictDiquarkKinematics
>> _covariantBoost
>> _hadronizingStrangeDiquarks
>> _writeOut
;
}
void ClusterFissioner::doinit() {
Interfaced::doinit();
if (_writeOut){
std::ofstream out("data_CluFis.dat", std::ios::out);
out.close();
}
for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
if ( _pSplitHeavy.find(id) == _pSplitHeavy.end() ||
_clPowHeavy.find(id) == _clPowHeavy.end() ||
_clMaxHeavy.find(id) == _clMaxHeavy.end() ){
std::cout << "id = "<<id << std::endl;
throw InitException() << "not all parameters have been set for heavy quark cluster fission";
}
}
// for default Pwts not needed to initialize
if (_fissionCluster==0) return;
for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
if ( _fissionPwt.find(id) == _fissionPwt.end() )
// check that all relevant weights are set
throw InitException() << "fission weights for light quarks have not been set";
}
double pwtDquark=_fissionPwt.find(ParticleID::d)->second;
double pwtUquark=_fissionPwt.find(ParticleID::u)->second;
double pwtSquark=_fissionPwt.find(ParticleID::s)->second;
// TODO better solution for this magic number alternative
_fissionPwt[1103] = _pwtDIquark * pwtDquark * pwtDquark;
_fissionPwt[2101] = 0.5 * _pwtDIquark * pwtUquark * pwtDquark;
_fissionPwt[2203] = _pwtDIquark * pwtUquark * pwtUquark;
if (_hadronizingStrangeDiquarks>0) {
_fissionPwt[3101] = 0.5 * _pwtDIquark * pwtSquark * pwtDquark;
_fissionPwt[3201] = 0.5 * _pwtDIquark * pwtSquark * pwtUquark;
if (_hadronizingStrangeDiquarks==2) {
_fissionPwt[3303] = _pwtDIquark* pwtSquark * pwtSquark;
}
}
}
void ClusterFissioner::Init() {
static ClassDocumentation<ClusterFissioner> documentation
("Class responsibles for chopping up the clusters");
static Reference<ClusterFissioner,HadronSpectrum> interfaceHadronSpectrum
("HadronSpectrum",
"Set the Hadron spectrum for this cluster fissioner.",
&ClusterFissioner::_hadronSpectrum, false, false, true, false);
// ClMax for light, Bottom, Charm and exotic (e.g. Susy) quarks
static Parameter<ClusterFissioner,Energy>
interfaceClMaxLight ("ClMaxLight","cluster max mass for light quarks (unit [GeV])",
&ClusterFissioner::_clMaxLight, GeV, 3.35*GeV, ZERO, 100.0*GeV,
false,false,false);
static Parameter<ClusterFissioner,Energy>
interfaceClMaxDiquark ("ClMaxDiquark","cluster max mass for light hadronizing diquarks (unit [GeV])",
&ClusterFissioner::_clMaxDiquark, GeV, 3.35*GeV, ZERO, 100.0*GeV,
false,false,false);
static ParMap<ClusterFissioner,Energy> interfaceClMaxHeavy
("ClMaxHeavy",
"ClMax for heavy quarks",
&ClusterFissioner::_clMaxHeavy, GeV, -1, 3.35*GeV, ZERO, 100.0*GeV,
false, false, Interface::upperlim);
static Parameter<ClusterFissioner,Energy>
interfaceClMaxExotic ("ClMaxExotic","cluster max mass for exotic quarks (unit [GeV])",
&ClusterFissioner::_clMaxExotic, GeV, 3.35*GeV, ZERO, 100.0*GeV,
false,false,false);
// ClPow for light, Bottom, Charm and exotic (e.g. Susy) quarks
static Parameter<ClusterFissioner,double>
interfaceClPowLight ("ClPowLight","cluster mass exponent for light quarks",
&ClusterFissioner::_clPowLight, 0, 2.0, 0.0, 10.0,false,false,false);
static ParMap<ClusterFissioner,double> interfaceClPowHeavy
("ClPowHeavy",
"ClPow for heavy quarks",
&ClusterFissioner::_clPowHeavy, -1, 1.0, 0.0, 10.0,
false, false, Interface::upperlim);
static Parameter<ClusterFissioner,double>
interfaceClPowDiquark ("ClPowDiquark","cluster mass exponent for light hadronizing diquarks",
&ClusterFissioner::_clPowDiquark, 0, 2.0, 0.0, 10.0,false,false,false);
static Parameter<ClusterFissioner,double>
interfaceClPowExotic ("ClPowExotic","cluster mass exponent for exotic quarks",
&ClusterFissioner::_clPowExotic, 0, 2.0, 0.0, 10.0,false,false,false);
// PSplit for light, Bottom, Charm and exotic (e.g. Susy) quarks
static Parameter<ClusterFissioner,double>
interfacePSplitLight ("PSplitLight","cluster mass splitting param for light quarks",
&ClusterFissioner::_pSplitLight, 0, 1.0, 0.0, 10.0,false,false,false);
static ParMap<ClusterFissioner,double> interfacePSplitHeavy
("PSplitHeavy",
"PSplit for heavy quarks",
&ClusterFissioner::_pSplitHeavy, -1, 1.0, 0.0, 10.0,
false, false, Interface::upperlim);
static Parameter<ClusterFissioner,double>
interfacePSplitExotic ("PSplitExotic","cluster mass splitting param for exotic quarks",
&ClusterFissioner::_pSplitExotic, 0, 1.0, 0.0, 10.0,false,false,false);
static Switch<ClusterFissioner,int> interfaceFission
("Fission",
"Option for different Fission options",
&ClusterFissioner::_fissionCluster, 1, false, false);
static SwitchOption interfaceFissionDefault
(interfaceFission,
"Default",
"Normal cluster fission which depends on the hadron spectrum class.",
0);
static SwitchOption interfaceFissionNew
(interfaceFission,
"New",
"Alternative cluster fission which does not depend on the hadron spectrum class",
1);
static SwitchOption interfaceFissionNewDiquarkSuppression
(interfaceFission,
"NewDiquarkSuppression",
"Alternative cluster fission which does not depend on the hadron spectrum class"
" and includes a suppression of AlphaS^2(Mc) for Diquark Production during "
"Cluster Fission",
-1);
static Switch<ClusterFissioner,int> interfaceDiquarkClusterFission
("DiquarkClusterFission",
"Allow clusters to fission to 1 or 2 diquark Clusters or Turn off diquark fission completely",
&ClusterFissioner::_diquarkClusterFission, 0, false, false);
static SwitchOption interfaceDiquarkClusterFissionAll
(interfaceDiquarkClusterFission,
"All",
"Allow diquark clusters and baryon clusters to fission to new diquark Clusters",
2);
static SwitchOption interfaceDiquarkClusterFissionOnlyBaryonClusters
(interfaceDiquarkClusterFission,
"OnlyBaryonClusters",
"Allow only baryon clusters to fission to new diquark Clusters",
1);
static SwitchOption interfaceDiquarkClusterFissionNo
(interfaceDiquarkClusterFission,
"No",
"Don't allow clusters to fission to new diquark Clusters",
0);
static SwitchOption interfaceDiquarkClusterFissionOff
(interfaceDiquarkClusterFission,
"Off",
"Don't allow clusters fission to draw diquarks ",
-1);
static ParMap<ClusterFissioner,double> interfaceFissionPwt
("FissionPwt",
"The weights for quarks in the fission process.",
&ClusterFissioner::_fissionPwt, -1, 1.0, 0.0, 10.0,
false, false, Interface::upperlim);
static Switch<ClusterFissioner,int> interfaceRemnantOption
("RemnantOption",
"Option for the treatment of remnant clusters",
&ClusterFissioner::_iopRem, 1, false, false);
static SwitchOption interfaceRemnantOptionSoft
(interfaceRemnantOption,
"Soft",
"Both clusters produced in the fission of the beam cluster"
" are treated as soft clusters.",
0);
static SwitchOption interfaceRemnantOptionHard
(interfaceRemnantOption,
"Hard",
"Only the cluster containing the remnant is treated as a soft cluster.",
1);
static SwitchOption interfaceRemnantOptionVeryHard
(interfaceRemnantOption,
"VeryHard",
"Even remnant clusters are treated as hard, i.e. all clusters the same",
2);
static Parameter<ClusterFissioner,Energy> interfaceBTCLM
("SoftClusterFactor",
"Parameter for the mass spectrum of remnant clusters",
&ClusterFissioner::_btClM, GeV, 1.*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<ClusterFissioner,Tension> interfaceStringTension
("StringTension",
"String tension used in vertex displacement calculation",
&ClusterFissioner::_kappa, GeV/meter,
1.0e15*GeV/meter, ZERO, ZERO,
false, false, Interface::lowerlim);
static Switch<ClusterFissioner,int> interfaceEnhanceSProb
("EnhanceSProb",
"Option for enhancing strangeness",
&ClusterFissioner::_enhanceSProb, 0, false, false);
static SwitchOption interfaceEnhanceSProbNo
(interfaceEnhanceSProb,
"No",
"No strangeness enhancement.",
0);
static SwitchOption interfaceEnhanceSProbScaled
(interfaceEnhanceSProb,
"Scaled",
"Scaled strangeness enhancement",
1);
static SwitchOption interfaceEnhanceSProbExponential
(interfaceEnhanceSProb,
"Exponential",
"Exponential strangeness enhancement",
2);
static Switch<ClusterFissioner,int> interfaceMassMeasure
("MassMeasure",
"Option to use different mass measures",
&ClusterFissioner::_massMeasure,0,false,false);
static SwitchOption interfaceMassMeasureMass
(interfaceMassMeasure,
"Mass",
"Mass Measure",
0);
static SwitchOption interfaceMassMeasureLambda
(interfaceMassMeasure,
"Lambda",
"Lambda Measure",
1);
static Parameter<ClusterFissioner,Energy> interfaceFissionMassScale
("FissionMassScale",
"Cluster fission mass scale",
&ClusterFissioner::_m0Fission, GeV, 2.0*GeV, 0.1*GeV, 50.*GeV,
false, false, Interface::limited);
static Parameter<ClusterFissioner,double> interfaceProbPowFactor
("ProbabilityPowerFactor",
"Power factor in ClusterFissioner bell probablity function",
&ClusterFissioner::_probPowFactor, 2.0, 0.001, 20.0,
false, false, Interface::limited);
static Parameter<ClusterFissioner,double> interfaceProbShift
("ProbabilityShift",
"Shifts from the center in ClausterFissioner bell probablity function",
&ClusterFissioner::_probShift, 0.0, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<ClusterFissioner,Energy2> interfaceKineticThresholdShift
("KineticThresholdShift",
"Shifts from the kinetic threshold in ClusterFissioner",
&ClusterFissioner::_kinThresholdShift, sqr(GeV), 0.*sqr(GeV), -10.0*sqr(GeV), 10.0*sqr(GeV),
false, false, Interface::limited);
static Switch<ClusterFissioner,int> interfaceKinematicThreshold
("KinematicThreshold",
"Option for using static or dynamic kinematic thresholds in cluster splittings",
&ClusterFissioner::_kinematicThresholdChoice, 0, false, false);
static SwitchOption interfaceKinematicThresholdStatic
(interfaceKinematicThreshold,
"Static",
"Set static kinematic thresholds for cluster splittings.",
0);
static SwitchOption interfaceKinematicThresholdDynamic
(interfaceKinematicThreshold,
"Dynamic",
"Set dynamic kinematic thresholds for cluster splittings.",
1);
static Switch<ClusterFissioner,bool> interfaceCovariantBoost
("CovariantBoost",
"Use single Covariant Boost for Cluster Fission",
&ClusterFissioner::_covariantBoost, false, false, false);
static SwitchOption interfaceCovariantBoostYes
(interfaceCovariantBoost,
"Yes",
"Use Covariant boost",
true);
static SwitchOption interfaceCovariantBoostNo
(interfaceCovariantBoost,
"No",
"Do NOT use Covariant boost",
false);
static Switch<ClusterFissioner,int> interfaceStrictDiquarkKinematics
("StrictDiquarkKinematics",
"Option for selecting different selection criterions of diquarks for ClusterFission",
&ClusterFissioner::_strictDiquarkKinematics, 0, false, false);
static SwitchOption interfaceStrictDiquarkKinematicsLoose
(interfaceStrictDiquarkKinematics,
"Loose",
"No kinematic threshold for diquark selection except for Mass bigger than 2 baryons",
0);
static SwitchOption interfaceStrictDiquarkKinematicsStrict
(interfaceStrictDiquarkKinematics,
"Strict",
"Resulting clusters are at least as heavy as 2 lightest baryons",
1);
static Parameter<ClusterFissioner,double> interfacePwtDIquark
("PwtDIquark",
"specific probability for choosing a d diquark",
&ClusterFissioner::_pwtDIquark, 0.0, 0.0, 10.0,
false, false, Interface::limited);
static Switch<ClusterFissioner,int> interfacePhaseSpaceWeights
("PhaseSpaceWeights",
"Include phase space weights.",
&ClusterFissioner::_phaseSpaceWeights, 0, false, false);
static SwitchOption interfacePhaseSpaceWeightsNo
(interfacePhaseSpaceWeights,
"No",
"Do not include the effect of cluster phase space",
0);
static SwitchOption interfacePhaseSpaceWeightsYes
(interfacePhaseSpaceWeights,
"Yes",
"Do include the effect of cluster fission phase space "
"related to constituent masses."
"Note: Need static Threshold choice",
1);
static SwitchOption interfacePhaseSpaceWeightsUseHadronMasses
(interfacePhaseSpaceWeights,
"UseHadronMasses",
"Do include the effect of cluster fission phase space "
"related to hadron masses."
"Note: Need static Threshold choice",
2);
static SwitchOption interfacePhaseSpaceWeightsNoConstituentMasses
(interfacePhaseSpaceWeights,
"NoConstituentMasses",
"Do not include the effect of cluster fission phase space "
"related to constituent masses."
"Note: Need static Threshold choice",
3);
static Parameter<ClusterFissioner,double>
interfaceDim ("Dimension","Dimension in which phase space weights are calculated",
&ClusterFissioner::_dim, 0, 4.0, 0.0, 10.0,false,false,false);
// Allowing for strange diquarks in the ClusterFission
static Switch<ClusterFissioner,unsigned int> interfaceHadronizingStrangeDiquarks
("HadronizingStrangeDiquarks",
"Option for adding strange diquarks to Cluster Fission (if Fission = New or Hybrid is enabled)",
&ClusterFissioner::_hadronizingStrangeDiquarks, 0, false, false);
static SwitchOption interfaceHadronizingStrangeDiquarksNo
(interfaceHadronizingStrangeDiquarks,
"No",
"No strangeness containing diquarks during Cluster Fission",
0);
static SwitchOption interfaceHadronizingStrangeDiquarksOnlySingleStrange
(interfaceHadronizingStrangeDiquarks,
"OnlySingleStrange",
"Only one strangeness containing diquarks during Cluster Fission i.e. su,sd",
1);
static SwitchOption interfaceHadronizingStrangeDiquarksAll
(interfaceHadronizingStrangeDiquarks,
"All",
"All strangeness containing diquarks during Cluster Fission i.e. su,sd,ss",
2);
}
tPVector ClusterFissioner::fission(ClusterVector & clusters, bool softUEisOn) {
// return if no clusters
if (clusters.empty()) return tPVector();
/*****************
* Loop over the (input) collection of cluster pointers, and store in
* the vector splitClusters all the clusters that need to be split
* (these are beam clusters, if soft underlying event is off, and
* heavy non-beam clusters).
********************/
stack<ClusterPtr> splitClusters;
for(ClusterVector::iterator it = clusters.begin() ;
it != clusters.end() ; ++it) {
/**************
* Skip 3-component clusters that have been redefined (as 2-component
* clusters) or not available clusters. The latter check is indeed
* redundant now, but it is used for possible future extensions in which,
* for some reasons, some of the clusters found by ClusterFinder are tagged
* straight away as not available.
**************/
if((*it)->isRedefined() || !(*it)->isAvailable()) continue;
// if the cluster is a beam cluster add it to the vector of clusters
// to be split or if it is heavy
if((*it)->isBeamCluster() || isHeavy(*it)) splitClusters.push(*it);
}
tPVector finalhadrons;
cut(splitClusters, clusters, finalhadrons, softUEisOn);
return finalhadrons;
}
void ClusterFissioner::cut(stack<ClusterPtr> & clusterStack,
ClusterVector &clusters, tPVector & finalhadrons,
bool softUEisOn) {
/**************************************************
* This method does the splitting of the cluster pointed by cluPtr
* and "recursively" by all of its cluster children, if heavy. All of these
* new children clusters are added (indeed the pointers to them) to the
* collection of cluster pointers collecCluPtr. The method works as follows.
* Initially the vector vecCluPtr contains just the input pointer to the
* cluster to be split. Then it will be filled "recursively" by all
* of the cluster's children that are heavy enough to require, in their turn,
* to be split. In each loop, the last element of the vector vecCluPtr is
* considered (only once because it is then removed from the vector).
* This approach is conceptually recursive, but avoid the overhead of
* a concrete recursive function. Furthermore it requires minimal changes
* in the case that the fission of an heavy cluster could produce more
* than two cluster children as assumed now.
*
* Draw the masses: for normal, non-beam clusters a power-like mass dist
* is used, whereas for beam clusters a fast-decreasing exponential mass
* dist is used instead (to avoid many iterative splitting which could
* produce an unphysical large transverse energy from a supposed soft beam
* remnant process).
****************************************/
// Here we recursively loop over clusters in the stack and cut them
while (!clusterStack.empty()) {
// take the last element of the vector
ClusterPtr iCluster = clusterStack.top(); clusterStack.pop();
// split it
cutType ct = iCluster->numComponents() == 2 ?
cutTwo(iCluster, finalhadrons, softUEisOn) :
cutThree(iCluster, finalhadrons, softUEisOn);
// There are cases when we don't want to split, even if it fails mass test
if(!ct.first.first || !ct.second.first) {
// if an unsplit beam cluster leave if for the underlying event
if(iCluster->isBeamCluster() && softUEisOn)
iCluster->isAvailable(false);
continue;
}
// check if clusters
ClusterPtr one = dynamic_ptr_cast<ClusterPtr>(ct.first.first);
ClusterPtr two = dynamic_ptr_cast<ClusterPtr>(ct.second.first);
// is a beam cluster must be split into two clusters
if(iCluster->isBeamCluster() && (!one||!two) && softUEisOn) {
iCluster->isAvailable(false);
continue;
}
// There should always be a intermediate quark(s) from the splitting
assert(ct.first.second && ct.second.second);
/// \todo sort out motherless quark pairs here. Watch out for 'quark in final state' errors
iCluster->addChild(ct.first.first);
// iCluster->addChild(ct.first.second);
// ct.first.second->addChild(ct.first.first);
iCluster->addChild(ct.second.first);
// iCluster->addChild(ct.second.second);
// ct.second.second->addChild(ct.second.first);
// Sometimes the clusters decay C -> H + C' or C -> H + H' rather then C -> C' + C''
if(one) {
clusters.push_back(one);
if(one->isBeamCluster() && softUEisOn)
one->isAvailable(false);
if(isHeavy(one) && one->isAvailable())
clusterStack.push(one);
}
if(two) {
clusters.push_back(two);
if(two->isBeamCluster() && softUEisOn)
two->isAvailable(false);
if(isHeavy(two) && two->isAvailable())
clusterStack.push(two);
}
}
}
ClusterFissioner::cutType
ClusterFissioner::cutTwo(ClusterPtr & cluster, tPVector & finalhadrons,
bool softUEisOn) {
// need to make sure only 2-cpt clusters get here
assert(cluster->numComponents() == 2);
tPPtr ptrQ1 = cluster->particle(0);
tPPtr ptrQ2 = cluster->particle(1);
Energy Mc = cluster->mass();
assert(ptrQ1);
assert(ptrQ2);
// And check if those particles are from a beam remnant
bool rem1 = cluster->isBeamRemnant(0);
bool rem2 = cluster->isBeamRemnant(1);
// workout which distribution to use
bool soft1(false),soft2(false);
switch (_iopRem) {
case 0:
soft1 = rem1 || rem2;
soft2 = rem2 || rem1;
break;
case 1:
soft1 = rem1;
soft2 = rem2;
break;
}
// Initialization for the exponential ("soft") mass distribution.
static const int max_loop = 1000;
int counter = 0;
Energy Mc1 = ZERO, Mc2 = ZERO,m1=ZERO,m2=ZERO,m=ZERO;
tcPDPtr toHadron1, toHadron2;
PPtr newPtr1 = PPtr ();
PPtr newPtr2 = PPtr ();
bool succeeded = false;
Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
do
{
succeeded = false;
++counter;
// get a flavour for the qqbar pair
drawNewFlavour(newPtr1,newPtr2,cluster);
// check for right ordering
assert (ptrQ2);
assert (newPtr2);
assert (ptrQ2->dataPtr());
assert (newPtr2->dataPtr());
if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
swap(newPtr1, newPtr2);
// check again
if(cantMakeHadron(ptrQ1, newPtr1) || cantMakeHadron(ptrQ2, newPtr2)) {
throw Exception()
<< "ClusterFissioner cannot split the cluster ("
<< ptrQ1->PDGName() << ' ' << ptrQ2->PDGName()
<< ") into hadrons.\n" << Exception::runerror;
}
}
// Check that new clusters can produce particles and there is enough
// phase space to choose the drawn flavour
m1 = ptrQ1->data().constituentMass();
m2 = ptrQ2->data().constituentMass();
m = newPtr1->data().constituentMass();
// Do not split in the case there is no phase space available
if(Mc < m1+m + m2+m) continue;
pQ1.setMass(m1);
pQone.setMass(m);
pQtwo.setMass(m);
pQ2.setMass(m2);
double weightMasses = drawNewMasses(Mc, soft1, soft2, pClu1, pClu2,
ptrQ1, pQ1, newPtr1, pQone,
newPtr2, pQtwo, ptrQ2, pQ2);
if (weightMasses==0.0)
continue;
// derive the masses of the children
Mc1 = pClu1.mass();
Mc2 = pClu2.mass();
// static kinematic threshold
if(_kinematicThresholdChoice == 0) {
if (Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > Mc) continue;
if (_phaseSpaceWeights==2 &&
( Mc1 < spectrum()->massLightestHadronPair(ptrQ1->dataPtr(),newPtr1->dataPtr())
|| Mc2 < spectrum()->massLightestHadronPair(ptrQ2->dataPtr(),newPtr2->dataPtr()) ))
continue;
// dynamic kinematic threshold
}
else if(_kinematicThresholdChoice == 1) {
bool C1 = ( sqr(Mc1) )/( sqr(m1) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
bool C2 = ( sqr(Mc2) )/( sqr(m2) + sqr(m) + _kinThresholdShift ) < 1.0 ? true : false;
bool C3 = ( sqr(Mc1) + sqr(Mc2) )/( sqr(Mc) ) > 1.0 ? true : false;
if( C1 || C2 || C3 ) continue;
}
if ( _phaseSpaceWeights && phaseSpaceVeto(Mc,Mc1,Mc2,m,m1,m2, ptrQ1, ptrQ2, newPtr1, 0.0) ) {
// reduce counter as it regards only the mass sampling
counter--;
continue;
}
/**************************
* New (not present in Fortran Herwig):
* check whether the fragment masses Mc1 and Mc2 are above the
* threshold for the production of the lightest pair of hadrons with the
* right flavours. If not, then set by hand the mass to the lightest
* single hadron with the right flavours, in order to solve correctly
* the kinematics, and (later in this method) create directly such hadron
* and add it to the children hadrons of the cluster that undergoes the
* fission (i.e. the one pointed by iCluPtr). Notice that in this special
* case, the heavy cluster that undergoes the fission has one single
* cluster child and one single hadron child. We prefer this approach,
* rather than to create a light cluster, with the mass set equal to
* the lightest hadron, and let then the class LightClusterDecayer to do
* the job to decay it to that single hadron, for two reasons:
* First, because the sum of the masses of the two constituents can be,
* in this case, greater than the mass of that hadron, hence it would
* be impossible to solve the kinematics for such two components, and
* therefore we would have a cluster whose components are undefined.
* Second, the algorithm is faster, because it avoids the reshuffling
* procedure that would be necessary if we used LightClusterDecayer
* to decay the light cluster to the lightest hadron.
****************************/
// override chosen masses if needed
toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc1);
if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc2);
if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
// if a beam cluster not allowed to decay to hadrons
if(cluster->isBeamCluster() && (toHadron1||toHadron2) && softUEisOn)
continue;
// Check if the decay kinematics is still possible: if not then
// force the one-hadron decay for the other cluster as well.
if(Mc1 + Mc2 > Mc) {
if(!toHadron1) {
toHadron1 = _hadronSpectrum->chooseSingleHadron(ptrQ1->dataPtr(), newPtr1->dataPtr(),Mc-Mc2);
if(toHadron1) { Mc1 = toHadron1->mass(); pClu1.setMass(Mc1); }
}
else if(!toHadron2) {
toHadron2 = _hadronSpectrum->chooseSingleHadron(ptrQ2->dataPtr(), newPtr2->dataPtr(),Mc-Mc1);
if(toHadron2) { Mc2 = toHadron2->mass(); pClu2.setMass(Mc2); }
}
}
succeeded = (Mc >= Mc1+Mc2);
}
while (!succeeded && counter < max_loop);
if(counter >= max_loop) {
static const PPtr null = PPtr();
return cutType(PPair(null,null),PPair(null,null));
}
// Determined the (5-components) momenta (all in the LAB frame)
Lorentz5Momentum pClu = cluster->momentum(); // known
Lorentz5Momentum p0Q1 = ptrQ1->momentum(); // known (mom Q1 before fission)
calculateKinematics(pClu,p0Q1,toHadron1,toHadron2,
pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
/******************
* The previous methods have determined the kinematics and positions
* of C -> C1 + C2.
* In the case that one of the two product is light, that means either
* decayOneHadronClu1 or decayOneHadronClu2 is true, then the momenta
* of the components of that light product have not been determined,
* and a (light) cluster will not be created: the heavy father cluster
* decays, in this case, into a single (not-light) cluster and a
* single hadron. In the other, "normal", cases the father cluster
* decays into two clusters, each of which has well defined components.
* Notice that, in the case of components which point to particles, the
* momenta of the components is properly set to the new values, whereas
* we do not change the momenta of the pointed particles, because we
* want to keep all of the information (that is the new momentum of a
* component after the splitting, which is contained in the _momentum
* member of the Component class, and the (old) momentum of that component
* before the splitting, which is contained in the momentum of the
* pointed particle). Please not make confusion of this only apparent
* inconsistency!
********************/
LorentzPoint posC,pos1,pos2;
posC = cluster->vertex();
calculatePositions(pClu, posC, pClu1, pClu2, pos1, pos2);
cutType rval;
if(toHadron1) {
rval.first = produceHadron(toHadron1, newPtr1, pClu1, pos1);
finalhadrons.push_back(rval.first.first);
}
else {
rval.first = produceCluster(ptrQ1, newPtr1, pClu1, pos1, pQ1, pQone, rem1);
}
if(toHadron2) {
rval.second = produceHadron(toHadron2, newPtr2, pClu2, pos2);
finalhadrons.push_back(rval.second.first);
}
else {
rval.second = produceCluster(ptrQ2, newPtr2, pClu2, pos2, pQ2, pQtwo, rem2);
}
return rval;
}
ClusterFissioner::cutType
ClusterFissioner::cutThree(ClusterPtr & cluster, tPVector & finalhadrons,
bool softUEisOn) {
// need to make sure only 3-cpt clusters get here
assert(cluster->numComponents() == 3);
// extract quarks
tPPtr ptrQ[3] = {cluster->particle(0),cluster->particle(1),cluster->particle(2)};
assert( ptrQ[0] && ptrQ[1] && ptrQ[2] );
// find maximum mass pair
Energy mmax(ZERO);
Lorentz5Momentum pDiQuark;
int iq1(-1),iq2(-1);
Lorentz5Momentum psum;
for(int q1=0;q1<3;++q1) {
psum+= ptrQ[q1]->momentum();
for(int q2=q1+1;q2<3;++q2) {
Lorentz5Momentum ptest = ptrQ[q1]->momentum()+ptrQ[q2]->momentum();
ptest.rescaleMass();
Energy mass = ptest.m();
if(mass>mmax) {
mmax = mass;
pDiQuark = ptest;
iq1 = q1;
iq2 = q2;
}
}
}
// and the spectators
int iother(-1);
for(int ix=0;ix<3;++ix) if(ix!=iq1&&ix!=iq2) iother=ix;
assert(iq1>=0&&iq2>=0&&iother>=0);
// And check if those particles are from a beam remnant
bool rem1 = cluster->isBeamRemnant(iq1);
bool rem2 = cluster->isBeamRemnant(iq2);
// workout which distribution to use
bool soft1(false),soft2(false);
switch (_iopRem) {
case 0:
soft1 = rem1 || rem2;
soft2 = rem2 || rem1;
break;
case 1:
soft1 = rem1;
soft2 = rem2;
break;
}
// Initialization for the exponential ("soft") mass distribution.
static const int max_loop = 1000;
int counter = 0;
Energy Mc1 = ZERO, Mc2 = ZERO, m1=ZERO, m2=ZERO, m=ZERO;
tcPDPtr toHadron;
bool toDiQuark(false);
PPtr newPtr1 = PPtr(),newPtr2 = PPtr();
PDPtr diquark;
bool succeeded = false;
Lorentz5Momentum pClu1, pClu2, pQ1, pQone, pQtwo, pQ2;
do {
succeeded = false;
++counter;
// get a flavour for the qqbar pair
drawNewFlavour(newPtr1,newPtr2,cluster);
// randomly pick which will be (anti)diquark and which a mesonic cluster
if(UseRandom::rndbool()) {
swap(iq1,iq2);
swap(rem1,rem2);
}
// check first order
if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
swap(newPtr1,newPtr2);
}
// check again
if(cantMakeHadron(ptrQ[iq1], newPtr1) || !spectrum()->canMakeDiQuark(ptrQ[iq2], newPtr2)) {
throw Exception()
<< "ClusterFissioner cannot split the cluster ("
<< ptrQ[iq1]->PDGName() << ' ' << ptrQ[iq2]->PDGName()
<< ") into a hadron and diquark.\n" << Exception::runerror;
}
// Check that new clusters can produce particles and there is enough
// phase space to choose the drawn flavour
m1 = ptrQ[iq1]->data().constituentMass();
m2 = ptrQ[iq2]->data().constituentMass();
m = newPtr1->data().constituentMass();
// Do not split in the case there is no phase space available
if(mmax < m1+m + m2+m) continue;
pQ1.setMass(m1);
pQone.setMass(m);
pQtwo.setMass(m);
pQ2.setMass(m2);
double weightMasses = drawNewMasses(mmax, soft1, soft2, pClu1, pClu2,
ptrQ[iq1], pQ1, newPtr1, pQone,
newPtr2, pQtwo, ptrQ[iq1], pQ2);
if (weightMasses == 0.0) continue;
Mc1 = pClu1.mass();
Mc2 = pClu2.mass();
if(Mc1 < m1+m || Mc2 < m+m2 || Mc1+Mc2 > mmax) continue;
if ( _phaseSpaceWeights && phaseSpaceVeto(mmax,Mc1,Mc2,m,m1,m2) ) {
// reduce counter as it regards only the mass sampling
counter--;
continue;
}
// check if need to force meson clster to hadron
toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),Mc1);
if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
// check if need to force diquark cluster to be on-shell
toDiQuark = false;
diquark = spectrum()->makeDiquark(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr());
if(Mc2 < diquark->constituentMass()) {
Mc2 = diquark->constituentMass(); pClu2.setMass(Mc2);
toDiQuark = true;
}
// if a beam cluster not allowed to decay to hadrons
if(cluster->isBeamCluster() && toHadron && softUEisOn)
continue;
// Check if the decay kinematics is still possible: if not then
// force the one-hadron decay for the other cluster as well.
if(Mc1 + Mc2 > mmax) {
if(!toHadron) {
toHadron = _hadronSpectrum->chooseSingleHadron(ptrQ[iq1]->dataPtr(), newPtr1->dataPtr(),mmax-Mc2);
if(toHadron) { Mc1 = toHadron->mass(); pClu1.setMass(Mc1); }
}
else if(!toDiQuark) {
Mc2 = _hadronSpectrum->massLightestHadron(ptrQ[iq2]->dataPtr(), newPtr2->dataPtr()); pClu2.setMass(Mc2);
toDiQuark = true;
}
}
succeeded = (mmax >= Mc1+Mc2);
}
while (!succeeded && counter < max_loop);
// check no of tries
if(counter >= max_loop) return cutType();
// Determine the (5-components) momenta (all in the LAB frame)
Lorentz5Momentum p0Q1 = ptrQ[iq1]->momentum();
calculateKinematics(pDiQuark,p0Q1,toHadron,toDiQuark,
pClu1,pClu2,pQ1,pQone,pQtwo,pQ2);
// positions of the new clusters
LorentzPoint pos1,pos2;
Lorentz5Momentum pBaryon = pClu2+ptrQ[iother]->momentum();
calculatePositions(cluster->momentum(), cluster->vertex(), pClu1, pBaryon, pos1, pos2);
// first the mesonic cluster/meson
cutType rval;
if(toHadron) {
rval.first = produceHadron(toHadron, newPtr1, pClu1, pos1);
finalhadrons.push_back(rval.first.first);
}
else {
rval.first = produceCluster(ptrQ[iq1], newPtr1, pClu1, pos1, pQ1, pQone, rem1);
}
if(toDiQuark) {
rem2 |= cluster->isBeamRemnant(iother);
PPtr newDiQuark = diquark->produceParticle(pClu2);
rval.second = produceCluster(newDiQuark, ptrQ[iother], pBaryon, pos2, pClu2,
ptrQ[iother]->momentum(), rem2);
}
else {
rval.second = produceCluster(ptrQ[iq2], newPtr2, pBaryon, pos2, pQ2, pQtwo, rem2,
ptrQ[iother],cluster->isBeamRemnant(iother));
}
cluster->isAvailable(false);
return rval;
}
ClusterFissioner::PPair
ClusterFissioner::produceHadron(tcPDPtr hadron, tPPtr newPtr, const Lorentz5Momentum &a,
const LorentzPoint &b) const {
PPair rval;
if(hadron->coloured()) {
rval.first = (_hadronSpectrum->lightestHadron(hadron,newPtr->dataPtr()))->produceParticle();
}
else
rval.first = hadron->produceParticle();
rval.second = newPtr;
rval.first->set5Momentum(a);
rval.first->setVertex(b);
return rval;
}
ClusterFissioner::PPair ClusterFissioner::produceCluster(tPPtr ptrQ, tPPtr newPtr,
const Lorentz5Momentum & a,
const LorentzPoint & b,
const Lorentz5Momentum & c,
const Lorentz5Momentum & d,
bool isRem,
tPPtr spect, bool remSpect) const {
PPair rval;
rval.second = newPtr;
ClusterPtr cluster = !spect ? new_ptr(Cluster(ptrQ,rval.second)) : new_ptr(Cluster(ptrQ,rval.second,spect));
rval.first = cluster;
cluster->set5Momentum(a);
cluster->setVertex(b);
assert(cluster->particle(0)->id() == ptrQ->id());
cluster->particle(0)->set5Momentum(c);
cluster->particle(1)->set5Momentum(d);
cluster->setBeamRemnant(0,isRem);
if(remSpect) cluster->setBeamRemnant(2,remSpect);
return rval;
}
/**
* Calculate the phase space weight for M1*M2*(2 body PhaseSpace) ignore constituent masses
*/
double ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const {
double M_temp = Mc/GeV;
double M1_temp = Mc1/GeV;
double M2_temp = Mc2/GeV;
if (sqr(M_temp)<sqr(M1_temp+M2_temp)) {
// This should be checked before
throw Exception()
<< "ERROR in ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses\n"
<< "ClusterFissioner has not checked Masses properly\n"
<< "Mc = " << M_temp << "\n"
<< "Mc1 = " << M1_temp << "\n"
<< "Mc2 = " << M2_temp << "\n"
<< Exception::warning;
return 0.0;
}
double lam = Kinematics::kaellen(M_temp, M1_temp, M2_temp);
double ratio;
// new weight with the Jacobi factor M1*M2 of the Mass integration
double PSweight = M1_temp*M2_temp*pow(sqrt(lam),_dim-3.);
// overestimate only possible for dim>=3.0
assert(_dim>=3.0);
// new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 2.*(_dim-2.));
ratio = PSweight/overEstimate;
if (!(ratio>=0) || !(ratio<=1)) {
throw Exception()
<< "ERROR in ClusterFissioner::weightFlatPhaseSpaceNoConstituentMasses\n"
<< "ratio = " <<ratio
<<" M "<<M_temp
<<" M1 "<<M1_temp
<<" M2 "<<M2_temp <<"\t"<<_dim<<"\t" << lam
<<"\t"<< overEstimate<<"\n\n"
<< Exception::runerror;
}
return ratio;
}
/**
* Calculate the phase space weight for M1*M2*(2 body PhaseSpace)^3
*/
double ClusterFissioner::weightPhaseSpaceConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2,
const Energy m, const Energy m1, const Energy m2, const double power) const {
double M_temp = Mc/GeV;
double M1_temp = Mc1/GeV;
double M2_temp = Mc2/GeV;
double m_temp = m/GeV;
double m1_temp = m1/GeV;
double m2_temp = m2/GeV;
if (sqr(M_temp)<sqr(M1_temp+M2_temp)
|| sqr(M1_temp)<sqr(m1_temp+m_temp)
|| sqr(M2_temp)<sqr(m2_temp+m_temp)
) {
// This should be checked before
throw Exception()
<< "ERROR in ClusterFissioner::weightPhaseSpaceConstituentMasses\n"
<< "ClusterFissioner has not checked Masses properly\n"
<< "Mc = " << M_temp << "\n"
<< "Mc1 = " << M1_temp << "\n"
<< "Mc2 = " << M2_temp << "\n"
<< "m1 = " << m1_temp << "\n"
<< "m2 = " << m2_temp << "\n"
<< "m = " << m_temp << "\n"
<< Exception::warning;
return 0.0;
}
double lam1 = Kinematics::kaellen(M1_temp, m1_temp, m_temp);
double lam2 = Kinematics::kaellen(M2_temp, m2_temp, m_temp);
double lam3 = Kinematics::kaellen(M_temp, M1_temp, M2_temp);
double ratio;
// new weight with the Jacobi factor M1*M2 of the Mass integration
double PSweight = pow(lam1*lam2*lam3,(_dim-3.)/2.0)*pow(M1_temp*M2_temp,3.-_dim);
// overestimate only possible for dim>=3.0
assert(_dim>=3.0);
// new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(M_temp, 4.*_dim-12.);
ratio = PSweight/overEstimate;
if (!(ratio>=0)) std::cout << "ratio = " <<ratio<<" M "<<M_temp<<" M1 "<<M1_temp<<" M2 "<<M2_temp<<" m1 "<<m1_temp<<" m2 "<<m2_temp<<" m "<<m_temp<<"\t"<<_dim<<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3 <<"\t"<< overEstimate<<"\n\n";
if (!(ratio>=0) || !(ratio<=1)) {
throw Exception()
<< "ERROR in ClusterFissioner::weightPhaseSpaceConstituentMasses\n"
<< "ratio = " <<ratio
<<" M "<<M_temp
<<" M1 "<<M1_temp
<<" M2 "<<M2_temp
<<" m1 "<<m1_temp
<<" m2 "<<m2_temp
<<" m "<<m_temp <<"\t"<<_dim
<<"\t" << lam1<<"\t"<< lam2<<"\t" << lam3
<<"\t"<< overEstimate<<"\n\n"
<< Exception::runerror;
}
// multiply by overestimate of power of matrix element to modulate the phase space with (M1*M2)^power
if (power) {
double powerLawOver = power<0 ? pow(Mc1*Mc2/((m1+m)*(m2+m)),power):pow(Mc1*Mc2/((Mc-(m1+m))*(Mc-(m2+m))),power);
ratio*=powerLawOver;
}
return ratio;
}
/**
* Calculate the phase space weight for M1*M2*(2 body PhaseSpace)^3
* using Hadron Masses
*/
double ClusterFissioner::weightFlatPhaseSpaceHadronMasses(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const {
auto LHP1 = spectrum()->lightestHadronPair(pQ1->dataPtr(),pQ->dataPtr());
auto LHP2 = spectrum()->lightestHadronPair(pQ2->dataPtr(),pQ->dataPtr());
if (sqr(Mc1)<sqr(LHP1.first->mass()+LHP1.second->mass()))
return true;
if (sqr(Mc2)<sqr(LHP2.first->mass()+LHP2.second->mass()))
return true;
double lam1 = sqrt(Kinematics::kaellen(Mc1/GeV, LHP1.first->mass()/GeV, LHP1.second->mass()/GeV));
double lam2 = sqrt(Kinematics::kaellen(Mc2/GeV, LHP2.first->mass()/GeV, LHP2.second->mass()/GeV));
double lam3 = sqrt(Kinematics::kaellen(Mc/GeV, Mc1/GeV, Mc2/GeV));
double ratio;
// new weight with the Jacobi factor M1*M2 of the Mass integration
double PSweight = pow(lam1*lam2*lam3,_dim-3.)*pow(Mc1*Mc2/GeV2,3.-_dim);
// overestimate only possible for dim>=3.0
assert(_dim>=3.0);
// new improved overestimate with the Jacobi factor M1*M2 of the Mass integration
double overEstimate = pow(6.0*sqrt(3.0), 3.0 - _dim)*pow(Mc/GeV, 4.*_dim-12.);
ratio = PSweight/overEstimate;
if (!(ratio>=0) || !(ratio<=1)) {
throw Exception()
<< "ERROR in ClusterFissioner::weightFlatPhaseSpaceHadronMasses\n"
<< "ratio = " <<ratio
- <<" M "<<M_temp
- <<" M1 "<<M1_temp
- <<" M2 "<<M2_temp <<"\t"<<_dim<<"\t" << lam1<<"\t" << lam2 <<"\t" << lam3
+ <<" M "<<Mc/GeV
+ <<" M1 "<<Mc1/GeV
+ <<" M2 "<<Mc2/GeV <<"\t"<<_dim<<"\t" << lam1<<"\t" << lam2 <<"\t" << lam3
<<"\t"<< overEstimate<<"\n\n"
<< Exception::runerror;
}
return ratio;
}
/**
* Veto for the phase space weight
* returns true if proposed Masses are rejected
* else returns false
*/
bool ClusterFissioner::phaseSpaceVeto(const Energy Mc, const Energy Mc1, const Energy Mc2,
const Energy m, const Energy m1, const Energy m2, tcPPtr pQ1, tcPPtr pQ2, tcPPtr pQ, const double power) const {
switch (_phaseSpaceWeights)
{
case 1:
return phaseSpaceVetoConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power);
case 2:
return phaseSpaceVetoHadronPairs(Mc, Mc1, Mc2, pQ, pQ1, pQ2);
case 3:
return phaseSpaceVetoNoConstituentMasses(Mc, Mc1, Mc2);
default:
assert(false);
}
}
/**
* Veto for the phase space weight
* returns true if proposed Masses are rejected
* else returns false
*/
bool ClusterFissioner::phaseSpaceVetoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2,
const Energy m, const Energy m1, const Energy m2, const double power) const {
return (UseRandom::rnd()>weightPhaseSpaceConstituentMasses(Mc, Mc1, Mc2, m, m1, m2, power));
}
bool ClusterFissioner::phaseSpaceVetoNoConstituentMasses(const Energy Mc, const Energy Mc1, const Energy Mc2) const {
return (UseRandom::rnd()>weightFlatPhaseSpaceNoConstituentMasses(Mc, Mc1, Mc2));
}
bool ClusterFissioner::phaseSpaceVetoHadronPairs(const Energy Mc, const Energy Mc1, const Energy Mc2, tcPPtr pQ, tcPPtr pQ1, tcPPtr pQ2) const {
return (UseRandom::rnd()>weightFlatPhaseSpaceHadronMasses(Mc, Mc1, Mc2, pQ, pQ1, pQ2));
}
/**
* Calculate the masses and possibly kinematics of the cluster
* fission at hand; if calculateKineamtics is perfomring non-trivial
* steps kinematics claulcated here will be overriden. Currentl;y resorts to the default
*/
double ClusterFissioner::drawNewMasses(const Energy Mc, const bool soft1, const bool soft2,
Lorentz5Momentum& pClu1, Lorentz5Momentum& pClu2,
tcPPtr ptrQ1, const Lorentz5Momentum& pQ1,
tcPPtr, const Lorentz5Momentum& pQone,
tcPPtr, const Lorentz5Momentum& pQtwo,
tcPPtr ptrQ2, const Lorentz5Momentum& pQ2) const {
// power for splitting
double exp1 = !spectrum()->isExotic(ptrQ1->dataPtr()) ? _pSplitLight : _pSplitExotic;
double exp2 = !spectrum()->isExotic(ptrQ2->dataPtr()) ? _pSplitLight : _pSplitExotic;
for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
assert(_pSplitHeavy.find(id) != _pSplitHeavy.end());
if ( spectrum()->hasHeavy(id,ptrQ1->dataPtr()) ) exp1 = _pSplitHeavy.find(id)->second;
if ( spectrum()->hasHeavy(id,ptrQ2->dataPtr()) ) exp2 = _pSplitHeavy.find(id)->second;
}
Energy M1 = drawChildMass(Mc,pQ1.mass(),pQ2.mass(),pQone.mass(),exp1,soft1);
Energy M2 = drawChildMass(Mc,pQ2.mass(),pQ1.mass(),pQtwo.mass(),exp2,soft2);
pClu1.setMass(M1);
pClu2.setMass(M2);
return 1.0; // succeeds
}
void ClusterFissioner::drawNewFlavourDiquarks(PPtr& newPtrPos,PPtr& newPtrNeg,
const ClusterPtr & clu) const {
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
unsigned hasDiquarks=0;
assert(clu->numComponents()==2);
tcPDPtr pD1=clu->particle(0)->dataPtr();
tcPDPtr pD2=clu->particle(1)->dataPtr();
bool isDiq1=DiquarkMatcher::Check(pD1->id());
if (isDiq1) hasDiquarks++;
bool isDiq2=DiquarkMatcher::Check(pD2->id());
if (isDiq2) hasDiquarks++;
assert(hasDiquarks<=2);
Energy Mc=(clu->momentum().mass());
Energy minMass;
double weight;
Selector<long> choice;
// adding quark-antiquark pairs to the selection list
for ( const long& id : spectrum()->lightHadronizingQuarks() ) {
minMass=spectrum()->massLightestHadronPair(pD1,pD2);
if (_fissionCluster==0) choice.insert(_hadronSpectrum->pwtQuark(id),id);
else if (abs(_fissionCluster)==1) choice.insert(_fissionPwt.find(id)->second,id);
else assert(false);
}
// adding diquark-antidiquark pairs to the selection list
switch (hasDiquarks)
{
case 0:
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
if (_strictDiquarkKinematics) {
tPDPtr cand = getParticleData(id);
Energy mH1=spectrum()->massLightestHadron(pD2,cand);
Energy mH2=spectrum()->massLightestHadron(cand,pD1);
minMass = mH1 + mH2;
}
else {
minMass = spectrum()->massLightestBaryonPair(pD1,pD2);
}
if (Mc < minMass) continue;
if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
else assert(false);
if (_fissionCluster==-1)
weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
choice.insert(weight,id);
}
break;
case 1:
if (_diquarkClusterFission<1) break;
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
tPDPtr diq = getParticleData(id);
if (isDiq1)
minMass = spectrum()->massLightestHadron(pD2,diq)
+ spectrum()->massLightestBaryonPair(diq,pD1);
else
minMass = spectrum()->massLightestHadron(pD1,diq)
+ spectrum()->massLightestBaryonPair(diq,pD2);
if (Mc < minMass) continue;
if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
else assert(false);
if (_fissionCluster==-1)
weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
choice.insert(weight,id);
}
break;
case 2:
if (_diquarkClusterFission<2) break;
for ( const long& id : spectrum()->lightHadronizingDiquarks() ) {
tPDPtr diq = getParticleData(id);
if (Mc < spectrum()->massLightestBaryonPair(pD1,pD2)) {
throw Exception() << "Found Diquark Cluster:\n" << *clu << "\nwith MassCluster = "
<< ounit(Mc,GeV) <<" GeV MassLightestBaryonPair = "
<< ounit(spectrum()->massLightestBaryonPair(pD1,pD2) ,GeV)
<< " GeV cannot decay" << Exception::eventerror;
}
minMass = spectrum()->massLightestBaryonPair(pD1,diq)
+ spectrum()->massLightestBaryonPair(diq,pD2);
if (Mc < minMass) continue;
if (_fissionCluster==0) weight = _hadronSpectrum->pwtQuark(id);
else if (abs(_fissionCluster)==1) weight = _fissionPwt.find(id)->second;
else assert(false);
if (_fissionCluster==-1)
weight*=sqr(Herwig::Math::alphaS(Mc, 0.25*GeV,3, 2));
choice.insert(weight,id);
}
break;
default:
assert(false);
}
assert(choice.size()>0);
long idNew = choice.select(UseRandom::rnd());
newPtrPos = getParticle(idNew);
newPtrNeg = getParticle(-idNew);
assert(newPtrPos);
assert(newPtrNeg);
assert(newPtrPos->dataPtr());
assert(newPtrNeg->dataPtr());
}
void ClusterFissioner::drawNewFlavourQuarks(PPtr& newPtrPos,PPtr& newPtrNeg) const {
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
Selector<long> choice;
switch(abs(_fissionCluster)){
case 0:
for ( const long& id : spectrum()->lightHadronizingQuarks() )
choice.insert(_hadronSpectrum->pwtQuark(id),id);
break;
case 1:
for ( const long& id : spectrum()->lightHadronizingQuarks() )
choice.insert(_fissionPwt.find(id)->second,id);
break;
default :
assert(false);
}
long idNew = choice.select(UseRandom::rnd());
newPtrPos = getParticle(idNew);
newPtrNeg = getParticle(-idNew);
assert (newPtrPos);
assert(newPtrNeg);
assert (newPtrPos->dataPtr());
assert(newPtrNeg->dataPtr());
}
void ClusterFissioner::drawNewFlavourEnhanced(PPtr& newPtrPos,PPtr& newPtrNeg,
Energy2 mass2) const {
if ( spectrum()->gluonId() != ParticleID::g )
throw Exception() << "strange enhancement only working with Standard Model hadronization"
<< Exception::runerror;
// Flavour is assumed to be only u, d, s, with weights
// (which are not normalized probabilities) given
// by the same weights as used in HadronsSelector for
// the decay of clusters into two hadrons.
double prob_d = 0.;
double prob_u = 0.;
double prob_s = 0.;
double scale = abs(double(sqr(_m0Fission)/mass2));
// Choose which splitting weights you wish to use
switch(abs(_fissionCluster)){
// 0: ClusterFissioner and ClusterDecayer use the same weights
case 0:
prob_d = _hadronSpectrum->pwtQuark(ParticleID::d);
prob_u = _hadronSpectrum->pwtQuark(ParticleID::u);
/* Strangeness enhancement:
Case 1: probability scaling
Case 2: Exponential scaling
*/
if (_enhanceSProb == 1)
prob_s = (_maxScale < scale) ? 0. : pow(_hadronSpectrum->pwtQuark(ParticleID::s),scale);
else if (_enhanceSProb == 2)
prob_s = (_maxScale < scale) ? 0. : exp(-scale);
break;
/* 1: ClusterFissioner uses its own unique set of weights,
i.e. decoupled from ClusterDecayer */
case 1:
prob_d = _fissionPwt.find(ParticleID::d)->second;
prob_u = _fissionPwt.find(ParticleID::u)->second;
if (_enhanceSProb == 1)
prob_s = (_maxScale < scale) ? 0. : pow(_fissionPwt.find(ParticleID::s)->second,scale);
else if (_enhanceSProb == 2)
prob_s = (_maxScale < scale) ? 0. : exp(-scale);
break;
default:
assert(false);
}
int choice = UseRandom::rnd3(prob_u, prob_d, prob_s);
long idNew = 0;
switch (choice) {
case 0: idNew = ThePEG::ParticleID::u; break;
case 1: idNew = ThePEG::ParticleID::d; break;
case 2: idNew = ThePEG::ParticleID::s; break;
}
newPtrPos = getParticle(idNew);
newPtrNeg = getParticle(-idNew);
assert (newPtrPos);
assert(newPtrNeg);
assert (newPtrPos->dataPtr());
assert(newPtrNeg->dataPtr());
}
Energy2 ClusterFissioner::clustermass(const ClusterPtr & cluster) const {
Lorentz5Momentum pIn = cluster->momentum();
Energy2 endpointmass2 = sqr(cluster->particle(0)->mass() +
cluster->particle(1)->mass());
Energy2 singletm2 = pIn.m2();
// Return either the cluster mass, or the lambda measure
return (_massMeasure == 0) ? singletm2 : singletm2 - endpointmass2;
}
Energy ClusterFissioner::drawChildMass(const Energy M, const Energy m1,
const Energy m2, const Energy m,
const double expt, const bool soft) const {
/***************************
* This method, given in input the cluster mass Mclu of an heavy cluster C,
* made of consituents of masses m1 and m2, draws the masses Mclu1 and Mclu2
* of, respectively, the children cluster C1, made of constituent masses m1
* and m, and cluster C2, of mass Mclu2 and made of constituent masses m2
* and m. The mass is extracted from one of the two following mass
* distributions:
* --- power-like ("normal" distribution)
* d(Prob) / d(M^exponent) = const
* where the exponent can be different from the two children C1 (exp1)
* and C2 (exponent2).
* --- exponential ("soft" distribution)
* d(Prob) / d(M^2) = exp(-b*M)
* where b = 2.0 / average.
* Such distributions are limited below by the masses of
* the constituents quarks, and above from the mass of decaying cluster C.
* The choice of which of the two mass distributions to use for each of the
* two cluster children is dictated by iRemnant (see below).
* If the number of attempts to extract a pair of mass values that are
* kinematically acceptable is above some fixed number (max_loop, see below)
* the method gives up and returns false; otherwise, when it succeeds, it
* returns true.
*
* These distributions have been modified from HERWIG:
* Before these were:
* Mclu1 = m1 + (Mclu - m1 - m2)*pow( rnd(), 1.0/exponent1 );
* The new one coded here is a more efficient version, same density
* but taking into account 'in phase space from' beforehand
***************************/
// hard cluster
if(!soft) {
return pow(UseRandom::rnd(pow((M-m1-m2-m)*UnitRemoval::InvE, expt),
pow(m*UnitRemoval::InvE, expt)), 1./expt
)*UnitRemoval::E + m1;
}
// Otherwise it uses a soft mass distribution
else {
static const InvEnergy b = 2.0 / _btClM;
Energy max = M-m1-m2-2.0*m;
double rmin = b*max;
rmin = ( rmin < 50 ) ? exp(-rmin) : 0.;
double r1;
do {
r1 = UseRandom::rnd(rmin, 1.0) * UseRandom::rnd(rmin, 1.0);
}
while (r1 < rmin);
return m1 + m - log(r1)/b;
}
}
void ClusterFissioner::calculateKinematics(const Lorentz5Momentum & pClu,
const Lorentz5Momentum & p0Q1,
const bool toHadron1,
const bool toHadron2,
Lorentz5Momentum & pClu1,
Lorentz5Momentum & pClu2,
Lorentz5Momentum & pQ1,
Lorentz5Momentum & pQbar,
Lorentz5Momentum & pQ,
Lorentz5Momentum & pQ2bar) const {
/******************
* This method solves the kinematics of the two body cluster decay:
* C (Q1 Q2bar) ---> C1 (Q1 Qbar) + C2 (Q Q2bar)
* In input we receive the momentum of C, pClu, and the momentum
* of the quark Q1 (constituent of C), p0Q1, both in the LAB frame.
* Furthermore, two boolean variables inform whether the two fission
* products (C1, C2) decay immediately into a single hadron (in which
* case the cluster itself is identify with that hadron) and we do
* not have to solve the kinematics of the components (Q1,Qbar) for
* C1 and (Q,Q2bar) for C2.
* The output is given by the following momenta (all 5-components,
* and all in the LAB frame):
* pClu1 , pClu2 respectively of C1 , C2
* pQ1 , pQbar respectively of Q1 , Qbar in C1
* pQ , pQ2bar respectively of Q , Q2 in C2
* The assumption, suggested from the string model, is that, in C frame,
* C1 and its constituents Q1 and Qbar are collinear, and collinear to
* the direction of Q1 in C (that is before cluster decay); similarly,
* (always in the C frame) C2 and its constituents Q and Q2bar are
* collinear (and therefore anti-collinear with C1,Q1,Qbar).
* The solution is then obtained by using Lorentz boosts, as follows.
* The kinematics of C1 and C2 is solved in their parent C frame,
* and then boosted back in the LAB. The kinematics of Q1 and Qbar
* is solved in their parent C1 frame and then boosted back in the LAB;
* similarly, the kinematics of Q and Q2bar is solved in their parent
* C2 frame and then boosted back in the LAB. In each of the three
* "two-body decay"-like cases, we use the fact that the direction
* of the motion of the decay products is known in the rest frame of
* their parent. This is obvious for the first case in which the
* parent rest frame is C; but it is also true in the other two cases
* where the rest frames are C1 and C2. This is because C1 and C2
* are boosted w.r.t. C in the same direction where their components,
* respectively (Q1,Qbar) and (Q,Q2bar) move in C1 and C2 rest frame
* respectively.
* Of course, although the notation used assumed that C = (Q1 Q2bar)
* where Q1 is a quark and Q2bar an antiquark, indeed everything remain
* unchanged also in all following cases:
* Q1 quark, Q2bar antiquark; --> Q quark;
* Q1 antiquark , Q2bar quark; --> Q antiquark;
* Q1 quark, Q2bar diquark; --> Q quark
* Q1 antiquark, Q2bar anti-diquark; --> Q antiquark
* Q1 diquark, Q2bar quark --> Q antiquark
* Q1 anti-diquark, Q2bar antiquark; --> Q quark
**************************/
// Calculate the unit three-vector, in the C frame, along which
// all of the constituents and children clusters move.
Lorentz5Momentum u(p0Q1);
u.boost( -pClu.boostVector() ); // boost from LAB to C
// the unit three-vector is then u.vect().unit()
// Calculate the momenta of C1 and C2 in the (parent) C frame first,
// where the direction of C1 is u.vect().unit(), and then boost back in the
// LAB frame.
if (pClu.m() < pClu1.mass() + pClu2.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (A)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu, pClu1.mass(), pClu2.mass(),
u.vect().unit(), pClu1, pClu2);
// In the case that cluster1 does not decay immediately into a single hadron,
// calculate the momenta of Q1 (as constituent of C1) and Qbar in the
// (parent) C1 frame first, where the direction of Q1 is u.vect().unit(),
// and then boost back in the LAB frame.
if(!toHadron1) {
if (pClu1.m() < pQ1.mass() + pQbar.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (B)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu1, pQ1.mass(), pQbar.mass(),
u.vect().unit(), pQ1, pQbar);
}
// In the case that cluster2 does not decay immediately into a single hadron,
// Calculate the momenta of Q and Q2bar (as constituent of C2) in the
// (parent) C2 frame first, where the direction of Q is u.vect().unit(),
// and then boost back in the LAB frame.
if(!toHadron2) {
if (pClu2.m() < pQ.mass() + pQ2bar.mass() ) {
throw Exception() << "Impossible Kinematics in ClusterFissioner::calculateKinematics() (C)"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pClu2, pQ.mass(), pQ2bar.mass(),
u.vect().unit(), pQ, pQ2bar);
}
}
void ClusterFissioner::calculatePositions(const Lorentz5Momentum & pClu,
const LorentzPoint & positionClu,
const Lorentz5Momentum & pClu1,
const Lorentz5Momentum & pClu2,
LorentzPoint & positionClu1,
LorentzPoint & positionClu2) const {
// Determine positions of cluster children.
// See Marc Smith's thesis, page 127, formulas (4.122) and (4.123).
Energy Mclu = pClu.m();
Energy Mclu1 = pClu1.m();
Energy Mclu2 = pClu2.m();
// Calculate the unit three-vector, in the C frame, along which
// children clusters move.
Lorentz5Momentum u(pClu1);
u.boost( -pClu.boostVector() ); // boost from LAB to C frame
// the unit three-vector is then u.vect().unit()
Energy pstarChild = Kinematics::pstarTwoBodyDecay(Mclu,Mclu1,Mclu2);
// First, determine the relative positions of the children clusters
// in the parent cluster reference frame.
Energy2 mag2 = u.vect().mag2();
InvEnergy fact = mag2>ZERO ? 1./sqrt(mag2) : 1./GeV;
Length x1 = ( 0.25*Mclu + 0.5*( pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
Length t1 = Mclu/_kappa - x1;
LorentzDistance distanceClu1( x1 * fact * u.vect(), t1 );
Length x2 = (-0.25*Mclu + 0.5*(-pstarChild + (sqr(Mclu2) - sqr(Mclu1))/(2.0*Mclu)))/_kappa;
Length t2 = Mclu/_kappa + x2;
LorentzDistance distanceClu2( x2 * fact * u.vect(), t2 );
// Then, transform such relative positions from the parent cluster
// reference frame to the Lab frame.
distanceClu1.boost( pClu.boostVector() );
distanceClu2.boost( pClu.boostVector() );
// Finally, determine the absolute positions in the Lab frame.
positionClu1 = positionClu + distanceClu1;
positionClu2 = positionClu + distanceClu2;
}
bool ClusterFissioner::ProbabilityFunction(double scale, double threshold) {
double cut = UseRandom::rnd(0.0,1.0);
return 1./(1.+pow(abs((threshold-_probShift)/scale),_probPowFactor)) > cut ? true : false;
}
bool ClusterFissioner::ProbabilityFunctionPower(double Mass, double threshold) {
double cut = UseRandom::rnd(0.0,1.0);
if ((Mass-threshold)<=0)
return false;
return 1.0/(1.0 + _probPowFactor*pow(1.0/(Mass-threshold),_clPowLight)) > cut ? true : false;
}
bool ClusterFissioner::isHeavy(tcClusterPtr clu) {
// particle data for constituents
tcPDPtr cptr[3]={tcPDPtr(),tcPDPtr(),tcPDPtr()};
bool hasDiquark=0;
for(size_t ix=0;ix<min(clu->numComponents(),3);++ix) {
cptr[ix]=clu->particle(ix)->dataPtr();
// Assuming diquark masses are ordered with larger id corresponding to larger masses
if (DiquarkMatcher::Check(*(cptr[ix]))) {
hasDiquark=true;
break;
}
}
// different parameters for exotic, bottom and charm clusters
double clpow = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clPowLight : _clPowExotic;
Energy clmax = !spectrum()->isExotic(cptr[0],cptr[1],cptr[1]) ? _clMaxLight : _clMaxExotic;
// if no heavy quark is found in the cluster, but diquarks are present use
// different ClMax and ClPow
if ( hasDiquark) {
clpow = _clPowDiquark;
clmax = _clMaxDiquark;
}
for ( const long& id : spectrum()->heavyHadronizingQuarks() ) {
if ( spectrum()->hasHeavy(id,cptr[0],cptr[1],cptr[1])) {
clpow = _clPowHeavy[id];
clmax = _clMaxHeavy[id];
}
}
// required test for SUSY clusters, since aboveCutoff alone
// cannot guarantee (Mc > m1 + m2 + 2*m) in cut()
static const Energy minmass
= getParticleData(ParticleID::d)->constituentMass();
bool aboveCutoff = false, canSplitMinimally = false;
// static kinematic threshold
if(_kinematicThresholdChoice == 0) {
aboveCutoff = (
pow(clu->mass()*UnitRemoval::InvE , clpow)
>
pow(clmax*UnitRemoval::InvE, clpow)
+ pow(clu->sumConstituentMasses()*UnitRemoval::InvE, clpow)
);
canSplitMinimally = clu->mass() > clu->sumConstituentMasses() + 2.0 * minmass;
}
// dynamic kinematic threshold
else if(_kinematicThresholdChoice == 1) {
//some smooth probablity function to create a dynamic thershold
double scale = pow(clu->mass()/GeV , clpow);
double threshold = pow(clmax/GeV, clpow)
+ pow(clu->sumConstituentMasses()/GeV, clpow);
aboveCutoff = ProbabilityFunction(scale,threshold);
scale = clu->mass()/GeV;
threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
canSplitMinimally = ProbabilityFunction(scale,threshold);
}
// probablistic kinematic threshold
else if(_kinematicThresholdChoice == 2) {
// Consistent power law for CF probability
double Mass = clu->mass()/GeV;
double threshold = clu->sumConstituentMasses()/GeV + 2.0 * minmass/GeV;
aboveCutoff = ProbabilityFunctionPower(Mass,threshold + clmax/GeV);
canSplitMinimally = Mass - threshold>ZERO;
}
return aboveCutoff && canSplitMinimally;
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 4:26 PM (21 h, 49 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4017746
Default Alt Text
(66 KB)

Event Timeline