Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8309685
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
14 KB
Subscribers
None
View Options
diff --git a/Shower/Default/QTildeSudakov.cc b/Shower/Default/QTildeSudakov.cc
--- a/Shower/Default/QTildeSudakov.cc
+++ b/Shower/Default/QTildeSudakov.cc
@@ -1,457 +1,459 @@
// -*- C++ -*-
//
// QTildeSudakov.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the QTildeSudakov class.
//
#include "QTildeSudakov.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/PDT/ParticleData.h"
#include "ThePEG/EventRecord/Event.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "Herwig++/Shower/Default/FS_QTildeShowerKinematics1to2.h"
#include "Herwig++/Shower/Default/IS_QTildeShowerKinematics1to2.h"
#include "Herwig++/Shower/Default/Decay_QTildeShowerKinematics1to2.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig++/Shower/Base/ShowerVertex.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "Herwig++/Shower/ShowerHandler.h"
#include "Herwig++/Shower/Base/Evolver.h"
#include "Herwig++/Shower/Base/PartnerFinder.h"
#include "Herwig++/Shower/Base/ShowerModel.h"
#include "Herwig++/Shower/Base/KinematicsReconstructor.h"
using namespace Herwig;
DescribeNoPIOClass<QTildeSudakov,Herwig::SudakovFormFactor>
describeQTildeSudakov ("Herwig::QTildeSudakov","HwShower.so");
void QTildeSudakov::Init() {
static ClassDocumentation<QTildeSudakov> documentation
("The QTildeSudakov class implements the Sudakov form factor for ordering it"
" qtilde");
}
bool QTildeSudakov::guessTimeLike(Energy2 &t,Energy2 tmin,double enhance) {
Energy2 told = t;
// calculate limits on z and if lower>upper return
if(!computeTimeLikeLimits(t)) return false;
// guess values of t and z
t = guesst(told,0,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(0,ids_));
// actual values for z-limits
if(!computeTimeLikeLimits(t)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::guessSpaceLike(Energy2 &t, Energy2 tmin, const double x,
double enhance) {
Energy2 told = t;
// calculate limits on z if lower>upper return
if(!computeSpaceLikeLimits(t,x)) return false;
// guess values of t and z
t = guesst(told,1,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(1,ids_));
// actual values for z-limits
if(!computeSpaceLikeLimits(t,x)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::PSVeto(const Energy2 t) {
// still inside PS, return true if outside
// check vs overestimated limits
if(z() < zLimits().first || z() > zLimits().second) return true;
// compute the pts
Energy2 pt2=sqr(z()*(1.-z()))*t-masssquared_[1]*(1.-z())-masssquared_[2]*z();
if(ids_[0]!=ParticleID::g) pt2+=z()*(1.-z())*masssquared_[0];
// if pt2<0 veto
if(pt2<pT2min()) return true;
// otherwise calculate pt and return
pT(sqrt(pt2));
return false;
}
ShoKinPtr QTildeSudakov::generateNextTimeBranching(const Energy startingScale,
const IdList &ids,const bool cc,
double enhance) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z(0.);
phi(0.);
// perform initialization
Energy2 tmax(sqr(startingScale)),tmin;
initialize(ids,tmin,cc);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// calculate next value of t using veto algorithm
Energy2 t(tmax);
do {
if(!guessTimeLike(t,tmin,enhance)) break;
}
while(PSVeto(t) || SplittingFnVeto(z()*(1.-z())*t,ids,true) ||
alphaSVeto(sqr(z()*(1.-z()))*t));
if(t > ZERO) q_ = sqrt(t);
else q_ = -1.*MeV;
- phi(Constants::twopi*UseRandom::rnd());
+ phi(0.);
if(q_ < ZERO) return ShoKinPtr();
// return the ShowerKinematics object
return createFinalStateBranching(q_,z(),phi(),pT());
}
ShoKinPtr QTildeSudakov::
generateNextSpaceBranching(const Energy startingQ,
const IdList &ids,
double x,bool cc,
double enhance,
Ptr<BeamParticleData>::transient_const_pointer beam) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z(0.);
phi(0.);
// perform the initialization
Energy2 tmax(sqr(startingQ)),tmin;
initialize(ids,tmin,cc);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// extract the partons which are needed for the PDF veto
// Different order, incoming parton is id = 1, outgoing are id=0,2
tcPDPtr parton0 = getParticleData(ids[0]);
tcPDPtr parton1 = getParticleData(ids[1]);
if(cc) {
if(parton0->CC()) parton0 = parton0->CC();
if(parton1->CC()) parton1 = parton1->CC();
}
// calculate next value of t using veto algorithm
Energy2 t(tmax),pt2(ZERO);
do {
if(!guessSpaceLike(t,tmin,x,enhance)) break;
pt2=sqr(1.-z())*t-z()*masssquared_[2];
}
while(z() > zLimits().second ||
SplittingFnVeto((1.-z())*t/z(),ids,true) ||
alphaSVeto(sqr(1.-z())*t) ||
PDFVeto(t,x,parton0,parton1,beam) || pt2 < pT2min() );
if(t > ZERO && zLimits().first < zLimits().second) q_ = sqrt(t);
else return ShoKinPtr();
phi(Constants::twopi*UseRandom::rnd());
pT(sqrt(pt2));
// create the ShowerKinematics and return it
return createInitialStateBranching(q_,z(),phi(),pT());
}
void QTildeSudakov::initialize(const IdList & ids, Energy2 & tmin,const bool cc) {
ids_=ids;
if(cc) {
for(unsigned int ix=0;ix<ids.size();++ix) {
if(getParticleData(ids[ix])->CC()) ids_[ix]*=-1;
}
}
tmin = cutOffOption() != 2 ? ZERO : 4.*pT2min();
masses_ = virtualMasses(ids);
masssquared_.clear();
for(unsigned int ix=0;ix<masses_.size();++ix) {
masssquared_.push_back(sqr(masses_[ix]));
if(ix>0) tmin=max(masssquared_[ix],tmin);
}
}
ShoKinPtr QTildeSudakov::generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const bool cc,
double enhance) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to this method.
q_ = Constants::MaxEnergy;
z(0.);
phi(0.);
// perform initialisation
Energy2 tmax(sqr(stoppingScale)),tmin;
initialize(ids,tmin,cc);
tmin=sqr(startingScale);
// check some branching possible
if(tmax<=tmin) return ShoKinPtr();
// perform the evolution
Energy2 t(tmin),pt2(-MeV2);
do {
if(!guessDecay(t,tmax,minmass,enhance)) break;
pt2 = sqr(1.-z())*(t-masssquared_[0])-z()*masssquared_[2];
}
while(SplittingFnVeto((1.-z())*t/z(),ids,true)||
alphaSVeto(sqr(1.-z())*t) ||
pt2<pT2min() ||
t*(1.-z())>masssquared_[0]-sqr(minmass));
if(t > ZERO) {
q_ = sqrt(t);
pT(sqrt(pt2));
}
else return ShoKinPtr();
phi(Constants::twopi*UseRandom::rnd());
// create the ShowerKinematics object
return createDecayBranching(q_,z(),phi(),pT());
}
bool QTildeSudakov::guessDecay(Energy2 &t,Energy2 tmax, Energy minmass,
double enhance) {
// previous scale
Energy2 told = t;
// overestimated limits on z
if(tmax<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
Energy2 tm2 = tmax-masssquared_[0];
Energy tm = sqrt(tm2);
pair<double,double> limits=make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
zLimits(limits);
if(zLimits().second<zLimits().first) {
t=-1.0*GeV2;
return false;
}
// guess values of t and z
t = guesst(told,2,ids_,enhance,ids_[1]==ids_[2]);
z(guessz(2,ids_));
// actual values for z-limits
if(t<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
tm2 = t-masssquared_[0];
tm = sqrt(tm2);
limits=make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
zLimits(limits);
if(t>tmax||zLimits().second<zLimits().first) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool QTildeSudakov::computeTimeLikeLimits(Energy2 & t) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
// special case for gluon radiating
pair<double,double> limits;
if(ids_[0]==ParticleID::g||ids_[0]==ParticleID::gamma) {
// no emission possible
if(t<16.*masssquared_[1]) {
t=-1.*GeV2;
return false;
}
// overestimate of the limits
limits.first = 0.5*(1.-sqrt(1.-4.*sqrt((masssquared_[1]+pT2min())/t)));
limits.second = 1.-limits.first;
}
// special case for radiated particle is gluon
else if(ids_[2]==ParticleID::g||ids_[2]==ParticleID::gamma) {
limits.first = sqrt((masssquared_[1]+pT2min())/t);
limits.second = 1.-sqrt((masssquared_[2]+pT2min())/t);
}
else if(ids_[1]==ParticleID::g||ids_[1]==ParticleID::gamma) {
limits.second = sqrt((masssquared_[2]+pT2min())/t);
limits.first = 1.-sqrt((masssquared_[1]+pT2min())/t);
}
else {
limits.first = (masssquared_[1]+pT2min())/t;
limits.second = 1.-(masssquared_[2]+pT2min())/t;
}
if(limits.first>=limits.second) {
t=-1.*GeV2;
return false;
}
zLimits(limits);
return true;
}
bool QTildeSudakov::computeSpaceLikeLimits(Energy2 & t, double x) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
pair<double,double> limits;
// compute the limits
limits.first = x;
double yy = 1.+0.5*masssquared_[2]/t;
limits.second = yy - sqrt(sqr(yy)-1.+pT2min()/t);
// return false if lower>upper
zLimits(limits);
if(limits.second<limits.first) {
t=-1.*GeV2;
return false;
}
else
return true;
}
double QTildeSudakov::generatePhi(ShowerParticle & particle, const IdList & ids,
ShoKinPtr kinematics) {
// no correlations, return flat phi
if(! ShowerHandler::currentHandler()->evolver()->correlations())
return Constants::twopi*UseRandom::rnd();
// get the spin density matrix and the mapping
RhoDMatrix mapping;
SpinPtr inspin;
bool needMapping = getMapping(inspin,mapping,particle,kinematics);
// set the decayed flag
inspin->decay();
// get the spin density matrix
RhoDMatrix rho=inspin->rhoMatrix();
// map to the shower basis if needed
if(needMapping) {
RhoDMatrix rhop(rho.iSpin());
for(int ixa=0;ixa<rho.iSpin();++ixa) {
for(int ixb=0;ixb<rho.iSpin();++ixb) {
for(int iya=0;iya<rho.iSpin();++iya) {
for(int iyb=0;iyb<rho.iSpin();++iyb) {
rhop(ixa,ixb) += rho(iya,iyb)*mapping(iya,ixa)*conj(mapping(iyb,ixb));
}
}
}
}
rho = rhop;
}
// get the kinematic variables
double phi0 = 0.;
double z = kinematics->z();
Energy2 t = z*(1.-z)*sqr(kinematics->scale());
// extract the phi of the previous branching
if(!particle.parents().empty()) {
tPPtr parent = particle.parents()[0];
if(parent) {
tShowerParticlePtr showerParent = dynamic_ptr_cast<tShowerParticlePtr>(parent);
if(showerParent) {
phi0 = showerParent->showerKinematics()->phi();
if(parent->children()[0]==&particle) {
phi0 = phi0;
}
else if(parent->children()[1]==&particle) {
phi0 -= Constants::pi;
if(phi0<0.) phi0 += Constants::twopi;
}
else
assert(false);
}
}
}
// generate the azimuthal angle
double phi;
Complex wgt;
vector<pair<int,Complex> >
wgts = splittingFn()->generatePhi(particle,kinematics,z,t,ids,rho);
static const Complex ii(0.,1.);
do {
phi = Constants::twopi*UseRandom::rnd();
wgt = 0.;
for(unsigned int ix=0;ix<wgts.size();++ix) {
if(wgts[ix].first==0)
- wgt += wgts[ix].second;
+ wgt += wgts[ix].second;
else
- wgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
+ wgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
+ }
+ if(wgt.real()>1.) {
+ cerr << "testing weight problem " << wgt << " " << wgt.real()-1.
+ << " " << ids[0] << " " << ids[1] << " " << ids[2] << "\n";
}
}
while(wgt.real()<UseRandom::rnd());
// compute the matrix element for spin correlations
DecayMatrixElement
me(splittingFn()->matrixElement(particle,kinematics,z,t,ids,phi));
// create the vertex
SVertexPtr Svertex(new_ptr(ShowerVertex()));
// set the matrix element
Svertex->ME().reset(me);
// set the incoming particle for the vertex
inspin->decayVertex(Svertex);
// return the azimuthal angle (remember this is phi w.r.t. the previous branching)
- phi -= phi0;
- if(phi<0.) phi += Constants::twopi;
return phi;
}
Energy QTildeSudakov::calculateScale(double zin, Energy pt, IdList ids,
unsigned int iopt) {
Energy2 tmin;
initialize(ids,tmin,false);
// final-state branching
if(iopt==0) {
Energy2 scale=(sqr(pt)+masssquared_[1]*(1.-zin)+masssquared_[2]*zin);
if(ids[0]!=ParticleID::g) scale -= zin*(1.-zin)*masssquared_[0];
scale /= sqr(zin*(1-zin));
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==1) {
Energy2 scale=(sqr(pt)+zin*masssquared_[2])/sqr(1.-zin);
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==2) {
Energy2 scale = (sqr(pt)+zin*masssquared_[2])/sqr(1.-zin)+masssquared_[0];
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else {
throw Exception() << "Unknown option in QTildeSudakov::calculateScale() "
<< "iopt = " << iopt << Exception::runerror;
}
}
ShoKinPtr QTildeSudakov::createFinalStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(FS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr QTildeSudakov::createInitialStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(IS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr QTildeSudakov::createDecayBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(Decay_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 4:11 PM (21 h, 26 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4023399
Default Alt Text
(14 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment