Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8309105
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
21 KB
Subscribers
None
View Options
diff --git a/include/Rivet/Math/MathUtils.hh b/include/Rivet/Math/MathUtils.hh
--- a/include/Rivet/Math/MathUtils.hh
+++ b/include/Rivet/Math/MathUtils.hh
@@ -1,579 +1,579 @@
// -*- C++ -*-
#ifndef RIVET_MathUtils_HH
#define RIVET_MathUtils_HH
#include "Rivet/Math/MathHeader.hh"
#include "Rivet/Tools/RivetBoost.hh"
#include <cassert>
namespace Rivet {
/// @name Comparison functions for safe (floating point) equality tests
//@{
/// @brief Compare a number to zero
///
/// This version for floating point types has a degree of fuzziness expressed
/// by the absolute @a tolerance parameter, for floating point safety.
template <typename NUM>
inline typename boost::enable_if_c<boost::is_floating_point<NUM>::value, bool>::type
isZero(NUM val, double tolerance=1e-8) {
return fabs(val) < tolerance;
}
/// @brief Compare a number to zero
///
/// SFINAE template specialisation for integers, since there is no FP
/// precision issue.
template <typename NUM>
inline typename boost::enable_if_c<boost::is_integral<NUM>::value, bool>::type
isZero(NUM val, double UNUSED(tolerance)=1e-8) {
return val == 0;
}
/// @brief Compare two numbers for equality with a degree of fuzziness
///
/// This version for floating point types (if any argument is FP) has a degree
/// of fuzziness expressed by the fractional @a tolerance parameter, for
/// floating point safety.
template <typename N1, typename N2>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value &&
(boost::is_floating_point<N1>::value || boost::is_floating_point<N2>::value), bool>::type
fuzzyEquals(N1 a, N2 b, double tolerance=1e-5) {
const double absavg = (std::abs(a) + std::abs(b))/2.0;
const double absdiff = std::abs(a - b);
const bool rtn = (isZero(a) && isZero(b)) || absdiff < tolerance*absavg;
return rtn;
}
/// @brief Compare two numbers for equality with a degree of fuzziness
///
/// Simpler SFINAE template specialisation for integers, since there is no FP
/// precision issue.
template <typename N1, typename N2>
inline typename boost::enable_if_c<
boost::is_integral<N1>::value && boost::is_integral<N2>::value, bool>::type
fuzzyEquals(N1 a, N2 b, double UNUSED(tolerance)=1e-5) {
return a == b;
}
/// @brief Compare two numbers for >= with a degree of fuzziness
///
/// The @a tolerance parameter on the equality test is as for @c fuzzyEquals.
template <typename N1, typename N2>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value, bool>::type
fuzzyGtrEquals(N1 a, N2 b, double tolerance=1e-5) {
return a > b || fuzzyEquals(a, b, tolerance);
}
/// @brief Compare two floating point numbers for <= with a degree of fuzziness
///
/// The @a tolerance parameter on the equality test is as for @c fuzzyEquals.
template <typename N1, typename N2>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value, bool>::type
fuzzyLessEquals(N1 a, N2 b, double tolerance=1e-5) {
return a < b || fuzzyEquals(a, b, tolerance);
}
//@}
/// @name Ranges and intervals
//@{
/// Represents whether an interval is open (non-inclusive) or closed (inclusive).
///
/// For example, the interval \f$ [0, \pi) \f$ is closed (an inclusive
/// boundary) at 0, and open (a non-inclusive boundary) at \f$ \pi \f$.
enum RangeBoundary { OPEN=0, SOFT=0, CLOSED=1, HARD=1 };
/// @brief Determine if @a value is in the range @a low to @a high, for floating point numbers
///
/// Interval boundary types are defined by @a lowbound and @a highbound.
template <typename N1, typename N2, typename N3>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value && boost::is_arithmetic<N3>::value, bool>::type
inRange(N1 value, N2 low, N3 high,
RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
if (lowbound == OPEN && highbound == OPEN) {
return (value > low && value < high);
} else if (lowbound == OPEN && highbound == CLOSED) {
return (value > low && value <= high);
} else if (lowbound == CLOSED && highbound == OPEN) {
return (value >= low && value < high);
} else { // if (lowbound == CLOSED && highbound == CLOSED) {
return (value >= low && value <= high);
}
}
/// @brief Determine if @a value is in the range @a low to @a high, for floating point numbers
///
/// Interval boundary types are defined by @a lowbound and @a highbound.
/// Closed intervals are compared fuzzily.
template <typename N1, typename N2, typename N3>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value && boost::is_arithmetic<N3>::value, bool>::type
fuzzyInRange(N1 value, N2 low, N3 high,
RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
if (lowbound == OPEN && highbound == OPEN) {
return (value > low && value < high);
} else if (lowbound == OPEN && highbound == CLOSED) {
return (value > low && fuzzyLessEquals(value, high));
} else if (lowbound == CLOSED && highbound == OPEN) {
return (fuzzyGtrEquals(value, low) && value < high);
} else { // if (lowbound == CLOSED && highbound == CLOSED) {
return (fuzzyGtrEquals(value, low) && fuzzyLessEquals(value, high));
}
}
/// Alternative version of inRange which accepts a pair for the range arguments.
template <typename N1, typename N2, typename N3>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value && boost::is_arithmetic<N3>::value, bool>::type
inRange(N1 value, pair<N2, N3> lowhigh,
RangeBoundary lowbound=CLOSED, RangeBoundary highbound=OPEN) {
return inRange(value, lowhigh.first, lowhigh.second, lowbound, highbound);
}
// Alternative forms, with snake_case names and boundary types in names rather than as args -- from MCUtils
/// @brief Boolean function to determine if @a value is within the given range
///
/// @note The interval is closed (inclusive) at the low end, and open (exclusive) at the high end.
template <typename N1, typename N2, typename N3>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value && boost::is_arithmetic<N3>::value, bool>::type
in_range(N1 val, N2 low, N3 high) {
return inRange(val, low, high, CLOSED, OPEN);
}
/// @brief Boolean function to determine if @a value is within the given range
///
/// @note The interval is closed at both ends.
template <typename N1, typename N2, typename N3>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value && boost::is_arithmetic<N3>::value, bool>::type
in_closed_range(N1 val, N2 low, N3 high) {
return inRange(val, low, high, CLOSED, CLOSED);
}
/// @brief Boolean function to determine if @a value is within the given range
///
/// @note The interval is open at both ends.
template <typename N1, typename N2, typename N3>
inline typename boost::enable_if_c<
boost::is_arithmetic<N1>::value && boost::is_arithmetic<N2>::value && boost::is_arithmetic<N3>::value, bool>::type
in_open_range(N1 val, N2 low, N3 high) {
return inRange(val, low, high, OPEN, OPEN);
}
/// @todo Add pair-based versions of the named range-boundary functions
//@}
/// @name Miscellaneous numerical helpers
//@{
/// Named number-type squaring operation.
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, NUM>::type
sqr(NUM a) {
return a*a;
}
/// @brief Named number-type addition in quadrature operation.
///
/// @note Result has the sqrt operation applied.
/// @todo When std::common_type can be used, generalise to multiple numeric types with appropriate return type.
// template <typename N1, typename N2>
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, NUM>::type
//std::common_type<N1, N2>::type
add_quad(NUM a, NUM b) {
return sqrt(a*a + b*b);
}
/// Named number-type addition in quadrature operation.
///
/// @note Result has the sqrt operation applied.
/// @todo When std::common_type can be used, generalise to multiple numeric types with appropriate return type.
// template <typename N1, typename N2>
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, NUM>::type
//std::common_type<N1, N2, N3>::type
add_quad(NUM a, NUM b, NUM c) {
return sqrt(a*a + b*b + c*c);
}
/// Return a/b, or @a fail if b = 0
/// @todo When std::common_type can be used, generalise to multiple numeric types with appropriate return type.
inline double safediv(double num, double den, double fail=0.0) {
return (!isZero(den)) ? num/den : fail;
}
/// A more efficient version of pow for raising numbers to integer powers.
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, NUM>::type
intpow(NUM val, unsigned int exp) {
assert(exp >= 0);
if (exp == 0) return (NUM) 1;
else if (exp == 1) return val;
return val * intpow(val, exp-1);
}
/// Find the sign of a number
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, int>::type
sign(NUM val) {
if (isZero(val)) return ZERO;
const int valsign = (val > 0) ? PLUS : MINUS;
return valsign;
}
//@}
/// @name Physics statistical distributions
//@{
/// @brief CDF for the Breit-Wigner distribution
inline double cdfBW(double x, double mu, double gamma) {
// normalize to (0;1) distribution
const double xn = (x - mu)/gamma;
return std::atan(xn)/M_PI + 0.5;
}
/// @brief Inverse CDF for the Breit-Wigner distribution
inline double invcdfBW(double p, double mu, double gamma) {
const double xn = std::tan(M_PI*(p-0.5));
return gamma*xn + mu;
}
//@}
/// @name Binning helper functions
//@{
/// @brief Make a list of @a nbins + 1 values equally spaced between @a start and @a end inclusive.
///
/// NB. The arg ordering and the meaning of the nbins variable is "histogram-like",
/// as opposed to the Numpy/Matlab version.
inline vector<double> linspace(size_t nbins, double start, double end, bool include_end=true) {
assert(end >= start);
assert(nbins > 0);
vector<double> rtn;
const double interval = (end-start)/static_cast<double>(nbins);
double edge = start;
for (size_t i = 0; i < nbins; ++i) {
rtn.push_back(edge);
edge += interval;
}
assert(rtn.size() == nbins);
if (include_end) rtn.push_back(end); // exact end, not result of n * interval
return rtn;
}
/// @brief Make a list of @a nbins + 1 values exponentially spaced between @a start and @a end inclusive.
///
/// NB. The arg ordering and the meaning of the nbins variable is "histogram-like",
/// as opposed to the Numpy/Matlab version, and the start and end arguments are expressed
/// in "normal" space, rather than as the logarithms of the start/end values as in Numpy/Matlab.
inline vector<double> logspace(size_t nbins, double start, double end, bool include_end=true) {
assert(end >= start);
assert(start > 0);
assert(nbins > 0);
const double logstart = std::log(start);
const double logend = std::log(end);
const vector<double> logvals = linspace(nbins, logstart, logend);
assert(logvals.size() == nbins+1);
vector<double> rtn; rtn.reserve(logvals.size());
rtn.push_back(start);
for (size_t i = 1; i < logvals.size()-1; ++i) {
rtn.push_back(std::exp(logvals[i]));
}
assert(rtn.size() == nbins);
if (include_end) rtn.push_back(end);
return rtn;
}
/// @brief Make a list of @a nbins + 1 values spaced for equal area
/// Breit-Wigner binning between @a start and @a end inclusive. @a
/// mu and @a gamma are the Breit-Wigner parameters.
///
/// @note The arg ordering and the meaning of the nbins variable is "histogram-like",
/// as opposed to the Numpy/Matlab version, and the start and end arguments are expressed
/// in "normal" space.
inline vector<double> bwspace(size_t nbins, double start, double end, double mu, double gamma) {
assert(end >= start);
assert(nbins > 0);
const double pmin = cdfBW(start, mu, gamma);
const double pmax = cdfBW(end, mu, gamma);
const vector<double> edges = linspace(nbins, pmin, pmax);
assert(edges.size() == nbins+1);
vector<double> rtn;
foreach (double edge, edges) {
rtn.push_back(invcdfBW(edge, mu, gamma));
}
assert(rtn.size() == nbins+1);
return rtn;
}
/// @brief Return the bin index of the given value, @a val, given a vector of bin edges
///
/// NB. The @a binedges vector must be sorted
template <typename NUM1, typename NUM2>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM1>::value && boost::is_floating_point<NUM2>::value, int>::type
binIndex(NUM1 val, const vector<NUM2>& binedges) {
/// @todo Use std::common_type<NUM1, NUM2>::type x = val; ?
/// @todo Add linear & log guesses, and binary split via upper_bound for large binnings
if (!inRange(val, binedges.front(), binedges.back())) return -1; //< Out of histo range
int index = -1;
for (size_t i = 1; i < binedges.size(); ++i) {
if (val < binedges[i]) {
index = i-1;
break;
}
}
assert(inRange(index, -1, int(binedges.size())-1));
return index;
}
//@}
/// @name Discrete statistics functions
//@{
/// Calculate the median of a sample
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, NUM>::type
median(const vector<NUM>& sample) {
vector<NUM> tmp = sample;
std::sort(tmp.begin(), tmp.end());
const size_t imid = tmp.size()/2; // len1->idx0, len2->idx1, len3->idx1, len4->idx2, ...
if (sample.size() % 2 == 0) return (tmp.at(imid-1) + tmp.at(imid)) / 2.0;
else return tmp.at(imid);
}
/// Calculate the mean of a sample
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, double>::type
mean(const vector<NUM>& sample) {
double mean = 0.0;
for (size_t i = 0; i < sample.size(); ++i) {
mean += sample[i];
}
return mean/sample.size();
}
// Calculate the error on the mean, assuming Poissonian errors
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, double>::type
mean_err(const vector<NUM>& sample) {
double mean_e = 0.0;
for (size_t i = 0; i < sample.size(); ++i) {
mean_e += sqrt(sample[i]);
}
return mean_e/sample.size();
}
/// Calculate the covariance (variance) between two samples
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, double>::type
covariance(const vector<NUM>& sample1, const vector<NUM>& sample2) {
const double mean1 = mean(sample1);
const double mean2 = mean(sample2);
const size_t N = sample1.size();
double cov = 0.0;
for (size_t i = 0; i < N; i++) {
const double cov_i = (sample1[i] - mean1)*(sample2[i] - mean2);
cov += cov_i;
}
if (N > 1) return cov/(N-1);
else return 0.0;
}
/// Calculate the error on the covariance (variance) of two samples, assuming poissonian errors
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, double>::type
covariance_err(const vector<NUM>& sample1, const vector<NUM>& sample2) {
const double mean1 = mean(sample1);
const double mean2 = mean(sample2);
const double mean1_e = mean_err(sample1);
const double mean2_e = mean_err(sample2);
const size_t N = sample1.size();
double cov_e = 0.0;
for (size_t i = 0; i < N; i++) {
const double cov_i = (sqrt(sample1[i]) - mean1_e)*(sample2[i] - mean2) +
(sample1[i] - mean1)*(sqrt(sample2[i]) - mean2_e);
cov_e += cov_i;
}
if (N > 1) return cov_e/(N-1);
else return 0.0;
}
/// Calculate the correlation strength between two samples
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, double>::type
correlation(const vector<NUM>& sample1, const vector<NUM>& sample2) {
const double cov = covariance(sample1, sample2);
const double var1 = covariance(sample1, sample1);
const double var2 = covariance(sample2, sample2);
const double correlation = cov/sqrt(var1*var2);
const double corr_strength = correlation*sqrt(var2/var1);
return corr_strength;
}
/// Calculate the error of the correlation strength between two samples assuming Poissonian errors
template <typename NUM>
inline typename boost::enable_if_c<boost::is_arithmetic<NUM>::value, double>::type
correlation_err(const vector<NUM>& sample1, const vector<NUM>& sample2) {
const double cov = covariance(sample1, sample2);
const double var1 = covariance(sample1, sample1);
const double var2 = covariance(sample2, sample2);
const double cov_e = covariance_err(sample1, sample2);
const double var1_e = covariance_err(sample1, sample1);
const double var2_e = covariance_err(sample2, sample2);
// Calculate the correlation
const double correlation = cov/sqrt(var1*var2);
// Calculate the error on the correlation
const double correlation_err = cov_e/sqrt(var1*var2) -
cov/(2*pow(3./2., var1*var2)) * (var1_e * var2 + var1 * var2_e);
// Calculate the error on the correlation strength
const double corr_strength_err = correlation_err*sqrt(var2/var1) +
correlation/(2*sqrt(var2/var1)) * (var2_e/var1 - var2*var1_e/pow(2, var2));
return corr_strength_err;
}
//@}
/// @name Angle range mappings
//@{
/// @brief Reduce any number to the range [-2PI, 2PI]
///
/// Achieved by repeated addition or subtraction of 2PI as required. Used to
/// normalise angular measures.
inline double _mapAngleM2PITo2Pi(double angle) {
double rtn = fmod(angle, TWOPI);
if (isZero(rtn)) return 0;
assert(rtn >= -TWOPI && rtn <= TWOPI);
return rtn;
}
/// Map an angle into the range (-PI, PI].
inline double mapAngleMPiToPi(double angle) {
double rtn = _mapAngleM2PITo2Pi(angle);
if (isZero(rtn)) return 0;
- rtn = (rtn > PI ? rtn-TWOPI :
- rtn <= -PI ? rtn+TWOPI : rtn);
+ if (rtn > PI) rtn -= TWOPI;
+ if (rtn <= -PI) rtn += TWOPI;
assert(rtn > -PI && rtn <= PI);
return rtn;
}
/// Map an angle into the range [0, 2PI).
inline double mapAngle0To2Pi(double angle) {
double rtn = _mapAngleM2PITo2Pi(angle);
if (isZero(rtn)) return 0;
if (rtn < 0) rtn += TWOPI;
if (rtn == TWOPI) rtn = 0;
assert(rtn >= 0 && rtn < TWOPI);
return rtn;
}
/// Map an angle into the range [0, PI].
inline double mapAngle0ToPi(double angle) {
double rtn = fabs(mapAngleMPiToPi(angle));
if (isZero(rtn)) return 0;
assert(rtn > 0 && rtn <= PI);
return rtn;
}
/// Map an angle into the enum-specified range.
inline double mapAngle(double angle, PhiMapping mapping) {
switch (mapping) {
case MINUSPI_PLUSPI:
return mapAngleMPiToPi(angle);
case ZERO_2PI:
return mapAngle0To2Pi(angle);
case ZERO_PI:
return mapAngle0To2Pi(angle);
default:
throw Rivet::UserError("The specified phi mapping scheme is not implemented");
}
}
//@}
/// @name Phase space measure helpers
//@{
/// @brief Calculate the difference between two angles in radians
///
/// Returns in the range [0, PI].
inline double deltaPhi(double phi1, double phi2) {
return mapAngle0ToPi(phi1 - phi2);
}
/// Calculate the abs difference between two pseudorapidities
///
/// @note Just a cosmetic name for analysis code clarity.
inline double deltaEta(double eta1, double eta2) {
return fabs(eta1 - eta2);
}
/// Calculate the abs difference between two rapidities
///
/// @note Just a cosmetic name for analysis code clarity.
inline double deltaRap(double y1, double y2) {
return fabs(y1 - y2);
}
/// Calculate the distance between two points in 2D rapidity-azimuthal
/// ("\f$ \eta-\phi \f$") space. The phi values are given in radians.
inline double deltaR(double rap1, double phi1, double rap2, double phi2) {
const double dphi = deltaPhi(phi1, phi2);
return sqrt( sqr(rap1-rap2) + sqr(dphi) );
}
/// Calculate a rapidity value from the supplied energy @a E and longitudinal momentum @a pz.
inline double rapidity(double E, double pz) {
if (isZero(E - pz)) {
throw std::runtime_error("Divergent positive rapidity");
return MAXDOUBLE;
}
if (isZero(E + pz)) {
throw std::runtime_error("Divergent negative rapidity");
return -MAXDOUBLE;
}
return 0.5*log((E+pz)/(E-pz));
}
//@}
}
#endif
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 2:20 PM (10 h, 14 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4012497
Default Alt Text
(21 KB)
Attached To
rRIVETHG rivethg
Event Timeline
Log In to Comment