Page MenuHomeHEPForge

No OneTemporary

Index: trunk/src/beambeamsystem.cpp
===================================================================
--- trunk/src/beambeamsystem.cpp (revision 135)
+++ trunk/src/beambeamsystem.cpp (revision 136)
@@ -1,626 +1,672 @@
///////////////////////////////////////////////////////////////////////////
//
// Copyright 2010
//
// This file is part of starlight.
//
// starlight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// starlight is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with starlight. If not, see <http://www.gnu.org/licenses/>.
//
///////////////////////////////////////////////////////////////////////////
//
// File and Version Information:
// $Rev:: $: revision of last commit
// $Author:: $: author of last commit
// $Date:: $: date of last commit
//
// Description:
//
//
//
///////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <fstream>
#include <cmath>
#include "inputParameters.h"
#include "reportingUtils.h"
#include "starlightconstants.h"
#include "bessel.h"
#include "beambeamsystem.h"
using namespace std;
using namespace starlightConstants;
//______________________________________________________________________________
beamBeamSystem::beamBeamSystem(const beam& beam1,
const beam& beam2,
const inputParameters& input)
: _beamLorentzGamma(input.beamLorentzGamma()),
_beamBreakupMode (input.beamBreakupMode()),
_beam1 (beam1),
_beam2 (beam2),
_breakupProbabilities(0),
_breakupImpactParameterStep(1.007),
_breakupCutOff(10e-6)
{
init(input);
}
//______________________________________________________________________________
beamBeamSystem::beamBeamSystem(const inputParameters &input)
: _beamLorentzGamma(input.beamLorentzGamma()),
_beamBreakupMode (input.beamBreakupMode()),
_beam1 (input.beam1Z(),
input.beam1A(),
input.deuteronSlopePar(),
input.coherentProduction(),
input),
_beam2 (input.beam2Z(),
input.beam2A(),
input.deuteronSlopePar(),
input.coherentProduction(),
input),
_breakupProbabilities(0),
_breakupImpactParameterStep(1.007),
_breakupCutOff(10e-10)
{
init(input);
}
//______________________________________________________________________________
beamBeamSystem::~beamBeamSystem()
{ }
void beamBeamSystem::init(const inputParameters &p)
{
// Calculate beam gamma in CMS frame
double rap1 = acosh(p.beam1LorentzGamma());
double rap2 = -acosh(p.beam2LorentzGamma());
_cmsBoost = (rap1+rap2)/2.;
_beamLorentzGamma = cosh((rap1-rap2)/2);
_beam1.setBeamLorentzGamma(_beamLorentzGamma);
_beam2.setBeamLorentzGamma(_beamLorentzGamma);
generateBreakupProbabilities();
}
//______________________________________________________________________________
double
beamBeamSystem::probabilityOfBreakup(const double D) const
{
double bMin = (_beam1.nuclearRadius()+_beam2.nuclearRadius())/2.;
double pOfB = 0.; // PofB = 1 means that there will be a UPC event and PofB = 0 means no UPC
// Do pp here
if ((_beam1.Z() == 1) && (_beam1.A() == 1) && (_beam2.Z() == 1) && (_beam2.A() == 1)) {
double ppslope=19.8;
double GammaProfile = exp(-D * D / (2. * hbarc * hbarc * ppslope));
pOfB = (1. - GammaProfile) * (1. - GammaProfile);
// if (D < 2. * _beam1.nuclearRadius())
// //Should be the total of RNuc1+Rnuc2,used only beam #1
// PofB = 0.0;
// else
// PofB = 1.0;
return pOfB;
}
else if ( ( (_beam1.A() == 1) && (_beam2.A() != 1) ) || ((_beam1.A() != 1) && (_beam2.A() == 1)) ) {
// This is pA
if( _beam1.A() == 1 ){
bMin = _beam2.nuclearRadius() + 0.7;
}else if( _beam2.A() == 1 ){
bMin = _beam1.nuclearRadius() + 0.7;
}else{
cout<<"Some logical problem here!"<<endl;
}
if( D > bMin )pOfB=1.0;
return pOfB;
}
//use the lookup table and return...
pOfB = 1.;
if (D > 0.0) {
//Now we must determine which step number in d corresponds to this D,
// and use appropiate Ptot(D_i)
//int i = (int)(log(D / Bmin) / log(1.01));
int i = (int)(log(D / bMin) / log(_breakupImpactParameterStep));
if (i <= 0)
pOfB = _breakupProbabilities[0];
else{
if (i >= int(_breakupProbabilities.size()-1))
pOfB = _breakupProbabilities[_breakupProbabilities.size()-1];
else {
// const double DLow = Bmin * pow((1.01), i);
const double DLow = bMin * pow((_breakupImpactParameterStep), i);
// const double DeltaD = 0.01 * DLow;
const double DeltaD = (_breakupImpactParameterStep-1) * DLow;
const double DeltaP = _breakupProbabilities[i + 1] - _breakupProbabilities[i];
pOfB = _breakupProbabilities[i] + DeltaP * (D - DLow) / DeltaD;
}
}
}
return pOfB;
}
void
beamBeamSystem::generateBreakupProbabilities()
{
// Step = 1.007;//.01; //We will multiplicateively increase Biter by 1%
double bMin = (_beam1.nuclearRadius()+_beam2.nuclearRadius())/2.;
if ((_beam1.Z() != 1) && (_beam1.A() != 1) && (_beam2.Z() != 1) && _beam2.A() != 1) {
if (_beamBreakupMode == 1)
printInfo << "Hard Sphere Break criteria. b > " << 2. * _beam1.nuclearRadius() << endl;
if (_beamBreakupMode == 2)
printInfo << "Requiring XnXn [Coulomb] breakup. " << endl;
if (_beamBreakupMode == 3)
printInfo << "Requiring 1n1n [Coulomb only] breakup. " << endl;
if (_beamBreakupMode == 4)
printInfo << "Requiring both nuclei to remain intact. " << endl;
if (_beamBreakupMode == 5)
printInfo << "Requiring no hadronic interactions. " << endl;
if (_beamBreakupMode == 6)
printInfo << "Requiring breakup of one or both nuclei. " << endl;
if (_beamBreakupMode == 7)
printInfo << "Requiring breakup of one nucleus (Xn,0n). " << endl;
//pp may cause segmentation fault in here and it does not use this...
- double pOfBreakup = 0;
+ double pOfB = 0;
double b = bMin;
- while(1-pOfBreakup > _breakupCutOff)
+ double totRad = _beam1.nuclearRadius()+_beam2.nuclearRadius();
+
+ while(1)
{
- _pHadronBreakup = 0;
- _pPhotonBreakup = 0;
+
+ if(_beamBreakupMode != 5)
+ {
+ if(b > (totRad*1.5))
+ {
+ if(pOfB<_breakupCutOff)
+ {
+// std::cout << "Break off b: " << b << std::endl;
+// std::cout << "Number of PofB bins: " << _breakupProbabilities.size() << std::endl;
+ break;
+ }
+ }
+ }
+ else
+ {
+ if((1-pOfB)<_breakupCutOff)
+ {
+ // std::cout << "Break off b: " << b << std::endl;
+// std::cout << "Number of PofB bins: " << _breakupProbabilities.size() << std::endl;
+ break;
+ }
+ }
+// std::cout << 1-pOfBreakup << std::endl;
+// _pHadronBreakup = 0;
+// _pPhotonBreakup = 0;
- double pHadronBreakup = probabilityOfHadronBreakup(b);
+// double pHadronBreakup = probabilityOfHadronBreakup(b);
+ probabilityOfHadronBreakup(b);
//moved gammatarg into photonbreakup
- double pPhotonBreakup = probabilityOfPhotonBreakup(b, _beamBreakupMode);
+// double pPhotonBreakup = probabilityOfPhotonBreakup(b, _beamBreakupMode);
+ probabilityOfPhotonBreakup(b, _beamBreakupMode);
//What was probability of photonbreakup depending upon mode selection,
// is now done in the photonbreakupfunction
if (_beamBreakupMode == 1) {
if (b >_beam1.nuclearRadius()+_beam2.nuclearRadius()) // symmetry
_pHadronBreakup = 0;
else
_pHadronBreakup = 999.;
}
b *= _breakupImpactParameterStep;
- pOfBreakup = exp(-1 * pHadronBreakup) * pPhotonBreakup;
- _breakupProbabilities.push_back(pOfBreakup);
+ pOfB = exp(-1 * _pHadronBreakup) * _pPhotonBreakup;
+ _breakupProbabilities.push_back(pOfB);
}
}
else if (((_beam1.Z() == 1) && (_beam1.A() == 1)) || ((_beam2.Z() == 1) && (_beam2.A() == 1))) {
- double pOfBreakup = 0;
+ double pOfB = 0;
double b = bMin;
+ double totRad = _beam1.nuclearRadius()+_beam2.nuclearRadius();
- while(1-pOfBreakup > _breakupCutOff)
+ while(1)
{
-
- _beam1.Z() > 1 ? pOfBreakup = exp(-7.35*_beam1.thickness(b)) :
- pOfBreakup = exp(-7.35*_beam2.thickness(b));
- _breakupProbabilities.push_back(pOfBreakup);
+ if(_beamBreakupMode != 5)
+ {
+ if(b > (totRad*1.5))
+ {
+ if(pOfB<_breakupCutOff)
+ {
+// std::cout << "Break off b: " << b << std::endl;
+ break;
+ }
+ }
+ }
+ else
+ {
+ if((1-pOfB)<_breakupCutOff)
+ {
+// std::cout << "Break off b: " << b << std::endl;
+ break;
+ }
+ }
+ _beam1.Z() > 1 ? pOfB = exp(-7.35*_beam1.thickness(b)) :
+ pOfB = exp(-7.35*_beam2.thickness(b));
+ _breakupProbabilities.push_back(pOfB);
b *= _breakupImpactParameterStep;
}
}
}
//______________________________________________________________________________
double
beamBeamSystem::probabilityOfHadronBreakup(const double impactparameter)
{
// double pbreakup =0.;
//probability of hadron breakup,
//this is what is returned when the function is called
double gamma = _beamLorentzGamma;
//input for gamma_em
//this will need to be StarlightInputParameters::gamma or whatever
double b = impactparameter;
int ap = _beam1.A();
//Notice this is taking from nucleus 1.Still assuming symmetric system?
static int IFIRSTH = 0;
static double DELL=0., DELR=0., SIGNN=0., R1=0., A1=0., R2=0., RHO1=0.;
static double RHO2=0., NZ1=0., NZ2=0., NR1=0., NR2=0.,RR1=0., NY=0., NX=0.;
static double AN1=0., AN2=0.;
double delo=0.,RSQ=0.,Z1=0.,Y=0.,X=0.,XB=0.,RPU=0.,IRUP=0.,RTU=0.;
double IRUT=0.,T1=0.,T2=0.;
static double DEN1[20002], DEN2[20002];
if (IFIRSTH != 0) goto L100;
//Initialize
//Integration delta x, delta z
IFIRSTH = 1;
DELL = .05;
DELR = .01;
//use two sigma_NN's. 52mb at rhic 100gev/beam, 88mb at LHC 2.9tev/beam, gamma is in cm system
SIGNN = 5.2;
if ( gamma > 500. ) SIGNN = 8.8;
//use parameter from Constants
R1 = ( _beam1.nuclearRadius()); //remember _beam2? better way to do this generically
A1 = 0.535; //This is woodsaxonskindepth?
//write(6,12)r1,a1,signn Here is where we could probably set this up asymmetrically R2=_beam2.nuclearRadius() and RHO2=ap2=_beam2.A()
R2 = R1;
RHO1 = ap;
RHO2 = RHO1;
NZ1 = ((R1+5.)/DELR);
NR1 = NZ1;
NZ2 = ((R2+5.)/DELR);
NR2 = NZ2;
RR1 = -DELR;
NY = ((R1+5.)/DELL);
NX = 2*NY;
for ( int IR1 = 1; IR1 <= NR1; IR1++) {
DEN1[IR1] = 0.;
RR1 = RR1+DELR;
Z1 = -DELR/2;
for ( int IZ1 = 1; IZ1 <= NZ1; IZ1++) {
Z1 = Z1+DELR;
RSQ = RR1*RR1+Z1*Z1;
DEN1[IR1] = DEN1[IR1]+1./(1.+exp((sqrt(RSQ)-R1)/A1));
}//for(IZ)
DEN1[IR1] = DEN1[IR1]*2.*DELR;
DEN2[IR1] = DEN1[IR1];
}//for(IR)
AN1 = 0.;
RR1 = 0.;
for ( int IR1 =1; IR1 <= NR1; IR1++) {
RR1 = RR1+DELR;
AN1 = AN1+RR1*DEN1[IR1]*DELR*2.*3.141592654;
}//for(IR)
AN2 = AN1; //This will also probably need to be changed?
delo = .05;
//.1 to turn mb into fm^2
//Calculate breakup probability here
L100:
_pHadronBreakup = 0.;
if ( b > 25. ) return _pHadronBreakup;
Y = -.5*DELL;
for ( int IY = 1; IY <= NY; IY++) {
Y = Y+DELL;
X = -DELL*float(NY+1);
for ( int IX = 1; IX <=NX; IX++) {
X = X+DELL;
XB = b-X;
RPU = sqrt(X*X+Y*Y);
IRUP = (RPU/DELR)+1;
RTU = sqrt(XB*XB+Y*Y);
IRUT = (RTU/DELR)+1;
T1 = DEN2[(int)IRUT]*RHO2/AN2;
T2 = DEN1[(int)IRUP]*RHO1/AN1;
//Eq.6 BCW, Baltz, Chasman, White, Nucl. Inst. & Methods A 417, 1 (1998)
_pHadronBreakup=_pHadronBreakup+2.*T1*(1.-exp(-SIGNN*T2))*DELL*DELL;
}//for(IX)
}//for(IY)
return _pHadronBreakup;
}
//______________________________________________________________________________
double
beamBeamSystem::probabilityOfPhotonBreakup(const double impactparameter, const int mode)
{
static double ee[10001], eee[162], se[10001];
//double gamma_em=108.4; //This will be an input value.
_pPhotonBreakup =0.; //Might default the probability with a different value?
double b = impactparameter;
int zp = _beam1.Z(); //What about _beam2? Generic approach?
int ap = _beam1.A();
//Was initialized at the start of the function originally, been moved inward.
double pxn=0.;
double p1n=0.;
//Used to be done prior to entering the function. Done properly for assymetric?
double gammatarg = 2.*_beamLorentzGamma*_beamLorentzGamma-1.;
double omaxx =0.;
//This was done prior entering the function as well
if (_beamLorentzGamma > 500.){
omaxx=1.E10;
}
else{
omaxx=1.E7;
}
double e1[23]= {0.,103.,106.,112.,119.,127.,132.,145.,171.,199.,230.,235.,
254.,280.,300.,320.,330.,333.,373.,390.,420.,426.,440.};
double s1[23]= {0.,12.0,11.5,12.0,12.0,12.0,15.0,17.0,28.0,33.0,
52.0,60.0,70.0,76.0,85.0,86.0,89.0,89.0,75.0,76.0,69.0,59.0,61.0};
double e2[12]={0.,2000.,3270.,4100.,4810.,6210.,6600.,
7790.,8400.,9510.,13600.,16400.};
double s2[12]={0.,.1266,.1080,.0805,.1017,.0942,.0844,.0841,.0755,.0827,
.0626,.0740};
double e3[29]={0.,26.,28.,30.,32.,34.,36.,38.,40.,44.,46.,48.,50.,52.,55.,
57.,62.,64.,66.,69.,72.,74.,76.,79.,82.,86.,92.,98.,103.};
double s3[29]={0.,30.,21.5,22.5,18.5,17.5,15.,14.5,19.,17.5,16.,14.,
20.,16.5,17.5,17.,15.5,18.,15.5,15.5,15.,13.5,18.,14.5,15.5,12.5,13.,
13.,12.};
static double sa[161]={0.,0.,.004,.008,.013,.017,.021,.025,.029,.034,.038,.042,.046,
.051,.055,.059,.063,.067,.072,.076,.08,.085,.09,.095,.1,.108,.116,
.124,.132,.14,.152,.164,.176,.188,.2,.22,.24,.26,.28,.3,.32,.34,
.36,.38,.4,.417,.433,.450,.467,.483,.5,.51,.516,.52,.523,.5245,
.525,.5242,
.5214,.518,.512,.505,.495,.482,.469,.456,.442,.428,.414,.4,.386,
.370,.355,.34,.325,.310,.295,.280,.265,.25,.236,.222,.208,.194,
.180,.166,
.152,.138,.124,.11,.101,.095,.09,.085,.08,.076,.072,.069,.066,
.063,.06,.0575,.055,.0525,.05,.04875,.0475,.04625,.045,.04375,
.0425,.04125,.04,.03875,.0375,.03625,.035,.03375,.0325,.03125,.03,
.02925,.0285,.02775,.027,.02625,.0255,.02475,.024,.02325,.0225,
.02175,.021,.02025,.0195,.01875,.018,.01725,.0165,.01575,.015,
.01425,.0135,.01275,.012,.01125,.0105,.00975,.009,.00825,.0075,
.00675,.006,.00525,.0045,.00375,.003,.00225,.0015,.00075,0.};
double sen[161]={0.,0.,.012,.025,.038,.028,.028,.038,.035,.029,.039,.035,
.038,.032,.038,.041,.041,.049,.055,.061,.072,.076,.070,.067,
.080,.103,.125,.138,.118,.103,.129,.155,.170,.180,.190,.200,
.215,.250,.302,.310,.301,.315,.330,.355,.380,.400,.410,.420,
.438,.456,.474,.492,.510,.533,.556,.578,.6,.62,.63,.638,
.640,.640,.637,.631,.625,.618,.610,.600,.580,.555,.530,.505,
.480,.455,.435,.410,.385,.360,.340,.320,.300,.285,.270,.255,
.240,.225,.210,.180,.165,.150,.140,.132,.124,.116,.108,.100,
.092,.084,.077,.071,.066,.060,.055,.051,.048,.046,.044,.042,
.040,.038,.036,.034,.032,.030,.028,.027,.026,.025,.025,.025,
.024,.024,.024,.024,.024,.023,.023,.023,.023,.023,.022,.022,
.022,.022,.022,.021,.021,.021,.020,.020,
.020,.019,.018,.017,.016,.015,.014,.013,.012,.011,.010,.009,
.008,.007,.006,.005,.004,.003,.002,.001,0.};
// gammay,p gamma,n of Armstrong begin at 265 incr 25
double sigt[160]={0.,.4245,.4870,.5269,.4778,.4066,.3341,.2444,.2245,.2005,
.1783,.1769,.1869,.1940,.2117,.2226,.2327,.2395,.2646,.2790,.2756,
.2607,.2447,.2211,.2063,.2137,.2088,.2017,.2050,.2015,.2121,.2175,
.2152,.1917,.1911,.1747,.1650,.1587,.1622,.1496,.1486,.1438,.1556,
.1468,.1536,.1544,.1536,.1468,.1535,.1442,.1515,.1559,.1541,.1461,
.1388,.1565,.1502,.1503,.1454,.1389,.1445,.1425,.1415,.1424,.1432,
.1486,.1539,.1354,.1480,.1443,.1435,.1491,.1435,.1380,.1317,.1445,
.1375,.1449,.1359,.1383,.1390,.1361,.1286,.1359,.1395,.1327,.1387,
.1431,.1403,.1404,.1389,.1410,.1304,.1363,.1241,.1284,.1299,.1325,
.1343,.1387,.1328,.1444,.1334,.1362,.1302,.1338,.1339,.1304,.1314,
.1287,.1404,.1383,.1292,.1436,.1280,.1326,.1321,.1268,.1278,.1243,
.1239,.1271,.1213,.1338,.1287,.1343,.1231,.1317,.1214,.1370,.1232,
.1301,.1348,.1294,.1278,.1227,.1218,.1198,.1193,.1342,.1323,.1248,
.1220,.1139,.1271,.1224,.1347,.1249,.1163,.1362,.1236,.1462,.1356,
.1198,.1419,.1324,.1288,.1336,.1335,.1266};
double sigtn[160]={0.,.3125,.3930,.4401,.4582,.3774,.3329,.2996,.2715,.2165,
.2297,.1861,.1551,.2020,.2073,.2064,.2193,.2275,.2384,.2150,.2494,
.2133,.2023,.1969,.1797,.1693,.1642,.1463,.1280,.1555,.1489,.1435,
.1398,.1573,.1479,.1493,.1417,.1403,.1258,.1354,.1394,.1420,.1364,
.1325,.1455,.1326,.1397,.1286,.1260,.1314,.1378,.1353,.1264,.1471,
.1650,.1311,.1261,.1348,.1277,.1518,.1297,.1452,.1453,.1598,.1323,
.1234,.1212,.1333,.1434,.1380,.1330,.12,.12,.12,.12,.12,.12,.12,.12,
.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12};
//89*.12};
static int IFIRSTP=0;
// Initialization needed?
//double hbar=197.3;
//double pi=3.141592654;
// added
double si1=0, g1 =0, o1=0;
int ne = 0, ij =0;
double delo=0, omax =0, gk1m=0;
static double scon=0., zcon=0.,o0=0.;
double x=0,y=0,eps=0,eta=0,em=0,exx=0,s=0,ictr=0,pom=0,vec=0,gk1=0;
// maximum energy for GDR dissocation (in target frame, in MeV)
double omax1n=24.01;
if (IFIRSTP != 0) goto L100;
IFIRSTP=1;
//This whole thing is dependenant on gold or lead....Might need to expand
if (zp == 79)
{
ap=197;
si1=540.;
g1=4.75;
// peak and minimum energies for GDR excitation (in MeV)
o1=13.70;
o0=8.1;
}
else
{
zp=82; //assumed to be lead
ap=208;
si1=640.;
g1=4.05;
o1=13.42;
o0=7.4;
for(int j=1;j<=160;j++)
{
sa[j]=sen[j];
}
}
//Part II of initialization
delo = .05;
//.1 to turn mb into fm^2
scon = .1*g1*g1*si1;
zcon = zp/(gammatarg*( pi)*(
hbarcmev))*zp/(gammatarg*( pi)*
( hbarcmev))/137.04;
//single neutron from GDR, Veyssiere et al. Nucl. Phys. A159, 561 (1970)
for ( int i = 1; i <= 160; i++) {
eee[i] = o0+.1*(i-1);
sa[i] = 100.*sa[i];
}
//See Baltz, Rhoades-Brown, and Weneser, Phys. Rev. E 54, 4233 (1996)
//for details of the following photo cross-sections
eee[161]=24.1;
ne=int((25.-o0)/delo)+1;
//GDR any number of neutrons, Veyssiere et al., Nucl. Phys. A159, 561 (1970)
for ( int i = 1; i <= ne; i++ ) {
ee[i] = o0+(i-1)*delo;
//cout<<" ee 1 "<<ee[i]<<" "<<i<<endl;
se[i] = scon*ee[i]*ee[i]/(((o1*o1-ee[i]*ee[i])*(o1*o1-ee[i]*ee[i]))
+ee[i]*ee[i]*g1*g1);
}
ij = ne; //Risky?
//25-103 MeV, Lepretre, et al., Nucl. Phys. A367, 237 (1981)
for ( int j = 1; j <= 27; j++ ) {
ij = ij+1;
ee[ij] = e3[j];
//cout<<" ee 2 "<<ee[ij]<<" "<<ij<<endl;
se[ij] = .1*ap*s3[j]/208.;
}
//103-440 MeV, Carlos, et al., Nucl. Phys. A431, 573 (1984)
for ( int j = 1; j <= 22; j++ ) {
ij = ij+1;
ee[ij] = e1[j];
//cout<<" ee 3 "<<ee[ij]<<" "<<ij<<endl;
se[ij] = .1*ap*s1[j]/208.;
}
//440 MeV-2 GeV Armstrong et al.
for ( int j = 9; j <= 70; j++) {
ij = ij+1;
ee[ij] = ee[ij-1]+25.;
//cout<<" ee 4 "<<ee[ij]<<" "<<ij<<endl;
se[ij] = .1*(zp*sigt[j]+(ap-zp)*sigtn[j]);
}
//2-16.4 GeV Michalowski; Caldwell
for ( int j = 1; j <= 11; j++) {
ij = ij+1;
ee[ij] = e2[j];
//cout<<" ee 5 "<<ee[ij]<<" "<<ij<<endl;
se[ij] = .1*ap*s2[j];
}
//Regge paramteres
x = .0677;
y = .129;
eps = .0808;
eta = .4525;
em = .94;
exx = pow(10,.05);
//Regge model for high energy
s = .002*em*ee[ij];
//make sure we reach LHC energies
ictr = 100;
if ( gammatarg > (2.*150.*150.)) ictr = 150;
for ( int j = 1; j <= ictr; j++ ) {
ij = ij+1;
s = s*exx;
ee[ij] = 1000.*.5*(s-em*em)/em;
//cout<<" ee 6 "<<ee[ij]<<" "<<ij<<endl;
pom = x*pow(s,eps);
vec = y*pow(s,(-eta));
se[ij] = .1*.65*ap*(pom+vec);
}
ee[ij+1] = 99999999999.;
//done with initaliation
//write(6,99)o0;
//clear counters for 1N, XN
L100:
p1n = 0.;
pxn = 0.;
//start XN calculation
//what's the b-dependent highest energy of interest?
omax = min(omaxx,4.*gammatarg*( hbarcmev)/b);
if ( omax < o0 ) return _pPhotonBreakup;
gk1m = bessel::dbesk1(ee[1]*b/(( hbarcmev)*gammatarg));
int k = 2;
L212:
if (ee[k] < omax ) {
gk1 = bessel::dbesk1(ee[k]*b/(( hbarcmev)*gammatarg));
//Eq. 3 of BCW--NIM in Physics Research A 417 (1998) pp1-8:
pxn=pxn+zcon*(ee[k]-ee[k-1])*.5*(se[k-1]*ee[k-1]*gk1m*gk1m+se[k]*ee[k]*gk1*gk1);
k = k + 1;
gk1m = gk1;
goto L212;
}
//one neutron dissociation
omax = min(omax1n,4.*gammatarg*( hbarcmev)/b);
gk1m = bessel::dbesk1(eee[1]*b/(( hbarcmev)*gammatarg));
k = 2;
L102:
if (eee[k] < omax ) {
gk1 = bessel::dbesk1(eee[k]*b/(( hbarcmev)*gammatarg));
//Like Eq3 but with only the one neutron out GDR photo cross section input
p1n = p1n+zcon*(eee[k]-eee[k-1])*.5*(sa[k-1]*eee[k-1]*gk1m*gk1m+sa[k]*eee[k]*gk1*gk1);
k = k+1;
gk1m = gk1;
goto L102;
}
//This used to be done externally, now it is done internally.
if (( mode) == 1) _pPhotonBreakup = 1.;
if (( mode) == 2) _pPhotonBreakup = (1-exp(-1*pxn))*(1-exp(-1*pxn));
if (( mode) == 3) _pPhotonBreakup = (p1n*exp(-1*pxn))*(p1n*exp(-1*pxn));
if (( mode) == 4) _pPhotonBreakup = exp(-2*pxn);
if (( mode) == 5) _pPhotonBreakup = 1.;
if (( mode) == 6) _pPhotonBreakup = (1. - exp(-2.*pxn));
if (( mode) == 7) _pPhotonBreakup = 2.*exp(-pxn)*(1.-exp(-pxn));
//cout<<pxn<<" "<<zcon<<" "<<ee[k]<<" "<<se[k-1]<<" "<<gk1m<<" "<<gk1<<" "<<k<<" "<<ee[k+1]<< " "<<b<< endl;
return _pPhotonBreakup;
}

File Metadata

Mime Type
text/x-diff
Expires
Sat, Dec 21, 1:24 PM (19 h, 37 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4022944
Default Alt Text
(24 KB)

Event Timeline