Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F8308723
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
115 KB
Subscribers
None
View Options
diff --git a/Hadronization/ClusterFinder.cc b/Hadronization/ClusterFinder.cc
--- a/Hadronization/ClusterFinder.cc
+++ b/Hadronization/ClusterFinder.cc
@@ -1,366 +1,359 @@
// -*- C++ -*-
//
// ClusterFinder.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ClusterFinder class.
//
#include "ClusterFinder.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/PDT/StandardMatchers.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/Repository/EventGenerator.h>
#include <ThePEG/EventRecord/Collision.h>
#include "CheckId.h"
#include "Herwig++/Utilities/EnumParticles.h"
#include "Cluster.h"
#include <ThePEG/Utilities/DescribeClass.h>
using namespace Herwig;
DescribeNoPIOClass<ClusterFinder,Interfaced>
describeClusterFinder("Herwig::ClusterFinder","");
IBPtr ClusterFinder::clone() const {
return new_ptr(*this);
}
IBPtr ClusterFinder::fullclone() const {
return new_ptr(*this);
}
void ClusterFinder::Init() {
static ClassDocumentation<ClusterFinder> documentation
("This class is responsible of finding clusters.");
}
-ClusterVector ClusterFinder::formClusters(const PVector & partons)
- {
+ClusterVector ClusterFinder::formClusters(const PVector & partons) {
set<tPPtr> examinedSet; // colour particles already included in a cluster
map<tColinePtr, pair<tPPtr,tPPtr> > quarkQuark; // quark quark
map<tColinePtr, pair<tPPtr,tPPtr> > aQuarkQuark; // anti quark anti quark
ParticleSet inputParticles(partons.begin(),partons.end());
ClusterVector clusters;
// Loop over all current particles.
for(PVector::const_iterator pit=partons.begin();pit!=partons.end();++pit){
// Skip to the next particle if it is not coloured or already examined.
assert(*pit);
assert((*pit)->dataPtr());
if(!(**pit).data().coloured()
|| examinedSet.find(*pit) != examinedSet.end()) {
continue;
}
// We assume that a cluster is made of, at most, 3 constituents although
// in most cases the number will be 2; however, for baryon violating decays
// (for example in Susy model without R parity conservation) we can have 3
// constituents. In the latter case, a quark (antiquark) do not have an
// anticolour (colour) partner as usual, but its colour line either stems
// from a colour source, or ends in a colour sink. In the case of double
// baryon violating decays, but with overall baryon conservation
// ( for instance:
// tilde_u_R -> dbar_1 + dbar_2
// tilde_u_R_star -> d1 + d2
// where tilde_u_R and tilde_u_R_star are colour connected )
// a special treatment is needed, because first we have to process all
// partons in the current step, and then for each left pair of quarks which
// stem from a colour source we have to find the corresponding pair of
// anti-quarks which ends in a colour sink and is connected with the
// above colour source. These special pairs are kept into the maps:
// spec/CluHadConfig.hialQuarkQuarkMap and specialAntiQuarkAntiQuarkMap.
tParticleVector connected(3);
int iElement = 0;
connected[iElement++] = *pit;
bool specialCase = false;
if((*pit)->hasColour()) {
tPPtr partner =
(*pit)->colourLine()->getColouredParticle(partons.begin(),
partons.end(),
true);
if(partner) {
connected[iElement++]= partner;
}
// colour source : baryon-violating process
else {
if((*pit)->colourLine()->sourceNeighbours() != tColinePair()) {
tColinePair sourcePair = (*pit)->colourLine()->sourceNeighbours();
tColinePtr intCL = tColinePtr();
for(int i = 0; i < 2; ++i) {
tColinePtr pLine = i==0 ? sourcePair.first : sourcePair.second;
int saveNumElements = iElement;
for(tPVector::const_iterator cit = pLine->coloured().begin();
cit != pLine->coloured().end(); ++cit ) {
ParticleSet::const_iterator cjt = inputParticles.find(*cit);
if(cjt!=inputParticles.end()) connected[iElement++]= (*cit);
}
if(iElement == saveNumElements) intCL = pLine;
}
if(intCL && iElement == 2) {
specialCase = true;
pair<tPPtr,tPPtr> qp=pair<tPPtr,tPPtr>(connected[0],connected[1]);
quarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,qp));
}
else if(iElement != 3) {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters"
<< " for a coloured particle."
<< " Failed to find particles from a source"
<< Exception::runerror;
}
}
else {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters for"
<< " a coloured particle"
<< Exception::runerror;
}
}
}
if((*pit)->hasAntiColour()) {
tPPtr partner =
(*pit)->antiColourLine()->getColouredParticle(partons.begin(),
partons.end(),
false);
if(partner) {
connected[iElement++]=partner;
}
// colour sink : baryon-violating process
else {
if((*pit)->antiColourLine()->sinkNeighbours() != tColinePair()) {
tColinePair sinkPair = (*pit)->antiColourLine()->sinkNeighbours();
tColinePtr intCL = tColinePtr();
for(int i = 0; i < 2; ++i) {
tColinePtr pLine = i==0 ? sinkPair.first : sinkPair.second;
int saveNumElements = iElement;
for(tPVector::const_iterator cit = pLine->antiColoured().begin();
cit != pLine->antiColoured().end(); ++cit ) {
ParticleSet::const_iterator cjt = inputParticles.find(*cit);
if(cjt!=inputParticles.end()) connected[iElement++]= (*cit);
}
if(iElement == saveNumElements) intCL = pLine;
}
if(intCL && iElement == 2) {
specialCase = true;
pair<tPPtr,tPPtr> aqp=pair<tPPtr,tPPtr>(connected[0],connected[1]);
aQuarkQuark.insert(pair<tColinePtr,pair<tPPtr,tPPtr> >(intCL,aqp));
}
else if( iElement !=3) {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters for"
<< " an anti-coloured particle."
<< " Failed to find particles from a sink"
<< Exception::runerror;
}
}
else {
throw Exception() << "Colour connections fail in the hadronization for "
<< **pit << "in ClusterFinder::formClusters for"
<< " an anti-coloured particle"
<< Exception::runerror;
}
}
}
if(!specialCase) {
// Tag the components of the found cluster as already examined.
for (int i=0; i<iElement; ++i) examinedSet.insert(connected[i]);
// Create the cluster object with the colour connected particles
ClusterPtr cluPtr = new_ptr(Cluster(connected[0],connected[1],
connected[2]));
// add to the step
connected[0]->addChild(cluPtr);
connected[1]->addChild(cluPtr);
if(connected[2]) connected[2]->addChild(cluPtr);
clusters.push_back(cluPtr);
// Check if any of the components is a beam remnant, and if this
// is the case then inform the cluster.
// this will only work for baryon collisions
for (int i=0; i<iElement; ++i) {
bool fromRemnant = false;
tPPtr parent=connected[i];
while(parent) {
if(parent->id()==ParticleID::Remnant) {
fromRemnant = true;
break;
}
parent = parent->parents().empty() ? tPPtr() : parent->parents()[0];
}
if(fromRemnant&&DiquarkMatcher::Check(connected[i]->id()))
cluPtr->isBeamCluster(connected[i]);
}
}
}
// Treat now the special cases, if any. The idea is to find for each pair
// of quarks coming from a common colour source the corresponding pair of
// antiquarks coming from a common colour sink, connected to the above
// colour source via the same colour line. Then, randomly couple one of
// the two quarks with one of the two antiquarks, and do the same with the
// quark and antiquark left.
for(map<tColinePtr, pair<tPPtr,tPPtr> >::const_iterator
cit = quarkQuark.begin(); cit != quarkQuark.end(); ++cit ) {
tColinePtr coline = cit->first;
pair<tPPtr,tPPtr> quarkPair = cit->second;
if(aQuarkQuark.find( coline ) != aQuarkQuark.end()) {
pair<tPPtr,tPPtr> antiQuarkPair = aQuarkQuark.find(coline)->second;
ClusterPtr cluPtr1, cluPtr2;
if ( UseRandom::rndbool() ) {
cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.first));
cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.second));
quarkPair.first->addChild(cluPtr1);
antiQuarkPair.first->addChild(cluPtr1);
quarkPair.second->addChild(cluPtr2);
antiQuarkPair.second->addChild(cluPtr2);
} else {
cluPtr1 = new_ptr(Cluster(quarkPair.first , antiQuarkPair.second));
cluPtr2 = new_ptr(Cluster(quarkPair.second , antiQuarkPair.first));
quarkPair.second->addChild(cluPtr2);
antiQuarkPair.first->addChild(cluPtr2);
quarkPair.first->addChild(cluPtr1);
antiQuarkPair.second->addChild(cluPtr1);
}
clusters.push_back(cluPtr1);
clusters.push_back(cluPtr2);
}
else {
throw Exception() << "ClusterFinder::formClusters : "
<< "***Skip event: unable to match pairs in "
<< "Baryon-violating processes***"
<< Exception::eventerror;
}
}
return clusters;
}
void ClusterFinder::reduceToTwoComponents(ClusterVector & clusters) {
// In order to preserve all of the information, we do not modify the
// directly the 3-component clusters, but instead we define new clusters,
// which are related to the original ones by a child-parent relationship,
// by considering two randomly chosen components as a diquark (or anti-diquark).
// These new clusters are first added to the vector vecNewRedefinedCluPtr,
// and at the end, when all input clusters have been examined, the elements of
// this vector will be copied in collecCluPtr (the reason is that it is not
// allowed to modify a STL container while iterating over it).
vector<tClusterPtr> redefinedClusters;
for(ClusterVector::iterator cluIter = clusters.begin() ;
cluIter != clusters.end() ; ++cluIter) {
tParticleVector vec;
if ( ! (*cluIter)->isAvailable()
|| (*cluIter)->numComponents() != 3 ) continue;
tPPtr other;
int iCharge1(0);
for(int i = 0; i<(*cluIter)->numComponents(); i++) {
tPPtr part = (*cluIter)->particle(i);
if(!DiquarkMatcher::Check(*(part->dataPtr())))
vec.push_back(part);
else
other = part;
iCharge1 += part->dataPtr()->iCharge();
}
if(vec.size()<2) {
throw Exception() << "Could not make a diquark for a baryonic cluster decay from "
<< (*cluIter)->particle(0)->PDGName() << " "
<< (*cluIter)->particle(1)->PDGName() << " "
<< (*cluIter)->particle(2)->PDGName() << " "
<< " in ClusterFinder::reduceToTwoComponents()."
<< Exception::eventerror;
}
// Randomly selects two components to be considered as a (anti)diquark
// and place them as the first and second element of vec.
int choice = vec.size()==2 ? 0 : UseRandom::rnd3(1.0, 1.0, 1.0);
switch (choice) {
case 0:
break;
case 1:
swap(vec[2],vec[0]);
break;
case 2:
swap(vec[2],vec[1]);
break;
}
tcPDPtr temp1 = vec[0]->dataPtr();
tcPDPtr temp2 = vec[1]->dataPtr();
if(!other) other = vec[2];
tcPDPtr dataDiquark = CheckId::makeDiquark(temp1,temp2);
if(!dataDiquark)
throw Exception() << "Could not make a diquark from"
<< temp1->PDGName() << " and "
<< temp2->PDGName()
<< " in ClusterFinder::reduceToTwoComponents()"
<< Exception::eventerror;
// Create the new cluster (with two components) and assign to it the same
// momentum and position of the original (with three components) one.
// Furthermore, assign to the diquark component a momentum given by the
// sum of the two original components from which has been formed; for the
// position, we are assuming, very simply, that the diquark position is
// the average positions of the two original components.
// Notice that the mass (5-th component of the 5-momentum) of the diquark
// is set by hand to the constituent mass of the diquark (which is equal
// to the sum of the constituent masses of the two quarks which form the
// diquark) because the sum of 5-component vectors do add only the "normal"
// 4-components, not the 5-th one. After that, the 5-momentum of the diquark
// is in an inconsistent state, because the mass (5-th component) is not
// equal to the invariant mass obtained from the 4-momemtum. This is not
// unique to this kind of component (all perturbative components are in
// a similar situation), but it is not harmful.
+ // construct the diquark
PPtr diquark = dataDiquark->produceParticle();
vec[0]->addChild(diquark);
vec[1]->addChild(diquark);
+ diquark->set5Momentum(Lorentz5Momentum(vec[0]->momentum() + vec[1]->momentum(),
+ dataDiquark->constituentMass()));
+ diquark->setVertex(0.5*(vec[0]->vertex() + vec[1]->vertex()));
+ // make the new cluster
ClusterPtr nclus = new_ptr(Cluster(other,diquark));
-
//vec[0]->addChild(nclus);
//diquark->addChild(nclus);
- (*cluIter)->addChild(nclus);
- nclus->set5Momentum((*cluIter)->momentum());
- nclus->setVertex((*cluIter)->vertex());
- for(int i = 0; i<nclus->numComponents(); i++) {
- if(nclus->particle(i)->id() == dataDiquark->id()) {
- nclus->particle(i)->set5Momentum(Lorentz5Momentum(vec[0]->momentum()
- + vec[1]->momentum(), dataDiquark->constituentMass()));
- nclus->particle(i)->setVertex(0.5*(vec[0]->vertex()
- + vec[1]->vertex()));
- }
- }
// Set the parent/children relationship between the original cluster
// (the one with three components) with the new one (the one with two components)
// and add the latter to the vector of new redefined clusters.
- //(*cluIter)->addChild(nclus);
+ (*cluIter)->addChild(nclus);
+
redefinedClusters.push_back(nclus);
}
// Add to collecCluPtr all of the redefined new clusters (indeed the
// pointers to them are added) contained in vecNewRedefinedCluPtr.
/// \todo why do we keep the original of the redefined clusters?
for (tClusterVector::const_iterator it = redefinedClusters.begin();
it != redefinedClusters.end(); ++it) {
clusters.push_back(*it);
}
}
diff --git a/Hadronization/ClusterHadronizationHandler.cc b/Hadronization/ClusterHadronizationHandler.cc
--- a/Hadronization/ClusterHadronizationHandler.cc
+++ b/Hadronization/ClusterHadronizationHandler.cc
@@ -1,328 +1,291 @@
// -*- C++ -*-
//
// ClusterHadronizationHandler.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ClusterHadronizationHandler class.
//
#include "ClusterHadronizationHandler.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/Interface/Parameter.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Handlers/EventHandler.h>
#include <ThePEG/Handlers/Hint.h>
#include <ThePEG/PDT/ParticleData.h>
#include <ThePEG/EventRecord/Particle.h>
#include <ThePEG/EventRecord/Step.h>
#include <ThePEG/PDT/PDT.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/Utilities/Throw.h>
#include "Herwig++/Utilities/EnumParticles.h"
#include "CluHadConfig.h"
#include "Cluster.h"
#include <ThePEG/Utilities/DescribeClass.h>
using namespace Herwig;
ClusterHadronizationHandler * ClusterHadronizationHandler::currentHandler_ = 0;
DescribeClass<ClusterHadronizationHandler,HadronizationHandler>
describeClusterHadronizationHandler("Herwig::ClusterHadronizationHandler","");
IBPtr ClusterHadronizationHandler::clone() const {
return new_ptr(*this);
}
IBPtr ClusterHadronizationHandler::fullclone() const {
return new_ptr(*this);
}
void ClusterHadronizationHandler::persistentOutput(PersistentOStream & os)
const {
os << _partonSplitter
<< _clusterFinder
<< _colourReconnector
<< _clusterFissioner
<< _lightClusterDecayer
<< _clusterDecayer
<< ounit(_minVirtuality2,GeV2)
<< ounit(_maxDisplacement,mm)
<< _underlyingEventHandler;
}
void ClusterHadronizationHandler::persistentInput(PersistentIStream & is, int) {
is >> _partonSplitter
>> _clusterFinder
>> _colourReconnector
>> _clusterFissioner
>> _lightClusterDecayer
>> _clusterDecayer
>> iunit(_minVirtuality2,GeV2)
>> iunit(_maxDisplacement,mm)
>> _underlyingEventHandler;
}
void ClusterHadronizationHandler::Init() {
static ClassDocumentation<ClusterHadronizationHandler> documentation
("This is the main handler class for the Cluster Hadronization",
"The hadronization was performed using the cluster model of \\cite{Webber:1983if}.",
"%\\cite{Webber:1983if}\n"
"\\bibitem{Webber:1983if}\n"
" B.~R.~Webber,\n"
" ``A QCD Model For Jet Fragmentation Including Soft Gluon Interference,''\n"
" Nucl.\\ Phys.\\ B {\\bf 238}, 492 (1984).\n"
" %%CITATION = NUPHA,B238,492;%%\n"
// main manual
);
static Reference<ClusterHadronizationHandler,PartonSplitter>
interfacePartonSplitter("PartonSplitter",
"A reference to the PartonSplitter object",
&Herwig::ClusterHadronizationHandler::_partonSplitter,
false, false, true, false);
static Reference<ClusterHadronizationHandler,ClusterFinder>
interfaceClusterFinder("ClusterFinder",
"A reference to the ClusterFinder object",
&Herwig::ClusterHadronizationHandler::_clusterFinder,
false, false, true, false);
static Reference<ClusterHadronizationHandler,ColourReconnector>
interfaceColourReconnector("ColourReconnector",
"A reference to the ColourReconnector object",
&Herwig::ClusterHadronizationHandler::_colourReconnector,
false, false, true, false);
static Reference<ClusterHadronizationHandler,ClusterFissioner>
interfaceClusterFissioner("ClusterFissioner",
"A reference to the ClusterFissioner object",
&Herwig::ClusterHadronizationHandler::_clusterFissioner,
false, false, true, false);
static Reference<ClusterHadronizationHandler,LightClusterDecayer>
interfaceLightClusterDecayer("LightClusterDecayer",
"A reference to the LightClusterDecayer object",
&Herwig::ClusterHadronizationHandler::_lightClusterDecayer,
false, false, true, false);
static Reference<ClusterHadronizationHandler,ClusterDecayer>
interfaceClusterDecayer("ClusterDecayer",
"A reference to the ClusterDecayer object",
&Herwig::ClusterHadronizationHandler::_clusterDecayer,
false, false, true, false);
static Parameter<ClusterHadronizationHandler,Energy2> interfaceMinVirtuality2
("MinVirtuality2",
"Minimum virtuality^2 of partons to use in calculating distances (unit [GeV2]).",
&ClusterHadronizationHandler::_minVirtuality2, GeV2, 0.1*GeV2, ZERO, 10.0*GeV2,false,false,false);
static Parameter<ClusterHadronizationHandler,Length> interfaceMaxDisplacement
("MaxDisplacement",
"Maximum displacement that is allowed for a particle (unit [millimeter]).",
&ClusterHadronizationHandler::_maxDisplacement, mm, 1.0e-10*mm,
0.0*mm, 1.0e-9*mm,false,false,false);
static Reference<ClusterHadronizationHandler,StepHandler> interfaceUnderlyingEventHandler
("UnderlyingEventHandler",
"Pointer to the handler for the Underlying Event. "
"Set to NULL to disable.",
&ClusterHadronizationHandler::_underlyingEventHandler, false, false, true, true, false);
}
namespace {
void extractChildren(tPPtr p, set<PPtr> & all) {
if (p->children().empty()) return;
for (PVector::const_iterator child = p->children().begin();
child != p->children().end(); ++child) {
all.insert(*child);
extractChildren(*child, all);
}
}
}
void ClusterHadronizationHandler::
handle(EventHandler & ch, const tPVector & tagged,
const Hint &) {
useMe();
currentHandler_ = this;
PVector currentlist(tagged.begin(),tagged.end());
// set the scale for coloured particles to just above the gluon mass squared
// if less than this so they are classed as perturbative
Energy2 Q02 = 1.01*sqr(getParticleData(ParticleID::g)->constituentMass());
for(unsigned int ix=0;ix<currentlist.size();++ix) {
if(currentlist[ix]->scale()<Q02) currentlist[ix]->scale(Q02);
}
+
// split the gluons
_partonSplitter->split(currentlist);
// form the clusters
ClusterVector clusters =
_clusterFinder->formClusters(currentlist);
_clusterFinder->reduceToTwoComponents(clusters);
// perform colour reconnection if needed and then
// decay the clusters into one hadron
bool lightOK = false;
short tried = 0;
const ClusterVector savedclusters = clusters;
tPVector finalHadrons; // only needed for partonic decayer
while (!lightOK && tried++ < 10) {
// no colour reconnection with baryon-number-violating (BV) clusters
ClusterVector CRclusters, BVclusters;
CRclusters.reserve( clusters.size() );
BVclusters.reserve( clusters.size() );
for (size_t ic = 0; ic < clusters.size(); ++ic) {
ClusterPtr cl = clusters.at(ic);
bool hasClusterParent = false;
for (unsigned int ix=0; ix < cl->parents().size(); ++ix) {
if (cl->parents()[ix]->id() == ParticleID::Cluster) {
hasClusterParent = true;
break;
}
}
if (cl->numComponents() > 2 || hasClusterParent) BVclusters.push_back(cl);
else CRclusters.push_back(cl);
}
// colour reconnection
_colourReconnector->rearrange(CRclusters);
// tag new clusters as children of the partons to hadronize
_setChildren(CRclusters);
// recombine vectors of (possibly) reconnected and BV clusters
clusters.clear();
clusters.insert( clusters.end(), CRclusters.begin(), CRclusters.end() );
clusters.insert( clusters.end(), BVclusters.begin(), BVclusters.end() );
// fission of heavy clusters
// NB: during cluster fission, light hadrons might be produced straight away
finalHadrons = _clusterFissioner->fission(clusters,isSoftUnderlyingEventON());
lightOK = _lightClusterDecayer->decay(clusters,finalHadrons);
// if the decay of the light clusters was not successful, undo the cluster
// fission and decay steps and revert to the original state of the event
// record
if (!lightOK) {
clusters = savedclusters;
for_each(clusters.begin(),
clusters.end(),
mem_fun(&Particle::undecay));
}
}
if (!lightOK) {
// currentHandler_ = 0;
throw Exception("CluHad::handle(): tried LightClusterDecayer 10 times!",
Exception::eventerror);
}
// decay the remaining clusters
_clusterDecayer->decay(clusters,finalHadrons);
// *****************************************
// *****************************************
// *****************************************
StepPtr pstep = newStep();
set<PPtr> allDecendants;
for (tPVector::const_iterator it = tagged.begin();
it != tagged.end(); ++it) {
extractChildren(*it, allDecendants);
}
for(set<PPtr>::const_iterator it = allDecendants.begin();
it != allDecendants.end(); ++it) {
// this is a workaround because the set sometimes
// re-orders parents after their children
if ((*it)->children().empty())
pstep->addDecayProduct(*it);
else {
pstep->addDecayProduct(*it);
pstep->addIntermediate(*it);
}
}
// *****************************************
// *****************************************
// *****************************************
// soft underlying event if needed
if (isSoftUnderlyingEventON()) {
assert(_underlyingEventHandler);
ch.performStep(_underlyingEventHandler,Hint::Default());
}
- // calculate positions
- // extract all particles from the event
- tEventPtr event=ch.currentEvent();
- vector<tPPtr> particles;
- particles.reserve(256);
- event->select(back_inserter(particles), ThePEG::AllSelector());
- for(vector<tPPtr>::const_iterator pit=particles.begin();
- pit!=particles.end(); ++pit) {
- if ((**pit).parents().empty())
- continue;
- tPPtr parent = (**pit).parents()[0];
- // fudged fix for the shower's technical vertices:
- // make lifelength for 1-1 vertices zero
- // \todo sort out shower inserted vertices properly
- if ( (**pit).id() == parent->id()
- && (**pit).parents().size() == 1
- && parent->children().size() == 1 ) {
- parent->setLifeLength(LorentzDistance());
- // ??? (**pit).setVertex( parent->vertex() );
- }
- // fix the vertex position for particles from clusters
- bool inClusters = false;
- bool newVertex = false;
- // iterate up the ancestry to find the origin of the parent cluster
- while( !parent->parents().empty() ) {
- bool parentIsCluster = parent->id() == ParticleID::Cluster;
- if ( !inClusters && parentIsCluster ) {
- inClusters = true;
- }
- else if ( inClusters && !parentIsCluster ) {
- newVertex = true;
- break;
- }
- parent = parent->parents()[0];
- }
- // parent is now the ancestor of the cluster chain
- if ( newVertex ) (**pit).setVertex( parent->vertex() );
- }
}
void ClusterHadronizationHandler::_setChildren(ClusterVector clusters) const {
// erase existing information about the partons' children
tPVector partons;
for (ClusterVector::const_iterator cl = clusters.begin();
cl != clusters.end(); cl++) {
partons.push_back( (*cl)->colParticle() );
partons.push_back( (*cl)->antiColParticle() );
}
for_each(partons.begin(), partons.end(), mem_fun(&Particle::undecay));
// give new parents to the clusters: their constituents
for (ClusterVector::iterator cl = clusters.begin();
cl != clusters.end(); cl++) {
(*cl)->colParticle()->addChild(*cl);
(*cl)->antiColParticle()->addChild(*cl);
}
}
diff --git a/Hadronization/ColourReconnector.cc b/Hadronization/ColourReconnector.cc
--- a/Hadronization/ColourReconnector.cc
+++ b/Hadronization/ColourReconnector.cc
@@ -1,407 +1,426 @@
// -*- C++ -*-
//
// ColourReconnector.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ColourReconnector class.
//
#include "ColourReconnector.h"
#include "Cluster.h"
#include "Herwig++/Utilities/Maths.h"
-
#include <ThePEG/Interface/Switch.h>
#include "ThePEG/Interface/Parameter.h"
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/Repository/UseRandom.h>
#include <algorithm>
#include <ThePEG/Utilities/DescribeClass.h>
+#include <ThePEG/Repository/EventGenerator.h>
using namespace Herwig;
typedef ClusterVector::iterator CluVecIt;
DescribeClass<ColourReconnector,Interfaced>
describeColourReconnector("Herwig::ColourReconnector","");
IBPtr ColourReconnector::clone() const {
return new_ptr(*this);
}
IBPtr ColourReconnector::fullclone() const {
return new_ptr(*this);
}
void ColourReconnector::rearrange(ClusterVector & clusters) {
if (_clreco == 0) return;
// need at least two clusters
if (clusters.size() < 2) return;
// do the colour reconnection
switch (_algorithm) {
case 0: _doRecoPlain(clusters);
break;
case 1: _doRecoStatistical(clusters);
break;
}
return;
}
Energy2 ColourReconnector::_clusterMassSum(const PVector & q,
const PVector & aq) const {
const size_t nclusters = q.size();
assert (aq.size() == nclusters);
Energy2 sum = ZERO;
for (size_t i = 0; i < nclusters; i++)
sum += ( q[i]->momentum() + aq[i]->momentum() ).m2();
return sum;
}
bool ColourReconnector::_containsColour8(const ClusterVector & cv,
const vector<size_t> & P) const {
assert (P.size() == cv.size());
for (size_t i = 0; i < cv.size(); i++) {
tcPPtr p = cv[i]->colParticle();
tcPPtr q = cv[P[i]]->antiColParticle();
if (isColour8(p, q)) return true;
}
return false;
}
void ColourReconnector::_doRecoStatistical(ClusterVector & cv) const {
const size_t nclusters = cv.size();
// initially, enumerate (anti)quarks as given in the cluster vector
ParticleVector q, aq;
for (size_t i = 0; i < nclusters; i++) {
q.push_back( cv[i]->colParticle() );
aq.push_back( cv[i]->antiColParticle() );
}
// annealing scheme
Energy2 t, delta;
Energy2 lambda = _clusterMassSum(q,aq);
const unsigned _ntries = _triesPerStepFactor * nclusters;
// find appropriate starting temperature by measuring the largest lambda
// difference in some dry-run random rearrangements
{
vector<Energy2> typical;
for (int i = 0; i < 10; i++) {
const pair <int,int> toswap = _shuffle(q,aq,5);
ParticleVector newaq = aq;
swap (newaq[toswap.first], newaq[toswap.second]);
Energy2 newlambda = _clusterMassSum(q,newaq);
typical.push_back( abs(newlambda - lambda) );
}
t = _initTemp * Math::median(typical);
}
// anneal in up to _annealingSteps temperature steps
for (unsigned step = 0; step < _annealingSteps; step++) {
// For this temperature step, try to reconnect _ntries times. Stop the
// algorithm if no successful reconnection happens.
unsigned nSuccess = 0;
for (unsigned it = 0; it < _ntries; it++) {
// make a random rearrangement
const unsigned maxtries = 10;
const pair <int,int> toswap = _shuffle(q,aq,maxtries);
const int i = toswap.first;
const int j = toswap.second;
// stop here if we cannot find any allowed reconfiguration
if (i == -1) break;
// create a new antiquark vector with the two partons swapped
ParticleVector newaq = aq;
swap (newaq[i], newaq[j]);
// Check if lambda would decrease. If yes, accept the reconnection. If no,
// accept it only with a probability given by the current Boltzmann
// factor. In the latter case we set p = 0 if the temperature is close to
// 0, to avoid division by 0.
Energy2 newlambda = _clusterMassSum(q,newaq);
delta = newlambda - lambda;
double prob = 1.0;
if (delta > ZERO) prob = ( abs(t) < 1e-8*MeV2 ) ? 0.0 : exp(-delta/t);
if (UseRandom::rnd() < prob) {
lambda = newlambda;
swap (newaq, aq);
nSuccess++;
}
}
if (nSuccess == 0) break;
// reduce temperature
t *= _annealingFactor;
}
// construct the new cluster vector
ClusterVector newclusters;
for (size_t i = 0; i < nclusters; i++) {
ClusterPtr cl = new_ptr( Cluster( q[i], aq[i] ) );
newclusters.push_back(cl);
}
swap(newclusters,cv);
return;
}
void ColourReconnector::_doRecoPlain(ClusterVector & cv) const {
ClusterVector newcv = cv;
// try to avoid systematic errors by randomising the reconnection order
long (*p_irnd)(long) = UseRandom::irnd;
random_shuffle( newcv.begin(), newcv.end(), p_irnd );
// iterate over all clusters
for (CluVecIt cit = newcv.begin(); cit != newcv.end(); cit++) {
// find the cluster which, if reconnected with *cit, would result in the
// smallest sum of cluster masses
// NB this method returns *cit if no reconnection partner can be found
CluVecIt candidate = _findRecoPartner(cit, newcv);
// skip this cluster if no possible reshuffling partner can be found
if (candidate == cit) continue;
// accept the reconnection with probability _preco.
if (UseRandom::rnd() < _preco) {
pair <ClusterPtr,ClusterPtr> reconnected = _reconnect(*cit, *candidate);
// Replace the clusters in the ClusterVector. The order of the
// colour-triplet partons in the cluster vector is retained here.
// replace *cit by reconnected.first
*cit = reconnected.first;
// replace candidate by reconnected.second
*candidate = reconnected.second;
}
}
swap(cv,newcv);
return;
}
CluVecIt ColourReconnector::_findRecoPartner(CluVecIt cl,
ClusterVector & cv) const {
CluVecIt candidate = cl;
Energy minMass = 1*TeV;
for (CluVecIt cit=cv.begin(); cit != cv.end(); ++cit) {
// don't even look at original cluster
if(cit==cl) continue;
// don't allow colour octet clusters
if ( isColour8( (*cl)->colParticle(),
(*cit)->antiColParticle() ) ||
isColour8( (*cit)->colParticle(),
(*cl)->antiColParticle() ) ) {
continue;
}
// stop it putting beam remnants together
if((*cl)->isBeamCluster() && (*cit)->isBeamCluster()) continue;
+ // stop it putting far apart clusters together
+ if(((**cl).vertex()-(**cit).vertex()).m()>_maxDistance) continue;
+
// momenta of the old clusters
Lorentz5Momentum p1 = (*cl)->colParticle()->momentum() +
(*cl)->antiColParticle()->momentum();
Lorentz5Momentum p2 = (*cit)->colParticle()->momentum() +
(*cit)->antiColParticle()->momentum();
// momenta of the new clusters
Lorentz5Momentum p3 = (*cl)->colParticle()->momentum() +
(*cit)->antiColParticle()->momentum();
Lorentz5Momentum p4 = (*cit)->colParticle()->momentum() +
(*cl)->antiColParticle()->momentum();
Energy oldMass = abs( p1.m() ) + abs( p2.m() );
Energy newMass = abs( p3.m() ) + abs( p4.m() );
if ( newMass < oldMass && newMass < minMass ) {
minMass = newMass;
candidate = cit;
}
}
return candidate;
}
pair <ClusterPtr,ClusterPtr>
ColourReconnector::_reconnect(ClusterPtr c1, ClusterPtr c2) const {
// choose the other possibility to form two clusters from the given
// constituents
assert(c1->numComponents()==2);
assert(c2->numComponents()==2);
int c1_col(-1),c1_anti(-1),c2_col(-1),c2_anti(-1);
for(unsigned int ix=0;ix<2;++ix) {
if (c1->particle(ix)->hasColour(false)) c1_col = ix;
else if(c1->particle(ix)->hasColour(true )) c1_anti = ix;
if (c2->particle(ix)->hasColour(false)) c2_col = ix;
else if(c2->particle(ix)->hasColour(true )) c2_anti = ix;
}
assert(c1_col>=0&&c2_col>=0&&c1_anti>=0&&c2_anti>=0);
ClusterPtr newCluster1
= new_ptr( Cluster( c1->colParticle(), c2->antiColParticle() ) );
+
+ newCluster1->setVertex(0.5*( c1->colParticle()->vertex() +
+ c2->antiColParticle()->vertex() ));
+
if(c1->isBeamRemnant(c1_col )) newCluster1->setBeamRemnant(0,true);
if(c2->isBeamRemnant(c2_anti)) newCluster1->setBeamRemnant(1,true);
ClusterPtr newCluster2
= new_ptr( Cluster( c2->colParticle(), c1->antiColParticle() ) );
+
+ newCluster2->setVertex(0.5*( c2->colParticle()->vertex() +
+ c1->antiColParticle()->vertex() ));
+
if(c2->isBeamRemnant(c2_col )) newCluster2->setBeamRemnant(0,true);
if(c1->isBeamRemnant(c1_anti)) newCluster2->setBeamRemnant(1,true);
return pair <ClusterPtr,ClusterPtr> (newCluster1, newCluster2);
}
pair <int,int> ColourReconnector::_shuffle
(const PVector & q, const PVector & aq, unsigned maxtries) const {
const size_t nclusters = q.size();
assert (nclusters > 1);
assert (aq.size() == nclusters);
int i, j;
unsigned tries = 0;
bool octet;
do {
// find two different random integers in the range [0, nclusters)
i = UseRandom::irnd( nclusters );
do { j = UseRandom::irnd( nclusters ); } while (i == j);
// check if one of the two potential clusters would be a colour octet state
octet = isColour8( q[i], aq[j] ) || isColour8( q[j], aq[i] ) ;
tries++;
} while (octet && tries < maxtries);
if (octet) i = j = -1;
return make_pair(i,j);
}
bool ColourReconnector::isColour8(cPPtr p, cPPtr q) {
bool octet = false;
// make sure we have a triplet and an anti-triplet
if ( ( p->hasColour() && q->hasAntiColour() ) ||
( p->hasAntiColour() && q->hasColour() ) ) {
if ( !p->parents().empty() && !q->parents().empty() ) {
// true if p and q are originated from a colour octet
octet = ( p->parents()[0] == q->parents()[0] ) &&
( p->parents()[0]->data().iColour() == PDT::Colour8 );
}
}
return octet;
}
void ColourReconnector::persistentOutput(PersistentOStream & os) const {
os << _clreco << _preco << _algorithm << _initTemp << _annealingFactor
- << _annealingSteps << _triesPerStepFactor;
+ << _annealingSteps << _triesPerStepFactor << ounit(_maxDistance,femtometer);
}
void ColourReconnector::persistentInput(PersistentIStream & is, int) {
is >> _clreco >> _preco >> _algorithm >> _initTemp >> _annealingFactor
- >> _annealingSteps >> _triesPerStepFactor;
+ >> _annealingSteps >> _triesPerStepFactor >> iunit(_maxDistance,femtometer);
}
void ColourReconnector::Init() {
static ClassDocumentation<ColourReconnector> documentation
("This class is responsible of the colour reconnection.");
static Switch<ColourReconnector,int> interfaceColourReconnection
("ColourReconnection",
"Colour reconnections",
&ColourReconnector::_clreco, 0, true, false);
static SwitchOption interfaceColourReconnectionOff
(interfaceColourReconnection,
"No",
"Colour reconnections off",
0);
static SwitchOption interfaceColourReconnectionOn
(interfaceColourReconnection,
"Yes",
"Colour reconnections on",
1);
static Parameter<ColourReconnector,double> interfaceMtrpAnnealingFactor
("AnnealingFactor",
"The annealing factor is the ratio of the temperatures in two successive "
"temperature steps.",
&ColourReconnector::_annealingFactor, 0.9, 0.0, 1.0,
false, false, Interface::limited);
static Parameter<ColourReconnector,unsigned> interfaceMtrpAnnealingSteps
("AnnealingSteps",
"Number of temperature steps in the statistical annealing algorithm",
&ColourReconnector::_annealingSteps, 50, 1, 10000,
false, false, Interface::limited);
static Parameter<ColourReconnector,double> interfaceMtrpTriesPerStepFactor
("TriesPerStepFactor",
"The number of reconnection tries per temperature steps is the number of "
"clusters times this factor.",
&ColourReconnector::_triesPerStepFactor, 5.0, 0.0, 100.0,
false, false, Interface::limited);
static Parameter<ColourReconnector,double> interfaceMtrpInitialTemp
("InitialTemperature",
"Factor used to determine the initial temperature from the median of the "
"energy change in a few random rearrangements.",
&ColourReconnector::_initTemp, 0.1, 0.00001, 100.0,
false, false, Interface::limited);
static Parameter<ColourReconnector,double> interfaceRecoProb
("ReconnectionProbability",
"Probability that a found reconnection possibility is actually accepted",
&ColourReconnector::_preco, 0.5, 0.0, 1.0,
false, false, Interface::limited);
static Switch<ColourReconnector,int> interfaceAlgorithm
("Algorithm",
"Specifies the colour reconnection algorithm",
&ColourReconnector::_algorithm, 0, true, false);
static SwitchOption interfaceAlgorithmPlain
(interfaceAlgorithm,
"Plain",
"Plain colour reconnection as in Herwig++ 2.5.0",
0);
static SwitchOption interfaceAlgorithmStatistical
(interfaceAlgorithm,
"Statistical",
"Statistical colour reconnection using simulated annealing",
1);
+
+ static Parameter<ColourReconnector,Length> interfaceMaxDistance
+ ("MaxDistance",
+ "Maximum distance between the clusters at which to consider rearrangement"
+ " to avoid colour reconneections of displaced vertices",
+ &ColourReconnector::_maxDistance, femtometer, 1000.*femtometer, 0.0*femtometer, 1e100*femtometer,
+ false, false, Interface::limited);
+
}
diff --git a/Hadronization/ColourReconnector.h b/Hadronization/ColourReconnector.h
--- a/Hadronization/ColourReconnector.h
+++ b/Hadronization/ColourReconnector.h
@@ -1,235 +1,241 @@
// -*- C++ -*-
//
// ColourReconnector.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_ColourReconnector_H
#define HERWIG_ColourReconnector_H
#include <ThePEG/Interface/Interfaced.h>
#include "CluHadConfig.h"
#include "ColourReconnector.fh"
namespace Herwig {
using namespace ThePEG;
/** \ingroup Hadronization
* \class ColourReconnector
* \brief Class for changing colour reconnections of partons.
* \author Alberto Ribon, Christian Roehr
*
* This class does the nonperturbative colour rearrangement, after the
* nonperturbative gluon splitting and the "normal" cluster formation.
* It uses the list of particles in the event record, and the collections of
* "usual" clusters which is passed to the main method. If the colour
* reconnection is actually accepted, then the previous collections of "usual"
* clusters is first deleted and then the new one is created.
*
* * @see \ref ColourReconnectorInterfaces "The interfaces"
* defined for ColourReconnector.
*/
class ColourReconnector: public Interfaced {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
ColourReconnector() :
_algorithm(0),
_annealingFactor(0.9),
_annealingSteps(50),
_clreco(0),
_initTemp(0.1),
_preco(0.5),
- _triesPerStepFactor(5.0)
+ _triesPerStepFactor(5.0),
+ _maxDistance(1000.*femtometer)
{}
//@}
/**
* Does the colour rearrangement, starting out from the list of particles in
* the event record and the collection of "usual" clusters passed as
* arguments. If the actual rearrangement is accepted, the initial collection of
* clusters is overridden by the old ones.
*/
void rearrange(ClusterVector & clusters);
private:
/** PRIVATE MEMBER FUNCTIONS */
/**
* @brief Calculates the sum of the squared cluster masses.
* @arguments q, aq vectors containing the quarks and antiquarks respectively
* @return Sum of cluster squared masses M^2_{q[i],aq[i]}.
*/
Energy2 _clusterMassSum(const PVector & q, const PVector & aq) const;
/**
* @brief Examines whether the cluster vector (under the given permutation of
* the antiquarks) contains colour-octet clusters
* @param cv Cluster vector
* @param P Permutation, a vector of permutated indices from 0 to
* cv.size()-1
*/
bool _containsColour8(const ClusterVector & cv, const vector<size_t> & P) const;
/**
* @brief A Metropolis-type algorithm which finds a local minimum in the
* total sum of cluster masses
* @arguments cv cluster vector
*/
void _doRecoStatistical(ClusterVector & cv) const;
/**
* @brief Plain colour reconnection as used in Herwig++ 2.5.0
* @arguments cv cluster vector
*/
void _doRecoPlain(ClusterVector & cv) const;
/**
* @brief Finds the cluster in cv which, if reconnected with the given
* cluster cl, would result in the smallest sum of cluster masses.
* If no reconnection partner can be found, a pointer to the
* original Cluster cl is returned.
* @arguments cv cluster vector
* cl cluster iterator (must be from cv) which wants to have a reconnection partner
* @return iterator to the found cluster, or the original cluster pointer if
* no mass-reducing combination can be found
*/
ClusterVector::iterator _findRecoPartner(ClusterVector::iterator cl,
ClusterVector & cv) const;
/**
* @brief Reconnects the constituents of the given clusters to the (only)
* other possible cluster combination.
* @return pair of pointers to the two new clusters
*/
pair <ClusterPtr,ClusterPtr> _reconnect(ClusterPtr c1, ClusterPtr c2) const;
/**
* @brief At random, swap two antiquarks, if not excluded by the
* constraint that there must not be any colour-octet clusters.
* @arguments q, aq vectors containing the quarks and antiquarks respectively
* maxtries maximal number of tries to find a non-colour-octet
* reconfiguration
* @return Pair of ints indicating the indices of the antiquarks to be
* swapped. Returns (-1,-1) if no valid reconfiguration could be
* found after maxtries trials
*/
pair <int,int>
_shuffle(const PVector & q, const PVector & aq, unsigned maxtries = 10) const;
/** DATA MEMBERS */
/**
* Specifies the colour reconnection algorithm to be used.
*/
int _algorithm;
/**
* The annealing factor is the ratio of two successive temperature steps:
* T_n = _annealingFactor * T_(n-1)
*/
double _annealingFactor;
/**
* Number of temperature steps in the statistical annealing algorithm
*/
unsigned _annealingSteps;
/**
* Do we do colour reconnections?
*/
int _clreco;
/**
* Factor used to determine the initial temperature according to
* InitialTemperature = _initTemp * median {energy changes in a few random
* rearrangements}
*/
double _initTemp;
/**
* Probability that a found reconnection possibility is actually accepted.
*/
double _preco;
/**
* The number of tries per temperature steps is the number of clusters times
* this factor.
*/
double _triesPerStepFactor;
/**
+ * Maximium distance for reconnections
+ */
+ Length _maxDistance;
+
+ /**
* @return true, if the two partons are splitting products of the same
* gluon
*/
static bool isColour8(cPPtr p, cPPtr q);
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interfaces.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* Private and non-existent assignment operator.
*/
ColourReconnector & operator=(const ColourReconnector &);
};
}
#endif /* HERWIG_ColourReconnector_H */
diff --git a/Hadronization/LightClusterDecayer.cc b/Hadronization/LightClusterDecayer.cc
--- a/Hadronization/LightClusterDecayer.cc
+++ b/Hadronization/LightClusterDecayer.cc
@@ -1,417 +1,417 @@
// -*- C++ -*-
//
// LightClusterDecayer.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the LightClusterDecayer class.
//
#include "LightClusterDecayer.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Interface/Parameter.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/Repository/EventGenerator.h>
#include "Cluster.h"
#include "CheckId.h"
#include "Herwig++/Utilities/Kinematics.h"
#include <ThePEG/Utilities/DescribeClass.h>
using namespace Herwig;
DescribeClass<LightClusterDecayer,Interfaced>
describeLightClusterDecayer("Herwig::LightClusterDecayer","");
IBPtr LightClusterDecayer::clone() const {
return new_ptr(*this);
}
IBPtr LightClusterDecayer::fullclone() const {
return new_ptr(*this);
}
void LightClusterDecayer::persistentOutput(PersistentOStream & os) const {
os << _hadronSelector << _limBottom << _limCharm << _limExotic;
}
void LightClusterDecayer::persistentInput(PersistentIStream & is, int) {
is >> _hadronSelector >> _limBottom >> _limCharm >> _limExotic ;
}
void LightClusterDecayer::Init() {
static ClassDocumentation<LightClusterDecayer> documentation
("There is the class responsible for the one-hadron decay of light clusters");
static Reference<LightClusterDecayer,HadronSelector>
interfaceHadronSelector("HadronSelector",
"A reference to the HadronSelector object",
&Herwig::LightClusterDecayer::_hadronSelector,
false, false, true, false);
static Parameter<LightClusterDecayer,double>
interfaceSingleHadronLimitBottom ("SingleHadronLimitBottom","threshold for one-hadron decay of b-cluster",
&LightClusterDecayer::_limBottom, 0, 0.0, 0.0, 100.0,false,false,false);
static Parameter<LightClusterDecayer,double>
interfaceSingleHadronLimitCharm ("SingleHadronLimitCharm","threshold for one-hadron decay of c-cluster",
&LightClusterDecayer::_limCharm, 0, 0.0, 0.0, 100.0,false,false,false);
static Parameter<LightClusterDecayer,double>
interfaceSingleHadronLimitExotic ("SingleHadronLimitExotic","threshold for one-hadron decay of exotic cluster",
&LightClusterDecayer::_limExotic, 0, 0.0, 0.0, 100.0,false,false,false);
}
bool LightClusterDecayer::decay(ClusterVector & clusters, tPVector & finalhadrons) {
// Loop over all clusters, and for those that were not heavy enough
// to undergo to fission, check if they are below the threshold
// for normal two-hadron decays. If this is the case, then the cluster
// should be decayed into a single hadron: this can happen only if
// it is possible to reshuffle momenta between the cluster and
// another one; in the rare occasions in which such exchange of momenta
// is not possible (because all of the clusters are too light) then
// the event is skipped.
// Notice that, differently from what happens in Fortran Herwig,
// light (that is below the threshold for the production of the lightest
// pair of hadrons with the proper flavours) fission products, produced
// by the fission of heavy clusters in class ClusterFissioner
// have been already "decayed" into single hadron (the lightest one
// with proper flavour) by the same latter class, without requiring
// any reshuffling. Therefore the light clusters that are treated in
// this LightClusterDecayer class are produced directly
// (originally) by the class ClusterFinder.
// To preserve all of the information, the cluster partner with which
// the light cluster (that decays into a single hadron) exchanges
// momentum in the reshuffling procedure is redefined and inserted
// in the vector vecNewRedefinedCluPtr. Only at the end, when all
// light clusters have been examined, the elements this vector will be
// copied in collecCluPtr (the reason is that it is not allowed to
// modify a STL container while iterating over it. At the same time,
// this ensures that a cluster can be redefined only once, which seems
// sensible although not strictly necessary).
// Notice that the cluster reshuffling partner is normally redefined
// and inserted in the vector vecNewRedefinedCluPtr, but not always:
// in the case it is also light, then it is also decayed immediately
// into a single hadron, without redefining it (the reason being that,
// otherwise, the would-be redefined cluster could have undefined
// components).
vector<tClusterPtr> redefinedClusters;
for (ClusterVector::const_iterator it = clusters.begin();
it != clusters.end(); ++it) {
// Skip the clusters that are not available or that are
// heavy, intermediate, clusters that have undergone to fission,
if ( ! (*it)->isAvailable() || ! (*it)->isReadyToDecay() ) continue;
// We need to require (at least at the moment, maybe in the future we
// could change it) that the cluster has exactly two components,
// because otherwise we don't know how to deal with the kinematics.
// If this is not the case, then send a warning because it is not suppose
// to happen, and then do nothing with (ignore) such cluster.
if ( (*it)->numComponents() != 2 ) {
generator()->logWarning( Exception("LightClusterDecayer::decay "
"***Still cluster with not exactly"
" 2 components*** ",
Exception::warning) );
continue;
}
// Extract the particle pointer of the two components of the cluster.
tPPtr ptrQ1 = (*it)->particle(0);
tPPtr ptrQ2 = (*it)->particle(1);
tcPDPtr par1 = ptrQ1->dataPtr();
tcPDPtr par2 = ptrQ2->dataPtr();
// Determine the sum of the nominal masses of the two lightest hadrons
// with the right flavour numbers as the cluster under consideration.
// Notice that we don't need real masses (drawn by a Breit-Wigner
// distribution) because the lightest pair of hadrons does not involve
// any broad resonance.
Energy threshold = _hadronSelector->massLightestHadronPair(par1,par2);
// Special: it allows one-hadron decays also above threshold.
if (CheckId::isExotic(par1,par2))
threshold *= (1.0 + UseRandom::rnd()*_limExotic);
else if (CheckId::hasBottom(par1,par2))
threshold *= (1.0 + UseRandom::rnd()*_limBottom);
else if (CheckId::hasCharm(par1,par2))
threshold *= (1.0 + UseRandom::rnd()*_limCharm);
// only do one hadron decay is mass less than the threshold
if((*it)->mass()>=threshold) continue;
tcPDPtr hadron= _hadronSelector->lightestHadron(par1,par2);
// We assume that the candidate reshuffling cluster partner,
// with whom the light cluster can exchange momenta,
// is chosen as the closest in space-time between the available
// clusters. Notice that an alternative, sensible approach
// could be to consider instead the "closeness" in the colour
// structure...
// Notice that nor a light cluster (which decays into a single hadron)
// neither its cluster reshuffling partner (which either has a
// redefined cluster or also decays into a single hadron) can be
// a reshuffling partner of another light cluster.
// This because we are requiring that the considered candidate cluster
// reshuffling partner has the status "isAvailable && isReadyToDecay" true;
// furthermore, the new redefined clusters are not added to the collection
// of cluster before the end of the entire reshuffling procedure, avoiding
// in this way that the redefined cluster of a cluster reshuffling partner
// is used again later. Needless to say, this is just an assumption,
// although reasonable, but nothing more than that!
// Build a multimap of available reshuffling cluster partners,
// with key given by the module of the invariant space-time distance
// w.r.t. the light cluster, so that this new collection is automatically
// ordered in increasing distance values.
// We use a multimap, rather than a map, just for precaution against not properly
// defined cluster positions which could produce all identical (null) distances.
multimap<Length,tClusterPtr> candidates;
for ( ClusterVector::iterator jt = clusters.begin();
jt != clusters.end(); ++jt ) {
if ((*jt)->isAvailable() && (*jt)->isReadyToDecay() && jt != it) {
Length distance = abs (((*it)->vertex() - (*jt)->vertex()).m());
candidates.insert(pair<Length,tClusterPtr>(distance,*jt));
}
}
// Loop sequentially the multimap.
multimap<Length,tClusterPtr>::const_iterator mmapIt = candidates.begin();
bool found = false;
while (!found && mmapIt != candidates.end()) {
found = reshuffling(hadron, *it, (*mmapIt).second, redefinedClusters, finalhadrons);
if (!found) ++mmapIt;
}
if (!found) return partonicReshuffle(hadron,*it,finalhadrons);
} // end loop over collecCluPtr
// Add to collecCluPtr all of the redefined new clusters (indeed the
// pointers to them are added) contained in vecNewRedefinedCluPtr.
for (tClusterVector::const_iterator it = redefinedClusters.begin();
it != redefinedClusters.end(); ++it) {
clusters.push_back(*it);
}
return true;
}
bool LightClusterDecayer::reshuffling(const tcPDPtr pdata1,
tClusterPtr cluPtr1,
tClusterPtr cluPtr2,
tClusterVector & redefinedClusters,
tPVector & finalhadrons)
{
// don't reshuffle with beam clusters
if(cluPtr2->isBeamCluster()) return false;
// This method does the reshuffling of momenta between the cluster "1",
// that must decay into a single hadron (with id equal to idhad1), and
// the candidate cluster "2". It returns true if the reshuffling succeed,
// false otherwise.
PPtr ptrhad1 = pdata1->produceParticle();
if ( ! ptrhad1 ) {
generator()->logWarning( Exception("LightClusterDecayer::reshuffling"
"***Cannot create a particle with specified id***",
Exception::warning) );
return false;
}
Energy mhad1 = ptrhad1->mass();
// Let's call "3" and "4" the two constituents of the second cluster
tPPtr part3 = cluPtr2->particle(0);
tPPtr part4 = cluPtr2->particle(1);
// Check if the system of the two clusters can kinematically be replaced by
// an hadron of mass mhad1 (which is the lightest single hadron with the
// same flavour numbers as the first cluster) and the second cluster.
// If not, then try to replace the second cluster with the lightest hadron
// with the same flavour numbers; if it still fails, then give up!
Lorentz5Momentum pSystem = cluPtr1->momentum() + cluPtr2->momentum();
pSystem.rescaleMass(); // set the mass as the invariant of the quadri-vector
Energy mSystem = pSystem.mass();
Energy mclu2 = cluPtr2->mass();
bool singleHadron = false;
Energy mLHP2 = _hadronSelector->massLightestHadronPair(part3->dataPtr(),part4->dataPtr());
Energy mLH2 = _hadronSelector->massLightestHadron(part3->dataPtr(),part4->dataPtr());
if(mSystem > mhad1 + mclu2 && mclu2 > mLHP2) { singleHadron = false; }
else if(mSystem > mhad1 + mLH2) { singleHadron = true; mclu2 = mLH2; }
else return false;
// Let's call from now on "Sys" the system of the two clusters, and
// had1 (of mass mhad1) the lightest hadron in which the first
// cluster decays, and clu2 (of mass mclu2) either the second
// cluster or the lightest hadron in which it decays (depending
// which one is kinematically allowed, see above).
// The idea behind the reshuffling is to replace the system of the
// two clusters by the system of the hadron had1 and (cluster or hadron) clu2,
// but leaving the overall system unchanged. Furthermore, the motion
// of had1 and clu2 in the Sys frame is assumed to be parallel to, respectively,
// those of the original cluster1 and cluster2 in the same Sys frame.
// Calculate the unit three-vector, in the frame "Sys" along which the
// two initial clusters move.
Lorentz5Momentum u( cluPtr1->momentum() );
u.boost( - pSystem.boostVector() ); // boost from LAB to Sys
// Calculate the momenta of had1 and clu2 in the Sys frame first,
// and then boost back in the LAB frame.
Lorentz5Momentum phad1, pclu2;
if (pSystem.m() < mhad1 + mclu2 ) {
throw Exception() << "Impossible Kinematics in LightClusterDecayer::reshuffling()"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(pSystem, mhad1, mclu2, u.vect().unit(), phad1, pclu2);
- ptrhad1->set5Momentum( phad1 ); // set momentum of first hadron.
- ptrhad1->setLabVertex(cluPtr1->vertex()); // set hadron vertex position to the
- // parent cluster position.
+ ptrhad1->set5Momentum( phad1 ); // set momentum of first hadron.
+ ptrhad1->setVertex(cluPtr1->vertex()); // set hadron vertex position to the
+ // parent cluster position.
cluPtr1->addChild(ptrhad1);
finalhadrons.push_back(ptrhad1);
cluPtr1->flagAsReshuffled();
cluPtr2->flagAsReshuffled();
if(singleHadron) {
// In the case that also the cluster reshuffling partner is light
// it is decayed into a single hadron, *without* creating the
// redefined cluster (this choice is justified in order to avoid
// clusters that could have undefined components).
PPtr ptrhad2 = _hadronSelector->lightestHadron(part3->dataPtr(),part4->dataPtr())
->produceParticle();
ptrhad2->set5Momentum( pclu2 );
- ptrhad2->setLabVertex( cluPtr2->vertex() ); // set hadron vertex position to the
- // parent cluster position.
+ ptrhad2->setVertex( cluPtr2->vertex() ); // set hadron vertex position to the
+ // parent cluster position.
cluPtr2->addChild(ptrhad2);
finalhadrons.push_back(ptrhad2);
} else {
// Create the new cluster which is the redefinitions of the cluster
// partner (cluster "2") used in the reshuffling procedure of the
// light cluster (cluster "1").
// The rationale of this is to preserve completely all of the information.
ClusterPtr cluPtr2new = ClusterPtr();
if(part3 && part4) cluPtr2new = new_ptr(Cluster(part3,part4));
cluPtr2new->set5Momentum( pclu2 );
cluPtr2new->setVertex( cluPtr2->vertex() );
cluPtr2->addChild( cluPtr2new );
redefinedClusters.push_back( cluPtr2new );
// Set consistently the momenta of the two components of the second cluster
// after the reshuffling. To do that we first calculate the momenta of the
// constituents in the initial cluster rest frame; then we boost them back
// in the lab but using this time the new cluster rest frame. Finally we store
// these information in the new cluster. Notice that we do *not* set
// consistently also the momenta of the (eventual) particles pointed by the
// two components: that's because we do not need to do so, being the momentum
// an explicit private member of the class Component (which is set equal
// to the momentum of the eventual particle pointed only in the constructor,
// but then later should not necessary be the same), and furthermore it allows
// us not to loose any information, in the sense that we can always, later on,
// to find the original momenta of the two components before the reshuffling.
Lorentz5Momentum p3 = part3->momentum(); //p3new->momentum();
p3.boost( - (cluPtr2->momentum()).boostVector() ); // from LAB to clu2 (old) frame
p3.boost( pclu2.boostVector() ); // from clu2 (new) to LAB frame
Lorentz5Momentum p4 = part4->momentum(); //p4new->momentum();
p4.boost( - (cluPtr2->momentum()).boostVector() ); // from LAB to clu2 (old) frame
p4.boost( pclu2.boostVector() ); // from clu2 (new) to LAB frame
cluPtr2new->particle(0)->set5Momentum(p3);
cluPtr2new->particle(1)->set5Momentum(p4);
} // end of if (singleHadron)
return true;
}
bool LightClusterDecayer::partonicReshuffle(const tcPDPtr had,
const PPtr cluster,
tPVector & finalhadrons) {
tPPtr meson(cluster);
if(!meson->parents().empty()) meson=meson->parents()[0];
if(!meson->parents().empty()) meson=meson->parents()[0];
// check b/c hadron decay
int ptype(abs(meson->id())%10000);
bool heavy = (ptype/1000 == 5 || ptype/1000 ==4 );
heavy |= (ptype/100 == 5 || ptype/100 ==4 );
heavy |= (ptype/10 == 5 || ptype/10 ==4 );
if(!heavy) return false;
// find the leptons
tPVector leptons;
for(unsigned int ix=0;ix<meson->children().size();++ix) {
if(!(meson->children()[ix]->dataPtr()->coloured())) {
leptons.push_back(meson->children()[ix]);
}
}
if(leptons.size()==1) {
tPPtr w=leptons[0];
leptons.pop_back();
for(unsigned int ix=0;ix<w->children().size();++ix) {
if(!w->children()[ix]->dataPtr()->coloured()) {
leptons.push_back(w->children()[ix]);
}
}
}
if(leptons.size()!=2) return false;
// get momentum of leptonic system and the its minimum possible mass
Energy mmin(ZERO);
Lorentz5Momentum pw;
for(unsigned int ix=0;ix<leptons.size();++ix) {
pw+=leptons[ix]->momentum();
mmin+=leptons[ix]->mass();
}
pw.rescaleMass();
// check we can do the reshuffling
PPtr ptrhad = had->produceParticle();
// total momentum fo the system
Lorentz5Momentum pSystem = pw + cluster->momentum();
pSystem.rescaleMass();
// normal case get additional energy by rescaling momentum in rest frame of
// system
if(pSystem.mass()>ptrhad->mass()+pw.mass()&&pw.mass()>mmin) {
// Calculate the unit three-vector, in the frame "Sys" along which the
// two initial clusters move.
Lorentz5Momentum u(cluster->momentum());
u.boost( - pSystem.boostVector() );
// Calculate the momenta of had1 and clu2 in the Sys frame first,
// and then boost back in the LAB frame.
Lorentz5Momentum phad1, pclu2;
Kinematics::twoBodyDecay(pSystem, ptrhad->mass(), pw.mass(),
u.vect().unit(), phad1, pclu2);
// set momentum of first hadron.
ptrhad->set5Momentum( phad1 );
// set hadron vertex position to the parent cluster position.
ptrhad->setLabVertex(cluster->vertex());
// add hadron
cluster->addChild(ptrhad);
finalhadrons.push_back(ptrhad);
// reshuffle the leptons
// boost the leptons to the rest frame of the system
Boost boost1(-pw.boostVector());
Boost boost2( pclu2.boostVector());
for(unsigned int ix=0;ix<leptons.size();++ix) {
leptons[ix]->deepBoost(boost1);
leptons[ix]->deepBoost(boost2);
}
return true;
}
else {
return false;
}
}
diff --git a/Hadronization/PartonSplitter.cc b/Hadronization/PartonSplitter.cc
--- a/Hadronization/PartonSplitter.cc
+++ b/Hadronization/PartonSplitter.cc
@@ -1,132 +1,138 @@
// -*- C++ -*-
//
// PartonSplitter.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the PartonSplitter class.
//
#include "PartonSplitter.h"
#include <ThePEG/Interface/ClassDocumentation.h>
#include <ThePEG/Interface/Reference.h>
#include <ThePEG/Persistency/PersistentOStream.h>
#include <ThePEG/Persistency/PersistentIStream.h>
#include <ThePEG/PDT/EnumParticles.h>
#include <ThePEG/EventRecord/Step.h>
#include <ThePEG/Repository/EventGenerator.h>
#include <ThePEG/Repository/CurrentGenerator.h>
#include "Herwig++/Utilities/Kinematics.h"
#include <ThePEG/Utilities/DescribeClass.h>
using namespace Herwig;
IBPtr PartonSplitter::clone() const {
return new_ptr(*this);
}
IBPtr PartonSplitter::fullclone() const {
return new_ptr(*this);
}
void PartonSplitter::persistentOutput(PersistentOStream & os) const {
os << _quarkSelector;
}
void PartonSplitter::persistentInput(PersistentIStream & is, int) {
is >> _quarkSelector;
}
DescribeClass<PartonSplitter,Interfaced>
describePartonSplitter("Herwig::PartonSplitter","");
void PartonSplitter::Init() {
static ClassDocumentation<PartonSplitter> documentation
("This class is reponsible of the nonperturbative splitting of partons");
}
void PartonSplitter::split(PVector & tagged) {
PVector newtag;
Energy2 Q02 = 0.99*sqr(getParticleData(ParticleID::g)->constituentMass());
// Loop over all of the particles in the event.
for(PVector::const_iterator pit = tagged.begin(); pit!=tagged.end(); ++pit) {
// only considering gluons so add other particles to list of particles
if( (**pit).data().id() != ParticleID::g ) {
newtag.push_back(*pit);
continue;
}
// should not have been called for massless or space-like gluons
if((**pit).momentum().m2() <= 0.0*sqr(MeV) ) {
throw Exception()
<< "Spacelike or massless gluon m2= " << (**pit).momentum().m2()/GeV2
<< "GeV2 in PartonSplitter::split()"
<< Exception::eventerror;
}
// time like gluon gets split
PPtr ptrQ = PPtr();
PPtr ptrQbar = PPtr();
splitTimeLikeGluon(*pit,ptrQ,ptrQbar);
ptrQ->scale(Q02);
ptrQbar->scale(Q02);
(*pit)->colourLine()->addColoured(ptrQ);
(*pit)->addChild(ptrQ);
newtag.push_back(ptrQ);
(*pit)->antiColourLine()->addAntiColoured(ptrQbar);
(*pit)->addChild(ptrQbar);
newtag.push_back(ptrQbar);
+
+ // assume same position as gluon
+ ptrQ ->setVertex((**pit).decayVertex());
+ ptrQ ->setLifeLength(Lorentz5Distance());
+ ptrQbar->setVertex((**pit).decayVertex());
+ ptrQbar->setLifeLength(Lorentz5Distance());
}
swap(tagged,newtag);
}
void PartonSplitter::splitTimeLikeGluon(tcPPtr ptrGluon,
PPtr & ptrQ,
PPtr & ptrQbar){
// select the quark flavour
tPDPtr quark = _quarkSelector.select(UseRandom::rnd());
// Solve the kinematics of the two body decay G --> Q + Qbar
Lorentz5Momentum momentumQ;
Lorentz5Momentum momentumQbar;
double cosThetaStar = UseRandom::rnd( -1.0 , 1.0 );
using Constants::pi;
double phiStar = UseRandom::rnd( -pi , pi );
Energy constituentQmass = quark->constituentMass();
if (ptrGluon->momentum().m() < 2.0*constituentQmass) {
throw Exception() << "Impossible Kinematics in PartonSplitter::splitTimeLikeGluon()"
<< Exception::eventerror;
}
Kinematics::twoBodyDecay(ptrGluon->momentum(), constituentQmass,
constituentQmass, cosThetaStar, phiStar, momentumQ,
momentumQbar );
// Create quark and anti-quark particles of the chosen flavour
// and set they 5-momentum (the mass is the constituent one).
ptrQ = new_ptr(Particle(quark ));
ptrQbar = new_ptr(Particle(quark->CC()));
ptrQ ->set5Momentum( momentumQ );
ptrQbar ->set5Momentum( momentumQbar );
}
void PartonSplitter::doinit() {
Interfaced::doinit();
// calculate the probabilties for the gluon to branch into each quark type
// based on the available phase-space, as in fortran.
Energy mg=getParticleData(ParticleID::g)->constituentMass();
for( int ix=1; ix<6; ++ix ) {
PDPtr quark = getParticleData(ix);
Energy pcm = Kinematics::pstarTwoBodyDecay(mg,quark->constituentMass(),
quark->constituentMass());
if(pcm>ZERO) _quarkSelector.insert(pcm/GeV,quark);
}
if(_quarkSelector.empty())
throw InitException() << "At least one quark must have constituent mass less "
<< "then the constituent mass of the gluon in "
<< "PartonSplitter::doinit()" << Exception::runerror;
}
diff --git a/Shower/Base/ShowerTree.cc b/Shower/Base/ShowerTree.cc
--- a/Shower/Base/ShowerTree.cc
+++ b/Shower/Base/ShowerTree.cc
@@ -1,1125 +1,1177 @@
// -*- C++ -*-
//
// ShowerTree.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#include "ShowerProgenitor.h"
#include "ThePEG/EventRecord/MultiColour.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ShowerTree.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Handlers/XComb.h"
#include "KinematicsReconstructor.h"
#include <cassert>
#include "ThePEG/Repository/CurrentGenerator.h"
using namespace Herwig;
using namespace ThePEG;
set<long> ShowerTree::_decayInShower = set<long>();
namespace {
void findBeam(tPPtr & beam, PPtr incoming) {
while(!beam->children().empty()) {
bool found=false;
for(unsigned int ix=0;ix<beam->children().size();++ix) {
if(beam->children()[ix]==incoming) {
found = true;
break;
}
}
if(found) break;
beam = beam->children()[0];
}
}
}
// constructor from hard process
ShowerTree::ShowerTree(const PPair incoming, const ParticleVector & out,
ShowerDecayMap& decay)
: _hardMECorrection(false), _wasHard(true),
_parent(), _hasShowered(false) {
tPPair beam = CurrentGenerator::current().currentEvent()->incoming();
findBeam(beam.first ,incoming.first );
findBeam(beam.second,incoming.second);
_incoming = incoming;
double x1(_incoming.first ->momentum().rho()/beam.first ->momentum().rho());
double x2(_incoming.second->momentum().rho()/beam.second->momentum().rho());
// must have two incoming particles
assert(_incoming.first && _incoming.second);
// set the parent tree
_parent=ShowerTreePtr();
// temporary vectors to contain all the particles before insertion into
// the data structure
vector<PPtr> original,copy;
vector<ShowerParticlePtr> shower;
// create copies of ThePEG particles for the incoming particles
original.push_back(_incoming.first);
copy.push_back(new_ptr(Particle(*_incoming.first)));
original.push_back(_incoming.second);
copy.push_back(new_ptr(Particle(*_incoming.second)));
// and same for outgoing
map<PPtr,ShowerTreePtr> trees;
for (ParticleVector::const_iterator it = out.begin();
it != out.end(); ++it) {
// if decayed or should be decayed in shower make the tree
PPtr orig = *it;
if(!orig->children().empty() ||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
newtree->setParents();
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
}
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
// colour isolate the hard process
colourIsolate(original,copy);
// now create the Shower particles
// create ShowerParticles for the incoming particles
assert(original.size() == copy.size());
for(unsigned int ix=0;ix<original.size();++ix) {
ShowerParticlePtr temp=new_ptr(ShowerParticle(*copy[ix],1,ix>=2));
fixColour(temp);
// incoming
if(ix<2) {
temp->x(ix==0 ? x1 : x2);
_incomingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],
copy[ix],temp)),temp));
_backward.insert(temp);
}
// outgoing
else {
_outgoingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],
copy[ix],temp)),temp));
_forward.insert(temp);
}
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end())
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,mit->first->progenitor())));
}
}
ShowerTree::ShowerTree(PPtr in,
ShowerDecayMap& decay)
: _hardMECorrection(false), _wasHard(false), _hasShowered(false) {
// there must be an incoming particle
assert(in);
// temporary vectors to contain all the particles before insertion into
// the data structure
vector<PPtr> original,copy;
// insert place holder for incoming particle
original.push_back(in);
copy.push_back(PPtr());
// we need to deal with the decay products if decayed
map<PPtr,ShowerTreePtr> trees;
if(!in->children().empty()) {
ParticleVector children=in->children();
for(unsigned int ix=0;ix<children.size();++ix) {
// if decayed or should be decayed in shower make the tree
PPtr orig=children[ix];
in->abandonChild(orig);
if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
newtree->setParents();
newtree->_parent=this;
}
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
}
// create the incoming particle
copy[0] = new_ptr(Particle(*in));
// isolate the colour
colourIsolate(original,copy);
// create the parent
ShowerParticlePtr sparent(new_ptr(ShowerParticle(*copy[0],2,false)));
fixColour(sparent);
_incomingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[0],copy[0],sparent))
,sparent));
// return if not decayed
if(original.size()==1) return;
// create the children
assert(copy.size() == original.size());
for (unsigned int ix=1;ix<original.size();++ix) {
ShowerParticlePtr stemp= new_ptr(ShowerParticle(*copy[ix],2,true));
fixColour(stemp);
_outgoingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],copy[ix],
stemp)),
stemp));
_forward.insert(stemp);
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end())
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,mit->first->progenitor())));
}
}
void ShowerTree::updateFinalStateShowerProduct(ShowerProgenitorPtr progenitor,
ShowerParticlePtr parent,
const ShowerParticleVector & children) {
assert(children.size()==2);
bool matches[2];
for(unsigned int ix=0;ix<2;++ix) {
matches[ix] = children[ix]->id()==progenitor->id();
}
ShowerParticlePtr newpart;
if(matches[0]&&matches[1]) {
if(parent->showerKinematics()->z()>0.5) newpart=children[0];
else newpart=children[1];
}
else if(matches[0]) newpart=children[0];
else if(matches[1]) newpart=children[1];
_outgoingLines[progenitor]=newpart;
}
void ShowerTree::updateInitialStateShowerProduct(ShowerProgenitorPtr progenitor,
ShowerParticlePtr newParent) {
_incomingLines[progenitor]=newParent;
}
void ShowerTree::isolateLine(vector<PPair>::const_iterator cit,
vector<PPair> & particles,
tcColinePtr oldline,
tColinePtr newline) {
// loop over particles
for(vector<PPair>::const_iterator cjt=particles.begin();
cjt!=particles.end();++cjt) {
if(cjt==cit) continue;
// if particle has colour line
if((*cjt).second->colourLine()) {
// if only one check if current line and reset
if(int((*cjt).second->colourInfo()->colourLines().size())==1) {
if((*cjt).second->colourLine()==oldline)
newline->addColoured((*cjt).first);
}
// if more than one check if each line current line and reset
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).second->colourInfo());
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).first ->colourInfo());
for(unsigned int ix=0;ix<colour1->colourLines().size();++ix) {
if(colour1->colourLines()[ix]==oldline)
colour2->colourLine(newline,int(ix)+1);
}
}
}
// if particle has anticolour line
if((*cjt).second->antiColourLine()) {
// if only one check if current line and reset
if(int((*cjt).second->colourInfo()->antiColourLines().size())==1) {
if((*cjt).second->antiColourLine()==oldline)
newline->addColoured((*cjt).first,true);
}
// if more than one check if each line current line and reset
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).second->colourInfo());
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cjt).first ->colourInfo());
for(unsigned int ix=0;ix<colour1->antiColourLines().size();++ix) {
if(colour1->antiColourLines()[ix]==oldline)
colour2->antiColourLine(newline, int(ix)+1);
}
}
}
}
}
void ShowerTree::colourIsolate(const vector<PPtr> & original,
const vector<PPtr> & copy) {
// vectors must have same size
assert(original.size()==copy.size());
// create a temporary map with all the particles to make looping easier
vector<PPair> particles;
particles.reserve(original.size());
for(unsigned int ix=0;ix<original.size();++ix)
particles.push_back(make_pair(copy[ix],original[ix]));
// reset the colour of the copies
vector<PPair>::const_iterator cit;
// make the colour connections of the copies
for(cit=particles.begin();cit!=particles.end();++cit) {
if((*cit).first->colourInfo()) {
if((*cit).first->dataPtr()->iColour() == PDT::Colour6 ||
(*cit).first->dataPtr()->iColour() == PDT::Colour6bar)
(*cit).first->colourInfo(new_ptr(MultiColour()));
else
(*cit).first->colourInfo(new_ptr(ColourBase()));
}
}
map<tcColinePtr,tColinePtr> cmap;
// make the colour connections of the copies
// loop over the particles
for(cit=particles.begin();cit!=particles.end();++cit) {
// if particle has at least one colour line
if((*cit).second->colourLine()) {
// one and only one line
if(int((*cit).second->colourInfo()->colourLines().size())==1) {
// if not already change
if(!(*cit).first->colourLine()) {
// make new line
tcColinePtr oldline=(*cit).second->colourLine();
ColinePtr newline=ColourLine::create((*cit).first);
cmap[oldline]=newline;
isolateLine(cit,particles,oldline,newline);
}
}
// more than one line
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).second->colourInfo());
vector<tcColinePtr> lines1 = colour1->colourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).first->colourInfo());
vector<tcColinePtr> lines2 = colour2->colourLines();
// loop over lines
for(unsigned int ix=0;ix<lines1.size();++ix) {
if( (lines2.size()>ix && !lines2[ix]) ||
lines2.size()<=ix) {
tcColinePtr oldline = lines1[ix];
ColinePtr newline = new_ptr(ColourLine());
cmap[oldline]=newline;
colour2->colourLine(newline, int(ix)+1);
isolateLine(cit,particles,oldline,newline);
}
}
}
}
// if anticolour line
if((*cit).second->antiColourLine()) {
// one and only one line
if(int((*cit).second->colourInfo()->antiColourLines().size())==1) {
// if not already change
if(!(*cit).first->antiColourLine()) {
// make new line
tcColinePtr oldline=(*cit).second->antiColourLine();
ColinePtr newline=ColourLine::create((*cit).first, true);
cmap[oldline]=newline;
isolateLine(cit,particles,oldline,newline);
}
}
// more than one line
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).second->colourInfo());
vector<tcColinePtr> lines1 = colour1->antiColourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>
((*cit).first->colourInfo());
vector<tcColinePtr> lines2 = colour2->antiColourLines();
// loop over lines
for(unsigned int ix=0;ix<lines1.size();++ix) {
if( (lines2.size()>ix && !lines2[ix]) ||
lines2.size()<=ix) {
tcColinePtr oldline = lines1[ix];
ColinePtr newline = new_ptr(ColourLine());
cmap[oldline]=newline;
colour2->antiColourLine(newline, int(ix)+1);
isolateLine(cit,particles,oldline,newline);
}
}
}
}
}
// sort out sinks and sources
for(cit=particles.begin();cit!=particles.end();++cit) {
tColinePtr cline[2];
tColinePair cpair;
for(unsigned int ix=0;ix<4;++ix) {
cline[0] = ix<2 ? cit->second->colourLine() : cit->second->antiColourLine();
cline[1] = ix<2 ? cit->first ->colourLine() : cit->first ->antiColourLine();
if(cline[0]) {
switch (ix) {
case 0: case 2:
cpair = cline[0]->sinkNeighbours();
break;
case 1: case 3:
cpair = cline[0]->sourceNeighbours();
break;
};
}
else {
cpair = make_pair(tColinePtr(),tColinePtr());
}
if(cline[0]&&cpair.first) {
map<tcColinePtr,tColinePtr>::const_iterator
mit[2] = {cmap.find(cpair.first),cmap.find(cpair.second)};
if(mit[0]!=cmap.end()&&mit[1]!=cmap.end()) {
if(ix==0||ix==2) {
cline[1]->setSinkNeighbours(mit[0]->second,mit[1]->second);
}
else {
cline[1]->setSourceNeighbours(mit[0]->second,mit[1]->second);
}
}
}
}
}
}
void ShowerTree::mapColour(PPtr original,
PPtr copy) {
// has colour line
if(copy->colourLine()) {
// one and only one
if(copy->colourInfo()->colourLines().size()==1) {
_colour.insert(make_pair(copy->colourLine(),
original->colourLine()));
}
// more than one
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(copy->colourInfo());
vector<tcColinePtr> lines1 = colour1->colourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(original->colourInfo());
vector<tcColinePtr> lines2 = colour2->colourLines();
for(unsigned int ix=0;ix<lines1.size();++ix)
_colour.insert(make_pair(const_ptr_cast<ColinePtr>(lines1[ix]),
const_ptr_cast<ColinePtr>(lines2[ix])));
}
}
// has anticolour line
if(copy->antiColourLine()) {
// one and only one
if(copy->colourInfo()->antiColourLines().size()==1) {
_colour.insert(make_pair(copy->antiColourLine(),
original->antiColourLine()));
}
// more than one
else {
Ptr<MultiColour>::pointer colour1 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(copy->colourInfo());
vector<tcColinePtr> lines1 = colour1->antiColourLines();
Ptr<MultiColour>::pointer colour2 =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(original->colourInfo());
vector<tcColinePtr> lines2 = colour2->antiColourLines();
for(unsigned int ix=0;ix<lines1.size();++ix)
_colour.insert(make_pair(const_ptr_cast<ColinePtr>(lines1[ix]),
const_ptr_cast<ColinePtr>(lines2[ix])));
}
}
}
void ShowerTree::insertHard(StepPtr pstep, bool ISR, bool) {
assert(_incomingLines.size()==2);
_colour.clear();
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// construct the map of colour lines for hard process
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
if(!cit->first->perturbative()) continue;
mapColour(cit->first->original(),cit->first->copy());
}
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
if(!cjt->first->perturbative()) continue;
mapColour(cjt->first->original(),cjt->first->copy());
}
// initial-state radiation
if(ISR) {
for(cit=incomingLines().begin();cit!=incomingLines().end();++cit) {
ShowerParticlePtr init=(*cit).first->progenitor();
assert(init->thePEGBase());
PPtr original = (*cit).first->original();
if(original->parents().empty()) continue;
PPtr hadron= original->parents()[0];
assert(!original->children().empty());
PPtr copy=cit->first->copy();
ParticleVector intermediates=original->children();
for(unsigned int ix=0;ix<intermediates.size();++ix) {
init->abandonChild(intermediates[ix]);
copy->abandonChild(intermediates[ix]);
}
// if not from a matrix element correction
if(cit->first->perturbative()) {
// break mother/daugther relations
init->addChild(original);
hadron->abandonChild(original);
// if particle showers add shower
if(cit->first->hasEmitted()) {
addInitialStateShower(init,hadron,pstep,false);
}
// no showering for this particle
else {
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
}
}
// from matrix element correction
else {
// break mother/daugther relations
hadron->abandonChild(original);
copy->addChild(original);
updateColour(copy);
init->addChild(copy);
pstep->addIntermediate(copy);
+ copy->setLifeLength(Lorentz5Distance());
+ copy->setVertex(LorentzPoint());
// if particle showers add shower
if(cit->first->hasEmitted()) {
addInitialStateShower(init,hadron,pstep,false);
}
// no showering for this particle
else {
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
}
}
+ init->setLifeLength(Lorentz5Distance());
+ init->setVertex(LorentzPoint());
}
}
else {
for(cit=incomingLines().begin();cit!=incomingLines().end();++cit) {
ShowerParticlePtr init=(*cit).first->progenitor();
assert(init->thePEGBase());
PPtr original = (*cit).first->original();
if(original->parents().empty()) continue;
PPtr hadron= original->parents()[0];
assert(!original->children().empty());
PPtr copy=cit->first->copy();
ParticleVector intermediates=original->children();
for(unsigned int ix=0;ix<intermediates.size();++ix) {
init->abandonChild(intermediates[ix]);
copy->abandonChild(intermediates[ix]);
}
// break mother/daugther relations
init->addChild(original);
hadron->abandonChild(original);
// no showering for this particle
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
+ init->setLifeLength(Lorentz5Distance());
+ init->setVertex(LorentzPoint());
+ original->setLifeLength(Lorentz5Distance());
+ original->setVertex(LorentzPoint());
}
}
// final-state radiation
for(cjt=outgoingLines().begin();cjt!=outgoingLines().end();++cjt) {
ShowerParticlePtr init=(*cjt).first->progenitor();
assert(init->thePEGBase());
+ // ZERO the distance of original
+ (*cjt).first->original()->setLifeLength(Lorentz5Distance());
+ (*cjt).first->original()->setVertex(LorentzPoint());
// if not from a matrix element correction
if(cjt->first->perturbative()) {
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
parents[ix]->abandonChild(init);
(*cjt).first->original()->addChild(init);
pstep->addDecayProduct(init);
}
// from a matrix element correction
else {
if(cjt->first->original()==_incoming.first||
cjt->first->original()==_incoming.second) {
updateColour((*cjt).first->copy());
(*cjt).first->original()->parents()[0]->
addChild((*cjt).first->copy());
pstep->addDecayProduct((*cjt).first->copy());
(*cjt).first->copy()->addChild(init);
pstep->addDecayProduct(init);
}
else {
updateColour((*cjt).first->copy());
(*cjt).first->original()->addChild((*cjt).first->copy());
pstep->addDecayProduct((*cjt).first->copy());
(*cjt).first->copy()->addChild(init);
pstep->addDecayProduct(init);
}
+ // ZERO the distance of copy ??? \todo change if add space-time
+ (*cjt).first->copy()->setLifeLength(Lorentz5Distance());
+ (*cjt).first->copy()->setVertex(LorentzPoint());
}
+ // copy so travels no distance
+ init->setLifeLength(Lorentz5Distance());
+ init->setVertex(init->parents()[0]->decayVertex());
+ // sort out the colour
updateColour(init);
// insert shower products
addFinalStateShower(init,pstep);
}
_colour.clear();
}
void ShowerTree::addFinalStateShower(PPtr p, StepPtr s) {
- if(p->children().empty()) return;
+ if(p->children().empty()) {
+ p->setLifeLength(Lorentz5Distance());
+ return;
+ }
+ // \todo the space time-distance should be set properly here !!!!
+ else {
+ p->setLifeLength(Lorentz5Distance());
+ }
ParticleVector::const_iterator child;
for(child=p->children().begin(); child != p->children().end(); ++child) {
updateColour(*child);
s->addDecayProduct(*child);
+ (**child).setVertex(p->decayVertex());
addFinalStateShower(*child,s);
}
}
void ShowerTree::updateColour(PPtr particle) {
// if attached to a colour line
if(particle->colourLine()) {
// one and only one
if(particle->colourInfo()->colourLines().size()==1) {
bool reset=false;
// if colour line from hard process reconnect
ColinePtr c1=particle->colourLine();
if(_colour.find(c1)!=_colour.end()) {
c1->removeColoured(particle);
_colour[c1]->addColoured(particle);
reset=true;
}
// ensure properly connected to the line
if(!reset) {
ColinePtr c1=particle->colourLine();
c1->removeColoured(particle);
c1->addColoured(particle);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(particle->colourInfo());
vector<tcColinePtr> lines = colour->colourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr c1 = const_ptr_cast<ColinePtr>(lines[ix]);
if(_colour.find(c1)!=_colour.end()) {
colour->colourLine(_colour[c1],int(ix)+1);
c1->removeColoured(particle);
}
}
}
}
// if attached to an anticolour line
if(particle->antiColourLine()) {
bool reset=false;
// one and only one
if(particle->colourInfo()->antiColourLines().size()==1) {
// if anti colour line from hard process reconnect
ColinePtr c1=particle->antiColourLine();
if(_colour.find(c1)!=_colour.end()) {
c1->removeColoured(particle,true);
_colour[c1]->addColoured(particle,true);
reset=true;
}
if(!reset) {
ColinePtr c1=particle->antiColourLine();
c1->removeColoured(particle,true);
c1->addColoured(particle,true);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(particle->colourInfo());
vector<tcColinePtr> lines = colour->antiColourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr c1 = const_ptr_cast<ColinePtr>(lines[ix]);
if(_colour.find(c1)!=_colour.end()) {
colour->antiColourLine(_colour[c1],int(ix)+1);
c1->removeColoured(particle,true);
}
}
}
}
}
void ShowerTree::addInitialStateShower(PPtr p, PPtr hadron,
StepPtr s, bool addchildren) {
+ p->setLifeLength(Lorentz5Distance());
+ p->setVertex(LorentzPoint());
// Each parton here should only have one parent
if(!p->parents().empty()) {
if(p->parents().size()!=1)
throw Exception() << "Particle must only have one parent in ShowerTree"
<< "::addInitialStateShower" << Exception::runerror;
addInitialStateShower(p->parents()[0],hadron,s);
}
else {
hadron->addChild(p);
s->addIntermediate(p);
}
updateColour(p);
ParticleVector::const_iterator child;
// if not adding children return
if(!addchildren) return;
// add children
for(child = p->children().begin(); child != p->children().end(); ++child) {
// if a final-state particle update the colour
ShowerParticlePtr schild =
dynamic_ptr_cast<ShowerParticlePtr>(*child);
+ (**child).setLifeLength(Lorentz5Distance());
+ (**child).setVertex(p->vertex());
if(schild && schild->isFinalState()) updateColour(*child);
// if there are grandchildren of p
if(!(*child)->children().empty()) {
// Add child as intermediate
s->addIntermediate(*child);
// If child is shower particle and final-state, add children
if(schild && schild->isFinalState()) addFinalStateShower(schild,s);
}
else
s->addDecayProduct(*child);
}
}
void ShowerTree::decay(ShowerDecayMap & decay) {
// must be one incoming particle
assert(_incomingLines.size()==1);
// if already decayed return
if(!_outgoingLines.empty()) return;
// otherwise decay it
// now we need to replace the particle with a new copy after the shower
// find particle after the shower
ShowerParticlePtr newparent=_parent->_treelinks[this].second;
// now make the new progenitor
vector<PPtr> original,copy;
original.push_back(newparent);
copy.push_back(new_ptr(Particle(*newparent)));
// reisolate the colour
colourIsolate(original,copy);
// make the new progenitor
ShowerParticlePtr stemp=new_ptr(ShowerParticle(*copy[0],2,false));
fixColour(stemp);
ShowerProgenitorPtr newprog=new_ptr(ShowerProgenitor(original[0],copy[0],stemp));
_incomingLines.clear();
_incomingLines.insert(make_pair(newprog,stemp));
// now we need to decay the copy
PPtr parent=copy[0];
unsigned int ntry = 0;
while (true) {
// exit if fails
if (++ntry>=200)
throw Exception() << "Failed to perform decay in ShowerTree::decay()"
<< " after " << 200
<< " attempts for " << parent->PDGName()
<< Exception::eventerror;
// select decay mode
tDMPtr dm(parent->data().selectMode(*parent));
if(!dm)
throw Exception() << "Failed to select decay mode in ShowerTree::decay()"
<< "for " << newparent->PDGName()
<< Exception::eventerror;
if(!dm->decayer())
throw Exception() << "No Decayer for selected decay mode "
<< " in ShowerTree::decay()"
<< Exception::runerror;
// start of try block
try {
ParticleVector children = dm->decayer()->decay(*dm, *parent);
// if no children have another go
if(children.empty()) continue;
// set up parent
parent->decayMode(dm);
// add children
for (unsigned int i = 0, N = children.size(); i < N; ++i ) {
children[i]->setLabVertex(parent->labDecayVertex());
parent->addChild(children[i]);
parent->scale(ZERO);
}
// if succeeded break out of loop
break;
}
catch(KinematicsReconstructionVeto) {}
}
// insert the trees from the children
ParticleVector children=parent->children();
map<PPtr,ShowerTreePtr> trees;
for(unsigned int ix=0;ix<children.size();++ix) {
PPtr orig=children[ix];
parent->abandonChild(orig);
// if particle has children or decays in shower
if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
}
// now create the shower progenitors
PPtr ncopy=new_ptr(Particle(*orig));
//copy[0]->addChild(ncopy);
ShowerParticlePtr nshow=new_ptr(ShowerParticle(*ncopy,2,true));
fixColour(nshow);
ShowerProgenitorPtr prog=new_ptr(ShowerProgenitor(children[ix],
ncopy,nshow));
_outgoingLines.insert(make_pair(prog,nshow));
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end()) {
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,
mit->first->progenitor())));
tit->second->_parent=this;
}
}
}
void ShowerTree::insertDecay(StepPtr pstep,bool ISR, bool) {
assert(_incomingLines.size()==1);
_colour.clear();
// find final particle from previous tree
PPtr final;
if(_parent&&!_parent->_treelinks.empty())
final = _parent->_treelinks[this].second;
else
final=_incomingLines.begin()->first->original();
// construct the map of colour lines
PPtr copy=_incomingLines.begin()->first->copy();
mapColour(final,copy);
+ // now this is the ONE instance of the particle which should have a life length
+ // \todo change if space-time picture added
+ // set the lifelength, need this so that still in right direction after
+ // any ISR recoils
+ Length ctau = copy->lifeTime();
+ Lorentz5Distance lifeLength(ctau,final->momentum().vect()*(ctau/final->mass()));
+ final->setLifeLength(lifeLength);
// initial-state radiation
if(ISR&&!_incomingLines.begin()->first->progenitor()->children().empty()) {
ShowerParticlePtr init=_incomingLines.begin()->first->progenitor();
updateColour(init);
final->addChild(init);
pstep->addDecayProduct(init);
+ // just a copy doesn't travel
+ init->setLifeLength(Lorentz5Distance());
+ init->setVertex(final->decayVertex());
// insert shower products
addFinalStateShower(init,pstep);
// sort out colour
final=_incomingLines.begin()->second;
_colour.clear();
mapColour(final,copy);
}
// get the decaying particles
// make the copy
tColinePair cline=make_pair(copy->colourLine(),copy->antiColourLine());
updateColour(copy);
// sort out sinks and sources if needed
if(cline.first) {
if(cline.first->sourceNeighbours().first) {
copy->colourLine()->setSourceNeighbours(cline.first->sourceNeighbours().first,
cline.first->sourceNeighbours().second);
}
else if (cline.first->sinkNeighbours().first) {
copy->colourLine()->setSinkNeighbours(cline.first->sinkNeighbours().first,
cline.first->sinkNeighbours().second);
}
}
if(cline.second) {
if(cline.second->sourceNeighbours().first) {
copy->antiColourLine()->setSourceNeighbours(cline.second->sourceNeighbours().first,
cline.second->sourceNeighbours().second);
}
else if (cline.second->sinkNeighbours().first) {
copy->antiColourLine()->setSinkNeighbours(cline.second->sinkNeighbours().first,
cline.second->sinkNeighbours().second);
}
}
// copy of the one from the hard process
tParticleVector dpar=copy->parents();
for(unsigned int ix=0;ix<dpar.size();++ix) dpar[ix]->abandonChild(copy);
final->addChild(copy);
pstep->addDecayProduct(copy);
+ // just a copy does move
+ copy->setLifeLength(Lorentz5Distance());
+ copy->setVertex(final->decayVertex());
// final-state radiation
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cit;
for(cit=outgoingLines().begin();cit!=outgoingLines().end();++cit) {
ShowerParticlePtr init=cit->first->progenitor();
+ // ZERO the distance
+ init->setLifeLength(Lorentz5Distance());
if(!init->thePEGBase())
throw Exception() << "Final-state particle must have a ThePEGBase"
<< " in ShowerTree::insertDecay()"
<< Exception::runerror;
// if not from matrix element correction
if(cit->first->perturbative()) {
// add the child
updateColour(cit->first->copy());
PPtr orig=cit->first->original();
+ orig->setLifeLength(Lorentz5Distance());
+ orig->setVertex(copy->decayVertex());
copy->addChild(orig);
pstep->addDecayProduct(orig);
orig->addChild(cit->first->copy());
pstep->addDecayProduct(cit->first->copy());
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
{parents[ix]->abandonChild(init);}
(*cit).first->copy()->addChild(init);
pstep->addDecayProduct(init);
updateColour(init);
}
// from a matrix element correction
else {
if(copy->children().end()==
find(copy->children().begin(),copy->children().end(),
cit->first->original())) {
updateColour(cit->first->original());
copy->addChild(cit->first->original());
pstep->addDecayProduct(cit->first->original());
}
updateColour(cit->first->copy());
cit->first->original()->addChild(cit->first->copy());
pstep->addDecayProduct(cit->first->copy());
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
{parents[ix]->abandonChild(init);}
(*cit).first->copy()->addChild(init);
pstep->addDecayProduct(init);
updateColour(init);
}
+ // ZERO the distances as just copies
+ cit->first->copy()->setLifeLength(Lorentz5Distance());
+ init->setLifeLength(Lorentz5Distance());
+ cit->first->copy()->setVertex(copy->decayVertex());
+ init->setVertex(copy->decayVertex());
// insert shower products
addFinalStateShower(init,pstep);
}
_colour.clear();
}
void ShowerTree::clear() {
// reset the has showered flag
_hasShowered=false;
// clear the colour map
_colour.clear();
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cjt;
// abandon the children of the outgoing particles
for(cit=_outgoingLines.begin();cit!=_outgoingLines.end();++cit) {
ShowerParticlePtr orig=cit->first->progenitor();
orig->set5Momentum(cit->first->copy()->momentum());
ParticleVector children=orig->children();
for(unsigned int ix=0;ix<children.size();++ix) orig->abandonChild(children[ix]);
_outgoingLines[cit->first]=orig;
cit->first->hasEmitted(false);
}
// forward products
_forward.clear();
for(cit=_outgoingLines.begin();cit!=_outgoingLines.end();++cit)
_forward.insert(cit->first->progenitor());
// if a decay
if(!_wasHard) {
ShowerParticlePtr orig=_incomingLines.begin()->first->progenitor();
orig->set5Momentum(_incomingLines.begin()->first->copy()->momentum());
ParticleVector children=orig->children();
for(unsigned int ix=0;ix<children.size();++ix) orig->abandonChild(children[ix]);
}
// if a hard process
else {
for(cjt=_incomingLines.begin();cjt!=_incomingLines.end();++cjt) {
tPPtr parent = cjt->first->original()->parents().empty() ?
tPPtr() : cjt->first->original()->parents()[0];
ShowerParticlePtr temp=
new_ptr(ShowerParticle(*cjt->first->copy(),
cjt->first->progenitor()->perturbative(),
cjt->first->progenitor()->isFinalState()));
fixColour(temp);
temp->x(cjt->first->progenitor()->x());
cjt->first->hasEmitted(false);
if(!(cjt->first->progenitor()==cjt->second)&&cjt->second&&parent)
parent->abandonChild(cjt->second);
cjt->first->progenitor(temp);
_incomingLines[cjt->first]=temp;
}
}
// reset the particles at the end of the shower
_backward.clear();
// if hard process backward products
if(_wasHard)
for(cjt=_incomingLines.begin();cjt!=_incomingLines.end();++cjt)
_backward.insert(cjt->first->progenitor());
clearTransforms();
}
void ShowerTree::resetShowerProducts() {
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
_backward.clear();
_forward.clear();
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit)
_backward.insert(cit->second);
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt)
_forward.insert(cjt->second);
}
void ShowerTree::updateAfterShower(ShowerDecayMap & decay) {
// update the links
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::iterator tit;
for(tit=_treelinks.begin();tit!=_treelinks.end();++tit) {
if(tit->second.first) {
mit=_outgoingLines.find(tit->second.first);
if(mit!=_outgoingLines.end()) tit->second.second=mit->second;
}
}
// get the particles coming from those in the hard process
set<tShowerParticlePtr> hard;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit)
hard.insert(mit->second);
// find the shower particles which should be decayed in the
// shower but didn't come from the hard process
set<tShowerParticlePtr>::const_iterator cit;
for(cit=_forward.begin();cit!=_forward.end();++cit) {
if(decaysInShower((**cit).id())&&
hard.find(*cit)==hard.end()) {
ShowerTreePtr newtree=new_ptr(ShowerTree(*cit,decay));
newtree->setParents();
newtree->_parent=this;
Energy width=(**cit).dataPtr()->generateWidth((**cit).mass());
decay.insert(make_pair(width,newtree));
_treelinks.insert(make_pair(newtree,
make_pair(tShowerProgenitorPtr(),*cit)));
}
}
}
void ShowerTree::addFinalStateBranching(ShowerParticlePtr parent,
const ShowerParticleVector & children) {
assert(children.size()==2);
_forward.erase(parent);
for(unsigned int ix=0; ix<children.size(); ++ix) {
_forward.insert(children[ix]);
}
}
void ShowerTree::addInitialStateBranching(ShowerParticlePtr oldParent,
ShowerParticlePtr newParent,
ShowerParticlePtr otherChild) {
_backward.erase(oldParent);
_backward.insert(newParent);
_forward.insert(otherChild);
}
void ShowerTree::setParents() {
// set the parent tree of the children
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator tit;
for(tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->_parent=this;
}
vector<ShowerProgenitorPtr> ShowerTree::extractProgenitors() {
// extract the particles from the ShowerTree
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator mit;
vector<ShowerProgenitorPtr> ShowerHardJets;
for(mit=incomingLines().begin();mit!=incomingLines().end();++mit)
ShowerHardJets.push_back((*mit).first);
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mjt;
for(mjt=outgoingLines().begin();mjt!=outgoingLines().end();++mjt)
ShowerHardJets.push_back((*mjt).first);
return ShowerHardJets;
}
void ShowerTree::transform(const LorentzRotation & boost, bool applyNow) {
if(applyNow) {
// now boost all the particles
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// incoming
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
cit->first->progenitor()->deepTransform(boost);
cit->first->copy()->deepTransform(boost);
}
// outgoing
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
cjt->first->progenitor()->deepTransform(boost);
cjt->first->copy()->deepTransform(boost);
}
}
else {
Lorentz5Momentum ptemp1 = _incomingLines.begin()->first->progenitor()->momentum();
Lorentz5Momentum ptemp2 = ptemp1;
ptemp1 *= _transforms;
ptemp1 *= boost;
_transforms.transform(boost);
ptemp2 *= _transforms;
}
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->transform(boost,applyNow);
}
void ShowerTree::applyTransforms() {
// now boost all the particles
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// incoming
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
cit->first->progenitor()->deepTransform(_transforms);
cit->first->copy()->deepTransform(_transforms);
}
// outgoing
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
cjt->first->progenitor()->deepTransform(_transforms);
cjt->first->copy()->deepTransform(_transforms);
}
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->applyTransforms();
_transforms = LorentzRotation();
}
void ShowerTree::clearTransforms() {
_transforms = LorentzRotation();
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->clearTransforms();
}
void ShowerTree::fixColour(tShowerParticlePtr part) {
if(!part->colourInfo()->colourLines().empty()) {
if(part->colourInfo()->colourLines().size()==1) {
ColinePtr line=part->colourLine();
if(line) {
line->removeColoured(part);
line->addColoured(part);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(part->colourInfo());
vector<tcColinePtr> lines = colour->colourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr line = const_ptr_cast<ColinePtr>(lines[ix]);
if(line) {
line->removeColoured(part);
line->addColoured(part);
}
}
}
}
if(!part->colourInfo()->antiColourLines().empty()) {
if(part->colourInfo()->antiColourLines().size()==1) {
ColinePtr line=part->antiColourLine();
if(line) {
line->removeAntiColoured(part);
line->addAntiColoured(part);
}
}
else {
Ptr<MultiColour>::pointer colour =
dynamic_ptr_cast<Ptr<MultiColour>::pointer>(part->colourInfo());
vector<tcColinePtr> lines = colour->antiColourLines();
for(unsigned int ix=0;ix<lines.size();++ix) {
ColinePtr line = const_ptr_cast<ColinePtr>(lines[ix]);
if(line) {
line->removeAntiColoured(part);
line->addAntiColoured(part);
}
}
}
}
}
vector<ShowerParticlePtr> ShowerTree::extractProgenitorParticles() {
vector<ShowerParticlePtr> particles;
// incoming particles
for(map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator
cit=incomingLines().begin(); cit!=incomingLines().end();++cit)
particles.push_back(cit->first->progenitor());
// outgoing particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt=outgoingLines().begin(); cjt!=outgoingLines().end();++cjt)
particles.push_back(cjt->first->progenitor());
return particles;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Sat, Dec 21, 12:58 PM (1 d, 38 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4022860
Default Alt Text
(115 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment