Page MenuHomeHEPForge

No OneTemporary

diff --git a/pyext/professor2/histos.py b/pyext/professor2/histos.py
--- a/pyext/professor2/histos.py
+++ b/pyext/professor2/histos.py
@@ -1,266 +1,266 @@
# -*- python -*-
class Histo(object):
"A simple histogram -- just a Bin container with an optional path name"
__slots__ = ["_bins", "path"]
def __init__(self, bins=None, path=None):
self._bins = bins if bins else []
self.path = path
@property
def nbins(self):
return len(self.bins)
@property
def bins(self):
return self._bins
@bins.setter
def bins(self, bs):
self._bins = bs
self._bins.sort()
for i, b in enumerate(self._bins):
b.n = i
def __len__(self):
return self.nbins
def __repr__(self):
return "<%s with %d bins>" % (self.__class__.__name__, self.nbins)
class DataHisto(Histo):
"Specialisation of Histo as a container of DataBins"
def __init__(self, dbins=None, path=None):
Histo.__init__(self, dbins, path)
def toScatter2D(self, manpath=None):
path = manpath if manpath is not None else self.path
points = [(self.bins[i].xmid, self.bins[i].val,
[self.bins[i].xmid-self.bins[i].xmin, self.bins[i].xmax-self.bins[i].xmid],
self.bins[i].errs) for i in xrange(len(self.bins))]
import yoda
return yoda.Scatter2D(points, path, path)
def mkSmearedCopy(self):
from copy import deepcopy
B=deepcopy(self.bins)
Ysmeared = [b.smearBin() for b in B]
import math
errorfactor=math.sqrt(2)
Yerrnew = [b.err*errorfactor for b in B]
for num, b in enumerate(B):
b.val=Ysmeared[num]
+ b.errs=Yerrnew[num]
return Histo(B, self.path)
- b.errs=Yerrnew[num]
class IpolHisto(Histo):
"Specialisation of Histo as a container of IpolBins"
def __init__(self, ibins=None, path=None):
Histo.__init__(self, ibins, path)
def toDataHisto(self, *params):
"Convert this IpolBin to a DataBin with values and errors computed at params"
dbins = [ib.toDataBin(*params) for ib in self.bins]
dhist = DataHisto(dbins, self.path)
return dhist
class Bin(object):
"A base class for binned data, handling the common x-edge stuff"
__slots__ = ["xmin", "xmax", "n"]
def __init__(self, xmin, xmax, n=None):
self.xmin = xmin
self.xmax = xmax
self.n = n
@property
def xmid(self):
return (self.xmin + self.xmax) / 2.0
@property
def xedges(self):
return (self.xmin, self.xmax)
def __cmp__(self, other):
return cmp(self.xmin, other.xmin)
def smear(self, SEED):
pass
class DataBin(Bin):
"A bin containing a data value and its error(s)"
__slots__ = ["val", "_errs"]
def __init__(self, xmin, xmax, val=None, errs=None):
Bin.__init__(self, xmin, xmax)
self.val = val
self._errs = errs
# TODO: return numerical 0 if _errs is None?
@property
def err(self):
"Get a scalar error value, by averaging if necessary"
if self._errs is None:
return 0.0
elif hasattr(self._errs, "__len__"):
assert len(self._errs) == 2
return sum(self._errs) / 2.0
return self._errs
@err.setter
def err(self, e):
"Set a scalar error value"
assert not hasattr(self._errs, "__len__")
self._errs = e
@property
def errs(self):
"Get a pair of error values, by construction if necessary"
if self._errs is None:
return (0.0, 0.0)
elif hasattr(self._errs, "__len__"):
assert len(self._errs) == 2
return self._errs
return (self._errs, self._errs)
@errs.setter
def errs(self, e):
"Set a pair of error values"
if e is None:
self._errs = None
elif hasattr(e, "__len__"):
assert len(e) == 2
self._errs = e
else:
self._errs = [e,e]
def smearBin(self):
import random
return self.val + random.gauss(0, self.err)
def __repr__(self):
return "<%s x=[%.3g..%.3g], y=%.3g, ey=[%.3g,%.3g]>" % \
(self.__class__.__name__, self.xmin, self.xmax, self.val, self.errs[0], self.errs[1])
class IpolBin(Bin):
"""
A bin containing a value interpolation and its error(s)
TODO:
* Provide ierr and ierrs getter/setter pairs cf. err/errs on DataBin? They can't be averaged (?), so not sure it makes sense...
* Allow ipol'd error handling, with wrapped relative error parameterisation as an option?
"""
__slots__ = ["ival", "ierrs", "__dict__"]
def __init__(self, xmin, xmax, ival=None, ierrs=None, n=None):
Bin.__init__(self, xmin, xmax, n)
self.ival = ival
self.ierrs = ierrs
#def val(self, *params, vmin=None, vmax=None): #< needs Python3
# return self.ival.value(*params, vmin=vmin, vmax=vmax)
def val(self, *params, **vminmax):
"Get the interpolated value of this bin"
vmin = vminmax.get("vmin", None)
vmax = vminmax.get("vmax", None)
return self.ival.value(*params, vmin=vmin, vmax=vmax)
def der(self, *params, **vminmax):
"Get the derivative according to the parametrisation"
return self.ival.der(*params)
def grad(self, *params, **vminmax):
"Get the gradient according to the parametrisation"
return self.ival.grad(*params)
# TODO: need uniform access to two ipols regardless of what's stored (and maybe also a way to make a single avg Ipol...)
#def err(self, *params, emin=0, emax=None): #< needs Python3
def err(self, *params, **eminmax):
"Get a single, averaged interpolated error for this bin"
# emin = eminmax.get("emin", 0)
# emax = eminmax.get("emax", None)
# if self.ierrs is None:
# return 0.0
# elif hasattr(self.ierrs, "__len__"):
# assert len(self.ierrs) == 2
# return (self.ierrs[0].value(*params, vmin=emin, vmax=emax) + self.ierrs[1].value(*params, vmin=emin, vmax=emax))/2.0
# else:
# return self.ierrs.value(*params, vmin=emin, vmax=emax)
es = self.errs(*params, **eminmax)
return (es[0] + es[1])/2.0
#def errs(self, params, emin=0, emax=None): #< needs Python3
def errs(self, *params, **eminmax):
"Get a pair of interpolated errors for this bin"
emin = eminmax.get("emin", 0)
emax = eminmax.get("emax", None)
if self.ierrs is None:
return (0.0, 0.0)
elif hasattr(self.ierrs, "__len__"):
assert len(self.ierrs) == 2
return (self.ierrs[0].value(*params, vmin=emin, vmax=emax), self.ierrs[1].value(*params, vmin=emin, vmax=emax))
else:
e = self.ierrs.value(*params, vmin=emin, vmax=emax)
return (e, e)
@property
def has_const_err():
"Determine whether this bin's errors are fixed or variable -- the latter requires regularisation"
if self.ierrs is None:
return True
if hasattr(self.ierrs, "__len__"):
assert len(self.ierrs) == 2
return (self.ierrs[0].order == 0 and self.ierrs[1].order == 0)
else:
return self.ierrs.order == 0
#def toDataBin(self, *params, vmin=None, vmax=None, emin=0, emax=None): #< needs Python3
def toDataBin(self, *params, **veminmax): #< needs Python3
"Convert this IpolBin to a DataBin with values and errors computed at params, with optional range limits"
vmin = veminmax.get("vmin", None)
vmax = veminmax.get("vmax", None)
emin = veminmax.get("vmin", 0)
emax = veminmax.get("vmax", None)
db = DataBin(self.xmin, self.xmax,
val=self.val(*params, vmin=vmin, vmax=vmax),
errs=self.errs(*params, vmin=emin, vmax=emax))
return db
def __repr__(self):
s = "<%s x=[%.3g..%.3g]" % (self.__class__.__name__, self.xmin, self.xmax)
try:
s += ", %d params, ival order %d" % (self.ival.dim, self.ival.order)
except:
pass
try:
s += ", ierr order %d" % self.ierrs[0].order
except:
pass
s += ">"
return s
def mkEnvelope(histos):
""" Take DataHistos and return coordinates for plotting """
# Iterate over bins, get envelope representation
# For each bin, return [xmin, xmax, mean(y), min(y), max(y)]
E=[]
for num, b in enumerate(histos[histos.keys()[0]].bins):
t_b = [x.bins[num].val for x in histos.values()]
E.append([b.xmin, b.xmax, sum(t_b)/len(t_b), min(t_b), max(t_b)])
return E

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:45 PM (1 d, 2 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3797937
Default Alt Text
(8 KB)

Event Timeline