Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/Event.cc b/src/Event.cc
index e8cad36..b33c3a1 100644
--- a/src/Event.cc
+++ b/src/Event.cc
@@ -1,987 +1,987 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/Event.hh"
#include <algorithm>
#include <assert.h>
#include <iterator>
#include <numeric>
#include <unordered_set>
#include <utility>
#include "LHEF/LHEF.h"
#include "fastjet/JetDefinition.hh"
#include "HEJ/Constants.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/PDG_codes.hh"
namespace HEJ{
namespace {
constexpr int status_in = -1;
constexpr int status_decayed = 2;
constexpr int status_out = 1;
//! true if leptonic W decay
bool valid_W_decay( int const w_type, // sign of W
std::vector<Particle> const & decays
){
if(decays.size() != 2) // no 1->2 decay
return false;
const int pidsum = decays[0].type + decays[1].type;
if( std::abs(pidsum) != 1 || pidsum != w_type ) // correct charge
return false;
// leptonic decay (only check first, second follows from pidsum)
if( w_type == 1 ) // W+
return is_antilepton(decays[0]) || is_neutrino(decays[0]);
// W-
return is_lepton(decays[0]) || is_antineutrino(decays[0]);
}
/// @name helper functions to determine event type
//@{
/**
* \brief check if final state valid for HEJ
*
* check if there is at most one photon, W, H, Z in the final state
* and all the rest are quarks or gluons
*/
bool final_state_ok(Event const & ev){
std::vector<Particle> const & outgoing = ev.outgoing();
if(ev.decays().size() > 1) // at most one decay
return false;
bool has_AWZH_boson = false;
for( size_t i=0; i<outgoing.size(); ++i ){
auto const & out{ outgoing[i] };
if(is_AWZH_boson(out.type)){
// at most one boson
if(has_AWZH_boson) return false;
has_AWZH_boson = true;
// valid decay for W
if(std::abs(out.type) == ParticleID::Wp){
// exactly 1 decay of W
if( ev.decays().size() != 1 || ev.decays().cbegin()->first != i )
return false;
if( !valid_W_decay(out.type>0?+1:-1, ev.decays().cbegin()->second) )
return false;
}
}
else if(! is_parton(out.type)) return false;
}
return true;
}
/**
* returns all EventTypes implemented in HEJ
*/
size_t implemented_types(std::vector<Particle> const & bosons){
using namespace event_type;
if(bosons.empty()) return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
if(bosons.size()>1) return non_resummable; // multi boson
switch (bosons[0].type) {
case ParticleID::Wp:
case ParticleID::Wm:
return FKL | unob | unof | qqxexb | qqxexf | qqxmid;
case ParticleID::h:
return FKL | unob | unof;
default:
return non_resummable;
}
}
/**
* \brief function which determines if type change is consistent with Wp emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param qqx Current both incoming/both outgoing?
*
* \see is_Wm_Change
*/
bool is_Wp_Change(ParticleID in, ParticleID out, bool qqx){
if(!qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out== (in-1);
if( qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out==-(in+1);
return false;
}
/**
* \brief function which determines if type change is consistent with Wm emission.
* @param in incoming Particle id
* @param out outgoing Particle id
* @param qqx Current both incoming/both outgoing?
*
* Ensures that change type of quark line is possible by a flavour changing
* Wm emission. Allows checking of qqx currents also.
*/
bool is_Wm_Change(ParticleID in, ParticleID out, bool qqx){
if(!qqx && (in== 1 || in==-2 || in== 3 || in==-4)) return out== (in+1);
if( qqx && (in==-1 || in== 2 || in==-3 || in== 4)) return out==-(in-1);
return false;
}
/**
* \brief checks if particle type remains same from incoming to outgoing
* @param in incoming Particle
* @param out outgoing Particle
* @param qqx Current both incoming/outgoing?
*/
bool no_flavour_change(ParticleID in, ParticleID out, bool qqx){
const int qqxCurrent = qqx?-1:1;
if(abs(in)<=6 || in==pid::gluon) return (in==out*qqxCurrent);
else return false;
}
bool has_2_jets(Event const & event){
return event.jets().size() >= 2;
}
/**
* \brief check if we have a valid Impact factor
* @param in incoming Particle
* @param out outgoing Particle
* @param qqx Current both incoming/outgoing?
* @param qqx returns +1 if Wp, -1 if Wm, else 0
*/
bool is_valid_impact_factor(
ParticleID in, ParticleID out, bool qqx, int & W_change
){
if( no_flavour_change(in, out, qqx) ){
return true;
}
if( is_Wp_Change(in, out, qqx) ) {
W_change+=1;
return true;
}
if( is_Wm_Change(in, out, qqx) ) {
W_change-=1;
return true;
}
return false;
}
//! Returns all possible classifications from the impact factors
// the beginning points are changed s.t. after the the classification they
// point to the beginning of the (potential) FKL chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
// This function can be used with forward & backwards iterators
template<class OutIterator>
size_t possible_impact_factors(
ParticleID incoming_id, // incoming
OutIterator & begin_out, OutIterator const & end_out, // outgoing
int & W_change, std::vector<Particle> const & boson,
bool const backward // backward?
){
using namespace event_type;
assert(boson.size() < 2);
// keep track of all states that we don't test
size_t not_tested = qqxmid;
if(backward)
not_tested |= unof | qqxexf;
else
not_tested |= unob | qqxexb;
// Is this LL current?
if( is_valid_impact_factor(incoming_id, begin_out->type, false, W_change) ){
++begin_out;
return not_tested | FKL;
}
// or NLL current?
// -> needs two partons in two different jets
if( std::distance(begin_out, end_out)>=2
){
// Is this unordered emisson?
if( incoming_id!=pid::gluon && begin_out->type==pid::gluon ){
if( is_valid_impact_factor(
incoming_id, (begin_out+1)->type, false, W_change )
){
// veto Higgs inside uno
assert((begin_out+1)<end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
return non_resummable;
}
begin_out+=2;
return not_tested | (backward?unob:unof);
}
}
// Is this QQbar?
else if( incoming_id==pid::gluon ){
if( is_valid_impact_factor(
begin_out->type, (begin_out+1)->type, true, W_change )
){
// veto Higgs inside qqx
assert((begin_out+1)<end_out);
if( !boson.empty() && boson.front().type == ParticleID::h
){
if( (backward && boson.front().rapidity() < (begin_out+1)->rapidity())
||(!backward && boson.front().rapidity() > (begin_out+1)->rapidity()))
return non_resummable;
}
begin_out+=2;
return not_tested | (backward?qqxexb:qqxexf);
}
}
}
return non_resummable;
}
//! Returns all possible classifications from central emissions
// the beginning points are changed s.t. after the the classification they
// point to the end of the emission chain
// sets W_change: + if Wp change
// 0 if no change
// - if Wm change
template<class OutIterator>
size_t possible_central(
OutIterator & begin_out, OutIterator const & end_out,
int & W_change, std::vector<Particle> const & boson
){
using namespace event_type;
assert(boson.size() < 2);
// if we already passed the central chain,
// then it is not a valid all-order state
if(std::distance(begin_out, end_out) < 0) return non_resummable;
// keep track of all states that we don't test
size_t possible = unob | unof
| qqxexb | qqxexf;
// Find the first non-gluon/non-FKL
while( (begin_out->type==pid::gluon) && (begin_out<end_out) ){
++begin_out;
}
// end of chain -> FKL
if( begin_out==end_out ){
return possible | FKL;
}
// is this a qqbar-pair?
// needs two partons in two separate jets
if( is_valid_impact_factor(
begin_out->type, (begin_out+1)->type, true, W_change )
){
// veto Higgs inside qqx
if( !boson.empty() && boson.front().type == ParticleID::h
&& boson.front().rapidity() > begin_out->rapidity()
&& boson.front().rapidity() < (begin_out+1)->rapidity()
){
return non_resummable;
}
begin_out+=2;
// remaining chain should be pure gluon/FKL
for(; begin_out<end_out; ++begin_out){
if(begin_out->type != pid::gluon) return non_resummable;
}
return possible | qqxmid;
}
return non_resummable;
}
/**
* \brief Checks for all event types
* @param ev Event
* @returns Event Type
*
*/
event_type::EventType classify(Event const & ev){
using namespace event_type;
if(! has_2_jets(ev))
return no_2_jets;
// currently we can't handle multiple boson states in the ME. So they are
// considered "bad_final_state" even though the "classify" could work with
// them.
if(! final_state_ok(ev))
return bad_final_state;
// initialise variables
auto const & in = ev.incoming();
auto const & out = filter_partons(ev.outgoing());
assert(std::distance(begin(in), end(in)) == 2);
assert(out.size() >= 2);
assert(std::distance(begin(out), end(out)) >= 2);
assert(std::is_sorted(begin(out), end(out), rapidity_less{}));
auto const boson{ filter_AWZH_bosons(ev.outgoing()) };
// we only allow one boson through final_state_ok
assert(boson.size()<=1);
// keep track of potential W couplings, at the end the sum should be 0
int remaining_Wp = 0;
int remaining_Wm = 0;
if(!boson.empty() && abs(boson.front().type) == ParticleID::Wp ){
if(boson.front().type>0) ++remaining_Wp;
else ++remaining_Wm;
}
int W_change = 0;
// range for current checks
auto begin_out{out.cbegin()};
auto end_out{out.crbegin()};
size_t final_type = ~(no_2_jets | bad_final_state);
// check forward impact factor
final_type &= possible_impact_factors(
in.front().type,
begin_out, end_out.base(),
W_change, boson, true );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check backward impact factor
final_type &= possible_impact_factors(
in.back().type,
end_out, std::make_reverse_iterator(begin_out),
W_change, boson, false );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
W_change = 0;
// check central emissions
final_type &= possible_central(
begin_out, end_out.base(), W_change, boson );
if( final_type == non_resummable )
return non_resummable;
if(W_change>0) remaining_Wp-=W_change;
else if(W_change<0) remaining_Wm+=W_change;
// Check whether the right number of Ws are present
if( remaining_Wp != 0 || remaining_Wm != 0 ) return non_resummable;
// result has to be unique
if( (final_type & (final_type-1)) != 0) return non_resummable;
// check that each sub processes is implemented
// (has to be done at the end)
if( (final_type & ~implemented_types(boson)) != 0 )
return non_resummable;
return static_cast<EventType>(final_type);
}
//@}
Particle extract_particle(LHEF::HEPEUP const & hepeup, int i){
const ParticleID id = static_cast<ParticleID>(hepeup.IDUP[i]);
const fastjet::PseudoJet momentum{
hepeup.PUP[i][0], hepeup.PUP[i][1],
hepeup.PUP[i][2], hepeup.PUP[i][3]
};
if(is_parton(id))
return Particle{ id, std::move(momentum), hepeup.ICOLUP[i] };
return Particle{ id, std::move(momentum), {} };
}
bool is_decay_product(std::pair<int, int> const & mothers){
if(mothers.first == 0) return false;
return mothers.second == 0 || mothers.first == mothers.second;
}
} // namespace anonymous
Event::EventData::EventData(LHEF::HEPEUP const & hepeup){
parameters.central = EventParameters{
- hepeup.scales.mur, hepeup.scales.muf, hepeup.weight()
+ hepeup.scales.mur, hepeup.scales.muf, hepeup.XWGTUP
};
size_t in_idx = 0;
for (int i = 0; i < hepeup.NUP; ++i) {
// skip decay products
// we will add them later on, but we have to ensure that
// the decayed particle is added before
if(is_decay_product(hepeup.MOTHUP[i])) continue;
auto particle = extract_particle(hepeup, i);
// needed to identify mother particles for decay products
particle.p.set_user_index(i+1);
if(hepeup.ISTUP[i] == status_in){
if(in_idx > incoming.size()) {
throw std::invalid_argument{
"Event has too many incoming particles"
};
}
incoming[in_idx++] = std::move(particle);
}
else outgoing.emplace_back(std::move(particle));
}
// add decay products
for (int i = 0; i < hepeup.NUP; ++i) {
if(!is_decay_product(hepeup.MOTHUP[i])) continue;
const int mother_id = hepeup.MOTHUP[i].first;
const auto mother = std::find_if(
begin(outgoing), end(outgoing),
[mother_id](Particle const & particle){
return particle.p.user_index() == mother_id;
}
);
if(mother == end(outgoing)){
throw std::invalid_argument{"invalid decay product parent"};
}
const int mother_idx = std::distance(begin(outgoing), mother);
assert(mother_idx >= 0);
decays[mother_idx].emplace_back(extract_particle(hepeup, i));
}
}
Event::Event(
UnclusteredEvent const & ev,
fastjet::JetDefinition const & jet_def, double const min_jet_pt
):
Event( Event::EventData{
ev.incoming, ev.outgoing, ev.decays,
Parameters<EventParameters>{ev.central, ev.variations}
}.cluster(jet_def, min_jet_pt) )
{}
//! @TODO remove in HEJ 2.2.0
UnclusteredEvent::UnclusteredEvent(LHEF::HEPEUP const & hepeup){
Event::EventData const evData{hepeup};
incoming = evData.incoming;
outgoing = evData.outgoing;
decays = evData.decays;
central = evData.parameters.central;
variations = evData.parameters.variations;
}
void Event::EventData::sort(){
// sort particles
std::sort(
begin(incoming), end(incoming),
[](Particle o1, Particle o2){return o1.p.pz()<o2.p.pz();}
);
auto old_outgoing = std::move(outgoing);
std::vector<size_t> idx(old_outgoing.size());
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&old_outgoing](size_t i, size_t j){
return old_outgoing[i].rapidity() < old_outgoing[j].rapidity();
});
outgoing.clear();
outgoing.reserve(old_outgoing.size());
for(size_t i: idx) {
outgoing.emplace_back(std::move(old_outgoing[i]));
}
// find decays again
if(!decays.empty()){
auto old_decays = std::move(decays);
decays.clear();
for(size_t i=0; i<idx.size(); ++i) {
auto decay = old_decays.find(idx[i]);
if(decay != old_decays.end())
decays.emplace(i, std::move(decay->second));
}
assert(old_decays.size() == decays.size());
}
}
namespace {
Particle reconstruct_boson(std::vector<Particle> const & leptons) {
Particle decayed_boson;
decayed_boson.p = leptons[0].p + leptons[1].p;
const int pidsum = leptons[0].type + leptons[1].type;
if(pidsum == +1) {
assert(is_antilepton(leptons[0]));
if(is_antineutrino(leptons[0])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_neutrino(leptons[1]));
// charged antilepton + neutrino means we had a W+
decayed_boson.type = pid::Wp;
}
else if(pidsum == -1) {
assert(is_antilepton(leptons[0]));
if(is_neutrino(leptons[1])) {
throw not_implemented{"lepton-flavour violating final state"};
}
assert(is_antineutrino(leptons[0]));
// charged lepton + antineutrino means we had a W-
decayed_boson.type = pid::Wm;
}
else {
throw not_implemented{
"final state with leptons "
+ name(leptons[0].type)
+ " and "
+ name(leptons[1].type)
};
}
return decayed_boson;
}
}
void Event::EventData::reconstruct_intermediate() {
const auto begin_leptons = std::partition(
begin(outgoing), end(outgoing),
[](Particle const & p) {return !is_anylepton(p);}
);
if(begin_leptons == end(outgoing)) return;
assert(is_anylepton(*begin_leptons));
std::vector<Particle> leptons(begin_leptons, end(outgoing));
outgoing.erase(begin_leptons, end(outgoing));
if(leptons.size() != 2) {
throw not_implemented{"Final states with one or more than two leptons"};
}
std::sort(
begin(leptons), end(leptons),
[](Particle const & p0, Particle const & p1) {
return p0.type < p1.type;
}
);
outgoing.emplace_back(reconstruct_boson(leptons));
decays.emplace(outgoing.size()-1, std::move(leptons));
}
Event Event::EventData::cluster(
fastjet::JetDefinition const & jet_def, double const min_jet_pt
){
sort();
Event ev{ std::move(incoming), std::move(outgoing), std::move(decays),
std::move(parameters),
jet_def, min_jet_pt
};
assert(std::is_sorted(begin(ev.outgoing_), end(ev.outgoing_),
rapidity_less{}));
ev.type_ = classify(ev);
return ev;
}
Event::Event(
std::array<Particle, 2> && incoming,
std::vector<Particle> && outgoing,
std::unordered_map<size_t, std::vector<Particle>> && decays,
Parameters<EventParameters> && parameters,
fastjet::JetDefinition const & jet_def,
double const min_jet_pt
): incoming_{std::move(incoming)},
outgoing_{std::move(outgoing)},
decays_{std::move(decays)},
parameters_{std::move(parameters)},
cs_{ to_PseudoJet( filter_partons(outgoing_) ), jet_def },
min_jet_pt_{min_jet_pt}
{
jets_ = sorted_by_rapidity(cs_.inclusive_jets(min_jet_pt_));
}
namespace {
// check that Particles have a reasonable colour
bool correct_colour(Particle const & part){
ParticleID id{ part.type };
if(!is_parton(id))
return !part.colour;
if(!part.colour)
return false;
Colour const & col{ *part.colour };
if(is_quark(id))
return col.first != 0 && col.second == 0;
if(is_antiquark(id))
return col.first == 0 && col.second != 0;
assert(id==ParticleID::gluon);
return col.first != 0 && col.second != 0 && col.first != col.second;
}
}
bool Event::is_leading_colour() const {
if( !correct_colour(incoming()[0]) || !correct_colour(incoming()[1]) )
return false;
Colour line_colour = *incoming()[0].colour;
std::swap(line_colour.first, line_colour.second);
for(auto const & part: outgoing()){
// reasonable colour
if(!correct_colour(part))
return false;
if(!is_parton(part)) // skip colour neutral particles
continue;
// if possible connect to line
if( line_colour.first == part.colour->second )
line_colour.first = part.colour->first;
else if( line_colour.second == part.colour->first )
line_colour.second = part.colour->second;
else
return false;
// no colour singlet exchange/disconnected diagram
if(line_colour.first == line_colour.second)
return false;
}
return (incoming()[1].colour->first == line_colour.first)
&& (incoming()[1].colour->second == line_colour.second);
}
namespace {
void connect_incoming(Particle & in, int & colour, int & anti_colour){
in.colour = std::make_pair(anti_colour, colour);
// gluon
if(in.type == pid::gluon)
return;
if(in.type > 0){
// quark
assert(is_quark(in));
in.colour->second = 0;
colour*=-1;
return;
}
// anti-quark
assert(is_antiquark(in));
in.colour->first = 0;
anti_colour*=-1;
return;
}
}
bool Event::generate_colours(RNG & ran){
// generate only for HEJ events
if(!event_type::is_resummable(type()))
return false;
assert(std::is_sorted(
begin(outgoing()), end(outgoing()), rapidity_less{}));
assert(incoming()[0].pz() < incoming()[1].pz());
// positive (anti-)colour -> can connect
// negative (anti-)colour -> not available/used up by (anti-)quark
int colour = COLOUR_OFFSET;
int anti_colour = colour+1;
// initialise first
connect_incoming(incoming_[0], colour, anti_colour);
for(auto & part: outgoing_){
assert(colour>0 || anti_colour>0);
if(part.type == ParticleID::gluon){
// gluon
if(colour>0 && anti_colour>0){
// on g line => connect to colour OR anti-colour (random)
if(ran.flat() < 0.5){
part.colour = std::make_pair(colour+2,colour);
colour+=2;
} else {
part.colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(colour > 0){
// on q line => connect to available colour
part.colour = std::make_pair(colour+2, colour);
colour+=2;
} else {
assert(colour<0 && anti_colour>0);
// on qx line => connect to available anti-colour
part.colour = std::make_pair(anti_colour, anti_colour+2);
anti_colour+=2;
}
} else if(is_quark(part)) {
// quark
assert(anti_colour>0);
if(colour>0){
// on g line => connect and remove anti-colour
part.colour = std::make_pair(anti_colour, 0);
anti_colour+=2;
anti_colour*=-1;
} else {
// on qx line => new colour
colour*=-1;
part.colour = std::make_pair(colour, 0);
}
} else if(is_antiquark(part)) {
// anti-quark
assert(colour>0);
if(anti_colour>0){
// on g line => connect and remove colour
part.colour = std::make_pair(0, colour);
colour+=2;
colour*=-1;
} else {
// on q line => new anti-colour
anti_colour*=-1;
part.colour = std::make_pair(0, anti_colour);
}
} else { // not a parton
assert(!is_parton(part));
part.colour = {};
}
}
// Connect last
connect_incoming(incoming_[1], anti_colour, colour);
assert(is_leading_colour());
return true;
} // generate_colours
namespace {
bool valid_parton(
std::vector<fastjet::PseudoJet> const & jets,
Particle const & parton, int const idx,
double const max_ext_soft_pt_fraction, double const min_extparton_pt
){
// TODO code overlap with PhaseSpacePoint::pass_extremal_cuts
if(min_extparton_pt > parton.pt()) return false;
if(idx<0) return false;
assert((int) jets.size()>=idx);
auto const & jet{ jets[idx] };
if( (parton.p - jet).pt()/jet.pt() > max_ext_soft_pt_fraction)
return false;
return true;
}
}
// this should work with multiple types
bool Event::valid_hej_state(double const max_frac,
double const min_pt
) const {
using namespace event_type;
if(!is_resummable(type()))
return false;
auto const & jet_idx{ particle_jet_indices() };
auto idx_begin{ jet_idx.cbegin() };
auto idx_end{ jet_idx.crbegin() };
auto part_begin{ cbegin_partons() };
auto part_end{ crbegin_partons() };
// always seperate extremal jets
if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
return false;
++part_begin;
++idx_begin;
if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) )
return false;
++part_end;
++idx_end;
// unob -> second parton in own jet
if( type() & (unob | qqxexb) ){
if( !valid_parton(jets(), *part_begin, *idx_begin, max_frac, min_pt) )
return false;
++part_begin;
++idx_begin;
}
if( type() & (unof | qqxexf) ){
if( !valid_parton(jets(), *part_end, *idx_end, max_frac, min_pt) )
return false;
++part_end;
++idx_end;
}
if( type() & qqxmid ){
// find qqx pair
auto begin_qqx{ std::find_if( part_begin, part_end.base(),
[](Particle const & part) -> bool {
return part.type != ParticleID::gluon;
}
)};
assert(begin_qqx != part_end.base());
long int qqx_pos{ std::distance(part_begin, begin_qqx) };
assert(qqx_pos >= 0);
idx_begin+=qqx_pos;
if( !( valid_parton(jets(),*begin_qqx, *idx_begin, max_frac,min_pt)
&& valid_parton(jets(),*(++begin_qqx),*(++idx_begin),max_frac,min_pt)
))
return false;
}
return true;
}
Event::ConstPartonIterator Event::begin_partons() const {
return cbegin_partons();
}
Event::ConstPartonIterator Event::cbegin_partons() const {
return boost::make_filter_iterator(
static_cast<bool (*)(Particle const &)>(is_parton),
cbegin(outgoing()),
cend(outgoing())
);
}
Event::ConstPartonIterator Event::end_partons() const {
return cend_partons();
}
Event::ConstPartonIterator Event::cend_partons() const {
return boost::make_filter_iterator(
static_cast<bool (*)(Particle const &)>(is_parton),
cend(outgoing()),
cend(outgoing())
);
}
Event::ConstReversePartonIterator Event::rbegin_partons() const {
return crbegin_partons();
}
Event::ConstReversePartonIterator Event::crbegin_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cend_partons() );
}
Event::ConstReversePartonIterator Event::rend_partons() const {
return crend_partons();
}
Event::ConstReversePartonIterator Event::crend_partons() const {
return std::reverse_iterator<ConstPartonIterator>( cbegin_partons() );
}
namespace {
void print_momentum(std::ostream & os, fastjet::PseudoJet const & part){
const std::streamsize orig_prec = os.precision();
os <<std::scientific<<std::setprecision(6) << "["
<<std::setw(13)<<std::right<< part.px() << ", "
<<std::setw(13)<<std::right<< part.py() << ", "
<<std::setw(13)<<std::right<< part.pz() << ", "
<<std::setw(13)<<std::right<< part.E() << "]"<< std::fixed;
os.precision(orig_prec);
}
void print_colour(std::ostream & os, optional<Colour> const & col){
if(!col)
os << "(no color)"; // American spelling for better alignment
else
os << "(" <<std::setw(3)<<std::right<< col->first
<< ", " <<std::setw(3)<<std::right<< col->second << ")";
}
}
std::ostream& operator<<(std::ostream & os, Event const & ev){
const std::streamsize orig_prec = os.precision();
os <<std::setprecision(4)<<std::fixed;
os << "########## " << event_type::name(ev.type()) << " ##########" << std::endl;
os << "Incoming particles:\n";
for(auto const & in: ev.incoming()){
os <<std::setw(3)<< in.type << ": ";
print_colour(os, in.colour);
os << " ";
print_momentum(os, in.p);
os << std::endl;
}
os << "\nOutgoing particles: " << ev.outgoing().size() << "\n";
for(auto const & out: ev.outgoing()){
os <<std::setw(3)<< out.type << ": ";
print_colour(os, out.colour);
os << " ";
print_momentum(os, out.p);
os << " => rapidity="
<<std::setw(7)<<std::right<< out.rapidity() << std::endl;
}
os << "\nForming Jets: " << ev.jets().size() << "\n";
for(auto const & jet: ev.jets()){
print_momentum(os, jet);
os << " => rapidity="
<<std::setw(7)<<std::right<< jet.rapidity() << std::endl;
}
if(ev.decays().size() > 0 ){
os << "\nDecays: " << ev.decays().size() << "\n";
for(auto const & decay: ev.decays()){
os <<std::setw(3)<< ev.outgoing()[decay.first].type
<< " (" << decay.first << ") to:\n";
for(auto const & out: decay.second){
os <<" "<<std::setw(3)<< out.type << ": ";
print_momentum(os, out.p);
os << " => rapidity="
<<std::setw(7)<<std::right<< out.rapidity() << std::endl;
}
}
}
os << std::defaultfloat;
os.precision(orig_prec);
return os;
}
double shat(Event const & ev){
return (ev.incoming()[0].p + ev.incoming()[1].p).m2();
}
LHEF::HEPEUP to_HEPEUP(Event const & event, LHEF::HEPRUP * heprup){
LHEF::HEPEUP result;
result.heprup = heprup;
result.weights = {{event.central().weight, nullptr}};
for(auto const & var: event.variations()){
result.weights.emplace_back(var.weight, nullptr);
}
size_t num_particles = event.incoming().size() + event.outgoing().size();
for(auto const & decay: event.decays()) num_particles += decay.second.size();
result.NUP = num_particles;
// the following entries are pretty much meaningless
result.IDPRUP = event.type(); // event type
result.AQEDUP = 1./128.; // alpha_EW
//result.AQCDUP = 0.118 // alpha_QCD
// end meaningless part
result.XWGTUP = event.central().weight;
result.SCALUP = event.central().muf;
result.scales.muf = event.central().muf;
result.scales.mur = event.central().mur;
result.scales.SCALUP = event.central().muf;
result.pdfinfo.p1 = event.incoming().front().type;
result.pdfinfo.p2 = event.incoming().back().type;
result.pdfinfo.scale = event.central().muf;
result.IDUP.reserve(num_particles); // PID
result.ISTUP.reserve(num_particles); // status (in, out, decay)
result.PUP.reserve(num_particles); // momentum
result.MOTHUP.reserve(num_particles); // index mother particle
result.ICOLUP.reserve(num_particles); // colour
// incoming
std::array<Particle, 2> incoming{ event.incoming() };
// First incoming should be positive pz according to LHE standard
// (or at least most (everyone?) do it this way, and Pythia assumes it)
if(incoming[0].pz() < incoming[1].pz())
std::swap(incoming[0], incoming[1]);
for(Particle const & in: incoming){
result.IDUP.emplace_back(in.type);
result.ISTUP.emplace_back(status_in);
result.PUP.push_back({in.p[0], in.p[1], in.p[2], in.p[3], in.p.m()});
result.MOTHUP.emplace_back(0, 0);
assert(in.colour);
result.ICOLUP.emplace_back(*in.colour);
}
// outgoing
for(size_t i = 0; i < event.outgoing().size(); ++i){
Particle const & out = event.outgoing()[i];
result.IDUP.emplace_back(out.type);
const int status = event.decays().count(i)?status_decayed:status_out;
result.ISTUP.emplace_back(status);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
result.MOTHUP.emplace_back(1, 2);
if(out.colour)
result.ICOLUP.emplace_back(*out.colour);
else{
result.ICOLUP.emplace_back(std::make_pair(0,0));
}
}
// decays
for(auto const & decay: event.decays()){
for(auto const out: decay.second){
result.IDUP.emplace_back(out.type);
result.ISTUP.emplace_back(status_out);
result.PUP.push_back({out.p[0], out.p[1], out.p[2], out.p[3], out.p.m()});
const size_t mother_idx = 1 + event.incoming().size() + decay.first;
result.MOTHUP.emplace_back(mother_idx, mother_idx);
result.ICOLUP.emplace_back(0,0);
}
}
assert(result.ICOLUP.size() == num_particles);
static constexpr double unknown_spin = 9.; //per Les Houches accord
result.VTIMUP = std::vector<double>(num_particles, unknown_spin);
result.SPINUP = result.VTIMUP;
return result;
}
}
diff --git a/src/LesHouchesReader.cc b/src/LesHouchesReader.cc
index 6fe761c..c00de59 100644
--- a/src/LesHouchesReader.cc
+++ b/src/LesHouchesReader.cc
@@ -1,27 +1,31 @@
#include "HEJ/LesHouchesReader.hh"
#include <string>
namespace HEJ{
SherpaLHEReader::SherpaLHEReader(std::string const & filename):
LesHouchesReader{filename},
num_trials{0.}, num_events{0}
{
LesHouchesReader tmp_reader{filename};
+ reader_.heprup.XSECUP = std::vector<double>{0};
while(tmp_reader.read_event()){
++num_events;
- num_trials+=std::stod(tmp_reader.hepeup().attributes.at("trials"));
+ num_trials += std::stod(tmp_reader.hepeup().attributes.at("trials"));
+ reader_.heprup.XSECUP.front() += tmp_reader.hepeup().XWGTUP;
}
+ reader_.heprup.XSECUP.front() /= num_trials;
// For IDWTUP == 1 or 4 we assume avg(weight)=xs
// With the modified weights we have in Sherpa sum(weight)=xs
// -> overwrite IDWTUP to "something neutral"
reader_.heprup.IDWTUP = reader_.heprup.IDWTUP>0?3:-3;
}
bool SherpaLHEReader::read_event() {
if(!LesHouchesReader::read_event()) return false;
+ reader_.hepeup.XWGTUP/=num_trials;
for(auto & wt: reader_.hepeup.weights)
wt.first/=num_trials;
return true;
}
}
diff --git a/src/LesHouchesWriter.cc b/src/LesHouchesWriter.cc
index 2fae860..0b2693e 100644
--- a/src/LesHouchesWriter.cc
+++ b/src/LesHouchesWriter.cc
@@ -1,123 +1,124 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include <cassert>
#include <utility>
#include <vector>
#include "HEJ/Event.hh"
#include "HEJ/event_types.hh"
#include "HEJ/LesHouchesWriter.hh"
#include "HEJ/utility.hh"
namespace HEJ{
namespace{
template<class T, class... Args>
std::unique_ptr<T> make_unique(Args&&... a){
return std::unique_ptr<T>{new T{std::forward<Args>(a)...}};
}
size_t to_index(event_type::EventType const type){
return type==0?0:floor(log2(type))+1;
}
}
LesHouchesWriter::LesHouchesWriter(
std::string const & file, LHEF::HEPRUP heprup
):
out_{file, std::fstream::in | std::fstream::out | std::fstream::trunc},
writer_{HEJ::make_unique<LHEF::Writer>(out_)}
{
if(! out_.is_open()){
throw std::ios_base::failure("Failed to open " + file);
};
// scientific style is needed to allow rewriting the init block
out_ << std::scientific;
writer_->heprup = std::move(heprup);
// lhe Standard: IDWTUP (negative => weights = +/-)
// IDWTUP: HEJ -> SHG/Pythia/next program
// 1: weighted->unweighted, xs = mean(weight), XMAXUP given
// 2: weighted->unweighted, xs = XSECUP, XMAXUP given
// 3: unweighted (weight=+1)->unweighted, no additional information
// 4: weighted->weighted, xs = mean(weight)
//
// None of these codes actually match what we want:
// 1 and 4 require xs = mean(weight), which is impossible until after generation
// 2 tells the SHG to unweight our events, which is wasteful
// 3 claims we produce unweighted events, which is both wasteful _and_
// impossible until after generation (we don't know the maximum weight before)
//
- // For the time being, we choose 3. If the consumer (like Pythia) assumes
+ // For the time being, we choose -3. If the consumer (like Pythia) assumes
// weight=+1, the final weights have to be corrected by multiplying with
- // the original weight we provided.
+ // the original weight we provided. We are also often use NLO-PDFs which can
+ // give negative weights, hence the native IDWTUP.
//
- writer_->heprup.IDWTUP = 3;
+ writer_->heprup.IDWTUP = -3;
const int max_number_types = to_index(event_type::last_type)+1;
writer_->heprup.NPRUP = max_number_types;
// ids of event types
writer_->heprup.LPRUP.clear();
writer_->heprup.LPRUP.reserve(max_number_types);
writer_->heprup.LPRUP.emplace_back(0);
for(size_t i=event_type::first_type+1; i<=event_type::last_type; i*=2)
writer_->heprup.LPRUP.emplace_back(i);
// use placeholders for unknown init block values
// we can overwrite them after processing all events
writer_->heprup.XSECUP = std::vector<double>(max_number_types, 0.);
writer_->heprup.XERRUP = std::vector<double>(max_number_types, 0.);
writer_->heprup.XMAXUP = std::vector<double>(max_number_types, 0.);
write_init();
}
void LesHouchesWriter::write(Event const & ev){
assert(writer_ && out_.is_open());
const double wt = ev.central().weight;
writer_->hepeup = HEJ::to_HEPEUP(std::move(ev), &heprup());
writer_->writeEvent();
assert(heprup().XSECUP.size() > to_index(ev.type()));
heprup().XSECUP[to_index(ev.type())] += wt;
heprup().XERRUP[to_index(ev.type())] += wt*wt;
if(wt > heprup().XMAXUP[to_index(ev.type())]){
heprup().XMAXUP[to_index(ev.type())] = wt;
}
}
// this function is called after overwritting the Les Houches init block
// assert that we have overwritten *exactly* the init block,
// i.e. we are at the end of the file or an intact event block is next
void assert_next_event_intact(std::istream & out){
(void) out; // suppress compiler warnings if not in debug mode
#ifndef NDEBUG
std::string line;
getline(out, line);
assert(out.eof() || line.rfind("<event", 0) == 0);
#endif
}
void LesHouchesWriter::rewrite_init(){
assert(writer_ && out_.is_open());
// replace placeholder entries
const auto pos = out_.tellp();
out_.seekp(0);
write_init();
assert_next_event_intact(out_);
out_.seekp(pos);
}
LesHouchesWriter::~LesHouchesWriter(){
assert(writer_ && out_.is_open());
for(auto & xs_err: heprup().XERRUP)
{
xs_err = sqrt(xs_err);
}
rewrite_init();
}
}
diff --git a/src/bin/HEJ.cc b/src/bin/HEJ.cc
index d2b8bb6..ccc20ff 100644
--- a/src/bin/HEJ.cc
+++ b/src/bin/HEJ.cc
@@ -1,369 +1,375 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include <array>
#include <chrono>
#include <iostream>
#include <limits>
#include <memory>
#include <numeric>
#include "yaml-cpp/yaml.h"
#include "fastjet/ClusterSequence.hh"
#include "HEJ/CombinedEventWriter.hh"
#include "HEJ/Config.hh"
#include "HEJ/CrossSectionAccumulator.hh"
#include "HEJ/Event.hh"
#include "HEJ/EventReader.hh"
#include "HEJ/BufferedEventReader.hh"
#include "HEJ/EventReweighter.hh"
#include "HEJ/get_analysis.hh"
#include "HEJ/make_RNG.hh"
#include "HEJ/optional.hh"
#include "HEJ/ProgressBar.hh"
#include "HEJ/stream.hh"
#include "HEJ/Unweighter.hh"
#include "HEJ/Version.hh"
#include "HEJ/YAMLreader.hh"
HEJ::Config load_config(char const * filename){
try{
return HEJ::load_config(filename);
}
catch(std::exception const & exc){
std::cerr << "Error: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
std::unique_ptr<HEJ::Analysis> get_analysis(
YAML::Node const & parameters, LHEF::HEPRUP const & heprup
){
try{
return HEJ::get_analysis(parameters, heprup);
}
catch(std::exception const & exc){
std::cerr << "Failed to load analysis: " << exc.what() << '\n';
std::exit(EXIT_FAILURE);
}
}
// unique_ptr is a workaround:
// HEJ::optional is a better fit, but gives spurious errors with g++ 7.3.0
std::unique_ptr<HEJ::ProgressBar<double>> make_progress_bar(
std::vector<double> const & xs
) {
if(xs.empty()) return {};
const double Born_xs = std::accumulate(begin(xs), end(xs), 0.);
return std::make_unique<HEJ::ProgressBar<double>>(std::cout, Born_xs);
}
std::string time_to_string(const time_t time){
char s[30];
struct tm * p = localtime(&time);
strftime(s, 30, "%a %b %d %Y %H:%M:%S", p);
return s;
}
HEJ::Event to_event(
LHEF::HEPEUP const & hepeup,
HEJ::JetParameters const & fixed_order_jets
) {
HEJ::Event::EventData event_data{hepeup};
event_data.reconstruct_intermediate();
return HEJ::Event{
std::move(event_data).cluster(
fixed_order_jets.def, fixed_order_jets.min_pt
)
};
}
void unweight(
HEJ::Unweighter & unweighter,
HEJ::WeightType weight_type,
std::vector<HEJ::Event> & events,
HEJ::RNG & ran
) {
if(weight_type == HEJ::WeightType::unweighted_resum){
unweighter.set_cut_to_maxwt(events);
}
events.erase(
unweighter.unweight(begin(events), end(events), ran),
end(events)
);
}
// peek up to nevents events from reader
std::vector<LHEF::HEPEUP> peek_events(
HEJ::BufferedEventReader & reader,
const int nevents
) {
std::vector<LHEF::HEPEUP> events;
while(
static_cast<int>(events.size()) < nevents
&& reader.read_event()
) {
events.emplace_back(reader.hepeup());
}
// put everything back into the reader
for(auto it = rbegin(events); it != rend(events); ++it) {
reader.emplace(*it);
}
return events;
}
void append_resummed_events(
std::vector<HEJ::Event> & resummation_events,
HEJ::EventReweighter & reweighter,
LHEF::HEPEUP const & hepeup,
const int trials,
HEJ::JetParameters const & fixed_order_jets
) {
const HEJ::Event FO_event = to_event(hepeup, fixed_order_jets);
if(reweighter.treatment(FO_event.type()) != HEJ::EventTreatment::reweight) {
return;
}
const auto resummed = reweighter.reweight(FO_event, trials);
resummation_events.insert(
end(resummation_events),
begin(resummed), end(resummed)
);
}
void train(
HEJ::Unweighter & unweighter,
HEJ::BufferedEventReader & reader,
HEJ::EventReweighter & reweighter,
const int total_trials,
const double max_dev,
double reweight_factor,
HEJ::JetParameters const & fixed_order_jets
) {
std::cout << "Reading up to " << total_trials << " training events...\n";
auto FO_events = peek_events(reader, total_trials);
+ if(FO_events.empty()) {
+ throw std::runtime_error{
+ "No events generated to calibrate the unweighting weight!"
+ "Please increase the number \"trials\" or deactivate the unweighting."
+ };
+ }
const int trials = total_trials/FO_events.size();
// adjust reweight factor so that the overall normalisation
// is the same as in the full run
reweight_factor *= trials;
for(auto & hepeup: FO_events) {
- hepeup.setWeight(0, reweight_factor * hepeup.weight());
+ hepeup.XWGTUP *= reweight_factor;
}
std::cout << "Training unweighter with "
<< trials << '*' << FO_events.size() << " events\n";
auto progress = HEJ::ProgressBar<int>{
std::cout, static_cast<int>(FO_events.size())
};
std::vector<HEJ::Event> resummation_events;
for(auto const & hepeup: FO_events) {
append_resummed_events(
resummation_events,
reweighter, hepeup, trials, fixed_order_jets
);
++progress;
}
unweighter.set_cut_to_peakwt(resummation_events, max_dev);
std::cout << "\nUnweighting events with weight up to "
<< unweighter.get_cut() << '\n';
}
int main(int argn, char** argv) {
using clock = std::chrono::system_clock;
if (argn != 3) {
std::cerr << "\n# Usage:\n."<< argv[0] <<" config_file input_file\n\n";
return EXIT_FAILURE;
}
const auto start_time = clock::now();
{
std::cout << "Starting " << HEJ::Version::package_name_full()
<< ", revision " << HEJ::Version::revision() << " ("
<< time_to_string(clock::to_time_t(start_time)) << ")" << std::endl;
}
fastjet::ClusterSequence::print_banner();
// read configuration
const HEJ::Config config = load_config(argv[1]);
auto reader = HEJ::make_reader(argv[2]);
assert(reader);
auto heprup{ reader->heprup() };
heprup.generators.emplace_back(LHEF::XMLTag{});
heprup.generators.back().name = HEJ::Version::package_name();
heprup.generators.back().version = HEJ::Version::String();
std::unique_ptr<HEJ::Analysis> analysis = get_analysis(
config.analysis_parameters, heprup
);
assert(analysis != nullptr);
HEJ::CombinedEventWriter writer{config.output, std::move(heprup)};
double global_reweight = 1.;
const auto & max_events = config.max_events;
// if we need the event number:
if(std::abs(heprup.IDWTUP) == 4 || std::abs(heprup.IDWTUP) == 1 || max_events){
// try to read from LHE head
auto input_events{reader->number_events()};
if(!input_events) {
// else count manually
auto t_reader = HEJ::make_reader(argv[2]);
input_events = 0;
while(t_reader->read_event()) ++(*input_events);
}
if(std::abs(heprup.IDWTUP) == 4 || std::abs(heprup.IDWTUP) == 1){
// IDWTUP 4 or 1 assume average(weight)=xs, but we need sum(weights)=xs
std::cout << "Found IDWTUP " << heprup.IDWTUP << ": "
<< "assuming \"cross section = average weight\".\n"
<< "converting to \"cross section = sum of weights\" ";
global_reweight /= *input_events;
}
if(max_events && (*input_events > *max_events)){
// maximal number of events given
global_reweight *= *input_events/static_cast<double>(*max_events);
std::cout << "Processing " << *max_events
<< " out of " << *input_events << " events\n";
}
}
HEJ::ScaleGenerator scale_gen{
config.scales.base,
config.scales.factors,
config.scales.max_ratio
};
auto ran = HEJ::make_RNG(config.rng.name, config.rng.seed);
assert(ran != nullptr);
HEJ::EventReweighter hej{
reader->heprup(),
std::move(scale_gen),
to_EventReweighterConfig(config),
*ran
};
HEJ::optional<HEJ::Unweighter> unweighter{};
if(config.weight_type != HEJ::WeightType::weighted) {
unweighter = HEJ::Unweighter{};
}
if(config.weight_type == HEJ::WeightType::partially_unweighted) {
HEJ::BufferedEventReader buffered_reader{std::move(reader)};
assert(config.unweight_config);
train(
*unweighter,
buffered_reader,
hej,
config.unweight_config->trials,
config.unweight_config->max_dev,
global_reweight/config.trials,
config.fixed_order_jets
);
reader = std::make_unique<HEJ::BufferedEventReader>(
std::move(buffered_reader)
);
}
// status infos & eye candy
size_t nevent = 0;
std::array<int, HEJ::event_type::last_type + 1>
nevent_type{0}, nfailed_type{0};
auto progress = make_progress_bar(reader->heprup().XSECUP);
HEJ::CrossSectionAccumulator xs;
std::map<HEJ::StatusCode, int> status_counter;
size_t total_trials = 0;
size_t total_resum = 0;
// Loop over the events in the input file
while(reader->read_event() && (!max_events || nevent < *max_events) ){
++nevent;
// reweight events so that the total cross section is conserved
auto hepeup = reader->hepeup();
- hepeup.setWeight(0, global_reweight * hepeup.weight());
+ hepeup.XWGTUP *= global_reweight;
const auto FO_event = to_event(hepeup, config.fixed_order_jets);
if(FO_event.central().weight == 0) {
static const bool warned_once = [argv,nevent](){
std::cerr
<< "WARNING: event number " << nevent
<< " in " << argv[2] << " has zero weight. "
"Ignoring this and all further events with vanishing weight.\n";
return true;
}();
(void) warned_once; // shut up compiler warnings
continue;
}
auto resummed_events{ hej.reweight(FO_event, config.trials) };
// some bookkeeping
for(auto const & s: hej.status())
++status_counter[s];
total_trials+=hej.status().size();
++nevent_type[FO_event.type()];
if(resummed_events.empty()) ++nfailed_type[FO_event.type()];
if(unweighter) {
unweight(*unweighter, config.weight_type, resummed_events, *ran);
}
// analysis
for(auto & ev: resummed_events){
//TODO: move pass_cuts to after phase space point generation
if(analysis->pass_cuts(ev, FO_event)){
analysis->fill(ev, FO_event);
writer.write(ev);
} else {
ev.parameters()*=0; // do not use discarded events afterwards
}
}
xs.fill_correlated(resummed_events);
total_resum += resummed_events.size();
if(progress) progress->increment(FO_event.central().weight);
} // main event loop
std::cout << '\n';
analysis->finalise();
using namespace HEJ::event_type;
std::cout<< "Events processed: " << nevent << " (" << total_resum << " resummed)"<< '\n';
std::cout << '\t' << name(EventType::first_type) << ": "
<< nevent_type[EventType::first_type]
<< ", failed to reconstruct " << nfailed_type[EventType::first_type]
<< '\n';
for(auto i=EventType::first_type+1; i<=EventType::last_type; i*=2){
std::cout << '\t' << name(static_cast<EventType>(i)) << ": "
<< nevent_type[i]
<< ", failed to reconstruct " << nfailed_type[i]
<< '\n';
}
std::cout << '\n' << xs << '\n';
std::cout << "Generation statistic: "
<< status_counter[HEJ::StatusCode::good] << "/" << total_trials
<< " trials successful.\n";
for(auto && entry: status_counter){
const double fraction = static_cast<double>(entry.second)/total_trials;
const int percent = std::round(100*fraction);
std::cout << std::left << std::setw(17) << (to_string(entry.first) + ":")
<< " [";
for(int i = 0; i < percent/2; ++i) std::cout << '#';
for(int i = percent/2; i < 50; ++i) std::cout << ' ';
std::cout << "] " <<std::setw(2)<<std::right<< percent << "%\n";
}
std::chrono::duration<double> run_time = (clock::now() - start_time);
std::cout << "\nFinished " << HEJ::Version::package_name() << " at "
<< time_to_string(clock::to_time_t(clock::now()))
<< "\n=> Runtime: " << run_time.count() << " sec ("
<< nevent/run_time.count() << " Events/sec).\n";
return EXIT_SUCCESS;
}
diff --git a/t/CMakeLists.txt b/t/CMakeLists.txt
index 2f4ee85..ddabd4f 100644
--- a/t/CMakeLists.txt
+++ b/t/CMakeLists.txt
@@ -1,401 +1,401 @@
set(tst_dir "${CMAKE_CURRENT_SOURCE_DIR}")
set(tst_ME_data_dir "${tst_dir}/ME_data")
# small library for common test functions
add_library(hej_test SHARED hej_test.cc)
target_include_directories(hej_test PUBLIC ${tst_dir})
target_link_libraries(hej_test HEJ)
# test event classification
# test explicit configurations
add_executable(test_classify ${tst_dir}/test_classify.cc)
target_compile_options(test_classify PRIVATE "-O0") # avoid compiler optimisation
target_link_libraries(test_classify HEJ hej_test)
add_test(
NAME t_classify
COMMAND test_classify
)
# test against reference data
add_executable(test_classify_ref ${tst_dir}/test_classify_ref.cc)
target_link_libraries(test_classify_ref HEJ hej_test)
add_test(
NAME t_classify_ref
COMMAND test_classify_ref ${tst_dir}/classify_ref ${tst_dir}/classify.lhe.gz
)
add_test(
NAME t_classify_ref_4j
COMMAND test_classify_ref ${tst_dir}/classify_ref_4j ${tst_dir}/4j.lhe.gz
)
add_test(
NAME t_classify_ref_W4j
COMMAND test_classify_ref ${tst_dir}/classify_ref_W4j ${tst_dir}/MGemnubar4j_unweighted.lhe.gz
)
# test for valid W decays
add_executable(test_decay ${tst_dir}/test_decay.cc)
target_link_libraries(test_decay HEJ hej_test)
add_test(
NAME t_valid_decay
COMMAND test_decay
)
# test valid jet cuts on tagging jets
add_executable(test_jet_cuts ${tst_dir}/test_jet_cuts.cc)
target_link_libraries(test_jet_cuts HEJ hej_test)
add_test(
NAME t_jet_cuts
COMMAND test_jet_cuts
)
# test phase space point
add_executable(test_psp ${tst_dir}/test_psp.cc)
target_link_libraries(test_psp HEJ hej_test)
add_test(
NAME t_psp
COMMAND test_psp ${tst_dir}/psp_gen.lhe.gz
)
# test importing analyses
get_target_property(ANALYSIS_PATH AnalysisTemplate_lib BINARY_DIR)
get_target_property(ANALYSIS_LIB AnalysisTemplate_lib OUTPUT_NAME)
set(ANALYSIS_PARAMETERS "")
configure_file( ${tst_dir}/analysis_config.yml.in
${PROJECT_BINARY_DIR}/t/analysis_config_simple.yml @ONLY )
add_test(
NAME t_analysis_simple
COMMAND $<TARGET_FILE:HEJ_main>
${PROJECT_BINARY_DIR}/t/analysis_config_simple.yml
${tst_dir}/2j.lhe.gz
)
get_target_property(ANALYSIS_PATH AnalysisPrint_lib BINARY_DIR)
get_target_property(ANALYSIS_LIB AnalysisPrint_lib OUTPUT_NAME)
set(ANALYSIS_PARAMETERS " output: ana_output")
configure_file( ${tst_dir}/analysis_config.yml.in
${PROJECT_BINARY_DIR}/t/analysis_config_print.yml @ONLY )
add_test(
NAME t_analysis_print
COMMAND $<TARGET_FILE:HEJ_main>
${PROJECT_BINARY_DIR}/t/analysis_config_print.yml
${tst_dir}/2j.lhe.gz
)
# test importing scales (from examples/softestptScale)
add_executable(test_scale_import ${tst_dir}/test_scale_import)
target_link_libraries(test_scale_import HEJ)
get_target_property(SCALE_PATH softestptScale_lib BINARY_DIR)
get_target_property(SCALE_LIB softestptScale_lib OUTPUT_NAME)
set(SCALE_NAME "softest_jet_pt")
configure_file( ${tst_dir}/jet_config_with_import.yml.in
${PROJECT_BINARY_DIR}/t/jet_config_with_import.yml @ONLY )
add_test(
NAME t_scale_import
COMMAND test_scale_import ${PROJECT_BINARY_DIR}/t/jet_config_with_import.yml
)
# test scale arithmetic (e.g. 2*H_T/4)
add_executable(test_scale_arithmetics ${tst_dir}/test_scale_arithmetics)
target_link_libraries(test_scale_arithmetics HEJ hej_test)
add_test(
NAME t_scale_arithmetics
COMMAND test_scale_arithmetics ${tst_dir}/jet_config.yml ${tst_dir}/2j.lhe.gz
)
# test "ParameterDescription"
add_executable(test_descriptions ${tst_dir}/test_descriptions)
target_link_libraries(test_descriptions HEJ hej_test)
add_test(
NAME t_descriptions
COMMAND test_descriptions
)
# test "EventParameters*Weight"
add_executable(test_parameters ${tst_dir}/test_parameters)
target_link_libraries(test_parameters HEJ hej_test)
add_test(
NAME test_parameters
COMMAND test_parameters
)
# test unweighting
add_executable(test_unweighter ${tst_dir}/test_unweighter)
target_link_libraries(test_unweighter HEJ hej_test)
add_test(
NAME test_unweighter
COMMAND test_unweighter ${tst_dir}/4j.lhe.gz
)
# test colour generation
add_executable(test_colours ${tst_dir}/test_colours)
target_link_libraries(test_colours HEJ hej_test)
add_test(
NAME t_colour_flow
COMMAND test_colours
)
# test matrix elements
add_executable(test_ME_generic ${tst_dir}/test_ME_generic.cc)
target_link_libraries(test_ME_generic HEJ hej_test)
add_test(
NAME t_ME_j
COMMAND test_ME_generic ${tst_ME_data_dir}/config_mtinf.yml ${tst_ME_data_dir}/ME_jets_tree.dat ${tst_ME_data_dir}/PSP_jets.lhe.gz
)
add_test(
NAME t_ME_j_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_mtinf.yml ${tst_ME_data_dir}/ME_jets_tree_virt.dat ${tst_ME_data_dir}/PSP_jets.lhe.gz
)
add_test(
NAME t_ME_h
COMMAND test_ME_generic ${tst_ME_data_dir}/config_mtinf.yml ${tst_ME_data_dir}/ME_h_mtinf_tree.dat ${tst_ME_data_dir}/PSP_h.lhe.gz
)
add_test(
NAME t_ME_h_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_mtinf.yml ${tst_ME_data_dir}/ME_h_mtinf_virt.dat ${tst_ME_data_dir}/PSP_h.lhe.gz
)
if(QCDloop_FOUND)
add_test(
NAME t_ME_h_mt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_mt.yml ${tst_ME_data_dir}/ME_h_mt_tree.dat ${tst_ME_data_dir}/PSP_h.lhe.gz
)
add_test(
NAME t_ME_h_mtmb
COMMAND test_ME_generic ${tst_ME_data_dir}/config_mtmb.yml ${tst_ME_data_dir}/ME_h_mtmb_tree.dat ${tst_ME_data_dir}/PSP_h.lhe.gz
)
endif()
add_test(
NAME t_ME_j_subl
COMMAND test_ME_generic ${tst_ME_data_dir}/config_pure.yml ${tst_ME_data_dir}/ME_jets_subl_tree.dat ${tst_ME_data_dir}/PSP_jets_subl.lhe.gz
)
add_test(
NAME t_ME_j_subl_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_pure.yml ${tst_ME_data_dir}/ME_jets_subl_tree_virt.dat ${tst_ME_data_dir}/PSP_jets_subl.lhe.gz
)
add_test(
NAME t_ME_j_subl_new
COMMAND test_ME_generic ${tst_ME_data_dir}/config_pure.yml ${tst_ME_data_dir}/ME_jets_subl_tree_new.dat ${tst_dir}/4j.lhe.gz
)
add_test(
NAME t_ME_j_subl_new_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_pure.yml ${tst_ME_data_dir}/ME_jets_subl_tree_new_virt.dat ${tst_dir}/4j.lhe.gz
)
add_test(
NAME t_ME_w_FKL
COMMAND test_ME_generic ${tst_ME_data_dir}/config_w_ME.yml ${tst_ME_data_dir}/ME_w_FKL_tree.dat ${tst_ME_data_dir}/PSP_w_FKL.lhe.gz
)
add_test(
NAME t_ME_w_FKL_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_w_ME.yml ${tst_ME_data_dir}/ME_w_FKL_virt.dat ${tst_ME_data_dir}/PSP_w_FKL.lhe.gz
)
add_test(
NAME t_ME_Wp
COMMAND test_ME_generic ${tst_ME_data_dir}/config_w_ME.yml ${tst_ME_data_dir}/ME_Wp.dat ${tst_ME_data_dir}/PSP_Wp.lhe.gz
)
add_test(
NAME t_ME_Wp_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_w_ME.yml ${tst_ME_data_dir}/ME_Wp_virt.dat ${tst_ME_data_dir}/PSP_Wp.lhe.gz
)
add_test(
NAME t_ME_Wm
COMMAND test_ME_generic ${tst_ME_data_dir}/config_w_ME.yml ${tst_ME_data_dir}/ME_Wm.dat ${tst_ME_data_dir}/PSP_Wm.lhe.gz
)
add_test(
NAME t_ME_Wm_virt
COMMAND test_ME_generic ${tst_ME_data_dir}/config_w_ME.yml ${tst_ME_data_dir}/ME_Wm_virt.dat ${tst_ME_data_dir}/PSP_Wm.lhe.gz
)
# test main executable
file(COPY "${tst_dir}/jet_config.yml" DESTINATION "${PROJECT_BINARY_DIR}")
set(test_config "${PROJECT_BINARY_DIR}/jet_config.yml")
if(HighFive_FOUND)
file(READ ${test_config} config)
file(WRITE ${test_config} "${config} - tst.hdf5\n")
endif()
if(HepMC3_FOUND)
file(READ ${test_config} config)
file(WRITE ${test_config} "${config} - tst.hepmc\n")
endif()
if(HepMC_FOUND)
file(READ ${test_config} config)
file(WRITE ${test_config} "${config} - tst.hepmc2\n")
endif()
if(rivet_FOUND)
file(READ ${test_config} config)
file(WRITE ${test_config} "${config}\nanalysis:\n rivet: MC_XS\n output: tst\n")
endif()
set(test_cmd_main "$<TARGET_FILE:HEJ_main>\\\;${test_config}\\\;${tst_dir}/2j.lhe.gz")
# check that HepMC3 output is correct
if(HepMC3_FOUND)
add_executable(check_hepmc ${tst_dir}/check_hepmc.cc)
target_link_libraries(check_hepmc HEJ ${HEPMC3_LIBRARIES})
target_include_directories(check_hepmc PRIVATE ${HEPMC3_INCLUDE_DIR})
set(test_cmd_hepmc "$<TARGET_FILE:check_hepmc>\\\;tst.hepmc")
else()
set(test_cmd_hepmc "")
endif()
# check that LHEF output is correct
add_executable(check_lhe ${tst_dir}/check_lhe.cc)
target_link_libraries(check_lhe HEJ hej_test)
set(test_cmd_lhe "$<TARGET_FILE:check_lhe>\\\;tst.lhe")
# check that rivet interface is consistent with naive rivet
if(rivet_FOUND)
# this assumes "rivet" and "yodadiff" are found in PATH
if(rivet_USE_HEPMC3)
set(hepmc_file "tst.hepmc")
else()
set(hepmc_file "tst.hepmc2")
endif()
if(rivet_USE_HEPMC3 OR (rivet_VERSION VERSION_LESS 3))
set(histo_exclude "")
else()
# rivet 3 with HepMC 2 is inconsistent in order of weights
# -> interface != direct call (by permutation)
# REQUIRES Yoda 1.7.5
set(histo_exclude "-M\\\;\\\\d")
endif()
set(test_cmd_rivet "rivet\\\;-a\\\;MC_XS\\\;${hepmc_file}\\\;-o\\\;tst_direct.yoda\
\;yodadiff\\\;${histo_exclude}\\\;tst.yoda\\\;tst_direct.yoda")
else()
set(test_cmd_rivet "")
endif()
# Run dependent tests in one command to ensure correct execution order
# Note: The commands are concatenated with "\;" to escape CMake lists.
# Thus arguments have to be escaped twice "\\\;".
# e.g. "cmd1\;cmd2\\\;arg1\\\;arg2" is executed like "cmd1 && cmd2 arg1 arg2"
add_test(
NAME t_main
COMMAND ${CMAKE_COMMAND}
-DCMDS=${test_cmd_main}\;${test_cmd_hepmc}\;${test_cmd_lhe}\;${test_cmd_rivet}
-P ${PROJECT_SOURCE_DIR}/cmake/run_multiple_tests.cmake
)
# check that Sherpas LHE input can be read
add_executable(check_lhe_sherpa ${tst_dir}/check_lhe_sherpa.cc)
-target_link_libraries(check_lhe_sherpa HEJ)
+target_link_libraries(check_lhe_sherpa HEJ hej_test)
add_test(
NAME t_sherpa_reader
COMMAND check_lhe_sherpa ${tst_dir}/SherpaLHE.lhe 1.62624e+08
)
# check HDF5 reader & writer
if(HighFive_FOUND)
add_executable(test_hdf5 ${tst_dir}/test_hdf5.cc)
target_link_libraries(test_hdf5 HEJ)
add_test(
NAME t_hdf5
COMMAND test_hdf5 ${tst_dir}/Wm9-g4-repack.hdf5
)
add_executable(test_hdf5_write ${tst_dir}/test_hdf5_write.cc)
target_link_libraries(test_hdf5_write HEJ)
add_test(
NAME t_hdf5_write
COMMAND test_hdf5_write ${tst_dir}/Wm9-g4-repack.hdf5
)
endif()
# check rivet interface
if(RIVET_FOUND)
add_executable(check_rivet ${tst_dir}/check_rivet.cc)
target_link_libraries(check_rivet HEJ rivet::rivet)
add_test(
NAME t_rivet
COMMAND check_rivet
)
endif()
# test boson reconstruction
add_executable(cmp_events ${tst_dir}/cmp_events.cc)
target_link_libraries(cmp_events HEJ)
add_test(
NAME t_epnu_2j_noW
COMMAND cmp_events ${tst_dir}/epnu2jLOFKL_unweight.lhe.tar.gz ${tst_dir}/epnu2jLOFKL_unweight_noW.lhe.gz
)
# test resummed result
add_executable(check_res ${tst_dir}/check_res.cc)
target_link_libraries(check_res HEJ hej_test)
if(TEST_ALL) # deactivate long tests by default
add_test(
NAME t_2j
COMMAND check_res ${tst_dir}/2j.lhe.gz 3.49391e+07 419684
)
add_test(
NAME t_3j
COMMAND check_res ${tst_dir}/3j.lhe.gz 2.37902e+06 25746.6
)
add_test(
NAME t_3j_unof
COMMAND check_res ${tst_dir}/3j.lhe.gz 133399 4688.83 unof
)
add_test(
NAME t_3j_unob
COMMAND check_res ${tst_dir}/3j.lhe.gz 105247 3449.45 unob
)
add_test(
NAME t_3j_splitf
COMMAND check_res ${tst_dir}/3j.lhe.gz 97659.9 2748.65 splitf
)
add_test(
NAME t_3j_splitb
COMMAND check_res ${tst_dir}/3j.lhe.gz 107150 2799.8 splitb
)
add_test(
NAME t_4j
COMMAND check_res ${tst_dir}/4j.lhe.gz 603713 72822.6
)
add_test(
NAME t_4j_qqxmid
COMMAND check_res ${tst_dir}/4j.lhe.gz 21866.7 1716.96 qqxmid
)
add_test(
NAME t_h_3j
COMMAND check_res ${tst_dir}/h_3j.lhe.gz 0.821622 0.0220334
)
add_test(
NAME t_h_3j_unof
COMMAND check_res ${tst_dir}/h_3j_uno.lhe.gz 0.0127362 0.000271555 unof
)
add_test(
NAME t_h_3j_unob
COMMAND check_res ${tst_dir}/h_3j_uno.lhe.gz 0.0130615 0.000224793 unob
)
add_test(
NAME t_epnu_2j
COMMAND check_res ${tst_dir}/epnu2jLOFKL_unweight.lhe.tar.gz 262.7 3
)
add_test(
NAME t_MGepnu_3j
COMMAND check_res ${tst_dir}/MGepnu3j_unweighted.lhe.gz 38.9512 1
)
add_test(
NAME t_MGemnubar_3j
COMMAND check_res ${tst_dir}/MGemnubar3j_unweighted.lhe.gz 24.1575 1
)
add_test(
NAME t_MGepnu_3j_unof
COMMAND check_res ${tst_dir}/MGepnu3j_unweighted.lhe.gz 9.63702 0.128355 unof
)
add_test(
NAME t_MGepnu_3j_unob
COMMAND check_res ${tst_dir}/MGepnu3j_unweighted.lhe.gz 9.70119 0.108436 unob
)
add_test(
NAME t_MGepnu_3j_splitf
COMMAND check_res ${tst_dir}/MGepnu3j_unweighted.lhe.gz 2.91995 0.0463182 splitf
)
add_test(
NAME t_MGepnu_3j_splitb
COMMAND check_res ${tst_dir}/MGepnu3j_unweighted.lhe.gz 3.40708 0.0550975 splitb
)
add_test(
NAME t_MGepnu_4j
COMMAND check_res ${tst_dir}/MGepnu4j_unweighted.lhe.gz 10.2542 0.135106
)
add_test(
NAME t_MGemnubar_4j
COMMAND check_res ${tst_dir}/MGemnubar4j_unweighted.lhe.gz 5.57909 0.0300496
)
add_test(
NAME t_MGepnu_4j_qqxmid
COMMAND check_res ${tst_dir}/MGepnu4j_unweighted.lhe.gz 0.732084 0.005 qqxmid
)
endif()
diff --git a/t/check_lhe.cc b/t/check_lhe.cc
index b2376af..43a637b 100644
--- a/t/check_lhe.cc
+++ b/t/check_lhe.cc
@@ -1,47 +1,64 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include <iostream>
#include <unordered_map>
#include "HEJ/event_types.hh"
#include "HEJ/EventReader.hh"
#include "hej_test.hh"
-static constexpr double ep = 1e-3;
+namespace {
+ static constexpr double ep = 1e-3;
+ const fastjet::JetDefinition jet_def{fastjet::kt_algorithm, 0.4};
+ constexpr double min_jet_pt = 30;
+}
+
int main(int argn, char** argv) {
if(argn != 2){
std::cerr << "Usage: " << argv[0] << " lhe_file\n";
return EXIT_FAILURE;
}
auto reader{ HEJ::make_reader(argv[1]) };
std::unordered_map<int, double> xsec_ref;
for(int i=0; i < reader->heprup().NPRUP; ++i)
xsec_ref[reader->heprup().LPRUP[i]] = 0.;
while(reader->read_event()){
ASSERT(reader->hepeup().NUP > 2); // at least 3 particles (2 in + 1 out)
// first incoming has positive pz
ASSERT(reader->hepeup().PUP[0][2] > reader->hepeup().PUP[1][2]);
// test that we can trasform IDPRUP to event type
(void) name(static_cast<HEJ::event_type::EventType>(reader->hepeup().IDPRUP));
xsec_ref[reader->hepeup().IDPRUP] += reader->hepeup().weight();
+ // test that a HEJ event can be transformed back to the original HEPEUP
+ auto hej_event = HEJ::Event::EventData(reader->hepeup()).cluster(jet_def, min_jet_pt);
+ // there are two different weight infos, which should be the same
+ ASSERT(hej_event.central().weight == reader->hepeup().weight());
+ ASSERT(hej_event.central().weight == reader->hepeup().XWGTUP);
+ // reader->heprup() is const, we can't use it to create a hepeup
+ auto cp_heprup = reader->heprup();
+ auto new_event = HEJ::to_HEPEUP(hej_event, &cp_heprup);
+ ASSERT(new_event.weight() == reader->hepeup().weight());
+ ASSERT(new_event.XWGTUP == reader->hepeup().XWGTUP);
+ ASSERT(new_event.SCALUP == reader->hepeup().SCALUP);
+ ASSERT(new_event.NUP == reader->hepeup().NUP);
}
for(size_t i = 0; i < xsec_ref.size(); ++i){
double const ref = xsec_ref[reader->heprup().LPRUP[i]];
double const calc = reader->heprup().XSECUP[i];
std::cout << ref << '\t' << calc << '\n';
if(std::abs(calc-ref) > ep*calc){
std::cerr << "Cross sections deviate substantially";
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
diff --git a/t/check_lhe_sherpa.cc b/t/check_lhe_sherpa.cc
index 1c92d24..31561d6 100644
--- a/t/check_lhe_sherpa.cc
+++ b/t/check_lhe_sherpa.cc
@@ -1,46 +1,50 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include <iostream>
#include <string>
#include "HEJ/LesHouchesReader.hh"
+#include "hej_test.hh"
+
static constexpr double ep = 1e-5;
int main(int argn, char** argv) {
if(argn != 3){
std::cerr << "Usage: " << argv[0] << " lhe_file xs\n";
return EXIT_FAILURE;
}
auto reader{ HEJ::make_reader(argv[1])};
const double ref_xs = std::stod(argv[2]);
if(std::abs(reader->heprup().IDWTUP) != 3){
std::cerr << "Sherpa Events should always be neutral/unweighted\n";
return EXIT_FAILURE;
}
double xs { 0. };
size_t n_evts { 0 };
+ ASSERT(std::abs(reader->heprup().XSECUP.front()-ref_xs) < ep*ref_xs);
while(reader->read_event()){
++n_evts;
xs += reader->hepeup().weight();
+ ASSERT(reader->hepeup().weight() == reader->hepeup().XWGTUP);
}
if(std::abs(xs-ref_xs) > ep*xs){
std::cerr << "Cross sections deviate substantially!\n"
<<"Found "<< xs <<" but expected "<< ref_xs <<" -> "<< xs/ref_xs <<"\n";
return EXIT_FAILURE;
}
if(!reader->number_events() || *(reader->number_events()) != n_evts){
std::cerr << "Number of Event not correctly set for Sherpa LHE reader\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:42 PM (1 d, 2 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3806130
Default Alt Text
(69 KB)

Event Timeline