Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879622
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
21 KB
Subscribers
None
View Options
diff --git a/MatrixElement/General/MEvv2vv.cc b/MatrixElement/General/MEvv2vv.cc
--- a/MatrixElement/General/MEvv2vv.cc
+++ b/MatrixElement/General/MEvv2vv.cc
@@ -1,344 +1,407 @@
// -*- C++ -*-
//
// MEvv2vv.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MEvv2vv class.
//
#include "MEvv2vv.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
+#include "Herwig/Models/StandardModel/StandardModel.h"
using namespace Herwig;
using ThePEG::Helicity::ScalarWaveFunction;
using ThePEG::Helicity::TensorWaveFunction;
using ThePEG::Helicity::incoming;
using ThePEG::Helicity::outgoing;
void MEvv2vv::doinit() {
GeneralHardME::doinit();
scalar_.resize(numberOfDiags());
vector_.resize(numberOfDiags());
tensor_.resize(numberOfDiags());
+ four_ .resize(numberOfDiags());
initializeMatrixElements(PDT::Spin1, PDT::Spin1,
PDT::Spin1, PDT::Spin1);
for(size_t i = 0; i < numberOfDiags(); ++i) {
HPDiagram diag = getProcessInfo()[i];
tcPDPtr offshell = diag.intermediate;
if(!offshell)
- fourPointVertex_ = dynamic_ptr_cast<AbstractVVVVVertexPtr>
+ four_[i] = dynamic_ptr_cast<AbstractVVVVVertexPtr>
(diag.vertices.first);
else if(offshell->iSpin() == PDT::Spin0) {
AbstractVVSVertexPtr vert1 = dynamic_ptr_cast<AbstractVVSVertexPtr>
(diag.vertices.first);
AbstractVVSVertexPtr vert2 = dynamic_ptr_cast<AbstractVVSVertexPtr>
(diag.vertices.second);
scalar_[i] = make_pair(vert1, vert2);
}
else if(offshell->iSpin() == PDT::Spin1) {
AbstractVVVVertexPtr vert1 = dynamic_ptr_cast<AbstractVVVVertexPtr>
(diag.vertices.first);
AbstractVVVVertexPtr vert2 = dynamic_ptr_cast<AbstractVVVVertexPtr>
(diag.vertices.second);
vector_[i] = make_pair(vert1, vert2);
}
else if(offshell->iSpin() == PDT::Spin2) {
AbstractVVTVertexPtr vert1 = dynamic_ptr_cast<AbstractVVTVertexPtr>
(diag.vertices.first);
AbstractVVTVertexPtr vert2 = dynamic_ptr_cast<AbstractVVTVertexPtr>
(diag.vertices.second);
tensor_[i] = make_pair(vert1, vert2);
}
}
+ if(colour()==Colour88to88||colour()==Colour88to66bar) {
+ tcHwSMPtr hwsm= dynamic_ptr_cast<tcHwSMPtr>(standardModel());
+ for(size_t i = 0; i < numberOfDiags(); ++i) {
+ HPDiagram diag = getProcessInfo()[i];
+ if(diag.intermediate) continue;
+ vector<unsigned int> order;
+ for(map<string,pair<unsigned int,unsigned int> >::const_iterator it=hwsm->couplings().begin();
+ it!=hwsm->couplings().end();++it) {
+ order.push_back(0);
+ if(diag.vertices.first ) order.back() += diag.vertices.first ->orderInCoupling(it->second.first);
+ if(diag.vertices.second&&diag.vertices.first->getNpoint()==3)
+ order.back() += diag.vertices.second->orderInCoupling(it->second.first);
+ }
+ vector<unsigned int> matchdiags;
+ for(size_t j = 0; j < numberOfDiags(); ++j) {
+ HPDiagram diag2 = getProcessInfo()[j];
+ if(!diag2.intermediate ||
+ (diag2.intermediate->iColour()==PDT::Colour8 &&
+ diag2.intermediate->iColour()==PDT::Colour6 &&
+ diag2.intermediate->iColour()==PDT::Colour6bar)) continue;
+ unsigned int iloc(0);
+ bool match=true;
+ for(map<string,pair<unsigned int,unsigned int> >::const_iterator it=hwsm->couplings().begin();
+ it!=hwsm->couplings().end();++it) {
+ unsigned int otemp(0);
+ if(diag2.vertices.first ) otemp += diag2.vertices.first ->orderInCoupling(it->second.first);
+ if(diag2.vertices.second&&diag2.vertices.first->getNpoint()==3)
+ otemp += diag2.vertices.second->orderInCoupling(it->second.first);
+ if(otemp!=order[iloc]) {
+ match = false;
+ break;
+ }
+ iloc+=1;
+ }
+ if(!match) continue;
+ matchdiags.push_back(j);
+ }
+ double weight = 3./double(matchdiags.size());
+ for(unsigned int iy=0;iy<matchdiags.size();++iy)
+ if(fourFlow_.find(matchdiags[iy])!=fourFlow_.end())
+ fourFlow_[matchdiags[iy]].push_back(make_pair(i,weight));
+ else
+ fourFlow_[matchdiags[iy]] = vector<pair<unsigned int,double> >(1,make_pair(i,weight));
+ }
+ }
}
double MEvv2vv::me2() const {
VBVector va(2), vb(2), vc(3), vd(3);
for(unsigned int i = 0; i < 2; ++i) {
va[i] = VectorWaveFunction(rescaledMomenta()[0], mePartonData()[0], 2*i,
incoming);
vb[i] = VectorWaveFunction(rescaledMomenta()[1], mePartonData()[1], 2*i,
incoming);
}
//always 0 and 2 polarisations
for(unsigned int i = 0; i < 2; ++i) {
vc[2*i] = VectorWaveFunction(rescaledMomenta()[2], mePartonData()[2], 2*i,
outgoing);
vd[2*i] = VectorWaveFunction(rescaledMomenta()[3], mePartonData()[3], 2*i,
outgoing);
}
bool mc = !(mePartonData()[2]->mass() > ZERO);
//massive vector, also 1
if( !mc )
vc[1] = VectorWaveFunction(rescaledMomenta()[2], mePartonData()[2], 1,
outgoing);
bool md = !(mePartonData()[3]->mass() > ZERO);
if( !md )
vd[1] = VectorWaveFunction(rescaledMomenta()[3], mePartonData()[3], 1,
outgoing);
double full_me(0.);
vv2vvHeME(va, vb, vc, mc, vd, md, full_me,true);
#ifndef NDEBUG
if( debugME() ) debug(full_me);
#endif
return full_me;
}
ProductionMatrixElement
MEvv2vv::vv2vvHeME(VBVector & vin1, VBVector & vin2,
VBVector & vout1, bool mc, VBVector & vout2, bool md,
double & me2, bool first) const {
const Energy2 q2(scale());
const Energy mass = vout1[0].mass();
// weights for the selection of the diagram
vector<double> me(numberOfDiags(), 0.);
// weights for the selection of the colour flow
vector<double> flow(numberOfFlows(),0.);
// flow over the helicities and diagrams
for(unsigned int ihel1 = 0; ihel1 < 2; ++ihel1) {
for(unsigned int ihel2 = 0; ihel2 < 2; ++ihel2) {
for(unsigned int ohel1 = 0; ohel1 < 3; ++ohel1) {
if(mc && ohel1 == 1) ++ohel1;
for(unsigned int ohel2 = 0; ohel2 < 3; ++ohel2) {
if(md && ohel2 == 1) ++ohel2;
vector<Complex> flows(numberOfFlows(),0.);
for(HPCount ix = 0; ix < numberOfDiags(); ++ix) {
Complex diag(0.);
const HPDiagram & current = getProcessInfo()[ix];
tcPDPtr offshell = current.intermediate;
if(current.channelType == HPDiagram::sChannel) {
if(offshell->iSpin() == PDT::Spin0) {
ScalarWaveFunction interS =
scalar_[ix].first->evaluate(q2, 1, offshell,
vin1[ihel1], vin2[ihel2]);
diag = scalar_[ix].second->
evaluate(q2, vout1[ohel1], vout2[ohel2], interS);
}
else if(offshell->iSpin() == PDT::Spin1) {
VectorWaveFunction interV = vector_[ix].first->
evaluate(q2, 1, offshell, vin1[ihel1], vin2[ihel2]);
diag = vector_[ix].second->
evaluate(q2, vout1[ohel1], vout2[ohel2], interV);
if(colour()==Colour88to88)
- diag += fourPointVertex_->evaluate(q2, 0, vout1[ohel1], vin2[ihel2],
- vout2[ohel2], vin1[ihel1]);
+ for(unsigned int iy=0;iy<fourFlow_.at(ix).size();++iy) {
+ unsigned int iloc=fourFlow_.at(ix)[iy].first;
+ double wgt = fourFlow_.at(ix)[iy].second;
+ diag += wgt*four_[iloc]->evaluate(q2, 0, vout1[ohel1], vin2[ihel2],
+ vout2[ohel2], vin1[ihel1]);
+ }
else if(colour()==Colour88to66bar)
- diag -= fourPointVertex_->evaluate(q2, 0, vout1[ohel1], vin2[ihel2],
- vout2[ohel2], vin1[ihel1]);
+ for(unsigned int iy=0;iy<fourFlow_.at(ix).size();++iy) {
+ unsigned int iloc=fourFlow_.at(ix)[iy].first;
+ double wgt = fourFlow_.at(ix)[iy].second;
+ diag -= wgt*four_[iloc]->evaluate(q2, 0, vout1[ohel1], vin2[ihel2],
+ vout2[ohel2], vin1[ihel1]);
+ }
}
else if(offshell->iSpin() == PDT::Spin2) {
TensorWaveFunction interT = tensor_[ix].first->
evaluate(q2, 1, offshell, vin1[ihel1], vin2[ihel2]);
diag = tensor_[ix].second->
evaluate(q2, vout1[ohel1], vout2[ohel2],interT);
}
else
assert(false);
}
else if(current.channelType == HPDiagram::tChannel) {
if(offshell->iSpin() == PDT::Spin0) {
if(current.ordered.second) {
ScalarWaveFunction interS = scalar_[ix].
first->evaluate(q2, 3, offshell, vin1[ihel1],vout1[ohel1]);
diag = scalar_[ix].second->
evaluate(q2, vin2[ihel2], vout2[ohel2], interS);
}
else {
ScalarWaveFunction interS = scalar_[ix].first->
evaluate(q2, 3, offshell, vin2[ihel2],vout1[ohel1]);
diag = scalar_[ix].second->
evaluate(q2, vin1[ihel1], vout2[ohel2], interS);
}
}
else if(offshell->iSpin() == PDT::Spin1) {
if(current.ordered.second) {
VectorWaveFunction interV = vector_[ix].
first->evaluate(q2, 3, offshell, vin1[ihel1],vout1[ohel1], mass);
diag = vector_[ix].second->
evaluate(q2, vin2[ihel2], interV, vout2[ohel2]);
if(colour()==Colour88to88 || colour()==Colour88to66bar)
- diag += fourPointVertex_->evaluate(q2, 0, vin1[ihel1], vin2[ihel2],
- vout1[ohel1], vout2[ohel2]);
+ for(unsigned int iy=0;iy<fourFlow_.at(ix).size();++iy) {
+ unsigned int iloc=fourFlow_.at(ix)[iy].first;
+ double wgt = fourFlow_.at(ix)[iy].second;
+ diag += wgt*four_[iloc]->evaluate(q2, 0, vin1[ihel1], vin2[ihel2],
+ vout1[ohel1], vout2[ohel2]);
+ }
}
else {
if(offshell->CC()) offshell = offshell->CC();
VectorWaveFunction interV = vector_[ix].first->
evaluate(q2, 3, offshell, vin2[ihel2],vout1[ohel1], mass);
diag = vector_[ix].second->
evaluate(q2, vin1[ihel1], interV, vout2[ohel2]);
if(colour()==Colour88to88 || colour()==Colour88to66bar)
- diag += fourPointVertex_->
- evaluate(q2, 0, vin2[ihel2], vin1[ihel1],
- vout1[ohel1], vout2[ohel2]);
+ for(unsigned int iy=0;iy<fourFlow_.at(ix).size();++iy) {
+ unsigned int iloc=fourFlow_.at(ix)[iy].first;
+ double wgt = fourFlow_.at(ix)[iy].second;
+ diag += wgt*four_[iloc]->
+ evaluate(q2, 0, vin2[ihel2], vin1[ihel1],
+ vout1[ohel1], vout2[ohel2]);
+ }
}
}
else if(offshell->iSpin() == PDT::Spin2) {
if(current.ordered.second) {
TensorWaveFunction interT = tensor_[ix].first->
evaluate(q2, 3, offshell, vin1[ihel1],vout1[ohel1]);
diag = tensor_[ix].second->
evaluate(q2, vin2[ihel2], vout2[ohel2], interT);
}
else {
TensorWaveFunction interT = tensor_[ix].first->
evaluate(q2, 3, offshell, vin2[ihel2],vout1[ohel1]);
diag = tensor_[ix].second->
evaluate(q2, vin1[ihel1], vout2[ohel2], interT);
}
}
else
assert(false);
}
else if(current.channelType == HPDiagram::fourPoint) {
if(colour()==Colour88to88||colour()==Colour88to66bar)
diag = 0.;
else
- diag = fourPointVertex_->evaluate(q2, 0, vin1[ihel1], vin2[ihel2],
- vout1[ohel1], vout2[ohel2]);
+ diag = four_[ix]->evaluate(q2, 0, vin1[ihel1], vin2[ihel2],
+ vout1[ohel1], vout2[ohel2]);
}
else
assert(false);
me[ix] += norm(diag);
diagramME()[ix](2*ihel1, 2*ihel2, ohel1, ohel2) = diag;
//Compute flows
for(size_t iy = 0; iy < current.colourFlow.size(); ++iy) {
assert(current.colourFlow[iy].first<flows.size());
flows[current.colourFlow[iy].first] +=
current.colourFlow[iy].second * diag;
}
}
// MEs for the different colour flows
for(unsigned int iy = 0; iy < numberOfFlows(); ++iy)
flowME()[iy](2*ihel1, 2*ihel2, ohel1, ohel2) = flows[iy];
//Now add flows to me2 with appropriate colour factors
for(size_t ii = 0; ii < numberOfFlows(); ++ii)
for(size_t ij = 0; ij < numberOfFlows(); ++ij)
me2 += getColourFactors()[ii][ij]*(flows[ii]*conj(flows[ij])).real();
// contribution to the colour flow
for(unsigned int ii = 0; ii < numberOfFlows(); ++ii) {
flow[ii] += getColourFactors()[ii][ii]*norm(flows[ii]);
}
}
}
}
}
// if not computing the cross section return the selected colour flow
if(!first) return flowME()[colourFlow()];
me2 = selectColourFlow(flow,me,me2);
return flowME()[colourFlow()];
}
void MEvv2vv::persistentOutput(PersistentOStream & os) const {
- os << scalar_ << vector_ << tensor_ << fourPointVertex_;
+ os << scalar_ << vector_ << tensor_ << four_ << fourFlow_;
}
void MEvv2vv::persistentInput(PersistentIStream & is, int) {
- is >> scalar_ >> vector_ >> tensor_ >> fourPointVertex_;
+ is >> scalar_ >> vector_ >> tensor_ >> four_ >> fourFlow_;
initializeMatrixElements(PDT::Spin1, PDT::Spin1,
PDT::Spin1, PDT::Spin1);
}
// The following static variable is needed for the type
// description system in ThePEG.
DescribeClass<MEvv2vv,GeneralHardME>
describeHerwigMEvv2vv("Herwig::MEvv2vv", "Herwig.so");
void MEvv2vv::Init() {
static ClassDocumentation<MEvv2vv> documentation
("This is the implementation of the 2 to 2 ME for a pair"
"of massless vector-bosons to a pair of vector bosons");
}
void MEvv2vv::constructVertex(tSubProPtr sub) {
ParticleVector ext = hardParticles(sub);
// set wave functions with real momenta
VBVector v1, v2, v3, v4;
VectorWaveFunction(v1, ext[0], incoming, false, true);
VectorWaveFunction(v2, ext[1], incoming, false, true);
//function to calculate me2 expects massless incoming vectors
// and this constructor sets the '1' polarisation at element [2]
//in the vector
bool mc = !(ext[2]->data().mass() > ZERO);
bool md = !(ext[3]->data().mass() > ZERO);
VectorWaveFunction(v3, ext[2], outgoing, true, mc);
VectorWaveFunction(v4, ext[3], outgoing, true, md);
// Need to use rescale momenta to calculate matrix element
setRescaledMomenta(ext);
// wave functions with rescaled momenta
VectorWaveFunction vr1(rescaledMomenta()[0],
ext[0]->dataPtr(), incoming);
VectorWaveFunction vr2(rescaledMomenta()[1],
ext[1]->dataPtr(), incoming);
VectorWaveFunction vr3(rescaledMomenta()[2],
ext[2]->dataPtr(), outgoing);
VectorWaveFunction vr4(rescaledMomenta()[3],
ext[3]->dataPtr(), outgoing);
for( unsigned int ihel = 0; ihel < 2; ++ihel ) {
vr1.reset(2*ihel);
v1[ihel] = vr1;
vr2.reset(2*ihel);
v2[ihel] = vr2;
vr3.reset(2*ihel);
v3[2*ihel] = vr3;
vr4.reset(2*ihel);
v4[2*ihel] = vr4;
}
if( !mc ) {
vr3.reset(1);
v3[1] = vr3;
}
if( !md ) {
vr4.reset(1);
v4[1] = vr4;
}
double dummy(0.);
ProductionMatrixElement pme = vv2vvHeME(v1, v2, v3, mc, v4, md, dummy,false);
#ifndef NDEBUG
if( debugME() ) debug(dummy);
#endif
createVertex(pme,ext);
}
void MEvv2vv::debug(double me2) const {
if( !generator()->logfile().is_open() ) return;
if( mePartonData()[0]->id() != 21 || mePartonData()[1]->id() != 21 ||
mePartonData()[2]->id() != 5100021 ||
mePartonData()[3]->id() != 5100021 ) return;
tcSMPtr sm = generator()->standardModel();
double gs4 = sqr( 4.*Constants::pi*sm->alphaS(scale()) );
Energy2 s(sHat());
Energy2 mf2 = meMomenta()[2].m2();
Energy2 t3(tHat() - mf2), u4(uHat() - mf2);
Energy4 s2(sqr(s)), t3s(sqr(t3)), u4s(sqr(u4));
Energy4 num = s2 + t3s + u4s;
double analytic = 3.*mf2*( mf2*num/t3s/u4s - num/s/t3/u4 ) + 1.
+ sqr(num)*num/4./s2/t3s/u4s - t3*u4/s2;
analytic *= 9.*gs4/8.;
double diff = abs( analytic - me2 );
if( diff > 1e-4 ) {
generator()->log()
<< mePartonData()[0]->PDGName() << ","
<< mePartonData()[1]->PDGName() << "->"
<< mePartonData()[2]->PDGName() << ","
<< mePartonData()[3]->PDGName() << " difference: "
<< setprecision(10) << diff << " ratio: " << analytic/me2 << '\n';
}
}
diff --git a/MatrixElement/General/MEvv2vv.h b/MatrixElement/General/MEvv2vv.h
--- a/MatrixElement/General/MEvv2vv.h
+++ b/MatrixElement/General/MEvv2vv.h
@@ -1,183 +1,188 @@
// -*- C++ -*-
//
// MEvv2vv.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MEvv2vv_H
#define HERWIG_MEvv2vv_H
//
// This is the declaration of the MEvv2vv class.
//
#include "GeneralHardME.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/Vertex/AbstractVVVVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVTVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVSVertex.h"
#include "ThePEG/Helicity/Vertex/AbstractVVVVVertex.h"
#include "Herwig/MatrixElement/ProductionMatrixElement.h"
namespace Herwig {
using namespace ThePEG;
using Helicity::VectorWaveFunction;
/**
* This is the implementation of the matrix element for
* \f$2\to 2\f$ massless vector-boson pair to vector-boson pair. It inherits from
* GeneralHardME and implements the appropriate virtual member functions.
*
* @see \ref MEvv2vvInterfaces "The interfaces"
* defined for MEvv2vv.
*/
class MEvv2vv: public GeneralHardME {
public:
/**
* Typedef for VectorWaveFunction
*/
typedef vector<VectorWaveFunction> VBVector;
public:
/** @name Virtual functions required by the GeneralHardME class. */
//@{
/**
* The matrix element for the kinematical configuration
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
* @return the matrix element scaled with sHat() to give a
* dimensionless number.
*/
virtual double me2() const;
//@}
/**
* Construct the vertex information for the spin correlations
* @param sub Pointer to the relevent SubProcess
*/
virtual void constructVertex(tSubProPtr sub);
private:
/**
* Compute the matrix element for \f$V\, V\to V\, V\f$
* @param vin1 VectorWaveFunctions for first incoming particle
* @param vin2 VectorWaveFunctions for second incoming particle
* @param vout1 VectorWaveFunctions for first outgoing particle
* @param mc Whether vout1 is massless or not
* @param vout2 VectorWaveFunctions for outgoing particle
* @param md Whether vout2 is massless or not
* @param me2 colour averaged, spin summed ME
* @param first Whether or not first call to decide if colour decomposition etc
* should be calculated
* @return ProductionMatrixElement containing results of
* helicity calculations
*/
ProductionMatrixElement
vv2vvHeME(VBVector & vin1, VBVector & vin2,
VBVector & vout1, bool mc, VBVector & vout2, bool md,
double & me2, bool first ) const;
protected:
/**
* A debugging function to test the value of me2 against an
* analytic function.
* @param me2 The value of the \f$ |\bar{\mathcal{M}}|^2 \f$
*/
virtual void debug(double me2) const;
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const {return new_ptr(*this);}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const {return new_ptr(*this);}
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MEvv2vv & operator=(const MEvv2vv &);
private:
/**
* Store the dynamically casted VVSVertex pointers
*/
vector<pair<AbstractVVSVertexPtr, AbstractVVSVertexPtr> > scalar_;
/**
* Store the dynamically casted VVVVertex pointers
*/
vector<pair<AbstractVVVVertexPtr, AbstractVVVVertexPtr> > vector_;
/**
* Store the dynamically casted VVTVertex pointers
*/
vector<pair<AbstractVVTVertexPtr, AbstractVVTVertexPtr> > tensor_;
/**
* Store the dynamically casted VVVVVertex pointer
*/
- AbstractVVVVVertexPtr fourPointVertex_;
+ vector<AbstractVVVVVertexPtr> four_;
+
+ /**
+ * Four points for colour flows
+ */
+ map<unsigned int,vector<pair<unsigned int,double> > > fourFlow_;
};
}
#endif /* HERWIG_MEvv2vv_H */
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:39 PM (1 d, 1 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3792566
Default Alt Text
(21 KB)
Attached To
R563 testingHerwigHG
Event Timeline
Log In to Comment