Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879369
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
170 KB
Subscribers
None
View Options
diff --git a/Models/Feynrules/python/ufo2peg/general_lorentz.py b/Models/Feynrules/python/ufo2peg/general_lorentz.py
--- a/Models/Feynrules/python/ufo2peg/general_lorentz.py
+++ b/Models/Feynrules/python/ufo2peg/general_lorentz.py
@@ -1,3018 +1,3018 @@
import copy
from .helpers import SkipThisVertex,def_from_model
from .converter import py2cpp
import string,re
from string import Template
epsValue=[[[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]],
[[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]],
[[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]],
[[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]]]
epsValue[0][1][2][3] = -1.
epsValue[0][1][3][2] = 1.
epsValue[0][2][1][3] = 1.
epsValue[0][2][3][1] = -1.
epsValue[0][3][1][2] = -1.
epsValue[0][3][2][1] = 1.
epsValue[1][0][2][3] = 1.
epsValue[1][0][3][2] = -1.
epsValue[1][2][0][3] = -1.
epsValue[1][2][3][0] = 1.
epsValue[1][3][0][2] = 1.
epsValue[1][3][2][0] = -1.
epsValue[2][0][1][3] = -1.
epsValue[2][0][3][1] = 1.
epsValue[2][1][0][3] = 1.
epsValue[2][1][3][0] = -1.
epsValue[2][3][0][1] = -1.
epsValue[2][3][1][0] = 1.
epsValue[3][0][1][2] = 1.
epsValue[3][0][2][1] = -1.
epsValue[3][1][0][2] = -1.
epsValue[3][1][2][0] = 1.
epsValue[3][2][0][1] = 1.
epsValue[3][2][1][0] = -1.
# self contracted tensor propagator
tPropA=[[],[],[],[]]
tPropA[0].append(Template("-2. / 3. * (M${iloc}2 + 2 * P${iloc}t ** 2) * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[0].append(Template("-4. / 3. * P${iloc}t * P${iloc}x * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[0].append(Template("-4. / 3. * P${iloc}t * P${iloc}y * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[0].append(Template("-4. / 3. * P${iloc}t * P${iloc}z * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[1].append(Template("-4. / 3. * P${iloc}t * P${iloc}x * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[1].append(Template(" 2. / 3. * (M${iloc}2 - 2 * P${iloc}x ** 2) * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[1].append(Template("-4. / 3. * P${iloc}x * P${iloc}y * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[1].append(Template("-4. / 3. * P${iloc}x * P${iloc}z * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[2].append(Template("-4. / 3. * P${iloc}t * P${iloc}y * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[2].append(Template("-4. / 3. * P${iloc}x * P${iloc}y * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[2].append(Template(" 2. / 3. * (M${iloc}2 - 2 * P${iloc}y ** 2) * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[2].append(Template("-4. / 3. * P${iloc}y * P${iloc}z * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[3].append(Template("-4. / 3. * P${iloc}t * P${iloc}z * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[3].append(Template("-4. / 3. * P${iloc}x * P${iloc}z * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[3].append(Template("-4. / 3. * P${iloc}y * P${iloc}z * (M${iloc}2 -p2)*OM${iloc}**2"))
tPropA[3].append(Template(" 2. / 3. * (M${iloc}2 - 2 * P${iloc}z ** 2) * (M${iloc}2 -p2)*OM${iloc}**2"))
# tensor propagator 1 index contracted
tPropB=[[[],[],[],[]],[[],[],[],[]],[[],[],[],[]],[[],[],[],[]]]
tPropB[0][0].append(Template("4. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (1. - OM${iloc} * P${iloc}t ** 2)"))
tPropB[0][0].append(Template("-2 * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}x - 2. / 3. * (1. - OM${iloc} * P${iloc}t ** 2) * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[0][0].append(Template(" -2 * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}y - 2. / 3. * (1. - OM${iloc} * P${iloc}t ** 2) * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[0][0].append(Template(" -2 * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}z - 2. / 3. * (1. - OM${iloc} * P${iloc}t ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[0][1].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}x / 3. + (1. - OM${iloc} * P${iloc}t ** 2) * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[0][1].append(Template(" (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1. - OM${iloc} * P${iloc}x ** 2) - OM${iloc} * P${iloc}t * P${iloc}x * (${V}x - ${dot}*OM${iloc} * P${iloc}x) / 3."))
tPropB[0][1].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}y - OM${iloc} * P${iloc}t * P${iloc}y * (${V}x - ${dot}*OM${iloc} * P${iloc}x) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}x * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[0][1].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}z * (${V}x - ${dot}*OM${iloc} * P${iloc}x) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}x * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[0][2].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}y / 3. + (1. - OM${iloc} * P${iloc}t ** 2) * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[0][2].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}y - OM${iloc} * P${iloc}t * P${iloc}x * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}y * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[0][2].append(Template(" (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1. - OM${iloc} * P${iloc}y ** 2) - OM${iloc} * P${iloc}t * P${iloc}y * (${V}y - ${dot}*OM${iloc} * P${iloc}y) / 3."))
tPropB[0][2].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[0][3].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}z / 3. + (1. - OM${iloc} * P${iloc}t ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[0][3].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}x * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}z * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[0][3].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[0][3].append(Template("(${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1. - OM${iloc} * P${iloc}z ** 2) - OM${iloc} * P${iloc}t * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) / 3."))
tPropB[1][0].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}x / 3. + (1 - OM${iloc} * P${iloc}t ** 2) * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[1][0].append(Template(" (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1 - OM${iloc} * P${iloc}x ** 2) - OM${iloc} * P${iloc}t * P${iloc}x * (${V}x - ${dot}*OM${iloc} * P${iloc}x) / 3."))
tPropB[1][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}y - OM${iloc} * P${iloc}t * P${iloc}y * (${V}x - ${dot}*OM${iloc} * P${iloc}x) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}x * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[1][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}z * (${V}x - ${dot}*OM${iloc} * P${iloc}x) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}x * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[1][1].append(Template(" -2*OM${iloc} * P${iloc}t * P${iloc}x * (${V}x - ${dot}*OM${iloc} * P${iloc}x) - 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropB[1][1].append(Template(" 4. / 3. * (${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropB[1][1].append(Template(" -2 * (${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}x * P${iloc}y - 2. / 3. * (-1 - OM${iloc} * P${iloc}x ** 2) * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[1][1].append(Template(" -2 * (${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}x * P${iloc}z - 2. / 3. * (-1 - OM${iloc} * P${iloc}x ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[1][2].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (${V}x - ${dot}*OM${iloc} * P${iloc}x) - OM${iloc} * P${iloc}t * P${iloc}x * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropB[1][2].append(Template(" -(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}x * P${iloc}y / 3. + (-1 - OM${iloc} * P${iloc}x ** 2) * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[1][2].append(Template(" (${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}y ** 2) - OM${iloc} * P${iloc}x * P${iloc}y * (${V}y - ${dot}*OM${iloc} * P${iloc}y) / 3."))
tPropB[1][2].append(Template("-(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}x * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3.*OM${iloc} * P${iloc}x * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[1][3].append(Template("-OM${iloc} * P${iloc}t * P${iloc}z * (${V}x - ${dot}*OM${iloc} * P${iloc}x) - OM${iloc} * P${iloc}t * P${iloc}x * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropB[1][3].append(Template(" -(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}x * P${iloc}z / 3. + (-1 - OM${iloc} * P${iloc}x ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[1][3].append(Template(" -(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}x * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3.*OM${iloc} * P${iloc}x * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[1][3].append(Template("(${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}z ** 2) - OM${iloc} * P${iloc}x * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) / 3."))
tPropB[2][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}y / 3. + (1 - OM${iloc} * P${iloc}t ** 2) * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[2][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}y - OM${iloc} * P${iloc}t * P${iloc}x * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}y * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[2][0].append(Template(" (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1 - OM${iloc} * P${iloc}y ** 2) - OM${iloc} * P${iloc}t * P${iloc}y * (${V}y - ${dot}*OM${iloc} * P${iloc}y) / 3."))
tPropB[2][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[2][1].append(Template("-OM${iloc} * P${iloc}t * P${iloc}y * (${V}x - ${dot}*OM${iloc} * P${iloc}x) - OM${iloc} * P${iloc}t * P${iloc}x * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropB[2][1].append(Template("-(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}x * P${iloc}y / 3. + (-1 - OM${iloc} * P${iloc}x ** 2) * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[2][1].append(Template(" (${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}y ** 2) - OM${iloc} * P${iloc}x * P${iloc}y * (${V}y - ${dot}*OM${iloc} * P${iloc}y) / 3."))
tPropB[2][1].append(Template("-(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}x * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) + 2. / 3.*OM${iloc} * P${iloc}x * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[2][2].append(Template(" -2*OM${iloc} * P${iloc}t * P${iloc}y * (${V}y - ${dot}*OM${iloc} * P${iloc}y) - 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropB[2][2].append(Template(" -2*OM${iloc} * P${iloc}x * P${iloc}y * (${V}y - ${dot}*OM${iloc} * P${iloc}y) - 2. / 3. * (${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropB[2][2].append(Template("4. / 3. * (${V}y - ${dot}*OM${iloc} * P${iloc}y) * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropB[2][2].append(Template(" -2 * (${V}y - ${dot}*OM${iloc} * P${iloc}y)*OM${iloc} * P${iloc}y * P${iloc}z - 2. / 3. * (-1 - OM${iloc} * P${iloc}y ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[2][3].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) - OM${iloc} * P${iloc}t * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropB[2][3].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) - OM${iloc} * P${iloc}x * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3. * (${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropB[2][3].append(Template(" -(${V}y - ${dot}*OM${iloc} * P${iloc}y)*OM${iloc} * P${iloc}y * P${iloc}z / 3. + (-1 - OM${iloc} * P${iloc}y ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[2][3].append(Template(" (${V}y - ${dot}*OM${iloc} * P${iloc}y) * (-1 - OM${iloc} * P${iloc}z ** 2) - OM${iloc} * P${iloc}y * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) / 3."))
tPropB[3][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}t * P${iloc}z / 3. + (1 - OM${iloc} * P${iloc}t ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[3][0].append(Template(" -(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}x * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}z * (${V}x - ${dot}*OM${iloc} * P${iloc}x)"))
tPropB[3][0].append(Template("-(${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}t * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3.*OM${iloc} * P${iloc}t * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[3][0].append(Template(" (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1 - OM${iloc} * P${iloc}z ** 2) - OM${iloc} * P${iloc}t * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) / 3."))
tPropB[3][1].append(Template("-OM${iloc} * P${iloc}t * P${iloc}z * (${V}x - ${dot}*OM${iloc} * P${iloc}x) - OM${iloc} * P${iloc}t * P${iloc}x * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropB[3][1].append(Template(" -(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}x * P${iloc}z / 3. + (-1 - OM${iloc} * P${iloc}x ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[3][1].append(Template(" -(${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}y * P${iloc}z - OM${iloc} * P${iloc}x * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3.*OM${iloc} * P${iloc}x * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y)"))
tPropB[3][1].append(Template(" (${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}z ** 2) - OM${iloc} * P${iloc}x * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) / 3."))
tPropB[3][2].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) - OM${iloc} * P${iloc}t * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropB[3][2].append(Template("-OM${iloc} * P${iloc}x * P${iloc}z * (${V}y - ${dot}*OM${iloc} * P${iloc}y) - OM${iloc} * P${iloc}x * P${iloc}y * (${V}z - ${dot}*OM${iloc} * P${iloc}z) + 2. / 3. * (${V}x - ${dot}*OM${iloc} * P${iloc}x)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropB[3][2].append(Template(" -(${V}y - ${dot}*OM${iloc} * P${iloc}y)*OM${iloc} * P${iloc}y * P${iloc}z / 3. + (-1 - OM${iloc} * P${iloc}y ** 2) * (${V}z - ${dot}*OM${iloc} * P${iloc}z)"))
tPropB[3][2].append(Template(" (${V}y - ${dot}*OM${iloc} * P${iloc}y) * (-1 - OM${iloc} * P${iloc}z ** 2) - OM${iloc} * P${iloc}y * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) / 3."))
tPropB[3][3].append(Template(" -2*OM${iloc} * P${iloc}t * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) - 2. / 3. * (${V}t - ${dot}*OM${iloc} * P${iloc}t) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropB[3][3].append(Template("-2*OM${iloc} * P${iloc}x * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) - 2. / 3. * (${V}x - ${dot}*OM${iloc} * P${iloc}x) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropB[3][3].append(Template("-2*OM${iloc} * P${iloc}y * P${iloc}z * (${V}z - ${dot}*OM${iloc} * P${iloc}z) - 2. / 3. * (${V}y - ${dot}*OM${iloc} * P${iloc}y) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropB[3][3].append(Template("4. / 3. * (${V}z - ${dot}*OM${iloc} * P${iloc}z) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
# tensor propagator, no contracted indices
tPropC=[[[[],[],[],[]],[[],[],[],[]],[[],[],[],[]],[[],[],[],[]]],
[[[],[],[],[]],[[],[],[],[]],[[],[],[],[]],[[],[],[],[]]],
[[[],[],[],[]],[[],[],[],[]],[[],[],[],[]],[[],[],[],[]]],
[[[],[],[],[]],[[],[],[],[]],[[],[],[],[]],[[],[],[],[]]]]
tPropC[0][0][0].append(Template("4./3. * (1 - OM${iloc} * P${iloc}t ** 2) ** 2"))
tPropC[0][0][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}x"))
tPropC[0][0][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}y"))
tPropC[0][0][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}z"))
tPropC[0][0][1].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}x"))
tPropC[0][0][1].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x ** 2 - 2./3. * (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][0][1].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropC[0][0][1].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropC[0][0][2].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}y"))
tPropC[0][0][2].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropC[0][0][2].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y ** 2 - 2./3. * (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[0][0][2].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[0][0][3].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}z"))
tPropC[0][0][3].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropC[0][0][3].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[0][0][3].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}z ** 2 - 2./3. * (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[0][1][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}x"))
tPropC[0][1][0].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}x ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x ** 2 /3."))
tPropC[0][1][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3."))
tPropC[0][1][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3."))
tPropC[0][1][1].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}x ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x ** 2 /3."))
tPropC[0][1][1].append(Template("-4./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][1][1].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][1][1].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][1][2].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3."))
tPropC[0][1][2].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][1][2].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[0][1][2].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[0][1][3].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3."))
tPropC[0][1][3].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][1][3].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[0][1][3].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[0][2][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}y"))
tPropC[0][2][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3."))
tPropC[0][2][0].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y ** 2 /3."))
tPropC[0][2][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[0][2][1].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3."))
tPropC[0][2][1].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][2][1].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[0][2][1].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[0][2][2].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y ** 2 /3."))
tPropC[0][2][2].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[0][2][2].append(Template("-4./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[0][2][2].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[0][2][3].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[0][2][3].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[0][2][3].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[0][2][3].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[0][3][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}z"))
tPropC[0][3][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3."))
tPropC[0][3][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[0][3][0].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}z ** 2 /3."))
tPropC[0][3][1].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3."))
tPropC[0][3][1].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[0][3][1].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[0][3][1].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[0][3][2].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[0][3][2].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[0][3][2].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[0][3][2].append(Template("-OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[0][3][3].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}z ** 2 /3."))
tPropC[0][3][3].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[0][3][3].append(Template("-OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[0][3][3].append(Template("-4./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[1][0][0].append(Template(" -4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}x"))
tPropC[1][0][0].append(Template(" (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}x ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x ** 2 /3."))
tPropC[1][0][0].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3."))
tPropC[1][0][0].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3."))
tPropC[1][0][1].append(Template(" (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}x ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x ** 2 /3."))
tPropC[1][0][1].append(Template(" -4./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][0][1].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][0][1].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][0][2].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3."))
tPropC[1][0][2].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][0][2].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[1][0][2].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[1][0][3].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3."))
tPropC[1][0][3].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][0][3].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[1][0][3].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[1][1][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x ** 2 - 2./3. * (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][0].append(Template(" -4./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][1].append(Template(" -4./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][1].append(Template(" 4./3. * (-1 - OM${iloc} * P${iloc}x ** 2) ** 2"))
tPropC[1][1][1].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropC[1][1][1].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropC[1][1][2].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][2].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropC[1][1][2].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y ** 2 - 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[1][1][2].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z + 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[1][1][3].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][1][3].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropC[1][1][3].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z + 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[1][1][3].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}z ** 2 - 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[1][2][0].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropC[1][2][0].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][2][0].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[1][2][0].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[1][2][1].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][2][1].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}y "))
tPropC[1][2][1].append(Template(" (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y ** 2 /3. "))
tPropC[1][2][1].append(Template(" -(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[1][2][2].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[1][2][2].append(Template(" (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y ** 2 /3. "))
tPropC[1][2][2].append(Template(" -4./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[1][2][2].append(Template(" OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[1][2][3].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[1][2][3].append(Template(" -(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[1][2][3].append(Template(" OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[1][2][3].append(Template(" 2*OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[1][3][0].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropC[1][3][0].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][3][0].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[1][3][0].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[1][3][1].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[1][3][1].append(Template("-4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}z "))
tPropC[1][3][1].append(Template("-(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[1][3][1].append(Template("(-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}z ** 2 /3. "))
tPropC[1][3][2].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[1][3][2].append(Template("-(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[1][3][2].append(Template("2*OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[1][3][2].append(Template("-OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[1][3][3].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[1][3][3].append(Template("(-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}z ** 2 /3. "))
tPropC[1][3][3].append(Template("-OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[1][3][3].append(Template("-4./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[2][0][0].append(Template("-4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}y "))
tPropC[2][0][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3. "))
tPropC[2][0][0].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y ** 2 /3. "))
tPropC[2][0][0].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3. "))
tPropC[2][0][1].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y /3. "))
tPropC[2][0][1].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[2][0][1].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[2][0][1].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[2][0][2].append(Template("(1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y ** 2 /3. "))
tPropC[2][0][2].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[2][0][2].append(Template("-4./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][0][2].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][0][3].append(Template("-(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3. "))
tPropC[2][0][3].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[2][0][3].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][0][3].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[2][1][0].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}y + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}y"))
tPropC[2][1][0].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[2][1][0].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[2][1][0].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[2][1][1].append(Template("OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}y /3. - OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[2][1][1].append(Template("-4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}y "))
tPropC[2][1][1].append(Template("(-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y ** 2 /3. "))
tPropC[2][1][1].append(Template("-(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[2][1][2].append(Template("-OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x /3."))
tPropC[2][1][2].append(Template("(-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y ** 2 /3. "))
tPropC[2][1][2].append(Template("-4./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][1][2].append(Template("OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][1][3].append(Template("4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[2][1][3].append(Template("-(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[2][1][3].append(Template("OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][1][3].append(Template("2*OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[2][2][0].append(Template("2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y ** 2 - 2./3. * (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][0].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][0].append(Template("-4./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][0].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][1].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][1].append(Template("2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y ** 2 - 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][1].append(Template("-4./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][1].append(Template("2*OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][2].append(Template("-4./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][2].append(Template("-4./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][2].append(Template("4./3. * (-1 - OM${iloc} * P${iloc}y ** 2) ** 2 "))
tPropC[2][2][2].append(Template("-4./3. * (-1 - OM${iloc} * P${iloc}y ** 2)*OM${iloc} * P${iloc}y * P${iloc}z "))
tPropC[2][2][3].append(Template("2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][3].append(Template("2*OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2) "))
tPropC[2][2][3].append(Template("-4./3. * (-1 - OM${iloc} * P${iloc}y ** 2)*OM${iloc} * P${iloc}y * P${iloc}z "))
tPropC[2][2][3].append(Template("2*OM${iloc}**2 * P${iloc}y ** 2 * P${iloc}z ** 2 - 2./3. * (-1 - OM${iloc} * P${iloc}y ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[2][3][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[2][3][0].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[2][3][0].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][3][0].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[2][3][1].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[2][3][1].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z + 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[2][3][1].append(Template(" OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][3][1].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[2][3][2].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][3][2].append(Template(" OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[2][3][2].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}y ** 2)*OM${iloc} * P${iloc}y * P${iloc}z "))
tPropC[2][3][2].append(Template(" (-1 - OM${iloc} * P${iloc}y ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}y ** 2 * P${iloc}z ** 2 /3. "))
tPropC[2][3][3].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[2][3][3].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[2][3][3].append(Template(" (-1 - OM${iloc} * P${iloc}y ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}y ** 2 * P${iloc}z ** 2 /3. "))
tPropC[2][3][3].append(Template(" -4./3.*OM${iloc} * P${iloc}y * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2) "))
tPropC[3][0][0].append(Template(" -4./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}t * P${iloc}z "))
tPropC[3][0][0].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3. "))
tPropC[3][0][0].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3. "))
tPropC[3][0][0].append(Template(" (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}z ** 2 /3. "))
tPropC[3][0][1].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z /3. "))
tPropC[3][0][1].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[3][0][1].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[3][0][1].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[3][0][2].append(Template(" -(1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z /3. "))
tPropC[3][0][2].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[3][0][2].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[3][0][2].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][0][3].append(Template(" (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}z ** 2 /3. "))
tPropC[3][0][3].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[3][0][3].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][0][3].append(Template(" -4./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][1][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}x * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}x * P${iloc}z"))
tPropC[3][1][0].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[3][1][0].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[3][1][0].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[3][1][1].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}x ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}x ** 2)"))
tPropC[3][1][1].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}x * P${iloc}z "))
tPropC[3][1][1].append(Template(" -(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[3][1][1].append(Template(" (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}z ** 2 /3. "))
tPropC[3][1][2].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z "))
tPropC[3][1][2].append(Template(" -(-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z /3."))
tPropC[3][1][2].append(Template(" 2*OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z + 2./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[3][1][2].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][1][3].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x /3."))
tPropC[3][1][3].append(Template(" (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}z ** 2 /3. "))
tPropC[3][1][3].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][1][3].append(Template(" -4./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2) "))
tPropC[3][2][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}y * P${iloc}z + 2./3. * (1 - OM${iloc} * P${iloc}t ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[3][2][0].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[3][2][0].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[3][2][0].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][2][1].append(Template(" 4./3.*OM${iloc}**2 * P${iloc}t * P${iloc}y * P${iloc}x * P${iloc}z"))
tPropC[3][2][1].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}y * P${iloc}z + 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[3][2][1].append(Template(" OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[3][2][1].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][2][2].append(Template(" OM${iloc}**2 * P${iloc}t * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[3][2][2].append(Template(" OM${iloc}**2 * P${iloc}x * P${iloc}y ** 2 * P${iloc}z /3. - OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}y ** 2)"))
tPropC[3][2][2].append(Template(" -4./3. * (-1 - OM${iloc} * P${iloc}y ** 2)*OM${iloc} * P${iloc}y * P${iloc}z"))
tPropC[3][2][2].append(Template(" (-1 - OM${iloc} * P${iloc}y ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}y ** 2 * P${iloc}z ** 2 /3. "))
tPropC[3][2][3].append(Template(" -OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][2][3].append(Template(" -OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y /3."))
tPropC[3][2][3].append(Template(" (-1 - OM${iloc} * P${iloc}y ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2) + OM${iloc}**2 * P${iloc}y ** 2 * P${iloc}z ** 2 /3. "))
tPropC[3][2][3].append(Template(" -4./3.*OM${iloc} * P${iloc}y * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t ** 2 * P${iloc}z ** 2 - 2./3. * (1 - OM${iloc} * P${iloc}t ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][0].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][0].append(Template(" -4./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2) "))
tPropC[3][3][1].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}x + 2./3.*OM${iloc} * P${iloc}t * P${iloc}x * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][1].append(Template(" 2*OM${iloc}**2 * P${iloc}x ** 2 * P${iloc}z ** 2 - 2./3. * (-1 - OM${iloc} * P${iloc}x ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][1].append(Template(" 2*OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][1].append(Template(" -4./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2) "))
tPropC[3][3][2].append(Template(" 2*OM${iloc}**2 * P${iloc}t * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}t * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][2].append(Template(" 2*OM${iloc}**2 * P${iloc}x * P${iloc}z ** 2 * P${iloc}y + 2./3.*OM${iloc} * P${iloc}x * P${iloc}y * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][2].append(Template(" 2*OM${iloc}**2 * P${iloc}y ** 2 * P${iloc}z ** 2 - 2./3. * (-1 - OM${iloc} * P${iloc}y ** 2) * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][2].append(Template(" -4./3.*OM${iloc} * P${iloc}y * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][3].append(Template(" -4./3.*OM${iloc} * P${iloc}t * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][3].append(Template(" -4./3.*OM${iloc} * P${iloc}x * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][3].append(Template(" -4./3.*OM${iloc} * P${iloc}y * P${iloc}z * (-1 - OM${iloc} * P${iloc}z ** 2)"))
tPropC[3][3][3].append(Template(" 4./3. * (-1 - OM${iloc} * P${iloc}z ** 2) ** 2"))
imap=["t","x","y","z"]
RSDotProduct = Template("${s}ts${si}*${v}t-${s}xs${si}*${v}x-${s}ys${si}*${v}y-${s}zs${si}*${v}z")
vTemplateT="""\
{header} {{
if({type}W{iloc}.id()=={id}) {{
return {normal};
}}
else {{
return {transpose};
}}
}};
"""
vTemplate4="""\
{header} {{
{swap}
if(id{iloc1}=={id1}) {{
if(id{iloc2}=={id2}) {{
return {res1};
}}
else {{
return {res2};
}}
}}
else {{
if(id{iloc2}=={id2}) {{
return {res3};
}}
else {{
return {res4};
}}
}}
}};
"""
vecTemplate="""\
Energy2 p2 = P{iloc}.m2();
LorentzPolarizationVector vtemp = {res};
Complex fact = -Complex(0.,1.)*({cf})*propagator(iopt,p2,out,mass,width);
if(mass.real() < ZERO) mass = (iopt==5) ? ZERO : out->mass();
complex<Energy2> mass2 = sqr(mass);
if(mass.real()==ZERO) {{
vtemp =fact*vtemp;
}}
else {{
complex<Energy> dot = P{iloc}*vtemp;
vtemp = fact*(vtemp-dot/mass2*P{iloc});
}}
return VectorWaveFunction(P{iloc},out,vtemp.x(),vtemp.y(),vtemp.z(),vtemp.t());
"""
sTemplate="""\
Energy2 p2 = P{iloc}.m2();
if(mass.real() < ZERO) mass = (iopt==5) ? ZERO : out->mass();
Complex fact = Complex(0.,1.)*({cf})*propagator(iopt,p2,out,mass,width);
Lorentz{offTypeA}<double> newSpin = fact*({res});
return {offTypeB}(P{iloc},out,newSpin);
"""
RSTemplate="""\
if(mass.real() < ZERO) mass = (iopt==5) ? ZERO : out->mass();
Energy2 p2 = P{iloc}.m2();
Complex fact = Complex(0.,-1.)*({cf})*propagator(iopt,p2,out,mass,width);
complex<InvEnergy> Omass = mass.real()==ZERO ? InvEnergy(ZERO) : 1./mass;
Lorentz{offTypeA}<double> newSpin = fact*({res});
return {offTypeB}(P{iloc},out,newSpin);
"""
scaTemplate="""\
if(mass.real() < ZERO) mass = (iopt==5) ? ZERO : out->mass();
Energy2 p2 = P{iloc}.m2();
Complex fact = Complex(0.,1.)*({cf})*propagator(iopt,p2,out,mass,width);
complex<double> output = fact*({res});
return ScalarWaveFunction(P{iloc},out,output);
"""
tenTemplate="""\
if(mass.real() < ZERO) mass = (iopt==5) ? ZERO : out->mass();
InvEnergy2 OM{iloc} = mass.real()==ZERO ? InvEnergy2(ZERO) : 1./sqr(mass.real());
Energy2 M{iloc}2 = sqr(mass.real());
Energy2 p2 = P{iloc}.m2();
Complex fact = Complex(0.,1.)*({cf})*propagator(iopt,p2,out,mass,width);
LorentzTensor<double> output = fact*({res});
return TensorWaveFunction(P{iloc},out,output);
"""
# various strings for matrixes
I4 = "Matrix([[1.,0,0,0],[0,1.,0,0],[0,0,1.,0],[0,0,0,1.]])"
G5 = "Matrix([[-1.,0,0,0],[0,-1.,0,0],[0,0,1.,0],[0,0,0,1.]])"
PM = "Matrix([[1.,0,0,0],[0,1.,0,0],[0,0,0,0],[0,0,0,0]])"
PP = "Matrix([[0,0,0,0],[0,0,0,0],[0,0,1.,0],[0,0,0,1.]])"
vslash = Template("Matrix([[0,0,${v}TMZ,-${v}XMY],[0,0,-${v}XPY,${v}TPZ],[${v}TPZ,${v}XMY,0,0],[${v}XPY,${v}TMZ,0,0]])")
vslashS = Template("${v}TPZ=Symbol(\"${v}TPZ\")\n${v}TMZ=Symbol(\"${v}TMZ\")\n${v}XPY=Symbol(\"${v}XPY\")\n${v}XMY=Symbol(\"${v}XMY\")\n")
momCom = Template("${v}t = Symbol(\"${v}t\")\n${v}x = Symbol(\"${v}x\")\n${v}y = Symbol(\"${v}y\")\n${v}z = Symbol(\"${v}z\")\n")
vslashD = Template("complex<${var}> ${v}TPZ = ${v}.t()+${v}.z();\n complex<${var}> ${v}TMZ = ${v}.t()-${v}.z();\n complex<${var}> ${v}XPY = ${v}.x()+Complex(0.,1.)*${v}.y();\n complex<${var}> ${v}XMY = ${v}.x()-Complex(0.,1.)*${v}.y();")
vslashM = Template("Matrix([[$m,0,${v}TMZ,-${v}XMY],[0,$m,-${v}XPY,${v}TPZ],[${v}TPZ,${v}XMY,$m,0],[${v}XPY,${v}TMZ,0,$m]])")
vslashM2 = Template("Matrix([[$m,0,-${v}TMZ,${v}XMY],[0,$m,${v}XPY,-${v}TPZ],[-${v}TPZ,-${v}XMY,$m,0],[-${v}XPY,-${v}TMZ,0,$m]])")
vslashMS = Template("${v}TPZ=Symbol(\"${v}TPZ\")\n${v}TMZ=Symbol(\"${v}TMZ\")\n${v}XPY=Symbol(\"${v}XPY\")\n${v}XMY=Symbol(\"${v}XMY\")\n${m}=Symbol(\"${m}\")\nO${m}=Symbol(\"O${m}\")\n")
rslash = Template("Matrix([[$m,0,${v}TMZ,-${v}XMY],[0,$m,-${v}XPY,${v}TPZ],[${v}TPZ,${v}XMY,$m,0],[${v}XPY,${v}TMZ,0,$m]])*( ($${eta}-2./3.*O${m}**2*${v}$${A}*${v}$${B})*Matrix([[1.,0,0,0],[0,1.,0,0],[0,0,1.,0],[0,0,0,1.]]) -1./3.*$${DA}*$${DB} -1./3.*O${m}*(${v}$${B}*$${DA}-${v}$${A}*$${DB}))")
rslashB = Template("Matrix([[$m,0,${v}TMZ,-${v}XMY],[0,$m,-${v}XPY,${v}TPZ],[${v}TPZ,${v}XMY,$m,0],[${v}XPY,${v}TMZ,0,$m]])*( (${v2}$${A}-2./3.*O${m}**2*${v}$${A}*${dot})*Matrix([[1.,0,0,0],[0,1.,0,0],[0,0,1.,0],[0,0,0,1.]]) -1./3.*$${DA}*${DB} -1./3.*O${m}*(${dot}*$${DA}-${v}$${A}*${DB}))")
rslash2 = Template("Matrix([[$m,0,-${v}TMZ,${v}XMY],[0,$m,${v}XPY,-${v}TPZ],[-${v}TPZ,-${v}XMY,$m,0],[-${v}XPY,-${v}TMZ,0,$m]])*( ($${eta}-2./3.*O${m}**2*${v}$${A}*${v}$${B})*Matrix([[1.,0,0,0],[0,1.,0,0],[0,0,1.,0],[0,0,0,1.]]) -1./3.*$${DA}*$${DB} +1./3.*O${m}*(${v}$${B}*$${DA}-${v}$${A}*$${DB}))")
rslash2B = Template("Matrix([[$m,0,-${v}TMZ,${v}XMY],[0,$m,${v}XPY,-${v}TPZ],[-${v}TPZ,-${v}XMY,$m,0],[-${v}XPY,-${v}TMZ,0,$m]])*( (${v2}$${B}-2./3.*O${m}**2*${dot}*${v}$${B})*Matrix([[1.,0,0,0],[0,1.,0,0],[0,0,1.,0],[0,0,0,1.]]) -1./3.*${DA}*$${DB} +1./3.*O${m}*(${v}$${B}*${DA}-${dot}*$${DB}))")
dirac=["Matrix([[0,0,1.,0],[0,0,0,1.],[1.,0,0,0],[0,1.,0,0]])","Matrix([[0,0,0,1.],[0,0,1.,0],[0,-1.,0,0],[-1.,0,0,0]])",
"Matrix([[0,0,0,complex(0, -1.)],[0,0,complex(0, 1.),0],[0,complex(0, 1.),0,0],[complex(0, -1.),0,0,0]])",
"Matrix([[0,0,1.,0],[0,0,0,-1.],[-1.,0,0,0],[0,1.,0,0]])"]
CC = "Matrix([[0,1.,0,0],[-1.,0,0,0],[0,0,0,-1.],[0,0,1.,0]])"
CD = "Matrix([[0,-1.,0,0],[1.,0,0,0],[0,0,0,1.],[0,0,-1.,0]])"
evaluateTemplate = """\
{decl} {{
{momenta}
{waves}
{swap}
{symbols}
{couplings}
{defns}
{result}
}}
"""
spinor = Template("Matrix([[${s}s1],[${s}s2],[${s}s3],[${s}s4]])")
sbar = Template("Matrix([[${s}s1,${s}s2,${s}s3,${s}s4]])")
sline = Template("${s}s1=Symbol(\"${s}s1\")\n${s}s2=Symbol(\"${s}s2\")\n${s}s3=Symbol(\"${s}s3\")\n${s}s4=Symbol(\"${s}s4\")\n")
RSSpinorTemplate = Template("${type}<double>(${outxs1},\n${outxs2},\n${outxs3},\n${outxs4},\n${outys1},\n${outys2},\n${outys3},\n${outys4},\n${outzs1},\n${outzs2},\n${outzs3},\n${outzs4},\n${outts1},\n${outts2},\n${outts3},\n${outts4})")
SpinorTemplate = Template("${type}<double>(${outs1},\n${outs2},\n${outs3},\n${outs4})")
class LorentzIndex :
""" A simple classs to store a Lorentz index """
type=""
value=0
dimension=0
def __repr__(self):
if(self.type=="V" and not isinstance(self.value,int)) :
return self.value
else :
return "%s%s" % (self.type,self.value)
def __init__(self,val) :
if(isinstance(val,int)) :
self.dimension=0
if(val<0) :
self.type="D"
self.value = val
elif(val>0 and val/1000==0) :
self.type="E"
self.value = val
elif(val>0 and val/1000==1) :
self.type="T1"
self.value = val%1000
elif(val>0 and val/1000==2) :
self.type="T2"
self.value = val%1000
else :
print "Unknown value in Lorentz index:",val
raise SkipThisVertex()
else :
print "Unknown value in Lorentz index:",val
raise SkipThisVertex()
def __eq__(self,other):
if(not isinstance(other,LorentzIndex)) :
return False
return ( (self.type, self.value)
== (other.type, other.value) )
def __hash__(self) :
return hash((self.type,self.value))
class DiracMatrix:
"""A simple class to store Dirac matrices"""
name =""
value=""
index=0
def __init(self) :
self.name=""
self.value=""
self.index=0
def __repr__(self) :
if(self.value==0) :
return "%s" % self.index
else :
return "%s" % self.value
class LorentzStructure:
"""A simple class to store a Lorentz structures"""
name=""
value=0
lorentz=[]
spin=[]
def __init(self) :
self.name=""
self.value=0
self.lorentz=[]
self.spin=[]
def __repr__(self):
output = self.name
if((self.name=="P" or self.name=="Tensor") and self.value!=0) :
output += "%s" % self.value
if(self.name=="int" or self.name=="sign") :
output += "=%s" % self.value
elif(len(self.spin)==0) :
output += "("
for val in self.lorentz :
output += "%s," % val
output=output.rstrip(",")
output+=")"
elif(len(self.lorentz)==0) :
output += "("
for val in self.spin :
output += "%s," % val
output=output.rstrip(",")
output+=")"
else :
output += "("
for val in self.lorentz :
output += "%s," % val
for val in self.spin :
output += "%s," % val
output=output.rstrip(",")
output+=")"
return output
def LorentzCompare(a,b) :
if(a.name=="int" and b.name=="int") :
return int(abs(b.value)-abs(a.value))
elif(a.name=="int") :
return -1
elif(b.name=="int") :
return 1
elif(len(a.spin)==0) :
if(len(b.spin)==0) :
return len(b.lorentz)-len(a.lorentz)
else :
return -1
elif(len(b.spin)==0) :
return 1
else :
if(len(a.spin)==0 or len(b.spin)==0) :
print 'Index problem in lorentz compare',\
a.name,b.name,a.spin,b.spin
raise SkipThisVertex()
if(a.spin[0]>0 or b.spin[1]>0 ) : return -1
if(a.spin[1]>0 or b.spin[0]>0 ) : return 1
if(a.spin[1]==b.spin[0]) : return -1
if(b.spin[1]==a.spin[0]) : return 1
return 0
def extractIndices(struct) :
if(struct.find("(")<0) : return []
temp=struct.split("(")[1].split(")")[0].split(",")
output=[]
for val in temp :
output.append(int(val))
return output
def parse_structure(structure,spins) :
output=[]
found = True
while(found) :
found = False
# signs between terms
if(structure=="+" or structure=="-") :
output.append(LorentzStructure())
output[0].name="sign"
output[0].value=structure[0]+"1."
output[0].value=float(output[0].value)
output[0].lorentz=[]
output[0].spin=[]
return output
# simple numeric pre/post factors
elif((structure[0]=="-" or structure[0]=="+") and
structure[-1]==")" and structure[1]=="(") :
output.append(LorentzStructure())
output[-1].name="int"
output[-1].value=structure[0]+"1."
output[-1].value=float(output[-1].value)
output[-1].lorentz=[]
output[-1].spin=[]
structure=structure[2:-1]
found=True
elif(structure[0]=="(") :
temp=structure.rsplit(")",1)
structure=temp[0][1:]
output.append(LorentzStructure())
output[-1].name="int"
output[-1].value="1."+temp[1]
output[-1].value=float(eval(output[-1].value))
output[-1].lorentz=[]
output[-1].spin=[]
found=True
elif(structure[0:2]=="-(") :
temp=structure.rsplit(")",1)
structure=temp[0][2:]
output.append(LorentzStructure())
output[-1].name="int"
output[-1].value="-1."+temp[1]
output[-1].value=float(eval(output[-1].value))
output[-1].lorentz=[]
output[-1].spin=[]
found=True
# special handling for powers
power = False
if("**" in structure ) :
power = True
structure = structure.replace("**","^")
structures = structure.split("*")
if(power) :
for j in range(0,len(structures)):
if(structures[j].find("^")>=0) :
temp = structures[j].split("^")
structures[j] = temp[0]
for i in range(0,int(temp[1])-1) :
structures.append(temp[0])
# split up the structure
for struct in structures:
ind = extractIndices(struct)
# different types of object
# object with only spin indices
if(struct.find("Identity")==0 or
struct.find("Proj")==0 or
struct.find("Gamma5")==0) :
output.append(LorentzStructure())
output[-1].spin=ind
output[-1].lorentz=[]
output[-1].name=struct.split("(")[0]
output[-1].value=0
if(len(struct.replace("%s(%s,%s)" % (output[-1].name,ind[0],ind[1]),""))!=0) :
print "Problem handling %s structure " % output[-1].name
raise SkipThisVertex()
# objects with 2 lorentz indices
elif(struct.find("Metric")==0) :
output.append(LorentzStructure())
output[-1].lorentz=[LorentzIndex(ind[0]),LorentzIndex(ind[1])]
output[-1].name=struct.split("(")[0]
output[-1].value=0
output[-1].spin=[]
if(len(struct.replace("%s(%s,%s)" % (output[-1].name,ind[0],ind[1]),""))!=0) :
print "Problem handling %s structure " % output[-1].name
raise SkipThisVertex()
elif(struct.find("P(")==0) :
output.append(LorentzStructure())
output[-1].lorentz=[LorentzIndex(ind[0])]
output[-1].name=struct.split("(")[0]
output[-1].value=ind[1]
output[-1].spin=[]
if(len(struct.replace("%s(%s,%s)" % (output[-1].name,ind[0],ind[1]),""))!=0) :
print "Problem handling %s structure " % output[-1].name
raise SkipThisVertex()
# 1 lorentz and 1 spin index
elif(struct.find("Gamma")==0) :
output.append(LorentzStructure())
output[-1].lorentz=[LorentzIndex(ind[0])]
output[-1].spin=[ind[1],ind[2]]
output[-1].name=struct.split("(")[0]
output[-1].value=1
if(len(struct.replace("%s(%s,%s,%s)" % (output[-1].name,ind[0],ind[1],ind[2]),""))!=0) :
print "problem parsing gamma matrix",struct
raise SkipThisVertex()
# objects with 4 lorentz indices
elif(struct.find("Epsilon")==0) :
output.append(LorentzStructure())
output[-1].lorentz=[]
for i in range(0,len(ind)) :
output[-1].lorentz.append(LorentzIndex(ind[i]))
output[-1].spin=[]
output[-1].name=struct.split("(")[0]
output[-1].value=1
if(len(struct.replace("%s(%s,%s,%s,%s)" % (output[-1].name,ind[0],ind[1],ind[2],ind[3]),""))!=0) :
print 'Problem parsing epsilon',struct
raise SkipThisVertex()
# scalars
else :
try :
output.append(LorentzStructure())
output[-1].value=float(struct)
output[-1].name="int"
output[-1].lorentz=[]
output[-1].spin=[]
except :
if(struct.find("complex")==0) :
vals = struct[0:-1].replace("complex(","").split(",")
output[-1].value=complex(float(vals[0]),float(vals[1]))
output[-1].name="int"
output[-1].lorentz=[]
output[-1].spin=[]
else :
print 'Problem parsing scalar',struct
raise SkipThisVertex()
# now do the sorting
if(len(output)==1) : return output
output = sorted(output,cmp=LorentzCompare)
# fix indices in the RS case
if(4 in spins) :
for i in range(0,len(output)) :
for ll in range(0,len(output[i].lorentz)) :
if(spins[output[i].lorentz[ll].value-1]==4 and
output[i].lorentz[ll].type=="E") :
output[i].lorentz[ll].type="R"
# return the answer
return output
def constructDotProduct(ind1,ind2,defns) :
(ind1,ind2) = sorted((ind1,ind2),cmp=indSort)
dimension=ind1.dimension+ind2.dimension
# this product already dealt with ?
if((ind1,ind2) in defns) :
name = defns[(ind1,ind2)][0]
# handle the product
else :
name = "dot%s" % (len(defns)+1)
unit = computeUnit(dimension)
defns[(ind1,ind2)] = [name,"complex<%s> %s = %s*%s;" % (unit,name,ind1,ind2)]
return (name,dimension)
def contract(parsed) :
for j in range(0,len(parsed)) :
if(parsed[j]=="") : continue
if(parsed[j].name=="P") :
# simplest case
if(parsed[j].lorentz[0].type=="E" or
parsed[j].lorentz[0].type=="P") :
newIndex = LorentzIndex(parsed[j].value)
newIndex.type="P"
newIndex.dimension=1
parsed[j].name="Metric"
parsed[j].lorentz.append(newIndex)
parsed[j].lorentz = sorted(parsed[j].lorentz,cmp=indSort)
continue
ll=1
found=False
for k in range(0,len(parsed)) :
if(j==k or parsed[k]=="" ) : continue
for i in range(0,len(parsed[k].lorentz)) :
if(parsed[k].lorentz[i] == parsed[j].lorentz[0]) :
parsed[k].lorentz[i].type="P"
parsed[k].lorentz[i].value = parsed[j].value
parsed[k].lorentz[i].dimension=1
if(parsed[k].name=="P") :
parsed[k].lorentz.append(LorentzIndex(parsed[k].value))
parsed[k].lorentz[1].type="P"
parsed[k].lorentz[1].dimension=1
parsed[k].name="Metric"
parsed[k].value = 0
found=True
break
if(found) :
parsed[j]=""
break
return [x for x in parsed if x != ""]
def computeUnit(dimension) :
if(isinstance(dimension,int)) :
dtemp = dimension
else :
dtemp=dimension[1]+dimension[2]
if(dtemp==0) :
unit="double"
elif(dtemp==1) :
unit="Energy"
elif(dtemp==-1) :
unit="InvEnergy"
elif(dtemp>0) :
unit="Energy%s" % (dtemp)
elif(dtemp<0) :
unit="InvEnergy%s" % (dtemp)
return unit
def computeUnit2(dimension,vDim) :
# first correct for any coupling power in vertex
totalDim = int(dimension[0])+dimension[2]+vDim-4
output=""
if(totalDim!=0) :
if(totalDim>0) :
if(totalDim==1) :
output = "1./GeV"
elif(totalDim==2) :
output = "1./GeV2"
else :
output="1."
for i in range(0,totalDim) :
output +="/GeV"
else :
if(totalDim==-1) :
output = "GeV"
elif(totalDim==-2) :
output = "GeV2"
else :
output="1."
for i in range(0,-totalDim) :
output +="*GeV"
expr=""
# now remove the remaining dimensionality
removal=dimension[1]-int(dimension[0])-vDim+4
if(removal!=0) :
if(removal>0) :
if(removal==1) :
expr = "UnitRemovalInvE"
else :
expr = "UnitRemovalInvE%s" % removal
else :
if(removal==-1) :
expr = "UnitRemovalE"
else :
expr = "UnitRemovalE%s" % (-removal)
if(output=="") : return expr
elif(expr=="") : return output
else : return "%s*%s" %(output,expr)
# order the indices of a dot product
def indSort(a,b) :
if(not isinstance(a,LorentzIndex) or
not isinstance(b,LorentzIndex)) :
print "Trying to sort something that's not a Lorentz index",a,b
raise SkipThisVertex()
if(a.type==b.type) :
i1=a.value
i2=b.value
if(i1>i2) :
return 1
elif(i1<i2) :
return -1
else :
return 0
else :
if(a.type=="E") :
return 1
else :
return -1
def finishParsing(parsed,dimension,lorentztag,iloc,defns,eps) :
output=1.
# replace signs
if(len(parsed)==1 and parsed[0].name=="sign") :
if(parsed[0].value>0) :
output="+"
else :
output="-"
parsed=[]
return (output,parsed,dimension,eps)
# replace integers (really lorentz scalars)
for j in range(0,len(parsed)) :
if(parsed[j]!="" and parsed[j].name=="int") :
output *= parsed[j].value
parsed[j]=""
# bracket this for safety
if(output!="") : output = "(%s)" % output
# special for tensor indices
if("T" in lorentztag) :
for j in range(0,len(parsed)) :
if(parsed[j]=="") :continue
# check for tensor index
found=False
for li in parsed[j].lorentz :
if(li.type[0]=="T") :
index = li
found=True
break
if(not found) : continue
# workout the other index for the tensor
index2 = LorentzIndex(li.value)
if(index.type=="T1") :
index2.type="T2"
else :
index2.type="T1"
# special is tensor contracted with itself
if(parsed[j].name=="Metric" and index2 == parsed[j].lorentz[1]) :
parsed[j].name = "Tensor"
parsed[j].value = index.value
parsed[j].lorentz = []
if(iloc!=index.value) :
name= "traceT%s" % parsed[j].value
if( name in defns ) :
output += "*(%s)" % defns[name][0]
else :
defns[name] = [name,"Complex %s = T%s.trace();" % (name,parsed[j].value)]
output += "*(%s)" % defns[name][0]
parsed[j]=""
continue
# otherwise search for the match
for k in range(j+1,len(parsed)) :
found = False
for li in parsed[k].lorentz :
if(li == index2) :
found=True
break
if(not found) : continue
if(parsed[j].name=="P") :
newIndex1 = LorentzIndex(parsed[j].value)
newIndex1.type="P"
newIndex1.dimension=1
elif(parsed[j].name=="Metric") :
for li in parsed[j].lorentz :
if(li != index) :
newIndex1=li
break
else :
print 'Unknown object with tensor index, first object',parsed[j]
raise SkipThisVertex()
if(parsed[k].name=="P") :
newIndex2 = LorentzIndex(parsed[k].value)
newIndex2.type="P"
newIndex2.dimension=1
elif(parsed[k].name=="Metric") :
for li in parsed[k].lorentz :
if(li != index) :
newIndex2=li
break
elif(parsed[k].name=="Gamma") :
# if we can't contract
if(index.value==iloc or (newIndex1.type=="E" and newIndex1.value==iloc)) :
newIndex2=index2
# otherwise contract
else :
unit=computeUnit(newIndex1.dimension)
if(index.type=="T1") :
name="T%s%sF" % (index.value,newIndex1)
defns[name] = [name,"LorentzVector<complex<%s> > %s = T%s.preDot(%s);" % (unit,name,index.value,newIndex1)]
else :
name="T%s%sS" % (index.value,newIndex1)
defns[name] = [name,"LorentzVector<complex<%s> > %s = T%s.postDot(%s);" % (unit,name,index.value,newIndex1)]
parsed[j]=""
gIndex=LorentzIndex(-1)
gIndex.type="V"
gIndex.value=name
gIndex.dimension=newIndex1.dimension
parsed[k].lorentz[0] = gIndex
break
else :
print 'Unknown object with tensor index, second object',parsed[j],parsed[k]
raise SkipThisVertex()
if(index2.type=="T1") :
newIndex1,newIndex2=newIndex2,newIndex1
parsed[j].name = "Tensor"
parsed[j].value= int(index.value)
parsed[j].lorentz= [newIndex1,newIndex2]
if(parsed[k].name!="Gamma") : parsed[k]=""
break
# main handling of lorentz structures
for j in range(0,len(parsed)) :
if(parsed[j]=="") : continue
if(parsed[j].name=="Metric") :
# check whether or not we can contract
canContract=True
for ll in parsed[j].lorentz :
if((ll.type=="E" and ll.value==iloc) or ll.type=="R") :
canContract = False
break
if(not canContract) : continue
# if we can do it
(name,dTemp) = constructDotProduct(parsed[j].lorentz[0],parsed[j].lorentz[1],defns)
output += "*(%s)" % name
dimension[2] += dTemp
parsed[j]=""
elif(parsed[j].name=="Epsilon") :
if(not eps) : eps = True
# work out which, if any of the indices can be summed over
summable=[]
for ix in range(0,len(parsed[j].lorentz)) :
if(parsed[j].lorentz[ix].type=="P" or
(parsed[j].lorentz[ix].type=="E" and iloc !=parsed[j].lorentz[ix].value)) :
summable.append(True)
else :
summable.append(False)
sc = summable.count(True)
# less than 3 contractable indices, leave for later
if(sc<3) :
continue
# can contract to a vector
elif(sc==3) :
offLoc = -1
for i in summable:
if(not summable[i]) :
offLoc = i
break
else :
offLoc = 0
indices=[]
dTemp=0
for ix in range(0,len(parsed[j].lorentz)) :
dTemp += parsed[j].lorentz[ix].dimension
if(ix!=offLoc) : indices.append(parsed[j].lorentz[ix])
# contract all the indices
if(sc==4) :
dimension[2] += dTemp
iTemp = (parsed[j].lorentz[0],parsed[j].lorentz[1],
parsed[j].lorentz[2],parsed[j].lorentz[3])
if(iTemp in defns) :
output += "*(%s)" % defns[iTemp][0]
parsed[j]=""
else :
name = "dot%s" % (len(defns)+1)
unit = computeUnit(dTemp)
defns[iTemp] = [name,"complex<%s> %s =-%s*epsilon(%s,%s,%s);" % (unit,name,parsed[j].lorentz[0],
indices[0],indices[1],indices[2]) ]
output += "*(%s)" % name
# contract 3 indices leaving a vector
else :
iTemp = (indices[0],indices[1],indices[2])
sign = "1"
if(offLoc%2!=0) : sign="-1"
if(iTemp in defns) :
name = defns[iTemp][0]
else :
name = "V%s" % (len(defns)+1)
unit = computeUnit(dTemp)
defns[iTemp] = [name,"LorentzVector<complex<%s> > %s =-epsilon(%s,%s,%s);" % (unit,name,
indices[0],indices[1],indices[2]) ]
newIndex = LorentzIndex(int(name[1]))
newIndex.type="V"
newIndex.dimension=dTemp
output += "*(%s)" % (sign)
oi = parsed[j].lorentz[offLoc]
if(oi.type!="D") :
parsed[j].name="Metric"
parsed[j].spins=[]
parsed[j].value=0
parsed[j].lorentz=[newIndex,oi]
else :
found=False
for k in range(0,len(parsed)):
if(k==j or parsed[k]=="") : continue
for ll in range(0,len(parsed[k].lorentz)) :
if(parsed[k].lorentz[ll]==oi) :
found=True
parsed[k].lorentz[ll]=newIndex
break
if(found) : break
if(not found) :
print "Problem contracting indices of Epsilon tensor"
raise SkipThisVertex()
parsed[j]=""
elif(parsed[j].name=="Tensor") :
# not an external tensor
if(parsed[j].value!=iloc) :
# now check the lorentz indices
con=[]
uncon=[]
dtemp=0
for li in parsed[j].lorentz :
if(li.type=="P" or li.type=="V") :
con.append(li)
dtemp+=li.dimension
elif(li.type=="E") :
if(li.value!=iloc) :
con.append(li)
else :
uncon.append(li)
else :
print "Can't handle index ",li,"in tensor",parsed[j]
raise SkipThisVertex()
if(len(con)==2) :
iTemp = ("T%s%s%s"% (parsed[j].value,con[0],con[1]))
dimension[2]+=dtemp
if(iTemp in defns) :
output += "*(%s)" % defns[iTemp][0]
else :
unit=computeUnit(dtemp)
name = "dot%s" % (len(defns)+1)
defns[iTemp] = [name,"complex<%s> %s = T%s.preDot(%s)*%s;" % (unit,name,parsed[j].value,con[0],con[1])]
output += "*(%s)" % name
parsed[j]=""
# handled in final stage
else :
continue
elif(parsed[j].name.find("Proj")>=0 or
parsed[j].name.find("Gamma")>=0 or
parsed[j].name.find("Identity")>=0) :
continue
elif(parsed[j].name=="P" and parsed[j].lorentz[0].type=="R") :
continue
else :
print 'Lorentz structure',parsed[j],'not handled'
raise SkipThisVertex()
# remove leading *
if(output!="" and output[0]=="*") : output = output[1:]
# remove any (now) empty elements
parsed = [x for x in parsed if x != ""]
return (output,parsed,dimension,eps)
def finalContractions(output,parsed,dimension,lorentztag,iloc,defns) :
if(len(parsed)==0) :
return (output,dimension)
elif(len(parsed)!=1) :
print "Summation can't be handled",parsed
raise SkipThisVertex()
if(parsed[0].name=="Tensor") :
# contracted with off-shell vector
if(parsed[0].value!=iloc) :
found = False
for ll in parsed[0].lorentz :
if(ll.type=="E" and ll.value==iloc) :
found = True
else :
lo=ll
if(found) :
dimension[2]+= lo.dimension
unit=computeUnit(lo.dimension)
if(lo==parsed[0].lorentz[0]) :
name="T%s%sF" % (parsed[0].value,lo)
defns[name] = [name,"LorentzVector<complex<%s> > %s = T%s.preDot(%s);" % (unit,name,parsed[0].value,lo)]
else :
name="T%s%sS" % (parsed[0].value,lo)
defns[name] = [name,"LorentzVector<complex<%s> > %s = T%s.postDot(%s);" % (unit,name,parsed[0].value,lo)]
parsed[0]=""
if(output=="") : output="1."
output = "(%s)*(%s)" %(output,name)
else :
print "Can\'t contract tensor",lo,iloc
raise SkipThisVertex()
# off-shell tensor
else :
if(len(parsed[0].lorentz)!=0) :
dimension[2]+=parsed[0].lorentz[0].dimension+parsed[0].lorentz[1].dimension
tensor = tensorPropagator(parsed[0],defns)
if(output=="") : output="1."
output = [output,tensor,()]
elif(parsed[0].name=="Metric") :
found = False
for ll in parsed[0].lorentz :
if(ll.type=="E" and ll.value==iloc) :
found = True
else :
lo=ll
if(found) :
parsed[0]=""
if(lo.type=="P") :
dimension[2]+=1
if(output=="") : output="1."
output = "(%s)*(%s)" %(output,lo)
else :
print "Structure can't be handled",parsed,iloc
raise SkipThisVertex()
return (output,dimension)
def tensorPropagator(struct,defns) :
# dummy index
i0 = LorentzIndex(-1000)
# index for momentum of propagator
ip = LorentzIndex(struct.value)
ip.type="P"
ip.dimension=1
# the metric tensor
terms=[]
if(len(struct.lorentz)==0) :
(dp,dTemp) = constructDotProduct(ip,ip,defns)
pre = "-2./3.*(1.-%s*OM%s)" % (dp,struct.value)
terms.append((pre,i0,i0))
pre = "-4./3.*(1.-%s*OM%s)" % (dp,struct.value)
terms.append(("%s*OM%s" %(pre,struct.value),ip,ip))
else :
# indices of the tensor
ind1 = struct.lorentz[0]
ind2 = struct.lorentz[1]
# the dot products we need
(d1,dtemp) = constructDotProduct(ind1,ip,defns)
(d2,dtemp) = constructDotProduct(ind2,ip,defns)
(d3,dtemp) = constructDotProduct(ind1,ind2,defns)
# various terms in the propagator
terms.append(("1",ind1,ind2))
terms.append(("-OM%s*%s"%(struct.value,d1),ip,ind2))
terms.append(("-OM%s*%s"%(struct.value,d2),ind1,ip))
terms.append(("1",ind2,ind1))
terms.append(("-OM%s*%s"%(struct.value,d2),ip,ind1))
terms.append(("-OM%s*%s"%(struct.value,d1),ind2,ip))
terms.append(("-2./3.*"+d3,i0,i0))
terms.append(("2./3.*OM%s*%s*%s"%(struct.value,d1,d2),i0,i0))
terms.append(("2./3.*OM%s*%s"%(struct.value,d3),ip,ip))
terms.append(("4./3.*OM%s*OM%s*%s*%s"%(struct.value,struct.value,d1,d2),ip,ip))
# compute the output as a dict
output={}
for i1 in imap:
for i2 in imap :
val=""
for term in terms:
if(term[0][0]!="-") :
pre = "+"+term[0]
else :
pre = term[0]
if(term[1]==i0) :
if(i1==i2) :
if(i1=="t") :
val += pre
else :
if(pre[0]=="+") :
val +="-"+pre[1:]
else :
val +="+"+pre[1:]
else :
val += "%s*%s%s*%s%s" % (pre,term[1],i1,term[2],i2)
output["%s%s" % (i1,i2) ] = val.replace("+1*","+").replace("-1*","-")
return output
def generateVertex(iloc,L,parsed,lorentztag,vertex,defns) :
# try to import sympy and exit if required
try :
import sympy
from sympy import Matrix,Symbol
except :
print 'ufo2herwig uses the python sympy module to translate general lorentz structures.'
print 'This must be installed if you wish to use this option.'
print 'EXITTING'
quit()
eps=False
# parse the lorentz structures
output = [1.]*len(parsed)
dimension=[]
for i in range(0,len(parsed)) :
dimension.append([0,0,0])
for i in range (0,len(parsed)) :
(output[i],parsed[i],dimension[i],eps) = finishParsing(parsed[i],dimension[i],lorentztag,iloc,defns,eps)
# still need to process gamma matrix strings for fermions
if(lorentztag[0] in ["F","R"] ) :
return convertDirac(output,dimension,eps,iloc,L,parsed,lorentztag,vertex,defns)
# return the answer
else :
handled=True
for i in range (0,len(parsed)) :
if(len(parsed[i])!=0) :
handled = False
break
if(not handled) :
for i in range (0,len(parsed)) :
(output[i],dimension[i]) = finalContractions(output[i],parsed[i],dimension[i],lorentztag,iloc,defns)
return (output,dimension,eps)
def convertDirac(output,dimension,eps,iloc,L,parsed,lorentztag,vertex,defns) :
for i in range(0,len(parsed)):
# skip empty elements
if(len(parsed[i])==0 or (len(parsed[i])==1 and parsed[i][0]=="")) : continue
# parse the string
(output[i],dimension[i],defns) = convertDiracStructure(parsed[i],output[i],dimension[i],
defns,iloc,L,lorentztag,vertex)
return (output,dimension,eps)
# parse the gamma matrices
def convertMatrix(structure,spins,unContracted,Symbols,dtemp,defns,iloc) :
i1 = structure.spin[0]
i2 = structure.spin[1]
if(structure.name=="Identity") :
output = DiracMatrix()
output.value = I4
output.index=0
output.name="M"
structure=""
elif(structure.name=="Gamma5") :
output = DiracMatrix()
output.value = G5
output.index=0
output.name="M"
structure=""
elif(structure.name=="ProjM") :
output = DiracMatrix()
output.value = PM
output.index=0
output.name="M"
structure=""
elif(structure.name=="ProjP") :
output = DiracMatrix()
output.value = PP
output.index=0
output.name="M"
structure=""
elif(structure.name=="Gamma") :
# gamma(mu) lorentz matrix contracted with dummy index
if(structure.lorentz[0].type=="D" or structure.lorentz[0].type=="R") :
if(structure.lorentz[0] not in unContracted) :
unContracted[structure.lorentz[0]] = 0
output = DiracMatrix()
output.value=0
output.index=structure.lorentz[0]
output.name="GMU"
structure=""
elif(structure.lorentz[0].type == "E" and
structure.lorentz[0].value == iloc ) :
if(structure.lorentz[0] not in unContracted) :
unContracted[structure.lorentz[0]] = 0
output = DiracMatrix()
output.value=0
output.index=structure.lorentz[0]
output.name="GMU"
structure=""
elif(structure.lorentz[0].type == "T1" or
structure.lorentz[0].type == "T2") :
if(structure.lorentz[0] not in unContracted) :
unContracted[structure.lorentz[0]] = 0
output = DiracMatrix()
output.value=0
output.index=structure.lorentz[0]
output.name="GMU"
structure=""
else :
output=DiracMatrix()
output.name="M"
output.value = vslash.substitute({ "v" : structure.lorentz[0]})
Symbols += vslashS.substitute({ "v" : structure.lorentz[0]})
variable = computeUnit(structure.lorentz[0].dimension)
#if(structure.lorentz[0].type!="V" or
# structure.lorentz[0].type=="V") :
dtemp[2] += structure.lorentz[0].dimension
defns["vv%s" % structure.lorentz[0] ] = \
["vv%s" % structure.lorentz[0],
vslashD.substitute({ "var" : variable,
"v" : structure.lorentz[0]})]
structure=""
else :
print 'Unknown Gamma matrix structure',structure
raise SkipThisVertex()
return (i1,i2,output,structure,Symbols)
def checkRSContract(parsed,loc,dtemp) :
rindex=LorentzIndex(loc)
rindex.type="R"
contract=""
for i in range(0,len(parsed)) :
if(parsed[i]=="") : continue
found = False
for ll in range(0,len(parsed[i].lorentz)) :
if(parsed[i].lorentz[ll]==rindex) :
found=True
break
if(not found) :
continue
if(parsed[i].name=="P") :
dtemp[2]+=1
contract = LorentzIndex(parsed[i].value)
contract.type="P"
contract.dimension=1
parsed[i]=""
break
elif(parsed[i].name=="Metric") :
for ll in parsed[i].lorentz :
if(ll==rindex) :
continue
else :
break
if(ll.type=="P") :
dtemp[2]+=1
contract=ll
parsed[i]=""
break
elif(parsed[i].name=="Epsilon") :
continue
else :
print "Unkonwn type contracted with RS spinor",parsed[i]
raise SkipThisVertex()
return contract
def processChain(dtemp,parsed,spins,Symbols,unContracted,defns,iloc) :
# piece of dimension which is common (0.5 for sbar and spinor)
dtemp[0]+=1
# set up the spin indices
sind = 0
lind = 0
expr=[]
# now find the next thing in the matrix string
ii = 0
index=0
while True :
# already handled
if(parsed[ii]=="") :
ii+=1
continue
# start of the chain
elif(sind==0 and len(parsed[ii].spin)==2 and parsed[ii].spin[0]>0 ) :
(sind,index,matrix,parsed[ii],Symbols) \
= convertMatrix(parsed[ii],spins,unContracted,Symbols,dtemp,defns,iloc)
expr.append(matrix)
# next element in the chain
elif(index!=0 and len(parsed[ii].spin)==2 and parsed[ii].spin[0]==index) :
(crap,index,matrix,parsed[ii],Symbols) \
= convertMatrix(parsed[ii],spins,unContracted,Symbols,dtemp,defns,iloc)
expr.append(matrix)
# check the index to see if we're at the end
if(index>0) :
lind=index
break
ii+=1
if(ii>=len(parsed)) :
print "Can't parsed the chain of dirac matrices"
print parsed
raise SkipThisVertex()
# start and end of the spin chains
# first particle spin 1/2
if(spins[sind-1]==2) :
start = DiracMatrix()
endT = DiracMatrix()
start.index=0
endT .index=0
# start of chain and end of transpose
# off shell
if(sind==iloc) :
start.name="M"
endT .name="M"
start.value = vslashM .substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind} )
Symbols += vslashMS.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind} )
endT.value = vslashM2.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind} )
defns["vvP%s" % sind ] = ["vvP%s" % sind ,
vslashD.substitute({ "var" : "Energy",
"v" : "P%s" % sind })]
dtemp[1]+=1
# onshell
else :
start.name="S"
endT .name="S"
subs = {'s' : ("sbar%s" % sind)}
start.value = sbar .substitute(subs)
Symbols += sline.substitute(subs)
subs = {'s' : ("s%s" % sind)}
endT.value = spinor.substitute(subs)
Symbols += sline.substitute(subs)
# spin 3/2 fermion
elif spins[sind-1]==4 :
# check if we can easily contract
contract=checkRSContract(parsed,sind,dtemp)
# off-shell
if(sind==iloc) :
oindex = LorentzIndex(sind)
oindex.type="O"
unContracted[oindex]=0
Symbols += vslashMS.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind} )
Symbols += momCom.substitute({"v" : "P%s" %sind })
defns["vvP%s" % sind ] = ["vvP%s" % sind ,
vslashD.substitute({ "var" : "Energy",
"v" : "P%s" % sind })]
dtemp[1] += 1
if(contract=="") :
rindex = LorentzIndex(sind)
rindex.type="R"
start=DiracMatrix()
start.value = Template(rslash.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind, "loc" : sind }))
start.name = "RP"
start.index = (oindex,rindex)
endT=DiracMatrix()
endT.value = Template(rslash2.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind, "loc" : sind }))
endT.name = "RP"
endT.index = (rindex,oindex)
else :
# construct dot product
pi = LorentzIndex(sind)
pi.type="P"
pi.dimension=1
(name,dummy) = constructDotProduct(pi,contract,defns)
Symbols += momCom.substitute({"v" : contract })
RB = vslash.substitute({ "v" : contract})
Symbols += vslashS.substitute({ "v" : contract })
Symbols += "%s = Symbol('%s')\n" % (name,name)
defns["vv%s" % contract ] = ["vv%s" % contract,
vslashD.substitute({ "var" : computeUnit(contract.dimension),
"v" : "%s" % contract })]
start=DiracMatrix()
start.name="RQ"
start.index = oindex
start.value =Template( rslashB.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind, "loc" : sind,
"DB" : RB, "dot" : name , "v2" : contract}))
endT=DiracMatrix()
endT.name = "RQ"
endT.index = oindex
endT.value = Template(rslash2B.substitute({ "v" : "P%s" % sind, "m" : "M%s" % sind, "loc" : sind ,
"DA" : RB, "dot" : name , "v2" : contract}))
# on-shell
else :
start = DiracMatrix()
endT = DiracMatrix()
# no contraction
if(contract=="" or (contract.type=="E" and contract.value==iloc) ) :
if contract == "" :
contract = LorentzIndex(sind)
contract.type="R"
# start of matrix string
start.value = Template(sbar .substitute({'s' : ("Rsbar%s${L}" % sind)}))
start.name="RS"
start.index = contract
# end of transpose string
endT.value=Template(spinor.substitute({'s' : ("Rs%s${L}" % sind)}))
endT.name="RS"
endT.index = contract
unContracted[contract]=0
# variables for sympy
for LI in imap :
Symbols += sline.substitute({'s' : ("Rs%s%s" % (sind,LI))})
Symbols += sline.substitute({'s' : ("Rsbar%s%s" % (sind,LI))})
else :
# start of matrix string
start.name="S"
start.value = "Matrix([[%s,%s,%s,%s]])" % (RSDotProduct.substitute({'s' : ("Rsbar%s" % sind), 'v':contract, 'si' : 1}),
RSDotProduct.substitute({'s' : ("Rsbar%s" % sind), 'v':contract, 'si' : 2}),
RSDotProduct.substitute({'s' : ("Rsbar%s" % sind), 'v':contract, 'si' : 3}),
RSDotProduct.substitute({'s' : ("Rsbar%s" % sind), 'v':contract, 'si' : 4}))
endT.name="S"
endT.value = "Matrix([[%s],[%s],[%s],[%s]])" % (RSDotProduct.substitute({'s' : ("Rs%s" % sind), 'v':contract, 'si' : 1}),
RSDotProduct.substitute({'s' : ("Rs%s" % sind), 'v':contract, 'si' : 2}),
RSDotProduct.substitute({'s' : ("Rs%s" % sind), 'v':contract, 'si' : 3}),
RSDotProduct.substitute({'s' : ("Rs%s" % sind), 'v':contract, 'si' : 4}))
Symbols += momCom.substitute({"v" : contract })
for LI in ["x","y","z","t"] :
Symbols += sline.substitute({'s' : ("Rs%s%s" % (sind,LI))})
Symbols += sline.substitute({'s' : ("Rsbar%s%s" % (sind,LI))})
# last particle spin 1/2
if( spins[lind-1]==2 ) :
end = DiracMatrix()
startT = DiracMatrix()
end .index=0
startT.index=0
# end of chain
if(lind==iloc) :
end.name ="M"
startT.name="M"
end.value = vslashM2.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind} )
startT.value = vslashM.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind} )
Symbols += vslashMS.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind} )
defns["vvP%s" % lind ] = ["vvP%s" % lind ,
vslashD.substitute({ "var" : "Energy",
"v" : "P%s" % lind })]
dtemp[1] += 1
else :
startT.name="S"
end .name="S"
subs = {'s' : ("s%s" % lind)}
end.value = spinor.substitute(subs)
Symbols += sline.substitute(subs)
subs = {'s' : ("sbar%s" % lind)}
startT.value = sbar .substitute(subs)
Symbols += sline.substitute(subs)
# last particle spin 3/2
elif spins[lind-1]==4 :
# check if we can easily contract
contract=checkRSContract(parsed,lind,dtemp)
# off-shell
if(lind==iloc) :
oindex = LorentzIndex(lind)
oindex.type="O"
unContracted[oindex]=0
Symbols += vslashMS.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind} )
Symbols += momCom.substitute({"v" : "P%s" %lind })
defns["vvP%s" % lind ] = ["vvP%s" % lind ,
vslashD.substitute({ "var" : "Energy",
"v" : "P%s" % lind })]
dtemp[1] += 1
if(contract=="") :
rindex = LorentzIndex(lind)
rindex.type="R"
end=DiracMatrix()
end.value = Template(rslash2.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind, "loc" : lind }))
end.name = "RP"
end.index = (rindex,oindex)
startT=DiracMatrix()
startT.value=Template(rslash.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind, "loc" : lind }))
startT.name = "RP"
startT.index = (oindex,rindex)
else :
# construct dot product
pi = LorentzIndex(lind)
pi.type="P"
pi.dimension=1
(name,unit) = constructDotProduct(pi,contract,defns)
Symbols += momCom.substitute({"v" : contract })
RB = vslash.substitute({ "v" : contract})
Symbols += vslashS.substitute({ "v" : contract })
Symbols += "%s = Symbol('%s')\n" % (name,name)
defns["vv%s" % contract ] = ["vv%s" % contract,
vslashD.substitute({ "var" : computeUnit(contract.dimension),
"v" : "%s" % contract })]
end=DiracMatrix()
end.name="RQ"
end.index = oindex
end.value =Template( rslash2B.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind, "loc" : lind,
"DA" : RB, "dot" : name , "v2" : contract}))
startT=DiracMatrix()
startT.name = "RQ"
startT.index = oindex
startT.value = Template(rslashB.substitute({ "v" : "P%s" % lind, "m" : "M%s" % lind, "loc" : lind ,
"DB" : RB, "dot" : name , "v2" : contract}))
# on-shell
else :
end = DiracMatrix()
startT = DiracMatrix()
# no contraction
if(contract=="" or (contract.type=="E" and contract.value==iloc) ) :
if contract == "" :
contract = LorentzIndex(lind)
contract.type="R"
# end of matrix string
end.value = Template(spinor.substitute({'s' : ("Rs%s${L}" % lind)}))
end.name = "RS"
end.index = contract
# start of matrix string
startT.value = Template(sbar .substitute({'s' : ("Rsbar%s${L}" % lind)}))
startT.name = "RS"
startT.index = contract
unContracted[contract]=0
# variables for sympy
for LI in imap :
Symbols += sline.substitute({'s' : ("Rs%s%s" % (lind,LI))})
Symbols += sline.substitute({'s' : ("Rsbar%s%s" % (lind,LI))})
# contraction
else :
# end of the matrix string
end.name = "S"
end.value = "Matrix([[%s],[%s],[%s],[%s]])" % (RSDotProduct.substitute({'s' : ("Rs%s" % lind), 'v':contract, 'si' : 1}),
RSDotProduct.substitute({'s' : ("Rs%s" % lind), 'v':contract, 'si' : 2}),
RSDotProduct.substitute({'s' : ("Rs%s" % lind), 'v':contract, 'si' : 3}),
RSDotProduct.substitute({'s' : ("Rs%s" % lind), 'v':contract, 'si' : 4}))
startT.name = "S"
startT.value = "Matrix([[%s,%s,%s,%s]])" % (RSDotProduct.substitute({'s' : ("Rsbar%s" % lind), 'v':contract, 'si' : 1}),
RSDotProduct.substitute({'s' : ("Rsbar%s" % lind), 'v':contract, 'si' : 2}),
RSDotProduct.substitute({'s' : ("Rsbar%s" % lind), 'v':contract, 'si' : 3}),
RSDotProduct.substitute({'s' : ("Rsbar%s" % lind), 'v':contract, 'si' : 4}))
Symbols += momCom.substitute({"v" : contract })
for LI in ["x","y","z","t"] :
Symbols += sline.substitute({'s' : ("Rs%s%s" % (lind,LI))})
Symbols += sline.substitute({'s' : ("Rsbar%s%s" % (lind,LI))})
return(sind,lind,expr,start,startT,end,endT,Symbols)
def calculateDirac(expr,start,end,startT,endT,sind,lind,Symbols,iloc) :
res=[]
for ichain in range(0,len(start)) :
# calculate the matrix string
etemp="*".join(str(x) for x in expr[ichain])
temp={}
exec("import sympy\nfrom sympy import Symbol,Matrix\n"+Symbols+"result="+
( "%s*%s*%s" %(start[ichain],etemp,end[ichain]))) in temp
res.append(temp["result"])
tempT={}
exec("import sympy\nfrom sympy import Symbol,Matrix,Transpose\n"+Symbols+"result="+
( "%s*%s*Transpose(%s)*%s*%s" %(startT[0],CC,etemp,CD,endT[0]))) in tempT
res.append(tempT["result"])
if(len(start)==1) :
if(iloc==0 or (iloc!=sind[0] and iloc!=lind[0])) :
sVal = {'s' : temp ["result"][0,0],'sT' : tempT["result"][0,0]}
else :
sVal={}
for jj in range(1,5) :
sVal["s%s" % jj] = temp ["result"][jj-1]
sVal["sT%s" % jj] = tempT["result"][jj-1]
else :
sVal={}
sVal["s" ] = res[0][0,0]*res[2][0,0]
sVal["sT2" ] = res[0][0,0]*res[3][0,0]
sVal["sT1" ] = res[1][0,0]*res[2][0,0]
sVal["sT12"] = res[1][0,0]*res[3][0,0]
return sVal
def addToOutput(res,nchain,sign,rTemp) :
# 1 spin chain
if(nchain==1) :
for ii in range(0,2) :
if(rTemp[ii][0].shape[0]==1) :
# result is scalar
if(rTemp[ii][0].shape[1]==1) :
if(len(res[ii])==0) :
res[ii].append(sign*rTemp [ii][0][0,0])
else :
res[ii][0] += sign*rTemp [ii][0][0,0]
# result is a spinor
elif(rTemp[ii][0].shape[1]==4) :
if(len(res[ii])==0) :
for j in range(0,4) :
res[ii].append(sign*rTemp[ii][0][0,j])
else :
for j in range(0,4) :
res[ii][j] += sign*rTemp[ii][0][0,j]
else :
print "Size problem adding results A",sign,rTemp[ii].shape
raise SkipThisVertex()
# spinor
elif(rTemp[ii][0].shape[0]==4 and rTemp[ii][0].shape[1]==1 ) :
if(len(res[ii])==0) :
for j in range(0,4) :
res[ii].append(sign*rTemp[ii][0][j,0])
else :
for j in range(0,4) :
res[ii][j] += sign*rTemp[ii][0][j,0]
else :
print "Size problem adding results A",sign,rTemp[ii][0].shape
raise SkipThisVertex()
# 2 spin chains, should only be for a vertex
else :
for j1 in range(0,2) :
for j2 in range (0,2) :
val = sign*rTemp[j1][0]*rTemp[j2][1]
if(len(res[3])==0) :
res[2*j1+j2].append(val[0,0])
else :
res[2*j1+j2][0] += val[0,0]
def calculateDirac2(expr,start,end,startT,endT,sind,lind,Symbols,defns,
iloc,unContracted,spins,lorentz) :
tDot=""
# output
sVal={}
# no of chains
nchain=len(expr)
# now deal with the uncontracted cases
contracted={}
# sort out contracted and uncontracted indices
keys = unContracted.keys()
for key in keys:
# summed dummy index
if key.type=="D" :
contracted[key]=0
del unContracted[key]
# RS index
elif key.type =="R" :
contracted[key]=0
del unContracted[key]
# tensor index
elif key.type == "T1" or key.type=="T2" :
contracted[key]=0
del unContracted[key]
# external index
elif key.type == "O" :
continue
# uncontracted vector index
elif key.type=="E" or key.type=="Q":
continue
else :
print 'Unknown type of uncontracted index',key
raise SkipThisVertex()
# check the lorentz structures
for lstruct in lorentz :
if(lstruct.name=="Epsilon" or
lstruct.name=="Vector") :
for index in lstruct.lorentz :
if(index.type=="E" and index.value==iloc) :
unContracted[index]=0
elif(index.type=="P" or index.type=="E"
or index.type=="R" or index.type=="D") :
contracted[index]=0
else :
print 'Unknown index',index, 'in ',lstruct
raise SkipThisVertex()
elif(lstruct.name=="Tensor") :
if(iloc==lstruct.value) :
Symbols += momCom.substitute({"v": "P%s"%lstruct.value})
Symbols += "OM%s = Symbol(\"OM%s\")\n" % (lstruct.value,lstruct.value)
Symbols += "M%s2 = Symbol(\"M%s2\")\n" % (lstruct.value,lstruct.value)
Symbols += "p2 = Symbol(\"p2\")\n"
for ival in range(1,3) :
newIndex=LorentzIndex(ival)
newIndex.type="O"
newIndex.dimension=0
lstruct.lorentz.append(newIndex)
unContracted[newIndex]=0
# contracted with self
if(len(lstruct.lorentz)==0) :
pass
# both indices uncontracted, deal with later
elif lstruct.lorentz[0].type=="T1" and lstruct.lorentz[1].type=="T2":
pass
elif lstruct.lorentz[0].type=="T1":
pIndex = LorentzIndex(lstruct.value)
pIndex.dimension=1
pIndex.type="P"
(tDot,dtemp) = constructDotProduct(pIndex,lstruct.lorentz[1],defns)
Symbols+="%s = Symbol(\"%s\")\n" %(tDot,tDot)
Symbols += momCom.substitute({"v": lstruct.lorentz[1]})
elif lstruct.lorentz[1].type=="T2" :
pIndex = LorentzIndex(lstruct.value)
pIndex.dimension=1
pIndex.type="P"
(tDot,dtemp) = constructDotProduct(pIndex,lstruct.lorentz[0],defns)
Symbols+="%s = Symbol(\"%s\")\n" %(tDot,tDot)
Symbols += momCom.substitute({"v": lstruct.lorentz[0]})
# both indices still to be contracted
else :
contracted[lstruct.lorentz[0].type]=0
contracted[lstruct.lorentz[1].type]=0
else :
print 'Unknown lorentz object in calculateDirac2',lstruct,iloc
raise SkipThisVertex()
# iterate over the uncontracted indices
while True :
# loop over the unContracted indices
res = []
for i in range(0,nchain) :
res.append([])
res.append([])
# loop over the contracted indices
while True :
# sign from metric tensor in contractions
sign = 1
for key,val in contracted.iteritems() :
if(val>0) : sign *=-1
eTemp =[]
sTemp =[]
fTemp =[]
sTTemp=[]
fTTemp=[]
# make the necessary replacements for remaining indices
for ichain in range(0,nchain) :
# compute the main expression
eTemp.append([])
for val in expr[ichain] :
# already a matrix
if(val.name=="M") :
eTemp[ichain].append(val)
# gamma(mu), replace with correct dirac matrix
elif(val.name=="GMU") :
if(val.index in contracted) :
eTemp[ichain].append(dirac[contracted[val.index]])
elif(val.index in unContracted) :
eTemp[ichain].append(dirac[unContracted[val.index]])
else :
print 'Unknown index for gamma matrix',val
raise SkipThisVertex()
# unknown to be sorted out
else :
print 'Unknown type in expr',val
raise SkipThisVertex()
# start and end
# start
if(start[ichain].name=="S" or start[ichain].name=="M" ) :
sTemp.append(start[ichain].value)
elif(start[ichain].name=="RS") :
if(start[ichain].index in contracted) :
sTemp.append(start[ichain].value.substitute({"L" : imap[ contracted[start[ichain].index]] }))
else :
sTemp.append(start[ichain].value.substitute({"L" : imap[unContracted[start[ichain].index]] }))
elif(start[ichain].name=="RQ") :
i1 = unContracted[start[ichain].index]
sTemp.append(start[ichain].value.substitute({"A" : imap[i1], "DA" : dirac[i1] }))
elif(start[ichain].name=="RP") :
i1 = unContracted[start[ichain].index[0]]
i2 = contracted[start[ichain].index[1]]
eta=0
if(i1==i2) :
if(i1==0) : eta = 1
else : eta = -1
sTemp.append(start[ichain].value.substitute({"eta" : eta, "A":imap[i1] , "B":imap[i2] ,
"DA": dirac[i1], "DB": dirac[i2]}))
else :
print 'Barred spinor not a spinor',start[ichain]
raise SkipThisVertex()
if(startT[ichain].name=="S" or startT[ichain].name=="M" ) :
sTTemp.append(startT[ichain].value)
elif(startT[ichain].name=="RS") :
if(startT[ichain].index in contracted) :
sTTemp.append(startT[ichain].value.substitute({"L" : imap[ contracted[startT[ichain].index]] }))
else :
sTTemp.append(startT[ichain].value.substitute({"L" : imap[unContracted[startT[ichain].index]] }))
elif(startT[ichain].name=="RQ") :
i1 = unContracted[startT[ichain].index]
sTTemp.append(startT[ichain].value.substitute({"A" : imap[i1], "DA" : dirac[i1] }))
elif(startT[ichain].name=="RP") :
i1 = unContracted[startT[ichain].index[0]]
i2 = contracted[startT[ichain].index[1]]
eta=0
if(i1==i2) :
if(i1==0) : eta = 1
else : eta = -1
sTTemp.append(startT[ichain].value.substitute({"eta" : eta, "A":imap[i1] , "B":imap[i2] ,
"DA": dirac[i1], "DB": dirac[i2]}))
else :
print 'barred spinorT not a spinor',startT[ichain]
raise SkipThisVertex()
# end
if(end[ichain].name=="S" or end[ichain].name=="M" ) :
fTemp.append(end[ichain].value)
elif(end[ichain].name=="RS") :
if(end[ichain].index in contracted) :
fTemp.append(end[ichain].value.substitute({"L" : imap[ contracted[end[ichain].index]] }))
else :
fTemp.append(end[ichain].value.substitute({"L" : imap[unContracted[end[ichain].index]] }))
elif(end[ichain].name=="RQ") :
i1 = unContracted[end[ichain].index]
fTemp.append(end[ichain].value.substitute({"B" : imap[i1], "DB": dirac[i1] }))
elif(end[ichain].name=="RP") :
i1 = contracted[end[ichain].index[0]]
i2 = unContracted[end[ichain].index[1]]
eta=0
if(i1==i2) :
if(i1==0) : eta = 1
else : eta = -1
fTemp.append(end[ichain].value.substitute({"eta" : eta, "A":imap[i1] , "B":imap[i2] ,
"DA": dirac[i1], "DB": dirac[i2]}))
else :
print 'spinor not a spinor',end[ichain]
raise SkipThisVertex()
if(endT[ichain].name=="S" or endT[ichain].name=="M" ) :
fTTemp.append(endT[ichain].value)
elif(endT[ichain].name=="RS") :
if(endT[ichain].index in contracted) :
fTTemp.append(endT[ichain].value.substitute({"L" : imap[ contracted[endT[ichain].index]] }))
else :
fTTemp.append(endT[ichain].value.substitute({"L" : imap[unContracted[endT[ichain].index]] }))
elif(endT[ichain].name=="RQ") :
i1 = unContracted[endT[ichain].index]
fTTemp.append(endT[ichain].value.substitute({"B" : imap[i1], "DB": dirac[i1] }))
elif(endT[ichain].name=="RP") :
i1 = contracted[endT[ichain].index[0]]
i2 = unContracted[endT[ichain].index[1]]
eta=0
if(i1==i2) :
if(i1==0) : eta = 1
else : eta = -1
fTTemp.append(endT[ichain].value.substitute({"eta" : eta, "A":imap[i1] , "B":imap[i2] ,
"DA": dirac[i1], "DB": dirac[i2]}))
else :
print 'spinorT not a spinor',endT[ichain]
raise SkipThisVertex()
# and none dirac lorentz structures
isZero = False
for li in lorentz:
# uncontracted vector
if(li.name=="Vector") :
index = unContracted[li.lorentz[0]]
Symbols += momCom.substitute({"v":li.value})
for ichain in range(0,nchain) :
eTemp[ichain].append("%s%s"% (li.value,imap[index]) )
elif(li.name=="Epsilon") :
value=""
ival=[]
for index in li.lorentz :
if(index in contracted) :
if(index.type=="P" or index.type=="E") :
value += "*%s%s" % (index,imap[contracted[index]])
ival.append(contracted[index])
elif(index.type=="R" or index.type=="D") :
ival.append(contracted[index])
else :
print 'Unknown index in Epsilon Tensor',index
raise SkipThisVertex()
elif(index in unContracted) :
ival.append(unContracted[index])
if(len(value)!=0 and value[0]=="*") :
value = value[1:]
eVal = epsValue[ival[0]][ival[1]][ival[2]][ival[3]]
if(eVal==0) :
isZero = True
else :
for ichain in range(0,nchain) :
eTemp[ichain].append("(%s*%s)"% (eVal,value) )
elif(li.name=="Tensor") :
if(li.lorentz[0] in unContracted and li.lorentz[1] in unContracted) :
value=tPropA[unContracted[li.lorentz[0]]][unContracted[li.lorentz[0]]].substitute({"iloc" : li.value})
for ichain in range(0,nchain) :
eTemp[ichain].append("(%s)"% (value) )
elif(len(li.lorentz)==4) :
if li.lorentz[0].type=="T1" and li.lorentz[1].type=="T2" :
- value=tPropCunContracted[li.lorentz[2]]][unContracted[li.lorentz[3]]][contracted[li.lorentz[0]]][contracted[li.lorentz[1]]].substitute({"iloc" : li.value})
+ value=tPropC[unContracted[li.lorentz[2]]][unContracted[li.lorentz[3]]][contracted[li.lorentz[0]]][contracted[li.lorentz[1]]].substitute({"iloc" : li.value})
elif li.lorentz[0].type=="T1":
value=tPropB[unContracted[li.lorentz[2]]][unContracted[li.lorentz[3]]][contracted[li.lorentz[0]]].substitute({"iloc" : li.value,
"V" : li.lorentz[1],
"dot" : tDot})
elif li.lorentz[1].type=="T2" :
value=tPropB[unContracted[li.lorentz[2]]][unContracted[li.lorentz[3]]][contracted[li.lorentz[1]]].substitute({"iloc" : li.value,
"V" : li.lorentz[0],
"dot" : tDot})
else :
print 'Both contracted tensor indices contracted'
raise SkipThisVertex()
for ichain in range(0,nchain) :
eTemp[ichain].append("(%s)"% (value) )
else :
print 'Uncontracted on-shell tensor'
raise SkipThisVertex()
# unknown
else :
print 'Unknown expression in lorentz loop',li
raise SkipThisVertex()
# now evaluate the result
if(not isZero) :
rTemp =[[],[]]
for ichain in range(0,nchain) :
core = "*".join(str(x) for x in eTemp[ichain])
temp={}
exec("import sympy\nfrom sympy import Symbol,Matrix\n"+Symbols+"result="+
( "(%s)*(%s)*(%s)" %(sTemp[ichain],core,fTemp[ichain]))) in temp
rTemp[0].append(temp["result"])
temp={}
exec("import sympy\nfrom sympy import Symbol,Matrix,Transpose\n"+Symbols+"result="+
( "(%s)*(%s)*(Transpose(%s))*(%s)*(%s)" %(sTTemp[ichain],CC,core,CD,fTTemp[ichain]))) in temp
rTemp[1].append(temp["result"])
# and add it to the output
addToOutput(res,nchain,sign,rTemp)
#### END OF THE CONTRACTED LOOP #####
# increment the indices being summed over
keys=contracted.keys()
ii = len(keys)-1
while ii >=0 :
if(contracted[keys[ii]]<3) :
contracted[keys[ii]]+=1
break
else :
contracted[keys[ii]]=0
ii-=1
nZero=0
for (key,val) in contracted.iteritems() :
if(val==0) : nZero+=1
if(nZero==len(contracted)) : break
###### END OF THE UNCONTRACTED LOOP ######
# no uncontracted indices
if(len(unContracted)==0) :
if(len(res[0])==1) :
# scalar
if(len(res)==2) :
sVal["s" ] = res[0]
sVal["sT"] = res[1]
# 4 fermion
else :
sVal["s" ] = res[0]
sVal["sT2" ] = res[1]
sVal["sT1" ] = res[2]
sVal["sT12"] = res[3]
# spinor
elif(len(res[0])==4) :
for k in range(0,4) :
sVal[ "s%s" % (k+1) ] = res[0][k]
sVal[ "sT%s" % (k+1) ] = res[1][k]
else :
print 'Sum problem',len(res),len(res[0])
raise SkipThisVertex()
break
# uncontracted indices
else :
istring = ""
for (key,val) in unContracted.iteritems() :
istring +=imap[val]
if(len(istring)>2) :
print 'Index problem',istring
raise SkipThisVertex()
sVal[istring] = res[0]
sVal[istring+"T"] = res[1]
# increment the unsummed indices
keys=unContracted.keys()
ii = len(keys)-1
while ii >=0 :
if(unContracted[keys[ii]]<3) :
unContracted[keys[ii]]+=1
break
else :
unContracted[keys[ii]]=0
ii-=1
nZero=0
for (key,val) in unContracted.iteritems() :
if(val==0) : nZero+=1
if(nZero==len(unContracted)) : break
# handle the vector case
if( "tt" in sVal) :
if(len(sVal)==32 and "tt" in sVal and len(sVal["tt"])==1) :
for key in sVal:
sVal[key] = sVal[key][0]
else :
print 'Tensor sum problem',len(sVal)
raise SkipThisVertex()
elif( "t" in sVal ) :
# deal with pure vectors
if(len(sVal)==8 and "t" in sVal and len(sVal["t"])==1) :
pass
# RS spinors
elif(len(sVal)==8 and "t" in sVal and len(sVal["t"])==4) :
pass
else :
print 'Value problem',len(sVal)
raise SkipThisVertex()
else :
if("s" in sVal) :
for key in sVal:
sVal[key] = sVal[key][0]
return sVal
def convertDiracStructure(parsed,output,dimension,defns,iloc,L,lorentztag,vertex) :
# get the spins of the particles
spins = vertex.lorentz[0].spins
# check if we have one or two spin chains
nchain = (lorentztag.count("F")+lorentztag.count("R"))/2
# storage of the intermediate results
expr =[]
start =[]
end =[]
startT=[]
endT =[]
sind=[0]*nchain
lind=[0]*nchain
unContracted={}
Symbols=""
dtemp=[0,0,0]
# parse the dirac matrix strings
for ichain in range(0,nchain) :
expr .append([])
start .append("")
startT.append("")
end .append("")
endT .append("")
sind[ichain],lind[ichain],expr[ichain],start[ichain],startT[ichain],end[ichain],endT[ichain],Symbols =\
processChain(dtemp,parsed,spins,Symbols,unContracted,defns,iloc)
# clean up parsed
# check we've dealt with everything
parsed = [x for x in parsed if x != ""]
lorentz=[]
if(len(parsed)!=0) :
for i in range(0,len(parsed)) :
if(parsed[i].name=="Metric") :
found = False
for ll in parsed[i].lorentz :
if(ll.type=="E" and ll.value==iloc) :
found = True
un=ll
else :
lo=ll
if(found) :
lstruct = LorentzStructure()
lstruct.name="Vector"
lstruct.value=lo
lstruct.lorentz=[un]
lstruct.spin=[]
lorentz.append(lstruct)
parsed[i]=""
unContracted[un]=0
dimension[2] += lo.dimension
elif(parsed[i].name=="Epsilon") :
lstruct = LorentzStructure()
lstruct.name="Epsilon"
lstruct.lorentz=parsed[i].lorentz
lstruct.value=0
lstruct.spin=[]
for index in lstruct.lorentz:
if(index.type=="P") :
dimension[2]+=1
if( not index in defns) :
defns[(index,)]=["",""]
if(index.type=="P" or
(index.type=="E" and index.value!=iloc)) :
Symbols += momCom.substitute( {"v": index} )
lorentz.append(lstruct)
parsed[i]=""
elif(parsed[i].name=="Tensor") :
lstruct = LorentzStructure()
lstruct.name="Tensor"
lstruct.value=parsed[i].value
lstruct.lorentz=parsed[i].lorentz
lstruct.spin=[]
for index in parsed[i].lorentz:
dimension[2] += index.dimension
parsed[i]=""
lorentz.append(lstruct)
else :
print 'Unknown lorentz structure',parsed[i]
raise SkipThisVertex()
parsed = [x for x in parsed if x != ""]
if(len(parsed)!=0) :
print "Can't parse ",parsed,iloc
raise SkipThisVertex()
sVal ={}
dimension = list(map(lambda x, y: x + y, dtemp, dimension))
# deal with the simplest case first
if len(unContracted) == 0 and len(lorentz) == 0:
sVal = calculateDirac(expr,start,end,startT,endT,sind,lind,Symbols,iloc)
else :
sVal = calculateDirac2(expr,start,end,startT,endT,sind,lind,Symbols,defns,
iloc,unContracted,spins,lorentz)
# set up the output
old = output
if(nchain==1) :
output = [old,sVal,(lind[0],sind[0])]
else :
output = [old,sVal,(lind[0],sind[0],lind[1],sind[1])]
return (output,dimension,defns)
def convertLorentz(Lstruct,lorentztag,order,vertex,iloc,defns,evalVertex) :
eps = False
# split the structure into individual terms
structures=Lstruct.structure.split()
parsed=[]
# parse structures and convert lorentz contractions to dot products
for struct in structures :
ptemp = parse_structure(struct,Lstruct.spins)
parsed.append(contract(ptemp))
# now in a position to generate the code
vals=generateVertex(iloc,Lstruct,parsed,lorentztag,vertex,defns)
evalVertex.append((vals[0],vals[1]))
if(vals[2]) : eps=True
return eps
def swapOrder(vertex,iloc,momenta,fIndex) :
names=['','sca','sp','v']
waves=['','sca','' ,'E']
output=""
for i in range(1,4) :
ns = vertex.lorentz[0].spins.count(i)
if((ns<=1 and i!=2) or (ns<=2 and i==2)) : continue
if(i!=3 and i!=1) :
print 'Swap problem',i
raise SkipThisVertex()
sloc=[]
for j in range(0,len(vertex.lorentz[0].spins)) :
if(vertex.lorentz[0].spins[j]==i) : sloc.append(j+1)
if iloc in sloc : sloc.remove(iloc)
if(len(sloc)==1) : continue
for j in range(0,len(sloc)) :
output += " long id%s = %sW%s.id();\n" % (sloc[j],names[i],sloc[j])
for j in range(0,len(sloc)) :
for k in range(j+1,len(sloc)) :
code = vertex.particles[sloc[j]-1].pdg_code
output += " if(id%s!=%s) {\n" % (sloc[j],code)
output += " swap(id%s,id%s);\n" % (sloc[j],sloc[k])
output += " swap(%s%s,%s%s);\n" % (waves[i],sloc[j],waves[i],sloc[k])
if(momenta[sloc[j]-1][0] or momenta[sloc[k]-1][0]) :
momenta[sloc[j]-1][0] = True
momenta[sloc[k]-1][0] = True
output += " swap(P%s,P%s);\n" % (sloc[j],sloc[k])
output += " };\n"
return output
def swapOrderFFFF(vertex,iloc,fIndex) :
output=""
for j in range(0,len(fIndex)) :
if(j%2==0) :
output += " SpinorWaveFunction s%s = sW%s;\n" % (fIndex[j],fIndex[j])
else :
output += " SpinorBarWaveFunction sbar%s = sbarW%s;\n" % (fIndex[j],fIndex[j])
for j in range(0,len(fIndex)) :
if(j%2==0) :
output += " long id%s = sW%s.id();\n" % (fIndex[j],fIndex[j])
else :
output += " long id%s = sbarW%s.id();\n" % (fIndex[j],fIndex[j])
for j in range(0,2) :
code = vertex.particles[fIndex[j]-1].pdg_code
output += " if(id%s!=%s) {\n" % (fIndex[j],code)
output += " swap(id%s,id%s);\n" % (fIndex[j],fIndex[j+2])
wave="s"
if(j==1) : wave = "sbar"
output += " swap(%s%s,%s%s);\n" % (wave,fIndex[j],wave,fIndex[j+2])
output += " };\n"
return output
def constructSignature(vertex,order,iloc,decls,momenta,waves,fIndex) :
nf=0
poff=""
offType="Complex"
for i in order :
spin = vertex.lorentz[0].spins[i-1]
if(i==iloc) :
if(spin==1) :
offType="ScalarWaveFunction"
elif(spin==2) :
if(i%2==1) :
offType="SpinorBarWaveFunction"
else :
offType="SpinorWaveFunction"
nf+=1
elif(spin==4) :
if(i%2==1) :
offType="RSSpinorBarWaveFunction"
else :
offType="RSSpinorWaveFunction"
nf+=1
elif(spin==3) :
offType="VectorWaveFunction"
elif(spin==5) :
offType="TensorWaveFunction"
else :
print 'Unknown spin',spin
raise SkipThisVertex()
momenta.append([False,""])
else :
if(spin==1) :
decls.append("ScalarWaveFunction & scaW%s" % (i))
momenta.append([False,"Lorentz5Momentum P%s =-scaW%s.momentum();" % (i,i)])
waves.append("Complex sca%s = scaW%s.wave();" % (i,i))
elif(spin==2) :
if(i%2==1) :
decls.append("SpinorWaveFunction & sW%s" % (fIndex[i-1]))
momenta.append([False,"Lorentz5Momentum P%s =-sW%s.momentum();" % (fIndex[i-1],fIndex[i-1])])
waves.append("LorentzSpinor<double> s%s = sW%s.wave();" % (fIndex[i-1],fIndex[i-1]))
nf+=1
else :
decls.append("SpinorBarWaveFunction & sbarW%s" % (fIndex[i-1]))
momenta.append([False,"Lorentz5Momentum P%s =-sbarW%s.momentum();" % (fIndex[i-1],fIndex[i-1])])
waves.append("LorentzSpinorBar<double> sbar%s = sbarW%s.wave();" % (fIndex[i-1],fIndex[i-1]))
nf+=1
elif(spin==3) :
decls.append("VectorWaveFunction & vW%s" % (i))
momenta.append([False,"Lorentz5Momentum P%s =-vW%s.momentum();" % (i,i)])
waves.append("LorentzPolarizationVector E%s = vW%s.wave();" % (i,i))
elif(spin==4) :
if(i%2==1) :
decls.append("RSSpinorWaveFunction & RsW%s" % (i))
momenta.append([False,"Lorentz5Momentum P%s =-RsW%s.momentum();" % (i,i)])
waves.append("LorentzRSSpinor<double> Rs%s = RsW%s.wave();" % (i,i))
nf+=1
else :
decls.append("RSSpinorBarWaveFunction & RsbarW%s" % (i))
momenta.append([False,"Lorentz5Momentum P%s =-RsbarW%s.momentum();" % (i,i)])
waves.append("LorentzRSSpinorBar<double> Rsbar%s = RsbarW%s.wave();" % (i,i))
nf+=1
elif(spin==5) :
decls.append("TensorWaveFunction & tW%s" % (i))
momenta.append([False,"Lorentz5Momentum P%s =-tW%s.momentum();" % (i,i)])
waves.append("LorentzTensor<double> T%s = tW%s.wave();" % (i,i))
else :
print 'Unknown spin',spin
raise SkipThisVertex()
poff += "-P%s" % (i)
# ensure unbarred spinor first
ibar=-1
isp=-1
for i in range(0,len(decls)) :
if(decls[i].find("Bar")>0 and ibar==-1) :
ibar=i
elif(decls[i].find("Spinor")>=0 and isp==-1) :
isp=i
if(isp!=-1 and ibar!=-1 and isp>ibar) :
decls[ibar],decls[isp] = decls[isp],decls[ibar]
# constrct the signature
poff = ("Lorentz5Momentum P%s = " % iloc ) + poff
sig=""
if(iloc==0) :
sig="%s evaluate(Energy2, const %s)" % (offType,", const ".join(decls))
# special for VVT vertex
if(len(vertex.lorentz[0].spins)==3 and vertex.lorentz[0].spins.count(3)==2 and
vertex.lorentz[0].spins.count(5)==1) :
sig = sig[0:-1] + ", Energy vmass=-GeV)"
else :
sig="%s evaluate(Energy2, int iopt, tcPDPtr out, const %s, complex<Energy> mass=-GeV, complex<Energy> width=-GeV)" % (offType,", const ".join(decls))
momenta.append([True,poff+";"])
# special for VVT vertex
if(len(vertex.lorentz[0].spins)==3 and vertex.lorentz[0].spins.count(3)==2 and
vertex.lorentz[0].spins.count(5)==1 and vertex.lorentz[0].spins[iloc-1]==5) :
sig=sig.replace("complex<Energy> mass=-GeV","Energy vmass=-GeV, complex<Energy> mass=-GeV")
for i in range(0,len(momenta)) : momenta[i][0]=True
return offType,nf,poff,sig
def combineResult(res,nf,ispin,vertex) :
# extract the vals and dimensions
(vals,dim) = res
# construct the output structure
# vertex and off-shell scalars
if(ispin<=1) :
otype={'res':""}
# spins
elif(ispin==2) :
otype={'s1':"",'s2':"",'s3':"",'s4':""}
# vectors
elif(ispin==3) :
if( "t" in vals[0][1] ) :
otype={'t':"",'x':"",'y':"",'z':""}
else :
otype={"res":""}
# RS spinors
elif(ispin==4) :
otype={}
for i1 in imap :
for i in range(1,5) :
otype["%ss%s"% (i1,i)]=""
# off-shell tensors
elif(ispin==5) :
otype={}
for i1 in imap :
for i2 in imap :
otype["%s%s"%(i1,i2)]=""
else :
print 'Unknown spin',ispin
raise SkipThisVertex()
expr=[otype]
for i in range(0,nf-1) :
expr.append(copy.copy(otype))
# dimension for checking
dimCheck=dim[0]
for i in range(0,len(vals)) :
# simple signs
if(vals[i]=="+" or vals[i]=="-") :
for ii in range(0,len(expr)) :
for(key,val) in expr[ii].iteritems() :
expr[ii][key] = expr[ii][key]+vals[i]
continue
# check the dimensions
if(dimCheck[0]!=dim[i][0] or dimCheck[1]!=dim[i][1] or
dimCheck[2]!=dim[i][2]) :
print "Dimension problem in result",i,dimCheck,dim,vertex
print vertex.lorentz
for j in range(0,len(vals)) :
print j,dim[j],vals[j]
raise SkipThisVertex()
# simplest case
if(isinstance(vals[i], basestring)) :
for ii in range(0,len(expr)) :
for(key,val) in expr[ii].iteritems() :
expr[ii][key] = expr[ii][key]+vals[i]
continue
# more complex structures
pre = vals[i][0]
if(pre=="(1.0)") : pre=""
if(not isinstance(vals[i][1],dict)) :
print 'must be a dict here'
raise SkipThisVertex()
# tensors
if("tt" in vals[i][1]) :
for i1 in imap :
for i2 in imap :
key="%s%s"%(i1,i2)
if(pre=="") :
expr[0][key] += "(%s)" % vals[i][1][key]
else :
expr[0][key] += "%s*(%s)" % (pre,vals[i][1][key])
if(len(expr)==2) :
if(pre=="") :
expr[1][key] +="(%s)" % vals[i][1][key+"T"]
else :
expr[1][key] +="%s*(%s)" % (pre,vals[i][1][key+"T"])
# standard fermion vertex case
elif(len(vals[i][1])==2 and "s" in vals[i][1] and "sT" in vals[i][1]) :
if(pre=="") :
expr[0]["res"] += "(%s)" % vals[i][1]["s"]
expr[1]["res"] += "(%s)" % vals[i][1]["sT"]
else :
expr[0]["res"] += "%s*(%s)" % (pre,vals[i][1]["s"])
expr[1]["res"] += "%s*(%s)" % (pre,vals[i][1]["sT"])
# spinor case
elif(len(vals[i][1])==8 and "s1" in vals[i][1]) :
for jj in range(1,5) :
if(pre=="") :
expr[0]["s%s" % jj] += "(%s)" % vals[i][1]["s%s" % jj]
expr[1]["s%s" % jj] += "(%s)" % vals[i][1]["sT%s" % jj]
else :
expr[0]["s%s" % jj] += "%s*(%s)" % (pre,vals[i][1]["s%s" % jj])
expr[1]["s%s" % jj] += "%s*(%s)" % (pre,vals[i][1]["sT%s" % jj])
# vector
elif(len(vals[i][1])%4==0 and "t" in vals[i][1] and len(vals[i][1]["t"])==1 ) :
for i1 in imap :
if(pre=="") :
expr[0][i1] += "(%s)" % vals[i][1][i1][0]
else :
expr[0][i1] += "%s*(%s)" % (pre,vals[i][1][i1][0])
if(len(expr)==2) :
if(pre=="") :
expr[1][i1] +="(%s)" % vals[i][1][i1+"T"][0]
else :
expr[1][i1] +="%s*(%s)" % (pre,vals[i][1][i1+"T"][0])
# 4 fermion vertex case
elif(len(vals[i][1])==4 and "sT12" in vals[i][1]) :
if(pre=="") :
expr[0]["res"] += "(%s)" % vals[i][1]["s"]
expr[1]["res"] += "(%s)" % vals[i][1]["sT2"]
expr[2]["res"] += "(%s)" % vals[i][1]["sT1"]
expr[3]["res"] += "(%s)" % vals[i][1]["sT12"]
else :
expr[0]["res"] += "%s*(%s)" % (pre,vals[i][1]["s"])
expr[1]["res"] += "%s*(%s)" % (pre,vals[i][1]["sT2"])
expr[2]["res"] += "(%s)" % vals[i][1]["sT1"]
expr[3]["res"] += "(%s)" % vals[i][1]["sT12"]
# RS spinor
elif(len(vals[i][1])%4==0 and "t" in vals[i][1] and len(vals[i][1]["t"])==4 ) :
for i1 in imap :
for k in range(1,5) :
key = "%ss%s" % (i1,k)
if(pre=="") :
expr[0][key] += "(%s)" % vals[i][1][i1][k-1]
expr[1][key] += "(%s)" % vals[i][1][i1+"T"][k-1]
else :
expr[0][key] += "%s*(%s)" % (pre,vals[i][1][i1][k-1])
expr[1][key] += "%s*(%s)" % (pre,vals[i][1][i1+"T"][k-1])
else :
print 'problem with type',vals[i]
raise SkipThisVertex()
# no of particles in the vertex
vDim = len(vertex.lorentz[0].spins)
# compute the unit and apply it
unit = computeUnit2(dimCheck,vDim)
if(unit!="") :
for ii in range(0,len(expr)) :
for (key,val) in expr[ii].iteritems() :
expr[ii][key] = "(%s)*(%s)" % (val,unit)
return expr
def headerReplace(inval) :
return inval.replace("virtual","").replace("ScalarWaveFunction","").replace("SpinorWaveFunction","") \
.replace("SpinorBarWaveFunction","").replace("VectorWaveFunction","").replace("TensorWaveFunction","") \
.replace("Energy2","q2").replace("int","").replace("complex<Energy>","").replace("Energy","").replace("=-GeV","") \
.replace("const &","").replace("tcPDPtr","").replace(" "," ").replace("Complex","")
def combineComponents(result,offType,RS) :
for i in range(0,len(result)) :
for (key,value) in result[i].iteritems() :
output=py2cpp(value.strip(),True)
result[i][key]=output[0]
# simplest case, just a value
if(len(result[0])==1 and "res" in result[0]) :
for i in range(0,len(result)) :
result[i] = result[i]["res"]
result[i]=result[i].replace("1j","ii")
return
# calculate the substitutions
if(not isinstance(result[0],basestring)) :
subs=[]
for ii in range(0,len(result)) :
subs.append({})
for (key,val) in result[ii].iteritems() :
subs[ii]["out%s" % key]= val
# spinors
if("s1" in result[0]) :
stype = "LorentzSpinor"
sbtype = "LorentzSpinorBar"
if(offType.find("Bar")>0) : (stype,sbtype)=(sbtype,stype)
subs[0]["type"] = stype
result[0] = SpinorTemplate.substitute(subs[0])
subs[1]["type"] = sbtype
result[1] = SpinorTemplate.substitute(subs[1])
# tensors
elif("tt" in result[0]) :
for ii in range(0,len(result)) :
result[ii] = Template("LorentzTensor<double>(${outxx},\n${outxy},\n${outxz},\n${outxt},\n${outyx},\n${outyy},\n${outyz},\n${outyt},\n${outzx},\n${outzy},\n${outzz},\n${outzt},\n${outtx},\n${outty},\n${outtz},\n${outtt})").substitute(subs[ii])
result[ii]=result[ii].replace("(+","(")
# vectors
elif("t" in result[0]) :
for ii in range(0,len(result)) :
result[ii] = Template("LorentzVector<Complex>(${outx},\n${outy},\n${outz},\n${outt})").substitute(subs[ii])
result[ii]=result[ii].replace("(+","(")
# RS spinors
elif("ts1" in result[0]) :
stype = "LorentzRSSpinor"
sbtype = "LorentzRSSpinorBar"
if(offType.find("Bar")>0) : (stype,sbtype)=(sbtype,stype)
subs[0]["type"] = stype
result[0] = RSSpinorTemplate.substitute(subs[0])
subs[1]["type"] = sbtype
result[1] = RSSpinorTemplate.substitute(subs[1])
else :
print 'Type not implemented',result
raise SkipThisVertex()
for i in range(0,len(result)) :
result[i]=result[i].replace("1j","ii")
def generateEvaluateFunction(model,vertex,iloc,values,defns,vertexEval,cf,order) :
RS = "R" in vertex.lorentz[0].name
FM = "F" in vertex.lorentz[0].name
# extract the start and end of the spin chains
if( RS or FM ) :
fIndex = vertexEval[0][0][0][2]
else :
fIndex=0
# first construct the signature of the function
decls=[]
momenta=[]
waves=[]
offType,nf,poff,sig = constructSignature(vertex,order,iloc,decls,momenta,waves,fIndex)
# combine the different terms in the result
symbols=set()
localCouplings=[]
result=[]
ispin = 0
if(iloc!=0) :
ispin = vertex.lorentz[0].spins[iloc-1]
# put the lorentz structures and couplings together
for j in range(0,len(vertexEval)) :
# get the lorentz structure piece
expr = combineResult(vertexEval[j],nf,ispin,vertex)
# get the coupling for this bit
val, sym = py2cpp(values[j])
localCouplings.append("Complex local_C%s = %s;\n" % (j,val))
symbols |=sym
# put them together
vtype="Complex"
if("res" in expr[0] and offType=="VectorWaveFunction") :
vtype="LorentzPolarizationVector"
if(len(result)==0) :
for ii in range(0,len(expr)) :
result.append({})
for (key,val) in expr[ii].iteritems() :
result[ii][key] = " %s((local_C%s)*(%s)) " % (vtype,j,val)
else :
for ii in range(0,len(expr)) :
for (key,val) in expr[ii].iteritems():
result[ii][key] += " + %s((local_C%s)*(%s)) " % (vtype,j,val)
# for more complex types merge the spin/lorentz components
combineComponents(result,offType,RS)
# multiple by scalar wavefunctions
scalars=""
for i in range (0,len(vertex.lorentz[0].spins)) :
if(vertex.lorentz[0].spins[i]==1 and i+1!=iloc) :
scalars += "sca%s*" % (i+1)
if(scalars!="") :
for ii in range(0,len(result)) :
result[ii] = "(%s)*(%s)" % (result[ii],scalars[0:-1])
# vertex, just return the answer
if(iloc==0) :
result[0] = "return (%s)*(%s);\n" % (result[0],py2cpp(cf)[0])
if(FM or RS) :
for i in range(1,len(result)) :
result[i] = "return (%s)*(%s);\n" % (result[i],py2cpp(cf)[0])
# off-shell particle
else :
# off-shell scalar
if(vertex.lorentz[0].spins[iloc-1] == 1 ) :
result[0] = scaTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],res=result[0])
if(FM or RS) :
result[1] = scaTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],res=result[1])
# off-shell fermion
elif(vertex.lorentz[0].spins[iloc-1] == 2 ) :
result[0] = sTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],offTypeA=offType.replace("WaveFunction",""),
res=result[0].replace( "M%s" % iloc, "mass" ),offTypeB=offType)
if(FM or RS) :
if(offType.find("Bar")>0) :
offTypeT=offType.replace("Bar","")
else :
offTypeT=offType.replace("Spinor","SpinorBar")
result[1] = sTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],offTypeA=offTypeT.replace("WaveFunction",""),
res=result[1].replace( "M%s" % iloc, "mass" ),offTypeB=offTypeT)
# off-shell vector
elif(vertex.lorentz[0].spins[iloc-1] == 3 ) :
result[0] = vecTemplate.format(iloc=iloc,res=result[0],cf=py2cpp(cf)[0])
if(FM or RS) :
result[1] = vecTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],res=result[1])
elif(vertex.lorentz[0].spins[iloc-1] == 4 ) :
if(offType.find("Bar")>0) :
offTypeT=offType.replace("Bar","")
else :
offTypeT=offType.replace("Spinor","SpinorBar")
result[1] = RSTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],offTypeA=offTypeT.replace("WaveFunction",""),
res=result[1].replace( "M%s" % iloc, "mass" ),offTypeB=offTypeT)
result[0] = RSTemplate.format(iloc=iloc,cf=py2cpp(cf[0])[0],offTypeA=offType.replace("WaveFunction",""),
res=result[0].replace( "M%s" % iloc, "mass" ),offTypeB=offType)
# tensors
elif(vertex.lorentz[0].spins[iloc-1]) :
if(RS) :
print "RS spinors and tensors not handled"
raise SkipThisVertex()
result[0] = tenTemplate.format(iloc=iloc,cf=py2cpp(cf)[0],res=result[0])
if(FM or RS) :
result[1] = tenTemplate.format(iloc=iloc,cf=py2cpp(cf)[0],res=result[1])
else :
print 'Unknown spin for off-shell particle',vertex.lorentz[0].spins[iloc-1]
raise SkipThisVertex()
# check if momenta defns needed to clean up compile of code
for (key,val) in defns.iteritems() :
if( isinstance(key, basestring)) :
if(key.find("vvP")==0) :
momenta[int(key[3])-1][0] = True
else :
for vals in key :
if(vals.type=="P") :
momenta[vals.value-1][0] = True
# cat the definitions
defString=""
for (key,value) in defns.iteritems() :
if(value[0]=="") : continue
if(value[0][0]=="V" or value[0][0]=="T") :
defString+=" %s\n" %value[1]
for (key,value) in defns.iteritems() :
if(value[0]=="") : continue
if(value[0][0]!="V" and value[0][0]!="T") :
defString+=" %s\n" %value[1]
if(len(result)<=2) :
sorder=swapOrder(vertex,iloc,momenta,fIndex)
else :
sorder=""
momentastring=""
for i in range(0,len(momenta)) :
if(momenta[i][0] and momenta[i][1]!="") :
momentastring+=momenta[i][1]+"\n "
# special for 4-point VVVV
if(vertex.lorentz[0].spins.count(3)==4 and iloc==0) :
sig=sig.replace("Energy2","Energy2,int")
header="virtual %s" % sig
sig=sig.replace("=-GeV","")
symboldefs = [ def_from_model(model,s) for s in symbols ]
function = evaluateTemplate.format(decl=sig,momenta=momentastring,defns=defString,
waves="\n ".join(waves),symbols='\n '.join(symboldefs),
couplings="\n ".join(localCouplings),
result=result[0],swap=sorder)
# special for transpose
if(FM or RS) :
h2=header
if(not RS) :
h2=header.replace("evaluate","evaluateN")
function=function.replace("evaluate(","evaluateN(")
headers=[]
newHeader=""
for ifunction in range(1,len(result)) :
waveNew=[]
momentastring=""
htemp = header.split(",")
irs=-1
isp=-1
# RS case
if(RS) :
# sort out the wavefunctions
for i in range(0,len(waves)) :
if(waves[i].find("Spinor")<0) :
waveNew.append(waves[i])
continue
if(waves[i].find("Bar")>0) :
waveNew.append(waves[i].replace("Bar","").replace("bar",""))
else :
waveNew.append(waves[i].replace("Spinor","SpinorBar").replace(" s"," sbar").replace("Rs","Rsbar"))
# sort out the momenta definitions
for i in range(0,len(momenta)) :
if(momenta[i][0] and momenta[i][1]!="") :
if(momenta[i][1].find("barW")>0) :
momentastring+=momenta[i][1].replace("barW","W")+"\n "
elif(momenta[i][1].find("sW")>0) :
momentastring+=momenta[i][1].replace("sW","sbarW")+"\n "
else :
momentastring+=momenta[i][1]+"\n "
# header string
for i in range(0,len(htemp)) :
if(htemp[i].find("RS")>0) :
if(htemp[i].find("Bar")>0) :
htemp[i]=htemp[i].replace("Bar","").replace("RsbarW","RsW")
else :
htemp[i]=htemp[i].replace("Spinor","SpinorBar").replace("RsW","RsbarW")
if(i>0) : irs=i
elif(htemp[i].find("Spinor")>0) :
if(htemp[i].find("Bar")>0) :
htemp[i]=htemp[i].replace("Bar","").replace("sbarW","sW")
else :
htemp[i]=htemp[i].replace("Spinor","SpinorBar").replace("sW","sbarW")
if(i>0) : isp=i
if(irs>0 and isp >0) :
htemp[irs],htemp[isp] = htemp[isp],htemp[irs]
# fermion case
else :
htemp2 = header.split(",")
# which fermions to exchange
if(len(fIndex)==2) :
isp = (fIndex[0],)
ibar = (fIndex[1],)
else :
if(ifunction==1) :
isp = (fIndex[2],)
ibar = (fIndex[3],)
elif(ifunction==2) :
isp = (fIndex[0],)
ibar = (fIndex[1],)
elif(ifunction==3) :
isp = (fIndex[0],fIndex[2])
ibar = (fIndex[1],fIndex[3])
# wavefunctions
for i in range(0,len(waves)) :
if(waves[i].find("Spinor")<0) :
waveNew.append(waves[i])
continue
if(waves[i].find("Bar")>0) :
found=False
for itest in range(0,len(ibar)) :
if(waves[i].find("sbarW%s"%ibar[itest])>=0) :
waveNew.append(waves[i].replace("Bar","").replace("bar",""))
found=True
break
if(not found) : waveNew.append(waves[i])
else :
found=False
for itest in range(0,len(isp)) :
if(waves[i].find("sW%s"%isp[itest])>=0) :
waveNew.append(waves[i].replace("Spinor","SpinorBar").replace(" s"," sbar"))
found=True
break
if(not found) : waveNew.append(waves[i])
# momenta definitions
for i in range(0,len(momenta)) :
if(momenta[i][0] and momenta[i][1]!="") :
if(momenta[i][1].find("barW")>0) :
found = False
for itest in range(0,len(ibar)) :
if(momenta[i][1].find("barW%s"%ibar[itest])>=0) :
momentastring+=momenta[i][1].replace("barW","W")+"\n "
found=True
break
if(not found) :
momentastring+=momenta[i][1]+"\n "
elif(momenta[i][1].find("sW")>0) :
found=False
for itest in range(0,len(isp)) :
if(momenta[i][1].find("sW%s"%isp[itest])>=0) :
momentastring+=momenta[i][1].replace("sW","sbarW")+"\n "
found=True
break
if(not found) :
momentastring+=momenta[i][1]+"\n "
else :
momentastring+=momenta[i][1]+"\n "
# header
for i in range(0,len(htemp)) :
if(htemp[i].find("Spinor")<0) : continue
if(htemp[i].find("Bar")>0) :
if(i==0) :
htemp[i] =htemp [i].replace("Bar","")
htemp2[i]=htemp2[i].replace("Bar","")
continue
for itest in range(0,len(ibar)) :
if(htemp[i].find("sbarW%s"%ibar[itest])>=0) :
htemp[i] =htemp [i].replace("Bar","").replace("sbarW","sW")
htemp2[i]=htemp2[i].replace("Bar","").replace("sbarW%s"%ibar[itest],"sW%s"%isp[itest])
break
else :
if(i==0) :
htemp [i]=htemp [i].replace("Spinor","SpinorBar")
htemp2[i]=htemp2[i].replace("Spinor","SpinorBar")
continue
for itest in range(0,len(isp)) :
if(htemp[i].find("sW%s"%isp[itest])>=0) :
htemp [i]=htemp [i].replace("Spinor","SpinorBar").replace("sW","sbarW")
htemp2[i]=htemp2[i].replace("Spinor","SpinorBar").replace("sW%s"%isp[itest],"sbarW%s"%ibar[itest])
break
# header for transposed function
hnew = ','.join(htemp)
hnew = hnew.replace("virtual ","").replace("=-GeV","")
if(not RS) :
theader = ','.join(htemp2)
theader = theader.replace("virtual ","").replace("=-GeV","")
if(len(result)==2) :
hnew =hnew .replace("evaluate","evaluateT")
theader=theader.replace("evaluate","evaluateT")
else :
hnew =hnew .replace("evaluate","evaluateT%s" % ifunction)
theader=theader.replace("evaluate","evaluateT%s" % ifunction)
if(iloc not in fIndex) :
theader = headerReplace(theader)
else :
theader = headerReplace(h2).replace("evaluateN","evaluateT")
headers.append(theader)
newHeader += hnew +";\n"
else :
newHeader += hnew
fnew = evaluateTemplate.format(decl=hnew,momenta=momentastring,defns=defString,
waves="\n ".join(waveNew),symbols='\n '.join(symboldefs),
couplings="\n ".join(localCouplings),
result=result[ifunction],swap=sorder)
function +="\n" + fnew
if(FM and not RS) :
if(len(result)==2) :
if(iloc!=fIndex[1]) :
fi=1
stype="sbar"
else :
fi=0
stype="s"
header = vTemplateT.format(header=header.replace("Energy2,","Energy2 q2,"),
normal=headerReplace(h2),
transpose=theader,type=stype,
iloc=fIndex[fi],id=vertex.particles[fIndex[fi]-1].pdg_code) \
+newHeader+h2.replace("virtual","")
else :
sorder = swapOrderFFFF(vertex,iloc,fIndex)
header = vTemplate4.format(header=header.replace("Energy2,","Energy2 q2,"),
iloc1=fIndex[1],iloc2=fIndex[3],swap=sorder,
id1=vertex.particles[fIndex[1]-1].pdg_code,
id2=vertex.particles[fIndex[3]-1].pdg_code,
cf=py2cpp(cf)[0],
res1=headerReplace(h2).replace("W",""),
res2=headers[0].replace("W",""),
res3=headers[1].replace("W",""),
res4=headers[2].replace("W",""))\
+newHeader+h2.replace("virtual","")
else :
header=header + ";\n" + newHeader
return (header,function)
evaluateMultiple = """\
{decl} {{
{code}
}}
"""
def multipleEvaluate(vertex,spin,defns) :
if(spin==1) :
name="scaW"
elif(spin==3) :
name="vW"
else :
print 'Evaluate multiple problem',spin
raise SkipThisVertex()
if(len(defns)==0) : return ("","")
header = defns[0]
ccdefn = header.replace("=-GeV","").replace("virtual ","").replace("Energy2","Energy2 q2")
code=""
spins=vertex.lorentz[0].spins
iloc=1
waves=[]
for i in range(0,len(spins)) :
if(spins[i]==spin) :
waves.append("%s%s" %(name,i+1))
for i in range(0,len(spins)) :
if(spins[i]==spin) :
if(iloc==1) : el=""
else : el="else "
call = headerReplace(defns[iloc])
if(iloc!=1) :
call = call.replace(waves[0],waves[iloc-1])
pdgid = vertex.particles[i].pdg_code
code += " %sif(out->id()==%s) return %s;\n" % (el,pdgid,call)
iloc+=1
code+=" else assert(false);\n"
return (header,evaluateMultiple.format(decl=ccdefn,code=code))
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 8:06 PM (1 d, 5 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805969
Default Alt Text
(170 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment