Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/Matchbox/Matching/QTildeMatching.cc b/MatrixElement/Matchbox/Matching/QTildeMatching.cc
--- a/MatrixElement/Matchbox/Matching/QTildeMatching.cc
+++ b/MatrixElement/Matchbox/Matching/QTildeMatching.cc
@@ -1,498 +1,498 @@
// -*- C++ -*-
//
// QTildeMatching.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the QTildeMatching class.
//
#include "QTildeMatching.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/TildeKinematics.h"
using namespace Herwig;
QTildeMatching::QTildeMatching()
- : theCorrectForXZMismatch(false) {}
+ : theCorrectForXZMismatch(true) {}
QTildeMatching::~QTildeMatching() {}
IBPtr QTildeMatching::clone() const {
return new_ptr(*this);
}
IBPtr QTildeMatching::fullclone() const {
return new_ptr(*this);
}
void QTildeMatching::checkCutoff() {
if ( showerTildeKinematics() ) {
showerTildeKinematics()->
prepare(realCXComb(),bornCXComb());
showerTildeKinematics()->dipole(dipole());
showerTildeKinematics()->getShowerVariables();
}
}
void QTildeMatching::getShowerVariables() {
// already filled from checkCutoff in this case
if ( showerTildeKinematics() )
return;
// get the shower variables
calculateShowerVariables();
// check for the cutoff
dipole()->isAboveCutoff(isAboveCutoff());
// get the hard scale
dipole()->showerHardScale(hardScale());
// check for phase space
dipole()->isInShowerPhasespace(isInShowerPhasespace());
}
bool QTildeMatching::isInShowerPhasespace() const {
assert((theQTildeSudakov->cutOffOption() == 0 || theQTildeSudakov->cutOffOption() == 2) &&
"implementation only provided for default and pt cutoff");
Energy qtildeHard = ZERO;
Energy qtilde = dipole()->showerScale();
assert(!dipole()->showerParameters().empty());
double z = dipole()->showerParameters()[0];
// FF
if ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() > 1 ) {
qtildeHard =
theQTildeFinder->
calculateFinalFinalScales(bornCXComb()->meMomenta()[dipole()->bornEmitter()],
bornCXComb()->meMomenta()[dipole()->bornSpectator()],
bornCXComb()->mePartonData()[dipole()->bornEmitter()]->iColour() == PDT::Colour3).first;
}
// FI
if ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() < 2 ) {
qtildeHard =
theQTildeFinder->
calculateInitialFinalScales(bornCXComb()->meMomenta()[dipole()->bornSpectator()],
bornCXComb()->meMomenta()[dipole()->bornEmitter()],false).second;
}
// IF
if ( dipole()->bornEmitter() < 2 && dipole()->bornSpectator() > 1 ) {
qtildeHard =
theQTildeFinder->
calculateInitialFinalScales(bornCXComb()->meMomenta()[dipole()->bornEmitter()],
bornCXComb()->meMomenta()[dipole()->bornSpectator()],false).first;
if ( z < (dipole()->bornEmitter() == 0 ? bornCXComb()->lastX1() : bornCXComb()->lastX2()) )
return false;
}
// II
if ( dipole()->bornEmitter() < 2 && dipole()->bornSpectator() < 2 ) {
qtildeHard =
theQTildeFinder->
calculateInitialInitialScales(bornCXComb()->meMomenta()[dipole()->bornEmitter()],
bornCXComb()->meMomenta()[dipole()->bornSpectator()]).first;
if ( z < (dipole()->bornEmitter() == 0 ? bornCXComb()->lastX1() : bornCXComb()->lastX2()) )
return false;
}
Energy Qg = theQTildeSudakov->kinScale();
Energy2 pt2 = ZERO;
if ( dipole()->bornEmitter() > 1 ) {
Energy mu = max(Qg,realCXComb()->meMomenta()[dipole()->realEmitter()].mass());
if ( bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id() == ParticleID::g )
pt2 = sqr(z*(1.-z)*qtilde) - sqr(mu);
else
pt2 = sqr(z*(1.-z)*qtilde) - sqr((1.-z)*mu) - z*sqr(Qg);
}
if ( dipole()->bornEmitter() < 2 ) {
pt2 = sqr((1.-z)*qtilde) - z*sqr(Qg);
}
if ( pt2 < theQTildeSudakov->pT2min() )
return false;
bool hardVeto = restrictPhasespace() && sqrt(pt2) >= dipole()->showerHardScale();
return qtilde <= qtildeHard && !hardVeto;
}
bool QTildeMatching::isAboveCutoff() const {
assert((theQTildeSudakov->cutOffOption() == 0 || theQTildeSudakov->cutOffOption() == 2) &&
"implementation only provided for default and pt cutoff");
Energy qtilde = dipole()->showerScale();
assert(!dipole()->showerParameters().empty());
double z = dipole()->showerParameters()[0];
Energy Qg = theQTildeSudakov->kinScale();
if ( dipole()->bornEmitter() > 1 ) {
Energy mu = max(Qg,realCXComb()->meMomenta()[dipole()->realEmitter()].mass());
if ( bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id() == ParticleID::g )
return sqr(z*(1.-z)*qtilde) - sqr(mu) >= theQTildeSudakov->pT2min();
else
return sqr(z*(1.-z)*qtilde) - sqr((1.-z)*mu) - z*sqr(Qg) >= theQTildeSudakov->pT2min();
}
if ( dipole()->bornEmitter() < 2 ) {
return
sqr((1.-z)*qtilde) - z*sqr(Qg) >= theQTildeSudakov->pT2min();
}
return false;
}
CrossSection QTildeMatching::dSigHatDR() const {
assert(!dipole()->showerParameters().empty());
pair<Energy2,double> vars =
make_pair(sqr(dipole()->showerScale()),
dipole()->showerParameters()[0]);
pair<int,int> ij(dipole()->bornEmitter(),
dipole()->bornSpectator());
double ccme2 =
dipole()->underlyingBornME()->largeNColourCorrelatedME2(ij,theLargeNBasis);
ccme2 *=
dipole()->underlyingBornME()->me2() /
dipole()->underlyingBornME()->largeNME2(theLargeNBasis);
Energy2 prop = ZERO;
if ( dipole()->bornEmitter() > 1 ) {
prop =
(realCXComb()->meMomenta()[dipole()->realEmitter()] +
realCXComb()->meMomenta()[dipole()->realEmission()]).m2()
- bornCXComb()->meMomenta()[dipole()->bornEmitter()].m2();
} else {
prop =
2.*vars.second*(realCXComb()->meMomenta()[dipole()->realEmitter()]*
realCXComb()->meMomenta()[dipole()->realEmission()]);
}
// note alphas included downstream from subtractionScaleWeight()
double xme2 = -8.*Constants::pi*ccme2*splitFn(vars)*realXComb()->lastSHat()/prop;
xme2 *=
pow(realCXComb()->lastSHat() / bornCXComb()->lastSHat(),
bornCXComb()->mePartonData().size()-4.);
double bornPDF = bornPDFWeight(dipole()->underlyingBornME()->lastScale());
if ( bornPDF == 0.0 )
return ZERO;
xme2 *= bornPDF;
// take care of mismatch between z and x as we are approaching the
// hard phase space boundary
// TODO get rid of this useless scale option business and simplify PDF handling in here
if ( dipole()->bornEmitter() < 2 && theCorrectForXZMismatch ) {
Energy2 emissionScale = ZERO;
if ( emissionScaleInSubtraction() == showerScale ) {
emissionScale = showerFactorizationScale();
} else if ( emissionScaleInSubtraction() == realScale ) {
emissionScale = dipole()->realEmissionME()->lastScale();
} else if ( emissionScaleInSubtraction() == bornScale ) {
emissionScale = dipole()->underlyingBornME()->lastScale();
}
double xzMismatch =
dipole()->subtractionParameters()[0] / dipole()->showerParameters()[0];
double realCorrectedPDF =
dipole()->bornEmitter() == 0 ?
dipole()->realEmissionME()->pdf1(emissionScale,theExtrapolationX,
xzMismatch) :
dipole()->realEmissionME()->pdf2(emissionScale,theExtrapolationX,
xzMismatch);
double realPDF =
dipole()->bornEmitter() == 0 ?
dipole()->realEmissionME()->pdf1(emissionScale,theExtrapolationX,1.0) :
dipole()->realEmissionME()->pdf2(emissionScale,theExtrapolationX,1.0);
if ( realPDF == 0.0 || realCorrectedPDF == 0.0 )
return ZERO;
xme2 *= realCorrectedPDF / realPDF;
}
Energy qtilde = sqrt(vars.first);
double z = vars.second;
Energy2 pt2 = ZERO;
Energy Qg = theQTildeSudakov->kinScale();
if ( dipole()->bornEmitter() > 1 ) {
Energy mu = max(Qg,realCXComb()->meMomenta()[dipole()->realEmitter()].mass());
if ( bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id() == ParticleID::g )
pt2 = sqr(z*(1.-z)*qtilde) - sqr(mu);
else
pt2 = sqr(z*(1.-z)*qtilde) - sqr((1.-z)*mu) - z*sqr(Qg);
}
if ( dipole()->bornEmitter() < 2 ) {
pt2 = sqr((1.-z)*qtilde) - z*sqr(Qg);
}
assert(pt2 >= ZERO);
if ( profileScales() )
xme2 *= profileScales()->hardScaleProfile(dipole()->showerHardScale(),sqrt(pt2));
CrossSection res =
sqr(hbarc) *
realXComb()->jacobian() *
subtractionScaleWeight() *
xme2 /
(2. * realXComb()->lastSHat());
return res;
}
double QTildeMatching::me2() const {
throw Exception() << "QTildeMatching::me2(): Not intented to use. Disable the ShowerApproximationGenerator."
<< Exception::runerror;
return 0.;
}
void QTildeMatching::calculateShowerVariables() const {
Lorentz5Momentum n;
Energy2 Q2 = ZERO;
const Lorentz5Momentum& pb = bornCXComb()->meMomenta()[dipole()->bornEmitter()];
const Lorentz5Momentum& pc = bornCXComb()->meMomenta()[dipole()->bornSpectator()];
if ( dipole()->bornEmitter() > 1 ) {
Q2 = (pb+pc).m2();
} else {
Q2 = -(pb-pc).m2();
}
if ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() > 1 ) {
double b = sqr(bornCXComb()->meMomenta()[dipole()->bornEmitter()].m())/Q2;
double c = sqr(bornCXComb()->meMomenta()[dipole()->bornSpectator()].m())/Q2;
double lambda = sqrt(1.+sqr(b)+sqr(c)-2.*b-2.*c-2.*b*c);
n = (1.-0.5*(1.-b+c-lambda))*pc - 0.5*(1.-b+c-lambda)*pb;
}
if ( dipole()->bornEmitter() > 1 && dipole()->bornSpectator() < 2 ) {
n = bornCXComb()->meMomenta()[dipole()->bornSpectator()];
}
if ( dipole()->bornEmitter() < 2 && dipole()->bornSpectator() > 1 ) {
double c = sqr(bornCXComb()->meMomenta()[dipole()->bornSpectator()].m())/Q2;
n = (1.+c)*pc - c*pb;
}
if ( dipole()->bornEmitter() < 2 && dipole()->bornSpectator() < 2 ) {
n = bornCXComb()->meMomenta()[dipole()->bornSpectator()];
}
// the light-cone condition is numerically not very stable, so we
// explicitly push it on the light-cone here
n.setMass(ZERO);
n.rescaleEnergy();
double z = 0.0;
if ( dipole()->bornEmitter() > 1 ) {
z = 1. -
(n*realCXComb()->meMomenta()[dipole()->realEmission()])/
(n*bornCXComb()->meMomenta()[dipole()->bornEmitter()]);
} else {
z = 1. -
(n*realCXComb()->meMomenta()[dipole()->realEmission()])/
(n*realCXComb()->meMomenta()[dipole()->realEmitter()]);
}
Energy2 qtilde2 = ZERO;
Energy2 q2 = ZERO;
if ( dipole()->bornEmitter() > 1 ) {
q2 =
(realCXComb()->meMomenta()[dipole()->realEmitter()] + realCXComb()->meMomenta()[dipole()->realEmission()]).m2();
qtilde2 = (q2 - bornCXComb()->meMomenta()[dipole()->bornEmitter()].m2())/(z*(1.-z));
} else {
q2 =
-(realCXComb()->meMomenta()[dipole()->realEmitter()] - realCXComb()->meMomenta()[dipole()->realEmission()]).m2();
qtilde2 = (q2 + bornCXComb()->meMomenta()[dipole()->bornEmitter()].m2())/(1.-z);
}
assert(qtilde2 >= ZERO && z >= 0.0 && z <= 1.0);
dipole()->showerScale(sqrt(qtilde2));
dipole()->showerParameters().resize(1);
dipole()->showerParameters()[0] = z;
}
double QTildeMatching::splitFn(const pair<Energy2,double>& vars) const {
const Energy2& qtilde2 = vars.first;
const double& z = vars.second;
double Nc = SM().Nc();
// final state branching
if ( dipole()->bornEmitter() > 1 ) {
// final state quark quark branching
if ( abs(bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id()) < 7 ) {
Energy m = bornCXComb()->mePartonData()[dipole()->bornEmitter()]->hardProcessMass();
return
((sqr(Nc)-1.)/(2.*Nc))*(1+sqr(z)-2.*sqr(m)/(z*qtilde2))/(1.-z);
}
// final state gluon branching
if ( bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id() == ParticleID::g ) {
if ( realCXComb()->mePartonData()[dipole()->realEmission()]->id() == ParticleID::g ) {
// ATTENTION the factor 2 here is intentional as it cancels to the 1/2
// stemming from the large-N colour correlator
return 2.*Nc*(z/(1.-z)+(1.-z)/z+z*(1.-z));
}
if ( abs(realCXComb()->mePartonData()[dipole()->realEmission()]->id()) < 7 ) {
Energy m = realCXComb()->mePartonData()[dipole()->realEmission()]->hardProcessMass();
return (1./2.)*(1.-2.*z*(1.-z)+2.*sqr(m)/(z*(1.-z)*qtilde2));
}
}
// final state squark branching
if ((abs(bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id()) > 1000000 &&
abs(bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id()) < 1000007) ||
(abs(bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id()) > 2000000 &&
abs(bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id()) < 2000007)){
Energy m = bornCXComb()->mePartonData()[dipole()->bornEmitter()]->hardProcessMass();
return ((sqr(Nc)-1.)/Nc)*(z-sqr(m)/(z*qtilde2))/(1.-z);
}
// final state gluino branching
if (bornCXComb()->mePartonData()[dipole()->bornEmitter()]->id() == 1000021){
Energy m = bornCXComb()->mePartonData()[dipole()->bornEmitter()]->hardProcessMass();
return Nc*(1.+sqr(z)-2.*sqr(m)/(z*qtilde2))/(1.-z);
}
}
// initial state branching
if ( dipole()->bornEmitter() < 2 ) {
// g/g
if ( realCXComb()->mePartonData()[dipole()->realEmitter()]->id() == ParticleID::g &&
realCXComb()->mePartonData()[dipole()->realEmission()]->id() == ParticleID::g ) {
// see above for factor of 2
return 2.*Nc*(z/(1.-z)+(1.-z)/z+z*(1.-z));
}
// q/q
if ( abs(realCXComb()->mePartonData()[dipole()->realEmitter()]->id()) < 7 &&
realCXComb()->mePartonData()[dipole()->realEmission()]->id() == ParticleID::g ) {
return
((sqr(Nc)-1.)/(2.*Nc))*(1+sqr(z))/(1.-z);
}
// g/q
if ( realCXComb()->mePartonData()[dipole()->realEmitter()]->id() == ParticleID::g &&
abs(realCXComb()->mePartonData()[dipole()->realEmission()]->id()) < 7 ) {
return (1./2.)*(1.-2.*z*(1.-z));
}
// q/g
if ( abs(realCXComb()->mePartonData()[dipole()->realEmitter()]->id()) < 7 &&
abs(realCXComb()->mePartonData()[dipole()->realEmission()]->id()) < 7 ) {
return
((sqr(Nc)-1.)/(2.*Nc))*(1+sqr(1.-z))/z;
}
}
return 0.0;
}
// If needed, insert default implementations of virtual function defined
// in the InterfacedBase class here (using ThePEG-interfaced-impl in Emacs).
void QTildeMatching::doinit() {
assert(theShowerHandler && theQTildeFinder && theQTildeSudakov);
theShowerHandler->init();
theQTildeFinder->init();
theQTildeSudakov->init();
if ( theShowerHandler->scaleFactorOption() < 2 ) {
hardScaleFactor(theShowerHandler->hardScaleFactor());
factorizationScaleFactor(theShowerHandler->factorizationScaleFactor());
renormalizationScaleFactor(theShowerHandler->renormalizationScaleFactor());
}
profileScales(theShowerHandler->profileScales());
restrictPhasespace(theShowerHandler->restrictPhasespace());
hardScaleIsMuF(theShowerHandler->hardScaleIsMuF());
ShowerApproximation::doinit();
}
void QTildeMatching::doinitrun() {
assert(theShowerHandler && theQTildeFinder && theQTildeSudakov);
theShowerHandler->initrun();
theQTildeFinder->initrun();
theQTildeSudakov->initrun();
ShowerApproximation::doinitrun();
}
void QTildeMatching::persistentOutput(PersistentOStream & os) const {
os << theQTildeFinder << theQTildeSudakov
<< theShowerHandler << theCorrectForXZMismatch;
}
void QTildeMatching::persistentInput(PersistentIStream & is, int) {
is >> theQTildeFinder >> theQTildeSudakov
>> theShowerHandler >> theCorrectForXZMismatch;
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<QTildeMatching,Herwig::ShowerApproximation>
describeHerwigQTildeMatching("Herwig::QTildeMatching", "HwShower.so HwQTildeMatching.so");
void QTildeMatching::Init() {
static ClassDocumentation<QTildeMatching> documentation
("QTildeMatching implements NLO matching with the default shower.");
static Reference<QTildeMatching,QTildeFinder> interfaceQTildeFinder
("QTildeFinder",
"Set the partner finder to calculate hard scales.",
&QTildeMatching::theQTildeFinder, false, false, true, false, false);
static Reference<QTildeMatching,QTildeSudakov> interfaceQTildeSudakov
("QTildeSudakov",
"Set the partner finder to calculate hard scales.",
&QTildeMatching::theQTildeSudakov, false, false, true, false, false);
static Reference<QTildeMatching,ShowerHandler> interfaceShowerHandler
("ShowerHandler",
"",
&QTildeMatching::theShowerHandler, false, false, true, true, false);
static Switch<QTildeMatching,bool> interfaceCorrectForXZMismatch
("CorrectForXZMismatch",
"Correct for x/z mismatch near hard phase space boundary.",
- &QTildeMatching::theCorrectForXZMismatch, false, false, false);
+ &QTildeMatching::theCorrectForXZMismatch, true, false, false);
static SwitchOption interfaceCorrectForXZMismatchYes
(interfaceCorrectForXZMismatch,
"Yes",
"Include the correction factor.",
true);
static SwitchOption interfaceCorrectForXZMismatchNo
(interfaceCorrectForXZMismatch,
"No",
"Do not include the correction factor.",
false);
}
diff --git a/src/Matchbox/LO-NoShower.in.in b/src/Matchbox/LO-NoShower.in.in
--- a/src/Matchbox/LO-NoShower.in.in
+++ b/src/Matchbox/LO-NoShower.in.in
@@ -1,46 +1,37 @@
# -*- ThePEG-repository -*-
read Matchbox/LO.in
cd /Herwig/EventHandlers
set EventHandler:CascadeHandler NULL
set EventHandler:HadronizationHandler NULL
set EventHandler:DecayHandler NULL
erase EventHandler:PostSubProcessHandlers[0]
cd /Herwig/Analysis
set Basics:CheckQuark No
cd /Herwig/Analysis
@CREATE_RIVET@ ThePEG::NLORivetAnalysis Rivet RivetAnalysis.so
@CREATE_HEPMC@ ThePEG::NLOHepMCFile HepMC HepMCAnalysis.so
cd /Herwig/Particles
do d:AdjustNominalMass
do dbar:AdjustNominalMass
do u:AdjustNominalMass
do ubar:AdjustNominalMass
do s:AdjustNominalMass
do sbar:AdjustNominalMass
do c:AdjustNominalMass
do cbar:AdjustNominalMass
do b:AdjustNominalMass
do bbar:AdjustNominalMass
-do e+:AdjustNominalMass
-do e-:AdjustNominalMass
do mu+:AdjustNominalMass
do mu-:AdjustNominalMass
do tau+:AdjustNominalMass
do tau-:AdjustNominalMass
-do nu_e:AdjustNominalMass
-do nu_ebar:AdjustNominalMass
-do nu_mu:AdjustNominalMass
-do nu_mubar:AdjustNominalMass
-do nu_tau:AdjustNominalMass
-do nu_taubar:AdjustNominalMass
-
diff --git a/src/Matchbox/NLO-NoShower.in.in b/src/Matchbox/NLO-NoShower.in.in
--- a/src/Matchbox/NLO-NoShower.in.in
+++ b/src/Matchbox/NLO-NoShower.in.in
@@ -1,48 +1,39 @@
# -*- ThePEG-repository -*-
cd /Herwig/EventHandlers
set EventHandler:CascadeHandler NULL
set EventHandler:HadronizationHandler NULL
set EventHandler:DecayHandler NULL
erase EventHandler:PostSubProcessHandlers[0]
cd /Herwig/Analysis
set Basics:CheckQuark No
cd /Herwig/MatrixElements/Matchbox
set Factory:SubProcessGroups On
cd /Herwig/Analysis
@CREATE_RIVET@ ThePEG::NLORivetAnalysis Rivet RivetAnalysis.so
@CREATE_HEPMC@ ThePEG::NLOHepMCFile HepMC HepMCAnalysis.so
cd /Herwig/Particles
do d:AdjustNominalMass
do dbar:AdjustNominalMass
do u:AdjustNominalMass
do ubar:AdjustNominalMass
do s:AdjustNominalMass
do sbar:AdjustNominalMass
do c:AdjustNominalMass
do cbar:AdjustNominalMass
do b:AdjustNominalMass
do bbar:AdjustNominalMass
-do e+:AdjustNominalMass
-do e-:AdjustNominalMass
do mu+:AdjustNominalMass
do mu-:AdjustNominalMass
do tau+:AdjustNominalMass
do tau-:AdjustNominalMass
-do nu_e:AdjustNominalMass
-do nu_ebar:AdjustNominalMass
-do nu_mu:AdjustNominalMass
-do nu_mubar:AdjustNominalMass
-do nu_tau:AdjustNominalMass
-do nu_taubar:AdjustNominalMass
-

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:55 PM (1 d, 4 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805939
Default Alt Text
(20 KB)

Event Timeline