Page MenuHomeHEPForge

No OneTemporary

Index: trunk/share/tests/ref-output-quad/circe1_1.ref
===================================================================
--- trunk/share/tests/ref-output-quad/circe1_1.ref (revision 5378)
+++ trunk/share/tests/ref-output-quad/circe1_1.ref (revision 5379)
@@ -1,119 +1,120 @@
+?openmp_logging = false
?vis_history = false
?integration_timer = false
$method = "omega"
| Process library 'circe1_1_lib': recorded process 'circe1_1_p1'
| Process library 'circe1_1_lib': recorded process 'circe1_1_p2'
| Process library 'circe1_1_lib': compiling ...
| Process library 'circe1_1_lib': writing makefile
| Process library 'circe1_1_lib': removing old files
| Process library 'circe1_1_lib': writing driver
| Process library 'circe1_1_lib': creating source code
| Process library 'circe1_1_lib': compiling sources
| Process library 'circe1_1_lib': linking
| Process library 'circe1_1_lib': loading
| Process library 'circe1_1_lib': ... success.
$phs_method = "wood"
$integration_method = "vamp"
sqrts = 5.000000000000E+02
openmp_num_threads = 1
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 0
| Initializing integration for process circe1_1_p1:
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 5.1100000E-04 GeV)
| e+ (mass = 5.1100000E-04 GeV)
| sqrts = 5.000000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file 'circe1_1_p1_i1.phs'
| Phase space: 1 channels, 2 dimensions
| Phase space: found 1 channel, collected in 1 grove.
| Phase space: Using 1 equivalence between channels.
| Phase space: wood
Warning: No cuts have been defined.
| Starting integration for process 'circe1_1_p1'
| Integrator: 1 chains, 1 channels, 2 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 1000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|
1 800 3.4721369E+02 3.08E-01 0.09 0.03* 66.65
2 800 3.4793298E+02 2.41E-01 0.07 0.02* 60.65
3 800 3.4792475E+02 2.44E-01 0.07 0.02 79.69
|-----------------------------------------------------------------------------|
3 2400 3.4775909E+02 1.50E-01 0.04 0.02 79.69 2.06 3
|-----------------------------------------------------------------------------|
4 800 3.4755512E+02 2.48E-01 0.07 0.02 79.61
5 800 3.4721533E+02 2.48E-01 0.07 0.02 79.53
6 800 3.4728703E+02 2.46E-01 0.07 0.02* 79.55
|-----------------------------------------------------------------------------|
6 2400 3.4735199E+02 1.43E-01 0.04 0.02 79.55 0.52 3
|=============================================================================|
n_events = 1
| Starting simulation for process 'circe1_1_p1'
| Simulate: using integration grids from file 'circe1_1_p1.vg'
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 1
| Events: writing to ASCII file 'circe1_1_p1.debug'
| Events: writing to raw file 'circe1_1_p1.evx'
| Generating 1 unweighted, unpolarized events ...
| ... event sample complete.
| Events: closing ASCII file 'circe1_1_p1.debug'
| Events: closing raw file 'circe1_1_p1.evx'
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 2
| Initializing integration for process circe1_1_p2:
| Beam structure: e-, e+ => circe1
| Beam data (collision):
| e- (mass = 5.1100000E-04 GeV)
| e+ (mass = 5.1100000E-04 GeV)
| sqrts = 5.000000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file 'circe1_1_p2_i1.phs'
| Phase space: 1 channels, 2 dimensions
| Phase space: found 1 channel, collected in 1 grove.
| Phase space: Using 1 equivalence between channels.
| Phase space: wood
| Beam structure: circe1
| Beam structure: 1 channels, 2 dimensions
Warning: No cuts have been defined.
| Starting integration for process 'circe1_1_p2'
| Integrator: 1 chains, 1 channels, 4 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 1000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|
1 1000 1.4029082E+02 7.65E+00 5.45 1.72* 10.54
2 1000 1.4120791E+02 2.40E+00 1.70 0.54* 47.20
3 1000 1.4274699E+02 1.94E+00 1.36 0.43* 31.43
4 1000 1.3855547E+02 2.09E+00 1.51 0.48 23.38
5 1000 1.4251599E+02 1.95E+00 1.37 0.43* 29.50
|-----------------------------------------------------------------------------|
5 5000 1.4134509E+02 1.03E+00 0.73 0.51 29.50 0.67 5
|-----------------------------------------------------------------------------|
6 1000 1.4329914E+02 1.97E+00 1.37 0.43 29.66
7 1000 1.4124092E+02 2.01E+00 1.42 0.45 29.23
8 1000 1.4516207E+02 1.85E+00 1.27 0.40* 30.05
|-----------------------------------------------------------------------------|
8 3000 1.4334512E+02 1.12E+00 0.78 0.43 30.05 1.03 3
|=============================================================================|
n_events = 1
| Starting simulation for process 'circe1_1_p2'
| Simulate: using integration grids from file 'circe1_1_p2.vg'
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 3
| Events: writing to ASCII file 'circe1_1_p2.debug'
| Events: writing to raw file 'circe1_1_p2.evx'
| Generating 1 unweighted, unpolarized events ...
| ... event sample complete.
| Events: closing ASCII file 'circe1_1_p2.debug'
| Events: closing raw file 'circe1_1_p2.evx'
| There were 1 error(s) and 2 warning(s).
| WHIZARD run finished.
|=============================================================================|
Index: trunk/share/tests/ref-output-quad/simulations_6.ref
===================================================================
--- trunk/share/tests/ref-output-quad/simulations_6.ref (revision 5378)
+++ trunk/share/tests/ref-output-quad/simulations_6.ref (revision 5379)
@@ -1,1962 +1,1962 @@
* Test output: simulations_6
* Purpose: generate events for a single process
* write to file and reread
* Initialize process and integrate
* Initialize event generation
* Initialize raw event file
* Generate an event
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_6p'
Run ID = 'r1'
Process components:
* 1: 'simulation_6p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 7.746462203555E+03
Weight = 2.656872873669E+00
VAMP wgt = 2.019623591658E+04
adapt grids = F
adapt weights = F
VAMP grids: defined
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 1
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = T
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_6p'
TAO random-number generator:
seed = 2
calls = 3
Number of tries = 1
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_6p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Re-read the event from file
========================================================================
Event [incomplete]
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
========================================================================
Process instance [scattering]: 'simulation_6p'
Run ID = 'r1'
Process components:
1: 'simulation_6p_i1': s, s => s, s [unit_test]
status = initialized
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_6p'
TAO random-number generator:
seed = 4
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
* Recalculate process instance
========================================================================
Event [incomplete]
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_6p'
Run ID = 'r1'
Process components:
* 1: 'simulation_6p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 0.000000000000E+00
Weight = 0.000000000000E+00
adapt grids = F
adapt weights = F
VAMP grids: defined
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 0
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = T
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_6p'
TAO random-number generator:
seed = 4
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_6p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Cleanup
* Test output end: simulations_6
Index: trunk/share/tests/ref-output-quad/simulations_8.ref
===================================================================
--- trunk/share/tests/ref-output-quad/simulations_8.ref (revision 5378)
+++ trunk/share/tests/ref-output-quad/simulations_8.ref (revision 5379)
@@ -1,2001 +1,2001 @@
* Test output: simulations_8
* Purpose: generate events for a single process
* write to file and rescan
* Initialize process and integrate
* Initialize event generation
* Initialize raw event file
MD5 sum (proc) = '4B15ACE9F2F60427FBA8AD9719D76E22'
MD5 sum (config) = '3C43C67A809F29B0FAF570265F928B98'
* Generate an event
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_8p'
Run ID = 'r1'
Process components:
* 1: 'simulation_8p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 7.746462203555E+03
Weight = 2.656872873669E+00
VAMP wgt = 2.019623591658E+04
adapt grids = F
adapt weights = F
VAMP grids: defined
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 1
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = T
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_8p'
TAO random-number generator:
seed = 2
calls = 3
Number of tries = 1
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_8p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Re-read the event from file
MD5 sum (proc) = '4B15ACE9F2F60427FBA8AD9719D76E22'
MD5 sum (config) = ' '
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_8p'
Run ID = 'r1'
Process components:
1: 'simulation_8p_i1': s, s => s, s [unit_test]
status = initialized
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_8p'
TAO random-number generator:
seed = 4
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_8p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Re-read again and recalculate
MD5 sum (proc) = '4B15ACE9F2F60427FBA8AD9719D76E22'
MD5 sum (config) = ' '
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_8p'
Run ID = 'r1'
Process components:
* 1: 'simulation_8p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 0.000000000000E+00
Weight = 0.000000000000E+00
adapt grids = F
adapt weights = F
VAMP grids: [undefined]
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 0
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = F
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_8p'
TAO random-number generator:
seed = 6
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_8p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Cleanup
* Test output end: simulations_8

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:47 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805910
Default Alt Text
(146 KB)

Event Timeline