Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7879258
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
146 KB
Subscribers
None
View Options
Index: trunk/share/tests/ref-output-quad/circe1_1.ref
===================================================================
--- trunk/share/tests/ref-output-quad/circe1_1.ref (revision 5378)
+++ trunk/share/tests/ref-output-quad/circe1_1.ref (revision 5379)
@@ -1,119 +1,120 @@
+?openmp_logging = false
?vis_history = false
?integration_timer = false
$method = "omega"
| Process library 'circe1_1_lib': recorded process 'circe1_1_p1'
| Process library 'circe1_1_lib': recorded process 'circe1_1_p2'
| Process library 'circe1_1_lib': compiling ...
| Process library 'circe1_1_lib': writing makefile
| Process library 'circe1_1_lib': removing old files
| Process library 'circe1_1_lib': writing driver
| Process library 'circe1_1_lib': creating source code
| Process library 'circe1_1_lib': compiling sources
| Process library 'circe1_1_lib': linking
| Process library 'circe1_1_lib': loading
| Process library 'circe1_1_lib': ... success.
$phs_method = "wood"
$integration_method = "vamp"
sqrts = 5.000000000000E+02
openmp_num_threads = 1
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 0
| Initializing integration for process circe1_1_p1:
| Beam structure: [any particles]
| Beam data (collision):
| e- (mass = 5.1100000E-04 GeV)
| e+ (mass = 5.1100000E-04 GeV)
| sqrts = 5.000000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file 'circe1_1_p1_i1.phs'
| Phase space: 1 channels, 2 dimensions
| Phase space: found 1 channel, collected in 1 grove.
| Phase space: Using 1 equivalence between channels.
| Phase space: wood
Warning: No cuts have been defined.
| Starting integration for process 'circe1_1_p1'
| Integrator: 1 chains, 1 channels, 2 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 1000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|
1 800 3.4721369E+02 3.08E-01 0.09 0.03* 66.65
2 800 3.4793298E+02 2.41E-01 0.07 0.02* 60.65
3 800 3.4792475E+02 2.44E-01 0.07 0.02 79.69
|-----------------------------------------------------------------------------|
3 2400 3.4775909E+02 1.50E-01 0.04 0.02 79.69 2.06 3
|-----------------------------------------------------------------------------|
4 800 3.4755512E+02 2.48E-01 0.07 0.02 79.61
5 800 3.4721533E+02 2.48E-01 0.07 0.02 79.53
6 800 3.4728703E+02 2.46E-01 0.07 0.02* 79.55
|-----------------------------------------------------------------------------|
6 2400 3.4735199E+02 1.43E-01 0.04 0.02 79.55 0.52 3
|=============================================================================|
n_events = 1
| Starting simulation for process 'circe1_1_p1'
| Simulate: using integration grids from file 'circe1_1_p1.vg'
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 1
| Events: writing to ASCII file 'circe1_1_p1.debug'
| Events: writing to raw file 'circe1_1_p1.evx'
| Generating 1 unweighted, unpolarized events ...
| ... event sample complete.
| Events: closing ASCII file 'circe1_1_p1.debug'
| Events: closing raw file 'circe1_1_p1.evx'
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 2
| Initializing integration for process circe1_1_p2:
| Beam structure: e-, e+ => circe1
| Beam data (collision):
| e- (mass = 5.1100000E-04 GeV)
| e+ (mass = 5.1100000E-04 GeV)
| sqrts = 5.000000000000E+02 GeV
| Phase space: generating configuration ...
| Phase space: ... success.
| Phase space: writing configuration file 'circe1_1_p2_i1.phs'
| Phase space: 1 channels, 2 dimensions
| Phase space: found 1 channel, collected in 1 grove.
| Phase space: Using 1 equivalence between channels.
| Phase space: wood
| Beam structure: circe1
| Beam structure: 1 channels, 2 dimensions
Warning: No cuts have been defined.
| Starting integration for process 'circe1_1_p2'
| Integrator: 1 chains, 1 channels, 4 dimensions
| Integrator: Using VAMP channel equivalences
| Integrator: 1000 initial calls, 20 bins, stratified = T
| Integrator: VAMP
|=============================================================================|
| It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] |
|=============================================================================|
1 1000 1.4029082E+02 7.65E+00 5.45 1.72* 10.54
2 1000 1.4120791E+02 2.40E+00 1.70 0.54* 47.20
3 1000 1.4274699E+02 1.94E+00 1.36 0.43* 31.43
4 1000 1.3855547E+02 2.09E+00 1.51 0.48 23.38
5 1000 1.4251599E+02 1.95E+00 1.37 0.43* 29.50
|-----------------------------------------------------------------------------|
5 5000 1.4134509E+02 1.03E+00 0.73 0.51 29.50 0.67 5
|-----------------------------------------------------------------------------|
6 1000 1.4329914E+02 1.97E+00 1.37 0.43 29.66
7 1000 1.4124092E+02 2.01E+00 1.42 0.45 29.23
8 1000 1.4516207E+02 1.85E+00 1.27 0.40* 30.05
|-----------------------------------------------------------------------------|
8 3000 1.4334512E+02 1.12E+00 0.78 0.43 30.05 1.03 3
|=============================================================================|
n_events = 1
| Starting simulation for process 'circe1_1_p2'
| Simulate: using integration grids from file 'circe1_1_p2.vg'
| RNG: Initializing TAO random-number generator
| RNG: Setting seed for random-number generator to 3
| Events: writing to ASCII file 'circe1_1_p2.debug'
| Events: writing to raw file 'circe1_1_p2.evx'
| Generating 1 unweighted, unpolarized events ...
| ... event sample complete.
| Events: closing ASCII file 'circe1_1_p2.debug'
| Events: closing raw file 'circe1_1_p2.evx'
| There were 1 error(s) and 2 warning(s).
| WHIZARD run finished.
|=============================================================================|
Index: trunk/share/tests/ref-output-quad/simulations_6.ref
===================================================================
--- trunk/share/tests/ref-output-quad/simulations_6.ref (revision 5378)
+++ trunk/share/tests/ref-output-quad/simulations_6.ref (revision 5379)
@@ -1,1962 +1,1962 @@
* Test output: simulations_6
* Purpose: generate events for a single process
* write to file and reread
* Initialize process and integrate
* Initialize event generation
* Initialize raw event file
* Generate an event
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_6p'
Run ID = 'r1'
Process components:
* 1: 'simulation_6p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 7.746462203555E+03
Weight = 2.656872873669E+00
VAMP wgt = 2.019623591658E+04
adapt grids = F
adapt weights = F
VAMP grids: defined
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 1
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = T
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_6p'
TAO random-number generator:
seed = 2
calls = 3
Number of tries = 1
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_6p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Re-read the event from file
========================================================================
Event [incomplete]
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
========================================================================
Process instance [scattering]: 'simulation_6p'
Run ID = 'r1'
Process components:
1: 'simulation_6p_i1': s, s => s, s [unit_test]
status = initialized
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_6p'
TAO random-number generator:
seed = 4
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
* Recalculate process instance
========================================================================
Event [incomplete]
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_6p'
Run ID = 'r1'
Process components:
* 1: 'simulation_6p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 0.000000000000E+00
Weight = 0.000000000000E+00
adapt grids = F
adapt weights = F
VAMP grids: defined
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 0
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = T
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_6p'
TAO random-number generator:
seed = 4
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_6p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Cleanup
* Test output end: simulations_6
Index: trunk/share/tests/ref-output-quad/simulations_8.ref
===================================================================
--- trunk/share/tests/ref-output-quad/simulations_8.ref (revision 5378)
+++ trunk/share/tests/ref-output-quad/simulations_8.ref (revision 5379)
@@ -1,2001 +1,2001 @@
* Test output: simulations_8
* Purpose: generate events for a single process
* write to file and rescan
* Initialize process and integrate
* Initialize event generation
* Initialize raw event file
MD5 sum (proc) = '4B15ACE9F2F60427FBA8AD9719D76E22'
MD5 sum (config) = '3C43C67A809F29B0FAF570265F928B98'
* Generate an event
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_8p'
Run ID = 'r1'
Process components:
* 1: 'simulation_8p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 7.746462203555E+03
Weight = 2.656872873669E+00
VAMP wgt = 2.019623591658E+04
adapt grids = F
adapt weights = F
VAMP grids: defined
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 1
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = T
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_8p'
TAO random-number generator:
seed = 2
calls = 3
Number of tries = 1
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_8p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Re-read the event from file
MD5 sum (proc) = '4B15ACE9F2F60427FBA8AD9719D76E22'
MD5 sum (config) = ' '
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_8p'
Run ID = 'r1'
Process components:
1: 'simulation_8p_i1': s, s => s, s [unit_test]
status = initialized
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_8p'
TAO random-number generator:
seed = 4
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_8p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Re-read again and recalculate
MD5 sum (proc) = '4B15ACE9F2F60427FBA8AD9719D76E22'
MD5 sum (config) = ' '
========================================================================
Event
------------------------------------------------------------------------
Unweighted = F
Normalization = 'sigma'
Helicity handling = drop
Keep correlations = F
------------------------------------------------------------------------
Squared matrix el. = 1.245684511522E-01
Event weight = 2.019623591658E+04
------------------------------------------------------------------------
Selected MCI group = 1
Selected term = 1
Selected channel = 1
------------------------------------------------------------------------
Passed selection = T
Reweighting factor = 1.000000000000E+00
Analysis flag = T
========================================================================
Process instance [scattering]: 'simulation_8p'
Run ID = 'r1'
Process components:
* 1: 'simulation_8p_i1': s, s => s, s [unit_test]
status = event complete
------------------------------------------------------------------------
sqme = 1.245684511522E-01
weight = 2.019623591658E+04
------------------------------------------------------------------------
Active MCI instance #1 =
0.35369 0.35220 | 0.90251 0.68226
Integrand = 0.000000000000E+00
Weight = 0.000000000000E+00
adapt grids = F
adapt weights = F
VAMP grids: [undefined]
n_it = 0
it = 0
pass complete = F
n_calls = 0
calls = 0
it complete = F
n adapt.(g) = 0
n adapt.(w) = 0
gen. events = F
integral = 0.0000000000E+00
error = 0.0000000000E+00
eff. = 0.0000000000E+00
weights:
1 2.00000E-01
2 2.00000E-01
3 2.00000E-01
4 2.00000E-01
5 2.00000E-01
========================================================================
Incoming particles / structure-function chain:
n_in = 2
n_strfun = 2
n_par = 2
Beam data (collision):
s (mass = 0.0000000E+00 GeV)
s (mass = 0.0000000E+00 GeV)
sqrts = 1.000000000000E+03 GeV
------------------------------------------------------------------------
Colliding beams:
Interaction: 1
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 2
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [initialized]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 3
Incoming:
Particle 1
[momentum undefined]
mask [fch] = [FFgF]
internal links: X => 2 3
Outgoing:
Particle 2
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
[momentum undefined]
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00)
========================================================================
Active components:
------------------------------------------------------------------------
Component #1
Seed momenta:
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
Squared matrix element:
1.245684511522E-01
Flux * PHS volume:
6.218638934582E+04
Jacobian factors per channel:
1: 1.0000000E+00 [selected]
2: 4.5356018E+00
3: 4.5356018E+00
4: 4.5356018E+00
5: 4.5356018E+00
------------------------------------------------------------------------
Structure-function chain instance: [evaluated]
outgoing (interactions) = 1:3 2:3
outgoing (evaluators) = 2:4 2:6
Structure-function parameters:
Channel #1: [selected]
p = 0.3536881 0.3521986
r = 0.3536881 0.3521986
f = 1.0000000E+00
m = - -
x = 0.3536881 0.3521986
------------------------------------------------------------------------
Colliding beams:
Interaction: 4
Outgoing:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
source: (1)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (1)2
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3536881
f = 1.0000000E+00
m = F
x = 0.3536881
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 1
incoming = 1
radiated = 2
outgoing = 3
parameter = 1
Interaction: 5
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)1
Outgoing:
Particle 2
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Interaction: 7
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (4)1
Outgoing:
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
source: (4)2
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)2
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (5)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.536880575120E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 4
Input interaction 2: 5
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Structure-function parameters:
Channel #1: [selected]
r = 0.3521986
f = 1.0000000E+00
m = F
x = 0.3521986
SF test data:
model = Test
incoming = f(25)
outgoing = f(25)
radiated = f(25)
mass = 0.000000000000E+00
collinear = T
SF instance: [evaluated]
beam = 2
incoming = 1
radiated = 2
outgoing = 3
parameter = 2
Interaction: 6
Incoming:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 2 3
source: (4)2
Outgoing:
Particle 2
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 1 => X
Particle 3
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 1 => X
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 3.521986352280E-01, 0.000000000000E+00)
Interaction: 8
Virtual:
Particle 1
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (7)1
Particle 2
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (7)2
Outgoing:
Particle 3
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)3
Particle 4
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (7)4
Particle 5
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)2
Particle 6
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (6)3
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 7
Input interaction 2: 6
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Partonic phase space: parameters
m_in = 0.000000000000E+00 0.000000000000E+00
m_out = 0.000000000000E+00 0.000000000000E+00
Flux = 2.435873185990E+09
Volume = 2.552940346135E-05
Channel #1: [selected]
r = 0.9025137 0.6822583
f = 1.0000000E+00
Channel #2:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #3:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #4:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Channel #5:
r = 0.9025137 0.5317687
f = 4.5356018E+00
Partonic phase space: momenta
sqrts = 3.529425606982E+02
Incoming:
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 1.764712803491E+02
E = 1.764712803491E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.764712803491E+02
Outgoing:
E = 1.764712803491E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.432672705881E+01
E = 1.764712803491E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.432672705881E+01
Transformation c.m -> lab frame
L00 = 1.000002226062E+00
L0j = 0.000000000000E+00 0.000000000000E+00 2.110006627028E-03
L10 = 0.000000000000E+00
L1j = 1.000000000000E+00 0.000000000000E+00 0.000000000000E+00
L20 = 0.000000000000E+00
L2j = 0.000000000000E+00 1.000000000000E+00 0.000000000000E+00
L30 = 2.110006627028E-03
L3j = 0.000000000000E+00 0.000000000000E+00 1.000002226062E+00
========================================================================
Active terms:
------------------------------------------------------------------------
Term #1 (component #1)
passed cuts = T
overall scale = 3.529425606982E+02
factorization scale = 3.529425606982E+02
renormalization scale = 3.529425606982E+02
reweighting factor = 1.000000000000E+00
------------------------------------------------------------------------
Amplitude (transition matrix of the hard interaction):
------------------------------------------------------------------------
Interaction: 9
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)4
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (8)6
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgF]
internal links: 1 2 => X
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluators for the hard interaction:
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 10
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[]
[] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 12
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)* x ME2(1) x ( 1.000000000000E+00, 0.000000000000E+00)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 13
Incoming:
Particle 1
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)1
Particle 2
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: X => 3 4
source: (9)2
Outgoing:
Particle 3
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)3
Particle 4
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 1 2 => X
source: (9)4
State matrix: norm = 1.000000000000E+00
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.000000000000E+00, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 9
Input interaction 2: [undefined]
ME(1) =
+ |ME1(1)|^2
------------------------------------------------------------------------
Evaluators for the connected process:
------------------------------------------------------------------------
Evaluator (extension of the beam evaluator with color contractions):
------------------------------------------------------------------------
Interaction: 15
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 3 4
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 6
source: (8)2
Outgoing:
Particle 3
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 4
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)4
Particle 5
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 6
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)6
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)]
[f(25) h(0)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: [undefined]
ME(1) =
+ ME1(1)
------------------------------------------------------------------------
Evaluator (trace of the squared transition matrix):
------------------------------------------------------------------------
Interaction: 11
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [TTT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [TTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [TTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [TTT]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [TTT]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [TTT]
internal links: 3 4 => X
source: (10)4
State matrix: norm = 1.000000000000E+00
[]
[]
[]
[]
[]
[]
[]
[] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 10
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared transition matrix):
------------------------------------------------------------------------
Interaction: 14
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (8)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (8)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FTT]
internal links: 1 => X => 7 8
source: (8)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FTT]
internal links: 2 => X => 7 8
source: (8)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (8)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (8)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FTT]
internal links: 3 4 => X
source: (12)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 8
Input interaction 2: 12
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Evaluator (squared color-flow matrix):
------------------------------------------------------------------------
Interaction: 16
Virtual:
Particle 1
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 5 3
source: (15)1
Particle 2
- E = 5.000000000000E+02
- P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
+ E = 5.0000000000E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -5.0000000000E+02
mask [fch] = [FFgT]
internal links: X => 6 4
source: (15)2
Particle 3
- E = 1.768440287560E+02
- P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
+ E = 1.7684402876E+02
+ P = 0.0000000000E+00 0.0000000000E+00 1.7684402876E+02
mask [fch] = [FFgT]
internal links: 1 => X => 7 8
source: (15)4
Particle 4
- E = 1.760993176140E+02
- P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
+ E = 1.7609931761E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -1.7609931761E+02
mask [fch] = [FFgT]
internal links: 2 => X => 7 8
source: (15)6
Outgoing:
Particle 5
- E = 3.231559712440E+02
- P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
+ E = 3.2315597124E+02
+ P = 0.0000000000E+00 0.0000000000E+00 3.2315597124E+02
mask [fch] = [FFgF]
internal links: 1 => X
source: (15)3
Particle 6
- E = 3.239006823860E+02
- P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
+ E = 3.2390068239E+02
+ P = 0.0000000000E+00 0.0000000000E+00 -3.2390068239E+02
mask [fch] = [FFgF]
internal links: 2 => X
source: (15)5
Particle 7
- E = 1.766074030054E+02
- P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
+ E = 1.7660740301E+02
+ P = 1.3445425469E+02 -9.4478772063E+01 6.4699225825E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)3
Particle 8
- E = 1.763359433646E+02
- P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
+ E = 1.7633594336E+02
+ P = -1.3445425469E+02 9.4478772063E+01 -6.3954514683E+01
mask [fch] = [FFgT]
internal links: 3 4 => X
source: (13)4
State matrix: norm = 1.000000000000E+00
[f(25)]
[f(25)]
[f(25)]
[f(25)]
[f(25) h(0)]
[f(25) h(0)]
[f(25)]
[f(25)] => ME(1) = ( 1.245684511522E-01, 0.000000000000E+00)
Matrix-element multiplication
Input interaction 1: 15
Input interaction 2: 13
ME(1) =
+ ME1(1) x ME2(1)
------------------------------------------------------------------------
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
========================================================================
Event transform: trivial (hard process)
------------------------------------------------------------------------
Associated process: 'simulation_8p'
TAO random-number generator:
seed = 6
calls = 0
Number of tries = 0
------------------------------------------------------------------------
Particle set:
------------------------------------------------------------------------
Particle 1 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 5.000000000000E+02
T = 0.000000000000E+00
Children: 5 3
Particle 2 [b] f(25)
E = 5.000000000000E+02
P = 0.000000000000E+00 0.000000000000E+00 -5.000000000000E+02
T = 0.000000000000E+00
Children: 6 4
Particle 3 [i] f(25)
E = 1.768440287560E+02
P = 0.000000000000E+00 0.000000000000E+00 1.768440287560E+02
T = 0.000000000000E+00
Parents: 1
Children: 7 8
Particle 4 [i] f(25)
E = 1.760993176140E+02
P = 0.000000000000E+00 0.000000000000E+00 -1.760993176140E+02
T = 0.000000000000E+00
Parents: 2
Children: 7 8
Particle 5 [o] f(25)
E = 3.231559712440E+02
P = 0.000000000000E+00 0.000000000000E+00 3.231559712440E+02
T = 0.000000000000E+00
Parents: 1
Particle 6 [o] f(25)
E = 3.239006823860E+02
P = 0.000000000000E+00 0.000000000000E+00 -3.239006823860E+02
T = 0.000000000000E+00
Parents: 2
Particle 7 [o] f(25)
E = 1.766074030054E+02
P = 1.344542546871E+02 -9.447877206272E+01 6.469922582507E+01
T = 0.000000000000E+00
Parents: 3 4
Particle 8 [o] f(25)
E = 1.763359433646E+02
P = -1.344542546871E+02 9.447877206272E+01 -6.395451468304E+01
T = 0.000000000000E+00
Parents: 3 4
========================================================================
Local variables:
------------------------------------------------------------------------
sqrts* = 1.000000000000E+03
sqrts_hat* => 3.529425606982E+02
n_in* => 2
n_out* => 4
n_tot* => 6
$process_id* => "simulation_8p"
process_num_id* => [unknown integer]
sqme* => 1.245684511522E-01
sqme_ref* => 1.245684511522E-01
event_index* => 1
event_weight* => 2.019623591658E+04
event_weight_ref* => 2.019623591658E+04
event_excess* => 0.000000000000E+00
------------------------------------------------------------------------
subevent:
1 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.000000000000E+00| 1)
2 prt(b:25|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.000000000000E+00| 2)
3 prt(i:25|-1.7684403E+02; 0.0000000E+00, 0.0000000E+00,-1.7684403E+02| 0.000000000000E+00| 3)
4 prt(i:25|-1.7609932E+02; 0.0000000E+00, 0.0000000E+00, 1.7609932E+02| 0.000000000000E+00| 4)
5 prt(o:25| 3.2315597E+02; 0.0000000E+00, 0.0000000E+00, 3.2315597E+02| 0.000000000000E+00| 5)
6 prt(o:25| 3.2390068E+02; 0.0000000E+00, 0.0000000E+00,-3.2390068E+02| 0.000000000000E+00| 6)
7 prt(o:25| 1.7660740E+02; 1.3445425E+02,-9.4478772E+01, 6.4699226E+01| 0.000000000000E+00| 7)
8 prt(o:25| 1.7633594E+02;-1.3445425E+02, 9.4478772E+01,-6.3954515E+01| 0.000000000000E+00| 8)
========================================================================
* Cleanup
* Test output end: simulations_8
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:47 PM (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805910
Default Alt Text
(146 KB)
Attached To
rWHIZARDSVN whizardsvn
Event Timeline
Log In to Comment