Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878954
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
16 KB
Subscribers
None
View Options
diff --git a/src/MCStudies/GenericFlux_Vectors.cxx b/src/MCStudies/GenericFlux_Vectors.cxx
index 308144d..9534a85 100644
--- a/src/MCStudies/GenericFlux_Vectors.cxx
+++ b/src/MCStudies/GenericFlux_Vectors.cxx
@@ -1,436 +1,436 @@
// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "GenericFlux_Vectors.h"
GenericFlux_Vectors::GenericFlux_Vectors(std::string name,
std::string inputfile, FitWeight *rw,
std::string type,
std::string fakeDataFile) {
// Measurement Details
fName = name;
eventVariables = NULL;
// Define our energy range for flux calcs
EnuMin = 0.;
EnuMax = 1E10; // Arbritrarily high energy limit
if (Config::HasPar("EnuMin")) {
EnuMin = Config::GetParD("EnuMin");
}
if (Config::HasPar("EnuMax")) {
EnuMax = Config::GetParD("EnuMax");
}
SavePreFSI = Config::Get().GetParB("nuisflat_SavePreFSI");
LOG(SAM) << "Running GenericFlux_Vectors saving pre-FSI particles? " << SavePreFSI << std::endl;
// Set default fitter flags
fIsDiag = true;
fIsShape = false;
fIsRawEvents = false;
// This function will sort out the input files automatically and parse all the
// inputs,flags,etc.
// There may be complex cases where you have to do this by hand, but usually
// this will do.
Measurement1D::SetupMeasurement(inputfile, type, rw, fakeDataFile);
eventVariables = NULL;
// Setup fDataHist as a placeholder
this->fDataHist = new TH1D(("empty_data"), ("empty-data"), 1, 0, 1);
this->SetupDefaultHist();
fFullCovar = StatUtils::MakeDiagonalCovarMatrix(fDataHist);
covar = StatUtils::GetInvert(fFullCovar);
// 1. The generator is organised in SetupMeasurement so it gives the
// cross-section in "per nucleon" units.
// So some extra scaling for a specific measurement may be required. For
// Example to get a "per neutron" measurement on carbon
// which we do here, we have to multiple by the number of nucleons 12 and
// divide by the number of neutrons 6.
// N.B. MeasurementBase::PredictedEventRate includes the 1E-38 factor that is
// often included here in other classes that directly integrate the event
// histogram. This method is used here as it now respects EnuMin and EnuMax
// correctly.
this->fScaleFactor =
(this->PredictedEventRate("width", 0, EnuMax) / double(fNEvents)) /
this->TotalIntegratedFlux("width");
LOG(SAM) << " Generic Flux Scaling Factor = " << fScaleFactor
<< " [= " << (GetEventHistogram()->Integral("width") * 1E-38) << "/("
<< (fNEvents + 0.) << "*" << TotalIntegratedFlux("width") << ")]"
<< std::endl;
if (fScaleFactor <= 0.0) {
ERR(WRN) << "SCALE FACTOR TOO LOW " << std::endl;
throw;
}
// Setup our TTrees
this->AddEventVariablesToTree();
this->AddSignalFlagsToTree();
}
void GenericFlux_Vectors::AddEventVariablesToTree() {
// Setup the TTree to save everything
if (!eventVariables) {
Config::Get().out->cd();
eventVariables = new TTree((this->fName + "_VARS").c_str(),
(this->fName + "_VARS").c_str());
}
LOG(SAM) << "Adding Event Variables" << std::endl;
eventVariables->Branch("Mode", &Mode, "Mode/I");
eventVariables->Branch("cc", &cc, "cc/B");
eventVariables->Branch("PDGnu", &PDGnu, "PDGnu/I");
eventVariables->Branch("Enu_true", &Enu_true, "Enu_true/F");
eventVariables->Branch("tgt", &tgt, "tgt/I");
eventVariables->Branch("tgta", &tgta, "tgta/I");
eventVariables->Branch("tgtz", &tgtz, "tgtz/I");
eventVariables->Branch("PDGLep", &PDGLep, "PDGLep/I");
eventVariables->Branch("ELep", &ELep, "ELep/F");
eventVariables->Branch("CosLep", &CosLep, "CosLep/F");
// Basic interaction kinematics
eventVariables->Branch("Q2", &Q2, "Q2/F");
eventVariables->Branch("q0", &q0, "q0/F");
eventVariables->Branch("q3", &q3, "q3/F");
eventVariables->Branch("Enu_QE", &Enu_QE, "Enu_QE/F");
eventVariables->Branch("Q2_QE", &Q2_QE, "Q2_QE/F");
eventVariables->Branch("W_nuc_rest", &W_nuc_rest, "W_nuc_rest/F");
eventVariables->Branch("W", &W, "W/F");
eventVariables->Branch("W_genie", &W_genie, "W_genie/F");
eventVariables->Branch("x", &x, "x/F");
eventVariables->Branch("y", &y, "y/F");
eventVariables->Branch("Eav", &Eav, "Eav/F");
eventVariables->Branch("EavAlt", &EavAlt, "EavAlt/F");
eventVariables->Branch("dalphat", &dalphat, "dalphat/F");
eventVariables->Branch("dpt", &dpt, "dpt/F");
eventVariables->Branch("dphit", &dphit, "dphit/F");
eventVariables->Branch("pnreco_C", &pnreco_C, "pnreco_C/F");
// Save outgoing particle vectors
eventVariables->Branch("nfsp", &nfsp, "nfsp/I");
eventVariables->Branch("px", px, "px[nfsp]/F");
eventVariables->Branch("py", py, "py[nfsp]/F");
eventVariables->Branch("pz", pz, "pz[nfsp]/F");
eventVariables->Branch("E", E, "E[nfsp]/F");
eventVariables->Branch("pdg", pdg, "pdg[nfsp]/I");
eventVariables->Branch("pdg_rank", pdg_rank, "pdg_rank[nfsp]/I");
// Save init particle vectors
eventVariables->Branch("ninitp", &ninitp, "ninitp/I");
eventVariables->Branch("px_init", px_init, "px_init[ninitp]/F");
eventVariables->Branch("py_init", py_init, "py_init[ninitp]/F");
eventVariables->Branch("pz_init", pz_init, "pz_init[ninitp]/F");
eventVariables->Branch("E_init", E_init, "E_init[ninitp]/F");
eventVariables->Branch("pdg_init", pdg_init, "pdg_init[ninitp]/I");
// Save pre-FSI vectors
eventVariables->Branch("nvertp", &nvertp, "nvertp/I");
eventVariables->Branch("px_vert", px_vert, "px_vert[nvertp]/F");
eventVariables->Branch("py_vert", py_vert, "py_vert[nvertp]/F");
eventVariables->Branch("pz_vert", pz_vert, "pz_vert[nvertp]/F");
eventVariables->Branch("E_vert", E_vert, "E_vert[nvertp]/F");
eventVariables->Branch("pdg_vert", pdg_vert, "pdg_vert[nvertp]/I");
// Event Scaling Information
eventVariables->Branch("Weight", &Weight, "Weight/F");
eventVariables->Branch("InputWeight", &InputWeight, "InputWeight/F");
eventVariables->Branch("RWWeight", &RWWeight, "RWWeight/F");
// Should be a double because may be 1E-39 and less
eventVariables->Branch("fScaleFactor", &fScaleFactor, "fScaleFactor/D");
// The customs
eventVariables->Branch("CustomWeight", &CustomWeight, "CustomWeight/F");
eventVariables->Branch("CustomWeightArray", CustomWeightArray, "CustomWeightArray[6]/F");
return;
}
void GenericFlux_Vectors::FillEventVariables(FitEvent *event) {
ResetVariables();
// Fill Signal Variables
FillSignalFlags(event);
LOG(DEB) << "Filling signal" << std::endl;
// Now fill the information
Mode = event->Mode;
- cc = (abs(event->Mode) < 30);
+ cc = event->IsCC();
// Get the incoming neutrino and outgoing lepton
- FitParticle *nu = event->GetNeutrinoIn();
+ FitParticle *nu = event->GetBeamPart();
FitParticle *lep = event->GetHMFSAnyLepton();
PDGnu = nu->fPID;
Enu_true = nu->fP.E() / 1E3;
tgt = event->fTargetPDG;
tgta = event->fTargetA;
tgtz = event->fTargetZ;
if (lep != NULL) {
PDGLep = lep->fPID;
ELep = lep->fP.E() / 1E3;
CosLep = cos(nu->fP.Vect().Angle(lep->fP.Vect()));
// Basic interaction kinematics
Q2 = -1 * (nu->fP - lep->fP).Mag2() / 1E6;
q0 = (nu->fP - lep->fP).E() / 1E3;
q3 = (nu->fP - lep->fP).Vect().Mag() / 1E3;
// These assume C12 binding from MINERvA... not ideal
Enu_QE = FitUtils::EnuQErec(lep->fP, CosLep, 34., true);
Q2_QE = FitUtils::Q2QErec(lep->fP, CosLep, 34., true);
Eav = FitUtils::GetErecoil_MINERvA_LowRecoil(event)/1.E3;
EavAlt = FitUtils::Eavailable(event)/1.E3;
// Get W_true with assumption of initial state nucleon at rest
float m_n = (float)PhysConst::mass_proton;
// Q2 assuming nucleon at rest
W_nuc_rest = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n);
// True Q2
W = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n);
x = Q2 / (2 * m_n * q0);
y = 1 - ELep / Enu_true;
dalphat = FitUtils::Get_STV_dalphat(event, PDGnu, true);
dpt = FitUtils::Get_STV_dpt(event, PDGnu, true);
dphit = FitUtils::Get_STV_dphit(event, PDGnu, true);
pnreco_C = FitUtils::Get_pn_reco_C(event, PDGnu, true);
}
// Loop over the particles and store all the final state particles in a vector
for (UInt_t i = 0; i < event->Npart(); ++i) {
if (event->PartInfo(i)->fIsAlive &&
event->PartInfo(i)->Status() == kFinalState)
partList.push_back(event->PartInfo(i));
if (SavePreFSI && event->fPrimaryVertex[i])
vertList.push_back(event->PartInfo(i));
if (SavePreFSI && event->PartInfo(i)->IsInitialState())
initList.push_back(event->PartInfo(i));
}
// Save outgoing particle vectors
nfsp = (int)partList.size();
std::map<int, std::vector<std::pair<double, int> > > pdgMap;
for (int i = 0; i < nfsp; ++i) {
px[i] = partList[i]->fP.X() / 1E3;
py[i] = partList[i]->fP.Y() / 1E3;
pz[i] = partList[i]->fP.Z() / 1E3;
E[i] = partList[i]->fP.E() / 1E3;
pdg[i] = partList[i]->fPID;
pdgMap[pdg[i]].push_back(std::make_pair(partList[i]->fP.Vect().Mag(), i));
}
for(std::map<int, std::vector<std::pair<double, int> > >::iterator iter = pdgMap.begin();
iter != pdgMap.end(); ++iter){
std::vector<std::pair<double, int> > thisVect = iter->second;
std::sort(thisVect.begin(), thisVect.end());
// Now save the order... a bit funky to avoid inverting
int nPart = (int)thisVect.size()-1;
for (int i=nPart; i >= 0; --i) {
pdg_rank[thisVect[i].second] = nPart-i;
}
}
// Save pre-FSI particles
nvertp = (int)vertList.size();
for (int i = 0; i < nvertp; ++i) {
px_vert[i] = vertList[i]->fP.X() / 1E3;
py_vert[i] = vertList[i]->fP.Y() / 1E3;
pz_vert[i] = vertList[i]->fP.Z() / 1E3;
E_vert[i] = vertList[i]->fP.E() / 1E3;
pdg_vert[i] = vertList[i]->fPID;
}
// Save init particles
ninitp = (int)initList.size();
for (int i = 0; i < ninitp; ++i) {
px_init[i] = initList[i]->fP.X() / 1E3;
py_init[i] = initList[i]->fP.Y() / 1E3;
pz_init[i] = initList[i]->fP.Z() / 1E3;
E_init[i] = initList[i]->fP.E() / 1E3;
pdg_init[i] = initList[i]->fPID;
}
#ifdef __GENIE_ENABLED__
if (event->fType == kGENIE) {
EventRecord * gevent = static_cast<EventRecord*>(event->genie_event->event);
const Interaction * interaction = gevent->Summary();
const Kinematics & kine = interaction->Kine();
double W_genie = kine.W();
}
#endif
// Fill event weights
Weight = event->RWWeight * event->InputWeight;
RWWeight = event->RWWeight;
InputWeight = event->InputWeight;
// And the Customs
CustomWeight = event->CustomWeight;
for (int i = 0; i < 6; ++i) {
CustomWeightArray[i] = event->CustomWeightArray[i];
}
// Fill the eventVariables Tree
eventVariables->Fill();
return;
};
//********************************************************************
void GenericFlux_Vectors::ResetVariables() {
//********************************************************************
cc = false;
// Reset all Function used to extract any variables of interest to the event
Mode = PDGnu = tgt = tgta = tgtz = PDGLep = 0;
Enu_true = ELep = CosLep = Q2 = q0 = q3 = Enu_QE = Q2_QE = W_nuc_rest = W = x = y = Eav = EavAlt = -999.9;
W_genie = -999;
// Other fun variables
// MINERvA-like ones
dalphat = dpt = dphit = pnreco_C = -999.99;
nfsp = ninitp = nvertp = 0;
for (int i = 0; i < kMAX; ++i){
px[i] = py[i] = pz[i] = E[i] = -999;
pdg[i] = pdg_rank[i] = 0;
px_init[i] = py_init[i] = pz_init[i] = E_init[i] = -999;
pdg_init[i] = 0;
px_vert[i] = py_vert[i] = pz_vert[i] = E_vert[i] = -999;
pdg_vert[i] = 0;
}
Weight = InputWeight = RWWeight = 0.0;
CustomWeight = 0.0;
for (int i = 0; i < 6; ++i) CustomWeightArray[i] = 0.0;
partList.clear();
initList.clear();
vertList.clear();
flagCCINC = flagNCINC = flagCCQE = flagCC0pi = flagCCQELike = flagNCEL = flagNC0pi = flagCCcoh = flagNCcoh = flagCC1pip = flagNC1pip = flagCC1pim = flagNC1pim = flagCC1pi0 = flagNC1pi0 = false;
}
//********************************************************************
void GenericFlux_Vectors::FillSignalFlags(FitEvent *event) {
//********************************************************************
// Some example flags are given from SignalDef.
// See src/Utils/SignalDef.cxx for more.
int nuPDG = event->PartInfo(0)->fPID;
// Generic signal flags
flagCCINC = SignalDef::isCCINC(event, nuPDG);
flagNCINC = SignalDef::isNCINC(event, nuPDG);
flagCCQE = SignalDef::isCCQE(event, nuPDG);
flagCCQELike = SignalDef::isCCQELike(event, nuPDG);
flagCC0pi = SignalDef::isCC0pi(event, nuPDG);
flagNCEL = SignalDef::isNCEL(event, nuPDG);
flagNC0pi = SignalDef::isNC0pi(event, nuPDG);
flagCCcoh = SignalDef::isCCCOH(event, nuPDG, 211);
flagNCcoh = SignalDef::isNCCOH(event, nuPDG, 111);
flagCC1pip = SignalDef::isCC1pi(event, nuPDG, 211);
flagNC1pip = SignalDef::isNC1pi(event, nuPDG, 211);
flagCC1pim = SignalDef::isCC1pi(event, nuPDG, -211);
flagNC1pim = SignalDef::isNC1pi(event, nuPDG, -211);
flagCC1pi0 = SignalDef::isCC1pi(event, nuPDG, 111);
flagNC1pi0 = SignalDef::isNC1pi(event, nuPDG, 111);
}
void GenericFlux_Vectors::AddSignalFlagsToTree() {
if (!eventVariables) {
Config::Get().out->cd();
eventVariables = new TTree((this->fName + "_VARS").c_str(),
(this->fName + "_VARS").c_str());
}
LOG(SAM) << "Adding signal flags" << std::endl;
// Signal Definitions from SignalDef.cxx
eventVariables->Branch("flagCCINC", &flagCCINC, "flagCCINC/O");
eventVariables->Branch("flagNCINC", &flagNCINC, "flagNCINC/O");
eventVariables->Branch("flagCCQE", &flagCCQE, "flagCCQE/O");
eventVariables->Branch("flagCC0pi", &flagCC0pi, "flagCC0pi/O");
eventVariables->Branch("flagCCQELike", &flagCCQELike, "flagCCQELike/O");
eventVariables->Branch("flagNCEL", &flagNCEL, "flagNCEL/O");
eventVariables->Branch("flagNC0pi", &flagNC0pi, "flagNC0pi/O");
eventVariables->Branch("flagCCcoh", &flagCCcoh, "flagCCcoh/O");
eventVariables->Branch("flagNCcoh", &flagNCcoh, "flagNCcoh/O");
eventVariables->Branch("flagCC1pip", &flagCC1pip, "flagCC1pip/O");
eventVariables->Branch("flagNC1pip", &flagNC1pip, "flagNC1pip/O");
eventVariables->Branch("flagCC1pim", &flagCC1pim, "flagCC1pim/O");
eventVariables->Branch("flagNC1pim", &flagNC1pim, "flagNC1pim/O");
eventVariables->Branch("flagCC1pi0", &flagCC1pi0, "flagCC1pi0/O");
eventVariables->Branch("flagNC1pi0", &flagNC1pi0, "flagNC1pi0/O");
};
void GenericFlux_Vectors::Write(std::string drawOpt) {
// First save the TTree
eventVariables->Write();
// Save Flux and Event Histograms too
GetInput()->GetFluxHistogram()->Write();
GetInput()->GetEventHistogram()->Write();
return;
}
// Override functions which aren't really necessary
bool GenericFlux_Vectors::isSignal(FitEvent *event) {
(void)event;
return true;
};
void GenericFlux_Vectors::ScaleEvents() { return; }
void GenericFlux_Vectors::ApplyNormScale(float norm) {
this->fCurrentNorm = norm;
return;
}
void GenericFlux_Vectors::FillHistograms() { return; }
void GenericFlux_Vectors::ResetAll() {
eventVariables->Reset();
return;
}
float GenericFlux_Vectors::GetChi2() { return 0.0; }
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:04 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805750
Default Alt Text
(16 KB)
Attached To
rNUISANCEGIT nuisancegit
Event Timeline
Log In to Comment