Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878947
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
80 KB
Subscribers
None
View Options
diff --git a/include/HEJ/Tensor.hh b/include/HEJ/Tensor.hh
index c55f9d0..f1d7867 100644
--- a/include/HEJ/Tensor.hh
+++ b/include/HEJ/Tensor.hh
@@ -1,210 +1,210 @@
/** \file
* \brief Tensor Template Class declaration.
*
* This file contains the declaration of the Tensor Template class. This
* is used to calculate some of the more complex currents within the
* W+Jets implementation particularly.
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <complex>
#include <valarray>
namespace CLHEP {
class HepLorentzVector;
}
class CCurrent;
namespace HEJ {
typedef std::complex<double> COM;
///@TODO put in some namespace
namespace detail {
static constexpr std::size_t d = 4;
//! \internal Compute integer powers at compile time
inline
constexpr std::size_t power(unsigned base, unsigned exp) {
if(exp == 0) return 1;
// use exponentiation by squaring
// there are potentially faster implementations using bit shifts
// but we don't really care because everything's done at compile time
// and this is easier to understand
const std::size_t sqrt = power(base, exp/2);
return (exp % 2)?base*sqrt*sqrt:sqrt*sqrt;
}
}
template <unsigned int N>
class Tensor{
public:
static constexpr std::size_t d = detail::d;
//! Constructor
Tensor() = default;
explicit Tensor(COM x);
//! Rank of Tensor
constexpr unsigned rank() const{
return N;
};
//! total number of entries
std::size_t size() const {
return components.size();
};
//! Tensor element with given indices
template<typename... Indices>
COM const & operator()(Indices... i) const;
//! Tensor element with given indices
template<typename... Indices>
COM & operator()(Indices... rest);
//! implicit conversion to complex number for rank 0 tensors (scalars)
operator COM() const;
Tensor<N> & operator*=(COM const & x);
Tensor<N> & operator/=(COM const & x);
Tensor<N> & operator+=(Tensor<N> const & T2);
Tensor<N> & operator-=(Tensor<N> const & T2);
template<unsigned M>
friend bool operator==(Tensor<M> const & T1, Tensor<M> const & T2);
//! Outer product of two tensors
template<unsigned M>
Tensor<N+M> outer(Tensor<M> const & T2) const;
//! Outer product of two tensors
template<unsigned K, unsigned M>
friend Tensor<K+M> outer(Tensor<K> const & T1, Tensor<M> const & T2);
/**
* \brief T^(mu1...mk..mN)T2_(muk) contract kth index, where k member of [1,N]
* @param T2 Tensor of Rank 1 to contract with.
* @param k int to contract Tensor T2 with from original Tensor.
* @returns T1.contract(T2,1) -> T1^(mu,nu,rho...)T2_mu
*/
Tensor<N-1> contract(Tensor<1> const & T2, int k);
//! Complex conjugate tensor
Tensor<N> & complex_conj();
std::array<COM, detail::power(d, N)> components;
private:
};
template<unsigned N>
Tensor<N> operator*(Tensor<N> t, COM const & x);
template<unsigned N>
Tensor<N> operator/(Tensor<N> t, COM const & x);
template<unsigned N>
Tensor<N> operator+(Tensor<N> T1, Tensor<N> const & T2);
template<unsigned N>
Tensor<N> operator-(Tensor<N> T1, Tensor<N> const & T2);
template<unsigned N>
bool operator==(Tensor<N> const & T1, Tensor<N> const & T2);
template<unsigned N>
bool operator!=(Tensor<N> const & T1, Tensor<N> const & T2);
namespace helicity {
enum Helicity {
minus, plus
};
}
using helicity::Helicity;
inline
constexpr Helicity flip(Helicity h) {
return (h == helicity::plus)?helicity::minus:helicity::plus;
}
/**
* \brief Returns diag(+---) metric
* @returns metric {(1,0,0,0),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1)}
*/
Tensor<2> metric();
/**
* \brief Calculates current <p1|mu|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu = <p1|mu|p2>
*
* The vector current is helicity conserving, so we only need to state
* one helicity.
*
* @note in/out configuration considered in calculation
*/
- Tensor<1> TCurrent(
+ Tensor<1> current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
/**
* \brief Calculates current <p1|mu nu rho|p2>
* @param p1 Momentum of Particle 1
* @param h1 Helicity of Particle 1
* @param p2 Momentum of Particle 2
* @param h2 Helicity of Particle 2
* @returns Tensor T^mu^nu^rho = <p1|mu nu rho|p2>
*
* @note in/out configuration considered in calculation
*/
- Tensor<3> T3Current(CLHEP::HepLorentzVector p1, Helicity h1,
+ Tensor<3> rank3_current(CLHEP::HepLorentzVector p1, Helicity h1,
CLHEP::HepLorentzVector p2, Helicity h2);
/**
* \brief Calculates current <p1|mu nu rho tau sigma|p2>
* @param p1 Momentum of Particle 1
* @param h1 Helicity of Particle 1
* @param p2 Momentum of Particle 2
* @param h2 Helicity of Particle 2
* @returns Tensor T^mu^nu^rho = <p1|mu nu rho tau sigma|p2>
*
* @note in/out configuration considered in calculation
*/
- Tensor<5> T5Current(CLHEP::HepLorentzVector p1, Helicity h1,
+ Tensor<5> rank5_current(CLHEP::HepLorentzVector p1, Helicity h1,
CLHEP::HepLorentzVector p2, Helicity h2);
/**
* \brief Convert from CCurrent class
* @param j Current in CCurrent format
* @returns Current in Tensor Format
*/
Tensor<1> Construct1Tensor(CCurrent j);
/**
* \brief Convert from HLV class
* @param p Current in HLV format
* @returns Current in Tensor Format
*/
Tensor<1> Construct1Tensor(CLHEP::HepLorentzVector p);
/**
* \brief Construct Epsilon (Polarisation) Tensor
* @param k Momentum of incoming/outgoing boson
* @param ref Reference momentum for calculation
* @param pol Polarisation of boson
* @returns Polarisation Tensor E^mu
*/
Tensor<1> eps(CLHEP::HepLorentzVector k, CLHEP::HepLorentzVector ref, Helicity pol);
//! Initialises Tensor values by iterating over permutations of gamma matrices.
bool init_sigma_index();
}
// implementation of template functions
#include "HEJ/detail/Tensor_impl.hh"
diff --git a/src/Tensor.cc b/src/Tensor.cc
index 92251e1..a228668 100644
--- a/src/Tensor.cc
+++ b/src/Tensor.cc
@@ -1,827 +1,827 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/Tensor.hh"
#include <array>
#include <iostream>
#include <valarray>
#include <CLHEP/Vector/LorentzVector.h>
#include "HEJ/currents.hh" // only for CCurrent (?)
namespace HEJ {
namespace{
// Tensor Template definitions
short int sigma_index5[1024];
short int sigma_index3[64];
std::valarray<COM> permfactor5;
std::valarray<COM> permfactor3;
short int helfactor5[2][1024];
short int helfactor3[2][64];
// 2D sigma matrices
const COM sigma0[2][2] = { {1.,0.}, {0., 1.} };
const COM sigma1[2][2] = { {0.,1.}, {1., 0.} };
const COM sigma2[2][2] = { {0,-1.*COM(0,1)}, {1.*COM(0,1), 0.} };
const COM sigma3[2][2] = { {1.,0.}, {0., -1.} };
Tensor<1> Sigma(int i, int j, Helicity hel){
Tensor<1> newT;
if(hel==helicity::plus){
newT.components[0]=sigma0[i][j];
newT.components[1]=sigma1[i][j];
newT.components[2]=sigma2[i][j];
newT.components[3]=sigma3[i][j];
} else {
newT.components[0]= sigma0[i][j];
newT.components[1]=-sigma1[i][j];
newT.components[2]=-sigma2[i][j];
newT.components[3]=-sigma3[i][j];
}
return newT;
}
// map from a list of 5 tensor lorentz indices onto a single index 0<=i<1024
// in 4 dimensional spacetime
int tensor2listindex(std::array<int,5> indexlist){
int mu=indexlist[0];
int nu=indexlist[1];
int sigma=indexlist[2];
int tau=indexlist[3];
int rho=indexlist[4];
int myindex;
myindex = 256*mu+64*nu+16*sigma+4*tau+rho;
if(myindex<0||myindex>1023){
std::cerr<<"bad index in tensor2listindex "<<std::endl;
return 1024;
}
return myindex;
}
// map from a list of 3 tensor lorentz indices onto a single index 0<=i<64 in
// 4 dimensional spacetime
int tensor2listindex(std::array<int,3> indexlist){
int mu=indexlist[0];
int nu=indexlist[1];
int sigma=indexlist[2];
int myindex;
myindex = 16*mu+4*nu+sigma;
if(myindex<0||myindex>64){
std::cerr<<"bad index in tensor2listindex "<<std::endl;
return 64;
}
return myindex;
}
// generate all unique perms of vectors {a,a,a,a,b}, return in perms
// set_permfactor is a bool which encodes the anticommutation relations of the
// sigma matrices namely if we have sigma0, set_permfactor= false because it
// commutes with all others otherwise we need to assign a minus sign to odd
// permutations, set in permfactor
// note, inital perm is always even
void perms41(int same4, int diff, std::vector<std::array<int,5>> & perms){
bool set_permfactor(true);
if(same4==0||diff==0)
set_permfactor=false;
for(int diffpos=0;diffpos<5;diffpos++){
std::array<int,5> tempvec={same4,same4,same4,same4,same4};
tempvec[diffpos]=diff;
perms.push_back(tempvec);
if(set_permfactor){
if(diffpos%2==1)
permfactor5[tensor2listindex(tempvec)]=-1.;
}
}
}
// generate all unique perms of vectors {a,a,a,b,b}, return in perms
// note, inital perm is always even
void perms32(int same3, int diff, std::vector<std::array<int,5>> & perms){
bool set_permfactor(true);
if(same3==0||diff==0)
set_permfactor=false;
for(int diffpos1=0;diffpos1<5;diffpos1++){
for(int diffpos2=diffpos1+1;diffpos2<5;diffpos2++){
std::array<int,5> tempvec={same3,same3,same3,same3,same3};
tempvec[diffpos1]=diff;
tempvec[diffpos2]=diff;
perms.push_back(tempvec);
if(set_permfactor){
if((diffpos2-diffpos1)%2==0)
permfactor5[tensor2listindex(tempvec)]=-1.;
}
}
}
}
// generate all unique perms of vectors {a,a,a,b,c}, return in perms
// we have two bools since there are three distinct type of sigma matrices to
// permute, so need to test if the 3xrepeated = sigma0 or if one of the
// singles is sigma0
// if diff1/diff2 are distinct, flipping them results in a change of perm,
// otherwise it'll be symmetric under flip -> encode this in set_permfactor2
// as long as diff2!=0 can ensure inital perm is even
// if diff2=0 then it is not possible to ensure inital perm even -> encode in
// bool signflip
void perms311(int same3, int diff1, int diff2,
std::vector<std::array<int,5>> & perms
){
bool set_permfactor2(true);
bool same0(false);
bool diff0(false);
bool signflip(false); // if true, inital perm is odd
if(same3==0) // is the repeated matrix sigma0?
same0 = true;
else if(diff2==0){ // is one of the single matrices sigma0
diff0=true;
if((diff1%3-same3)!=-1)
signflip=true;
} else if(diff1==0){
std::cerr<<"Note, only first and last argument may be zero"<<std::endl;
return;
}
// possible outcomes: tt, ft, tf
for(int diffpos1=0;diffpos1<5;diffpos1++){
for(int diffpos2=diffpos1+1;diffpos2<5;diffpos2++){
std::array<int,5> tempvec={same3,same3,same3,same3,same3};
tempvec[diffpos1]=diff1;
tempvec[diffpos2]=diff2;
perms.push_back(tempvec);
if(!same0 && !diff0){
// full antisymmetric under exchange of same3,diff1,diff2
if((diffpos2-diffpos1)%2==0){
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1); // odd perm
// if this perm is odd, swapping diff1<->diff2 automatically even
set_permfactor2=false;
} else {
permfactor5[tensor2listindex(tempvec)]=COM(0,1); // even perm
// if this perm is even, swapping diff1<->diff2 automatically odd
set_permfactor2=true;
}
} else if(diff0){// one of the single matrices is sigma0
if(signflip){ // initial config is odd!
if(diffpos1%2==1){
permfactor5[tensor2listindex(tempvec)]=COM(0,1); // even perm
// initally symmetric under diff1<->diff2 =>
// if this perm is even, automatically even for first diffpos2
set_permfactor2=false;
} else {
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1); // odd perm
// initally symmetric under diff1<->diff2 =>
// if this perm is odd, automatically odd for first diffpos2
set_permfactor2=true;
}
} else {// diff0=true, initial config is even
if(diffpos1%2==1){
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1); // odd perm
// initally symmetric under diff1<->diff2 =>
// if this perm is odd, automatically odd for first diffpos2
set_permfactor2=true;
} else {
permfactor5[tensor2listindex(tempvec)]=COM(0,1); // even perm
// initally symmetric under diff1<->diff2 =>
// if this perm is even, automatically even for first diffpos2
set_permfactor2=false;
}
}
if((diffpos2-diffpos1-1)%2==1)
set_permfactor2=!set_permfactor2; // change to account for diffpos2
} else if(same0){
// the repeated matrix is sigma0
// => only relative positions of diff1, diff2 matter.
// always even before flip because diff1pos<diff2pos
permfactor5[tensor2listindex(tempvec)]=COM(0,1);
// if this perm is odd, swapping diff1<->diff2 automatically odd
set_permfactor2=true;
}
tempvec[diffpos1]=diff2;
tempvec[diffpos2]=diff1;
perms.push_back(tempvec);
if(set_permfactor2)
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1);
else
permfactor5[tensor2listindex(tempvec)]=COM(0,1);
}
}
} // end perms311
// generate all unique perms of vectors {a,a,b,b,c}, return in perms
void perms221(int same2a, int same2b, int diff,
std::vector<std::array<int,5>> & perms
){
bool set_permfactor1(true);
bool set_permfactor2(true);
if(same2b==0){
std::cerr<<"second entry in perms221() shouldn't be zero" <<std::endl;
return;
} else if(same2a==0)
set_permfactor1=false;
else if(diff==0)
set_permfactor2=false;
for(int samepos=0;samepos<5;samepos++){
int permcount = 0;
for(int samepos2=samepos+1;samepos2<5;samepos2++){
for(int diffpos=0;diffpos<5;diffpos++){
if(diffpos==samepos||diffpos==samepos2) continue;
std::array<int,5> tempvec={same2a,same2a,same2a,same2a,same2a};
tempvec[samepos]=same2b;
tempvec[samepos2]=same2b;
tempvec[diffpos]=diff;
perms.push_back(tempvec);
if(set_permfactor1){
if(set_permfactor2){// full anti-symmetry
if(permcount%2==1)
permfactor5[tensor2listindex(tempvec)]=-1.;
} else { // diff is sigma0
if( ((samepos2-samepos-1)%3>0)
&& (abs(abs(samepos2-diffpos)-abs(samepos-diffpos))%3>0) )
permfactor5[tensor2listindex(tempvec)]=-1.;
}
} else { // same2a is sigma0
if((diffpos>samepos) && (diffpos<samepos2))
permfactor5[tensor2listindex(tempvec)]=-1.;
}
permcount++;
}
}
}
}
// generate all unique perms of vectors {a,a,b,b,c}, return in perms
// there must be a sigma zero if we have 4 different matrices in string
// bool is true if sigma0 is the repeated matrix
void perms2111(int same2, int diff1,int diff2,int diff3,
std::vector<std::array<int,5>> & perms
){
bool twozero(false);
if(same2==0)
twozero=true;
else if (diff1!=0){
std::cerr<<"One of first or second argurments must be a zero"<<std::endl;
return;
} else if(diff2==0|| diff3==0){
std::cerr<<"Only first and second arguments may be a zero."<<std::endl;
return;
}
int permcount = 0;
for(int diffpos1=0;diffpos1<5;diffpos1++){
for(int diffpos2=0;diffpos2<5;diffpos2++){
if(diffpos2==diffpos1) continue;
for(int diffpos3=0;diffpos3<5;diffpos3++){
if(diffpos3==diffpos2||diffpos3==diffpos1) continue;
std::array<int,5> tempvec={same2,same2,same2,same2,same2};
tempvec[diffpos1]=diff1;
tempvec[diffpos2]=diff2;
tempvec[diffpos3]=diff3;
perms.push_back(tempvec);
if(twozero){// don't care about exact positions of singles, just order
if(diffpos2>diffpos3 && diffpos3>diffpos1)
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1);// odd
else if(diffpos1>diffpos2 && diffpos2>diffpos3)
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1);// odd
else if(diffpos3>diffpos1 && diffpos1>diffpos2)
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1);// odd
else
permfactor5[tensor2listindex(tempvec)]=COM(0,1);// evwn
} else {
if(permcount%2==1)
permfactor5[tensor2listindex(tempvec)]=-1.*COM(0,1);
else
permfactor5[tensor2listindex(tempvec)]=COM(0,1);
}
permcount++;
}
}
}
}
void perms21(int same, int diff, std::vector<std::array<int,3>> & perms){
bool set_permfactor(true);
if(same==0||diff==0)
set_permfactor=false;
for(int diffpos=0; diffpos<3;diffpos++){
std::array<int,3> tempvec={same,same,same};
tempvec[diffpos]=diff;
perms.push_back(tempvec);
if(set_permfactor && diffpos==1)
permfactor3[tensor2listindex(tempvec)]=-1.;
}
}
void perms111(int diff1, int diff2, int diff3,
std::vector<std::array<int,3>> & perms
){
bool sig_zero(false);
if(diff1==0)
sig_zero=true;
else if(diff2==0||diff3==0){
std::cerr<<"Only first argument may be a zero."<<std::endl;
return;
}
int permcount=0;
for(int pos1=0;pos1<3;pos1++){
for(int pos2=pos1+1;pos2<3;pos2++){
std::array<int,3> tempvec={diff1,diff1,diff1};
tempvec[pos1]=diff2;
tempvec[pos2]=diff3;
perms.push_back(tempvec);
if(sig_zero){
permfactor3[tensor2listindex(tempvec)]=1.*COM(0,1); // even
} else if(permcount%2==1){
permfactor3[tensor2listindex(tempvec)]=-1.*COM(0,1); // odd
} else {
permfactor3[tensor2listindex(tempvec)]=1.*COM(0,1); // even
}
tempvec[pos1]=diff3;
tempvec[pos2]=diff2;
perms.push_back(tempvec);
if(sig_zero){
permfactor3[tensor2listindex(tempvec)]=-1.*COM(0,1); // odd
} else if(permcount%2==1){
permfactor3[tensor2listindex(tempvec)]=1.*COM(0,1); // even
} else {
permfactor3[tensor2listindex(tempvec)]=-1.*COM(0,1); // odd
}
permcount++;
}
}
}
void SpinorO(CLHEP::HepLorentzVector p, Helicity hel, COM *sp){
// sp is pointer to COM sp[2]
COM pplus = p.e() +p.z();
COM pminus = p.e() -p.z();
COM sqpp= sqrt(pplus);
COM sqpm= sqrt(pminus);
COM pperp = p.x() + COM(0,1)*p.y();
if(hel == helicity::plus){
sp[0] = sqpp;
sp[1] = sqpm*pperp/abs(pperp);
} else {
sp[0] = sqpm*conj(pperp)/abs(pperp);
sp[1] = -sqpp;
}
}
void SpinorIp(COM sqpp, Helicity hel, COM *sp){
// if hel=+
if(hel == helicity::plus){
sp[0] = sqpp;
sp[1] = 0.;
} else {
sp[0] = 0.;
sp[1] = -sqpp;
}
}
void SpinorIm(COM sqpm, Helicity hel, COM *sp){
// if hel=+
if(hel == helicity::plus){
sp[0] = 0;
sp[1] = -sqpm;
} else {
sp[0] = -sqpm;
sp[1] = 0.;
}
}
void Spinor(CLHEP::HepLorentzVector p, Helicity hel, COM *sp){
COM pplus = p.e() +p.z();
COM pminus = p.e() -p.z();
// If incoming along +ve z
if (pminus==0.){
COM sqpp= sqrt(pplus);
SpinorIp(sqpp,hel,sp);
}
// If incoming along -ve z
else if(pplus==0.){
COM sqpm= sqrt(pminus);
SpinorIm(sqpm,hel,sp);
}
// Outgoing
else {
SpinorO(p,hel,sp);
}
}
} // anonymous namespace
Tensor<2> metric(){
static const Tensor<2> g = [](){
Tensor<2> g(0.);
g(0,0) = 1.;
g(1,1) = -1.;
g(2,2) = -1.;
g(3,3) = -1.;
return g;
}();
return g;
}
// <1|mu|2>
- Tensor<1> TCurrent(
+ Tensor<1> current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
){
COM sp1[2];
COM sp2[2];
Tensor<1> newT(0.);
CLHEP::HepLorentzVector p1new{ p1.e()<0?-p1:p1 };
CLHEP::HepLorentzVector p2new{ p2.e()<0?-p2:p2 };
Spinor(p1new, h, sp1);
Spinor(p2new, h, sp2);
for(int i=0;i<2;i++){
for(int j=0; j<2; j++){
newT+=(Sigma(i,j,h)*sp2[j])*conj(sp1[i]);
}
}
return newT;
}
// <1|mu|2>
- Tensor<1> TCurrent(CLHEP::HepLorentzVector p1, Helicity h1,
+ Tensor<1> current(CLHEP::HepLorentzVector p1, Helicity h1,
CLHEP::HepLorentzVector p2, Helicity h2
){
COM sp1[2];
COM sp2[2];
Tensor<1> newT(0.);
CLHEP::HepLorentzVector p1new{ p1.e()<0?-p1:p1 };
CLHEP::HepLorentzVector p2new{ p2.e()<0?-p2:p2 };
if(h1!=h2){
return newT;
}
Spinor(p1new, h1, sp1);
Spinor(p2new, h2, sp2);
for(int i=0;i<2;i++){
for(int j=0; j<2; j++){
newT+=(Sigma(i,j,h2)*sp2[j])*conj(sp1[i]);
}
}
return newT;
}
// <1|mu nu sigma|2>
- Tensor<3> T3Current(CLHEP::HepLorentzVector p1, Helicity h1,
+ Tensor<3> rank3_current(CLHEP::HepLorentzVector p1, Helicity h1,
CLHEP::HepLorentzVector p2, Helicity h2
){
COM sp1[2];
COM sp2[2];
Tensor<3> newT(0.);
CLHEP::HepLorentzVector p1new{ p1.e()<0?-p1:p1 };
CLHEP::HepLorentzVector p2new{ p2.e()<0?-p2:p2 };
if(h1!=h2){
return newT;
}
Spinor(p1new, h1, sp1);
Spinor(p2new, h2, sp2);
COM current[4];
for(int i=0; i<2;i++){
for(int j=0; j<2;j++){
current[0]+=conj(sp1[i])*sigma0[i][j]*sp2[j];
current[1]+=conj(sp1[i])*sigma1[i][j]*sp2[j];
current[2]+=conj(sp1[i])*sigma2[i][j]*sp2[j];
current[3]+=conj(sp1[i])*sigma3[i][j]*sp2[j];
}
}
for( std::size_t itensor=0; itensor<newT.size(); itensor++ ){
double hfact = double( helfactor3[h2][itensor] );
newT.components[itensor] = current[sigma_index3[itensor]] * hfact
* permfactor3[itensor];
}
return newT;
}
// <1|mu nu sigma tau rho|2>
- Tensor<5> T5Current(CLHEP::HepLorentzVector p1, Helicity h1,
+ Tensor<5> rank5_current(CLHEP::HepLorentzVector p1, Helicity h1,
CLHEP::HepLorentzVector p2, Helicity h2
){
COM sp1[2];
COM sp2[2];
Tensor<5> newT(0.);
CLHEP::HepLorentzVector p1new{ p1.e()<0?-p1:p1 };
CLHEP::HepLorentzVector p2new{ p2.e()<0?-p2:p2 };
if(h1!=h2){
return newT;
}
Spinor(p1new, h1, sp1);
Spinor(p2new, h2, sp2);
COM current[4];
for(int i=0; i<2;i++){
for(int j=0; j<2;j++){
current[0]+=conj(sp1[i])*sigma0[i][j]*sp2[j];
current[1]+=conj(sp1[i])*sigma1[i][j]*sp2[j];
current[2]+=conj(sp1[i])*sigma2[i][j]*sp2[j];
current[3]+=conj(sp1[i])*sigma3[i][j]*sp2[j];
}
}
for(std::size_t itensor=0;itensor<newT.size();itensor++){
double hfact = double(helfactor5[h2][itensor]);
newT.components[itensor] = current[sigma_index5[itensor]] * hfact
* permfactor5[itensor];
}
return newT;
}
Tensor<1> Construct1Tensor(CCurrent j){
Tensor<1> newT;
newT.components={j.c0,j.c1,j.c2,j.c3};
return newT;
}
Tensor<1> Construct1Tensor(CLHEP::HepLorentzVector p){
Tensor<1> newT;
newT.components={p.e(),p.x(),p.y(),p.z()};
return newT;
}
Tensor<1> eps(CLHEP::HepLorentzVector k, CLHEP::HepLorentzVector ref, Helicity pol){
Tensor<1> polvec;
COM spk[2];
COM spr[2];
COM denom;
CLHEP::HepLorentzVector knew{ k.e()<0?-k:k };
Spinor(knew, pol, spk);
Spinor(ref, flip(pol), spr);
denom = pow(-1.,pol)*sqrt(2)*(conj(spr[0])*spk[0] + conj(spr[1])*spk[1]);
- polvec = TCurrent(ref,knew,flip(pol))/denom;
+ polvec = current(ref,knew,flip(pol))/denom;
return polvec;
}
// slow function! - but only need to evaluate once.
bool init_sigma_index(){
// initialize permfactor(3) to list of ones (change to minus one for each odd
// permutation and multiply by i for all permutations in perms2111, perms311,
// perms111)
permfactor5.resize(1024,1.);
permfactor3.resize(64,1.);
// first set sigma_index (5)
std::vector<std::array<int,5>> sigma0indices;
std::vector<std::array<int,5>> sigma1indices;
std::vector<std::array<int,5>> sigma2indices;
std::vector<std::array<int,5>> sigma3indices;
// need to generate all possible permuations of {i,j,k,l,m}
// where each index can be {0,1,2,3,4}
// 1024 possibilities
// perms with 5 same
sigma0indices.push_back({0,0,0,0,0});
sigma1indices.push_back({1,1,1,1,1});
sigma2indices.push_back({2,2,2,2,2});
sigma3indices.push_back({3,3,3,3,3});
// perms with 4 same
perms41(1,0,sigma0indices);
perms41(2,0,sigma0indices);
perms41(3,0,sigma0indices);
perms41(0,1,sigma1indices);
perms41(2,1,sigma1indices);
perms41(3,1,sigma1indices);
perms41(0,2,sigma2indices);
perms41(1,2,sigma2indices);
perms41(3,2,sigma2indices);
perms41(0,3,sigma3indices);
perms41(1,3,sigma3indices);
perms41(2,3,sigma3indices);
// perms with 3 same, 2 same
perms32(0,1,sigma0indices);
perms32(0,2,sigma0indices);
perms32(0,3,sigma0indices);
perms32(1,0,sigma1indices);
perms32(1,2,sigma1indices);
perms32(1,3,sigma1indices);
perms32(2,0,sigma2indices);
perms32(2,1,sigma2indices);
perms32(2,3,sigma2indices);
perms32(3,0,sigma3indices);
perms32(3,1,sigma3indices);
perms32(3,2,sigma3indices);
// perms with 3 same, 2 different
perms311(1,2,3,sigma0indices);
perms311(2,3,1,sigma0indices);
perms311(3,1,2,sigma0indices);
perms311(0,2,3,sigma1indices);
perms311(2,3,0,sigma1indices);
perms311(3,2,0,sigma1indices);
perms311(0,3,1,sigma2indices);
perms311(1,3,0,sigma2indices);
perms311(3,1,0,sigma2indices);
perms311(0,1,2,sigma3indices);
perms311(1,2,0,sigma3indices);
perms311(2,1,0,sigma3indices);
perms221(1,2,0,sigma0indices);
perms221(1,3,0,sigma0indices);
perms221(2,3,0,sigma0indices);
perms221(0,2,1,sigma1indices);
perms221(0,3,1,sigma1indices);
perms221(2,3,1,sigma1indices);
perms221(0,1,2,sigma2indices);
perms221(0,3,2,sigma2indices);
perms221(1,3,2,sigma2indices);
perms221(0,1,3,sigma3indices);
perms221(0,2,3,sigma3indices);
perms221(1,2,3,sigma3indices);
perms2111(0,1,2,3,sigma0indices);
perms2111(1,0,2,3,sigma1indices);
perms2111(2,0,3,1,sigma2indices);
perms2111(3,0,1,2,sigma3indices);
if(sigma0indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma0indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
} else if(sigma1indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma1indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
} else if(sigma2indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma2indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
} else if(sigma3indices.size()!=256){
std::cerr<<"sigma_index not set: ";
std::cerr<<"sigma3indices has "<< sigma0indices.size() << " components" << std::endl;
return false;
}
for(int i=0;i<256;i++){
// map each unique set of tensor indices to its position in a list
int index0 = tensor2listindex(sigma0indices.at(i));
int index1 = tensor2listindex(sigma1indices.at(i));
int index2 = tensor2listindex(sigma2indices.at(i));
int index3 = tensor2listindex(sigma3indices.at(i));
sigma_index5[index0]=0;
sigma_index5[index1]=1;
sigma_index5[index2]=2;
sigma_index5[index3]=3;
short int sign[4]={1,-1,-1,-1};
// plus->true->1
helfactor5[1][index0] = sign[sigma0indices.at(i)[1]]
* sign[sigma0indices.at(i)[3]];
helfactor5[1][index1] = sign[sigma1indices.at(i)[1]]
* sign[sigma1indices.at(i)[3]];
helfactor5[1][index2] = sign[sigma2indices.at(i)[1]]
* sign[sigma2indices.at(i)[3]];
helfactor5[1][index3] = sign[sigma3indices.at(i)[1]]
* sign[sigma3indices.at(i)[3]];
// minus->false->0
helfactor5[0][index0] = sign[sigma0indices.at(i)[0]]
* sign[sigma0indices.at(i)[2]]
* sign[sigma0indices.at(i)[4]];
helfactor5[0][index1] = sign[sigma1indices.at(i)[0]]
* sign[sigma1indices.at(i)[2]]
* sign[sigma1indices.at(i)[4]];
helfactor5[0][index2] = sign[sigma2indices.at(i)[0]]
* sign[sigma2indices.at(i)[2]]
* sign[sigma2indices.at(i)[4]];
helfactor5[0][index3] = sign[sigma3indices.at(i)[0]]
* sign[sigma3indices.at(i)[2]]
* sign[sigma3indices.at(i)[4]];
}
// now set sigma_index3
std::vector<std::array<int,3>> sigma0indices3;
std::vector<std::array<int,3>> sigma1indices3;
std::vector<std::array<int,3>> sigma2indices3;
std::vector<std::array<int,3>> sigma3indices3;
// perms with 3 same
sigma0indices3.push_back({0,0,0});
sigma1indices3.push_back({1,1,1});
sigma2indices3.push_back({2,2,2});
sigma3indices3.push_back({3,3,3});
// 2 same
perms21(1,0,sigma0indices3);
perms21(2,0,sigma0indices3);
perms21(3,0,sigma0indices3);
perms21(0,1,sigma1indices3);
perms21(2,1,sigma1indices3);
perms21(3,1,sigma1indices3);
perms21(0,2,sigma2indices3);
perms21(1,2,sigma2indices3);
perms21(3,2,sigma2indices3);
perms21(0,3,sigma3indices3);
perms21(1,3,sigma3indices3);
perms21(2,3,sigma3indices3);
// none same
perms111(1,2,3,sigma0indices3);
perms111(0,2,3,sigma1indices3);
perms111(0,3,1,sigma2indices3);
perms111(0,1,2,sigma3indices3);
if(sigma0indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma0indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
} else if(sigma1indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma1indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
} else if(sigma2indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma2indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
} else if(sigma3indices3.size()!=16){
std::cerr<<"sigma_index3 not set: ";
std::cerr<<"sigma3indices3 has "<< sigma0indices3.size() << " components" << std::endl;
return false;
}
for(int i=0;i<16;i++){
int index0 = tensor2listindex(sigma0indices3.at(i));
int index1 = tensor2listindex(sigma1indices3.at(i));
int index2 = tensor2listindex(sigma2indices3.at(i));
int index3 = tensor2listindex(sigma3indices3.at(i));
sigma_index3[index0]=0;
sigma_index3[index1]=1;
sigma_index3[index2]=2;
sigma_index3[index3]=3;
short int sign[4]={1,-1,-1,-1};
// plus->true->1
helfactor3[1][index0] = sign[sigma0indices3.at(i)[1]];
helfactor3[1][index1] = sign[sigma1indices3.at(i)[1]];
helfactor3[1][index2] = sign[sigma2indices3.at(i)[1]];
helfactor3[1][index3] = sign[sigma3indices3.at(i)[1]];
// minus->false->0
helfactor3[0][index0] = sign[sigma0indices3.at(i)[0]]
* sign[sigma0indices3.at(i)[2]];
helfactor3[0][index1] = sign[sigma1indices3.at(i)[0]]
* sign[sigma1indices3.at(i)[2]];
helfactor3[0][index2] = sign[sigma2indices3.at(i)[0]]
* sign[sigma2indices3.at(i)[2]];
helfactor3[0][index3] = sign[sigma3indices3.at(i)[0]]
* sign[sigma3indices3.at(i)[2]];
}
return true;
} // end init_sigma_index
}
diff --git a/src/Wjets.cc b/src/Wjets.cc
index 55f6ebc..9d84c8f 100644
--- a/src/Wjets.cc
+++ b/src/Wjets.cc
@@ -1,1315 +1,1314 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/currents.hh"
#include "HEJ/utility.hh"
#include "HEJ/Tensor.hh"
#include "HEJ/Constants.hh"
#include <array>
#include <iostream>
using HEJ::Tensor;
using HEJ::init_sigma_index;
using HEJ::metric;
-using HEJ::TCurrent;
-using HEJ::T3Current;
-using HEJ::T5Current;
+using HEJ::rank3_current;
+using HEJ::rank5_current;
using HEJ::eps;
using HEJ::Construct1Tensor;
using HEJ::Helicity;
namespace helicity = HEJ::helicity;
namespace { // Helper Functions
// FKL W Helper Functions
double WProp (const HLV & plbar, const HLV & pl){
COM propW = COM(0.,-1.)/( (pl+plbar).m2() - HEJ::MW*HEJ::MW + COM(0.,1.)*HEJ::MW*HEJ::GammaW);
double PropFactor=(propW*conj(propW)).real();
return PropFactor;
}
CCurrent jW (
HLV pout, Helicity helout,
HLV plbar, Helicity hellbar,
HLV pl, Helicity hell,
HLV pin, Helicity helin
){
COM cur[4];
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
CCurrent sum(0.,0.,0.,0.);
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is
// anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hellbar==hell) {
HLV qa=pout+plbar+pl;
HLV qb=pin-plbar-pl;
double ta(qa.m2()),tb(qb.m2());
CCurrent temp2,temp3,temp5;
CCurrent t65 = joo(pl,hell,plbar,hellbar);
CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
COM brac615=t65.dot(vout);
COM brac645=t65.dot(vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
temp2 = joo(pout,helout,pl,helout);
COM prod1665=temp2.dot(t65);
temp3 = joi(plbar,helin,pin,helin);
COM prod5465=temp3.dot(t65);
temp2=joo(pout,helout,plbar,helout);
temp3=joi(pl,hell,pin,helin);
temp5=joi(pout,helout,pin,helin);
CCurrent term1,term2,term3;
term1=(2.*brac615/ta+2.*brac645/tb)*temp5;
term2=(prod1665/ta)*temp3;
term3=(-prod5465/tb)*temp2;
sum=term1+term2+term3;
}
return sum;
}
CCurrent jWbar (
HLV pout, Helicity helout,
HLV plbar, Helicity hellbar,
HLV pl, Helicity hell,
HLV pin, Helicity helin
){
COM cur[4];
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
CCurrent sum(0.,0.,0.,0.);
// NOTA BENE: Conventions for W+ --> e+ nu, so that nu is lepton(6), e is
// anti-lepton(5)
// Need to swap e and nu for events with W- --> e- nubar!
if (helin==helout && hellbar==hell) {
HLV qa=pout+plbar+pl;
HLV qb=pin-plbar-pl;
double ta(qa.m2()),tb(qb.m2());
CCurrent temp2,temp3,temp5;
CCurrent t65 = joo(pl,hell,plbar,hellbar);
CCurrent vout(pout.e(),pout.x(),pout.y(),pout.z());
CCurrent vin(pin.e(),pin.x(),pin.y(),pin.z());
COM brac615=t65.dot(vout);
COM brac645=t65.dot(vin);
// prod1565 and prod6465 are zero for Ws (not Zs)!!
temp2 = joo(plbar,helout,pout,helout); // temp2 is <5|alpha|1>
COM prod5165=temp2.dot(t65);
temp3 = jio(pin,helin,pl,helin); // temp3 is <4|alpha|6>
COM prod4665=temp3.dot(t65);
temp2=joo(pl,helout,pout,helout); // temp2 is now <6|mu|1>
temp3=jio(pin,helin,plbar,helin); // temp3 is now <4|mu|5>
temp5=jio(pin,helin,pout,helout); // temp5 is <4|mu|1>
CCurrent term1,term2,term3;
term1 =(-2.*brac615/ta-2.*brac645/tb)*temp5;
term2 =(-prod5165/ta)*temp3;
term3 =(prod4665/tb)*temp2;
sum = term1 + term2 + term3;
}
return sum;
}
// Extremal quark current with W emission.
// Using Tensor class rather than CCurrent
Tensor <1> jW(HLV pin, HLV pout, HLV plbar, HLV pl, bool aqline){
// Build the external quark line W Emmision
- Tensor<1> ABCurr = TCurrent(pl, plbar, helicity::minus);
+ Tensor<1> ABCurr = HEJ::current(pl, plbar, helicity::minus);
Tensor<1> Tp4W = Construct1Tensor((pout+pl+plbar));//p4+pw
Tensor<1> TpbW = Construct1Tensor((pin-pl-plbar));//pb-pw
Tensor<3> J4bBlank;
if (aqline){
- J4bBlank = T3Current(pin,helicity::minus,pout,helicity::minus);
+ J4bBlank = rank3_current(pin,helicity::minus,pout,helicity::minus);
}
else{
- J4bBlank = T3Current(pout,helicity::minus,pin,helicity::minus);
+ J4bBlank = rank3_current(pout,helicity::minus,pin,helicity::minus);
}
double t4AB = (pout+pl+plbar).m2();
double tbAB = (pin-pl-plbar).m2();
Tensor<2> J4b1 = (J4bBlank.contract(Tp4W,2))/t4AB;
Tensor<2> J4b2 = (J4bBlank.contract(TpbW,2))/tbAB;
Tensor<2> T4bmMom(0.);
if (aqline){
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
T4bmMom(mu, nu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,-1);
}
}
}
else{
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
T4bmMom(nu,mu) = (J4b1(nu,mu) + J4b2(mu,nu))*COM(0,1);
}
}
}
Tensor<1> T4bm = T4bmMom.contract(ABCurr,1);
return T4bm;
}
// Relevant W+Jets Unordered Contribution Helper Functions
double jM2Wuno(HLV pg, HLV p1,HLV plbar, HLV pl, HLV pa, Helicity h1,
HLV p2, HLV pb, Helicity h2, Helicity pol
){
//@TODO Simplify the below (less Tensor class?)
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;
}
HLV pW = pl+plbar;
HLV q1g=pa-pW-p1-pg;
HLV q1 = pa-p1-pW;
HLV q2 = p2-pb;
const double taW = (pa-pW).m2();
const double taW1 = (pa-pW-p1).m2();
const double tb2 = (pb-p2).m2();
const double tb2g = (pb-p2-pg).m2();
const double s1W = (p1+pW).m2();
const double s1gW = (p1+pW+pg).m2();
const double s1g = (p1+pg).m2();
const double tag = (pa-pg).m2();
const double taWg = (pa-pW-pg).m2();
//use p1 as ref vec in pol tensor
Tensor<1> epsg = eps(pg,p2,pol);
- Tensor<1> epsW = TCurrent(pl,plbar,helicity::minus);
- Tensor<1> j2b = TCurrent(p2,pb,h2);
+ Tensor<1> epsW = HEJ::current(pl,plbar,helicity::minus);
+ Tensor<1> j2b = HEJ::current(p2,pb,h2);
Tensor<1> Tq1q2 = Construct1Tensor((q1+q2)/taW1 + (pb/pb.dot(pg)
+p2/p2.dot(pg)) * tb2/(2*tb2g));
Tensor<1> Tq1g = Construct1Tensor((-pg-q1))/taW1;
Tensor<1> Tq2g = Construct1Tensor((pg-q2));
Tensor<1> TqaW = Construct1Tensor((pa-pW));//pa-pw
Tensor<1> Tqag = Construct1Tensor((pa-pg));
Tensor<1> TqaWg = Construct1Tensor((pa-pg-pW));
Tensor<1> Tp1g = Construct1Tensor((p1+pg));
Tensor<1> Tp1W = Construct1Tensor((p1+pW));//p1+pw
Tensor<1> Tp1gW = Construct1Tensor((p1+pg+pW));//p1+pw+pg
Tensor<2> g=metric();
- Tensor<3> J31a = T3Current(p1, h1, pa, h1);
+ Tensor<3> J31a = rank3_current(p1, h1, pa, h1);
Tensor<2> J2_qaW =J31a.contract(TqaW/taW, 2);
Tensor<2> J2_p1W =J31a.contract(Tp1W/s1W, 2);
Tensor<3> L1a = outer(Tq1q2, J2_qaW);
Tensor<3> L1b = outer(Tq1q2, J2_p1W);
Tensor<3> L2a = outer(Tq1g,J2_qaW);
Tensor<3> L2b = outer(Tq1g, J2_p1W);
Tensor<3> L3 = outer(g, J2_qaW.contract(Tq2g,1)+J2_p1W.contract(Tq2g,2))/taW1;
Tensor<3> L(0.);
- Tensor<5> J51a = T5Current(p1, h1, pa, h1);
+ Tensor<5> J51a = rank5_current(p1, h1, pa, h1);
Tensor<4> J_qaW = J51a.contract(TqaW,4);
Tensor<4> J_qag = J51a.contract(Tqag,4);
Tensor<4> J_p1gW = J51a.contract(Tp1gW,4);
Tensor<3> U1a = J_qaW.contract(Tp1g,2);
Tensor<3> U1b = J_p1gW.contract(Tp1g,2);
Tensor<3> U1c = J_p1gW.contract(Tp1W,2);
Tensor<3> U1(0.);
Tensor<3> U2a = J_qaW.contract(TqaWg,2);
Tensor<3> U2b = J_qag.contract(TqaWg,2);
Tensor<3> U2c = J_qag.contract(Tp1W,2);
Tensor<3> U2(0.);
for(int nu=0; nu<4;nu++){
for(int mu=0;mu<4;mu++){
for(int rho=0;rho<4;rho++){
L(nu, mu, rho) = L1a(nu,mu,rho) + L1b(nu,rho,mu)
+ L2a(mu,nu,rho) + L2b(mu,rho,nu) + L3(mu,nu,rho);
U1(nu, mu, rho) = U1a(nu, mu, rho) / (s1g*taW)
+ U1b(nu,rho,mu) / (s1g*s1gW) + U1c(rho,nu,mu) / (s1W*s1gW);
U2(nu,mu,rho) = U2a(mu,nu,rho) / (taWg*taW)
+ U2b(mu,rho,nu) / (taWg*tag) + U2c(rho,mu,nu) / (s1W*tag);
}
}
}
COM X = ((((U1-L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1));
COM Y = ((((U2+L).contract(epsW,3)).contract(j2b,2)).contract(epsg,1));
double amp = HEJ::C_A*HEJ::C_F*HEJ::C_F/2.*(norm(X)+norm(Y)) - HEJ::C_F/2.*(X*conj(Y)).real();
double t1 = q1g.m2();
double t2 = q2.m2();
double WPropfact = WProp(plbar, pl);
//Divide by WProp
amp*=WPropfact;
//Divide by t-channels
amp/=(t1*t2);
//Average over initial states
amp/=(4.*HEJ::C_A*HEJ::C_A);
return amp;
}
// Relevant Wqqx Helper Functions.
//g->qxqlxl (Calculates gluon to qqx Current. See JV_\mu in WSubleading Notes)
Tensor <1> gtqqxW(HLV pq,HLV pqbar,HLV pl,HLV plbar){
//@TODO Simplify the calculation below (Less Tensor class use?)
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
Tensor<1> Tpq = Construct1Tensor(pq);
Tensor<1> Tpqbar = Construct1Tensor(pqbar);
Tensor<1> TAB = Construct1Tensor(pl+plbar);
// Define llx current.
- Tensor<1> ABCur = TCurrent(pl, plbar, helicity::minus);
+ Tensor<1> ABCur = HEJ::current(pl, plbar, helicity::minus);
//blank 3 Gamma Current
- Tensor<3> JV23 = T3Current(pq,helicity::minus,pqbar,helicity::minus);
+ Tensor<3> JV23 = rank3_current(pq,helicity::minus,pqbar,helicity::minus);
// Components of g->qqW before W Contraction
Tensor<2> JV1 = JV23.contract((Tpq + TAB),2)/(s2AB);
Tensor<2> JV2 = JV23.contract((Tpqbar + TAB),2)/(s3AB);
// g->qqW Current. Note Minus between terms due to momentum flow.
// Also note: (-I)^2 from W vert. (I) from Quark prop.
Tensor<1> JVCur = (JV1.contract(ABCur,1) - JV2.contract(ABCur,2))*COM(0.,-1.);
return JVCur;
}
// Helper Functions Calculate the Crossed Contribution
Tensor <2> MCrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar, HLV pl,
HLV plbar, std::vector<HLV> partons, int nabove
){
//@TODO Simplify the calculation below Maybe combine with MCross?
// Useful propagator factors
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
HLV q1, q3;
q1=pa;
for(int i=0; i<nabove+1;i++){
q1=q1-partons.at(i);
}
q3 = q1 - pq - pqbar - pl - plbar;
double tcro1=(q3+pq).m2();
double tcro2=(q1-pqbar).m2();
Tensor<1> Tpq = Construct1Tensor(pq);
Tensor<1> Tpqbar = Construct1Tensor(pqbar);
Tensor<1> TAB = Construct1Tensor(pl+plbar);
Tensor<1> Tq1 = Construct1Tensor(q1);
Tensor<1> Tq3 = Construct1Tensor(q3);
// Define llx current.
- Tensor<1> ABCur = TCurrent(pl, plbar,helicity::minus);
+ Tensor<1> ABCur = HEJ::current(pl, plbar,helicity::minus);
//Blank 5 gamma Current
- Tensor<5> J523 = T5Current(pq,helicity::minus,pqbar,helicity::minus);
+ Tensor<5> J523 = rank5_current(pq,helicity::minus,pqbar,helicity::minus);
// 4 gamma currents (with 1 contraction already).
Tensor<4> J_q3q = J523.contract((Tq3+Tpq),2);
Tensor<4> J_2AB = J523.contract((Tpq+TAB),2);
// Components of Crossed Vertex Contribution
Tensor<3> Xcro1 = J_q3q.contract((Tpqbar + TAB),3);
Tensor<3> Xcro2 = J_q3q.contract((Tq1-Tpqbar),3);
Tensor<3> Xcro3 = J_2AB.contract((Tq1-Tpqbar),3);
// Term Denominators Taken Care of at this stage
Tensor<2> Xcro1Cont = Xcro1.contract(ABCur,3)/(tcro1*s3AB);
Tensor<2> Xcro2Cont = Xcro2.contract(ABCur,2)/(tcro1*tcro2);
Tensor<2> Xcro3Cont = Xcro3.contract(ABCur,1)/(s2AB*tcro2);
//Initialise the Crossed Vertex Object
Tensor<2> Xcro(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xcro(mu,nu) = -(-Xcro1Cont(nu,mu)+Xcro2Cont(nu,mu)+Xcro3Cont(nu,mu));
}
}
return Xcro;
}
// Helper Functions Calculate the Uncrossed Contribution
Tensor <2> MUncrossW(HLV pa, HLV, HLV, HLV, HLV pq, HLV pqbar,
HLV pl, HLV plbar, std::vector<HLV> partons, int nabove
){
//@TODO Simplify the calculation below Maybe combine with MUncross?
double s2AB=(pl+plbar+pq).m2();
double s3AB=(pl+plbar+pqbar).m2();
HLV q1, q3;
q1=pa;
for(int i=0; i<nabove+1;i++){
q1=q1-partons.at(i);
}
q3 = q1 - pl - plbar - pq - pqbar;
double tunc1 = (q1-pq).m2();
double tunc2 = (q3+pqbar).m2();
Tensor<1> Tpq = Construct1Tensor(pq);
Tensor<1> Tpqbar = Construct1Tensor(pqbar);
Tensor<1> TAB = Construct1Tensor(pl+plbar);
Tensor<1> Tq1 = Construct1Tensor(q1);
Tensor<1> Tq3 = Construct1Tensor(q3);
// Define llx current.
- Tensor<1> ABCur = TCurrent(pl, plbar, helicity::minus);
+ Tensor<1> ABCur = HEJ::current(pl, plbar, helicity::minus);
//Blank 5 gamma Current
- Tensor<5> J523 = T5Current(pq,helicity::minus,pqbar,helicity::minus);
+ Tensor<5> J523 = rank5_current(pq,helicity::minus,pqbar,helicity::minus);
// 4 gamma currents (with 1 contraction already).
Tensor<4> J_2AB = J523.contract((Tpq+TAB),2);
Tensor<4> J_q1q = J523.contract((Tq1-Tpq),2);
// 2 Contractions taken care of.
Tensor<3> Xunc1 = J_2AB.contract((Tq3+Tpqbar),3);
Tensor<3> Xunc2 = J_q1q.contract((Tq3+Tpqbar),3);
Tensor<3> Xunc3 = J_q1q.contract((Tpqbar+TAB),3);
// Term Denominators Taken Care of at this stage
Tensor<2> Xunc1Cont = Xunc1.contract(ABCur,1)/(s2AB*tunc2);
Tensor<2> Xunc2Cont = Xunc2.contract(ABCur,2)/(tunc1*tunc2);
Tensor<2> Xunc3Cont = Xunc3.contract(ABCur,3)/(tunc1*s3AB);
//Initialise the Uncrossed Vertex Object
Tensor<2> Xunc(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xunc(mu,nu) = -(- Xunc1Cont(mu,nu)+Xunc2Cont(mu,nu) +Xunc3Cont(mu,nu));
}
}
return Xunc;
}
// Helper Functions Calculate the g->qqxW (Eikonal) Contributions
Tensor <2> MSymW(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar,
HLV pl,HLV plbar, std::vector<HLV> partons, int nabove
){
//@TODO Simplify the calculation below Maybe combine with MSym?
double sa2=(pa+pq).m2();
double s12=(p1+pq).m2();
double sa3=(pa+pqbar).m2();
double s13=(p1+pqbar).m2();
double saA=(pa+pl).m2();
double s1A=(p1+pl).m2();
double saB=(pa+plbar).m2();
double s1B=(p1+plbar).m2();
double sb2=(pb+pq).m2();
double s42=(p4+pq).m2();
double sb3=(pb+pqbar).m2();
double s43=(p4+pqbar).m2();
double sbA=(pb+pl).m2();
double s4A=(p4+pl).m2();
double sbB=(pb+plbar).m2();
double s4B=(p4+plbar).m2();
double s23AB=(pl+plbar+pq+pqbar).m2();
HLV q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3=q1-pq-pqbar-plbar-pl;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Define Tensors to be used
Tensor<1> Tp1 = Construct1Tensor(p1);
Tensor<1> Tp4 = Construct1Tensor(p4);
Tensor<1> Tpa = Construct1Tensor(pa);
Tensor<1> Tpb = Construct1Tensor(pb);
Tensor<1> Tpq = Construct1Tensor(pq);
Tensor<1> Tpqbar = Construct1Tensor(pqbar);
Tensor<1> TAB = Construct1Tensor(pl+plbar);
Tensor<1> Tq1 = Construct1Tensor(q1);
Tensor<1> Tq3 = Construct1Tensor(q3);
Tensor<2> g=metric();
// g->qqW Current (Factors of sqrt2 dealt with in this function.)
Tensor<1> JV = gtqqxW(pq,pqbar,pl,plbar);
// 1a gluon emisson Contribution
Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13+s1A+s1B))
+ Tpa*(t1/(sa2+sa3+saA+saB)) );
Tensor<2> X1aCont = X1a.contract(JV,3);
//4b gluon emission Contribution
Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43+s4A+s4B))
+ Tpb*(t3/(sb2+sb3+sbA+sbB)) );
Tensor<2> X4bCont = X4b.contract(JV,3);
//Set up each term of 3G diagram.
Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar+TAB, g);
Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar-TAB, g);
Tensor<3> X3g3 = outer(Tq1+Tq3, g);
// Note the contraction of indices changes term by term
Tensor<2> X3g1Cont = X3g1.contract(JV,3);
Tensor<2> X3g2Cont = X3g2.contract(JV,2);
Tensor<2> X3g3Cont = X3g3.contract(JV,1);
// XSym is an amalgamation of x1a, X4b and X3g.
// Makes sense from a colour factor point of view.
Tensor<2>Xsym(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xsym(mu,nu) = (X3g1Cont(nu,mu) + X3g2Cont(mu,nu) - X3g3Cont(nu,mu))
+ (X1aCont(mu,nu) - X4bCont(mu,nu));
}
}
return Xsym/s23AB;
}
Tensor <2> MCross(HLV pa, HLV pq, HLV pqbar, std::vector<HLV> partons,
Helicity hq, int nabove
){
//@TODO Simplify the calculation below Maybe combine with MCrossW?
HLV q1;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
double t2=(q1-pqbar).m2();
Tensor<1> Tq1 = Construct1Tensor(q1-pqbar);
//Blank 3 gamma Current
- Tensor<3> J323 = T3Current(pq,hq,pqbar,hq);
+ Tensor<3> J323 = rank3_current(pq,hq,pqbar,hq);
// 2 gamma current (with 1 contraction already).
Tensor<2> XCroCont = J323.contract((Tq1),2)/(t2);
//Initialise the Crossed Vertex
Tensor<2> Xcro(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xcro(mu,nu) = XCroCont(nu,mu);
}
}
return Xcro;
}
// Helper Functions Calculate the Uncrossed Contribution
Tensor <2> MUncross(HLV pa, HLV pq,HLV pqbar, std::vector<HLV> partons,
Helicity hq, int nabove
){
//@TODO Simplify the calculation below Maybe combine with MUncrossW?
HLV q1;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
double t2 = (q1-pq).m2();
Tensor<1> Tq1 = Construct1Tensor(q1-pq);
//Blank 3 gamma Current
- Tensor<3> J323 = T3Current(pq,hq,pqbar,hq);
+ Tensor<3> J323 = rank3_current(pq,hq,pqbar,hq);
// 2 gamma currents (with 1 contraction already).
Tensor<2> XUncCont = J323.contract((Tq1),2)/t2;
//Initialise the Uncrossed Vertex
Tensor<2> Xunc(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xunc(mu,nu) = -XUncCont(mu,nu);
}
}
return Xunc;
}
// Helper Functions Calculate the Eikonal Contributions
Tensor <2> MSym(HLV pa, HLV p1, HLV pb, HLV p4, HLV pq, HLV pqbar,
std::vector<HLV> partons, Helicity hq, int nabove
){
//@TODO Simplify the calculation below Maybe combine with MsymW?
HLV q1, q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1-pq-pqbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
double s23 = (pq+pqbar).m2();
double sa2 = (pa+pq).m2();
double sa3 = (pa+pqbar).m2();
double s12 = (p1+pq).m2();
double s13 = (p1+pqbar).m2();
double sb2 = (pb+pq).m2();
double sb3 = (pb+pqbar).m2();
double s42 = (p4+pq).m2();
double s43 = (p4+pqbar).m2();
//Define Tensors to be used
Tensor<1> Tp1 = Construct1Tensor(p1);
Tensor<1> Tp4 = Construct1Tensor(p4);
Tensor<1> Tpa = Construct1Tensor(pa);
Tensor<1> Tpb = Construct1Tensor(pb);
Tensor<1> Tpq = Construct1Tensor(pq);
Tensor<1> Tpqbar = Construct1Tensor(pqbar);
Tensor<1> Tq1 = Construct1Tensor(q1);
Tensor<1> Tq3 = Construct1Tensor(q3);
Tensor<2> g=metric();
- Tensor<1> qqxCur = TCurrent(pq, pqbar, hq);
+ Tensor<1> qqxCur = HEJ::current(pq, pqbar, hq);
// // 1a gluon emisson Contribution
Tensor<3> X1a = outer(g, Tp1*(t1/(s12+s13))+Tpa*(t1/(sa2+sa3)));
Tensor<2> X1aCont = X1a.contract(qqxCur,3);
// //4b gluon emission Contribution
Tensor<3> X4b = outer(g, Tp4*(t3/(s42+s43)) + Tpb*(t3/(sb2+sb3)));
Tensor<2> X4bCont = X4b.contract(qqxCur,3);
// New Formulation Corresponding to New Analytics
Tensor<3> X3g1 = outer(Tq1+Tpq+Tpqbar, g);
Tensor<3> X3g2 = outer(Tq3-Tpq-Tpqbar, g);
Tensor<3> X3g3 = outer(Tq1+Tq3, g);
// Note the contraction of indices changes term by term
Tensor<2> X3g1Cont = X3g1.contract(qqxCur,3);
Tensor<2> X3g2Cont = X3g2.contract(qqxCur,2);
Tensor<2> X3g3Cont = X3g3.contract(qqxCur,1);
Tensor<2>Xsym(0.);
for(int mu=0; mu<4;mu++){
for(int nu=0;nu<4;nu++){
Xsym(mu, nu) = COM(0,1) * ( (X3g1Cont(nu,mu) + X3g2Cont(mu,nu)
- X3g3Cont(nu,mu)) + (X1aCont(mu,nu) - X4bCont(mu,nu)) );
}
}
return Xsym/s23;
}
} // Anonymous Namespace helper functions
//! W+Jets FKL Contributions
/**
* @brief W+Jets FKL Contributions, function to handle all incoming types.
* @param p1out Outgoing Particle 1. (W emission)
* @param plbar Outgoing election momenta
* @param pl Outgoing neutrino momenta
* @param p1in Incoming Particle 1. (W emission)
* @param p2out Outgoing Particle 2
* @param p2in Incoming Particle 2
* @param aqlineb Bool. Is Backwards quark line an anti-quark line?
* @param aqlinef Bool. Is Forwards quark line an anti-quark line?
*
* Calculates j_W ^\mu j_\mu.
* Handles all possible incoming states.
*/
double jW_j( HLV p1out, HLV plbar, HLV pl, HLV p1in, HLV p2out, HLV p2in,
bool aqlineb, bool aqlinef
){
CCurrent mj1m,mj2p,mj2m;
HLV q1=p1in-p1out-plbar-pl;
HLV q2=-(p2in-p2out);
if(aqlineb) mj1m=jWbar(p1out,helicity::minus,plbar,helicity::minus,pl,helicity::minus,p1in,helicity::minus);
else mj1m=jW(p1out,helicity::minus,plbar,helicity::minus,pl,helicity::minus,p1in,helicity::minus);
if(aqlinef){
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
} else{
mj2p=joi(p2out,true,p2in,true);
mj2m=joi(p2out,false,p2in,false);
}
COM Mmp=mj1m.dot(mj2p);
COM Mmm=mj1m.dot(mj2m);
// sum of spinor strings ||^2
double a2Mmp=abs2(Mmp);
double a2Mmm=abs2(Mmm);
double WPropfact = WProp(plbar, pl);
// Division by colour and Helicity average (Nc2-1)(4)
// Multiply by Cf^2
return HEJ::C_F*HEJ::C_F*WPropfact*(a2Mmp+a2Mmm)/(q1.m2()*q2.m2()*(HEJ::N_C*HEJ::N_C - 1)*4);
}
double ME_W_qQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false);
}
double ME_W_qQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, true);
}
double ME_W_qbarQ (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false);
}
double ME_W_qbarQbar (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, true);
}
double ME_W_qg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
return jW_j(p1out, plbar, pl, p1in, p2out, p2in, false, false)*K_g(p2out, p2in)/HEJ::C_F;
}
double ME_W_qbarg (HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out, HLV p2in){
return jW_j(p1out, plbar, pl, p1in, p2out, p2in, true, false)*K_g(p2out, p2in)/HEJ::C_F;
}
/**
* @brief W+Jets Unordered Contributions, function to handle all incoming types.
* @param p1out Outgoing Particle 1. (W emission)
* @param plbar Outgoing election momenta
* @param pl Outgoing neutrino momenta
* @param p1in Incoming Particle 1. (W emission)
* @param p2out Outgoing Particle 2 (Quark, unordered emission this side.)
* @param p2in Incoming Particle 2 (Quark, unordered emission this side.)
* @param pg Unordered Gluon momenta
* @param aqlineb Bool. Is Backwards quark line an anti-quark line?
* @param aqlinef Bool. Is Forwards quark line an anti-quark line?
*
* Calculates j_W ^\mu j_{uno}_\mu. Ie, unordered with W emission opposite side.
* Handles all possible incoming states.
*/
double jW_juno(HLV p1out, HLV plbar, HLV pl,HLV p1in, HLV p2out,
HLV p2in, HLV pg, bool aqlineb, bool aqlinef){
CCurrent mj1m,mj2p,mj2m, jgbm,jgbp,j2gm,j2gp;
HLV q1=p1in-p1out-plbar-pl;
HLV q2=-(p2in-p2out-pg);
HLV q3=-(p2in-p2out);
if(aqlineb) mj1m=jWbar(p1out,helicity::minus,plbar,helicity::minus,pl,helicity::minus,p1in,helicity::minus);
else mj1m=jW(p1out,helicity::minus,plbar,helicity::minus,pl,helicity::minus,p1in,helicity::minus);
//@TODO Is aqlinef necessary? Gives same results.
if(aqlinef){
mj2p=jio(p2in,true,p2out,true);
mj2m=jio(p2in,false,p2out,false);
j2gp=joo(pg,true,p2out,true);
j2gm=joo(pg,false,p2out,false);
jgbp=jio(p2in,true,pg,true);
jgbm=jio(p2in,false,pg,false);
} else{
mj2p=joi(p2out,true,p2in,true);
mj2m=joi(p2out,false,p2in,false);
j2gp=joo(p2out,true,pg,true);
j2gm=joo(p2out,false,pg,false);
jgbp=joi(pg,true,p2in,true);
jgbm=joi(pg,false,p2in,false);
}
// Dot products of these which occur again and again
COM MWmp=mj1m.dot(mj2p); // And now for the Higgs ones
COM MWmm=mj1m.dot(mj2m);
CCurrent qsum(q2+q3);
CCurrent Lmp,Lmm,Lpp,Lpm,U1mp,U1mm,U1pp,U1pm,U2mp,U2mm,U2pp,U2pm,p1o(p1out),p1i(p1in);
CCurrent p2o(p2out);
CCurrent p2i(p2in);
Lmm=( (-1.)*qsum*(MWmm) + (-2.*mj1m.dot(pg))*mj2m + 2.*mj2m.dot(pg)*mj1m
+ ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmm/2. ) )/q3.m2();
Lmp=( (-1.)*qsum*(MWmp) + (-2.*mj1m.dot(pg))*mj2p + 2.*mj2p.dot(pg)*mj1m
+ ( p1o/pg.dot(p1out) + p1i/pg.dot(p1in) )*( q2.m2()*MWmp/2. ) )/q3.m2();
U1mm=(jgbm.dot(mj1m)*j2gm+2.*p2o*MWmm)/(p2out+pg).m2();
U1mp=(jgbp.dot(mj1m)*j2gp+2.*p2o*MWmp)/(p2out+pg).m2();
U2mm=((-1.)*j2gm.dot(mj1m)*jgbm+2.*p2i*MWmm)/(p2in-pg).m2();
U2mp=((-1.)*j2gp.dot(mj1m)*jgbp+2.*p2i*MWmp)/(p2in-pg).m2();
double amm,amp;
amm=HEJ::C_F*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mm+U2mm);
amp=HEJ::C_F*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*HEJ::C_F*HEJ::C_F/3.*vabs2(U1mp+U2mp);
double ampsq=-(amm+amp);
//Divide by WProp
ampsq*=WProp(plbar, pl);
return ampsq/((16)*(q2.m2()*q1.m2()));
}
double ME_W_unob_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, false);
}
double ME_W_unob_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, false, true);
}
double ME_W_unob_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, false);
}
double ME_W_unob_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p2out, plbar, pl, p2in, p1out, p1in, pg, true, true);
}
double ME_W_unof_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p1out, plbar, pl, p1in, p2out, p2in, pg, false, false);
}
double ME_W_unof_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p1out, plbar, pl, p1in, p2out, p2in, pg, true, false);
}
double ME_W_unof_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p1out, plbar, pl, p1in, p2out, p2in, pg, false, true);
}
double ME_W_unof_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jW_juno(p1out, plbar, pl, p1in, p2out, p2in, pg, true, true);
}
/**
* @brief W+Jets Unordered Contributions, function to handle all incoming types.
* @param pg Unordered Gluon momenta
* @param p1out Outgoing Particle 1. (Quark - W and Uno emission)
* @param plbar Outgoing election momenta
* @param pl Outgoing neutrino momenta
* @param p1in Incoming Particle 1. (Quark - W and Uno emission)
* @param p2out Outgoing Particle 2
* @param p2in Incoming Particle 2
* @param aqlineb Bool. Is Backwards quark line an anti-quark line?
*
* Calculates j_W_{uno} ^\mu j_\mu. Ie, unordered with W emission same side.
* Handles all possible incoming states. Note this handles both forward and back-
* -ward Wuno emission. For forward, ensure p1out is the uno and W emission parton.
* @TODO: Include separate wrapper functions for forward and backward to clean up
* ME_W_unof_current in `MatrixElement.cc`.
*/
double jWuno_j(HLV pg, HLV p1out, HLV plbar, HLV pl, HLV p1in,
HLV p2out, HLV p2in, bool aqlineb
){
//Calculate different Helicity choices
const Helicity h = aqlineb?helicity::plus:helicity::minus;
double ME2mpp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::plus,helicity::plus);
double ME2mpm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::plus,helicity::minus);
double ME2mmp = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::minus,helicity::plus);
double ME2mmm = jM2Wuno(pg, p1out,plbar,pl,p1in,h,p2out,p2in,helicity::minus,helicity::minus);
return ME2mpp + ME2mpm + ME2mmp + ME2mmm;
}
double ME_Wuno_qQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false);
}
double ME_Wuno_qQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false);
}
double ME_Wuno_qbarQ(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true);
}
double ME_Wuno_qbarQbar(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true);
}
double ME_Wuno_qg(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, false)*K_g(p2out, p2in)/HEJ::C_F;
}
double ME_Wuno_qbarg(HLV p1out, HLV p1in, HLV p2out, HLV p2in,
HLV pg, HLV plbar, HLV pl
){
return jWuno_j(pg, p1out, plbar, pl, p1in, p2out, p2in, true)*K_g(p2out, p2in)/HEJ::C_F;
}
/**
* @brief W+Jets Extremal qqx Contributions, function to handle all incoming types.
* @param pgin Incoming gluon which will split into qqx.
* @param pqout Quark of extremal qqx outgoing (W-Emission).
* @param plbar Outgoing anti-lepton momenta
* @param pl Outgoing lepton momenta
* @param pqbarout Anti-quark of extremal qqx pair. (W-Emission)
* @param pout Outgoing Particle 2 (end of FKL chain)
* @param p2in Incoming Particle 2
* @param aqlinef Bool. Is Forwards quark line an anti-quark line?
*
* Calculates j_W_{qqx} ^\mu j_\mu. Ie, Ex-QQX with W emission same side.
* Handles all possible incoming states. Calculated via crossing symmetry from jWuno_j.
*/
double jWqqx_j(HLV pgin, HLV pqout,HLV plbar,HLV pl,
HLV pqbarout, HLV p2out, HLV p2in, bool aqlinef){
//Calculate Different Helicity Configurations.
const Helicity h = aqlinef?helicity::plus:helicity::minus;
double ME2mpp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::plus,helicity::plus);
double ME2mpm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::plus,helicity::minus);
double ME2mmp = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::minus,helicity::plus);
double ME2mmm = jM2Wuno(-pgin, pqout,plbar,pl,-pqbarout,h,p2out,p2in,helicity::minus,helicity::minus);
//Helicity sum
double ME2 = ME2mpp + ME2mpm + ME2mmp + ME2mmm;
//Correct colour averaging after crossing:
ME2*=(3.0/8.0);
return ME2;
}
double ME_WExqqx_qbarqQ(HLV pgin, HLV pqout,HLV plbar,HLV pl,
HLV pqbarout, HLV p2out, HLV p2in){
return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false);
}
double ME_WExqqx_qqbarQ(HLV pgin, HLV pqbarout,HLV plbar,HLV pl,
HLV pqout, HLV p2out, HLV p2in){
return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true);
}
double ME_WExqqx_qbarqg(HLV pgin, HLV pqout,HLV plbar,HLV pl,
HLV pqbarout, HLV p2out, HLV p2in){
return jWqqx_j(pgin, pqout, plbar, pl, pqbarout, p2out, p2in, false)*K_g(p2out,p2in)/HEJ::C_F;
}
double ME_WExqqx_qqbarg(HLV pgin, HLV pqbarout, HLV plbar, HLV pl,
HLV pqout, HLV p2out, HLV p2in){
return jWqqx_j(pgin, pqbarout, plbar, pl, pqout, p2out, p2in, true)*K_g(p2out,p2in)/HEJ::C_F;
}
namespace {
//Function to calculate Term 1 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1> qggm1(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){
//@TODO Simplify the calculation below. (Less Tensor class use?)
double t1 = (p3-pb)*(p3-pb);
Tensor<1> Tp3 = Construct1Tensor((p3));//p3
Tensor<1> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1> epsg = eps(pb, refmom, helg);
- Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2);
+ Tensor<3> qqCurBlank = rank3_current(p2,hel2,p3,hel2);
Tensor<2> qqCur = qqCurBlank.contract(Tp3-Tpb,2);
Tensor<1> gqqCur = qqCur.contract(epsg,2)/t1;
return gqqCur*(-1);
}
//Function to calculate Term 2 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1> qggm2(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){
//@TODO Simplify the calculation below (Less Tensor class use?)
double t1 = (p2-pb)*(p2-pb);
Tensor<1> Tp2 = Construct1Tensor((p2));//p2
Tensor<1> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1> epsg = eps(pb,refmom, helg);
- Tensor<3> qqCurBlank = T3Current(p2,hel2,p3,hel2);
+ Tensor<3> qqCurBlank = rank3_current(p2,hel2,p3,hel2);
Tensor<2> qqCur = qqCurBlank.contract(Tp2-Tpb,2);
Tensor<1> gqqCur = qqCur.contract(epsg,1)/t1;
return gqqCur;
}
//Function to calculate Term 3 in Equation 3.23 in James Cockburn's Thesis.
Tensor<1> qggm3(HLV pb, HLV p2, HLV p3, Helicity hel2, Helicity helg, HLV refmom){
//@TODO Simplify the calculation below (Less Tensor class use?)
double s23 = (p2+p3)*(p2+p3);
Tensor<1> Tp2 = Construct1Tensor((p2));//p2
Tensor<1> Tp3 = Construct1Tensor((p3));//p3
Tensor<1> Tpb = Construct1Tensor((pb));//pb
// Gauge choice in polarisation tensor. (see JC's Thesis)
Tensor<1> epsg = eps(pb, refmom, helg);
Tensor<2> g=metric();
Tensor<3> qqCurBlank1 = outer(Tp2+Tp3, g)/s23;
Tensor<3> qqCurBlank2 = outer(Tpb, g)/s23;
- Tensor<1> Cur23 = TCurrent(p2, p3,hel2);
+ Tensor<1> Cur23 = HEJ::current(p2, p3,hel2);
Tensor<2> qqCur1 = qqCurBlank1.contract(Cur23,3);
Tensor<2> qqCur2 = qqCurBlank2.contract(Cur23,3);
Tensor<2> qqCur3 = qqCurBlank2.contract(Cur23,1);
Tensor<1> gqqCur = (qqCur1.contract(epsg,1)
- qqCur2.contract(epsg,2)
+ qqCur3.contract(epsg,1))*2*COM(0,1);
return gqqCur;
}
}
// no wqq emission
double ME_W_Exqqx_QQq(HLV pa, HLV pb, HLV p1, HLV p2,
HLV p3,HLV plbar, HLV pl, bool aqlinepa
){
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;}
// 2 independent helicity choices (complex conjugation related).
Tensor<1> TMmmm1 = qggm1(pb,p2,p3,helicity::minus,helicity::minus, pa);
Tensor<1> TMmmm2 = qggm2(pb,p2,p3,helicity::minus,helicity::minus, pa);
Tensor<1> TMmmm3 = qggm3(pb,p2,p3,helicity::minus,helicity::minus, pa);
Tensor<1> TMpmm1 = qggm1(pb,p2,p3,helicity::minus,helicity::plus, pa);
Tensor<1> TMpmm2 = qggm2(pb,p2,p3,helicity::minus,helicity::plus, pa);
Tensor<1> TMpmm3 = qggm3(pb,p2,p3,helicity::minus,helicity::plus, pa);
// Build the external quark line W Emmision
Tensor<1> cur1a = jW(pa,p1,plbar,pl, aqlinepa);
//Contract with the qqxCurrent.
COM Mmmm1 = TMmmm1.contract(cur1a,1);
COM Mmmm2 = TMmmm2.contract(cur1a,1);
COM Mmmm3 = TMmmm3.contract(cur1a,1);
COM Mpmm1 = TMpmm1.contract(cur1a,1);
COM Mpmm2 = TMpmm2.contract(cur1a,1);
COM Mpmm3 = TMpmm3.contract(cur1a,1);
//Colour factors:
COM cm1m1,cm2m2,cm3m3,cm1m2,cm1m3,cm2m3;
cm1m1=8./3.;
cm2m2=8./3.;
cm3m3=6.;
cm1m2 =-1./3.;
cm1m3 = -3.*COM(0.,1.);
cm2m3 = 3.*COM(0.,1.);
//Sqaure and sum for each helicity config:
double Mmmm = real( cm1m1*pow(abs(Mmmm1),2) + cm2m2*pow(abs(Mmmm2),2)
+ cm3m3*pow(abs(Mmmm3),2) + 2.*real(cm1m2*Mmmm1*conj(Mmmm2))
+ 2.*real(cm1m3*Mmmm1*conj(Mmmm3))
+ 2.*real(cm2m3*Mmmm2*conj(Mmmm3)) );
double Mpmm = real( cm1m1*pow(abs(Mpmm1),2) + cm2m2*pow(abs(Mpmm2),2)
+ cm3m3*pow(abs(Mpmm3),2) + 2.*real(cm1m2*Mpmm1*conj(Mpmm2))
+ 2.*real(cm1m3*Mpmm1*conj(Mpmm3))
+ 2.*real(cm2m3*Mpmm2*conj(Mpmm3)) );
// Divide by WProp
double WPropfact = WProp(plbar, pl);
return (2*WPropfact*(Mmmm+Mpmm)/24./4.)/(pa-p1-pl-plbar).m2()/(p2+p3-pb).m2();
}
// W+Jets qqxCentral
double ME_WCenqqx_qq(HLV pa, HLV pb,HLV pl, HLV plbar, std::vector<HLV> partons,
bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove
){
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;}
HLV pq, pqbar, p1, p4;
if (qqxmarker){
pqbar = partons[nabove+1];
pq = partons[nabove+2];}
else{
pq = partons[nabove+1];
pqbar = partons[nabove+2];}
p1 = partons.front();
p4 = partons.back();
Tensor<1> T1am, T4bm, T1ap, T4bp;
if(!(aqlinepa)){
- T1ap = TCurrent(p1, pa, helicity::plus);
- T1am = TCurrent(p1, pa, helicity::minus);}
+ T1ap = HEJ::current(p1, pa, helicity::plus);
+ T1am = HEJ::current(p1, pa, helicity::minus);}
else if(aqlinepa){
- T1ap = TCurrent(pa, p1, helicity::plus);
- T1am = TCurrent(pa, p1, helicity::minus);}
+ T1ap = HEJ::current(pa, p1, helicity::plus);
+ T1am = HEJ::current(pa, p1, helicity::minus);}
if(!(aqlinepb)){
- T4bp = TCurrent(p4, pb, helicity::plus);
- T4bm = TCurrent(p4, pb, helicity::minus);}
+ T4bp = HEJ::current(p4, pb, helicity::plus);
+ T4bm = HEJ::current(p4, pb, helicity::minus);}
else if(aqlinepb){
- T4bp = TCurrent(pb, p4, helicity::plus);
- T4bm = TCurrent(pb, p4, helicity::minus);}
+ T4bp = HEJ::current(pb, p4, helicity::plus);
+ T4bm = HEJ::current(pb, p4, helicity::minus);}
// Calculate the 3 separate contributions to the effective vertex
Tensor<2> Xunc = MUncrossW(pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
Tensor<2> Xcro = MCrossW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
Tensor<2> Xsym = MSymW( pa, p1, pb, p4, pq, pqbar, pl, plbar, partons, nabove);
// 4 Different Helicity Choices (Differs from Pure Jet Case, where there is
// also the choice in qqbar helicity.
// (- - hel choice)
COM M_mmUnc = (((Xunc).contract(T1am,1)).contract(T4bm,1));
COM M_mmCro = (((Xcro).contract(T1am,1)).contract(T4bm,1));
COM M_mmSym = (((Xsym).contract(T1am,1)).contract(T4bm,1));
// (- + hel choice)
COM M_mpUnc = (((Xunc).contract(T1am,1)).contract(T4bp,1));
COM M_mpCro = (((Xcro).contract(T1am,1)).contract(T4bp,1));
COM M_mpSym = (((Xsym).contract(T1am,1)).contract(T4bp,1));
// (+ - hel choice)
COM M_pmUnc = (((Xunc).contract(T1ap,1)).contract(T4bm,1));
COM M_pmCro = (((Xcro).contract(T1ap,1)).contract(T4bm,1));
COM M_pmSym = (((Xsym).contract(T1ap,1)).contract(T4bm,1));
// (+ + hel choice)
COM M_ppUnc = (((Xunc).contract(T1ap,1)).contract(T4bp,1));
COM M_ppCro = (((Xcro).contract(T1ap,1)).contract(T4bp,1));
COM M_ppSym = (((Xsym).contract(T1ap,1)).contract(T4bp,1));
//Colour factors:
COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
cmsms=3.;
cmumu=4./3.;
cmcmc=4./3.;
cmsmu =3./2.*COM(0.,1.);
cmsmc = -3./2.*COM(0.,1.);
cmumc = -1./6.;
// Work Out Interference in each case of helicity:
double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
+cmumu*pow(abs(M_mmUnc),2)
+cmcmc*pow(abs(M_mmCro),2)
+2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
+2.*real(cmsmc*M_mmSym*conj(M_mmCro))
+2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
+cmumu*pow(abs(M_mpUnc),2)
+cmcmc*pow(abs(M_mpCro),2)
+2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
+2.*real(cmsmc*M_mpSym*conj(M_mpCro))
+2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
+cmumu*pow(abs(M_pmUnc),2)
+cmcmc*pow(abs(M_pmCro),2)
+2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
+2.*real(cmsmc*M_pmSym*conj(M_pmCro))
+2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
+cmumu*pow(abs(M_ppUnc),2)
+cmcmc*pow(abs(M_ppCro),2)
+2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
+2.*real(cmsmc*M_ppSym*conj(M_ppCro))
+2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
HLV q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1 - pq - pqbar - pl - plbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Divide by t-channels
amp/=(t1*t1*t3*t3);
//Divide by WProp
double WPropfact = WProp(plbar, pl);
amp*=WPropfact;
return amp;
}
// no wqq emission
double ME_W_Cenqqx_qq(HLV pa, HLV pb,HLV pl,HLV plbar, std::vector<HLV> partons,
bool aqlinepa, bool aqlinepb, bool qqxmarker, int nabove,
int nbelow, bool forwards
){
static bool is_sigma_index_set(false);
if(!is_sigma_index_set){
if(init_sigma_index())
is_sigma_index_set = true;
else
return 0.;
}
if (!forwards){ //If Emission from Leg a instead, flip process.
HLV dummymom = pa;
bool dummybool= aqlinepa;
int dummyint = nabove;
pa = pb;
pb = dummymom;
std::reverse(partons.begin(),partons.end());
qqxmarker = !(qqxmarker);
aqlinepa = aqlinepb;
aqlinepb = dummybool;
nabove = nbelow;
nbelow = dummyint;
}
HLV pq, pqbar, p1,p4;
if (qqxmarker){
pqbar = partons[nabove+1];
pq = partons[nabove+2];}
else{
pq = partons[nabove+1];
pqbar = partons[nabove+2];}
p1 = partons.front();
p4 = partons.back();
Tensor<1> T1am(0.), T1ap(0.);
if(!(aqlinepa)){
- T1ap = TCurrent(p1, pa, helicity::plus);
- T1am = TCurrent(p1, pa, helicity::minus);}
+ T1ap = HEJ::current(p1, pa, helicity::plus);
+ T1am = HEJ::current(p1, pa, helicity::minus);}
else if(aqlinepa){
- T1ap = TCurrent(pa, p1, helicity::plus);
- T1am = TCurrent(pa, p1, helicity::minus);}
+ T1ap = HEJ::current(pa, p1, helicity::plus);
+ T1am = HEJ::current(pa, p1, helicity::minus);}
Tensor <1> T4bm = jW(pb, p4, plbar, pl, aqlinepb);
// Calculate the 3 separate contributions to the effective vertex
Tensor<2> Xunc_m = MUncross(pa, pq, pqbar,partons, helicity::minus, nabove);
Tensor<2> Xcro_m = MCross( pa, pq, pqbar,partons, helicity::minus, nabove);
Tensor<2> Xsym_m = MSym( pa, p1, pb, p4, pq, pqbar, partons, helicity::minus, nabove);
Tensor<2> Xunc_p = MUncross(pa, pq, pqbar,partons, helicity::plus, nabove);
Tensor<2> Xcro_p = MCross( pa, pq, pqbar,partons, helicity::plus, nabove);
Tensor<2> Xsym_p = MSym( pa, p1, pb, p4, pq, pqbar, partons, helicity::plus, nabove);
// (- - hel choice)
COM M_mmUnc = (((Xunc_m).contract(T1am,1)).contract(T4bm,1));
COM M_mmCro = (((Xcro_m).contract(T1am,1)).contract(T4bm,1));
COM M_mmSym = (((Xsym_m).contract(T1am,1)).contract(T4bm,1));
// (- + hel choice)
COM M_mpUnc = (((Xunc_p).contract(T1am,1)).contract(T4bm,1));
COM M_mpCro = (((Xcro_p).contract(T1am,1)).contract(T4bm,1));
COM M_mpSym = (((Xsym_p).contract(T1am,1)).contract(T4bm,1));
// (+ - hel choice)
COM M_pmUnc = (((Xunc_m).contract(T1ap,1)).contract(T4bm,1));
COM M_pmCro = (((Xcro_m).contract(T1ap,1)).contract(T4bm,1));
COM M_pmSym = (((Xsym_m).contract(T1ap,1)).contract(T4bm,1));
// (+ + hel choice)
COM M_ppUnc = (((Xunc_p).contract(T1ap,1)).contract(T4bm,1));
COM M_ppCro = (((Xcro_p).contract(T1ap,1)).contract(T4bm,1));
COM M_ppSym = (((Xsym_p).contract(T1ap,1)).contract(T4bm,1));
//Colour factors:
COM cmsms,cmumu,cmcmc,cmsmu,cmsmc,cmumc;
cmsms=3.;
cmumu=4./3.;
cmcmc=4./3.;
cmsmu =3./2.*COM(0.,1.);
cmsmc = -3./2.*COM(0.,1.);
cmumc = -1./6.;
// Work Out Interference in each case of helicity:
double amp_mm = real(cmsms*pow(abs(M_mmSym),2)
+cmumu*pow(abs(M_mmUnc),2)
+cmcmc*pow(abs(M_mmCro),2)
+2.*real(cmsmu*M_mmSym*conj(M_mmUnc))
+2.*real(cmsmc*M_mmSym*conj(M_mmCro))
+2.*real(cmumc*M_mmUnc*conj(M_mmCro)));
double amp_mp = real(cmsms*pow(abs(M_mpSym),2)
+cmumu*pow(abs(M_mpUnc),2)
+cmcmc*pow(abs(M_mpCro),2)
+2.*real(cmsmu*M_mpSym*conj(M_mpUnc))
+2.*real(cmsmc*M_mpSym*conj(M_mpCro))
+2.*real(cmumc*M_mpUnc*conj(M_mpCro)));
double amp_pm = real(cmsms*pow(abs(M_pmSym),2)
+cmumu*pow(abs(M_pmUnc),2)
+cmcmc*pow(abs(M_pmCro),2)
+2.*real(cmsmu*M_pmSym*conj(M_pmUnc))
+2.*real(cmsmc*M_pmSym*conj(M_pmCro))
+2.*real(cmumc*M_pmUnc*conj(M_pmCro)));
double amp_pp = real(cmsms*pow(abs(M_ppSym),2)
+cmumu*pow(abs(M_ppUnc),2)
+cmcmc*pow(abs(M_ppCro),2)
+2.*real(cmsmu*M_ppSym*conj(M_ppUnc))
+2.*real(cmsmc*M_ppSym*conj(M_ppCro))
+2.*real(cmumc*M_ppUnc*conj(M_ppCro)));
double amp=((amp_mm+amp_mp+amp_pm+amp_pp)/(9.*4.));
HLV q1,q3;
q1=pa;
for(int i=0;i<nabove+1;i++){
q1-=partons.at(i);
}
q3 = q1 - pq - pqbar;
double t1 = (q1).m2();
double t3 = (q3).m2();
//Divide by t-channels
amp/=(t1*t1*t3*t3);
//Divide by WProp
double WPropfact = WProp(plbar, pl);
amp*=WPropfact;
return amp;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 7:02 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805744
Default Alt Text
(80 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment