Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7878656
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
48 KB
Subscribers
None
View Options
diff --git a/Shower/QTilde/Base/SudakovFormFactor.cc b/Shower/QTilde/Base/SudakovFormFactor.cc
--- a/Shower/QTilde/Base/SudakovFormFactor.cc
+++ b/Shower/QTilde/Base/SudakovFormFactor.cc
@@ -1,1384 +1,1371 @@
// -*- C++ -*-
//
// SudakovFormFactor.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2017 The Herwig Collaboration
//
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SudakovFormFactor class.
//
#include "SudakovFormFactor.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ShowerKinematics.h"
#include "ShowerParticle.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig/Shower/QTilde/QTildeShowerHandler.h"
#include "Herwig/Shower/QTilde/Kinematics/FS_QTildeShowerKinematics1to2.h"
#include "Herwig/Shower/QTilde/Kinematics/IS_QTildeShowerKinematics1to2.h"
#include "Herwig/Shower/QTilde/Kinematics/Decay_QTildeShowerKinematics1to2.h"
#include <array>
using std::array;
using namespace Herwig;
DescribeClass<SudakovFormFactor,Interfaced>
describeSudakovFormFactor ("Herwig::SudakovFormFactor","");
void SudakovFormFactor::persistentOutput(PersistentOStream & os) const {
os << splittingFn_ << alpha_ << pdfmax_ << particles_ << pdffactor_
<< a_ << b_ << ounit(c_,GeV) << ounit(kinCutoffScale_,GeV) << cutOffOption_
<< ounit(vgcut_,GeV) << ounit(vqcut_,GeV)
<< ounit(pTmin_,GeV) << ounit(pT2min_,GeV2);
}
void SudakovFormFactor::persistentInput(PersistentIStream & is, int) {
is >> splittingFn_ >> alpha_ >> pdfmax_ >> particles_ >> pdffactor_
>> a_ >> b_ >> iunit(c_,GeV) >> iunit(kinCutoffScale_,GeV) >> cutOffOption_
>> iunit(vgcut_,GeV) >> iunit(vqcut_,GeV)
>> iunit(pTmin_,GeV) >> iunit(pT2min_,GeV2);
}
void SudakovFormFactor::Init() {
static ClassDocumentation<SudakovFormFactor> documentation
("The SudakovFormFactor class is the base class for the implementation of Sudakov"
" form factors in Herwig");
static Reference<SudakovFormFactor,SplittingFunction>
interfaceSplittingFunction("SplittingFunction",
"A reference to the SplittingFunction object",
&Herwig::SudakovFormFactor::splittingFn_,
false, false, true, false);
static Reference<SudakovFormFactor,ShowerAlpha>
interfaceAlpha("Alpha",
"A reference to the Alpha object",
&Herwig::SudakovFormFactor::alpha_,
false, false, true, false);
static Parameter<SudakovFormFactor,double> interfacePDFmax
("PDFmax",
"Maximum value of PDF weight. ",
&SudakovFormFactor::pdfmax_, 35.0, 1.0, 1000000.0,
false, false, Interface::limited);
static Switch<SudakovFormFactor,unsigned int> interfacePDFFactor
("PDFFactor",
"Include additional factors in the overestimate for the PDFs",
&SudakovFormFactor::pdffactor_, 0, false, false);
static SwitchOption interfacePDFFactorNo
(interfacePDFFactor,
"No",
"Don't include any factors",
0);
static SwitchOption interfacePDFFactorOverZ
(interfacePDFFactor,
"OverZ",
"Include an additional factor of 1/z",
1);
static SwitchOption interfacePDFFactorOverOneMinusZ
(interfacePDFFactor,
"OverOneMinusZ",
"Include an additional factor of 1/(1-z)",
2);
static SwitchOption interfacePDFFactorOverZOneMinusZ
(interfacePDFFactor,
"OverZOneMinusZ",
"Include an additional factor of 1/z/(1-z)",
3);
static SwitchOption interfacePDFFactorOverRootZ
(interfacePDFFactor,
"OverRootZ",
"Include an additional factor of 1/sqrt(z)",
4);
static SwitchOption interfacePDFFactorRootZ
(interfacePDFFactor,
"RootZ",
"Include an additional factor of sqrt(z)",
5);
static Switch<SudakovFormFactor,unsigned int> interfaceCutOffOption
("CutOffOption",
"The type of cut-off to use to end the shower",
&SudakovFormFactor::cutOffOption_, 0, false, false);
static SwitchOption interfaceCutOffOptionDefault
(interfaceCutOffOption,
"Default",
"Use the standard Herwig cut-off on virtualities with the minimum"
" virtuality depending on the mass of the branching particle",
0);
static SwitchOption interfaceCutOffOptionFORTRAN
(interfaceCutOffOption,
"FORTRAN",
"Use a FORTRAN-like cut-off on virtualities",
1);
static SwitchOption interfaceCutOffOptionpT
(interfaceCutOffOption,
"pT",
"Use a cut on the minimum allowed pT",
2);
static Parameter<SudakovFormFactor,double> interfaceaParameter
("aParameter",
"The a parameter for the kinematic cut-off",
&SudakovFormFactor::a_, 0.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,double> interfacebParameter
("bParameter",
"The b parameter for the kinematic cut-off",
&SudakovFormFactor::b_, 2.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacecParameter
("cParameter",
"The c parameter for the kinematic cut-off",
&SudakovFormFactor::c_, GeV, 0.3*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy>
interfaceKinScale ("cutoffKinScale",
"kinematic cutoff scale for the parton shower phase"
" space (unit [GeV])",
&SudakovFormFactor::kinCutoffScale_, GeV,
2.3*GeV, 0.001*GeV, 10.0*GeV,false,false,false);
static Parameter<SudakovFormFactor,Energy> interfaceGluonVirtualityCut
("GluonVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality of the gluon",
&SudakovFormFactor::vgcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfaceQuarkVirtualityCut
("QuarkVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality added to"
" the mass for particles other than the gluon",
&SudakovFormFactor::vqcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacepTmin
("pTmin",
"The minimum pT if using a cut-off on the pT",
&SudakovFormFactor::pTmin_, GeV, 1.0*GeV, ZERO, 10.0*GeV,
false, false, Interface::limited);
}
bool SudakovFormFactor::alphaSVeto(Energy2 pt2) const {
double ratio=alphaSVetoRatio(pt2,1.);
return UseRandom::rnd() > ratio;
}
double SudakovFormFactor::alphaSVetoRatio(Energy2 pt2, double factor) const {
factor *= ShowerHandler::currentHandler()->renormalizationScaleFactor();
return alpha_->ratio(pt2, factor);
}
bool SudakovFormFactor::PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
Ptr<BeamParticleData>::transient_const_pointer beam) const {
double ratio=PDFVetoRatio(t,x,parton0,parton1,beam,1.);
return UseRandom::rnd() > ratio;
}
double SudakovFormFactor::PDFVetoRatio(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
Ptr<BeamParticleData>::transient_const_pointer beam,double factor) const {
assert(pdf_);
Energy2 theScale = t * sqr(ShowerHandler::currentHandler()->factorizationScaleFactor()*factor);
if (theScale < sqr(freeze_)) theScale = sqr(freeze_);
- double newpdf(0.0), oldpdf(0.0);
+ const double newpdf=pdf_->xfx(beam,parton0,theScale,x/z());
+ if(newpdf<=0.) return 0.;
- newpdf=pdf_->xfx(beam,parton0,theScale,x/z());
- oldpdf=pdf_->xfx(beam,parton1,theScale,x);
-
- if(newpdf<=0.) return 0.;
+ const double oldpdf=pdf_->xfx(beam,parton1,theScale,x);
if(oldpdf<=0.) return 1.;
- double ratio = newpdf/oldpdf;
+ const double ratio = newpdf/oldpdf;
double maxpdf = pdfmax_;
switch (pdffactor_) {
- case 0:
- break;
- case 1:
- maxpdf /= z();
- break;
- case 2:
- maxpdf /= 1.-z();
- break;
- case 3:
- maxpdf /= (z()*(1.-z()));
- break;
- case 4:
- maxpdf /= sqrt(z());
- break;
- case 5:
- maxpdf *= sqrt(z());
- break;
+ case 0: break;
+ case 1: maxpdf /= z(); break;
+ case 2: maxpdf /= 1.-z(); break;
+ case 3: maxpdf /= (z()*(1.-z())); break;
+ case 4: maxpdf /= sqrt(z()); break;
+ case 5: maxpdf *= sqrt(z()); break;
default :
throw Exception() << "SudakovFormFactor::PDFVetoRatio invalid PDFfactor = "
<< pdffactor_ << Exception::runerror;
}
if (ratio > maxpdf) {
generator()->log() << "PDFVeto warning: Ratio > " << name()
<< ":PDFmax (by a factor of "
<< ratio/maxpdf <<") for "
<< parton0->PDGName() << " to "
<< parton1->PDGName() << "\n";
}
return ratio/maxpdf ;
}
void SudakovFormFactor::addSplitting(const IdList & in) {
bool add=true;
for(unsigned int ix=0;ix<particles_.size();++ix) {
if(particles_[ix].size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if(particles_[ix][iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
add=false;
break;
}
}
}
if(add) particles_.push_back(in);
}
void SudakovFormFactor::removeSplitting(const IdList & in) {
for(vector<IdList>::iterator it=particles_.begin();
it!=particles_.end();++it) {
if(it->size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if((*it)[iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
vector<IdList>::iterator itemp=it;
--itemp;
particles_.erase(it);
it = itemp;
}
}
}
}
Energy2 SudakovFormFactor::guesst(Energy2 t1,unsigned int iopt,
const IdList &ids,
double enhance,bool ident,
double detune) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double c =
1./((splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
splittingFn_->integOverP(zlimits_.first ,ids,pdfopt))*
alpha_->overestimateValue()/Constants::twopi*enhance*detune);
assert(iopt<=2);
if(iopt==1) {
c/=pdfmax_;
//symmetry of FS gluon splitting
if(ident) c*=0.5;
}
else if(iopt==2) c*=-1.;
double r = UseRandom::rnd();
if(iopt!=2 || c*log(r)<log(Constants::MaxEnergy2/t1)) {
return t1*pow(r,c);
}
else
return Constants::MaxEnergy2;
}
double SudakovFormFactor::guessz (unsigned int iopt, const IdList &ids) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double lower = splittingFn_->integOverP(zlimits_.first,ids,pdfopt);
return splittingFn_->invIntegOverP
(lower + UseRandom::rnd()*(splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
lower),ids,pdfopt);
}
void SudakovFormFactor::doinit() {
Interfaced::doinit();
pT2min_ = cutOffOption()==2 ? sqr(pTmin_) : ZERO;
}
const vector<Energy> & SudakovFormFactor::virtualMasses(const IdList & ids) {
static vector<Energy> output;
output.clear();
if(cutOffOption() == 0) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(ids[ix]->mass());
Energy kinCutoff=
kinematicCutOff(kinScale(),*std::max_element(output.begin(),output.end()));
for(unsigned int ix=0;ix<output.size();++ix)
output[ix]=max(kinCutoff,output[ix]);
}
else if(cutOffOption() == 1) {
for(unsigned int ix=0;ix<ids.size();++ix) {
output.push_back(ids[ix]->mass());
output.back() += ids[ix]->id()==ParticleID::g ? vgCut() : vqCut();
}
}
else if(cutOffOption() == 2) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(ids[ix]->mass());
}
else {
throw Exception() << "Unknown option for the cut-off"
<< " in SudakovFormFactor::virtualMasses()"
<< Exception::runerror;
}
return output;
}
bool SudakovFormFactor::guessTimeLike(Energy2 &t,Energy2 tmin,double enhance,
double detune) {
Energy2 told = t;
// calculate limits on z and if lower>upper return
if(!computeTimeLikeLimits(t)) return false;
// guess values of t and z
t = guesst(told,0,ids_,enhance,ids_[1]==ids_[2],detune);
z_ = guessz(0,ids_);
// actual values for z-limits
if(!computeTimeLikeLimits(t)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool SudakovFormFactor::guessSpaceLike(Energy2 &t, Energy2 tmin, const double x,
double enhance,
double detune) {
Energy2 told = t;
// calculate limits on z if lower>upper return
if(!computeSpaceLikeLimits(t,x)) return false;
// guess values of t and z
t = guesst(told,1,ids_,enhance,ids_[1]==ids_[2],detune);
z_ = guessz(1,ids_);
// actual values for z-limits
if(!computeSpaceLikeLimits(t,x)) return false;
if(t<tmin) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool SudakovFormFactor::PSVeto(const Energy2 t,
const Energy2 maxQ2) {
// still inside PS, return true if outside
// check vs overestimated limits
if(z() < zlimits_.first || z() > zlimits_.second) return true;
Energy2 q2 = z()*(1.-z())*t;
if(ids_[0]->id()!=ParticleID::g &&
ids_[0]->id()!=ParticleID::gamma ) q2 += masssquared_[0];
if(q2>maxQ2) return true;
// compute the pts
Energy2 pt2 = z()*(1.-z())*q2 - masssquared_[1]*(1.-z()) - masssquared_[2]*z();
// if pt2<0 veto
if(pt2<pT2min()) return true;
// otherwise calculate pt and return
pT_ = sqrt(pt2);
return false;
}
ShoKinPtr SudakovFormFactor::generateNextTimeBranching(const Energy startingScale,
const IdList &ids,
const RhoDMatrix & rho,
double enhance,
double detuning,
Energy2 maxQ2) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z_ = 0.;
phi_ = 0.;
// perform initialization
Energy2 tmax(sqr(startingScale)),tmin;
initialize(ids,tmin);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// calculate next value of t using veto algorithm
Energy2 t(tmax);
// no shower variations to calculate
if(ShowerHandler::currentHandler()->showerVariations().empty()){
// Without variations do the usual Veto algorithm
// No need for more if-statements in this loop.
do {
if(!guessTimeLike(t,tmin,enhance,detuning)) break;
}
while(PSVeto(t,maxQ2) ||
SplittingFnVeto(z()*(1.-z())*t,ids,true,rho,detuning) ||
alphaSVeto(splittingFn()->pTScale() ? sqr(z()*(1.-z()))*t : z()*(1.-z())*t));
}
else {
bool alphaRew(true),PSRew(true),SplitRew(true);
do {
if(!guessTimeLike(t,tmin,enhance,detuning)) break;
PSRew=PSVeto(t,maxQ2);
if (PSRew) continue;
SplitRew=SplittingFnVeto(z()*(1.-z())*t,ids,true,rho,detuning);
alphaRew=alphaSVeto(splittingFn()->pTScale() ? sqr(z()*(1.-z()))*t : z()*(1.-z())*t);
double factor=alphaSVetoRatio(splittingFn()->pTScale() ? sqr(z()*(1.-z()))*t : z()*(1.-z())*t,1.)*
SplittingFnVetoRatio(z()*(1.-z())*t,ids,true,rho,detuning);
tShowerHandlerPtr ch = ShowerHandler::currentHandler();
if( !(SplitRew || alphaRew) ) {
//Emission
q_ = t > ZERO ? Energy(sqrt(t)) : -1.*MeV;
if (q_ <= ZERO) break;
}
for ( map<string,ShowerVariation>::const_iterator var =
ch->showerVariations().begin();
var != ch->showerVariations().end(); ++var ) {
if ( ( ch->firstInteraction() && var->second.firstInteraction ) ||
( !ch->firstInteraction() && var->second.secondaryInteractions ) ) {
double newfactor = alphaSVetoRatio(splittingFn()->pTScale() ?
sqr(z()*(1.-z()))*t :
z()*(1.-z())*t,var->second.renormalizationScaleFactor)
* SplittingFnVetoRatio(z()*(1.-z())*t,ids,true,rho,detuning);
double varied;
if ( SplitRew || alphaRew ) {
// No Emission
varied = (1. - newfactor) / (1. - factor);
} else {
// Emission
varied = newfactor / factor;
}
map<string,double>::iterator wi = ch->currentWeights().find(var->first);
if ( wi != ch->currentWeights().end() )
wi->second *= varied;
else {
assert(false);
//ch->currentWeights()[var->first] = varied;
}
}
}
}
while(PSRew || SplitRew || alphaRew);
}
q_ = t > ZERO ? Energy(sqrt(t)) : -1.*MeV;
if(q_ < ZERO) return ShoKinPtr();
// return the ShowerKinematics object
return createFinalStateBranching(q_,z(),phi(),pT());
}
ShoKinPtr SudakovFormFactor::
generateNextSpaceBranching(const Energy startingQ,
const IdList &ids,
double x,
const RhoDMatrix & rho,
double enhance,
Ptr<BeamParticleData>::transient_const_pointer beam,
double detuning) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to the method.
q_ = ZERO;
z_ = 0.;
phi_ = 0.;
// perform the initialization
Energy2 tmax(sqr(startingQ)),tmin;
initialize(ids,tmin);
// check max > min
if(tmax<=tmin) return ShoKinPtr();
// calculate next value of t using veto algorithm
Energy2 t(tmax),pt2(ZERO);
// no shower variations
if(ShowerHandler::currentHandler()->showerVariations().empty()){
// Without variations do the usual Veto algorithm
// No need for more if-statements in this loop.
do {
if(!guessSpaceLike(t,tmin,x,enhance,detuning)) break;
pt2=sqr(1.-z())*t-z()*masssquared_[2];
}
while(pt2 < pT2min()||
z() > zlimits_.second||
SplittingFnVeto((1.-z())*t/z(),ids,false,rho,detuning)||
alphaSVeto(splittingFn()->pTScale() ? sqr(1.-z())*t : (1.-z())*t)||
PDFVeto(t,x,ids[0],ids[1],beam));
}
// shower variations
else
{
bool alphaRew(true),PDFRew(true),ptRew(true),zRew(true),SplitRew(true);
do {
if(!guessSpaceLike(t,tmin,x,enhance,detuning)) break;
pt2=sqr(1.-z())*t-z()*masssquared_[2];
ptRew=pt2 < pT2min();
zRew=z() > zlimits_.second;
if (ptRew||zRew) continue;
SplitRew=SplittingFnVeto((1.-z())*t/z(),ids,false,rho,detuning);
alphaRew=alphaSVeto(splittingFn()->pTScale() ? sqr(1.-z())*t : (1.-z())*t);
PDFRew=PDFVeto(t,x,ids[0],ids[1],beam);
double factor=PDFVetoRatio(t,x,ids[0],ids[1],beam,1.)*
alphaSVetoRatio(splittingFn()->pTScale() ? sqr(1.-z())*t : (1.-z())*t,1.)*
SplittingFnVetoRatio((1.-z())*t/z(),ids,false,rho,detuning);
tShowerHandlerPtr ch = ShowerHandler::currentHandler();
if( !(PDFRew || SplitRew || alphaRew) ) {
//Emission
q_ = t > ZERO ? Energy(sqrt(t)) : -1.*MeV;
if (q_ <= ZERO) break;
}
for ( map<string,ShowerVariation>::const_iterator var =
ch->showerVariations().begin();
var != ch->showerVariations().end(); ++var ) {
if ( ( ch->firstInteraction() && var->second.firstInteraction ) ||
( !ch->firstInteraction() && var->second.secondaryInteractions ) ) {
double newfactor = PDFVetoRatio(t,x,ids[0],ids[1],beam,var->second.factorizationScaleFactor)*
alphaSVetoRatio(splittingFn()->pTScale() ?
sqr(1.-z())*t : (1.-z())*t,var->second.renormalizationScaleFactor)
*SplittingFnVetoRatio((1.-z())*t/z(),ids,false,rho,detuning);
double varied;
if( PDFRew || SplitRew || alphaRew) {
// No Emission
varied = (1. - newfactor) / (1. - factor);
} else {
// Emission
varied = newfactor / factor;
}
map<string,double>::iterator wi = ch->currentWeights().find(var->first);
if ( wi != ch->currentWeights().end() )
wi->second *= varied;
else {
assert(false);
//ch->currentWeights()[var->first] = varied;
}
}
}
}
while( PDFRew || SplitRew || alphaRew);
}
if(t > ZERO && zlimits_.first < zlimits_.second) q_ = sqrt(t);
else return ShoKinPtr();
pT_ = sqrt(pt2);
// create the ShowerKinematics and return it
return createInitialStateBranching(q_,z(),phi(),pT());
}
void SudakovFormFactor::initialize(const IdList & ids, Energy2 & tmin) {
ids_=ids;
tmin = cutOffOption() != 2 ? ZERO : 4.*pT2min();
masses_ = virtualMasses(ids);
masssquared_.clear();
for(unsigned int ix=0;ix<masses_.size();++ix) {
masssquared_.push_back(sqr(masses_[ix]));
if(ix>0) tmin=max(masssquared_[ix],tmin);
}
}
ShoKinPtr SudakovFormFactor::generateNextDecayBranching(const Energy startingScale,
const Energy stoppingScale,
const Energy minmass,
const IdList &ids,
const RhoDMatrix & rho,
double enhance,
double detuning) {
// First reset the internal kinematics variables that can
// have been eventually set in the previous call to this method.
q_ = Constants::MaxEnergy;
z_ = 0.;
phi_ = 0.;
// perform initialisation
Energy2 tmax(sqr(stoppingScale)),tmin;
initialize(ids,tmin);
tmin=sqr(startingScale);
// check some branching possible
if(tmax<=tmin) return ShoKinPtr();
// perform the evolution
Energy2 t(tmin),pt2(-MeV2);
do {
if(!guessDecay(t,tmax,minmass,enhance,detuning)) break;
pt2 = sqr(1.-z())*(t-masssquared_[0])-z()*masssquared_[2];
}
while(SplittingFnVeto((1.-z())*t/z(),ids,true,rho,detuning)||
alphaSVeto(splittingFn()->pTScale() ? sqr(1.-z())*t : (1.-z())*t ) ||
pt2<pT2min() ||
t*(1.-z())>masssquared_[0]-sqr(minmass));
if(t > ZERO) {
q_ = sqrt(t);
pT_ = sqrt(pt2);
}
else return ShoKinPtr();
phi_ = 0.;
// create the ShowerKinematics object
return createDecayBranching(q_,z(),phi(),pT());
}
bool SudakovFormFactor::guessDecay(Energy2 &t,Energy2 tmax, Energy minmass,
double enhance, double detune) {
// previous scale
Energy2 told = t;
// overestimated limits on z
if(tmax<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
Energy2 tm2 = tmax-masssquared_[0];
Energy tm = sqrt(tm2);
zlimits_ = make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
if(zlimits_.second<zlimits_.first) {
t=-1.0*GeV2;
return false;
}
// guess values of t and z
t = guesst(told,2,ids_,enhance,ids_[1]==ids_[2],detune);
z_ = guessz(2,ids_);
// actual values for z-limits
if(t<masssquared_[0]) {
t=-1.0*GeV2;
return false;
}
tm2 = t-masssquared_[0];
tm = sqrt(tm2);
zlimits_ = make_pair(sqr(minmass/masses_[0]),
1.-sqrt(masssquared_[2]+pT2min()+
0.25*sqr(masssquared_[2])/tm2)/tm
+0.5*masssquared_[2]/tm2);
if(t>tmax||zlimits_.second<zlimits_.first) {
t=-1.0*GeV2;
return false;
}
else
return true;
}
bool SudakovFormFactor::computeTimeLikeLimits(Energy2 & t) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
// special case for gluon radiating
if(ids_[0]->id()==ParticleID::g||ids_[0]->id()==ParticleID::gamma) {
// no emission possible
if(t<16.*(masssquared_[1]+pT2min())) {
t=-1.*GeV2;
return false;
}
// overestimate of the limits
zlimits_.first = 0.5*(1.-sqrt(1.-4.*sqrt((masssquared_[1]+pT2min())/t)));
zlimits_.second = 1.-zlimits_.first;
}
// special case for radiated particle is gluon
else if(ids_[2]->id()==ParticleID::g||ids_[2]->id()==ParticleID::gamma) {
zlimits_.first = sqrt((masssquared_[1]+pT2min())/t);
zlimits_.second = 1.-sqrt((masssquared_[2]+pT2min())/t);
}
else if(ids_[1]->id()==ParticleID::g||ids_[1]->id()==ParticleID::gamma) {
zlimits_.second = sqrt((masssquared_[2]+pT2min())/t);
zlimits_.first = 1.-sqrt((masssquared_[1]+pT2min())/t);
}
else {
zlimits_.first = (masssquared_[1]+pT2min())/t;
zlimits_.second = 1.-(masssquared_[2]+pT2min())/t;
}
if(zlimits_.first>=zlimits_.second) {
t=-1.*GeV2;
return false;
}
return true;
}
bool SudakovFormFactor::computeSpaceLikeLimits(Energy2 & t, double x) {
if (t < 1e-20 * GeV2) {
t=-1.*GeV2;
return false;
}
// compute the limits
zlimits_.first = x;
double yy = 1.+0.5*masssquared_[2]/t;
zlimits_.second = yy - sqrt(sqr(yy)-1.+pT2min()/t);
// return false if lower>upper
if(zlimits_.second<zlimits_.first) {
t=-1.*GeV2;
return false;
}
else
return true;
}
namespace {
tShowerParticlePtr findCorrelationPartner(ShowerParticle & particle,
bool forward,
ShowerInteraction inter) {
tPPtr child = &particle;
tShowerParticlePtr mother;
if(forward) {
mother = !particle.parents().empty() ?
dynamic_ptr_cast<tShowerParticlePtr>(particle.parents()[0]) : tShowerParticlePtr();
}
else {
mother = particle.children().size()==2 ?
dynamic_ptr_cast<tShowerParticlePtr>(&particle) : tShowerParticlePtr();
}
tShowerParticlePtr partner;
while(mother) {
tPPtr otherChild;
if(forward) {
for (unsigned int ix=0;ix<mother->children().size();++ix) {
if(mother->children()[ix]!=child) {
otherChild = mother->children()[ix];
break;
}
}
}
else {
otherChild = mother->children()[1];
}
tShowerParticlePtr other = dynamic_ptr_cast<tShowerParticlePtr>(otherChild);
if((inter==ShowerInteraction::QCD && otherChild->dataPtr()->coloured()) ||
(inter==ShowerInteraction::QED && otherChild->dataPtr()->charged())) {
partner = other;
break;
}
if(forward && !other->isFinalState()) {
partner = dynamic_ptr_cast<tShowerParticlePtr>(mother);
break;
}
child = mother;
if(forward) {
mother = ! mother->parents().empty() ?
dynamic_ptr_cast<tShowerParticlePtr>(mother->parents()[0]) : tShowerParticlePtr();
}
else {
if(mother->children()[0]->children().size()!=2)
break;
tShowerParticlePtr mtemp =
dynamic_ptr_cast<tShowerParticlePtr>(mother->children()[0]);
if(!mtemp)
break;
else
mother=mtemp;
}
}
if(!partner) {
if(forward) {
partner = dynamic_ptr_cast<tShowerParticlePtr>( child)->partner();
}
else {
if(mother) {
tShowerParticlePtr parent;
if(!mother->children().empty()) {
parent = dynamic_ptr_cast<tShowerParticlePtr>(mother->children()[0]);
}
if(!parent) {
parent = dynamic_ptr_cast<tShowerParticlePtr>(mother);
}
partner = parent->partner();
}
else {
partner = dynamic_ptr_cast<tShowerParticlePtr>(&particle)->partner();
}
}
}
return partner;
}
pair<double,double> softPhiMin(double phi0, double phi1, double A, double B, double C, double D) {
double c01 = cos(phi0 - phi1);
double s01 = sin(phi0 - phi1);
double s012(sqr(s01)), c012(sqr(c01));
double A2(A*A), B2(B*B), C2(C*C), D2(D*D);
if(abs(B/A)<1e-10 && abs(D/C)<1e-10) return make_pair(phi0,phi0+Constants::pi);
double root = sqr(B2)*C2*D2*sqr(s012) + 2.*A*B2*B*C2*C*D*c01*s012 + 2.*A*B2*B*C*D2*D*c01*s012
+ 4.*A2*B2*C2*D2*c012 - A2*B2*C2*D2*s012 - A2*B2*sqr(D2)*s012 - sqr(B2)*sqr(C2)*s012
- sqr(B2)*C2*D2*s012 - 4.*A2*A*B*C*D2*D*c01 - 4.*A*B2*B*C2*C*D*c01 + sqr(A2)*sqr(D2)
+ 2.*A2*B2*C2*D2 + sqr(B2)*sqr(C2);
if(root<0.) return make_pair(phi0,phi0+Constants::pi);
root = sqrt(root);
double denom = (-2.*A*B*C*D*c01 + A2*D2 + B2*C2);
double denom2 = (-B*C*c01 + A*D);
if(denom==ZERO || denom2==0)
return make_pair(phi0,phi0+Constants::pi);
double num = B2*C*D*s012;
return make_pair(atan2(B*s01*(-C*(num + root) / denom + D) / denom2, -(num + root ) / denom) + phi0,
atan2(B*s01*(-C*(num - root) / denom + D) / denom2, -(num - root ) / denom) + phi0);
}
}
double SudakovFormFactor::generatePhiForward(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics,
const RhoDMatrix & rho) {
// no correlations, return flat phi
if(! dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->correlations())
return Constants::twopi*UseRandom::rnd();
// get the kinematic variables
double z = kinematics->z();
Energy2 t = z*(1.-z)*sqr(kinematics->scale());
Energy pT = kinematics->pT();
// if soft correlations
Energy2 pipj,pik;
bool canBeSoft[2] = {ids[1]->id()==ParticleID::g || ids[1]->id()==ParticleID::gamma,
ids[2]->id()==ParticleID::g || ids[2]->id()==ParticleID::gamma };
array<Energy2,3> pjk;
array<Energy,3> Ek;
Energy Ei,Ej;
Energy2 m12(ZERO),m22(ZERO);
InvEnergy2 aziMax(ZERO);
bool softAllowed = dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()&&
(canBeSoft[0] || canBeSoft[1]);
if(softAllowed) {
// find the partner for the soft correlations
tShowerParticlePtr partner=findCorrelationPartner(particle,true,splittingFn()->interactionType());
// remember we want the softer gluon
bool swapOrder = !canBeSoft[1] || (canBeSoft[0] && canBeSoft[1] && z < 0.5);
double zFact = !swapOrder ? (1.-z) : z;
// compute the transforms to the shower reference frame
// first the boost
Lorentz5Momentum pVect = particle.showerBasis()->pVector();
Lorentz5Momentum nVect = particle.showerBasis()->nVector();
Boost beta_bb;
if(particle.showerBasis()->frame()==ShowerBasis::BackToBack) {
beta_bb = -(pVect + nVect).boostVector();
}
else if(particle.showerBasis()->frame()==ShowerBasis::Rest) {
beta_bb = -pVect.boostVector();
}
else
assert(false);
pVect.boost(beta_bb);
nVect.boost(beta_bb);
Axis axis;
if(particle.showerBasis()->frame()==ShowerBasis::BackToBack) {
axis = pVect.vect().unit();
}
else if(particle.showerBasis()->frame()==ShowerBasis::Rest) {
axis = nVect.vect().unit();
}
else
assert(false);
// and then the rotation
LorentzRotation rot;
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.rotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
rot.rotate(Constants::pi,Axis(1.,0.,0.));
}
rot.invert();
pVect *= rot;
nVect *= rot;
// shower parameters
Energy2 pn = pVect*nVect, m2 = pVect.m2();
double alpha0 = particle.showerParameters().alpha;
double beta0 = 0.5/alpha0/pn*
(sqr(particle.dataPtr()->mass())-sqr(alpha0)*m2+sqr(particle.showerParameters().pt));
Lorentz5Momentum qperp0(particle.showerParameters().ptx,
particle.showerParameters().pty,ZERO,ZERO);
assert(partner);
Lorentz5Momentum pj = partner->momentum();
pj.boost(beta_bb);
pj *= rot;
// compute the two phi independent dot products
pik = 0.5*zFact*(sqr(alpha0)*m2 - sqr(particle.showerParameters().pt) + 2.*alpha0*beta0*pn )
+0.5*sqr(pT)/zFact;
Energy2 dot1 = pj*pVect;
Energy2 dot2 = pj*nVect;
Energy2 dot3 = pj*qperp0;
pipj = alpha0*dot1+beta0*dot2+dot3;
// compute the constants for the phi dependent dot product
pjk[0] = zFact*(alpha0*dot1+dot3-0.5*dot2/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*dot2/pn/zFact/alpha0;
pjk[1] = (pj.x() - dot2/alpha0/pn*qperp0.x())*pT;
pjk[2] = (pj.y() - dot2/alpha0/pn*qperp0.y())*pT;
m12 = sqr(particle.dataPtr()->mass());
m22 = sqr(partner->dataPtr()->mass());
if(swapOrder) {
pjk[1] *= -1.;
pjk[2] *= -1.;
}
Ek[0] = zFact*(alpha0*pVect.t()-0.5*nVect.t()/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*nVect.t()/pn/zFact/alpha0;
Ek[1] = -nVect.t()/alpha0/pn*qperp0.x()*pT;
Ek[2] = -nVect.t()/alpha0/pn*qperp0.y()*pT;
if(swapOrder) {
Ek[1] *= -1.;
Ek[2] *= -1.;
}
Energy mag2=sqrt(sqr(Ek[1])+sqr(Ek[2]));
Ei = alpha0*pVect.t()+beta0*nVect.t();
Ej = pj.t();
double phi0 = atan2(-pjk[2],-pjk[1]);
if(phi0<0.) phi0 += Constants::twopi;
double phi1 = atan2(-Ek[2],-Ek[1]);
if(phi1<0.) phi1 += Constants::twopi;
double xi_min = pik/Ei/(Ek[0]+mag2), xi_max = pik/Ei/(Ek[0]-mag2), xi_ij = pipj/Ei/Ej;
if(xi_min>xi_max) swap(xi_min,xi_max);
if(xi_min>xi_ij) softAllowed = false;
Energy2 mag = sqrt(sqr(pjk[1])+sqr(pjk[2]));
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==1) {
aziMax = -m12/sqr(pik) -m22/sqr(pjk[0]+mag) +2.*pipj/pik/(pjk[0]-mag);
}
else if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==2) {
double A = (pipj*Ek[0]- Ej*pik)/Ej/sqr(Ej);
double B = -sqrt(sqr(pipj)*(sqr(Ek[1])+sqr(Ek[2])))/Ej/sqr(Ej);
double C = pjk[0]/sqr(Ej);
double D = -sqrt(sqr(pjk[1])+sqr(pjk[2]))/sqr(Ej);
pair<double,double> minima = softPhiMin(phi0,phi1,A,B,C,D);
aziMax = 0.5/pik/(Ek[0]-mag2)*(Ei-m12*(Ek[0]-mag2)/pik + max(Ej*(A+B*cos(minima.first -phi1))/(C+D*cos(minima.first -phi0)),
Ej*(A+B*cos(minima.second-phi1))/(C+D*cos(minima.second-phi0))));
}
else
assert(false);
}
// if spin correlations
vector<pair<int,Complex> > wgts;
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->spinCorrelations()) {
// calculate the weights
wgts = splittingFn()->generatePhiForward(z,t,ids,rho);
}
else {
wgts = vector<pair<int,Complex> >(1,make_pair(0,1.));
}
// generate the azimuthal angle
double phi,wgt;
static const Complex ii(0.,1.);
unsigned int ntry(0);
double phiMax(0.),wgtMax(0.);
do {
phi = Constants::twopi*UseRandom::rnd();
// first the spin correlations bit (gives 1 if correlations off)
Complex spinWgt = 0.;
for(unsigned int ix=0;ix<wgts.size();++ix) {
if(wgts[ix].first==0)
spinWgt += wgts[ix].second;
else
spinWgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
}
wgt = spinWgt.real();
if(wgt-1.>1e-10) {
generator()->log() << "Forward spin weight problem " << wgt << " " << wgt-1.
<< " " << ids[0]->id() << " " << ids[1]->id() << " " << ids[2]->id() << " " << " " << phi << "\n";
generator()->log() << "Weights \n";
for(unsigned int ix=0;ix<wgts.size();++ix)
generator()->log() << wgts[ix].first << " " << wgts[ix].second << "\n";
}
// soft correlations bit
double aziWgt = 1.;
if(softAllowed) {
Energy2 dot = pjk[0]+pjk[1]*cos(phi)+pjk[2]*sin(phi);
Energy Eg = Ek[0]+Ek[1]*cos(phi)+Ek[2]*sin(phi);
if(pipj*Eg>pik*Ej) {
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==1) {
aziWgt = (-m12/sqr(pik) -m22/sqr(dot) +2.*pipj/pik/dot)/aziMax;
}
else if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==2) {
aziWgt = max(ZERO,0.5/pik/Eg*(Ei-m12*Eg/pik + (pipj*Eg - Ej*pik)/dot)/aziMax);
}
if(aziWgt-1.>1e-10||aziWgt<-1e-10) {
generator()->log() << "Forward soft weight problem " << aziWgt << " " << aziWgt-1.
<< " " << ids[0]->id() << " " << ids[1]->id() << " " << ids[2]->id() << " " << " " << phi << "\n";
}
}
else {
aziWgt = 0.;
}
}
wgt *= aziWgt;
if(wgt>wgtMax) {
phiMax = phi;
wgtMax = wgt;
}
++ntry;
}
while(wgt<UseRandom::rnd()&&ntry<10000);
if(ntry==10000) {
generator()->log() << "Too many tries to generate phi in forward evolution\n";
phi = phiMax;
}
// return the azimuthal angle
return phi;
}
double SudakovFormFactor::generatePhiBackward(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics,
const RhoDMatrix & rho) {
// no correlations, return flat phi
if(! dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->correlations())
return Constants::twopi*UseRandom::rnd();
// get the kinematic variables
double z = kinematics->z();
Energy2 t = (1.-z)*sqr(kinematics->scale())/z;
Energy pT = kinematics->pT();
// if soft correlations
bool softAllowed = dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations() &&
(ids[2]->id()==ParticleID::g || ids[2]->id()==ParticleID::gamma);
Energy2 pipj,pik,m12(ZERO),m22(ZERO);
array<Energy2,3> pjk;
Energy Ei,Ej,Ek;
InvEnergy2 aziMax(ZERO);
if(softAllowed) {
// find the partner for the soft correlations
tShowerParticlePtr partner=findCorrelationPartner(particle,false,splittingFn()->interactionType());
double zFact = (1.-z);
// compute the transforms to the shower reference frame
// first the boost
Lorentz5Momentum pVect = particle.showerBasis()->pVector();
Lorentz5Momentum nVect = particle.showerBasis()->nVector();
assert(particle.showerBasis()->frame()==ShowerBasis::BackToBack);
Boost beta_bb = -(pVect + nVect).boostVector();
pVect.boost(beta_bb);
nVect.boost(beta_bb);
Axis axis = pVect.vect().unit();
// and then the rotation
LorentzRotation rot;
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.rotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
rot.rotate(Constants::pi,Axis(1.,0.,0.));
}
rot.invert();
pVect *= rot;
nVect *= rot;
// shower parameters
Energy2 pn = pVect*nVect;
Energy2 m2 = pVect.m2();
double alpha0 = particle.x();
double beta0 = -0.5/alpha0/pn*sqr(alpha0)*m2;
Lorentz5Momentum pj = partner->momentum();
pj.boost(beta_bb);
pj *= rot;
double beta2 = 0.5*(1.-zFact)*(sqr(alpha0*zFact/(1.-zFact))*m2+sqr(pT))/alpha0/zFact/pn;
// compute the two phi independent dot products
Energy2 dot1 = pj*pVect;
Energy2 dot2 = pj*nVect;
pipj = alpha0*dot1+beta0*dot2;
pik = alpha0*(alpha0*zFact/(1.-zFact)*m2+pn*(beta2+zFact/(1.-zFact)*beta0));
// compute the constants for the phi dependent dot product
pjk[0] = alpha0*zFact/(1.-zFact)*dot1+beta2*dot2;
pjk[1] = pj.x()*pT;
pjk[2] = pj.y()*pT;
m12 = ZERO;
m22 = sqr(partner->dataPtr()->mass());
Energy2 mag = sqrt(sqr(pjk[1])+sqr(pjk[2]));
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==1) {
aziMax = -m12/sqr(pik) -m22/sqr(pjk[0]+mag) +2.*pipj/pik/(pjk[0]-mag);
}
else if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==2) {
Ek = alpha0*zFact/(1.-zFact)*pVect.t()+beta2*nVect.t();
Ei = alpha0*pVect.t()+beta0*nVect.t();
Ej = pj.t();
if(pipj*Ek> Ej*pik) {
aziMax = 0.5/pik/Ek*(Ei-m12*Ek/pik + (pipj*Ek- Ej*pik)/(pjk[0]-mag));
}
else {
aziMax = 0.5/pik/Ek*(Ei-m12*Ek/pik);
}
}
else {
assert(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==0);
}
}
// if spin correlations
vector<pair<int,Complex> > wgts;
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->spinCorrelations()) {
// get the weights
wgts = splittingFn()->generatePhiBackward(z,t,ids,rho);
}
else {
wgts = vector<pair<int,Complex> >(1,make_pair(0,1.));
}
// generate the azimuthal angle
double phi,wgt;
static const Complex ii(0.,1.);
unsigned int ntry(0);
double phiMax(0.),wgtMax(0.);
do {
phi = Constants::twopi*UseRandom::rnd();
Complex spinWgt = 0.;
for(unsigned int ix=0;ix<wgts.size();++ix) {
if(wgts[ix].first==0)
spinWgt += wgts[ix].second;
else
spinWgt += exp(double(wgts[ix].first)*ii*phi)*wgts[ix].second;
}
wgt = spinWgt.real();
if(wgt-1.>1e-10) {
generator()->log() << "Backward weight problem " << wgt << " " << wgt-1.
<< " " << ids[0]->id() << " " << ids[1]->id() << " " << ids[2]->id() << " " << " " << z << " " << phi << "\n";
generator()->log() << "Weights \n";
for(unsigned int ix=0;ix<wgts.size();++ix)
generator()->log() << wgts[ix].first << " " << wgts[ix].second << "\n";
}
// soft correlations bit
double aziWgt = 1.;
if(softAllowed) {
Energy2 dot = pjk[0]+pjk[1]*cos(phi)+pjk[2]*sin(phi);
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==1) {
aziWgt = (-m12/sqr(pik) -m22/sqr(dot) +2.*pipj/pik/dot)/aziMax;
}
else if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==2) {
aziWgt = max(ZERO,0.5/pik/Ek*(Ei-m12*Ek/pik + pipj*Ek/dot - Ej*pik/dot)/aziMax);
}
if(aziWgt-1.>1e-10||aziWgt<-1e-10) {
generator()->log() << "Backward soft weight problem " << aziWgt << " " << aziWgt-1.
<< " " << ids[0]->id() << " " << ids[1]->id() << " " << ids[2]->id() << " " << " " << phi << "\n";
}
}
wgt *= aziWgt;
if(wgt>wgtMax) {
phiMax = phi;
wgtMax = wgt;
}
++ntry;
}
while(wgt<UseRandom::rnd()&&ntry<10000);
if(ntry==10000) {
generator()->log() << "Too many tries to generate phi in backward evolution\n";
phi = phiMax;
}
// return the azimuthal angle
return phi;
}
double SudakovFormFactor::generatePhiDecay(ShowerParticle & particle,
const IdList & ids,
ShoKinPtr kinematics,
const RhoDMatrix &) {
// only soft correlations in this case
// no correlations, return flat phi
if( !(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations() &&
(ids[2]->id()==ParticleID::g || ids[2]->id()==ParticleID::gamma )))
return Constants::twopi*UseRandom::rnd();
// get the kinematic variables
double z = kinematics->z();
Energy pT = kinematics->pT();
// if soft correlations
// find the partner for the soft correlations
tShowerParticlePtr partner = findCorrelationPartner(particle,true,splittingFn()->interactionType());
double zFact(1.-z);
// compute the transforms to the shower reference frame
// first the boost
Lorentz5Momentum pVect = particle.showerBasis()->pVector();
Lorentz5Momentum nVect = particle.showerBasis()->nVector();
assert(particle.showerBasis()->frame()==ShowerBasis::Rest);
Boost beta_bb = -pVect.boostVector();
pVect.boost(beta_bb);
nVect.boost(beta_bb);
Axis axis = nVect.vect().unit();
// and then the rotation
LorentzRotation rot;
if(axis.perp2()>0.) {
double sinth(sqrt(sqr(axis.x())+sqr(axis.y())));
rot.rotate(acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
rot.rotate(Constants::pi,Axis(1.,0.,0.));
}
rot.invert();
pVect *= rot;
nVect *= rot;
// shower parameters
Energy2 pn = pVect*nVect;
Energy2 m2 = pVect.m2();
double alpha0 = particle.showerParameters().alpha;
double beta0 = 0.5/alpha0/pn*
(sqr(particle.dataPtr()->mass())-sqr(alpha0)*m2+sqr(particle.showerParameters().pt));
Lorentz5Momentum qperp0(particle.showerParameters().ptx,
particle.showerParameters().pty,ZERO,ZERO);
Lorentz5Momentum pj = partner->momentum();
pj.boost(beta_bb);
pj *= rot;
// compute the two phi independent dot products
Energy2 pik = 0.5*zFact*(sqr(alpha0)*m2 - sqr(particle.showerParameters().pt) + 2.*alpha0*beta0*pn )
+0.5*sqr(pT)/zFact;
Energy2 dot1 = pj*pVect;
Energy2 dot2 = pj*nVect;
Energy2 dot3 = pj*qperp0;
Energy2 pipj = alpha0*dot1+beta0*dot2+dot3;
// compute the constants for the phi dependent dot product
array<Energy2,3> pjk;
pjk[0] = zFact*(alpha0*dot1+dot3-0.5*dot2/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*dot2/pn/zFact/alpha0;
pjk[1] = (pj.x() - dot2/alpha0/pn*qperp0.x())*pT;
pjk[2] = (pj.y() - dot2/alpha0/pn*qperp0.y())*pT;
Energy2 m12 = sqr(particle.dataPtr()->mass());
Energy2 m22 = sqr(partner->dataPtr()->mass());
Energy2 mag = sqrt(sqr(pjk[1])+sqr(pjk[2]));
InvEnergy2 aziMax;
array<Energy,3> Ek;
Energy Ei,Ej;
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==1) {
aziMax = -m12/sqr(pik) -m22/sqr(pjk[0]+mag) +2.*pipj/pik/(pjk[0]-mag);
}
else if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==2) {
Ek[0] = zFact*(alpha0*pVect.t()+-0.5*nVect.t()/pn*(alpha0*m2-sqr(particle.showerParameters().pt)/alpha0))
+0.5*sqr(pT)*nVect.t()/pn/zFact/alpha0;
Ek[1] = -nVect.t()/alpha0/pn*qperp0.x()*pT;
Ek[2] = -nVect.t()/alpha0/pn*qperp0.y()*pT;
Energy mag2=sqrt(sqr(Ek[1])+sqr(Ek[2]));
Ei = alpha0*pVect.t()+beta0*nVect.t();
Ej = pj.t();
aziMax = 0.5/pik/(Ek[0]-mag2)*(Ei-m12*(Ek[0]-mag2)/pik + pipj*(Ek[0]+mag2)/(pjk[0]-mag) - Ej*pik/(pjk[0]-mag) );
}
else
assert(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==0);
// generate the azimuthal angle
double phi,wgt(0.);
unsigned int ntry(0);
double phiMax(0.),wgtMax(0.);
do {
phi = Constants::twopi*UseRandom::rnd();
Energy2 dot = pjk[0]+pjk[1]*cos(phi)+pjk[2]*sin(phi);
if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==1) {
wgt = (-m12/sqr(pik) -m22/sqr(dot) +2.*pipj/pik/dot)/aziMax;
}
else if(dynamic_ptr_cast<tcQTildeShowerHandlerPtr>(ShowerHandler::currentHandler())->softCorrelations()==2) {
if(qperp0.m2()==ZERO) {
wgt = 1.;
}
else {
Energy Eg = Ek[0]+Ek[1]*cos(phi)+Ek[2]*sin(phi);
wgt = max(ZERO,0.5/pik/Eg*(Ei-m12*Eg/pik + (pipj*Eg - Ej*pik)/dot)/aziMax);
}
}
if(wgt-1.>1e-10||wgt<-1e-10) {
generator()->log() << "Decay soft weight problem " << wgt << " " << wgt-1.
<< " " << ids[0]->id() << " " << ids[1]->id() << " " << ids[2]->id() << " " << " " << phi << "\n";
}
if(wgt>wgtMax) {
phiMax = phi;
wgtMax = wgt;
}
++ntry;
}
while(wgt<UseRandom::rnd()&&ntry<10000);
if(ntry==10000) {
phi = phiMax;
generator()->log() << "Too many tries to generate phi\n";
}
// return the azimuthal angle
return phi;
}
Energy SudakovFormFactor::calculateScale(double zin, Energy pt, IdList ids,
unsigned int iopt) {
Energy2 tmin;
initialize(ids,tmin);
// final-state branching
if(iopt==0) {
Energy2 scale=(sqr(pt)+masssquared_[1]*(1.-zin)+masssquared_[2]*zin);
if(ids[0]->id()!=ParticleID::g) scale -= zin*(1.-zin)*masssquared_[0];
scale /= sqr(zin*(1-zin));
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==1) {
Energy2 scale=(sqr(pt)+zin*masssquared_[2])/sqr(1.-zin);
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else if(iopt==2) {
Energy2 scale = (sqr(pt)+zin*masssquared_[2])/sqr(1.-zin)+masssquared_[0];
return scale<=ZERO ? sqrt(tmin) : sqrt(scale);
}
else {
throw Exception() << "Unknown option in SudakovFormFactor::calculateScale() "
<< "iopt = " << iopt << Exception::runerror;
}
}
ShoKinPtr SudakovFormFactor::createFinalStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(FS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr SudakovFormFactor::createInitialStateBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(IS_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
ShoKinPtr SudakovFormFactor::createDecayBranching(Energy scale,double z,
double phi, Energy pt) {
ShoKinPtr showerKin = new_ptr(Decay_QTildeShowerKinematics1to2());
showerKin->scale(scale);
showerKin->z(z);
showerKin->phi(phi);
showerKin->pT(pt);
showerKin->SudakovFormFactor(this);
return showerKin;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 6:34 PM (1 d, 13 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805616
Default Alt Text
(48 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment