Page MenuHomeHEPForge

No OneTemporary

diff --git a/src/MCStudies/SigmaEnuHists.cxx b/src/MCStudies/SigmaEnuHists.cxx
index 6c5a709..e3ef238 100644
--- a/src/MCStudies/SigmaEnuHists.cxx
+++ b/src/MCStudies/SigmaEnuHists.cxx
@@ -1,257 +1,257 @@
// Copyright 2016-2021 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "SigmaEnuHists.h"
#include <cmath>
void PerEify(TH1 *h) {
for (int i = 0; i < h->GetXaxis()->GetNbins(); ++i) {
double cont = h->GetBinContent(i + 1);
double err = h->GetBinError(i + 1);
double e = h->GetXaxis()->GetBinCenter(i + 1);
if (!e) {
h->SetBinContent(i + 1, 0);
h->SetBinError(i + 1, 0);
} else {
h->SetBinContent(i + 1, cont / e);
h->SetBinError(i + 1, err / e);
}
}
}
SigmaEnuHists::SigmaEnuHists(nuiskey samplekey) {
fSettings = LoadSampleSettings(samplekey);
PerE = (fName.find("PerE") != std::string::npos);
// Define our energy range for flux calcs
EnuMin = 0.;
EnuMax = 1E10; // Arbritrarily high energy limit
// Setup fDataHist as a placeholder
fDataHist = new TH1D(("empty_data"), ("empty-data"), 1, 0, 1);
FinaliseSampleSettings();
// 1. The generator is organised in SetupMeasurement so it gives the
// cross-section in "per nucleon" units.
// So some extra scaling for a specific measurement may be required. For
// Example to get a "per neutron" measurement on carbon
// which we do here, we have to multiple by the number of nucleons 12 and
// divide by the number of neutrons 6.
// N.B. MeasurementBase::PredictedEventRate includes the 1E-38 factor that is
// often included here in other classes that directly integrate the event
// histogram. This method is used here as it now respects EnuMin and EnuMax
// correctly.
fScaleFactor =
GetEventHistogram()->Integral("width") * double(1E-38) / double(fNEvents);
NUIS_LOG(SAM, " Generic Flux Scaling Factor = "
<< fScaleFactor << " [= "
<< (GetEventHistogram()->Integral("width") * 1E-38) << "/("
<< (fNEvents + 0.) << "*" << TotalIntegratedFlux("width")
<< ")]");
if (fScaleFactor <= 0.0) {
NUIS_ABORT("SCALE FACTOR TOO LOW");
}
// If we have binning
if (samplekey.Has("NBins") && samplekey.Has("MinEnuGev") &&
samplekey.Has("MaxEnuGev")) {
int nbins = samplekey.GetI("NBins");
double low_gev = samplekey.GetD("MinEnuGev");
double up_gev = samplekey.GetD("MaxEnuGev");
std::vector<double> bins;
bool LogE = samplekey.Has("UseLogE") && samplekey.GetB("UseLogE");
std::cout << "[INFO]: Setting up binning: N = " << nbins
<< " min = " << low_gev << " GeV, max = " << up_gev
<< " max, LogE = " << (LogE ? "true" : "false") << std::endl;
double step = (LogE ? (std::log10(up_gev) - std::log10(low_gev))
: (up_gev - low_gev)) /
double(nbins);
bins.push_back(low_gev);
std::cout << "bin: " << bins.back() << std::endl;
for (int i = 0; i < nbins; ++i) {
if (LogE) {
bins.push_back(pow(10, std::log10(bins.back()) + step));
std::cout << "bin: " << bins.back() << std::endl;
} else {
bins.push_back(bins.back() + step);
std::cout << "bin: " << bins.back() << std::endl;
}
}
std::cout << "nbin: " << bins.size() << std::endl;
BinningHist = new TH1D("BinningHist", "", bins.size() - 1, bins.data());
} else { // use the flux hist
BinningHist = static_cast<TH1D *>(fFluxHist->Clone("BinningHist"));
}
BinningHist->SetDirectory(NULL);
TopologyNames[kCC] = "CCInc";
TopologyNames[kCC0Pi] = "CC0Pi";
TopologyNames[kCC1Pi] = "CC1Pi";
TopologyNames[kCC1Pip] = "CC1Pip";
TopologyNames[kCC1Pi0] = "CC1Pi0";
TopologyNames[kCC1Pim] = "CC1Pim";
TopologyNames[kCCNPi] = "CCNPi";
TopologyNames[kNC] = "NCInc";
TopologyNames[kNC0Pi] = "NC0Pi";
TopologyNames[kNC1Pi] = "NC1Pi";
TopologyNames[kNCNPi] = "NCNPi";
for (int t = kCC; t < kNTopologies; ++t) {
TopologyHists[t] =
static_cast<TH1D *>(BinningHist->Clone(TopologyNames[t].c_str()));
TopologyHists[t]->SetTitle(
";#it{E}_{#nu} (GeV); #sigma(#it{E_{#nu}}) 10^{-38} cm^{2} /nucleon");
TopologyHists[t]->Reset();
}
NEUTModeHists[0] = static_cast<TH1D *>(BinningHist->Clone("TotalXSec"));
NEUTModeHists[0]->SetTitle(
";#it{E}_{#nu} (GeV); #sigma(#it{E_{#nu}}) 10^{-38} cm^{2} /nucleon");
NEUTModeHists[0]->Reset();
SetCovarFromDiagonal();
// Final setup ---------------------------------------------------
FinaliseMeasurement();
}
void SigmaEnuHists::FillEventVariables(FitEvent *event) {
// Now fill the information
if (!NEUTModeHists.count(event->Mode)) {
std::stringstream ss;
ss << "NeutMode_" << (event->Mode < 0 ? "m" : "") << abs(event->Mode);
NEUTModeHists[event->Mode] =
static_cast<TH1D *>(BinningHist->Clone(ss.str().c_str()));
NEUTModeHists[event->Mode]->SetTitle(
";#it{E}_{#nu} (GeV); #sigma(#it{E_{#nu}}) 10^{-38} cm^{2} /nucleon");
NEUTModeHists[event->Mode]->Reset();
}
FitParticle *nu = event->GetBeamPart();
double enu_gev = nu->fP.E() * 1E-3;
double w = event->Weight;
NEUTModeHists[event->Mode]->Fill(enu_gev, w);
NEUTModeHists[0]->Fill(enu_gev, w);
#ifdef __GENIE_ENABLED__
if (event->fType == kGENIE) {
EventRecord *gevent = static_cast<EventRecord *>(event->genie_event->event);
const Interaction *interaction = gevent->Summary();
int gmode = interaction->ProcInfo().ScatteringTypeId();
int isNC = !interaction->ProcInfo().IsWeakCC();
int isnu = nu->fPID > 0;
int nuis_gmode = (gmode + 30 * isNC) * (isnu ? 1 : -1);
if (!GENIEModeHists.count(nuis_gmode)) {
std::stringstream ss;
ss << "GENIEMode_" << (isNC ? "NC_" : "CC_") << (isnu ? "nu_" : "nubar_")
<< interaction->ProcInfo().ScatteringTypeAsString();
GENIEModeHists[nuis_gmode] =
static_cast<TH1D *>(BinningHist->Clone(ss.str().c_str()));
GENIEModeHists[nuis_gmode]->SetTitle(
";#it{E}_{#nu} (GeV); #sigma(#it{E_{#nu}}) 10^{-38} cm^{2} /nucleon");
GENIEModeHists[nuis_gmode]->Reset();
}
GENIEModeHists[nuis_gmode]->Fill(enu_gev, w);
}
#endif
int NPi = event->GetAllFSPionsIndices().size();
int NPip = event->GetAllFSPiPlusIndices().size();
int NPim = event->GetAllFSPiMinusIndices().size();
if (event->IsCC()) {
TopologyHists[kCC]->Fill(enu_gev, w);
if (NPi == 0) {
TopologyHists[kCC0Pi]->Fill(enu_gev, w);
} else if (NPi == 1) {
TopologyHists[kCC1Pi]->Fill(enu_gev, w);
if (NPip == 1) {
TopologyHists[kCC1Pip]->Fill(enu_gev, w);
} else if (NPim == 1) {
TopologyHists[kCC1Pim]->Fill(enu_gev, w);
} else {
TopologyHists[kCC1Pi0]->Fill(enu_gev, w);
}
} else {
TopologyHists[kCCNPi]->Fill(enu_gev, w);
}
} else {
TopologyHists[kNC]->Fill(enu_gev, w);
if (NPi == 0) {
TopologyHists[kNC0Pi]->Fill(enu_gev, w);
} else if (NPi == 1) {
TopologyHists[kNC1Pi]->Fill(enu_gev, w);
} else {
TopologyHists[kNCNPi]->Fill(enu_gev, w);
}
}
};
void SigmaEnuHists::Write(std::string drawOpt) {
for (std::map<int, TH1D *>::iterator h = NEUTModeHists.begin();
h != NEUTModeHists.end(); ++h) {
PlotUtils::FluxUnfoldedScaling(h->second, GetFluxHistogram(),
GetEventHistogram(), fScaleFactor, fNEvents);
if (PerE) {
PerEify(h->second);
}
- h->second->Write();
+ h->second->Write((fName + "_" + h->second->GetName()).c_str());
}
for (std::map<int, TH1D *>::iterator h = GENIEModeHists.begin();
h != GENIEModeHists.end(); ++h) {
PlotUtils::FluxUnfoldedScaling(h->second, GetFluxHistogram(),
GetEventHistogram(), fScaleFactor, fNEvents);
if (PerE) {
PerEify(h->second);
}
- h->second->Write();
+ h->second->Write((fName + "_" + h->second->GetName()).c_str());
}
for (std::map<int, TH1D *>::iterator h = TopologyHists.begin();
h != TopologyHists.end(); ++h) {
PlotUtils::FluxUnfoldedScaling(h->second, GetFluxHistogram(),
GetEventHistogram(), fScaleFactor, fNEvents);
if (PerE) {
PerEify(h->second);
}
- h->second->Write();
+ h->second->Write((fName + "_" + h->second->GetName()).c_str());
}
}
// Override functions which aren't really necessary
bool SigmaEnuHists::isSignal(FitEvent *event) {
(void)event;
return true;
};

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 5:49 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805452
Default Alt Text
(9 KB)

Event Timeline