Page MenuHomeHEPForge

No OneTemporary

Index: docs/paper/res-formulae.tex
===================================================================
--- docs/paper/res-formulae.tex (revision 560)
+++ docs/paper/res-formulae.tex (revision 561)
@@ -1,412 +1,412 @@
\section{Formulae for available lineshapes}
\label{sec:res-formulae}
This section presents the complete formulae for all resonance shapes implemented
in \laura. Table~\ref{tab:resForms} gives the list of shapes, together with
the corresponding \texttt{LauResonanceModel} enumeration integer that is required to
specify the resonance type for the \texttt{LauIsobarDynamics addResonance} function, as
well as the equation number(s) that provide the expression for the resonance
mass term $R(m)$ used in Eq.~(\ref{eq:ResDynEqn}).
The K-matrix shape is particularly complicated and is therefore described in a dedicated subsection.
\begin{table}[!hbt]
\caption{
List of the allowed resonance shape types.
The \texttt{LauResonanceModel} case-sensitive enumeration in the \texttt{LauAbsResonance}
abstract class specifies the integer that selects the resonance type for the \texttt{addResonance}
function. For example, the simple Breit--Wigner integer type is \texttt{LauAbsResonance::BW}.}
\centering
\resizebox{\textwidth}{!}{
\begin{tabular}{lll}
\hline
Shape name & Enumeration & $R(m)$ Eq. \\
\hline
Simple Breit--Wigner & \texttt{BW} & (\ref{eq:SimpleBW}) \\
Relativistic Breit--Wigner (RBW) & \texttt{RelBW} & (\ref{eq:RelBWEqn}) \\
Modified Breit--Wigner from Gounaris--Sakurai (GS) & \texttt{GS} & (\ref{eq:GS}) \\
Flatt\'e or coupled-channel Breit--Wigner & \texttt{Flatte} & (\ref{eq:Flatte}) \\
$\sigma$ or $f_0(500)$ & \texttt{Sigma} & (\ref{eq:sigma}) \\
$\kappa$ or low-mass $K\pi$ scalar & \texttt{Kappa} & (\ref{eq:sigma}) \\
Low-mass $D\pi$ scalar & \texttt{Dabba} & (\ref{eq:dabba}) \\
LASS $K\pi$ S-wave & \texttt{LASS} & (\ref{eq:LASSEqn}) \\
Resonant part of $K\pi$ LASS & \texttt{LASS\_BW} & (\ref{eq:LASSEqn}) (2$^{\rm{nd}}$ term)\\
Non-resonant part of $K\pi$ LASS & \texttt{LASS\_NR} & (\ref{eq:LASSEqn}) (1$^{\rm{st}}$ term)\\
Form-factor description of the $K\pi$ S-wave & \texttt{EFKLLM} & (\ref{eq:efkllm}) \\
S-wave using $K$-matrix and $P$-vector & \texttt{KMatrix} & (\ref{eq:KMatProd})--(\ref{eq:prodPoleSVP}) \\
Uniform non-resonant (NR) & \texttt{FlatNR} & $R(m) \equiv 1$ \\
Theoretical NR model & \texttt{NRModel} & (\ref{eq:nrmodel}) \\
Empirical NR exponential & \texttt{BelleNR} & (\ref{eq:expnonres}) \\
Empirical NR power-law & \texttt{PowerLawNR} & (\ref{eq:nonrespower}) \\
Empirical NR exponential for symmetrised DPs & \texttt{BelleSymNR} & (\ref{eq:symnr}) \\
Empirical NR Taylor expansion for symmetrised DPs & \texttt{TaylorNR} & (\ref{eq:taylornr}) \\
Empirical NR polynomial & \texttt{PolNR} & (\ref{eq:polynr}) \\
Model-independent partial wave (magnitude \& phase) & \texttt{MIPW\_MagPhase} & (\ref{eq:mipw}) \\
Model-independent partial wave (real \& imaginary) & \texttt{MIPW\_RealImag} & (\ref{eq:mipw}) \\
Incoherent Gaussian shape & \texttt{GaussIncoh} & (\ref{eq:incohgauss}) \\
$\rho-\omega$ mixing: GS for $\rho$, RBW for $\omega$ & \texttt{RhoOmegaMix\_GS} & (\ref{eq:rhoomega}) \\
\hspace*{6em} neglecting $\Delta^2$ denominator term & \texttt{RhoOmegaMix\_GS\_1} & (\ref{eq:rhoomega}) \\
$\rho-\omega$ mixing: RBW for both $\rho$ and $\omega$ & \texttt{RhoOmegaMix\_RBW} & (\ref{eq:rhoomega}) \\
\hspace*{6em} neglecting $\Delta^2$ denominator term & \texttt{RhoOmegaMix\_RBW\_1} & (\ref{eq:rhoomega}) \\
\hline
\end{tabular}
}
\label{tab:resForms}
\end{table}
The simple Breit--Wigner lineshape is given by
%
\begin{equation}
\label{eq:SimpleBW}
R(m) = \frac{1}{m - m_0 - \frac{i}{2}\Gamma_0} \equiv
\frac{(m - m_0) + \frac{i}{2}\Gamma_0}{(m - m_0)^2 + \frac{\Gamma^2_0}{4}} \,,
\end{equation}
%
where $m_0$ is the pole mass and $\Gamma_0$ is the resonance width.
The more commonly used relativistic Breit--Wigner lineshape is described in Sec.~\ref{sec:lineshapes}.
We note here that the relativistic Breit--Wigner lineshape can also describe so-called virtual contributions, from resonances with masses outside the kinematically accessible region of the Dalitz plot, with one modification:
in the calculation of the momenta, the mass $m_0$ is set to a value $m_0^{\rm{eff}}$ within the kinematically allowed range.
This is accomplished with the {\it ad-hoc} formula
\begin{equation}\label{eq:effmass}
m_0^{\rm{eff}}(m_0) = m^{\rm{min}} + \frac{1}{2}(m^{\rm{max}} - m^{\rm{min}})
\left[ 1 + \tanh\left( \frac{m_0 - \frac{m^{\rm{min}}+m^{\rm{max}}}{2}}
{m^{\rm{max}}-m^{\rm{min}}} \right) \right]\, ,
\end{equation}
where $m^{\rm{max}}$ and $m^{\rm{min}}$ are the upper and lower limits of the kinematically allowed mass range.
For virtual contributions, only the tail of the RBW function enters the Dalitz plot.
The Gounaris--Sakurai form of the Breit--Wigner lineshape~\cite{GS} is usually used
as an alternative model for the $\rho$ resonance. It is given by
%
\begin{equation}
\label{eq:GS}
R(m) = \frac{1+D\cdot\Gamma_0/m_0}
{(m_0^2 - m^2) + f(m) - i\, m_0 \Gamma(m)} \,,
\end{equation}
%
where
%
\begin{equation}
\label{eq:GSfm}
f(m) = \Gamma_0 \,\frac{m_0^2}{q_0^3}\,
\left[\;
q^2 \left[h(m)-h(m_0)\right] +
\left(\,m_0^2-m^2\,\right)\,q^2_0\,
- \frac{dh}{dm}\bigg|_{m_0}
+ \frac{dh}{ds}\bigg|_{m_0}
\;\right] \,,
\end{equation}
%
$q$ is the magnitude of the momentum of one of the daughter particles
in the resonance rest-frame,
%
\begin{equation}
\label{eq:GShm}
h(m) = \frac{2}{\pi}\,\frac{q}{m}\,
\ln\left(\frac{m+2q}{2m_\pi}\right) \,,
\end{equation}
%
and
%
\begin{equation}
\label{eq:GSdh}
-\frac{dh}{dm}\bigg|_{m_0} =
+\frac{dh}{ds}\bigg|_{m_0} =
h(m_0)\left[(8q_0^2)^{-1}-(2m_0^2)^{-1}\right] \,+\, (2\pi m_0^2)^{-1} \,.
\end{equation}
%
-The normalisation condition at $R(0)$ fixes the parameter
-$D=f(0)/(\Gamma_0 m_0)$, and is found to be~\cite{GS}
+%The normalisation condition at $R(0)$ fixes the parameter $D=f(0)/(\Gamma_0 m_0)$, and is found to be~\cite{GS}
+The constant parameter $D$ is given by~\cite{GS}
%
\begin{equation}
\label{eq:GSd}
D = \frac{3}{\pi}\frac{m_\pi^2}{q_0^2}\,
\ln\left(\frac{m_0+2q_0}{2m_\pi}\right)
+ \frac{m_0}{2\pi\,q_0}
- \frac{m_\pi^2 m_0}{\pi\,q_0^3} \,.
\end{equation}
%
The Flatt\'e~\cite{Flatte:1976xu}, or coupled two-channel Breit--Wigner, lineshape
is usually used to model $f_0(980)$, $K^{*}_0(1430)$ and $a_0(980)$ states.
It was originally introduced in the form
%%
\begin{equation}
\label{eq:Flatte}
R(m) = \frac{1}{(m_0^2 - m^2) - i m_0 [\Gamma_1(m) + \Gamma_2(m)]} \,.
\end{equation}
%%
The decay widths in the two systems are usually represented by products of
couplings and dimensionless phase-space factors:
%%
\begin{equation}
\label{eq:Gamma1}
\Gamma_1(m) = g_1 f_A \left(\frac{1}{3}\sqrt{1 - (m_{1,1} + m_{1,2})^2/m^2} +
\frac{2}{3}\sqrt{1 - (m_{1,3} + m_{1,4})^2/m^2} \right) \,,
\end{equation}
%%
\begin{equation}
\label{eq:Gamma2}
\Gamma_2(m) = g_2 f_A \left(\frac{1}{2}\sqrt{1 - (m_{2,1} + m_{2,2})^2/m^2} +
\frac{1}{2}\sqrt{1 - (m_{2,3} + m_{2,4})^2/m^2} \right) \,.
\end{equation}
%%
Here the fractional coefficients come from isospin conservation,
$m_{i,j}$ denotes the invariant mass of the daughter particle $j$ (1--4) in
channel $i$ (1--2),
and $g_1$ and $g_2$ are coupling constants whose values are assumed to be those
provided in Table~\ref{tab:flattepars}.
The Clebsch-Gordan coefficients in Eqs.~\ref{eq:Gamma1} and~\ref{eq:Gamma2} are not guaranteed to be correct for every possible resonance that could be modelled with the Flatt\'e lineshape, but are appropriate for every case considered in Table~\ref{tab:flattepars}.
The expressions for the widths are continued analytically ($\Gamma \ra i |\Gamma|$) when $m$ is below any of the specific channel thresholds,
contributing to the real part of the amplitude, while the Adler-zero
term $f_A = (m^2 - s_A)/(m^2_0 - s_A)$ can be used to suppress false kinematic
singularities when $m$ goes below threshold~\cite{Bugg:2003kj}
(otherwise $f_A$ is set to unity).
Variants of the Flatt\'e lineshape have been used in the literature.
In some cases, \eg\ Refs.~\cite{Ablikim:2004wn,Abele:1998qd}, the constant
$m_0$ that multiplies the widths in the denominator of Eq.~(\ref{eq:Flatte})
is absorbed into the couplings.
As a consequence the couplings have dimensions of mass-squared, and are
sometimes denoted as $g_i$~\cite{Ablikim:2004wn} and sometimes as $g_i^2$~\cite{Abele:1998qd}.
In Table~\ref{tab:flattepars} all values have been converted to be consistent
with Eqs.~(\ref{eq:Flatte})--(\ref{eq:Gamma2}).
In \laura\ it is only possible to use the Flatt\'e lineshape for the systems
specified in Table~\ref{tab:flattepars}.
At construction time the resonance name is checked and the corresponding
parameter values are set; these can be modified by the user if desired.
\begin{table}[!htb]
\caption{
The four daughter particles used for each channel term $m_{ij}$, as well as the coupling ($g_1$, $g_2$) and Adler-zero ($s_A$) constants for the Flatt\'e lineshapes.
Units of \gev\ for $g_{1,2}$ (or $\gev^2$ for $m_0g_{1,2}$ when taken from Refs.~\cite{Ablikim:2004wn,Abele:1998qd}) and \gevgevcccc\ for $s_A$ are implied.
}
\centering
\resizebox{\textwidth}{!}{
\begin{tabular}{lllllll}
\hline
Resonance & Channel 1 & Channel 2 & $g_1$ or $m_0g_1$ & $g_2$ or $m_0g_2$ & $s_A$ & Reference \\
\hline
$f_0(980)$ & \piz,\piz,\pipm,\pipm & \Kpm,\Kpm,\Kz,\Kz & 0.165 & $4.21g_1$ & --- & \cite{Ablikim:2004wn} \\
$K^{*}_0(1430)^0$ & \Kz,\piz,\Kpm,\pipm & \Kz,\etapr,\Kz,\etapr & 0.304 & 0.380 & 0.234 & \cite{Bugg:2003kj} \\
$K^{*}_0(1430)^{\pm}$ & \Kpm,\piz,\Kz,\pipm & \Kpm,\etapr,\Kpm,\etapr & 0.304 & 0.380 & 0.234 & \cite{Bugg:2003kj} \\
$a_0(980)^0$ & \etaz,\piz,\etaz,\piz & \Kpm,\Kpm,\Kz,\Kz & 0.105 & $1.03g_1$ & --- & \cite{Abele:1998qd} \\
$a_0(980)^{\pm}$ & \etaz,\pipm,\etaz,\pipm & \Kpm,\Kz,\Kpm,\Kz & 0.105 & $1.03g_1$ & --- & \cite{Abele:1998qd} \\
\hline
\end{tabular}
}
\label{tab:flattepars}
\end{table}
The $\sigma$ or $f_0(500) \ra \pi\pi$ and $\kappa$ or $K^*_0(800) \ra K\pi$
low-mass scalar resonances can be described using the form
%
\begin{equation}
\label{eq:sigma}
R(m) = \frac{1}{M^2 - s -iM\Gamma(s)} \,,
\end{equation}
%
where $M$ is the mass where the phase shift goes through 90$^{\circ}$ for real $s \equiv m^2$,
and the width
%
\begin{equation}
\label{eq:sigmawidth}
\Gamma(s) = \sqrt{1 - (m_1 + m_2)^2/s}\left(\frac{s - s_A}{M^2 - s_A}\right)(b_1 + b_2s)e^{-(s - M^2)/A} \,,
\end{equation}
%
where the square-root term is the phase space factor, which requires
the invariant masses of the daughter particles $m_1$ and $m_2$, $s_A$ is the Adler-zero constant,
while $b_1$, $b_2$ and $A$ are additional constants~\cite{Bugg:2003kj}.
Table~\ref{tab:sigmakappa} gives the default values of the parameters.
%%
\begin{table}[!htb]
\caption{Default values of the parameters for the $\sigma$ and $\kappa$ lineshapes
based on BES data~\cite{Bugg:2003kj}.}
\centering
\begin{tabular}{llllll}
\hline
Resonance & $M$ (\nbspgevcc) & $b_1$ (\nbspgevcc) & $b_2$ (\nbspgevcc) & $A$ (\nbspgevgevcccc) & $s_A$ \\
\hline
$\sigma$ & 0.9264 & 0.5843 & 1.6663 & 1.082 & $0.5m^2_{\pi}$ \\
$\kappa$ & 3.3 & 24.49 & 0.0 & 2.5 & $m^2_K - 0.5m^2_{\pi}$ \\
\hline
\end{tabular}
\label{tab:sigmakappa}
\end{table}
%%
The $D\pi$ S-wave can be parameterised using the form provided by Bugg~\cite{Bugg:2009tu},
who labels the pole state as ``dabba'':
%
\begin{equation}
\label{eq:dabba}
R(m) = \frac{1}{1 - \beta(m^2-s_0) - ib\rho(m^2-s_A)e^{-\alpha(m^2-s_0)}} \,,
\end{equation}
%
where $\rho$ is the Lorentz invariant phase space factor $\sqrt{1 - s_0/m^2}$,
$s_0$ is the square of the sum of the invariant masses of the $D$ ($m_D$) and
$\pi$ ($m_{\pi}$) daughters, $s_A$ is the Adler-zero term
$m^2_D - 0.5m^2_{\pi}$ that comes from chiral symmetry breaking~\cite{Adler:1965ga}, while
$b$ = 24.49, $\alpha$ = 0.1 and $\beta$ = 0.1.
The RBW function is a very good approximation for
narrow resonances well separated from any other resonant or nonresonant
contribution in the same partial wave.
This approximation is known to be invalid in the $K\pi$ S-wave, since the
$\Kstarbsubz(1430)$ resonance interferes strongly with a slowly varying
nonresonant term~\cite{Meadows:2007jm}.
The so-called LASS lineshape~\cite{lass} has been developed to combine these
amplitudes,
%
\begin{eqnarray}
\label{eq:LASSEqn}
R(m) & = & \frac{m}{q \cot{\delta_B} - iq} + e^{2i \delta_B}
\frac{m_0 \Gamma_0 \frac{m_0}{q_0}}
{(m_0^2 - m^2) - i m_0 \Gamma_0 \frac{q}{m} \frac{m_0}{q_0}}\, , \\
{\rm with} \ \cot{\delta_B} & = & \frac{1}{aq} + \frac{1}{2} r q \, ,
\end{eqnarray}
%
where $m_0$ and $\Gamma_0$ are now the pole mass and width of the $\Kstarbsubz(1430)$,
and $a$ and $r$ are parameters that describe the shape.
Most implementations of the LASS shape in amplitude analyses of \B meson
decays~\cite{Aubert:2004cp,Aubert:2005ce} apply a cut-off
to the slowly varying part close to the charm hadron mass ($\sim 1.7\gevcc$).
An alternative representation of the $K\pi$ S-wave amplitude can be made using the
\texttt{EFKLLM} model described in Ref.~\cite{PhysRevD.79.094005} (the acronym comes
from the surnames of the authors of that paper), which uses a tabulated form-factor $f_0^{K\pi}(m^2)$
that is interpolated using two splines (one each for the magnitude and phase parts), multiplied by a
scaling power-law mass-dependence $m^{\ell}$, leading to
%
\begin{equation}
\label{eq:efkllm}
R(m) = f_0^{K\pi}(m^2) \cdot m^{\ell} \, ,
\end{equation}
%
where suggested values for the exponent $\ell$ are zero for $\kappa$ (this is also the default value)
and $-2$ for $\Kstarbsubz(1430)$.
Because of the large phase-space available in three-body \B meson decays, it
is possible to have nonresonant amplitudes (\ie\ contributions that are not associated
with any known resonance, including virtual states) that are not constant
across the Dalitz plot. One possible parameterisation, based on theoretical
considerations of final-state interactions in $\Bpm \to \Kpm\pip\pim$ decays~\cite{Bediaga:2008zz}, uses the form
%
\begin{equation}
\label{eq:nrmodel}
R(m) = \left[ m_{13}m_{23} f_1(m^2_{13}) f_2(m^2_{23}) e^{-d_0 m^4_{13}m^4_{23}} \right]^{\frac{1}{2}} \,,
\end{equation}
%
where
%
\begin{equation}
\label{eq:nrmodelf}
f_j(m^2) = \frac{1}{1 + e^{a_j(m^2 - b_j)}} \,,
\end{equation}
with the constant parameters $d_0 = 1.3232\times10^{-3}$\,GeV$^{-8}$,
$a_1 = 0.65$\,GeV$^{-2}$, $b_1 = 18$\,GeV$^2$, $a_2 = 0.55$\,GeV$^{-2}$
and $b_2 = 15$\,GeV$^2$ in natural units.
There are several empirical methods that can be used to model the nonresonant
contributions. One is to use an exponential form factor~\cite{Garmash:2004wa}
%
\begin{equation}
\label{eq:expnonres}
R(m) = e^{-\alpha m^2} \, ,
\end{equation}
while another form is simply a power-law distribution
%
\begin{equation}
\label{eq:nonrespower}
R(m) = m^{-2\alpha} \,,
\end{equation}
where in both cases $\alpha$ is a parameter that must be determined from the data.
For symmetric DPs, the exponential form is modified to
%
\begin{equation}
\label{eq:symnr}
R(m) = e^{-\alpha m^2_{13}} + e^{-\alpha m^2_{23}} \,,
\end{equation}
%
while a Taylor expansion up to first order can also be used:
\begin{equation}
\label{eq:taylornr}
R(m) = 1 + \frac{\alpha(m^2_{13} + m^2_{23})}{m^2_P} \,,
\end{equation}
%
where $m_P$ is the invariant mass of the parent $P$.
Another possible description for non-symmetric DPs is based
on the polynomial function~\cite{Lees:2012kxa}
%
\begin{equation}
\label{eq:polynr}
R(m) = \left[m - \frac{1}{2}\left(m_P + \frac{1}{3}(m_1 + m_2 + m_3)\right)\right]^n \,,
\end{equation}
%
where $m_k$ is the invariant mass of daughter particle $k$ and $n$ is
the integer order equal to 0, 1 or 2; a quadratic dependence in $m$ can be constructed
by using up to three polynomial $R(m)$ terms, one for each order along with
their individual $c_j$ amplitude coefficients.
We next come to the model that implements the $\rho-\omega$ mass mixing amplitude
described in Ref.~\cite{Rensing:259802}
%
\begin{equation}
\label{eq:rhoomega}
A_{\rho-\omega} = A_{\rho} \left[ \frac{1 + A_{\omega} \Delta|B| e^{i \phi_{B}}}{1 - \Delta^2 A_{\rho} A_{\omega}} \right],
\end{equation}
%
where $A_{\rho}$ is the $\rho$ lineshape, $A_{\omega}$ is the $\omega$ lineshape, $|B|$ and
$\phi_{B}$ are the relative magnitude and phase of the production amplitudes of
$\rho$ and $\omega$, and $\Delta \equiv \delta(m_{\rho} + m_{\omega})$, where $\delta$ governs
the electromagnetic mixing of $\rho$ and $\omega$ (with pole masses $m_{\rho}$ and $m_{\omega}$).
Here, the amplitude $A_{\omega}$ is always given by the RBW form of Eq.~(\ref{eq:RelBWEqn}), while
the amplitude $A_{\rho}$ can either be represented using
the Gounaris--Sakurai formula given in Eq.~(\ref{eq:GS}) or the RBW form; the required shape is
selected using either the \texttt{RhoOmegaMix\_GS} or \texttt{RhoOmegaMix\_RBW} enumeration integer
labels given in Table~\ref{tab:resForms}.
When ignoring the small $\Delta^2$ term in the denominator of Eq.~(\ref{eq:rhoomega}),
this is equivalent to the parameterisation described in Ref.~\cite{Akhmetshin:2001ig}; this option can be
chosen using either the \texttt{RhoOmegaMix\_GS\_1} or \texttt{RhoOmegaMix\_RBW\_1} enumeration labels,
depending on what lineshape is needed for the $\rho$ resonance.
From SU(3) symmetry, the $\rho$ and $\omega$ are expected to be
produced coherently, which gives the prediction $|B|e^{i\phi_B} = 1$.
To avoid introducing any theoretical assumptions, however, it is advisable that these
parameters are left floating in the fit. In general $\delta$ is complex, although the
imaginary part is small so this is neglected. The theory prediction for
$\delta$ is around $2 \mev$~\cite{PhysRev.134.B671}, and previous analyses
have found $|\delta|$ to be $2.15 \pm 0.35 \mev$~\cite{Rensing:259802} and
$1.57 \pm 0.16 \mev$, and $\rm{arg}~\delta$ to be $0.22 \pm 0.06$~\cite{Akhmetshin:2001ig}.
These parameters can be also be floated in the fit.
If the dynamical structure of the DP cannot be described by any of the
forms given above, then the \texttt{LauModIndPartWave} class can be used to define
a model-independent partial wave component, using splines
to produce an amplitude. It requires a series of mass points called ```knots'', in
ascending order, which sets the magnitude $r(m)$ and phase $\phi(m)$ at each point $m$ that
can be floated when fitted to data:
%
\begin{equation}
\label{eq:mipw}
R(m) = r(m)\left[\cos \phi(m) + i\sin \phi(m) \right] \,.
\end{equation}
The amplitude for points between knots is found using cubic spline interpolation, and
is fixed to zero at the kinematic boundary. There are two implementations for representing
the amplitudes: one uses magnitudes and phases (\texttt{MIPW\_MagPhase}), while the other
uses real and imaginary parts (\texttt{MIPW\_RealImag}).
Finally, the incoherent Gaussian lineshape form is given by
%
\begin{equation}
\label{eq:incohgauss}
R(m) = e^{-(m - m_0)^2/2G^2_0} \,,
\end{equation}
%
where $m_0$ is the mass peak and $G_0$ is the width. This can be used
to parameterise the amplitude for a very narrow resonance, where the measurement
of the width is dominated by experimental resolution effects, producing a lineshape
that is indistinguishable from a Gaussian distribution. The narrow width ensures that
the resonance will not interfere significantly with other resonances in the DP,
\ie\ it will be incoherent. This form could also be used to
parameterise narrow background resonance contributions that would otherwise be
excluded with mass vetoes, such as the $\Dz$ meson decay to $\Km \pip$ in the charmless mode
$\Bm \ra \Km \pip \pim$, when used with the \texttt{addIncoherentResonance} function of
\texttt{LauIsobarDynamics}.

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 5:24 PM (1 d, 11 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805377
Default Alt Text
(20 KB)

Event Timeline