Page MenuHomeHEPForge

No OneTemporary

diff --git a/bin/make-plots b/bin/make-plots
--- a/bin/make-plots
+++ b/bin/make-plots
@@ -1,2601 +1,2607 @@
#! /usr/bin/env python
"""\
Usage: %prog [options] file.dat [file2.dat ...]
TODO
* Optimise output for e.g. lots of same-height bins in a row
* Add a RatioFullRange directive to show the full range of error bars + MC envelope in the ratio
* Tidy LaTeX-writing code -- faster to compile one doc only, then split it?
* Handle boolean values flexibly (yes, no, true, false, etc. as well as 1, 0)
"""
##
## This program is copyright by Hendrik Hoeth <hoeth@linta.de> and
## the Rivet team https://rivet.hepforge.org. It may be used
## for scientific and private purposes. Patches are welcome, but please don't
## redistribute changed versions yourself.
##
## Check the Python version
import sys
if sys.version_info[:3] < (2,6,0):
print "make-plots requires Python version >= 2.6.0... exiting"
sys.exit(1)
## Try to rename the process on Linux
try:
import ctypes
libc = ctypes.cdll.LoadLibrary('libc.so.6')
libc.prctl(15, 'make-plots', 0, 0, 0)
except Exception, e:
pass
import os, logging, re
import tempfile
import getopt
import string
from math import *
## Regex patterns
pat_begin_block = re.compile(r'^#+\s*BEGIN ([A-Z0-9_]+) ?(\S+)?')
pat_end_block = re.compile('^#+\s*END ([A-Z0-9_]+)')
pat_comment = re.compile('^#|^\s*$')
pat_property = re.compile('^(\w+?)=(.*)$')
pat_path_property = re.compile('^(\S+?)::(\w+?)=(.*)$')
def fuzzyeq(a, b, tolerance=1e-6):
"Fuzzy equality comparison function for floats, with given fractional tolerance"
# if type(a) is not float or type(a) is not float:
# print a, b
if (a == 0 and abs(b) < 1e-12) or (b == 0 and abs(a) < 1e-12):
return True
return 2.0*abs(a-b)/abs(a+b) < tolerance
def is_end_marker(line, blockname):
m = pat_end_block.match(line)
return m and m.group(1) == blockname
def is_comment(line):
return pat_comment.match(line) is not None
class Inputdata(object):
def __init__(self, filename):
self.filename=filename+".dat"
self.histos = {}
self.special = {}
self.functions = {}
self.description = {}
self.pathdescriptions = []
self.description['is2dim'] = False
f = open(filename+'.dat')
for line in f:
m = pat_begin_block.match(line)
if m:
name, path = m.group(1,2)
if path is None and name != 'PLOT':
raise Exception('BEGIN sections need a path name.')
## Pass the reading of the block to separate functions
if name == 'PLOT':
self.read_input(f);
elif name == 'SPECIAL':
self.special[path] = Special(f)
elif name == 'HISTOGRAM' or name == 'HISTOGRAM2D':
self.histos[path] = Histogram(f)
self.histos[path].path = path
self.description['is2dim'] = self.histos[path].is2dim
elif name == 'HISTO1D':
self.histos[path] = Histo1D(f)
elif name == 'HISTO2D':
self.histos[path] = Histo2D(f)
self.description['is2dim'] = True
elif name == 'FUNCTION':
self.functions[path] = Function(f)
# elif is_comment(line):
# continue
# else:
# self.read_path_based_input(line)
f.close()
self.apply_config_files(opts.CONFIGFILES)
self.description['PlotSizeX'] = 10.
if self.description['is2dim']:
self.description['PlotSizeX'] -= 1.5
self.description['PlotSizeY'] = 6.
if self.description.has_key('PlotSize') and self.description['PlotSize']!='':
plotsizex,plotsizey = self.description['PlotSize'].split(',')
self.description['PlotSizeX'] = float(plotsizex)
self.description['PlotSizeY'] = float(plotsizey)
del self.description['PlotSize']
self.description['RatioPlotSizeY'] = 0.
if self.description.has_key('MainPlot') and self.description['MainPlot']=='0':
self.description['RatioPlot'] = '1'
self.description['PlotSizeY'] = 0.
if self.description.has_key('RatioPlot') and self.description['RatioPlot']=='1':
if self.description.has_key('RatioPlotYSize') and self.description['RatioPlotYSize']!='':
self.description['RatioPlotSizeY'] = float(self.description['RatioPlotYSize'])
else:
if self.description.has_key('MainPlot') and self.description['MainPlot']=='0':
self.description['RatioPlotSizeY'] = 6.
else:
self.description['RatioPlotSizeY'] = 3.
self.description['LogX'] = self.description.has_key('LogX') and self.description['LogX']=='1'
self.description['LogY'] = self.description.has_key('LogY') and self.description['LogY']=='1'
self.description['LogZ'] = self.description.has_key('LogZ') and self.description['LogZ']=='1'
if self.description.has_key('Rebin'):
for i in self.histos:
self.histos[i].description['Rebin'] = self.description['Rebin']
histoordermap = {}
histolist = self.histos.keys()
if self.description.has_key('DrawOnly'):
histolist = filter(self.histos.keys().count, self.description['DrawOnly'].strip().split())
for histo in histolist:
order = 0
if self.histos[histo].description.has_key('PlotOrder'):
order = int(self.histos[histo].description['PlotOrder'])
if not order in histoordermap:
histoordermap[order] = []
histoordermap[order].append(histo)
sortedhistolist = []
for i in sorted(histoordermap.keys()):
sortedhistolist.extend(histoordermap[i])
self.description['DrawOnly']=sortedhistolist
# inherit various values from histograms if not explicitly
# set.
for k in ['LogX', 'LogY', 'LogZ',
'XLabel', 'YLabel', 'ZLabel',
'XCustomMajorTicks', 'YCustomMajorTicks',
'ZCustomMajorTicks']:
self.inherit_from_histos(k)
return
def inherit_from_histos(self, k):
# note: this will inherit the key from a random histogram:
# only use if you're sure all histograms have this key!
if not self.description.has_key(k):
h = list(self.histos.itervalues())[0]
if h.description.has_key(k):
self.description[k] = h.description[k]
return
def read_input(self, f):
for line in f:
if is_end_marker(line, 'PLOT'):
break
elif is_comment(line):
continue
m = pat_property.match(line)
if m:
prop, value = m.group(1,2)
if prop in self.description:
logging.debug("Overwriting property %s = %s -> %s" % (prop, self.description[prop], value))
## Use strip here to deal with DOS newlines containing \r
self.description[prop.strip()] = value.strip()
def apply_config_files(self, conffiles):
if conffiles is not None:
for filename in conffiles:
cf = open(filename,'r')
lines = cf.readlines()
for i in range(0, len(lines)):
## First evaluate PLOT sections
m = pat_begin_block.match(lines[i])
if m and m.group(1) == 'PLOT' and re.match(m.group(2),self.filename):
while i<len(lines)-1:
i = i+1
if is_end_marker(lines[i], 'PLOT'):
break
elif is_comment(lines[i]):
continue
m = pat_property.match(lines[i])
if m:
prop, value = m.group(1,2)
if prop in self.description:
logging.debug("Overwriting from conffile property %s = %s -> %s" % (prop, self.description[prop], value))
## Use strip here to deal with DOS newlines containing \r
self.description[prop.strip()] = value.strip()
elif is_comment(lines[i]):
continue
else:
## Then evaluate path-based settings, e.g. for HISTOGRAMs
m = pat_path_property.match(lines[i])
if m:
regex, prop, value=m.group(1,2,3)
for obj_dict in [self.special, self.histos, self.functions]:
for path, obj in obj_dict.iteritems():
if re.match(regex, path):
## Use strip here to deal with DOS newlines containing \r
obj.description.update({prop.strip() : value.strip()})
cf.close()
class Plot(object):
def __init__(self,inputdata):
pass
def set_normalization(self,inputdata):
for method in ['NormalizeToIntegral', 'NormalizeToSum']:
if inputdata.description.has_key(method):
for i in inputdata.description['DrawOnly']:
if not inputdata.histos[i].description.has_key(method):
inputdata.histos[i].description[method] = inputdata.description[method]
if inputdata.description.has_key('Scale'):
for i in inputdata.description['DrawOnly']:
inputdata.histos[i].description['Scale'] = float(inputdata.description['Scale'])
for i in inputdata.description['DrawOnly']:
inputdata.histos[i].mangle_input()
def stack_histograms(self,inputdata):
if inputdata.description.has_key('Stack'):
foo=[]
for i in inputdata.description['Stack'].strip().split():
if i in inputdata.histos.keys():
foo.append(i)
previous=''
for i in foo:
if previous!='':
inputdata.histos[i].add(inputdata.histos[previous])
previous=i
def set_histo_options(self,inputdata):
if inputdata.description.has_key('ConnectGaps'):
for i in inputdata.histos.keys():
if not inputdata.histos[i].description.has_key('ConnectGaps'):
inputdata.histos[i].description['ConnectGaps']=inputdata.description['ConnectGaps']
def set_borders(self,inputdata):
self.set_xmax(inputdata)
self.set_xmin(inputdata)
self.set_ymax(inputdata)
self.set_ymin(inputdata)
self.set_zmax(inputdata)
self.set_zmin(inputdata)
inputdata.description['Borders']=(self.xmin, self.xmax, self.ymin, self.ymax, self.zmin, self.zmax)
def set_xmin(self,inputdata):
if inputdata.description.has_key('XMin'):
self.xmin = float(inputdata.description['XMin'])
else:
self.xmin = min(inputdata.histos[i].getXMin() for i in inputdata.description['DrawOnly'])
def set_xmax(self,inputdata):
#print inputdata.description
if inputdata.description.has_key('XMax'):
self.xmax = float(inputdata.description['XMax'])
else:
#print inputdata.description['DrawOnly']
self.xmax = max(inputdata.histos[i].getXMax() for i in inputdata.description['DrawOnly'])
def set_ymin(self,inputdata):
if inputdata.description.has_key('YMin'):
self.ymin = float(inputdata.description['YMin'])
else:
foo=[]
for i in inputdata.description['DrawOnly']:
foo.append(inputdata.histos[i].getYMin(self.xmin, self.xmax, inputdata.description['LogY']))
if inputdata.description['is2dim']:
self.ymin=min(foo)
else:
showzero = True
if inputdata.description.has_key('ShowZero'):
if inputdata.description['ShowZero']=='0':
showzero = False
if showzero:
if min(foo) > -1e-4:
self.ymin = 0
else:
self.ymin = 1.1*min(foo)
else:
if min(foo) < -1e-4:
self.ymin = 1.1*min(foo)
elif min(foo) < 1e-4:
self.ymin = 0
else:
self.ymin = 0.9*min(foo)
if inputdata.description['LogY']:
foo=[item for item in foo if item>0.0]
if len(foo)==0:
if self.ymax==0:
self.ymax=1
foo.append(2e-7*self.ymax)
fullrange = opts.FULL_RANGE
if inputdata.description.has_key('FullRange'):
if inputdata.description['FullRange']=='1':
fullrange = True
else:
fullrange = False
if fullrange:
self.ymin = min(foo)/1.7
else:
self.ymin = max(min(foo)/1.7, 2e-7*self.ymax)
if self.ymin==self.ymax:
self.ymin-=1
self.ymax+=1
def set_ymax(self,inputdata):
if inputdata.description.has_key('YMax'):
self.ymax = float(inputdata.description['YMax'])
else:
foo=[]
for i in inputdata.description['DrawOnly']:
foo.append(inputdata.histos[i].getYMax(self.xmin, self.xmax))
if inputdata.description['is2dim']:
self.ymax=max(foo)
else:
if inputdata.description['LogY']:
self.ymax=1.7*max(foo)
else:
self.ymax=1.1*max(foo)
def set_zmin(self,inputdata):
if inputdata.description.has_key('ZMin'):
self.zmin = float(inputdata.description['ZMin'])
else:
foo=[]
for i in inputdata.description['DrawOnly']:
foo.append(inputdata.histos[i].getZMin(self.xmin, self.xmax, self.ymin, self.ymax))
if not foo:
self.zmin = min(foo)
else:
showzero = True
if inputdata.description.has_key('ShowZero'):
if inputdata.description['ShowZero']=='0':
showzero = False
if showzero:
if min(foo) > -1e-4:
self.zmin = 0
else:
self.zmin = 1.1*min(foo)
else:
if min(foo) < -1e-4:
self.zmin = 1.1*min(foo)
elif min(foo) < 1e-4:
self.zmin = 0
else:
self.zmin = 0.9*min(foo)
if inputdata.description['LogZ']:
foo=[item for item in foo if item>0.0]
if len(foo)==0:
if self.zmax==0:
self.zmax=1
foo.append(2e-7*self.zmax)
fullrange = opts.FULL_RANGE
if inputdata.description.has_key('FullRange'):
if inputdata.description['FullRange']=='1':
fullrange = True
else:
fullrange = False
if fullrange:
self.zmin = min(foo)/1.7
else:
self.zmin = max(min(foo)/1.7, 2e-7*self.zmax)
if self.zmin==self.zmax:
self.zmin-=1
self.zmax+=1
def set_zmax(self,inputdata):
if inputdata.description.has_key('ZMax'):
self.zmax = float(inputdata.description['ZMax'])
else:
foo=[]
for i in inputdata.description['DrawOnly']:
foo.append(inputdata.histos[i].getZMax(self.xmin, self.xmax, self.ymin, self.ymax))
if foo:
self.zmax = max(foo)
else:
self.zmax = 1
def draw(self):
pass
def write_header(self,inputdata):
if inputdata.description.has_key('LeftMargin') and inputdata.description['LeftMargin']!='':
inputdata.description['LeftMargin'] = float(inputdata.description['LeftMargin'])
else:
inputdata.description['LeftMargin'] = 1.4
if inputdata.description.has_key('RightMargin') and inputdata.description['RightMargin']!='':
inputdata.description['RightMargin'] = float(inputdata.description['RightMargin'])
else:
inputdata.description['RightMargin'] = 0.35
if inputdata.description.has_key('TopMargin') and inputdata.description['TopMargin']!='':
inputdata.description['TopMargin'] = float(inputdata.description['TopMargin'])
else:
inputdata.description['TopMargin'] = 0.65
if inputdata.description.has_key('BottomMargin') and inputdata.description['BottomMargin']!='':
inputdata.description['BottomMargin'] = float(inputdata.description['BottomMargin'])
else:
inputdata.description['BottomMargin'] = 0.95
if inputdata.description['is2dim']:
inputdata.description['RightMargin'] += 1.5
papersizex = inputdata.description['PlotSizeX'] + 0.1 + \
inputdata.description['LeftMargin'] + inputdata.description['RightMargin']
papersizey = inputdata.description['PlotSizeY'] + inputdata.description['RatioPlotSizeY'] + 0.1 + \
inputdata.description['TopMargin'] + inputdata.description['BottomMargin']
#
out = ""
out += '\\documentclass{article}\n'
if opts.OUTPUT_FONT == "MINION":
out += ('\\usepackage{minion}\n')
elif opts.OUTPUT_FONT == "PALATINO_OSF":
out += ('\\usepackage[osf,sc]{mathpazo}\n')
elif opts.OUTPUT_FONT == "PALATINO":
out += ('\\usepackage{mathpazo}\n')
elif opts.OUTPUT_FONT == "TIMES":
out += ('\\usepackage{mathptmx}\n')
elif opts.OUTPUT_FONT == "HELVETICA":
out += ('\\renewcommand{\\familydefault}{\\sfdefault}\n')
out += ('\\usepackage{sfmath}\n')
out += ('\\usepackage{helvet}\n')
out += ('\\usepackage[symbolgreek]{mathastext}\n')
for pkg in opts.LATEXPKGS:
out += ('\\usepackage{%s}\n' % pkg)
out += ('\\usepackage{pst-all}\n')
out += ('\\selectcolormodel{rgb}\n')
out += ('\\usepackage{amsmath}\n')
out += ('\\usepackage{amssymb}\n')
out += ('\\usepackage{relsize}\n')
out += ('\\usepackage[dvips,\n')
out += (' left=%4.3fcm, right=0cm,\n' %(inputdata.description['LeftMargin']-0.45,))
out += (' top=%4.3fcm, bottom=0cm,\n' %(inputdata.description['TopMargin']-0.30,))
out += (' paperwidth=%scm,paperheight=%scm\n' %(papersizex,papersizey))
out += (']{geometry}\n')
out += ('\\begin{document}\n')
out += ('\\pagestyle{empty}\n')
out += ('\\SpecialCoor\n')
out += ('\\begin{pspicture}(0,0)(0,0)\n')
out += ('\\psset{xunit=%scm}\n' %(inputdata.description['PlotSizeX']))
if inputdata.description['is2dim']:
if inputdata.description.has_key('ColorSeries') and inputdata.description['ColorSeries']!='':
colorseries = inputdata.description['ColorSeries']
else:
colorseries = '{hsb}{grad}[rgb]{0,0,1}{-.700,0,0}'
out += ('\\definecolorseries{gradientcolors}%s\n' %colorseries)
out += ('\\resetcolorseries[130]{gradientcolors}\n')
return out
def write_footer(self):
out = ""
out += ('\\end{pspicture}\n')
out += ('\\end{document}\n')
return out
class MainPlot(Plot):
def __init__(self, inputdata):
self.set_normalization(inputdata)
self.stack_histograms(inputdata)
if (inputdata.description.has_key('GofLegend') and inputdata.description['GofLegend']=='1') or \
(inputdata.description.has_key('GofFrame') and inputdata.description['GofFrame']!='') and not \
(inputdata.description.has_key('TaylorPlot') and inputdata.description['TaylorPlot']=='1'):
self.calculate_gof(inputdata)
self.set_histo_options(inputdata)
self.set_borders(inputdata)
self.yoffset = inputdata.description['PlotSizeY']
self.coors = Coordinates(inputdata)
def draw(self, inputdata):
out = ""
out += ('\n%\n% MainPlot\n%\n')
out += ('\\psset{yunit=%scm}\n' %(self.yoffset))
out += ('\\rput(0,-1){%\n')
out += ('\\psset{yunit=%scm}\n' %(inputdata.description['PlotSizeY']))
out += self._draw(inputdata)
out += ('}\n')
return out
def _draw(self, inputdata):
out = ""
if inputdata.description.has_key('DrawSpecialFirst') and inputdata.description['DrawSpecialFirst']=='1':
for i in inputdata.special.keys():
out += inputdata.special[i].draw(self.coors)
if inputdata.description.has_key('DrawFunctionFirst') and inputdata.description['DrawFunctionFirst']=='1':
for i in inputdata.functions.keys():
out += inputdata.functions[i].draw(self.coors)
for i in inputdata.description['DrawOnly']:
out += inputdata.histos[i].draw(self.coors)
else:
for i in inputdata.description['DrawOnly']:
out += inputdata.histos[i].draw(self.coors)
for i in inputdata.functions.keys():
out += inputdata.functions[i].draw(self.coors)
else:
if inputdata.description.has_key('DrawFunctionFirst') and inputdata.description['DrawFunctionFirst']=='1':
for i in inputdata.functions.keys():
out += inputdata.functions[i].draw(self.coors)
for i in inputdata.description['DrawOnly']:
out += inputdata.histos[i].draw(self.coors)
else:
for i in inputdata.description['DrawOnly']:
out += inputdata.histos[i].draw(self.coors)
for i in inputdata.functions.keys():
out += inputdata.functions[i].draw(self.coors)
for i in inputdata.special.keys():
out += inputdata.special[i].draw(self.coors)
if inputdata.description.has_key('Legend') and inputdata.description['Legend']=='1':
legend = Legend(inputdata.description,inputdata.histos,inputdata.functions)
out += legend.draw()
if inputdata.description['is2dim']:
colorscale = Colorscale(inputdata.description,self.coors)
out += colorscale.draw()
frame = Frame()
out += frame.draw(inputdata)
if inputdata.description.has_key('XMajorTickMarks') and inputdata.description['XMajorTickMarks']!='':
xcustommajortickmarks=int(inputdata.description['XMajorTickMarks'])
else:
xcustommajortickmarks=-1
if inputdata.description.has_key('XMinorTickMarks') and inputdata.description['XMinorTickMarks']!='':
xcustomminortickmarks=int(inputdata.description['XMinorTickMarks'])
else:
xcustomminortickmarks=-1
xcustommajorticks=[]
xcustomminorticks=[]
# # TODO: remove XCustomTicks after 2011-12-31:
# if inputdata.description.has_key('XCustomTicks') and inputdata.description['XCustomTicks']!='':
# logging.warning('Warning: XCustomTicks is deprecated. Use XCustomMajorTicks instead.')
# inputdata.description['XCustomMajorTicks']=inputdata.description['XCustomTicks']
if inputdata.description.has_key('XCustomMajorTicks') and inputdata.description['XCustomMajorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['XCustomMajorTicks'].strip().split('\t')
if not len(FOO) % 2:
for i in range(0,len(FOO),2):
xcustommajorticks.append({'Value': float(FOO[i]), 'Label': FOO[i+1]})
if inputdata.description.has_key('XCustomMinorTicks') and inputdata.description['XCustomMinorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['XCustomMinorTicks'].strip().split('\t')
for i in range(len(FOO)):
xcustomminorticks.append({'Value': float(FOO[i])})
xticks = XTicks(inputdata.description, self.coors)
- if (inputdata.description.has_key('RatioPlot') and inputdata.description['RatioPlot']=='1') or (inputdata.description.has_key('PlotTickLabels') and inputdata.description['PlotTickLabels']=='0'):
- drawlabels=False
+ if (inputdata.description.has_key('RatioPlot') and inputdata.description['RatioPlot']=='1') or (inputdata.description.has_key('PlotXTickLabels') and inputdata.description['PlotXTickLabels']=='0'):
+ drawxlabels=False
else:
- drawlabels=True
+ drawxlabels=True
out += xticks.draw(custommajortickmarks=xcustommajortickmarks,\
customminortickmarks=xcustomminortickmarks,\
custommajorticks=xcustommajorticks,\
customminorticks=xcustomminorticks,\
- drawlabels=drawlabels)
+ drawlabels=drawxlabels)
if inputdata.description.has_key('YMajorTickMarks') and inputdata.description['YMajorTickMarks']!='':
ycustommajortickmarks=int(inputdata.description['YMajorTickMarks'])
else:
ycustommajortickmarks=-1
if inputdata.description.has_key('YMinorTickMarks') and inputdata.description['YMinorTickMarks']!='':
ycustomminortickmarks=int(inputdata.description['YMinorTickMarks'])
else:
ycustomminortickmarks=-1
ycustommajorticks=[]
ycustomminorticks=[]
# # TODO: remove YCustomTicks after 2011-12-31:
# if inputdata.description.has_key('YCustomTicks') and inputdata.description['YCustomTicks']!='':
# logging.warning('Warning: YCustomTicks is deprecated. Use YCustomMajorTicks instead.')
# inputdata.description['YCustomMajorTicks']=inputdata.description['YCustomTicks']
if inputdata.description.has_key('YCustomMajorTicks') and inputdata.description['YCustomMajorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['YCustomMajorTicks'].strip().split('\t')
if not len(FOO)%2:
for i in range(0,len(FOO),2):
ycustommajorticks.append({'Value': float(FOO[i]), 'Label': FOO[i+1]})
if inputdata.description.has_key('YCustomMinorTicks') and inputdata.description['YCustomMinorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['YCustomMinorTicks'].strip().split('\t')
for i in range(len(FOO)):
ycustomminorticks.append({'Value': float(FOO[i])})
yticks = YTicks(inputdata.description, self.coors)
+ if (inputdata.description.has_key('PlotYTickLabels') and inputdata.description['PlotYTickLabels']=='0'):
+ drawylabels=False
+ else:
+ drawylabels=True
out += yticks.draw(custommajortickmarks=ycustommajortickmarks,\
customminortickmarks=ycustomminortickmarks,\
custommajorticks=ycustommajorticks,\
- customminorticks=ycustomminorticks)
+ customminorticks=ycustomminorticks,
+ drawlabels=drawylabels)
labels = Labels(inputdata.description)
if inputdata.description.has_key('RatioPlot') and inputdata.description['RatioPlot']=='1':
out += labels.draw(['Title','YLabel'])
else:
if not inputdata.description['is2dim']:
out += labels.draw(['Title','XLabel','YLabel'])
else:
out += labels.draw(['Title','XLabel','YLabel','ZLabel'])
return out
def calculate_gof(self, inputdata):
refdata = inputdata.description.get('GofReference')
if refdata is None:
refdata = inputdata.description.get('RatioPlotReference')
if refdata is None:
inputdata.description['GofLegend'] = '0'
inputdata.description['GofFrame'] = ''
return
def pickcolor(gof):
color=None
colordefs = {}
for i in inputdata.description.setdefault('GofFrameColor', '0:green 3:yellow 6:red!70').strip().split():
foo = i.split(':')
if len(foo)!=2: continue
colordefs[float(foo[0])] = foo[1]
for i in sorted(colordefs.keys()):
if gof>=i:
color=colordefs[i]
return color
inputdata.description.setdefault('GofLegend','0')
inputdata.description.setdefault('GofFrame','')
inputdata.description.setdefault('FrameColor',None)
for i in inputdata.description['DrawOnly']:
if i==refdata: continue
if inputdata.description['GofLegend']!='1' and i!=inputdata.description['GofFrame']: continue
if inputdata.description.has_key('GofType') and inputdata.description['GofType']!='chi2':
return
gof = inputdata.histos[i].getChi2(inputdata.histos[refdata])
if i==inputdata.description['GofFrame'] and inputdata.description['FrameColor']==None:
inputdata.description['FrameColor']=pickcolor(gof)
if inputdata.histos[i].description.setdefault('Title', '')!='':
inputdata.histos[i].description['Title'] += ', '
inputdata.histos[i].description['Title'] += '$\\chi^2/n={}$%1.2f' %gof
class TaylorPlot(Plot):
def __init__(self, inputdata):
self.refdata = inputdata.description['TaylorPlotReference']
self.calculate_taylorcoordinates(inputdata)
def calculate_taylorcoordinates(self,inputdata):
foo=inputdata.description['DrawOnly'].pop(inputdata.description['DrawOnly'].index(self.refdata))
inputdata.description['DrawOnly'].append(foo)
for i in inputdata.description['DrawOnly']:
print i
print 'meanbinval = ', inputdata.histos[i].getMeanBinValue()
print 'sigmabinval = ', inputdata.histos[i].getSigmaBinValue()
print 'chi2/nbins = ', inputdata.histos[i].getChi2(inputdata.histos[self.refdata])
print 'correlation = ', inputdata.histos[i].getCorrelation(inputdata.histos[self.refdata])
print 'distance = ', inputdata.histos[i].getRMSdistance(inputdata.histos[self.refdata])
class RatioPlot(Plot):
def __init__(self, inputdata):
self.refdata = inputdata.description['RatioPlotReference']
self.yoffset = inputdata.description['PlotSizeY'] + inputdata.description['RatioPlotSizeY']
inputdata.description['RatioPlotStage'] = True
inputdata.description['PlotSizeY'] = inputdata.description['RatioPlotSizeY']
inputdata.description['LogY'] = False
if inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='deviation':
inputdata.description['YLabel']='$(\\text{MC}-\\text{data})$'
inputdata.description['YMin']=-3.5
inputdata.description['YMax']=3.5
elif inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='datamc':
inputdata.description['YLabel']='Data/MC'
inputdata.description['YMin']=0.5
inputdata.description['YMax']=1.5
else:
inputdata.description['YLabel']='MC/Data'
inputdata.description['YMin']=0.5
inputdata.description['YMax']=1.5
if inputdata.description.has_key('RatioPlotYLabel'):
inputdata.description['YLabel']=inputdata.description['RatioPlotYLabel']
inputdata.description['YLabel']='\\rput(-%s,0){%s}'%(0.5*inputdata.description['PlotSizeY']/inputdata.description['PlotSizeX'],inputdata.description['YLabel'])
if inputdata.description.has_key('RatioPlotYMin'):
inputdata.description['YMin']=inputdata.description['RatioPlotYMin']
if inputdata.description.has_key('RatioPlotYMax'):
inputdata.description['YMax']=inputdata.description['RatioPlotYMax']
if not inputdata.description.has_key('RatioPlotErrorBandColor'):
inputdata.description['RatioPlotErrorBandColor']='yellow'
if not inputdata.description.has_key('RatioPlotSameStyle') or inputdata.description['RatioPlotSameStyle']=='0':
inputdata.histos[self.refdata].description['ErrorBandColor']=inputdata.description['RatioPlotErrorBandColor']
inputdata.histos[self.refdata].description['ErrorBands']='1'
inputdata.histos[self.refdata].description['ErrorBars']='0'
inputdata.histos[self.refdata].description['LineStyle']='solid'
inputdata.histos[self.refdata].description['LineColor']='black'
inputdata.histos[self.refdata].description['LineWidth']='0.3pt'
inputdata.histos[self.refdata].description['PolyMarker']=''
inputdata.histos[self.refdata].description['ConnectGaps']='1'
self.calculate_ratios(inputdata)
self.set_borders(inputdata)
self.coors = Coordinates(inputdata)
def draw(self, inputdata):
out = ""
out += ('\n%\n% RatioPlot\n%\n')
out += ('\\psset{yunit=%scm}\n' %(self.yoffset))
out += ('\\rput(0,-1){%\n')
out += ('\\psset{yunit=%scm}\n' %(inputdata.description['PlotSizeY']))
out += self._draw(inputdata)
out += ('}\n')
return out
def calculate_ratios(self,inputdata):
foo=inputdata.description['DrawOnly'].pop(inputdata.description['DrawOnly'].index(self.refdata))
if inputdata.histos[self.refdata].description.has_key('ErrorBands') and inputdata.histos[self.refdata].description['ErrorBands']=='1':
inputdata.description['DrawOnly'].insert(0,foo)
else:
inputdata.description['DrawOnly'].append(foo)
for i in inputdata.description['DrawOnly']:
if i!=self.refdata:
if inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='deviation':
inputdata.histos[i].deviation(inputdata.histos[self.refdata])
elif inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='datamc':
inputdata.histos[i].dividereverse(inputdata.histos[self.refdata])
inputdata.histos[i].description['ErrorBars']='1'
else:
inputdata.histos[i].divide(inputdata.histos[self.refdata])
if inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='deviation':
inputdata.histos[self.refdata].deviation(inputdata.histos[self.refdata])
elif inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='datamc':
inputdata.histos[self.refdata].dividereverse(inputdata.histos[self.refdata])
else:
inputdata.histos[self.refdata].divide(inputdata.histos[self.refdata])
def _draw(self, inputdata):
out = ""
for i in inputdata.description['DrawOnly']:
if inputdata.description.has_key('RatioPlotMode') and inputdata.description['RatioPlotMode']=='datamc':
if i!=self.refdata:
out += inputdata.histos[i].draw(self.coors)
else:
out += inputdata.histos[i].draw(self.coors)
frame = Frame()
out += frame.draw(inputdata)
# TODO: so much duplication with MainPlot... yuck!
if inputdata.description.has_key('XMajorTickMarks') and inputdata.description['XMajorTickMarks']!='':
xcustommajortickmarks=int(inputdata.description['XMajorTickMarks'])
else:
xcustommajortickmarks=-1
if inputdata.description.has_key('XMinorTickMarks') and inputdata.description['XMinorTickMarks']!='':
xcustomminortickmarks=int(inputdata.description['XMinorTickMarks'])
else:
xcustomminortickmarks=-1
xcustommajorticks=[]
xcustomminorticks=[]
# # TODO: remove XCustomTicks after 2011-12-31:
# if inputdata.description.has_key('XCustomTicks') and inputdata.description['XCustomTicks']!='':
# logging.warning('Warning: XCustomTicks is deprecated. Use XCustomMajorTicks instead.')
# inputdata.description['XCustomMajorTicks']=inputdata.description['XCustomTicks']
if inputdata.description.has_key('XCustomMajorTicks') and inputdata.description['XCustomMajorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['XCustomMajorTicks'].strip().split('\t')
if not len(FOO)%2:
for i in range(0,len(FOO),2):
xcustommajorticks.append({'Value': float(FOO[i]), 'Label': FOO[i+1]})
if inputdata.description.has_key('XCustomMinorTicks') and inputdata.description['XCustomMinorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['XCustomMinorTicks'].strip().split('\t')
for i in range(len(FOO)):
xcustomminorticks.append({'Value': float(FOO[i])})
xticks = XTicks(inputdata.description, self.coors)
if inputdata.description.has_key('RatioPlotTickLabels') and inputdata.description['RatioPlotTickLabels']=='0':
drawlabels=False
else:
drawlabels=True
out += xticks.draw(custommajortickmarks=xcustommajortickmarks,\
customminortickmarks=xcustomminortickmarks,\
custommajorticks=xcustommajorticks,\
customminorticks=xcustomminorticks,
drawlabels=drawlabels)
if inputdata.description.has_key('YMajorTickMarks') and inputdata.description['YMajorTickMarks']!='':
ycustommajortickmarks=int(inputdata.description['YMajorTickMarks'])
else:
ycustommajortickmarks=-1
if inputdata.description.has_key('YMinorTickMarks') and inputdata.description['YMinorTickMarks']!='':
ycustomminortickmarks=int(inputdata.description['YMinorTickMarks'])
else:
ycustomminortickmarks=-1
ycustommajorticks=[]
ycustomminorticks=[]
# # TODO: remove YCustomTicks after 2011-12-31:
# if inputdata.description.has_key('YCustomTicks') and inputdata.description['YCustomTicks']!='':
# logging.warning('Warning: YCustomTicks is deprecated. Use YCustomMajorTicks instead.')
# inputdata.description['YCustomMajorTicks']=inputdata.description['YCustomTicks']
if inputdata.description.has_key('YCustomMajorTicks') and inputdata.description['YCustomMajorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['YCustomMajorTicks'].strip().split('\t')
if not len(FOO)%2:
for i in range(0,len(FOO),2):
ycustommajorticks.append({'Value': float(FOO[i]), 'Label': FOO[i+1]})
if inputdata.description.has_key('YCustomMinorTicks') and inputdata.description['YCustomMinorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=inputdata.description['YCustomMinorTicks'].strip().split('\t')
for i in range(len(FOO)):
ycustomminorticks.append({'Value': float(FOO[i])})
yticks = YTicks(inputdata.description, self.coors)
out += yticks.draw(custommajortickmarks=ycustommajortickmarks,\
customminortickmarks=ycustomminortickmarks,\
custommajorticks=ycustommajorticks,\
customminorticks=ycustomminorticks)
if inputdata.description.has_key('MainPlot') and inputdata.description['MainPlot']=='0':
if inputdata.description.has_key('Legend') and inputdata.description['Legend']=='1':
legend = Legend(inputdata.description,inputdata.histos,inputdata.functions)
out += legend.draw()
labels = Labels(inputdata.description)
if inputdata.description.has_key('MainPlot') and inputdata.description['MainPlot']=='0':
out += labels.draw(['Title','XLabel','YLabel'])
else:
out += labels.draw(['XLabel','YLabel'])
return out
class Legend(object):
def __init__(self, description, histos, functions):
self.histos = histos
self.functions = functions
self.description = description
def draw(self):
out = ""
out += '\n%\n% Legend\n%\n'
out += '\\rput[tr](%s,%s){%%\n' % (self.getLegendXPos(), self.getLegendYPos())
ypos = -0.05*6/self.description['PlotSizeY']
legendordermap = {}
legendlist = self.description['DrawOnly']+self.functions.keys()
if self.description.has_key('LegendOnly'):
legendlist = []
for legend in self.description['LegendOnly'].strip().split():
if legend in self.histos.keys() or legend in self.functions.keys():
legendlist.append(legend)
for legend in legendlist:
order = 0
if self.histos.has_key(legend) and self.histos[legend].description.has_key('LegendOrder'):
order = int(self.histos[legend].description['LegendOrder'])
if self.functions.has_key(legend) and self.functions[legend].description.has_key('LegendOrder'):
order = int(self.functions[legend].description['LegendOrder'])
if not order in legendordermap:
legendordermap[order] = []
legendordermap[order].append(legend)
foo=[]
for i in sorted(legendordermap.keys()):
foo.extend(legendordermap[i])
rel_xpos_sign = 1.0
if self.getLegendAlign()=='r':
rel_xpos_sign = -1.0
xpos1 = -0.10*rel_xpos_sign
xpos2 = -0.02*rel_xpos_sign
for i in foo:
if self.histos.has_key(i):
drawobject=self.histos[i]
elif self.functions.has_key(i):
drawobject=self.functions[i]
else:
continue
title = drawobject.getTitle()
if title == '':
continue
else:
out += ('\\rput[B%s](%s,%s){%s}\n' %(self.getLegendAlign(),rel_xpos_sign*0.1,ypos,title))
out += ('\\rput[B%s](%s,%s){%s\n' %(self.getLegendAlign(),rel_xpos_sign*0.1,ypos,'%'))
if drawobject.getErrorBands():
out += ('\\psframe[linewidth=0pt,linestyle=none,fillstyle=solid,fillcolor=%s,opacity=%s]' %(drawobject.getErrorBandColor(),drawobject.getErrorBandOpacity()))
out += ('(%s, 0.033)(%s, 0.001)\n' %(xpos1, xpos2))
out += ('\\psline[linestyle=' + drawobject.getLineStyle() \
+ ', linecolor=' + drawobject.getLineColor() \
+ ', linewidth=' + drawobject.getLineWidth() \
+ ', strokeopacity=' + drawobject.getLineOpacity() \
+ ', opacity=' + drawobject.getFillOpacity())
if drawobject.getLineDash()!='':
out += (', dash=' + drawobject.getLineDash())
if drawobject.getFillStyle()!='none':
out += (', fillstyle=' + drawobject.getFillStyle() \
+ ', fillcolor=' + drawobject.getFillColor() \
+ ', hatchcolor=' + drawobject.getHatchColor() \
+ ']{C-C}(%s, 0.030)(%s, 0.030)(%s, 0.004)(%s, 0.004)(%s, 0.030)\n' \
%(xpos1, xpos2, xpos2, xpos1, xpos1))
else:
out += ('](%s, 0.016)(%s, 0.016)\n' %(xpos1, xpos2))
if drawobject.getPolyMarker() != '':
out += (' \\psdot[dotstyle=' + drawobject.getPolyMarker() \
+ ', dotsize=' + drawobject.getDotSize() \
+ ', dotscale=' + drawobject.getDotScale() \
+ ', linecolor=' + drawobject.getLineColor() \
+ ', linewidth=' + drawobject.getLineWidth() \
+ ', linestyle=' + drawobject.getLineStyle() \
+ ', fillstyle=' + drawobject.getFillStyle() \
+ ', fillcolor=' + drawobject.getFillColor() \
+ ', strokeopacity=' + drawobject.getLineOpacity() \
+ ', opacity=' + drawobject.getFillOpacity() \
+ ', hatchcolor=' + drawobject.getHatchColor())
if drawobject.getFillStyle()!='none':
out += ('](%s, 0.028)\n' % (rel_xpos_sign*-0.06))
else:
out += ('](%s, 0.016)\n' % (rel_xpos_sign*-0.06))
out += ('}\n')
ypos -= 0.075*6/self.description['PlotSizeY']
if self.description.has_key('CustomLegend'):
for i in self.description['CustomLegend'].strip().split('\\\\'):
out += ('\\rput[B%s](%s,%s){%s}\n' %(self.getLegendAlign(),rel_xpos_sign*0.1,ypos,i))
ypos -= 0.075*6/self.description['PlotSizeY']
out += ('}\n')
return out
def getLegendXPos(self):
if self.description.has_key('LegendXPos'):
return self.description['LegendXPos']
else:
if self.getLegendAlign()=='r':
return '0.95'
else:
return '0.53'
def getLegendYPos(self):
if self.description.has_key('LegendYPos'):
return self.description['LegendYPos']
else:
return '0.93'
def getLegendAlign(self):
if self.description.has_key('LegendAlign'):
return self.description['LegendAlign']
else:
return 'l'
class Colorscale(object):
def __init__(self, description, coors):
self.description = description
self.coors = coors
def draw(self):
out = ''
out += '\n%\n% Colorscale\n%\n'
out += '\\rput(1,0){\n'
out += ' \\psset{xunit=4mm}\n'
out += ' \\rput(0.5,0){\n'
out += ' \\psset{yunit=0.0076923, linestyle=none, fillstyle=solid}\n'
out += ' \\multido{\\ic=0+1,\\id=1+1}{130}{\n'
out += ' \\psframe[fillcolor={gradientcolors!![\\ic]},dimen=inner,linewidth=0.1pt](0, \\ic)(1, \\id)\n'
out += ' }\n'
out += ' }\n'
out += ' \\rput(0.5,0){\n'
out += ' \\psframe[linewidth=0.3pt,dimen=middle](0,0)(1,1)\n'
# TODO: so much parsing duplication with MainPlot... yuck!
if self.description.has_key('ZMajorTickMarks') and self.description['ZMajorTickMarks']!='':
zcustommajortickmarks=int(self.description['ZMajorTickMarks'])
else:
zcustommajortickmarks=-1
if self.description.has_key('ZMinorTickMarks') and self.description['ZMinorTickMarks']!='':
zcustomminortickmarks=int(self.description['ZMinorTickMarks'])
else:
zcustomminortickmarks=-1
zcustommajorticks=[]
zcustomminorticks=[]
# # TODO: remove ZCustomTicks after 2011-12-31:
# if self.description.has_key('ZCustomTicks') and self.description['ZCustomTicks']!='':
# logging.warning('Warning: ZCustomTicks is deprecated. Use ZCustomMajorTicks instead.')
# self.description['ZCustomMajorTicks']=self.description['ZCustomTicks']
if self.description.has_key('ZCustomMajorTicks') and self.description['ZCustomMajorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=self.description['ZCustomMajorTicks'].strip().split('\t')
if not len(FOO)%2:
for i in range(0,len(FOO),2):
zcustommajorticks.append({'Value': float(FOO[i]), 'Label': FOO[i+1]})
if self.description.has_key('ZCustomMinorTicks') and self.description['ZCustomMinorTicks']!='':
# TODO: Would be nice to have less invisible separation of the custom ticks than split on tabs
FOO=self.description['ZCustomMinorTicks'].strip().split('\t')
for i in range(len(FOO)):
zcustomminorticks.append({'Value': float(FOO[i])})
zticks = ZTicks(self.description, self.coors)
out += zticks.draw(custommajortickmarks=zcustommajortickmarks,\
customminortickmarks=zcustomminortickmarks,\
custommajorticks=zcustommajorticks,\
customminorticks=zcustomminorticks)
out += ' }\n'
out += '}\n'
return out
class Labels(object):
def __init__(self, description):
self.description = description
def draw(self, axis=[]):
out = ""
out += ('\n%\n% Labels\n%\n')
if self.description.has_key('Title') and (axis.count('Title') or axis==[]):
out += ('\\rput(0,1){\\rput[lB](0, 1.7\\labelsep){\\normalsize '+self.description['Title']+'}}\n')
if self.description.has_key('XLabel') and (axis.count('XLabel') or axis==[]):
xlabelsep=4.7
if self.description.has_key('XLabelSep'):
xlabelsep=float(self.description['XLabelSep'])
out += ('\\rput(1,0){\\rput[rB](0,-%4.3f\\labelsep){\\normalsize '%(xlabelsep) +self.description['XLabel']+'}}\n')
if self.description.has_key('YLabel') and (axis.count('YLabel') or axis==[]):
ylabelsep=6.5
if self.description.has_key('YLabelSep'):
ylabelsep=float(self.description['YLabelSep'])
out += ('\\rput(0,1){\\rput[rB]{90}(-%4.3f\\labelsep,0){\\normalsize '%(ylabelsep) +self.description['YLabel']+'}}\n')
if self.description.has_key('ZLabel') and (axis.count('ZLabel') or axis==[]):
zlabelsep=5.3
if self.description.has_key('ZLabelSep'):
zlabelsep=float(self.description['ZLabelSep'])
out += ('\\rput(1,1){\\rput(%4.3f\\labelsep,0){\\psset{xunit=4mm}\\rput[lB]{270}(1.5,0){\\normalsize '%(zlabelsep) +self.description['ZLabel']+'}}}\n')
return out
class Special(object):
def __init__(self, f):
self.description = {}
self.data = []
self.read_input(f)
def read_input(self, f):
for line in f:
if is_end_marker(line, 'SPECIAL'):
break
elif is_comment(line):
continue
else:
self.data.append(line)
def draw(self,coors):
out = ""
out += ('\n%\n% Special\n%\n')
import re
regex = re.compile(r'^(.*?)(\\physics[xy]?coor)\(\s?([0-9\.eE+-]+)\s?,\s?([0-9\.eE+-]+)\s?\)(.*)')
# TODO: More precise number string matching, something like this:
# num = r"-?[0-9]*(?:\.[0-9]*)(?:[eE][+-]?\d+]"
# regex = re.compile(r'^(.*?)(\\physics[xy]?coor)\(\s?(' + num + ')\s?,\s?(' + num + ')\s?\)(.*)')
for i in xrange(len(self.data)):
while regex.search(self.data[i]):
match = regex.search(self.data[i])
xcoor, ycoor = float(match.group(3)), float(match.group(4))
if match.group(2)[1:] in ["physicscoor", "physicsxcoor"]:
xcoor = coors.phys2frameX(xcoor)
if match.group(2)[1:] in ["physicscoor", "physicsycoor"]:
ycoor = coors.phys2frameY(ycoor)
line = "%s(%f, %f)%s" % (match.group(1), xcoor, ycoor, match.group(5))
self.data[i] = line
out += self.data[i]+'\n'
return out
class DrawableObject(object):
def __init__(self, f):
pass
def getTitle(self):
if self.description.has_key('Title'):
return self.description['Title']
else:
return ''
def getLineStyle(self):
if self.description.has_key('LineStyle'):
## I normally like there to be "only one way to do it", but providing
## this dashdotted/dotdashed synonym just seems humane ;-)
if self.description['LineStyle'] in ('dashdotted', 'dotdashed'):
self.description['LineStyle']='dashed'
self.description['LineDash']='3pt 3pt .8pt 3pt'
return self.description['LineStyle']
else:
return 'solid'
def getLineDash(self):
if self.description.has_key('LineDash'):
# Check if LineStyle=='dashdotted' before returning something
self.getLineStyle()
return self.description['LineDash']
else:
return ''
def getLineWidth(self):
if self.description.has_key('LineWidth'):
return self.description['LineWidth']
else:
return '0.8pt'
def getLineColor(self):
if self.description.has_key('LineColor'):
return self.description['LineColor']
else:
return 'black'
def getLineOpacity(self):
if self.description.has_key('LineOpacity'):
return self.description['LineOpacity']
else:
return '1.0'
def getFillColor(self):
if self.description.has_key('FillColor'):
return self.description['FillColor']
else:
return 'white'
def getFillOpacity(self):
if self.description.has_key('FillOpacity'):
return self.description['FillOpacity']
else:
return '1.0'
def getHatchColor(self):
if self.description.has_key('HatchColor'):
return self.description['HatchColor']
else:
return 'black'
def getFillStyle(self):
if self.description.has_key('FillStyle'):
return self.description['FillStyle']
else:
return 'none'
def getPolyMarker(self):
if self.description.has_key('PolyMarker'):
return self.description['PolyMarker']
else:
return ''
def getDotSize(self):
if self.description.has_key('DotSize'):
return self.description['DotSize']
else:
return '2pt 2'
def getDotScale(self):
if self.description.has_key('DotScale'):
return self.description['DotScale']
else:
return '1'
def getErrorBars(self):
if self.description.has_key('ErrorBars'):
return bool(int(self.description['ErrorBars']))
else:
return False
def getErrorBands(self):
if self.description.has_key('ErrorBands'):
return bool(int(self.description['ErrorBands']))
else:
return False
def getErrorBandColor(self):
if self.description.has_key('ErrorBandColor'):
return self.description['ErrorBandColor']
else:
return 'yellow'
def getErrorBandOpacity(self):
if self.description.has_key('ErrorBandOpacity'):
return self.description['ErrorBandOpacity']
else:
return '1.0'
def getSmoothLine(self):
if self.description.has_key('SmoothLine'):
return bool(int(self.description['SmoothLine']))
else:
return False
def startclip(self):
return '\\psclip{\\psframe[linewidth=0, linestyle=none](0,0)(1,1)}\n'
def stopclip(self):
return '\\endpsclip\n'
def startpsset(self):
out = ""
out += ('\\psset{linecolor='+self.getLineColor()+'}\n')
out += ('\\psset{linewidth='+self.getLineWidth()+'}\n')
out += ('\\psset{linestyle='+self.getLineStyle()+'}\n')
out += ('\\psset{fillstyle='+self.getFillStyle()+'}\n')
out += ('\\psset{fillcolor='+self.getFillColor()+'}\n')
out += ('\\psset{hatchcolor='+self.getHatchColor()+'}\n')
out += ('\\psset{strokeopacity='+self.getLineOpacity()+'}\n')
out += ('\\psset{opacity='+self.getFillOpacity()+'}\n')
if self.getLineDash()!='':
out += ('\\psset{dash='+self.getLineDash()+'}\n')
return out
def stoppsset(self):
out = ""
out += ('\\psset{linecolor=black}\n')
out += ('\\psset{linewidth=0.8pt}\n')
out += ('\\psset{linestyle=solid}\n')
out += ('\\psset{fillstyle=none}\n')
out += ('\\psset{fillcolor=white}\n')
out += ('\\psset{hatchcolor=black}\n')
out += ('\\psset{strokeopacity=1.0}\n')
out += ('\\psset{opacity=1.0}\n')
return out
class Function(DrawableObject):
def __init__(self, f):
self.description = {}
self.read_input(f)
def read_input(self, f):
self.code='def plotfunction(x):\n'
iscode=False
for line in f:
if is_end_marker(line, 'FUNCTION'):
break
elif is_comment(line):
continue
else:
m = pat_property.match(line)
if iscode:
self.code+=' '+line
elif m:
prop, value = m.group(1,2)
if prop=='Code':
iscode=True
else:
self.description[prop] = value
if not iscode:
print '++++++++++ ERROR: No code in function'
else:
foo = compile(self.code, '<string>', 'exec')
exec(foo)
self.plotfunction = plotfunction
def draw(self,coors):
out = ""
out += self.startclip()
out += self.startpsset()
xmin = coors.xmin()
if self.description.has_key('XMin') and self.description['XMin']:
xmin = float(self.description['XMin'])
xmax=coors.xmax()
if self.description.has_key('XMax') and self.description['XMax']:
xmax=float(self.description['XMax'])
# TODO: Space sample points logarithmically if LogX=1
dx = (xmax-xmin)/500.
x = xmin-dx
out += '\\pscurve'
if self.description.has_key('FillStyle') and self.description['FillStyle']!='none':
out += '(%s,%s)\n' % (coors.strphys2frameX(xmin),coors.strphys2frameY(coors.ymin()))
while x < (xmax+2*dx):
y = self.plotfunction(x)
out += ('(%s,%s)\n' % (coors.strphys2frameX(x), coors.strphys2frameY(y)))
x += dx
if self.description.has_key('FillStyle') and self.description['FillStyle']!='none':
out += '(%s,%s)\n' % (coors.strphys2frameX(xmax),coors.strphys2frameY(coors.ymin()))
out += self.stoppsset()
out += self.stopclip()
return out
class Histogram(DrawableObject):
def __init__(self, f, p=None):
self.description = {}
self.is2dim = False
self.data = []
self.read_input_data(f)
self.sigmabinvalue = None
self.meanbinvalue = None
self.path = p
def read_input_data(self, f):
for line in f:
if is_end_marker(line, 'HISTOGRAM'):
break
elif is_comment(line):
continue
else:
line = line.rstrip()
m = pat_property.match(line)
if m:
prop, value = m.group(1,2)
self.description[prop] = value
else:
## Detect symm errs
linearray = line.split()
if len(linearray) == 4:
self.data.append({'LowEdge': float(linearray[0]),
'UpEdge': float(linearray[1]),
'Content': float(linearray[2]),
'Error': [float(linearray[3]),float(linearray[3])]})
## Detect asymm errs
elif len(linearray) == 5:
self.data.append({'LowEdge': float(linearray[0]),
'UpEdge': float(linearray[1]),
'Content': float(linearray[2]),
'Error': [float(linearray[3]),float(linearray[4])]})
## Detect two-dimensionality
elif len(linearray) in [6,7]:
self.is2dim = True
# If asymm z error, use the max or average of +- error
err = float(linearray[5])
if len(linearray) == 7:
if self.description.get("ShowMaxZErr", 1):
err = max(err, float(linearray[6]))
else:
err = 0.5 * (err + float(linearray[6]))
self.data.append({'LowEdge': [float(linearray[0]), float(linearray[2])],
'UpEdge': [float(linearray[1]), float(linearray[3])],
'Content': float(linearray[4]),
'Error': err})
## Unknown histo format
else:
raise RuntimeError("Unknown HISTOGRAM data line format with %d entries" % len(linearray))
def mangle_input(self):
if (self.description.has_key('NormalizeToIntegral') and self.description['NormalizeToIntegral']=='1') or \
(self.description.has_key('NormalizeToSum') and self.description['NormalizeToSum']=='1'):
if (self.description.has_key('NormalizeToIntegral') and self.description['NormalizeToIntegral']=='1') and \
(self.description.has_key('NormalizeToSum') and self.description['NormalizeToSum']=='1'):
print 'Can\'t normalize to Integral and to Sum at the same time. Will normalize to the Sum.'
foo = 0
for i in range(len(self.data)):
if self.description.has_key('NormalizeToSum') and self.description['NormalizeToSum']=='1':
foo += self.data[i]['Content']
else:
foo += self.data[i]['Content']*(self.data[i]['UpEdge']-self.data[i]['LowEdge'])
for i in range(len(self.data)):
self.data[i]['Content'] /= foo
self.data[i]['Error'][0] /= foo
self.data[i]['Error'][1] /= foo
if self.description.has_key('Scale') and self.description['Scale']!='':
scale = float(self.description['Scale'])
for i in range(len(self.data)):
self.data[i]['Content'] *= scale
self.data[i]['Error'][0] *= scale
self.data[i]['Error'][1] *= scale
if self.description.has_key('Rebin') and self.description['Rebin']!='':
rebin=int(self.description['Rebin'])
errortype = "stat"
if self.description.has_key('ErrorType') and self.description['ErrorType']!='':
errortype = self.description['ErrorType']
newdata=[]
if rebin>=2:
for i in range(0,(len(self.data)/rebin)*rebin,rebin):
foo=0.
barl=0.
baru=0.
for j in range(rebin):
binwidth=self.data[i+j]['UpEdge']-self.data[i+j]['LowEdge']
foo +=self.data[i+j]['Content']*binwidth
if errortype=="stat":
barl+=(binwidth*self.data[i+j]['Error'][0])**2
baru+=(binwidth*self.data[i+j]['Error'][1])**2
elif errortype=="env":
barl+=(self.data[i+j]['Content']-self.data[i+j]['Error'][0])*binwidth
baru+=(self.data[i+j]['Content']+self.data[i+j]['Error'][1])*binwidth
else:
logging.error("Rebinning for ErrorType not implemented.")
sys.exit(1)
newbinwidth=self.data[i+rebin-1]['UpEdge']-self.data[i]['LowEdge']
newcentral=foo/newbinwidth
if errortype=="stat":
newerror=[sqrt(barl)/newbinwidth,sqrt(baru)/newbinwidth]
elif errortype=="env":
newerror=[(foo-barl)/newbinwidth,(baru-foo)/newbinwidth]
newdata.append({'LowEdge': self.data[i]['LowEdge'],
'UpEdge': self.data[i+rebin-1]['UpEdge'],
'Content': newcentral,
'Error': newerror})
self.data=newdata
def add(self, name):
if len(self.data) != len(name.data):
print '+++ Error in Histogram.add() for %s: different numbers of bins' % self.path
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
self.data[i]['Content'] += name.data[i]['Content']
self.data[i]['Error'][0] = sqrt(self.data[i]['Error'][0]**2 + name.data[i]['Error'][0]**2)
self.data[i]['Error'][1] = sqrt(self.data[i]['Error'][1]**2 + name.data[i]['Error'][1]**2)
else:
print '+++ Error in Histogram.add() for %s: binning of histograms differs' % self.path
def divide(self, name):
if len(self.data) != len(name.data):
print '+++ Error in Histogram.divide() for %s: different numbers of bins' % self.path
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
try:
self.data[i]['Error'][0] /= name.data[i]['Content']
except ZeroDivisionError:
self.data[i]['Error'][0]=0.
try:
self.data[i]['Error'][1] /= name.data[i]['Content']
except ZeroDivisionError:
self.data[i]['Error'][1]=0.
try:
self.data[i]['Content'] /= name.data[i]['Content']
except ZeroDivisionError:
self.data[i]['Content']=1.
# self.data[i]['Error'][0] = sqrt(self.data[i]['Error'][0]**2 + name.data[i]['Error'][0]**2)
# self.data[i]['Error'][1] = sqrt(self.data[i]['Error'][1]**2 + name.data[i]['Error'][1]**2)
else:
print '+++ Error in Histogram.divide() for %s: binning of histograms differs' % self.path
def dividereverse(self, name):
if len(self.data) != len(name.data):
print '+++ Error in Histogram.dividereverse() for %s: different numbers of bins' % self.path
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
try:
self.data[i]['Error'][0] = name.data[i]['Error'][0]/self.data[i]['Content']
except ZeroDivisionError:
self.data[i]['Error'][0]=0.
try:
self.data[i]['Error'][1] = name.data[i]['Error'][1]/self.data[i]['Content']
except ZeroDivisionError:
self.data[i]['Error'][1]=0.
try:
self.data[i]['Content'] = name.data[i]['Content']/self.data[i]['Content']
except ZeroDivisionError:
self.data[i]['Content']=1.
else:
print '+++ Error in Histogram.dividereverse(): binning of histograms differs'
def deviation(self, name):
if len(self.data) != len(name.data):
print '+++ Error in Histogram.deviation() for %s: different numbers of bins' % self.path
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
self.data[i]['Content'] -= name.data[i]['Content']
try:
self.data[i]['Content'] /= 0.5*sqrt((name.data[i]['Error'][0] + name.data[i]['Error'][1])**2 + \
(self.data[i]['Error'][0] + self.data[i]['Error'][1])**2)
except ZeroDivisionError:
self.data[i]['Content'] = 0.0
try:
self.data[i]['Error'][0] /= name.data[i]['Error'][0]
except ZeroDivisionError:
self.data[i]['Error'][0] = 0.0
try:
self.data[i]['Error'][1] /= name.data[i]['Error'][1]
except ZeroDivisionError:
self.data[i]['Error'][1] = 0.0
else:
print '+++ Error in Histogram.deviation() for %s: binning of histograms differs' % self.path
def getChi2(self, name):
chi2 = 0.
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
try:
chi2 += (self.data[i]['Content']-name.data[i]['Content'])**2/((0.5*self.data[i]['Error'][0]+0.5*self.data[i]['Error'][1])**2 + (0.5*name.data[i]['Error'][0]+0.5*name.data[i]['Error'][1])**2)
except ZeroDivisionError:
pass
else:
print '+++ Error in Histogram.getChi2() for %s: binning of histograms differs' % self.path
return chi2/len(self.data)
def getSigmaBinValue(self):
if self.sigmabinvalue==None:
self.sigmabinvalue = 0.
sumofweights = 0.
for i in range(len(self.data)):
if self.is2dim:
binwidth = abs( (self.data[i]['UpEdge'][0] - self.data[i]['LowEdge'][0])
*(self.data[i]['UpEdge'][1] - self.data[i]['LowEdge'][1]))
else:
binwidth = abs(self.data[i]['UpEdge'] - self.data[i]['LowEdge'])
self.sigmabinvalue += binwidth*(self.data[i]['Content']-self.getMeanBinValue())**2
sumofweights += binwidth
self.sigmabinvalue = sqrt(self.sigmabinvalue/sumofweights)
return self.sigmabinvalue
def getMeanBinValue(self):
if self.meanbinvalue==None:
self.meanbinvalue = 0.
sumofweights = 0.
for i in range(len(self.data)):
if self.is2dim:
binwidth = abs( (self.data[i]['UpEdge'][0] - self.data[i]['LowEdge'][0])
*(self.data[i]['UpEdge'][1] - self.data[i]['LowEdge'][1]))
else:
binwidth = abs(self.data[i]['UpEdge'] - self.data[i]['LowEdge'])
self.meanbinvalue += binwidth*self.data[i]['Content']
sumofweights += binwidth
self.meanbinvalue /= sumofweights
return self.meanbinvalue
def getCorrelation(self, name):
correlation = 0.
sumofweights = 0.
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
if self.is2dim:
binwidth = abs( (self.data[i]['UpEdge'][0] - self.data[i]['LowEdge'][0])
* (self.data[i]['UpEdge'][1] - self.data[i]['LowEdge'][1]) )
else:
binwidth = abs(self.data[i]['UpEdge'] - self.data[i]['LowEdge'])
correlation += binwidth * ( self.data[i]['Content'] - self.getMeanBinValue() ) \
* ( name.data[i]['Content'] - name.getMeanBinValue() )
sumofweights += binwidth
else:
print '+++ Error in Histogram.getCorrelation(): binning of histograms differs' % self.path
correlation /= sumofweights
try:
correlation /= self.getSigmaBinValue()*name.getSigmaBinValue()
except ZeroDivisionError:
correlation = 0
return correlation
def getRMSdistance(self,name):
distance = 0.
sumofweights = 0.
for i in range(len(self.data)):
if fuzzyeq(self.data[i]['LowEdge'], name.data[i]['LowEdge']) and \
fuzzyeq(self.data[i]['UpEdge'], name.data[i]['UpEdge']):
if self.is2dim:
binwidth = abs( (self.data[i]['UpEdge'][0] - self.data[i]['LowEdge'][0])
* (self.data[i]['UpEdge'][1] - self.data[i]['LowEdge'][1]) )
else:
binwidth = abs(self.data[i]['UpEdge'] - self.data[i]['LowEdge'])
distance += binwidth * ( (self.data[i]['Content'] - self.getMeanBinValue())
-(name.data[i]['Content'] - name.getMeanBinValue()))**2
sumofweights += binwidth
else:
print '+++ Error in Histogram.getRMSdistance() for %s: binning of histograms differs' % self.path
distance = sqrt(distance/sumofweights)
return distance
def draw(self,coors):
seen_nan = False
out = ""
out += self.startclip()
out += self.startpsset()
#
if self.is2dim:
for i in range(len(self.data)):
out += ('\\psframe')
color=int(129*coors.phys2frameZ(self.data[i]['Content']))
if self.data[i]['Content']>coors.zmax():
color=129
if self.data[i]['Content']<coors.zmin():
color=0
out += ('[linewidth=0pt, linestyle=none, fillstyle=solid, fillcolor={gradientcolors!!['+str(color)+']}]')
out += ('(' + coors.strphys2frameX(self.data[i]['LowEdge'][0]) + ', ' \
+ coors.strphys2frameY(self.data[i]['LowEdge'][1]) + ')(' \
+ coors.strphys2frameX(self.data[i]['UpEdge'][0]) + ', ' \
+ coors.strphys2frameY(self.data[i]['UpEdge'][1]) + ')\n')
else:
if self.getErrorBands():
self.description['SmoothLine']=0
for i in range(len(self.data)):
out += ('\\psframe[dimen=inner,linewidth=0pt,linestyle=none,fillstyle=solid,fillcolor=%s,opacity=%s]' %(self.getErrorBandColor(),self.getErrorBandOpacity()))
out += ('(' + coors.strphys2frameX(self.data[i]['LowEdge']) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']-self.data[i]['Error'][0]) + ')(' \
+ coors.strphys2frameX(self.data[i]['UpEdge']) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']+self.data[i]['Error'][1]) + ')\n')
if self.getErrorBars():
for i in range(len(self.data)):
if isnan(self.data[i]['Content']) or isnan(self.data[i]['Error'][0]) or isnan(self.data[i]['Error'][1]):
seen_nan = True
continue
if self.data[i]['Content']==0. and self.data[i]['Error']==[0.,0.]:
continue
out += ('\psline')
out += ('(' + coors.strphys2frameX(self.data[i]['LowEdge']) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']) + ')(' \
+ coors.strphys2frameX(self.data[i]['UpEdge']) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']) + ')\n')
out += ('\psline')
bincenter = coors.strphys2frameX(.5*(self.data[i]['LowEdge']+self.data[i]['UpEdge']))
out += ('(' + bincenter + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']-self.data[i]['Error'][0]) + ')(' \
+ bincenter + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']+self.data[i]['Error'][1]) + ')\n')
if self.getSmoothLine():
out += ('\psbezier')
else:
out += ('\psline')
if (self.getFillStyle() != 'none'): # make sure that filled areas go all the way down to the x-axis
if (coors.phys2frameX(self.data[0]['LowEdge']) > 1e-4):
out += '(' + coors.strphys2frameX(self.data[0]['LowEdge']) + ', -0.1)\n'
else:
out += '(-0.1, -0.1)\n'
for i in range(len(self.data)):
if isnan(self.data[i]['Content']):
seen_nan = True
continue
if self.getSmoothLine():
out += ('(' + coors.strphys2frameX(0.5*(self.data[i]['LowEdge']+self.data[i]['UpEdge'])) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']) + ')\n')
else:
out += ('(' + coors.strphys2frameX(self.data[i]['LowEdge']) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']) + ')(' \
+ coors.strphys2frameX(self.data[i]['UpEdge']) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']) + ')\n')
## Join/separate data points, with vertical/diagonal lines
if (i+1 < len(self.data)): #< If this is not the last point
if self.description.get('ConnectBins', '1') != '1':
out += ('\\psline')
else:
## If bins are joined, but there is a gap in binning, choose whether to fill the gap
if (abs(coors.phys2frameX(self.data[i]['UpEdge']) - coors.phys2frameX(self.data[i+1]['LowEdge'])) > 1e-4):
if self.description.get('ConnectGaps', '0') != '1':
out += ('\\psline')
# TODO: Perhaps use a new dashed line to fill the gap?
if (self.getFillStyle() != 'none'): # make sure that filled areas go all the way down to the x-axis
if (coors.phys2frameX(self.data[-1]['UpEdge']) < 1-1e-4):
out += '(' + coors.strphys2frameX(self.data[-1]['UpEdge']) + ', -0.1)\n'
else:
out += '(1.1, -0.1)\n'
#
if self.getPolyMarker() != '':
for i in range(len(self.data)):
if isnan(self.data[i]['Content']):
seen_nan = True
continue
if self.data[i]['Content']==0. and self.data[i]['Error']==[0.,0.]:
continue
out += ('\\psdot[dotstyle=%s,dotsize=%s,dotscale=%s](' %(self.getPolyMarker(),self.getDotSize(),self.getDotScale()) \
+ coors.strphys2frameX(.5*(self.data[i]['LowEdge']+self.data[i]['UpEdge'])) + ', ' \
+ coors.strphys2frameY(self.data[i]['Content']) + ')\n')
out += self.stoppsset()
out += self.stopclip()
if seen_nan:
print "WARNING: NaN-valued value or error bar!"
return out
# def is2dimensional(self):
# return self.is2dim
def getXMin(self):
if self.is2dim:
return min([self.data[i]['LowEdge'][0] for i in range(len(self.data))])
else:
return min([self.data[i]['LowEdge'] for i in range(len(self.data))])
def getXMax(self):
if self.is2dim:
return max([self.data[i]['UpEdge'][0] for i in range(len(self.data))])
else:
return max([self.data[i]['UpEdge'] for i in range(len(self.data))])
def getYMin(self, xmin, xmax, logy):
if self.is2dim:
return min([self.data[i]['LowEdge'][1] for i in range(len(self.data))])
else:
yvalues = []
for i in range(len(self.data)):
if ((self.data[i]['UpEdge'] > xmin or self.data[i]['LowEdge'] >= xmin) and \
(self.data[i]['LowEdge'] < xmax or self.data[i]['UpEdge'] <= xmax)):
foo = 0
if self.getErrorBars() or self.getErrorBands():
foo = self.data[i]['Content']-self.data[i]['Error'][0]
else:
foo = self.data[i]['Content']
if logy:
if foo>0: yvalues.append(foo)
else:
yvalues.append(foo)
if len(yvalues) > 0:
return min(yvalues)
else:
return self.data[0]['Content']
def getYMax(self, xmin, xmax):
if self.is2dim:
return max([self.data[i]['UpEdge'][1] for i in range(len(self.data))])
else:
yvalues = []
for i in range(len(self.data)):
if ((self.data[i]['UpEdge'] > xmin or self.data[i]['LowEdge'] >= xmin) and \
(self.data[i]['LowEdge'] < xmax or self.data[i]['UpEdge'] <= xmax)):
if self.getErrorBars() or self.getErrorBands():
yvalues.append(self.data[i]['Content']+self.data[i]['Error'][1])
else:
yvalues.append(self.data[i]['Content'])
if len(yvalues) > 0:
return max(yvalues)
else:
return self.data[0]['Content']
def getZMin(self, xmin, xmax, ymin, ymax):
if not self.is2dim:
return 0
zvalues = []
for i in range(len(self.data)):
if (self.data[i]['UpEdge'][0] > xmin and self.data[i]['LowEdge'][0] < xmax) and \
(self.data[i]['UpEdge'][1] > ymin and self.data[i]['LowEdge'][1] < ymax):
zvalues.append(self.data[i]['Content'])
return min(zvalues)
def getZMax(self, xmin, xmax, ymin, ymax):
if not self.is2dim:
return 0
zvalues = []
for i in range(len(self.data)):
if (self.data[i]['UpEdge'][0] > xmin and self.data[i]['LowEdge'][0] < xmax) and \
(self.data[i]['UpEdge'][1] > ymin and self.data[i]['LowEdge'][1] < ymax):
zvalues.append(self.data[i]['Content'])
return max(zvalues)
class Histo1D(Histogram):
def read_input_data(self, f):
for line in f:
if is_end_marker(line, 'HISTO1D'):
break
elif is_comment(line):
continue
else:
line = line.rstrip()
m = pat_property.match(line)
if m:
prop, value = m.group(1,2)
self.description[prop] = value
else:
linearray = line.split()
## Detect symm errs
if len(linearray) == 4:
self.data.append({'LowEdge': float(linearray[0]),
'UpEdge': float(linearray[1]),
'Content': float(linearray[2]),
'Error': [float(linearray[3]),float(linearray[3])]})
## Detect asymm errs
elif len(linearray) == 5:
self.data.append({'LowEdge': float(linearray[0]),
'UpEdge': float(linearray[1]),
'Content': float(linearray[2]),
'Error': [float(linearray[3]),float(linearray[4])]})
## Not sure what this is for... auto-compatibility with YODA format? Urgh
elif len(linearray) == 8:
self.data.append({'LowEdge': float(linearray[0]),
'UpEdge': float(linearray[1]),
'Content': float(linearray[2]),
'Error': [float(linearray[3]),float(linearray[3])]})
else:
raise Exception('Histo1D does not have 8 columns.'+line)
class Histo2D(Histogram):
def read_input_data(self, f):
self.is2dim = True #< Should really be done in a constructor, but this is easier for now...
for line in f:
if is_end_marker(line, 'HISTO2D'):
break
elif is_comment(line):
continue
else:
line = line.rstrip()
m = pat_property.match(line)
if m:
prop, value = m.group(1,2)
self.description[prop] = value
else:
linearray = line.split()
if len(linearray) in [6,7]:
# If asymm z error, use the max or average of +- error
err = float(linearray[5])
if len(linearray) == 7:
if self.description.get("ShowMaxZErr", 1):
err = max(err, float(linearray[6]))
else:
err = 0.5 * (err + float(linearray[6]))
self.data.append({'LowEdge': [float(linearray[0]), float(linearray[2])],
'UpEdge': [float(linearray[1]), float(linearray[3])],
'Content': float(linearray[4]),
'Error': err})
else:
raise Exception('Histo1D does not have 6 or 7 columns.'+line)
class Frame(object):
def __init__(self):
self.framelinewidth = '0.3pt'
def draw(self,inputdata):
out = ('\n%\n% Frame\n%\n')
if inputdata.description.has_key('FrameColor') and inputdata.description['FrameColor']!=None:
color = inputdata.description['FrameColor']
# We want to draw this frame only once, so set it to False for next time:
inputdata.description['FrameColor']=None
# Calculate how high and wide the overall plot is
height = [0,0]
width = inputdata.description['PlotSizeX']
if inputdata.description.has_key('RatioPlot') and inputdata.description['RatioPlot']=='1':
height[1] = -inputdata.description['RatioPlotSizeY']
if not (inputdata.description.has_key('MainPlot') and inputdata.description['MainPlot']=='0'):
height[0] = inputdata.description['PlotSizeY']
else:
height[0] = -height[1]
height[1] = 0
# Get the margin widths
left = inputdata.description['LeftMargin']+0.1
right = inputdata.description['RightMargin']+0.1
top = inputdata.description['TopMargin']+0.1
bottom = inputdata.description['BottomMargin']+0.1
#
out += ('\\rput(0,1){\\psline[linewidth=%scm,linecolor=%s](%scm,%scm)(%scm,%scm)}\n' %(top, color, -left, top/2, width+right, top/2))
out += ('\\rput(0,%scm){\\psline[linewidth=%scm,linecolor=%s](%scm,%scm)(%scm,%scm)}\n' %(height[1], bottom, color, -left, -bottom/2, width+right, -bottom/2))
out += ('\\rput(0,0){\\psline[linewidth=%scm,linecolor=%s](%scm,%scm)(%scm,%scm)}\n' %(left, color, -left/2, height[1]-0.05, -left/2, height[0]+0.05))
out += ('\\rput(1,0){\\psline[linewidth=%scm,linecolor=%s](%scm,%scm)(%scm,%scm)}\n' %(right, color, right/2, height[1]-0.05, right/2, height[0]+0.05))
out += ('\\psframe[linewidth='+self.framelinewidth+',dimen=middle](0,0)(1,1)\n')
return out
class Ticks(object):
def __init__(self, description, coors):
self.majorticklinewidth = '0.3pt'
self.minorticklinewidth = '0.3pt'
self.majorticklength = '9pt'
self.minorticklength = '4pt'
self.description = description
self.coors = coors
def draw_ticks(self, min, max, plotlog=False, custommajorticks=[], customminorticks=[], custommajortickmarks=-1, customminortickmarks=-1, drawlabels=True, twosided=False):
out = ""
if plotlog:
if min <= 0 or max <= 0:
raise Exception("Cannot place log axis min or max tick <= 0")
if len(custommajorticks) ==0:
x=int(log10(min))
n_labels=0
while (x<log10(max)+1):
if 10**x>=min:
ticklabel=10**x
if ticklabel>min and ticklabel<max:
out += self.draw_majortick(ticklabel,twosided)
if drawlabels:
out += self.draw_majorticklabel(ticklabel)
n_labels+=1
if ticklabel==min or ticklabel==max:
if drawlabels:
out += self.draw_majorticklabel(ticklabel)
n_labels+=1
for i in range(2,10):
ticklabel=i*10**(x-1)
if ticklabel>min and ticklabel<max:
out += self.draw_minortick(ticklabel,twosided)
if drawlabels and n_labels==0:
if (i+1)*10**(x-1)<max: # some special care for the last minor tick
out += self.draw_minorticklabel(ticklabel)
else:
out += self.draw_minorticklabel(ticklabel, last=True)
x+=1
elif (custommajorticks!=[] or customminorticks!=[]):
for i in range(len(custommajorticks)):
value=custommajorticks[i]['Value']
label=custommajorticks[i]['Label']
if value>=min and value<=max:
out += self.draw_majortick(value,twosided)
if drawlabels:
out += self.draw_majorticklabel(value, label=label)
for i in range(len(customminorticks)):
value=customminorticks[i]['Value']
if value>=min and value<=max:
out += self.draw_minortick(value,twosided)
else:
xrange = max-min
digits = int(log10(xrange))+1
if (xrange < 1):
digits -= 1
foo = int(xrange/(10**(digits-1)))
if (foo/9. > 0.5):
tickmarks = 10
elif (foo/9. > 0.2):
tickmarks = 5
elif (foo/9. > 0.1):
tickmarks = 2
if (custommajortickmarks>-1):
if custommajortickmarks not in [1, 2, 5, 10, 20]:
print '+++ Error in Ticks.draw_ticks(): MajorTickMarks must be in [1, 2, 5, 10, 20]'
else:
#if custommajortickmarks==1: custommajortickmarks=10
tickmarks = custommajortickmarks
if (tickmarks == 2 or tickmarks == 20):
minortickmarks = 3
else:
minortickmarks = 4
if (customminortickmarks>-1):
minortickmarks = customminortickmarks
#
x = 0
while (x > min*10**digits):
x -= tickmarks*100**(digits-1)
while (x <= max*10**digits):
if (x >= min*10**digits-tickmarks*100**(digits-1)):
ticklabel = 1.*x/10**digits
if (int(ticklabel) == ticklabel):
ticklabel = int(ticklabel)
if (float(ticklabel-min)/xrange >= -1e-5):
if (fabs(ticklabel-min)/xrange > 1e-5 and fabs(ticklabel-max)/xrange > 1e-5):
out += self.draw_majortick(ticklabel,twosided)
if drawlabels:
out += self.draw_majorticklabel(ticklabel)
xminor = x
for i in range(minortickmarks):
xminor += 1.*tickmarks*100**(digits-1)/(minortickmarks+1)
ticklabel = 1.*xminor/10**digits
if (ticklabel > min and ticklabel < max):
if (fabs(ticklabel-min)/xrange > 1e-5 and fabs(ticklabel-max)/xrange > 1e-5):
out += self.draw_minortick(ticklabel,twosided)
x += tickmarks*100**(digits-1)
return out
def draw(self):
pass
def draw_minortick(self, ticklabel, twosided):
pass
def draw_majortick(self, ticklabel, twosided):
pass
def draw_majorticklabel(self, ticklabel):
pass
def draw_minorticklabel(self, value, label='', last=False):
return ''
def get_ticklabel(self, value, plotlog=False, minor=False, lastminor=False):
label=''
prefix = ""
if plotlog:
bar = int(log10(value))
if bar<0:
sign='-'
else:
sign='\\,'
if minor: # The power of ten is only to be added to the last minor tick label
if lastminor:
label = str(int(value/(10**bar))) + "\cdot" + '10$^{'+sign+'\\text{'+str(abs(bar))+'}}$'
else:
label = str(int(value/(10**bar))) # The naked prefactor
else:
if bar==0:
label = '1'
else:
label = '10$^{'+sign+'\\text{'+str(abs(bar))+'}}$'
else:
if fabs(value) < 1e-10: value=0
label=str(value)
return label
class XTicks(Ticks):
def draw(self, custommajorticks=[], customminorticks=[], custommajortickmarks=-1, customminortickmarks=-1,drawlabels=True):
twosided = False
if self.description.has_key('XTwosidedTicks') and self.description['XTwosidedTicks']=='1':
twosided = True
out = ""
out += ('\n%\n% X-Ticks\n%\n')
out += ('\\def\\majortickmarkx{\\psline[linewidth='+self.majorticklinewidth+'](0,0)(0,'+self.majorticklength+')}%\n')
out += ('\\def\\minortickmarkx{\\psline[linewidth='+self.minorticklinewidth+'](0,0)(0,'+self.minorticklength+')}%\n')
uselog = self.description['LogX'] and (self.coors.xmin() > 0 and self.coors.xmax() > 0)
out += self.draw_ticks(self.coors.xmin(), self.coors.xmax(),\
plotlog=uselog,\
custommajorticks=custommajorticks,\
customminorticks=customminorticks,\
custommajortickmarks=custommajortickmarks,\
customminortickmarks=customminortickmarks,\
drawlabels=drawlabels,\
twosided=twosided)
return out
def draw_minortick(self, ticklabel, twosided):
out = ''
out += '\\rput('+self.coors.strphys2frameX(ticklabel)+', 0){\\minortickmarkx}\n'
if twosided:
out += '\\rput{180}('+self.coors.strphys2frameX(ticklabel)+', 1){\\minortickmarkx}\n'
return out
def draw_minorticklabel(self, value, label='', last=False):
if label=='':
label=self.get_ticklabel(value,self.description['LogX'], minor=True, lastminor=last)
if last: # Some more indentation for the last minor label
return ('\\rput('+self.coors.strphys2frameX(value)+', 0){\\rput[B](1.9\\labelsep,-2.3\\labelsep){\\strut{}'+label+'}}\n')
else:
return ('\\rput('+self.coors.strphys2frameX(value)+', 0){\\rput[B](0,-2.3\\labelsep){\\strut{}'+label+'}}\n')
def draw_majortick(self, ticklabel, twosided):
out = ''
out += '\\rput('+self.coors.strphys2frameX(ticklabel)+', 0){\\majortickmarkx}\n'
if twosided:
out += '\\rput{180}('+self.coors.strphys2frameX(ticklabel)+', 1){\\majortickmarkx}\n'
return out
def draw_majorticklabel(self, value, label=''):
if label=='':
label=self.get_ticklabel(value, self.description['LogX'] and (self.coors.xmin() > 0 and self.coors.xmax() > 0))
return ('\\rput('+self.coors.strphys2frameX(value)+', 0){\\rput[B](0,-2.3\\labelsep){\\strut{}'+label+'}}\n')
class YTicks(Ticks):
- def draw(self, custommajorticks=[], customminorticks=[], custommajortickmarks=-1, customminortickmarks=-1):
+ def draw(self, custommajorticks=[], customminorticks=[], custommajortickmarks=-1, customminortickmarks=-1,drawlabels=True):
twosided = False
if self.description.has_key('YTwosidedTicks') and self.description['YTwosidedTicks']=='1':
twosided = True
out = ""
out += ('\n%\n% Y-Ticks\n%\n')
out += ('\\def\\majortickmarky{\\psline[linewidth='+self.majorticklinewidth+'](0,0)('+self.majorticklength+',0)}%\n')
out += ('\\def\\minortickmarky{\\psline[linewidth='+self.minorticklinewidth+'](0,0)('+self.minorticklength+',0)}%\n')
uselog = self.description['LogY'] and (self.coors.ymin() > 0 and self.coors.ymax() > 0)
out += self.draw_ticks(self.coors.ymin(), self.coors.ymax(),\
plotlog=uselog,\
custommajorticks=custommajorticks,\
customminorticks=customminorticks,\
custommajortickmarks=custommajortickmarks,\
customminortickmarks=customminortickmarks,\
- twosided=twosided)
+ twosided=twosided,
+ drawlabels=drawlabels)
return out
def draw_minortick(self, ticklabel, twosided):
out = ''
out += '\\rput(0, '+self.coors.strphys2frameY(ticklabel)+'){\\minortickmarky}\n'
if twosided:
out += '\\rput{180}(1, '+self.coors.strphys2frameY(ticklabel)+'){\\minortickmarky}\n'
return out
def draw_majortick(self, ticklabel, twosided):
out = ''
out += '\\rput(0, '+self.coors.strphys2frameY(ticklabel)+'){\\majortickmarky}\n'
if twosided:
out += '\\rput{180}(1, '+self.coors.strphys2frameY(ticklabel)+'){\\majortickmarky}\n'
return out
def draw_majorticklabel(self, value, label=''):
if label=='':
label=self.get_ticklabel(value, self.description['LogY'] and (self.coors.ymin() > 0 and self.coors.ymax() > 0))
if self.description.has_key('RatioPlotMode') and self.description['RatioPlotMode']=='deviation' \
and self.description.has_key('RatioPlotStage') and self.description['RatioPlotStage']:
return ('\\uput[180]{0}(0, '+self.coors.strphys2frameY(value)+'){\\strut{}'+label+'\\,$\\sigma$}\n')
else:
return ('\\uput[180]{0}(0, '+self.coors.strphys2frameY(value)+'){\\strut{}'+label+'}\n')
class ZTicks(Ticks):
def __init__(self, description, coors):
self.majorticklinewidth = '0.3pt'
self.minorticklinewidth = '0.3pt'
self.majorticklength = '6pt'
self.minorticklength = '2.6pt'
self.description = description
self.coors = coors
def draw(self, custommajorticks=[], customminorticks=[], custommajortickmarks=-1, customminortickmarks=-1):
out = ""
out += ('\n%\n% Z-Ticks\n%\n')
out += ('\\def\\majortickmarkz{\\psline[linewidth='+self.majorticklinewidth+'](0,0)('+self.majorticklength+',0)}%\n')
out += ('\\def\\minortickmarkz{\\psline[linewidth='+self.minorticklinewidth+'](0,0)('+self.minorticklength+',0)}%\n')
out += self.draw_ticks(self.coors.zmin(), self.coors.zmax(),\
plotlog=self.description['LogZ'],\
custommajorticks=custommajorticks,\
customminorticks=customminorticks,\
custommajortickmarks=custommajortickmarks,\
customminortickmarks=customminortickmarks,\
twosided=False)
return out
def draw_minortick(self, ticklabel, twosided):
return '\\rput{180}(1, '+self.coors.strphys2frameZ(ticklabel)+'){\\minortickmarkz}\n'
def draw_majortick(self, ticklabel, twosided):
return '\\rput{180}(1, '+self.coors.strphys2frameZ(ticklabel)+'){\\majortickmarkz}\n'
def draw_majorticklabel(self, value, label=''):
if label=='':
label=self.get_ticklabel(value,self.description['LogZ'])
if self.description.has_key('RatioPlotMode') and self.description['RatioPlotMode']=='deviation' \
and self.description.has_key('RatioPlotStage') and self.description['RatioPlotStage']:
return ('\\uput[0]{0}(1, '+self.coors.strphys2frameZ(value)+'){\\strut{}'+label+'\\,$\\sigma$}\n')
else:
return ('\\uput[0]{0}(1, '+self.coors.strphys2frameZ(value)+'){\\strut{}'+label+'}\n')
class Coordinates(object):
def __init__(self, inputdata):
self.description = inputdata.description
def phys2frameX(self, x):
if self.description['LogX']:
if x>0:
result = 1.*(log10(x)-log10(self.xmin()))/(log10(self.xmax())-log10(self.xmin()))
else:
return -10
else:
result = 1.*(x-self.xmin())/(self.xmax()-self.xmin())
if (fabs(result) < 1e-4):
return 0
else:
return min(max(result,-10),10)
def phys2frameY(self, y):
if self.description['LogY']:
if y > 0 and self.ymin() > 0 and self.ymax() > 0:
result = 1.*(log10(y)-log10(self.ymin()))/(log10(self.ymax())-log10(self.ymin()))
else:
return -10
else:
result = 1.*(y-self.ymin())/(self.ymax()-self.ymin())
if (fabs(result) < 1e-4):
return 0
else:
return min(max(result,-10),10)
def phys2frameZ(self, z):
if self.description['LogZ']:
if z>0:
result = 1.*(log10(z)-log10(self.zmin()))/(log10(self.zmax())-log10(self.zmin()))
else:
return -10
else:
result = 1.*(z-self.zmin())/(self.zmax()-self.zmin())
if (fabs(result) < 1e-4):
return 0
else:
return min(max(result,-10),10)
# TODO: Add frame2phys functions (to allow linear function sampling in the frame space rather than the physical space)
def strphys2frameX(self, x):
return str(self.phys2frameX(x))
def strphys2frameY(self, y):
return str(self.phys2frameY(y))
def strphys2frameZ(self, z):
return str(self.phys2frameZ(z))
def xmin(self):
return self.description['Borders'][0]
def xmax(self):
return self.description['Borders'][1]
def ymin(self):
return self.description['Borders'][2]
def ymax(self):
return self.description['Borders'][3]
def zmin(self):
return self.description['Borders'][4]
def zmax(self):
return self.description['Borders'][5]
####################
def try_cmd(args):
"Run the given command + args and return True/False if it succeeds or not"
import subprocess
try:
subprocess.check_output(args, stderr=subprocess.STDOUT)
return True
except AttributeError:
# Python <=2.6 does not provide check_output
return True
except:
return False
def have_cmd(cmd):
return try_cmd(["which", cmd])
import shutil, subprocess
def process_datfile(datfile):
global opts
if not os.access(datfile, os.R_OK):
raise Exception("Could not read data file '%s'" % datfile)
dirname = os.path.dirname(datfile)
datfile = os.path.basename(datfile)
filename = datfile.replace('.dat','')
## Create a temporary directory
cwd = os.getcwd()
datpath = os.path.join(cwd, dirname, datfile)
tempdir = tempfile.mkdtemp('.make-plots')
tempdatpath = os.path.join(tempdir, datfile)
shutil.copy(datpath, tempdir)
## Make TeX file
inputdata = Inputdata(os.path.join(dirname,filename))
texpath = os.path.join(tempdir, '%s.tex' % filename)
texfile = open(texpath, 'w')
p = Plot(inputdata)
texfile.write(p.write_header(inputdata))
if inputdata.description.get('MainPlot', '1') == '1':
mp = MainPlot(inputdata)
texfile.write(mp.draw(inputdata))
if not inputdata.description.get('is2dim', False) and \
inputdata.description.get('RatioPlot', '1') == '1' and \
inputdata.description.get('RatioPlotReference') is not None:
rp = RatioPlot(inputdata)
texfile.write(rp.draw(inputdata))
texfile.write(p.write_footer())
texfile.close()
if opts.OUTPUT_FORMAT != "TEX":
## Check for the required programs
latexavailable = have_cmd("latex")
dvipsavailable = have_cmd("dvips")
convertavailable = have_cmd("convert")
ps2pnmavailable = have_cmd("ps2pnm")
pnm2pngavailable = have_cmd("pnm2png")
# TODO: It'd be nice to be able to control the size of the PNG between thumb and full-size...
# currently defaults (and is used below) to a size suitable for thumbnails
def mkpng(infile, outfile, density=100):
if convertavailable:
pngcmd = ["convert", "-flatten", "-density", str(density), infile, "-quality", "100", "-sharpen", "0x1.0", outfile]
logging.debug(" ".join(pngcmd))
pngproc = subprocess.Popen(pngcmd, stdout=subprocess.PIPE, cwd=tempdir)
pngproc.wait()
else:
raise Exception("Required PNG maker program (convert) not found")
# elif ps2pnmavailable and pnm2pngavailable:
# pstopnm = "pstopnm -stdout -xsize=461 -ysize=422 -xborder=0.01 -yborder=0.01 -portrait " + infile
# p1 = subprocess.Popen(pstopnm.split(), stdout=subprocess.PIPE, stderr=open("/dev/null", "w"), cwd=tempdir)
# p2 = subprocess.Popen(["pnmtopng"], stdin=p1.stdout, stdout=open("%s/%s.png" % (tempdir, outfile), "w"), stderr=open("/dev/null", "w"), cwd=tempdir)
# p2.wait()
# else:
# raise Exception("Required PNG maker programs (convert, or ps2pnm and pnm2png) not found")
## Run LaTeX (in no-stop mode)
logging.debug(os.listdir(tempdir))
texcmd = ["latex", "\scrollmode\input", texpath]
logging.debug("TeX command: " + " ".join(texcmd))
texproc = subprocess.Popen(texcmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tempdir)
logging.debug(texproc.communicate()[0])
logging.debug(os.listdir(tempdir))
## Run dvips
dvcmd = ["dvips", filename]
if not logging.getLogger().isEnabledFor(logging.DEBUG):
dvcmd.append("-q")
## Handle Minion Font
if opts.OUTPUT_FONT == "MINION":
dvcmd.append('-Pminion')
## Choose format
# TODO: Rationalise... this is a mess! Maybe we can use tex2pix?
if opts.OUTPUT_FORMAT == "PS":
dvcmd += ["-o", "%s.ps" % filename]
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
dvproc.wait()
elif opts.OUTPUT_FORMAT == "PDF":
dvcmd.append("-f")
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
cnvproc = subprocess.Popen(["ps2pdf", "-"], stdin=dvproc.stdout, stdout=subprocess.PIPE, cwd=tempdir)
f = open(os.path.join(tempdir, "%s.pdf" % filename), "w")
f.write(cnvproc.communicate()[0])
f.close()
elif opts.OUTPUT_FORMAT == "EPS":
dvcmd.append("-f")
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
cnvproc = subprocess.Popen(["ps2eps"], stdin=dvproc.stdout, stderr=subprocess.PIPE, stdout=subprocess.PIPE, cwd=tempdir)
f = open(os.path.join(tempdir, "%s.eps" % filename), "w")
f.write(cnvproc.communicate()[0])
f.close()
elif opts.OUTPUT_FORMAT == "PNG":
dvcmd.append("-f")
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
pngcmd = ["convert", "-flatten", "-density", "100", "-", "-quality", "100", "-sharpen", "0x1.0", "%s.png" % filename]
logging.debug(" ".join(pngcmd))
pngproc = subprocess.Popen(pngcmd, stdin=dvproc.stdout, stdout=subprocess.PIPE, cwd=tempdir)
pngproc.wait()
elif opts.OUTPUT_FORMAT == "PSPNG":
dvcmd += ["-o", "%s.ps" % filename]
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
dvproc.wait()
mkpng("%s.ps" % filename, "%s.png" % filename)
elif opts.OUTPUT_FORMAT == "PDFPNG":
dvcmd.append("-f")
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
cnvproc = subprocess.Popen(["ps2pdf", "-"], stdin=dvproc.stdout, stdout=subprocess.PIPE, cwd=tempdir)
f = open(os.path.join(tempdir, "%s.pdf" % filename), "w")
f.write(cnvproc.communicate()[0])
f.close()
logging.debug(os.listdir(tempdir))
mkpng("%s.pdf" % filename, "%s.png" % filename)
elif opts.OUTPUT_FORMAT == "EPSPNG":
dvcmd.append("-f")
logging.debug(" ".join(dvcmd))
dvproc = subprocess.Popen(dvcmd, stdout=subprocess.PIPE, cwd=tempdir)
cnvproc = subprocess.Popen(["ps2eps"], stdin=dvproc.stdout, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=tempdir)
f = open(os.path.join(tempdir, "%s.eps" % filename), "w")
f.write(cnvproc.communicate()[0])
f.close()
mkpng("%s.eps" % filename, "%s.png" % filename)
else:
logging.error("Unknown format: %s" % opts.OUTPUT_FORMAT)
sys.exit(1)
logging.debug(os.listdir(tempdir))
## Copy results back to main dir
outbasename = filename
outname = outbasename + "." + opts.OUTPUT_FORMAT.lower()
## TODO: Make this neater: if "PNG" in opts.OUTPUT_FORMAT: ...
if opts.OUTPUT_FORMAT == "PSPNG":
outpath = os.path.join(tempdir, outbasename+".ps")
shutil.copy(outpath, os.path.join(cwd,dirname))
outpath = os.path.join(tempdir, outbasename+".png")
shutil.copy(outpath, os.path.join(cwd,dirname))
elif opts.OUTPUT_FORMAT == "PDFPNG":
outpath = os.path.join(tempdir, outbasename+".pdf")
shutil.copy(outpath, os.path.join(cwd,dirname))
outpath = os.path.join(tempdir, outbasename+".png")
shutil.copy(outpath, os.path.join(cwd,dirname))
elif opts.OUTPUT_FORMAT == "EPSPNG":
outpath = os.path.join(tempdir, outbasename+".eps")
shutil.copy(outpath, os.path.join(cwd,dirname))
outpath = os.path.join(tempdir, outbasename+".png")
shutil.copy(outpath, os.path.join(cwd,dirname))
else:
outpath = os.path.join(tempdir, outname)
if os.path.exists(outpath):
shutil.copy(outpath, os.path.join(cwd,dirname))
else:
logging.error("No output file '%s' from processing %s" % (outname, datfile))
## Clean up
if opts.NO_CLEANUP:
logging.info('Keeping temp-files in %s' % tempdir)
else:
shutil.rmtree(tempdir, ignore_errors=True)
## Wrapper for a process thread which attempts to process datfiles until empty
import threading, Queue
class MkPlotThread( threading.Thread ):
def run(self):
global opts
global datfiles
global RECVD_KILL_SIGNAL
while True:
if RECVD_KILL_SIGNAL is not None:
## Empty the queue
while not datfiles.empty():
dummy = datfiles.get_nowait()
break
try:
datfile = datfiles.get_nowait()
rem = datfiles.qsize()
logging.info("Plotting %s (%d remaining)" % (datfile, rem))
process_datfile(datfile)
except Queue.Empty, e:
#print "%s ending." % self.getName()
break
# except Exception, e:
# print "Error: %s" % str(e)
# import traceback
# logging.debug(traceback.format_exc())
# #exit(1)
####################
if __name__ == '__main__':
## Try to rename the process on Linux
try:
import ctypes
libc = ctypes.cdll.LoadLibrary('libc.so.6')
libc.prctl(15, 'make-plots', 0, 0, 0)
except Exception:
pass
## Try to use Psyco optimiser
try:
import psyco
psyco.full()
except ImportError:
pass
## Find number of (virtual) processing units
numcores = os.sysconf('SC_NPROCESSORS_ONLN')
if numcores is None:
numcores = 1
## Parse command line options
from optparse import OptionParser, OptionGroup
parser = OptionParser(usage=__doc__)
parser.add_option("-n", "-j", "--num-threads", dest="NUM_THREADS", type="int",
default=numcores, help="max number of threads to be used [%s]" % numcores)
parser.add_option("--palatino", dest="OUTPUT_FONT", action="store_const", const="PALATINO", default="PALATINO",
help="Use Palatino as font (default).")
parser.add_option("--cm", dest="OUTPUT_FONT", action="store_const", const="CM", default="PALATINO",
help="Use Computer Modern as font.")
parser.add_option("--times", dest="OUTPUT_FONT", action="store_const", const="TIMES", default="PALATINO",
help="Use Times as font.")
parser.add_option("--minion", dest="OUTPUT_FONT", action="store_const", const="MINION", default="PALATINO",
help="Use Adobe Minion Pro as font. Note: You need to set TEXMFHOME first.")
parser.add_option("--helvetica", dest="OUTPUT_FONT", action="store_const", const="HELVETICA", default="PALATINO",
help="Use Helvetica as font.")
parser.add_option("--ps", dest="OUTPUT_FORMAT", action="store_const", const="PS", default="PDF",
help="Create PostScript output (default).")
parser.add_option("--pdf", dest="OUTPUT_FORMAT", action="store_const", const="PDF", default="PDF",
help="Create PDF output.")
parser.add_option("--eps", dest="OUTPUT_FORMAT", action="store_const", const="EPS", default="PDF",
help="Create Encapsulated PostScript output.")
parser.add_option("--png", dest="OUTPUT_FORMAT", action="store_const", const="PNG", default="PDF",
help="Create PNG output.")
parser.add_option("--pspng", dest="OUTPUT_FORMAT", action="store_const", const="PSPNG", default="PDF",
help="Create PS and PNG output.")
parser.add_option("--pdfpng", dest="OUTPUT_FORMAT", action="store_const", const="PDFPNG", default="PDF",
help="Create PDF and PNG output.")
parser.add_option("--epspng", dest="OUTPUT_FORMAT", action="store_const", const="EPSPNG", default="PDF",
help="Create EPS and PNG output.")
parser.add_option("--tex", dest="OUTPUT_FORMAT", action="store_const", const="TEX", default="PDF",
help="Create TeX/LaTeX output.")
parser.add_option("--no-cleanup", dest="NO_CLEANUP", action="store_true", default=False,
help="Keep temporary directory and print its filename.")
parser.add_option("--full-range", dest="FULL_RANGE", action="store_true", default=False,
help="Plot full y range in LogY plots.")
parser.add_option("-c", "--config", dest="CONFIGFILES", action="append", default=None,
help="Plot config file to be used. Overrides internal config blocks.")
verbgroup = OptionGroup(parser, "Verbosity control")
verbgroup.add_option("-v", "--verbose", action="store_const", const=logging.DEBUG, dest="LOGLEVEL",
default=logging.INFO, help="print debug (very verbose) messages")
verbgroup.add_option("-q", "--quiet", action="store_const", const=logging.WARNING, dest="LOGLEVEL",
default=logging.INFO, help="be very quiet")
parser.add_option_group(verbgroup)
opts, args = parser.parse_args()
logging.basicConfig(level=opts.LOGLEVEL, format="%(message)s")
## Check for no args
if len(args) == 0:
logging.error(parser.get_usage())
sys.exit(2)
## Test for external programs (kpsewhich, latex, dvips, ps2pdf/ps2eps, and convert)
opts.LATEXPKGS = []
if opts.OUTPUT_FORMAT != "TEX":
try:
## latex
if not have_cmd("latex"):
logging.error("ERROR: required program 'latex' could not be found. Exiting...")
sys.exit(1)
## dvips
if not have_cmd("dvips"):
logging.error("ERROR: required program 'dvips' could not be found. Exiting...")
sys.exit(1)
## ps2pdf / ps2eps
if "PDF" in opts.OUTPUT_FORMAT:
if not have_cmd("ps2pdf"):
logging.error("ERROR: required program 'ps2pdf' (for PDF output) could not be found. Exiting...")
sys.exit(1)
elif "EPS" in opts.OUTPUT_FORMAT:
if not have_cmd("ps2eps"):
logging.error("ERROR: required program 'ps2eps' (for EPS output) could not be found. Exiting...")
sys.exit(1)
## PNG output converter
if "PNG" in opts.OUTPUT_FORMAT:
if not have_cmd("convert"):
logging.error("ERROR: required program 'convert' (for PNG output) could not be found. Exiting...")
sys.exit(1)
## kpsewhich: required for LaTeX package testing
if not have_cmd("kpsewhich"):
logging.warning("WARNING: required program 'kpsewhich' (for LaTeX package checks) could not be found")
else:
## Check minion font
if opts.OUTPUT_FONT == "MINION":
p = subprocess.Popen(["kpsewhich", "minion.sty"], stdout=subprocess.PIPE)
p.wait()
if p.returncode != 0:
logging.warning('Warning: Using "--minion" requires minion.sty to be installed. Ignoring it.')
opts.OUTPUT_FONT = "PALATINO"
## Check for HEP LaTeX packages
# TODO: remove HEP-specifics/non-standards?
for pkg in ["hepnicenames", "hepunits", "underscore"]:
p = subprocess.Popen(["kpsewhich", "%s.sty" % pkg], stdout=subprocess.PIPE)
p.wait()
if p.returncode == 0:
opts.LATEXPKGS.append(pkg)
## Check for Palatino old style figures and small caps
if opts.OUTPUT_FONT == "PALATINO":
p = subprocess.Popen(["kpsewhich", "ot1pplx.fd"], stdout=subprocess.PIPE)
p.wait()
if p.returncode == 0:
opts.OUTPUT_FONT = "PALATINO_OSF"
except Exception, e:
logging.warning("Problem while testing for external packages. I'm going to try and continue without testing, but don't hold your breath...")
## Fill queue
datfiles = Queue.Queue(maxsize=-1)
plotword = "plot"
if len(args) > 1:
plotword = "plots"
logging.info("Making %d %s" % (len(args), plotword))
for d in args:
datfiles.put(d)
## Set up signal handling
import signal
RECVD_KILL_SIGNAL = None
def handleKillSignal(signum, frame):
"Declare us as having been signalled, and return to default handling behaviour"
global RECVD_KILL_SIGNAL
logging.critical("Signal handler called with signal " + str(signum))
RECVD_KILL_SIGNAL = signum
signal.signal(signum, signal.SIG_DFL)
## Signals to handle
signal.signal(signal.SIGINT, handleKillSignal)
signal.signal(signal.SIGTERM, handleKillSignal)
signal.signal(signal.SIGHUP, handleKillSignal)
signal.signal(signal.SIGUSR2, handleKillSignal)
## Run threads
for threadnum in range(opts.NUM_THREADS):
procthread = MkPlotThread()
#procthread.daemon = True
procthread.start()
import time
while not datfiles.empty() and not RECVD_KILL_SIGNAL:
time.sleep(0.25)

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 4:26 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805162
Default Alt Text
(123 KB)

Event Timeline