Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/Matchbox/Base/SubtractedME.cc b/MatrixElement/Matchbox/Base/SubtractedME.cc
--- a/MatrixElement/Matchbox/Base/SubtractedME.cc
+++ b/MatrixElement/Matchbox/Base/SubtractedME.cc
@@ -1,790 +1,793 @@
// -*- C++ -*-
//
// SubtractedME.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SubtractedME class.
//
#include "SubtractedME.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Cuts/Cuts.h"
#include "ThePEG/Handlers/StdXCombGroup.h"
#include "ThePEG/Utilities/Rebinder.h"
#include "ThePEG/Utilities/Throw.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/MatrixElement/Matchbox/Dipoles/SubtractionDipole.h"
#include "Herwig++/MatrixElement/Matchbox/Base/DipoleRepository.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxXCombGroup.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.h"
using namespace Herwig;
SubtractedME::SubtractedME()
: MEGroup(),
theRealShowerSubtraction(false), theVirtualShowerSubtraction(false),
theLoopSimSubtraction(false), theSubProcessGroups(false) {}
SubtractedME::~SubtractedME() {}
Ptr<MatchboxFactory>::tcptr SubtractedME::factory() const { return theFactory; }
void SubtractedME::factory(Ptr<MatchboxFactory>::tcptr f) { theFactory = f; }
bool SubtractedME::subProcessGroups() const {
return
(factory()->subProcessGroups() && !showerApproximation()) ||
factory()->subtractionData() != "" || theSubProcessGroups;
}
Ptr<ShowerApproximation>::tptr SubtractedME::showerApproximation() const { return factory()->showerApproximation(); }
const vector<Ptr<MatchboxMEBase>::ptr>& SubtractedME::borns() const {
return theBorns.empty() ? factory()->bornMEs() : theBorns;
}
bool SubtractedME::verbose() const { return factory()->verbose(); }
bool SubtractedME::initVerbose() const { return factory()->initVerbose(); }
IBPtr SubtractedME::clone() const {
return new_ptr(*this);
}
IBPtr SubtractedME::fullclone() const {
return new_ptr(*this);
}
StdXCombPtr SubtractedME::makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec& allPBins,
tStdXCombPtr newHead,
tMEPtr newME) {
tMEGroupPtr newMEGroup = dynamic_ptr_cast<tMEGroupPtr>(newME);
if ( !newMEGroup )
newMEGroup = this;
Ptr<MatchboxXCombGroup>::ptr res =
new_ptr(MatchboxXCombGroup(newMaxEnergy, inc,
newEventHandler, newSubProcessHandler,
newExtractor, newCKKW,
newPartonBins, newCuts, newMEGroup,
newDiagrams, mir,
newHead));
res->build(allPBins);
theReal->prepareXComb(*res);
if ( factory()->subtractionData() != "" ) {
set<cPDVector> procs;
for ( DiagramVector::const_iterator d = head()->diagrams().begin();
d != head()->diagrams().end(); ++d ) {
if ( procs.find((**d).partons()) == procs.end() )
procs.insert((**d).partons());
}
for ( set<cPDVector>::const_iterator p = procs.begin();
p != procs.end(); ++p ) {
for ( size_t i = 0; i < (*p).size(); ++i ) {
if ( !(*p)[i]->coloured() )
continue;
if ( i > 1 &&
(*p)[i]->id() == ParticleID::g ) {
softHistograms[SoftSubtractionIndex(*p,i)] = SubtractionHistogram(0.00001,1000.);
ostringstream fname("");
fname << factory()->subtractionData();
const cPDVector& myproc = SoftSubtractionIndex(*p,i).first;
for (cPDVector::const_iterator pp = myproc.begin(); pp != myproc.end(); ++pp) fname << (**pp).PDGName();
fname << "-" << i << "-" << i << "-scatter.dat";
fnamesSoftSubtraction[SoftSubtractionIndex(*p,i)] = fname.str();
if ( theReal->phasespace() )
res->singularLimits().insert(make_pair(i,i));
}
for ( size_t j = i+1; j < (*p).size(); ++j ) {
if ( !(*p)[j]->coloured() )
continue;
long iid = (*p)[i]->id();
long jid = (*p)[j]->id();
if ( i < 2 && j < 2 )
continue;
if ( i < 2 && j > 1 ) {
if ( abs(iid) < 7 && abs(jid) < 7 && iid != jid )
continue;
}
if ( i > 1 && j > 1 ) {
if ( abs(iid) < 7 && abs(jid) < 7 && iid + jid != 0 )
continue;
}
bool haveDipole = false;
for ( MEVector::const_iterator k = dependent().begin();
k != dependent().end(); ++k ) {
const SubtractionDipole& dip = dynamic_cast<const SubtractionDipole&>(**k);
if ( ( (size_t)(dip.realEmitter()) == i && (size_t)(dip.realEmission()) == j ) ||
( (size_t)(dip.realEmitter()) == j && (size_t)(dip.realEmission()) == i ) ) {
haveDipole = true;
break;
}
}
if ( !haveDipole )
continue;
collinearHistograms[CollinearSubtractionIndex(*p,make_pair(i,j))] = SubtractionHistogram(0.00001,1000.);
ostringstream fname("");
fname << factory()->subtractionData();
const cPDVector& myproc = CollinearSubtractionIndex(*p,make_pair(i,j)).first;
for (cPDVector::const_iterator pp = myproc.begin(); pp != myproc.end(); ++pp) fname << (**pp).PDGName();
fname << "-" << i << "-" << j << "-scatter.dat";
fnamesCollinearSubtraction[CollinearSubtractionIndex(*p,make_pair(i,j))] = fname.str();
if ( theReal->phasespace() )
res->singularLimits().insert(make_pair(i,j));
}
}
}
}
return res;
}
void SubtractedME::setXComb(tStdXCombPtr xc) {
MEGroup::setXComb(xc);
lastMatchboxXComb(xc);
}
MEBase::DiagramVector SubtractedME::dependentDiagrams(const cPDVector& proc,
tMEPtr depME) const {
Ptr<SubtractionDipole>::tptr dipole =
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(depME);
if ( !dipole ) {
throw Exception() << "SubtractedME: A dependent matrix element of SubtractedME "
<< "has not been derived from SubtractionDipole. "
<< "Please check the corresponding input file." << Exception::runerror;
}
return dipole->underlyingBornDiagrams(proc);
}
vector<Ptr<SubtractionDipole>::ptr> SubtractedME::dipoles() {
if ( dependent().empty() )
getDipoles();
vector<Ptr<SubtractionDipole>::ptr> res;
for ( MEVector::const_iterator k = dependent().begin();
k != dependent().end(); ++k )
res.push_back(dynamic_ptr_cast<Ptr<SubtractionDipole>::ptr>(*k));
return res;
}
void SubtractedME::getDipoles() {
if ( !dependent().empty() )
return;
Ptr<MatchboxMEBase>::tptr real =
dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(head());
if ( borns().empty() || !real )
throw Exception() << "SubtractedME: The SubtractedME '"
<< name() << "' could not generate "
<< "subtraction terms for the real emission "
<< "matrix element '" << real->name() << "'. "
<< "Please check the corresponding input file." << Exception::runerror;
Ptr<MatchboxMEBase>::ptr myRealEmissionME = real->cloneMe();
ostringstream pname;
pname << fullName() << "/" << myRealEmissionME->name();
if ( ! (generator()->preinitRegister(myRealEmissionME,pname.str()) ) )
throw Exception() << "SubtractedME: Matrix element " << pname.str() << " already existing." << Exception::runerror;
myRealEmissionME->cloneDependencies(pname.str());
head(myRealEmissionME);
real = myRealEmissionME;
dependent().clear();
vector<Ptr<SubtractionDipole>::ptr> genDipoles
= real->getDipoles(DipoleRepository::dipoles(factory()->dipoleSet()),borns());
if ( factory()->subtractionData() != "" ) {
for ( vector<Ptr<SubtractionDipole>::ptr>::const_iterator d =
genDipoles.begin(); d != genDipoles.end(); ++d )
(**d).doTestSubtraction();
}
if ( genDipoles.empty() && factory()->initVerbose() ) {
// probably finite real contribution, but warn
generator()->log() << "\nWarning: No subtraction dipoles could be found for the process:\n";
generator()->log() << real->subProcess().legs[0]->PDGName() << " "
<< real->subProcess().legs[1]->PDGName() << " -> ";
for ( PDVector::const_iterator p = real->subProcess().legs.begin() + 2;
p != real->subProcess().legs.end(); ++p )
generator()->log() << (**p).PDGName() << " ";
generator()->log() << "\n" << flush;
generator()->log() << "Assuming finite tree-level O(alphaS) correction.\n";
}
dependent().resize(genDipoles.size());
copy(genDipoles.begin(),genDipoles.end(),dependent().begin());
if ( !factory()->reweighters().empty() ) {
for ( MEVector::const_iterator d = dependent().begin(); d != dependent().end(); ++d ) {
for ( vector<ReweightPtr>::const_iterator rw = factory()->reweighters().begin();
rw != factory()->reweighters().end(); ++rw )
(**d).addReweighter(*rw);
}
}
if ( !factory()->preweighters().empty() ) {
for ( MEVector::const_iterator d = dependent().begin(); d != dependent().end(); ++d ) {
for ( vector<ReweightPtr>::const_iterator rw = factory()->preweighters().begin();
rw != factory()->preweighters().end(); ++rw )
(**d).addPreweighter(*rw);
}
}
}
void SubtractedME::cloneRealME(const string& prefix) {
theReal = dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(head());
if ( theReal ) {
Ptr<MatchboxMEBase>::ptr myRealEmissionME = theReal->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myRealEmissionME->name();
if ( ! (generator()->preinitRegister(myRealEmissionME,pname.str()) ) )
throw Exception() << "SubtractedME: Matrix element " << pname.str() << " already existing." << Exception::runerror;
myRealEmissionME->cloneDependencies(pname.str());
theReal = myRealEmissionME;
}
head(theReal);
}
void SubtractedME::cloneDipoles(const string& prefix) {
MEVector dipMEs;
for ( MEVector::const_iterator m = dependent().begin();
m != dependent().end(); ++m ) {
Ptr<SubtractionDipole>::tptr dip =
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*m);
assert(dip);
Ptr<SubtractionDipole>::ptr cloned = dip->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << cloned->name();
if ( ! (generator()->preinitRegister(cloned,pname.str()) ) )
throw Exception() << "SubtractedME: Subtraction dipole " << pname.str() << " already existing." << Exception::runerror;
cloned->cloneDependencies(pname.str());
dipMEs.push_back(cloned);
}
dependent() = dipMEs;
}
vector<Ptr<SubtractionDipole>::ptr> SubtractedME::splitDipoles(const cPDVector& born) {
vector<Ptr<SubtractionDipole>::ptr> dips = dipoles();
vector<Ptr<SubtractionDipole>::ptr> res;
for ( vector<Ptr<SubtractionDipole>::ptr>::iterator d = dips.begin();
d != dips.end(); ++d ) {
for ( DiagramVector::const_iterator p = (**d).underlyingBornME()->diagrams().begin();
p != (**d).underlyingBornME()->diagrams().end(); ++p )
if ( born == (**p).partons() ) {
res.push_back(*d);
break;
}
}
return res;
}
void SubtractedME::doRealEmissionScales() {
for ( MEVector::const_iterator m = dependent().begin();
m != dependent().end(); ++m ) {
Ptr<SubtractionDipole>::tptr dip =
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*m);
assert(dip);
dip->doRealEmissionScales();
}
}
void SubtractedME::doRealShowerSubtraction() {
theRealShowerSubtraction = true;
for ( MEVector::const_iterator m = dependent().begin();
m != dependent().end(); ++m ) {
Ptr<SubtractionDipole>::tptr dip =
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*m);
assert(dip);
dip->showerApproximation(showerApproximation());
dip->doRealShowerSubtraction();
}
}
void SubtractedME::doVirtualShowerSubtraction() {
theVirtualShowerSubtraction = true;
for ( MEVector::const_iterator m = dependent().begin();
m != dependent().end(); ++m ) {
Ptr<SubtractionDipole>::tptr dip =
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*m);
assert(dip);
dip->showerApproximation(showerApproximation());
dip->doVirtualShowerSubtraction();
}
}
void SubtractedME::doLoopSimSubtraction() {
theLoopSimSubtraction = true;
for ( MEVector::const_iterator m = dependent().begin();
m != dependent().end(); ++m ) {
Ptr<SubtractionDipole>::tptr dip =
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*m);
assert(dip);
dip->showerApproximation(showerApproximation());
dip->doLoopSimSubtraction();
}
}
void SubtractedME::setVetoScales(tSubProPtr) const {}
void SubtractedME::fillProjectors() {
if ( !virtualShowerSubtraction() && !loopSimSubtraction() )
return;
Ptr<StdXCombGroup>::tptr group =
dynamic_ptr_cast<Ptr<StdXCombGroup>::tptr>(lastXCombPtr());
for ( vector<StdXCombPtr>::const_iterator d = group->dependent().begin();
d != group->dependent().end(); ++d ) {
if ( !(**d).matrixElement()->apply() ||
!(**d).kinematicsGenerated() )
continue;
- if ( (**d).willPassCuts() )
- lastXCombPtr()->projectors().insert((**d).cutWeight(),*d);
+ if ( (**d).willPassCuts() &&
+ (**d).lastMECrossSection()/picobarn != 0.0 ) {
+ lastXCombPtr()->projectors().insert(abs((**d).cutWeight()*(**d).lastMECrossSection()/picobarn),*d);
+ }
}
}
double SubtractedME::reweightHead(const vector<tStdXCombPtr>&) {
if ( showerApproximation() ) {
if ( realShowerSubtraction() )
return 1.;
if ( virtualShowerSubtraction() || loopSimSubtraction() )
return 0.;
}
return 1.;
}
double SubtractedME::reweightDependent(tStdXCombPtr xc, const vector<tStdXCombPtr>& dep) {
if ( showerApproximation() ) {
if ( realShowerSubtraction() )
return 1.0;
if ( virtualShowerSubtraction() || loopSimSubtraction() ) {
if ( !lastXComb().lastProjector() )
return 0.0;
if ( xc != lastXComb().lastProjector() )
return 0.0;
double invPAlpha = 0.;
for ( vector<tStdXCombPtr>::const_iterator d = dep.begin(); d != dep.end(); ++d ) {
if ( !(**d).matrixElement()->apply() ||
!(**d).kinematicsGenerated() )
continue;
- if ( (**d).willPassCuts() ) {
- invPAlpha += (**d).cutWeight();
+ if ( (**d).willPassCuts() &&
+ (**d).lastMECrossSection()/picobarn != 0.0 ) {
+ invPAlpha += abs((**d).cutWeight()*(**d).lastMECrossSection()/picobarn);
}
}
- assert(invPAlpha != 0.0);
- double palpha = xc->cutWeight()/invPAlpha;
+ assert(invPAlpha != 0.0 && xc->cutWeight() != 0.0 && xc->lastMECrossSection()/picobarn != 0.0);
+ double palpha = abs((xc->cutWeight())*(xc->lastMECrossSection()/picobarn))/invPAlpha;
return 1./palpha;
}
}
return 1.;
}
void SubtractedME::doinit() {
// has been deactivated by the factory
if ( !head() ) {
MEBase::doinit();
return;
}
theReal = dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(head());
if ( theReal ) {
getDipoles();
}
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator b = theBorns.begin();
b != theBorns.end(); ++b )
(**b).init();
if ( initVerbose() )
print(Repository::clog());
MEGroup::doinit();
}
void SubtractedME::doinitrun() {
// has been deactivated by the factory
if ( !head() ) {
MEBase::doinitrun();
return;
}
theReal = dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(head());
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator b = theBorns.begin();
b != theBorns.end(); ++b )
(**b).initrun();
MEGroup::doinitrun();
}
void SubtractedME::dofinish() {
// has been deactivated by the factory
if ( !head() ) {
MEBase::dofinish();
return;
}
MEGroup::dofinish();
for ( map<CollinearSubtractionIndex,SubtractionHistogram>::
const_iterator b = collinearHistograms.begin();
b != collinearHistograms.end(); ++b ) {
b->second.dump(factory()->subtractionData(),
factory()->subtractionPlotType(),
factory()->subtractionScatterPlot(),
b->first.first,
b->first.second.first,
b->first.second.second);
}
for ( map<SoftSubtractionIndex,SubtractionHistogram>::
const_iterator b = softHistograms.begin();
b != softHistograms.end(); ++b ) {
b->second.dump(factory()->subtractionData(),
factory()->subtractionPlotType(),
factory()->subtractionScatterPlot(),
b->first.first,
b->first.second,
b->first.second);
}
}
void SubtractedME::print(ostream& os) const {
os << "--- SubtractedME setup ---------------------------------------------------------\n";
os << " '" << name() << "' subtracting real emission\n '"
<< head()->name() << "' using the dipoles:\n";
for ( MEVector::const_iterator d = dependent().begin();
d != dependent().end(); ++d )
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*d)->print(os);
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void SubtractedME::printLastEvent(ostream& os) const {
os << "--- SubtractedME last event information ----------------------------------------\n";
os << " for subtracted matrix element '" << name() << "'\n";
os << " real emission event information:\n";
dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(head())->printLastEvent(os);
os << " dipoles event information:\n";
for ( MEVector::const_iterator d = dependent().begin();
d != dependent().end(); ++d )
dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(*d)->printLastEvent(os);
os << "--- end SubtractedME last event information ------------------------------------\n\n\n";
os << flush;
}
void SubtractedME::lastEventStatistics() {
MEGroup::lastEventStatistics();
if ( !generator() )
return;
/*
if ( verbose() )
printLastEvent(generator()->log());
*/
if ( !collinearHistograms.empty() )
lastEventSubtraction();
}
SubtractedME::SubtractionHistogram::
SubtractionHistogram(double low,
double up,
unsigned int nbins)
: lower(low) {
nbins = nbins + 1;
double c = log10(up/low) / (nbins-1.);
for ( unsigned int k = 1; k < nbins; ++k ) {
bins[low*pow(10.0,k*c)] = make_pair(Constants::MaxDouble,0.);
}
}
void SubtractedME::SubtractionHistogram::persistentOutput(PersistentOStream& os) const {
os << lower << bins;
}
void SubtractedME::SubtractionHistogram::persistentInput(PersistentIStream& is) {
is >> lower >> bins;
}
void SubtractedME::SubtractionHistogram::
dump(const std::string& prefix,
const int& plottype,
const bool& scatterplot,
const cPDVector& proc,
int i, int j) const {
bool bbmin = true;
double bmin = bins.begin()->first;
double bmax = bins.begin()->first;
ostringstream fname("");
for ( cPDVector::const_iterator p = proc.begin();
p != proc.end(); ++p )
fname << (**p).PDGName();
fname << "-" << i << "-" << j;
ofstream out((prefix+fname.str()+".dat").c_str());
for ( map<double,pair<double,double> >::const_iterator b = bins.begin();
b != bins.end(); ++b ) {
map<double,pair<double,double> >::const_iterator bp = b; --bp;
if ( b->second.first != Constants::MaxDouble ||
b->second.second != 0.0 ) {
if ( b != bins.begin() ){
out << bp->first;
if (bbmin){
bmin = bp->first;
bbmin = false;
}
}
else {
out << lower;
if (bbmin){
bmin = lower;
bbmin = false;
}
}
bmax = b->first;
out << " " << b->first
<< " " << b->second.first
<< " " << b->second.second
<< "\n" << flush;
}
}
double xmin = pow(10.0, floor(log10(bmin)));
double xmax = pow(10.0, ceil(log10(bmax)));
ofstream gpout((prefix+fname.str()+".gp").c_str());
gpout << "set terminal epslatex color solid\n"
<< "set output '" << fname.str() << "-plot.tex'\n"
<< "set format x '$10^{%T}$'\n"
<< "set logscale x\n"
<< "set xrange [" << xmin << ":" << xmax << "]\n";
if ( i != j ) {
gpout << "set xlabel '$\\sqrt{s_{" << i << j << "}}/{\\rm GeV}$'\n";
} else {
gpout << "set xlabel '$E_{" << i << "}/{\\rm GeV}$'\n";
}
if (plottype == 1){
gpout << "set size 0.5,0.6\n"
<< "set yrange [0:2]\n";
gpout << "plot 1 w lines lc rgbcolor \"#DDDDDD\" notitle, '" << fname.str()
<< ".dat' u (($1+$2)/2.):3:($4 < 4. ? $4 : 4.) w filledcurves lc rgbcolor \"#00AACC\" t '$";
}
else if (plottype == 2){
gpout << "set key left top Left reverse\n"
<< "set logscale y\n"
<< "set format y '$10^{%T}$'\n"
<< "set size 0.7,0.8\n"
<< "set yrange [1e-6:1e1]\n"
<< "set ylabel '$\\max\\left\\{\\left|\\mathcal{D}-\\mathcal{M}\\right|/\\left|\\mathcal{M}\\right|\\right\\}$'\n"
<< "unset bars\n";
gpout << "plot '";
if (scatterplot) gpout << fname.str() << "-scatter.dat' w points pt 7 ps 0.5 lc rgbcolor \"#00AACC\" not, \\\n'";
gpout << fname.str() << ".dat' u (($1+$2)/2.):4 w lines lw 4 lc rgbcolor \"#00AACC\" t '$";
}
for ( size_t k = 0; k < proc.size(); k++ ) {
if ( k == 2 )
gpout << "\\to ";
gpout << (proc[k]->id() < 0 ? "\\bar{" : "")
<< (proc[k]->id() < 0 ? proc[k]->CC()->PDGName() : proc[k]->PDGName())
<< (proc[k]->id() < 0 ? "}" : "") << " ";
}
gpout << "$'\n";
gpout << "reset\n";
}
void SubtractedME::lastEventSubtraction() {
tStdXCombGroupPtr xc = dynamic_ptr_cast<tStdXCombGroupPtr>(lastXCombPtr());
CrossSection xcme2 = xc->lastHeadCrossSection();
CrossSection xcdip = ZERO;
for ( vector<StdXCombPtr>::const_iterator d = xc->dependent().begin();
d != xc->dependent().end(); ++d ) {
if ( !(*d) )
continue;
if ( !(**d).matrixElement()->apply() )
continue;
if ( !(**d).willPassCuts() )
continue;
xcdip += (**d).lastCrossSection();
}
// want a real emission safely above the cut
if ( xc->cutWeight() < 1.0 )
return;
double delta;
if (factory()->subtractionPlotType() == 2) delta = abs(xcdip+xcme2)/abs(xcme2);
else delta = abs(xcdip)/abs(xcme2);
if ( theReal->phasespace() ) {
size_t i = lastSingularLimit()->first;
size_t j = lastSingularLimit()->second;
if ( i == j &&
softHistograms.find(SoftSubtractionIndex(head()->mePartonData(),i))
!= softHistograms.end() ) {
softHistograms[SoftSubtractionIndex(head()->mePartonData(),i)].
book(meMomenta()[i].t()/GeV,delta);
if ( factory()->subtractionScatterPlot() ){
ofstream outstream((fnamesSoftSubtraction[SoftSubtractionIndex(head()->mePartonData(),i)]).c_str(),ofstream::app);
outstream << meMomenta()[i].t()/GeV << " " << delta << "\n";
}
}
if ( i != j &&
collinearHistograms.find(CollinearSubtractionIndex(head()->mePartonData(),make_pair(i,j)))
!= collinearHistograms.end() ) {
double s = sqrt(2.*meMomenta()[i]*meMomenta()[j])/GeV;
collinearHistograms[CollinearSubtractionIndex(head()->mePartonData(),make_pair(i,j))].
book(s,delta);
if ( factory()->subtractionScatterPlot() ){
ofstream outstream((fnamesCollinearSubtraction[CollinearSubtractionIndex(head()->mePartonData(),make_pair(i,j))]).c_str(),ofstream::app);
outstream << s << " " << delta << "\n";
}
}
return;
}
for ( size_t i = 0; i < meMomenta().size(); ++i ) {
if ( i > 1 ) {
if ( softHistograms.find(SoftSubtractionIndex(head()->mePartonData(),i))
!= softHistograms.end() ) {
softHistograms[SoftSubtractionIndex(head()->mePartonData(),i)].
book(meMomenta()[i].t()/GeV,delta);
if ( factory()->subtractionScatterPlot() ){
ofstream outstream((fnamesSoftSubtraction[SoftSubtractionIndex(head()->mePartonData(),i)]).c_str(),ofstream::app);
outstream << meMomenta()[i].t()/GeV << " " << delta << "\n";
}
}
}
for ( size_t j = i+1; j < meMomenta().size(); ++j ) {
if ( collinearHistograms.find(CollinearSubtractionIndex(head()->mePartonData(),make_pair(i,j)))
== collinearHistograms.end() )
continue;
double s = sqrt(2.*meMomenta()[i]*meMomenta()[j])/GeV;
collinearHistograms[CollinearSubtractionIndex(head()->mePartonData(),make_pair(i,j))].
book(s,delta);
if ( factory()->subtractionScatterPlot() ){
ofstream outstream((fnamesCollinearSubtraction[CollinearSubtractionIndex(head()->mePartonData(),make_pair(i,j))]).c_str(),ofstream::app);
outstream << s << " " << delta << "\n";
}
}
}
}
void SubtractedME::persistentOutput(PersistentOStream & os) const {
os << theLastXComb << theFactory << theBorns << theReal
<< collinearHistograms << softHistograms
<< fnamesSoftSubtraction
<< theRealShowerSubtraction << theVirtualShowerSubtraction
<< theLoopSimSubtraction
<< theSubProcessGroups;
}
void SubtractedME::persistentInput(PersistentIStream & is, int) {
is >> theLastXComb >> theFactory >> theBorns >> theReal
>> collinearHistograms >> softHistograms
>> fnamesSoftSubtraction
>> theRealShowerSubtraction >> theVirtualShowerSubtraction
>> theLoopSimSubtraction
>> theSubProcessGroups;
lastMatchboxXComb(theLastXComb);
}
void SubtractedME::Init() {
static ClassDocumentation<SubtractedME> documentation
("SubtractedME represents a subtracted real emission matrix element.");
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<SubtractedME,MEGroup>
describeHerwigSubtractedME("Herwig::SubtractedME", "Herwig.so");
diff --git a/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc b/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc
--- a/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc
+++ b/MatrixElement/Matchbox/Dipoles/SubtractionDipole.cc
@@ -1,1221 +1,1218 @@
// -*- C++ -*-
//
// SubtractionDipole.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SubtractionDipole class.
//
#include "SubtractionDipole.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/StandardModel/StandardModelBase.h"
#include "ThePEG/Utilities/Rebinder.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/PDF/PartonBin.h"
#include "ThePEG/PDF/PartonExtractor.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/TildeKinematics.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/InvertedTildeKinematics.h"
#include "Herwig++/MatrixElement/Matchbox/MatchboxFactory.h"
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
SubtractionDipole::SubtractionDipole()
: MEBase(), theSplitting(false), theApply(true), theSubtractionTest(false),
theIgnoreCuts(false),
theRealEmitter(-1), theRealEmission(-1), theRealSpectator(-1),
lastRealEmissionKey(realEmissionKey(cPDVector(),-1,-1,-1)),
lastUnderlyingBornKey(underlyingBornKey(cPDVector(),-1,-1)),
theBornEmitter(-1), theBornSpectator(-1),
theLastSubtractionScale(ZERO), theLastSplittingScale(ZERO),
theLastSubtractionPt(ZERO), theLastSplittingPt(ZERO),
theLastSubtractionZ(0.0), theLastSplittingZ(0.0),
theRealShowerSubtraction(false), theVirtualShowerSubtraction(false),
theLoopSimSubtraction(false), theRealEmissionScales(false),
theShowerHardScale(ZERO), theShowerScale(ZERO),
theIsInShowerPhasespace(false), theIsAboveCutoff(false) {}
SubtractionDipole::~SubtractionDipole() {}
double SubtractionDipole::alpha() const{
return factory()->alphaParameter();
}
void SubtractionDipole::clearBookkeeping() {
theRealEmitter = -1;
theRealEmission = -1;
theRealSpectator = -1;
theBornEmitter = -1;
theBornSpectator = -1;
theMergingMap.clear();
theSplittingMap.clear();
theIndexMap.clear();
theUnderlyingBornDiagrams.clear();
theRealEmissionDiagrams.clear();
}
void SubtractionDipole::setupBookkeeping(const map<Ptr<DiagramBase>::ptr,SubtractionDipole::MergeInfo>& mergeInfo) {
theMergingMap.clear();
theSplittingMap.clear();
theUnderlyingBornDiagrams.clear();
theRealEmissionDiagrams.clear();
int xemitter = -1;
int xspectator = -1;
map<int,int> mergeLegs;
map<int,int> remapLegs;
map<int,int> realBornMap;
map<int,int> bornRealMap;
for ( map<Ptr<DiagramBase>::ptr,MergeInfo>::const_iterator mit = mergeInfo.begin();
mit != mergeInfo.end(); ++mit ) {
DiagramVector::const_iterator bd =
theUnderlyingBornME->diagrams().end();
map<int,int> theRemapLegs;
for ( DiagramVector::const_iterator b =
theUnderlyingBornME->diagrams().begin();
b != theUnderlyingBornME->diagrams().end(); ++b )
if ( mit->second.diagram->isSame(*b,theRemapLegs) ) {
bd = b; break;
}
// no underlying Born
if ( bd == theUnderlyingBornME->diagrams().end() )
continue;
if ( xemitter == -1 ) {
xemitter = mit->second.emitter;
mergeLegs = mit->second.mergeLegs;
remapLegs = theRemapLegs;
assert(remapLegs.find(xemitter) != remapLegs.end());
xemitter = remapLegs[xemitter];
// work out the leg remapping real -> born
for ( map<int,int>::const_iterator k = mergeLegs.begin();
k != mergeLegs.end(); ++k ) {
assert(remapLegs.find(k->second) != remapLegs.end());
realBornMap[k->first] = remapLegs[k->second];
}
// work out the leg remapping born -> real
for ( map<int,int>::const_iterator k = realBornMap.begin();
k != realBornMap.end(); ++k ) {
bornRealMap[k->second] = k->first;
}
// work out the spectator
assert(mergeLegs.find(realSpectator()) != mergeLegs.end());
assert(remapLegs.find(mergeLegs[realSpectator()]) != remapLegs.end());
xspectator = realBornMap[realSpectator()];
}
RealEmissionKey realKey = realEmissionKey((*mit->first).partons(),realEmitter(),realEmission(),realSpectator());
UnderlyingBornKey bornKey = underlyingBornKey((**bd).partons(),xemitter,xspectator);
if ( theMergingMap.find(realKey) == theMergingMap.end() )
theMergingMap.insert(make_pair(realKey,make_pair(bornKey,realBornMap)));
RealEmissionInfo realInfo = make_pair(realKey,bornRealMap);
bool gotit = false;
typedef multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator spIterator;
pair<spIterator,spIterator> range = theSplittingMap.equal_range(bornKey);
for ( ; range.first != range.second; ++range.first )
if ( range.first->second == realInfo ) {
gotit = true;
break;
}
if ( !gotit ) {
theSplittingMap.insert(make_pair(bornKey,realInfo));
theUnderlyingBornDiagrams[process(realKey)].push_back(*bd);
theRealEmissionDiagrams[process(bornKey)].push_back(mit->first);
}
}
if ( theSplittingMap.empty() )
return;
theIndexMap.clear();
for ( multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator s =
theSplittingMap.begin(); s != theSplittingMap.end(); ++s ) {
theIndexMap[process(s->first)] = make_pair(emitter(s->first),spectator(s->first));
}
}
void SubtractionDipole::subtractionBookkeeping() {
/*
if ( theMergingMap.empty() )
setupBookkeeping();
*/
assert(!theMergingMap.empty());
lastRealEmissionKey =
realEmissionKey(lastHeadXComb().mePartonData(),realEmitter(),realEmission(),realSpectator());
map<RealEmissionKey,UnderlyingBornInfo>::const_iterator k =
theMergingMap.find(lastRealEmissionKey);
if ( k == theMergingMap.end() ) {
theApply = false;
return;
}
theApply = true;
lastUnderlyingBornKey = k->second.first;
bornEmitter(emitter(lastUnderlyingBornKey));
bornSpectator(spectator(lastUnderlyingBornKey));
}
void SubtractionDipole::splittingBookkeeping() {
/*
if ( theMergingMap.empty() )
setupBookkeeping();
*/
assert(!theMergingMap.empty());
map<cPDVector,pair<int,int> >::const_iterator esit =
theIndexMap.find(lastHeadXComb().mePartonData());
if ( esit == theIndexMap.end() ) {
theApply = false;
return;
}
theApply = true;
pair<int,int> es = esit->second;
bornEmitter(es.first);
bornSpectator(es.second);
lastUnderlyingBornKey = underlyingBornKey(lastHeadXComb().mePartonData(),bornEmitter(),bornSpectator());
typedef multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator spit;
pair<spit,spit> kr = theSplittingMap.equal_range(lastUnderlyingBornKey);
assert(kr.first != kr.second);
lastRealEmissionInfo = kr.first;
for ( ; lastRealEmissionInfo != kr.second; ++lastRealEmissionInfo )
if ( process(lastRealEmissionInfo->second.first) == lastXComb().mePartonData() )
break;
assert(lastRealEmissionInfo != kr.second);
lastRealEmissionKey = lastRealEmissionInfo->second.first;
realEmitter(emitter(lastRealEmissionKey));
realEmission(emission(lastRealEmissionKey));
realSpectator(spectator(lastRealEmissionKey));
}
StdXCombPtr SubtractionDipole::makeXComb(Energy newMaxEnergy, const cPDPair & inc,
tEHPtr newEventHandler,tSubHdlPtr newSubProcessHandler,
tPExtrPtr newExtractor, tCascHdlPtr newCKKW,
const PBPair & newPartonBins, tCutsPtr newCuts,
const DiagramVector & newDiagrams, bool mir,
const PartonPairVec& allBins,
tStdXCombPtr newHead,
tMEPtr newME) {
if ( !newME )
newME = this;
if ( !splitting() ) {
return
underlyingBornME()->makeXComb(newMaxEnergy, inc,
newEventHandler, newSubProcessHandler,
newExtractor, newCKKW,
newPartonBins, newCuts,
newDiagrams, mir, allBins,
newHead, newME);
}
return
realEmissionME()->makeXComb(newMaxEnergy, inc,
newEventHandler, newSubProcessHandler,
newExtractor, newCKKW,
newPartonBins, newCuts,
newDiagrams, mir, allBins,
newHead, newME);
}
StdXCombPtr SubtractionDipole::makeXComb(tStdXCombPtr newHead,
const PBPair & newPartonBins,
const DiagramVector & newDiagrams,
tMEPtr newME) {
if ( !newME )
newME = this;
if ( !splitting() ) {
return
underlyingBornME()->makeXComb(newHead, newPartonBins,
newDiagrams, newME);
}
return
realEmissionME()->makeXComb(newHead, newPartonBins,
newDiagrams, newME);
}
StdXCombPtr SubtractionDipole::makeBornXComb(tStdXCombPtr realXC) {
const cPDVector& proc = const_cast<const StandardXComb&>(*realXC).mePartonData();
lastRealEmissionKey =
realEmissionKey(proc,realEmitter(),realEmission(),realSpectator());
map<RealEmissionKey,UnderlyingBornInfo>::const_iterator k =
theMergingMap.find(lastRealEmissionKey);
if ( k == theMergingMap.end() )
return StdXCombPtr();
PartonPairVec pbs = realXC->pExtractor()->getPartons(realXC->maxEnergy(),
realXC->particles(),
*(realXC->cuts()));
DiagramVector bornDiags = underlyingBornDiagrams(proc);
assert(!bornDiags.empty());
PartonPairVec::iterator ppit = pbs.begin();
for ( ; ppit != pbs.end(); ++ppit ) {
if ( ppit->first->parton() == bornDiags.front()->partons()[0] &&
ppit->second->parton() == bornDiags.front()->partons()[1] )
break;
}
assert(ppit != pbs.end());
return
underlyingBornME()->makeXComb(realXC,*ppit,bornDiags,this);
}
vector<StdXCombPtr> SubtractionDipole::makeRealXCombs(tStdXCombPtr bornXC) {
const cPDVector& proc = const_cast<const StandardXComb&>(*bornXC).mePartonData();
map<cPDVector,pair<int,int> >::const_iterator esit = theIndexMap.find(proc);
if ( esit == theIndexMap.end() )
return vector<StdXCombPtr>();
pair<int,int> es = esit->second;
bornEmitter(es.first);
bornSpectator(es.second);
lastUnderlyingBornKey = underlyingBornKey(proc,bornEmitter(),bornSpectator());
if ( theSplittingMap.find(lastUnderlyingBornKey) == theSplittingMap.end() )
return vector<StdXCombPtr>();
PartonPairVec pbs = bornXC->pExtractor()->getPartons(bornXC->maxEnergy(),
bornXC->particles(),
*(bornXC->cuts()));
DiagramVector realDiags = realEmissionDiagrams(proc);
assert(!realDiags.empty());
vector<StdXCombPtr> res;
map<cPDVector,DiagramVector> realProcs;
for ( MEBase::DiagramVector::const_iterator d = realDiags.begin();
d != realDiags.end(); ++d ) {
realProcs[(**d).partons()].push_back(*d);
}
for ( map<cPDVector,DiagramVector>::const_iterator pr =
realProcs.begin(); pr != realProcs.end(); ++pr ) {
PartonPairVec::iterator ppit = pbs.begin();
for ( ; ppit != pbs.end(); ++ppit ) {
if ( ppit->first->parton() == pr->second.front()->partons()[0] &&
ppit->second->parton() == pr->second.front()->partons()[1] )
break;
}
assert(ppit != pbs.end());
StdXCombPtr rxc =
realEmissionME()->makeXComb(bornXC,*ppit,pr->second,this);
res.push_back(rxc);
}
return res;
}
const MEBase::DiagramVector& SubtractionDipole::underlyingBornDiagrams(const cPDVector& real) const {
static DiagramVector empty;
map<cPDVector,DiagramVector>::const_iterator k = theUnderlyingBornDiagrams.find(real);
if (k == theUnderlyingBornDiagrams.end() )
return empty;
return k->second;
}
const MEBase::DiagramVector& SubtractionDipole::realEmissionDiagrams(const cPDVector& born) const {
static DiagramVector empty;
map<cPDVector,DiagramVector>::const_iterator k = theRealEmissionDiagrams.find(born);
if ( k == theRealEmissionDiagrams.end() )
return empty;
return k->second;
}
void SubtractionDipole::getDiagrams() const {
if ( splitting() ) {
realEmissionME()->diagrams();
useDiagrams(realEmissionME());
} else {
underlyingBornME()->diagrams();
useDiagrams(underlyingBornME());
}
}
Selector<MEBase::DiagramIndex> SubtractionDipole::diagrams(const DiagramVector & dv) const {
Ptr<MatchboxMEBase>::tcptr me =
splitting() ?
realEmissionME() :
underlyingBornME();
if ( me->phasespace() ) {
me->phasespace()->setXComb(lastXCombPtr());
me->phasespace()->fillDiagramWeights();
}
return
me->diagrams(dv);
}
Selector<const ColourLines *>
SubtractionDipole::colourGeometries(tcDiagPtr diag) const {
return
splitting() ?
realEmissionME()->colourGeometries(diag) :
underlyingBornME()->colourGeometries(diag);
}
const ColourLines &
SubtractionDipole::selectColourGeometry(tcDiagPtr diag) const {
return
splitting() ?
realEmissionME()->selectColourGeometry(diag) :
underlyingBornME()->selectColourGeometry(diag);
}
void SubtractionDipole::flushCaches() {
theUnderlyingBornME->flushCaches();
theRealEmissionME->flushCaches();
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator r =
reweights().begin(); r != reweights().end(); ++r ) {
(**r).flushCaches();
}
}
void SubtractionDipole::setXComb(tStdXCombPtr xc) {
if ( !xc ) {
theApply = false;
return;
} else {
theApply = true;
}
lastMatchboxXComb(xc);
MEBase::setXComb(xc);
if ( splitting() ) {
realEmissionME()->setXComb(xc);
underlyingBornME()->setXComb(xc->head());
splittingBookkeeping();
} else {
realEmissionME()->setXComb(xc->head());
underlyingBornME()->setXComb(xc);
subtractionBookkeeping();
}
if ( !apply() )
return;
}
void SubtractionDipole::setKinematics() {
MEBase::setKinematics();
if ( splitting() )
realEmissionME()->setKinematics();
else
underlyingBornME()->setKinematics();
}
bool SubtractionDipole::generateKinematics(const double * r) {
if ( lastXCombPtr()->kinematicsGenerated() )
return true;
if ( splitting() ) {
if ( !generateRadiationKinematics(r) )
return false;
realEmissionME()->lastXCombPtr()->setIncomingPartons();
realEmissionME()->setScale();
double jac = jacobian();
jac *= pow(underlyingBornME()->lastXComb().lastSHat() / realEmissionME()->lastXComb().lastSHat(),
realEmissionME()->lastXComb().mePartonData().size()-4.);
jacobian(jac);
assert(lastXCombPtr() == realEmissionME()->lastXCombPtr());
lastXCombPtr()->didGenerateKinematics();
return true;
}
if ( !generateTildeKinematics() )
return false;
underlyingBornME()->lastXCombPtr()->setIncomingPartons();
underlyingBornME()->setScale();
assert(lastXCombPtr() == underlyingBornME()->lastXCombPtr());
underlyingBornME()->lastXCombPtr()->setIncomingPartons();
// need to have the scale and x's available for checking shower phase space
if ( showerApproximation() &&
lastXCombPtr()->willPassCuts() )
showerApproximation()->getShowerVariables();
lastXCombPtr()->didGenerateKinematics();
return true;
}
int SubtractionDipole::nDim() const {
if ( !splitting() )
return underlyingBornME()->nDim();
return underlyingBornME()->nDim() + nDimRadiation();
}
void SubtractionDipole::clearKinematics() {
MEBase::clearKinematics();
if ( splitting() )
realEmissionME()->clearKinematics();
else
underlyingBornME()->clearKinematics();
}
void SubtractionDipole::tildeKinematics(Ptr<TildeKinematics>::tptr tk) {
theTildeKinematics = tk;
}
bool SubtractionDipole::generateTildeKinematics() {
assert(!splitting());
Ptr<TildeKinematics>::tptr kinematics = theTildeKinematics;
if ( showerApproximation() ) {
showerApproximation()->setBornXComb(lastXCombPtr());
showerApproximation()->setRealXComb(realEmissionME()->lastXCombPtr());
showerApproximation()->setDipole(this);
showerApproximation()->checkCutoff();
if ( showerApproximation()->showerTildeKinematics() &&
isAboveCutoff() &&
realShowerSubtraction() )
kinematics = showerApproximation()->showerTildeKinematics();
}
if ( !kinematics ) {
jacobian(0.0);
return false;
}
kinematics->prepare(lastHeadXCombPtr(),lastXCombPtr());
if ( !kinematics->doMap() ) {
jacobian(0.0);
return false;
}
theLastSubtractionScale = kinematics->lastScale();
theLastSubtractionPt = kinematics->lastPt();
theLastSubtractionZ = kinematics->lastZ();
meMomenta().resize(lastHeadXComb().meMomenta().size() - 1);
assert(mergingMap().find(lastRealEmissionKey) != mergingMap().end());
map<int,int>& trans = theMergingMap[lastRealEmissionKey].second;
int n = lastHeadXComb().meMomenta().size();
for ( int k = 0; k < n; ++k ) {
if ( k == realEmitter() || k == realEmission() || k == realSpectator() )
continue;
meMomenta()[trans[k]] = lastHeadXComb().meMomenta()[k];
if ( kinematics->doesTransform() && k > 1 )
meMomenta()[trans[k]] = kinematics->transform(meMomenta()[trans[k]]);
}
meMomenta()[bornEmitter()] =
const_cast<const TildeKinematics&>(*kinematics).bornEmitterMomentum();
meMomenta()[bornSpectator()] =
const_cast<const TildeKinematics&>(*kinematics).bornSpectatorMomentum();
cPDVector::const_iterator pd = mePartonData().begin();
vector<Lorentz5Momentum>::iterator p = meMomenta().begin();
for ( ; pd != mePartonData().end(); ++pd, ++p ) {
p->setMass((**pd).hardProcessMass());
p->rescaleRho();
}
jacobian(realEmissionME()->lastXComb().jacobian());
logGenerateTildeKinematics();
return true;
}
void SubtractionDipole::invertedTildeKinematics(Ptr<InvertedTildeKinematics>::tptr itk) {
theInvertedTildeKinematics = itk;
}
int SubtractionDipole::nDimRadiation() const {
return invertedTildeKinematics() ?
invertedTildeKinematics()->nDimRadiation() :
0;
}
bool SubtractionDipole::generateRadiationKinematics(const double * r) {
assert(splitting());
Ptr<InvertedTildeKinematics>::tptr kinematics = theInvertedTildeKinematics;
if ( showerApproximation() ) {
showerApproximation()->setBornXComb(lastHeadXCombPtr());
showerApproximation()->setRealXComb(lastXCombPtr());
showerApproximation()->setDipole(this);
if ( showerApproximation()->showerInvertedTildeKinematics() ) {
kinematics = showerApproximation()->showerInvertedTildeKinematics();
}
}
if ( !kinematics ) {
jacobian(0.0);
return false;
}
kinematics->prepare(lastXCombPtr(),lastHeadXCombPtr());
if ( !kinematics->doMap(r) ) {
jacobian(0.0);
return false;
}
theLastSplittingScale = kinematics->lastScale();
theLastSplittingPt = kinematics->lastPt();
theLastSplittingZ = kinematics->lastZ();
meMomenta().resize(lastHeadXComb().meMomenta().size() + 1);
assert(splittingMap().find(lastUnderlyingBornKey) != splittingMap().end());
map<int,int>& trans = const_cast<map<int,int>&>(lastRealEmissionInfo->second.second);
int n = lastHeadXComb().meMomenta().size();
for ( int k = 0; k < n; ++k ) {
if ( k == bornEmitter() || k == bornSpectator() )
continue;
meMomenta()[trans[k]] = lastHeadXComb().meMomenta()[k];
if ( kinematics->doesTransform() && k > 1 )
meMomenta()[trans[k]] = kinematics->transform(meMomenta()[trans[k]]);
}
meMomenta()[realEmitter()] =
const_cast<const InvertedTildeKinematics&>(*kinematics).realEmitterMomentum();
meMomenta()[realEmission()] =
const_cast<const InvertedTildeKinematics&>(*kinematics).realEmissionMomentum();
meMomenta()[realSpectator()] =
const_cast<const InvertedTildeKinematics&>(*kinematics).realSpectatorMomentum();
cPDVector::const_iterator pd = mePartonData().begin();
vector<Lorentz5Momentum>::iterator p = meMomenta().begin();
for ( ; pd != mePartonData().end(); ++pd, ++p ) {
p->setMass((**pd).hardProcessMass());
p->rescaleRho();
}
jacobian(underlyingBornME()->lastXComb().jacobian() *
kinematics->jacobian());
logGenerateRadiationKinematics(r);
return true;
}
void SubtractionDipole::ptCut(Energy cut) {
theInvertedTildeKinematics->ptCut(cut);
}
CrossSection SubtractionDipole::dSigHatDR(Energy2 factorizationScale) const {
double pdfweight = 1.;
double jac = jacobian();
if ( splitting() && jac == 0.0 ) {
lastMECrossSection(ZERO);
- lastME2(0.0);
return ZERO;
}
if ( factorizationScale == ZERO ) {
factorizationScale = underlyingBornME()->lastScale();
}
if ( havePDFWeight1() ) {
pdfweight *= realEmissionME()->pdf1(factorizationScale);
}
if ( havePDFWeight2() ) {
pdfweight *= realEmissionME()->pdf2(factorizationScale);
}
lastMEPDFWeight(pdfweight);
bool needTheDipole = true;
CrossSection shower = ZERO;
double lastThetaMu = 1.0;
double showerFactor = 1.;
if ( showerApproximation() ) {
assert(!splitting());
showerApproximation()->setBornXComb(lastXCombPtr());
showerApproximation()->setRealXComb(realEmissionME()->lastXCombPtr());
showerApproximation()->setDipole(const_cast<SubtractionDipole*>(this));
if ( !isAboveCutoff() ) {
showerApproximation()->wasBelowCutoff();
lastThetaMu = 0.0;
} else {
lastThetaMu = 1.0;
}
if ( lastThetaMu > 0.0 && isInShowerPhasespace() ) {
if ( realShowerSubtraction() )
shower = showerApproximation()->dSigHatDR()*lastThetaMu;
if ( virtualShowerSubtraction() || loopSimSubtraction() )
shower = -showerApproximation()->dSigHatDR()*lastThetaMu;
if ( virtualShowerSubtraction() &&
isAboveCutoff() &&
showerApproximation()->showerTildeKinematics() ) {
// map shower to dipole kinematics; we are always above the
// cutoff in this case
showerFactor *=
showerApproximation()->showerTildeKinematics()->jacobianRatio();
}
shower *= showerFactor;
}
if ( realShowerSubtraction() && lastThetaMu == 1.0 )
needTheDipole = false;
if ( virtualShowerSubtraction() && lastThetaMu == 0.0 )
needTheDipole = false;
if ( factory()->loopSimCorrections() ||
factory()->meCorrectionsOnly() )
needTheDipole = false;
}
double xme2 = 0.0;
if ( needTheDipole )
xme2 = me2();
if ( factory()->loopSimCorrections() ||
factory()->meCorrectionsOnly() ) {
assert(showerApproximation());
xme2 = realEmissionME()->me2() * showerApproximation()->channelWeight();
double rws =
pow(underlyingBornME()->lastXComb().lastAlphaS()/
realEmissionME()->lastXComb().lastAlphaS(),
realEmissionME()->orderInAlphaS());
xme2 *= rws;
double rwe =
pow(underlyingBornME()->lastXComb().lastAlphaEM()/
realEmissionME()->lastXComb().lastAlphaEM(),
underlyingBornME()->orderInAlphaEW());
xme2 *= rwe;
}
if ( realShowerSubtraction() )
xme2 *= 1. - lastThetaMu;
if ( virtualShowerSubtraction() || loopSimSubtraction() )
xme2 *= lastThetaMu;
double coupl = lastMECouplings();
coupl *= underlyingBornME()->lastXComb().lastAlphaS();
lastMECouplings(coupl);
- lastME2(xme2);
-
CrossSection res =
sqr(hbarc) * jac * pdfweight * xme2 /
(2. * realEmissionME()->lastXComb().lastSHat());
if ( !showerApproximation() && xme2 != 0.0 ) {
double weight = 0.0;
bool applied = false;
for ( vector<Ptr<MatchboxReweightBase>::ptr>::const_iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).setXComb(theRealEmissionME->lastXCombPtr());
if ( !(**rw).apply() )
continue;
weight += (**rw).evaluate();
applied = true;
}
if ( applied )
res *= weight;
}
lastMECrossSection(-res-shower);
logDSigHatDR(jac);
return lastMECrossSection();
}
void SubtractionDipole::print(ostream& os) const {
os << "--- SubtractionDipole setup ----------------------------------------------------\n";
os << " subtraction '" << name() << "'\n for real emission '"
<< theRealEmissionME->name() << "'\n using underlying Born '"
<< theUnderlyingBornME->name() << "'\n";
os << " tilde kinematics are '"
<< (theTildeKinematics ? theTildeKinematics->name() : "")
<< " '\n inverted tilde kinematics are '"
<< (theInvertedTildeKinematics ? theInvertedTildeKinematics->name() : "") << "'\n";
os << " the following subtraction mappings have been found:\n";
for ( map<RealEmissionKey,UnderlyingBornInfo>::const_iterator m =
theMergingMap.begin(); m != theMergingMap.end(); ++m ) {
os << " " << process(m->second.first)[0]->PDGName() << " "
<< process(m->second.first)[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = process(m->second.first).begin() + 2;
p != process(m->second.first).end(); ++p ) {
os << (**p).PDGName() << " ";
}
os << "[" << emitter(m->second.first) << "," << spectator(m->second.first) << "] <=> ";
os << process(m->first)[0]->PDGName() << " "
<< process(m->first)[1]->PDGName() << " -> ";
for ( cPDVector::const_iterator p = process(m->first).begin() + 2;
p != process(m->first).end(); ++p ) {
os << (**p).PDGName() << " ";
}
os << "[(" << emitter(m->first) << "," << emission(m->first) << ")," << spectator(m->first) << "]\n"
<< " non-dipole momenta ( ";
for ( map<int,int>::const_iterator k = m->second.second.begin();
k != m->second.second.end(); ++k ) {
if ( k->first == spectator(m->first) )
continue;
os << k->second << " ";
}
os << ") <=> ( ";
for ( map<int,int>::const_iterator k = m->second.second.begin();
k != m->second.second.end(); ++k ) {
if ( k->first == spectator(m->first) )
continue;
os << k->first << " ";
}
os << ")\n";
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void SubtractionDipole::printLastEvent(ostream& os) const {
os << "--- SubtractionDipole last event information -----------------------------------\n";
os << " for dipole '" << name() << "' applying ["
<< bornEmitter() << "," << bornSpectator() << "] <=> [("
<< realEmitter() << "," << realEmission() << ")," << realSpectator() << "]\n"
<< " evaluated the cross section/nb " << (lastMECrossSection()/nanobarn) << "\n"
<< " with subtraction parameters x[0] = " << subtractionParameters()[0]
<< " x[1] = " << subtractionParameters()[1] << "\n";
os << " the last real emission event was:\n";
realEmissionME()->printLastEvent(os);
os << " the last underlying Born event was:\n";
underlyingBornME()->printLastEvent(os);
os << "--- end SubtractionDipole last event information -------------------------------\n";
os << flush;
}
void SubtractionDipole::logME2() const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
tcStdXCombPtr bornxc = splitting() ? lastHeadXCombPtr() : lastXCombPtr();
tcStdXCombPtr realxc = splitting() ? lastXCombPtr() : lastHeadXCombPtr();
generator()->log() << "'" << name() << "' evaluated me2 using\n"
<< "Born XComb " << bornxc << " real XComb " << realxc << "\n";
generator()->log() << "subtraction parameters: ";
copy(subtractionParameters().begin(),subtractionParameters().end(),
ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "Born phase space point (in GeV):\n";
vector<Lorentz5Momentum>::const_iterator pit = bornxc->meMomenta().begin();
cPDVector::const_iterator dit = bornxc->mePartonData().begin();
for ( ; pit != bornxc->meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << bornxc->lastX1() << " x2 = " << bornxc->lastX2() << "\n"
<< "sHat/GeV2 = " << (bornxc->lastSHat()/GeV2) << "\n";
generator()->log() << "Real emission phase space point (in GeV):\n";
pit = realxc->meMomenta().begin();
dit = realxc->mePartonData().begin();
for ( ; pit != realxc->meMomenta().end() ; ++pit, ++dit )
generator()->log() << (**dit).PDGName() << " : "
<< (*pit/GeV) << "\n";
generator()->log() << "with x1 = " << realxc->lastX1() << " x2 = " << realxc->lastX2() << "\n"
<< "sHat/GeV2 = " << (realxc->lastSHat()/GeV2) << "\n";
}
void SubtractionDipole::logDSigHatDR(double effectiveJac) const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
tcStdXCombPtr bornxc = splitting() ? lastHeadXCombPtr() : lastXCombPtr();
tcStdXCombPtr realxc = splitting() ? lastXCombPtr() : lastHeadXCombPtr();
generator()->log() << "'" << name() << "' evaluated cross section using\n"
<< "Born XComb " << bornxc << " real XComb " << realxc << "\n"
<< "Jacobian = " << jacobian()
<< " effective Jacobian = " << effectiveJac << "\n"
<< "Born sHat/GeV2 = " << (bornxc->lastSHat()/GeV2)
<< " real sHat/GeV2 = " << (realxc->lastSHat()/GeV2)
<< " dsig/nb = "
<< (lastMECrossSection()/nanobarn) << "\n" << flush;
}
void SubtractionDipole::logGenerateTildeKinematics() const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
generator()->log() << "'" << name() << "' generating tilde kinematics.\n"
<< "configuration: [" << bornEmitter() << ","
<< bornSpectator() << "] => "
<< "[(" << realEmitter() << "," << realEmission() << "),"
<< realSpectator() << "]\n"
<< "with real xcomb " << lastHeadXCombPtr() << " born xcomb "
<< lastXCombPtr() << "\n"
<< "from real emission phase space point:\n";
Lorentz5Momentum rSum;
vector<Lorentz5Momentum>::const_iterator pr = lastHeadXComb().meMomenta().begin();
cPDVector::const_iterator dr = lastHeadXComb().mePartonData().begin();
size_t count = 0;
for ( ; pr != lastHeadXComb().meMomenta().end(); ++pr,++dr ) {
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
if ( count < 2 ) {
rSum -= *pr;
} else {
rSum += *pr;
}
++count;
}
generator()->log() << "sum : " << (rSum/GeV) << "\n";
generator()->log() << "subtraction parameters: ";
copy(subtractionParameters().begin(),subtractionParameters().end(),
ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n"
<< "with scale/GeV = " << (theLastSubtractionScale/GeV)
<< "and pt/GeV = " << (theLastSubtractionPt/GeV) << "\n";
generator()->log() << "generated tilde kinematics:\n";
pr = lastXComb().meMomenta().begin();
dr = lastXComb().mePartonData().begin();
count = 0;
Lorentz5Momentum bSum;
for ( ; pr != lastXComb().meMomenta().end(); ++pr,++dr ) {
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
if ( count < 2 ) {
bSum -= *pr;
} else {
bSum += *pr;
}
++count;
}
generator()->log() << "sum : " << (bSum/GeV) << "\n";
generator()->log() << "Jacobian = " << jacobian() << "\n" << flush;
}
void SubtractionDipole::logGenerateRadiationKinematics(const double * r) const {
if ( !realEmissionME()->verbose() &&
!underlyingBornME()->verbose() )
return;
generator()->log() << "'" << name() << "' generating radiation kinematics.\n"
<< "configuration: [" << bornEmitter() << ","
<< bornSpectator() << "] => "
<< "[(" << realEmitter() << "," << realEmission() << "),"
<< realSpectator() << "]\n"
<< "with born xcomb " << lastHeadXCombPtr() << " real xcomb "
<< lastXCombPtr() << "\n"
<< "from random numbers:\n";
copy(r,r+nDimRadiation(),ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n";
generator()->log() << "and born phase space point:\n";
vector<Lorentz5Momentum>::const_iterator pr = lastHeadXComb().meMomenta().begin();
cPDVector::const_iterator dr = lastHeadXComb().mePartonData().begin();
for ( ; pr != lastHeadXComb().meMomenta().end(); ++pr,++dr )
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
generator()->log() << "subtraction parameters: ";
copy(subtractionParameters().begin(),subtractionParameters().end(),
ostream_iterator<double>(generator()->log()," "));
generator()->log() << "\n" << flush;
generator()->log() << "scales: scale/GeV = " << (theLastSplittingScale/GeV)
<< " pt/GeV = " << (theLastSplittingPt/GeV) << "\n" << flush;
generator()->log() << "generated real emission kinematics:\n";
pr = lastXComb().meMomenta().begin();
dr = lastXComb().mePartonData().begin();
for ( ; pr != lastXComb().meMomenta().end(); ++pr,++dr )
generator()->log() << (**dr).PDGName() << " : "
<< (*pr/GeV) << "\n";
generator()->log() << "Jacobian = "
<< jacobian() << " = "
<< underlyingBornME()->lastXComb().jacobian()
<< "|Born * "
<< invertedTildeKinematics()->jacobian()
<< "|Radiation\n" << flush;
}
void SubtractionDipole::doinit() {
MEBase::doinit();
if ( underlyingBornME() ) {
theUnderlyingBornME->init();
}
if ( realEmissionME() ) {
theRealEmissionME->init();
}
if ( tildeKinematics() ) {
theTildeKinematics->init();
}
if ( invertedTildeKinematics() ) {
theInvertedTildeKinematics->init();
}
if ( showerApproximation() ) {
theShowerApproximation->init();
}
for ( vector<Ptr<SubtractionDipole>::tptr>::iterator p = thePartners.begin();
p != thePartners.end(); ++p ) {
(**p).init();
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).init();
}
}
void SubtractionDipole::doinitrun() {
MEBase::doinitrun();
if ( underlyingBornME() ) {
theUnderlyingBornME->initrun();
}
if ( realEmissionME() ) {
theRealEmissionME->initrun();
}
if ( tildeKinematics() ) {
theTildeKinematics->initrun();
}
if ( invertedTildeKinematics() ) {
theInvertedTildeKinematics->initrun();
}
if ( showerApproximation() ) {
theShowerApproximation->initrun();
}
for ( vector<Ptr<SubtractionDipole>::tptr>::iterator p = thePartners.begin();
p != thePartners.end(); ++p ) {
(**p).initrun();
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
(**rw).initrun();
}
}
void SubtractionDipole::cloneDependencies(const std::string& prefix) {
if ( underlyingBornME() ) {
Ptr<MatchboxMEBase>::ptr myUnderlyingBornME = underlyingBornME()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myUnderlyingBornME->name();
if ( ! (generator()->preinitRegister(myUnderlyingBornME,pname.str()) ) )
throw Exception() << "SubtractionDipole::cloneDependencies(): Matrix element " << pname.str() << " already existing." << Exception::runerror;
myUnderlyingBornME->cloneDependencies(pname.str());
underlyingBornME(myUnderlyingBornME);
}
if ( realEmissionME() ) {
Ptr<MatchboxMEBase>::ptr myRealEmissionME = realEmissionME()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myRealEmissionME->name();
if ( ! (generator()->preinitRegister(myRealEmissionME,pname.str()) ) )
throw Exception() << "SubtractionDipole::cloneDependencies(): Matrix element " << pname.str() << " already existing." << Exception::runerror;
myRealEmissionME->cloneDependencies(pname.str());
realEmissionME(myRealEmissionME);
}
if ( tildeKinematics() ) {
Ptr<TildeKinematics>::ptr myTildeKinematics = tildeKinematics()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myTildeKinematics->name();
if ( ! (generator()->preinitRegister(myTildeKinematics,pname.str()) ) )
throw Exception() << "SubtractionDipole::cloneDependencies(): Tilde kinematics " << pname.str() << " already existing." << Exception::runerror;
myTildeKinematics->dipole(this);
tildeKinematics(myTildeKinematics);
}
if ( invertedTildeKinematics() ) {
Ptr<InvertedTildeKinematics>::ptr myInvertedTildeKinematics = invertedTildeKinematics()->cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << myInvertedTildeKinematics->name();
if ( ! (generator()->preinitRegister(myInvertedTildeKinematics,pname.str()) ) )
throw Exception() << "SubtractionDipole::cloneDependencies(): Inverted tilde kinematics " << pname.str() << " already existing." << Exception::runerror;
myInvertedTildeKinematics->dipole(this);
invertedTildeKinematics(myInvertedTildeKinematics);
}
for ( vector<Ptr<MatchboxReweightBase>::ptr>::iterator rw =
theReweights.begin(); rw != theReweights.end(); ++rw ) {
Ptr<MatchboxReweightBase>::ptr myReweight = (**rw).cloneMe();
ostringstream pname;
pname << (prefix == "" ? fullName() : prefix) << "/" << (**rw).name();
if ( ! (generator()->preinitRegister(myReweight,pname.str()) ) )
throw Exception() << "SubtractionDipole::cloneDependencies(): Reweight " << pname.str() << " already existing." << Exception::runerror;
myReweight->cloneDependencies(pname.str());
*rw = myReweight;
}
}
void SubtractionDipole::constructVertex(tSubProPtr sub) {
if ( splitting() )
realEmissionME()->constructVertex(sub);
else
underlyingBornME()->constructVertex(sub);
}
void SubtractionDipole::constructVertex(tSubProPtr sub, const ColourLines* cl) {
if ( splitting() )
realEmissionME()->constructVertex(sub,cl);
else
underlyingBornME()->constructVertex(sub,cl);
}
void SubtractionDipole::generateSubCollision(SubProcess & sub) {
if ( splitting() )
realEmissionME()->generateSubCollision(sub);
else
underlyingBornME()->generateSubCollision(sub);
}
void SubtractionDipole::persistentOutput(PersistentOStream & os) const {
os << theLastXComb << theSplitting << theApply << theSubtractionTest
<< theIgnoreCuts << theRealEmissionME << theUnderlyingBornME
<< thePartners << theTildeKinematics << theInvertedTildeKinematics
<< theReweights << theRealEmitter << theRealEmission << theRealSpectator
<< theSubtractionParameters << theMergingMap << theSplittingMap
<< theIndexMap << theUnderlyingBornDiagrams << theRealEmissionDiagrams
<< lastRealEmissionKey << lastUnderlyingBornKey
<< theBornEmitter << theBornSpectator << ounit(theLastSubtractionScale,GeV)
<< ounit(theLastSplittingScale,GeV) << ounit(theLastSubtractionPt,GeV)
<< ounit(theLastSplittingPt,GeV) << theLastSubtractionZ
<< theLastSplittingZ << theShowerApproximation
<< theRealShowerSubtraction << theVirtualShowerSubtraction
<< theLoopSimSubtraction << theRealEmissionScales << theFactory
<< ounit(theShowerHardScale,GeV) << ounit(theShowerScale,GeV)
<< theShowerParameters << theIsInShowerPhasespace << theIsAboveCutoff;
}
void SubtractionDipole::persistentInput(PersistentIStream & is, int) {
is >> theLastXComb >> theSplitting >> theApply >> theSubtractionTest
>> theIgnoreCuts >> theRealEmissionME >> theUnderlyingBornME
>> thePartners >> theTildeKinematics >> theInvertedTildeKinematics
>> theReweights >> theRealEmitter >> theRealEmission >> theRealSpectator
>> theSubtractionParameters >> theMergingMap >> theSplittingMap
>> theIndexMap >> theUnderlyingBornDiagrams >> theRealEmissionDiagrams
>> lastRealEmissionKey >> lastUnderlyingBornKey
>> theBornEmitter >> theBornSpectator >> iunit(theLastSubtractionScale,GeV)
>> iunit(theLastSplittingScale,GeV) >> iunit(theLastSubtractionPt,GeV)
>> iunit(theLastSplittingPt,GeV) >> theLastSubtractionZ
>> theLastSplittingZ >> theShowerApproximation
>> theRealShowerSubtraction >> theVirtualShowerSubtraction
>> theLoopSimSubtraction >> theRealEmissionScales >> theFactory
>> iunit(theShowerHardScale,GeV) >> iunit(theShowerScale,GeV)
>> theShowerParameters >> theIsInShowerPhasespace >> theIsAboveCutoff;
lastMatchboxXComb(theLastXComb);
typedef multimap<UnderlyingBornKey,RealEmissionInfo>::const_iterator spit;
pair<spit,spit> kr = theSplittingMap.equal_range(lastUnderlyingBornKey);
lastRealEmissionInfo = kr.first;
for ( ; lastRealEmissionInfo != kr.second; ++lastRealEmissionInfo )
if ( process(lastRealEmissionInfo->second.first) == lastXComb().mePartonData() )
break;
}
Ptr<MatchboxFactory>::tptr SubtractionDipole::factory() const {
return theFactory;
}
void SubtractionDipole::factory(Ptr<MatchboxFactory>::tptr f) {
theFactory = f;
}
void SubtractionDipole::Init() {
static ClassDocumentation<SubtractionDipole> documentation
("SubtractionDipole represents a dipole subtraction "
"term in the formalism of Catani and Seymour.");
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeAbstractClass<SubtractionDipole,MEBase>
describeSubtractionDipole("Herwig::SubtractionDipole", "Herwig.so");

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 4:26 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805161
Default Alt Text
(68 KB)

Event Timeline