Page MenuHomeHEPForge

No OneTemporary

diff --git a/MatrixElement/Matchbox/MatchboxFactory.cc b/MatrixElement/Matchbox/MatchboxFactory.cc
--- a/MatrixElement/Matchbox/MatchboxFactory.cc
+++ b/MatrixElement/Matchbox/MatchboxFactory.cc
@@ -1,1093 +1,1142 @@
// -*- C++ -*-
//
// MatchboxFactory.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the MatchboxFactory class.
//
#include "MatchboxFactory.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Interface/Command.h"
#include "ThePEG/Utilities/StringUtils.h"
#include "ThePEG/Repository/Repository.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig++/MatrixElement/Matchbox/Base/DipoleRepository.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/SU2Helper.h"
#include <boost/progress.hpp>
#include <iterator>
using std::ostream_iterator;
using namespace Herwig;
using std::ostream_iterator;
MatchboxFactory::MatchboxFactory()
: SubProcessHandler(), theNLight(0),
theOrderInAlphaS(0), theOrderInAlphaEW(0),
theBornContributions(true), theVirtualContributions(true),
theRealContributions(true), theSubProcessGroups(false), theInclusive(false),
theFactorizationScaleFactor(1.0), theRenormalizationScaleFactor(1.0),
theFixedCouplings(false), theFixedQEDCouplings(false), theVetoScales(false),
theVerbose(false), theInitVerbose(false), theSubtractionData(""), theCheckPoles(false) {}
MatchboxFactory::~MatchboxFactory() {}
IBPtr MatchboxFactory::clone() const {
return new_ptr(*this);
}
IBPtr MatchboxFactory::fullclone() const {
return new_ptr(*this);
}
void MatchboxFactory::prepareME(Ptr<MatchboxMEBase>::ptr me) const {
Ptr<MatchboxAmplitude>::ptr amp =
dynamic_ptr_cast<Ptr<MatchboxAmplitude>::ptr>((*me).amplitude());
me->matchboxAmplitude(amp);
if ( diagramGenerator() && !me->diagramGenerator() )
me->diagramGenerator(diagramGenerator());
if ( processData() && !me->processData() )
me->processData(processData());
if ( me->nLight() == 0 )
me->nLight(nLight());
if ( phasespace() && !me->phasespace() )
me->phasespace(phasespace());
if ( scaleChoice() && !me->scaleChoice() )
me->scaleChoice(scaleChoice());
if ( me->factorizationScaleFactor() == 1.0 )
me->factorizationScaleFactor(factorizationScaleFactor());
if ( me->renormalizationScaleFactor() == 1.0 )
me->renormalizationScaleFactor(renormalizationScaleFactor());
if ( fixedCouplings() )
me->setFixedCouplings();
if ( fixedQEDCouplings() )
me->setFixedQEDCouplings();
if ( cache() && !me->cache() )
me->cache(cache());
if ( verbose() )
me->setVerbose();
}
struct LegIndex {
int spin;
int charge;
int colour;
int isSameAs;
int isSameFamilyAs;
inline bool operator==(const LegIndex& other) const {
return
spin == other.spin &&
charge == other.charge &&
colour == other.colour &&
isSameAs == other.isSameAs &&
isSameFamilyAs == other.isSameFamilyAs;
}
inline bool operator<(const LegIndex& other) const {
if ( spin != other.spin )
return spin < other.spin;
if ( charge != other.charge )
return charge < other.charge;
if ( colour != other.colour )
return colour < other.colour;
if ( isSameAs != other.isSameAs )
return isSameAs < other.isSameAs;
if ( isSameFamilyAs != other.isSameFamilyAs )
return isSameFamilyAs < other.isSameFamilyAs;
return false;
}
};
vector<LegIndex> makeIndex(const PDVector& proc) {
map<long,int> idMap;
map<int,int> familyIdMap;
int lastId = 0;
int lastFamilyId = 0;
vector<LegIndex> res;
for ( PDVector::const_iterator p = proc.begin();
p != proc.end(); ++p ) {
int id;
if ( idMap.find((**p).id()) != idMap.end() ) {
id = idMap[(**p).id()];
} else {
id = lastId;
idMap[(**p).id()] = lastId;
++lastId;
}
int familyId;
if ( familyIdMap.find(SU2Helper::family(*p)) != familyIdMap.end() ) {
familyId = familyIdMap[SU2Helper::family(*p)];
} else {
familyId = lastFamilyId;
familyIdMap[SU2Helper::family(*p)] = lastFamilyId;
++lastFamilyId;
}
LegIndex idx;
idx.spin = (**p).iSpin();
idx.charge = (**p).iCharge();
idx.colour = (**p).iColour();
idx.isSameAs = id;
idx.isSameFamilyAs = familyId;
res.push_back(idx);
}
return res;
}
string pid(const vector<LegIndex>& key) {
ostringstream res;
for ( vector<LegIndex>::const_iterator k =
key.begin(); k != key.end(); ++k )
res << k->spin << k->charge
<< k->colour << k->isSameAs
<< k->isSameFamilyAs;
return res.str();
}
vector<Ptr<MatchboxMEBase>::ptr> MatchboxFactory::
makeMEs(const vector<string>& proc, unsigned int orderas) const {
typedef vector<LegIndex> QNKey;
generator()->log() << "determining subprocesses for ";
copy(proc.begin(),proc.end(),ostream_iterator<string>(generator()->log()," "));
generator()->log() << flush;
map<Ptr<MatchboxAmplitude>::ptr,map<QNKey,vector<PDVector> > > ampProcs;
set<PDVector> processes = makeSubProcesses(proc);
vector<Ptr<MatchboxAmplitude>::ptr> matchAmplitudes;
for ( vector<Ptr<MatchboxAmplitude>::ptr>::const_iterator amp
= amplitudes().begin(); amp != amplitudes().end(); ++amp ) {
(**amp).orderInGs(orderas);
(**amp).orderInGem(orderInAlphaEW());
if ( (**amp).orderInGs() != orderas ||
(**amp).orderInGem() != orderInAlphaEW() ) {
continue;
}
matchAmplitudes.push_back(*amp);
}
size_t combinations = processes.size()*matchAmplitudes.size();
size_t procCount = 0;
boost::progress_display * progressBar =
new boost::progress_display(combinations,generator()->log());
for ( vector<Ptr<MatchboxAmplitude>::ptr>::const_iterator amp
= matchAmplitudes.begin(); amp != matchAmplitudes.end(); ++amp ) {
(**amp).orderInGs(orderas);
(**amp).orderInGem(orderInAlphaEW());
for ( set<PDVector>::const_iterator p = processes.begin();
p != processes.end(); ++p ) {
++(*progressBar);
if ( !(**amp).canHandle(*p) )
continue;
QNKey key = makeIndex(*p);
++procCount;
ampProcs[*amp][key].push_back(*p);
}
}
delete progressBar;
generator()->log() << flush;
vector<Ptr<MatchboxMEBase>::ptr> res;
for ( map<Ptr<MatchboxAmplitude>::ptr,map<QNKey,vector<PDVector> > >::const_iterator
ap = ampProcs.begin(); ap != ampProcs.end(); ++ap ) {
for ( map<QNKey,vector<PDVector> >::const_iterator m = ap->second.begin();
m != ap->second.end(); ++m ) {
Ptr<MatchboxMEBase>::ptr me = ap->first->makeME(m->second);
me->subProcesses() = m->second;
me->amplitude(ap->first);
string pname = "ME" + ap->first->name() + pid(m->first);
if ( ! (generator()->preinitRegister(me,pname) ) )
throw InitException() << "Matrix element " << pname << " already existing.";
res.push_back(me);
}
}
generator()->log() << "created " << res.size()
<< " matrix element objects for "
<< procCount << " subprocesses.\n";
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
return res;
}
void MatchboxFactory::setup() {
if ( !amplitudes().empty() ) {
if ( particleGroups().find("j") == particleGroups().end() )
throw InitException() << "Could not find a jet particle group named 'j'";
// rebind the particle data objects
for ( map<string,PDVector>::iterator g = particleGroups().begin();
g != particleGroups().end(); ++g )
for ( PDVector::iterator p = g->second.begin();
p != g->second.end(); ++p ) {
#ifndef NDEBUG
long checkid = (**p).id();
#endif
*p = getParticleData((**p).id());
assert((**p).id() == checkid);
}
const PDVector& partons = particleGroups()["j"];
unsigned int nl = 0;
for ( PDVector::const_iterator p = partons.begin();
p != partons.end(); ++p )
if ( abs((**p).id()) < 6 )
++nl;
nLight(nl/2);
vector<Ptr<MatchboxMEBase>::ptr> ames = makeMEs(process,orderInAlphaS());
copy(ames.begin(),ames.end(),back_inserter(bornMEs()));
if ( realContributions() ) {
vector<string> rproc = process;
if ( realEmissionProcess.empty() ) {
rproc.push_back("j");
} else {
rproc = realEmissionProcess;
}
ames = makeMEs(rproc,orderInAlphaS()+1);
copy(ames.begin(),ames.end(),back_inserter(realEmissionMEs()));
}
}
// check if we have virtual contributions
bool haveVirtuals = true;
// check DR conventions of virtual contributions
bool virtualsAreDR = false;
bool virtualsAreCDR = false;
// check finite term conventions of virtual contributions
bool virtualsAreCS = false;
bool virtualsAreBDK = false;
bool virtualsAreExpanded = false;
// check and prepare the Born and virtual matrix elements
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
prepareME(*born);
haveVirtuals &= (**born).haveOneLoop();
if ( (**born).haveOneLoop() ) {
virtualsAreDR |= (**born).isDR();
virtualsAreCDR |= !(**born).isDR();
virtualsAreCS |= (**born).isCS();
virtualsAreBDK |= (**born).isBDK();
virtualsAreExpanded |= (**born).isExpanded();
}
}
// check the additional insertion operators
if ( !virtuals().empty() )
haveVirtuals = true;
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= virtuals().begin(); virt != virtuals().end(); ++virt ) {
virtualsAreDR |= (**virt).isDR();
virtualsAreCDR |= !(**virt).isDR();
virtualsAreCS |= (**virt).isCS();
virtualsAreBDK |= (**virt).isBDK();
virtualsAreExpanded |= (**virt).isExpanded();
}
// check for consistent conventions on virtuals, if we are to include them
if ( virtualContributions() ) {
if ( virtualsAreDR && virtualsAreCDR ) {
throw InitException() << "Virtual corrections use inconsistent regularization schemes.\n";
}
if ( (virtualsAreCS && virtualsAreBDK) ||
(virtualsAreCS && virtualsAreExpanded) ||
(virtualsAreBDK && virtualsAreExpanded) ||
(!virtualsAreCS && !virtualsAreBDK && !virtualsAreExpanded) ) {
throw InitException() << "Virtual corrections use inconsistent conventions on finite terms.\n";
}
if ( !haveVirtuals ) {
throw InitException() << "Could not find amplitudes for all virtual contributions needed.\n";
}
}
// prepare dipole insertion operators
if ( virtualContributions() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionOperators().begin();
virt != DipoleRepository::insertionOperators().end(); ++virt ) {
if ( virtualsAreDR )
(**virt).useDR();
else
(**virt).useCDR();
if ( virtualsAreCS )
(**virt).useCS();
if ( virtualsAreBDK )
(**virt).useBDK();
if ( virtualsAreExpanded )
(**virt).useExpanded();
}
}
// prepare the real emission matrix elements
if ( realContributions() ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator real
= realEmissionMEs().begin(); real != realEmissionMEs().end(); ++real ) {
prepareME(*real);
}
}
// start creating matrix elements
MEs().clear();
// setup born and virtual contributions
if ( bornContributions() && !virtualContributions() ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
if ( (**born).onlyOneLoop() )
continue;
Ptr<MatchboxMEBase>::ptr bornme = (**born).cloneMe();
string pname = fullName() + "/" + (**born).name();
if ( ! (generator()->preinitRegister(bornme,pname) ) )
throw InitException() << "Matrix element " << pname << " already existing.";
bornme->cloneDependencies();
MEs().push_back(bornme);
}
}
if ( virtualContributions() ) {
generator()->log() << "preparing Born "
<< (virtualContributions() ? "and virtual" : "")
<< " matrix elements." << flush;
bornVirtualMEs().clear();
boost::progress_display * progressBar =
new boost::progress_display(bornMEs().size(),generator()->log());
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born ) {
Ptr<MatchboxMEBase>::ptr nlo = (**born).cloneMe();
string pname = fullName() + "/" + (**born).name();
if ( ! (generator()->preinitRegister(nlo,pname) ) )
throw InitException() << "NLO ME " << pname << " already existing.";
nlo->virtuals().clear();
if ( !nlo->onlyOneLoop() ) {
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= virtuals().begin(); virt != virtuals().end(); ++virt ) {
if ( (**virt).apply((**born).diagrams().front()->partons()) )
nlo->virtuals().push_back(*virt);
}
for ( vector<Ptr<MatchboxInsertionOperator>::ptr>::const_iterator virt
= DipoleRepository::insertionOperators().begin();
virt != DipoleRepository::insertionOperators().end(); ++virt ) {
if ( (**virt).apply((**born).diagrams().front()->partons()) )
nlo->virtuals().push_back(*virt);
}
if ( nlo->virtuals().empty() )
throw InitException() << "No insertion operators have been found for "
<< (**born).name() << "\n";
if ( checkPoles() ) {
if ( !virtualsAreExpanded ) {
throw InitException() << "Cannot check epsilon poles if virtuals are not in `expanded' convention.\n";
}
nlo->doCheckPoles();
}
}
if ( !bornContributions() ) {
nlo->doOneLoopNoBorn();
} else {
nlo->doOneLoop();
}
nlo->cloneDependencies();
bornVirtualMEs().push_back(nlo);
MEs().push_back(nlo);
++(*progressBar);
}
delete progressBar;
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
}
theSplittingDipoles.clear();
set<cPDVector> bornProcs;
if ( showerApproximation() )
if ( showerApproximation()->needsSplittingGenerator() ) {
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator born
= bornMEs().begin(); born != bornMEs().end(); ++born )
for ( MEBase::DiagramVector::const_iterator d = (**born).diagrams().begin();
d != (**born).diagrams().end(); ++d )
bornProcs.insert((**d).partons());
}
if ( realContributions() ) {
generator()->log() << "preparing real emission matrix elements." << flush;
if ( theSubtractionData != "" )
if ( theSubtractionData[theSubtractionData.size()-1] != '/' )
theSubtractionData += "/";
subtractedMEs().clear();
boost::progress_display * progressBar =
new boost::progress_display(realEmissionMEs().size(),generator()->log());
for ( vector<Ptr<MatchboxMEBase>::ptr>::iterator real
= realEmissionMEs().begin(); real != realEmissionMEs().end(); ++real ) {
Ptr<SubtractedME>::ptr sub = new_ptr(SubtractedME());
string pname = fullName() + "/" + (**real).name();
if ( ! (generator()->preinitRegister(sub,pname) ) )
throw InitException() << "Subtracted ME " << pname << " already existing.";
sub->borns() = bornMEs();
sub->head(*real);
sub->allDipoles().clear();
sub->dependent().clear();
if ( subtractionData() != "" )
sub->subtractionData(subtractionData());
sub->getDipoles();
if ( sub->dependent().empty() ) {
// finite real contribution
MEs().push_back(sub->head());
Ptr<MatchboxMEBase>::ptr fme = dynamic_ptr_cast<Ptr<MatchboxMEBase>::ptr>(sub->head());
finiteRealMEs().push_back(fme);
sub->head(tMEPtr());
continue;
}
if ( verbose() )
sub->setVerbose();
if ( subProcessGroups() )
sub->setSubProcessGroups();
if ( inclusive() )
sub->setInclusive();
if ( vetoScales() )
sub->doVetoScales();
subtractedMEs().push_back(sub);
MEs().push_back(sub);
if ( showerApproximation() ) {
sub->showerApproximation(showerApproximation());
Ptr<SubtractedME>::ptr subv = new_ptr(*sub);
string vname = sub->fullName() + ".vsub";
if ( ! (generator()->preinitRegister(subv,pname) ) )
throw InitException() << "Subtracted ME " << vname << " already existing.";
sub->doRealShowerSubtraction();
subv->doVirtualShowerSubtraction();
subtractedMEs().push_back(subv);
MEs().push_back(subv);
if ( showerApproximation()->needsSplittingGenerator() )
for ( set<cPDVector>::const_iterator p = bornProcs.begin();
p != bornProcs.end(); ++p ) {
vector<Ptr<SubtractionDipole>::ptr> sdip = sub->splitDipoles(*p);
set<Ptr<SubtractionDipole>::ptr>& dips = theSplittingDipoles[*p];
copy(sdip.begin(),sdip.end(),inserter(dips,dips.begin()));
}
}
++(*progressBar);
}
delete progressBar;
generator()->log() << "--------------------------------------------------------------------------------\n"
<< flush;
}
if ( !theSplittingDipoles.empty() ) {
map<Ptr<SubtractionDipole>::ptr,Ptr<SubtractionDipole>::ptr> cloneMap;
for ( map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >::const_iterator sd = theSplittingDipoles.begin();
sd != theSplittingDipoles.end(); ++sd ) {
for ( set<Ptr<SubtractionDipole>::ptr>::const_iterator d = sd->second.begin();
d != sd->second.end(); ++d ) {
cloneMap[*d] = Ptr<SubtractionDipole>::ptr();
}
}
for ( map<Ptr<SubtractionDipole>::ptr,Ptr<SubtractionDipole>::ptr>::iterator cd =
cloneMap.begin(); cd != cloneMap.end(); ++cd ) {
Ptr<SubtractionDipole>::ptr cloned = cd->first->cloneMe();
string dname = cd->first->fullName() + ".splitting";
if ( ! (generator()->preinitRegister(cloned,dname)) )
throw InitException() << "Dipole '" << dname << "' already existing.";
cloned->cloneDependencies();
cloned->showerApproximation(Ptr<ShowerApproximation>::tptr());
cloned->doSplitting();
cd->second = cloned;
}
for ( map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >::iterator sd = theSplittingDipoles.begin();
sd != theSplittingDipoles.end(); ++sd ) {
set<Ptr<SubtractionDipole>::ptr> cloned;
for ( set<Ptr<SubtractionDipole>::ptr>::iterator d = sd->second.begin();
d != sd->second.end(); ++d ) {
cloned.insert(cloneMap[*d]);
}
sd->second = cloned;
}
}
generator()->log() << "process setup finished.\n" << flush;
}
+list<MatchboxFactory::SplittingChannel>
+MatchboxFactory::getSplittingChannels(tStdXCombPtr xcptr) const {
+
+ if ( xcptr->lastProjector() )
+ xcptr = xcptr->lastProjector();
+
+ const StandardXComb& xc = *xcptr;
+
+ cPDVector proc = xc.mePartonData();
+
+ map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >::const_iterator splitEntries
+ = splittingDipoles().find(proc);
+
+ list<SplittingChannel> res;
+ if ( splitEntries == splittingDipoles().end() )
+ return res;
+
+ const set<Ptr<SubtractionDipole>::ptr>& splitDipoles = splitEntries->second;
+
+
+ for ( set<Ptr<SubtractionDipole>::ptr>::const_iterator sd =
+ splitDipoles.begin(); sd != splitDipoles.end(); ++sd ) {
+
+ Ptr<MatchboxMEBase>::tptr bornME =
+ const_ptr_cast<Ptr<MatchboxMEBase>::tptr>((**sd).underlyingBornME());
+
+ SplittingChannel channel;
+ channel.dipole = *sd;
+ channel.bornXComb =
+ bornME->makeXComb(xc.maxEnergy(),xc.particles(),xc.eventHandlerPtr(),
+ const_ptr_cast<tSubHdlPtr>(xc.subProcessHandler()),
+ xc.pExtractor(),xc.CKKWHandler(),
+ xc.partonBins(),xc.cuts(),xc.diagrams(),xc.mirror(),
+ PartonPairVec());
+
+ vector<StdXCombPtr> realXCombs = (**sd).makeRealXCombs(channel.bornXComb);
+
+ for ( vector<StdXCombPtr>::const_iterator rxc = realXCombs.begin();
+ rxc != realXCombs.end(); ++rxc ) {
+ channel.realXComb = *rxc;
+ res.push_back(channel);
+ }
+
+ }
+
+ return res;
+
+}
+
void MatchboxFactory::print(ostream& os) const {
os << "--- MatchboxFactory setup -----------------------------------------------------------\n";
if ( !amplitudes().empty() ) {
os << " generated Born matrix elements:\n";
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator m = bornMEs().begin();
m != bornMEs().end(); ++m ) {
(**m).print(os);
}
os << flush;
os << " generated real emission matrix elements:\n";
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator m = realEmissionMEs().begin();
m != realEmissionMEs().end(); ++m ) {
(**m).print(os);
}
os << flush;
}
os << " generated Born+virtual matrix elements:\n";
for ( vector<Ptr<MatchboxMEBase>::ptr>::const_iterator bv
= bornVirtualMEs().begin(); bv != bornVirtualMEs().end(); ++bv ) {
(**bv).print(os);
}
os << " generated subtracted matrix elements:\n";
for ( vector<Ptr<SubtractedME>::ptr>::const_iterator sub
= subtractedMEs().begin(); sub != subtractedMEs().end(); ++sub ) {
os << " '" << (**sub).name() << "'\n";
}
os << "--------------------------------------------------------------------------------\n";
os << flush;
}
void MatchboxFactory::doinit() {
setup();
if ( initVerbose() )
print(Repository::clog());
SubProcessHandler::doinit();
}
void MatchboxFactory::persistentOutput(PersistentOStream & os) const {
os << theDiagramGenerator << theProcessData
<< theNLight << theOrderInAlphaS << theOrderInAlphaEW
<< theBornContributions << theVirtualContributions
<< theRealContributions << theSubProcessGroups << theInclusive
<< thePhasespace << theScaleChoice
<< theFactorizationScaleFactor << theRenormalizationScaleFactor
<< theFixedCouplings << theFixedQEDCouplings << theVetoScales
<< theAmplitudes << theCache
<< theBornMEs << theVirtuals << theRealEmissionMEs
<< theBornVirtualMEs << theSubtractedMEs << theFiniteRealMEs
<< theVerbose << theInitVerbose << theSubtractionData << theCheckPoles
<< theParticleGroups << process << realEmissionProcess
<< theShowerApproximation << theSplittingDipoles;
}
void MatchboxFactory::persistentInput(PersistentIStream & is, int) {
is >> theDiagramGenerator >> theProcessData
>> theNLight >> theOrderInAlphaS >> theOrderInAlphaEW
>> theBornContributions >> theVirtualContributions
>> theRealContributions >> theSubProcessGroups >> theInclusive
>> thePhasespace >> theScaleChoice
>> theFactorizationScaleFactor >> theRenormalizationScaleFactor
>> theFixedCouplings >> theFixedQEDCouplings >> theVetoScales
>> theAmplitudes >> theCache
>> theBornMEs >> theVirtuals >> theRealEmissionMEs
>> theBornVirtualMEs >> theSubtractedMEs >> theFiniteRealMEs
>> theVerbose >> theInitVerbose >> theSubtractionData >> theCheckPoles
>> theParticleGroups >> process >> realEmissionProcess
>> theShowerApproximation >> theSplittingDipoles;
}
string MatchboxFactory::startParticleGroup(string name) {
particleGroupName = StringUtils::stripws(name);
particleGroup.clear();
return "";
}
string MatchboxFactory::endParticleGroup(string) {
if ( particleGroup.empty() )
throw InitException() << "Empty particle group.";
particleGroups()[particleGroupName] = particleGroup;
particleGroup.clear();
return "";
}
string MatchboxFactory::doProcess(string in) {
process = StringUtils::split(in);
if ( process.size() < 3 )
throw InitException() << "Invalid process.";
for ( vector<string>::iterator p = process.begin();
p != process.end(); ++p ) {
*p = StringUtils::stripws(*p);
}
return "";
}
string MatchboxFactory::doSingleRealProcess(string in) {
realEmissionProcess = StringUtils::split(in);
if ( realEmissionProcess.size() < 3 )
throw InitException() << "Invalid process.";
for ( vector<string>::iterator p = realEmissionProcess.begin();
p != realEmissionProcess.end(); ++p ) {
*p = StringUtils::stripws(*p);
}
return "";
}
struct SortPID {
inline bool operator()(PDPtr a, PDPtr b) const {
return a->id() < b->id();
}
};
set<PDVector> MatchboxFactory::
makeSubProcesses(const vector<string>& proc) const {
if ( proc.empty() )
throw InitException() << "No process specified.";
vector<PDVector> allProcs(1);
size_t pos = 0;
typedef map<string,PDVector>::const_iterator GroupIterator;
while ( pos < proc.size() ) {
GroupIterator git =
particleGroups().find(proc[pos]);
if ( git == particleGroups().end() ) {
throw InitException() << "particle group '"
<< proc[pos] << "' not defined.";
}
vector<PDVector> mine;
for ( vector<PDVector>::const_iterator i = allProcs.begin();
i != allProcs.end(); ++i ) {
for ( PDVector::const_iterator p = git->second.begin();
p != git->second.end(); ++p ) {
PDVector v = *i;
v.push_back(*p);
mine.push_back(v);
}
}
allProcs = mine;
++pos;
}
set<PDVector> allCheckedProcs;
for ( vector<PDVector>::const_iterator p = allProcs.begin();
p != allProcs.end(); ++p ) {
int charge = -(*p)[0]->iCharge() -(*p)[1]->iCharge();
for ( size_t k = 2; k < (*p).size(); ++k )
charge += (*p)[k]->iCharge();
if ( charge != 0 )
continue;
PDVector pr = *p;
sort(pr.begin()+2,pr.end(),SortPID());
allCheckedProcs.insert(pr);
}
return allCheckedProcs;
}
void MatchboxFactory::Init() {
static ClassDocumentation<MatchboxFactory> documentation
("MatchboxFactory",
"NLO QCD corrections have been calculated "
"using Matchbox \\cite{Platzer:2011bc}",
"%\\cite{Platzer:2011bc}\n"
"\\bibitem{Platzer:2011bc}\n"
"S.~Platzer and S.~Gieseke,\n"
"``Dipole Showers and Automated NLO Matching in Herwig++,''\n"
"arXiv:1109.6256 [hep-ph].\n"
"%%CITATION = ARXIV:1109.6256;%%");
static Reference<MatchboxFactory,Tree2toNGenerator> interfaceDiagramGenerator
("DiagramGenerator",
"Set the diagram generator.",
&MatchboxFactory::theDiagramGenerator, false, false, true, true, false);
static Reference<MatchboxFactory,ProcessData> interfaceProcessData
("ProcessData",
"Set the process data object to be used.",
&MatchboxFactory::theProcessData, false, false, true, true, false);
static Parameter<MatchboxFactory,unsigned int> interfaceOrderInAlphaS
("OrderInAlphaS",
"The order in alpha_s to consider.",
&MatchboxFactory::theOrderInAlphaS, 0, 0, 0,
false, false, Interface::lowerlim);
static Parameter<MatchboxFactory,unsigned int> interfaceOrderInAlphaEW
("OrderInAlphaEW",
"The order in alpha_EW",
&MatchboxFactory::theOrderInAlphaEW, 2, 0, 0,
false, false, Interface::lowerlim);
static Switch<MatchboxFactory,bool> interfaceBornContributions
("BornContributions",
"Switch on or off the Born contributions.",
&MatchboxFactory::theBornContributions, true, false, false);
static SwitchOption interfaceBornContributionsOn
(interfaceBornContributions,
"On",
"Switch on Born contributions.",
true);
static SwitchOption interfaceBornContributionsOff
(interfaceBornContributions,
"Off",
"Switch off Born contributions.",
false);
static Switch<MatchboxFactory,bool> interfaceVirtualContributions
("VirtualContributions",
"Switch on or off the virtual contributions.",
&MatchboxFactory::theVirtualContributions, true, false, false);
static SwitchOption interfaceVirtualContributionsOn
(interfaceVirtualContributions,
"On",
"Switch on virtual contributions.",
true);
static SwitchOption interfaceVirtualContributionsOff
(interfaceVirtualContributions,
"Off",
"Switch off virtual contributions.",
false);
static Switch<MatchboxFactory,bool> interfaceRealContributions
("RealContributions",
"Switch on or off the real contributions.",
&MatchboxFactory::theRealContributions, true, false, false);
static SwitchOption interfaceRealContributionsOn
(interfaceRealContributions,
"On",
"Switch on real contributions.",
true);
static SwitchOption interfaceRealContributionsOff
(interfaceRealContributions,
"Off",
"Switch off real contributions.",
false);
static Switch<MatchboxFactory,bool> interfaceSubProcessGroups
("SubProcessGroups",
"Switch on or off production of sub-process groups.",
&MatchboxFactory::theSubProcessGroups, false, false, false);
static SwitchOption interfaceSubProcessGroupsOn
(interfaceSubProcessGroups,
"On",
"On",
true);
static SwitchOption interfaceSubProcessGroupsOff
(interfaceSubProcessGroups,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceInclusive
("Inclusive",
"Switch on or off production of inclusive cross section.",
&MatchboxFactory::theInclusive, false, false, false);
static SwitchOption interfaceInclusiveOn
(interfaceInclusive,
"On",
"On",
true);
static SwitchOption interfaceInclusiveOff
(interfaceInclusive,
"Off",
"Off",
false);
static Reference<MatchboxFactory,MatchboxPhasespace> interfacePhasespace
("Phasespace",
"Set the phasespace generator.",
&MatchboxFactory::thePhasespace, false, false, true, true, false);
static Reference<MatchboxFactory,MatchboxScaleChoice> interfaceScaleChoice
("ScaleChoice",
"Set the scale choice object.",
&MatchboxFactory::theScaleChoice, false, false, true, true, false);
static Parameter<MatchboxFactory,double> interfaceFactorizationScaleFactor
("FactorizationScaleFactor",
"The factorization scale factor.",
&MatchboxFactory::theFactorizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Parameter<MatchboxFactory,double> interfaceRenormalizationScaleFactor
("RenormalizationScaleFactor",
"The renormalization scale factor.",
&MatchboxFactory::theRenormalizationScaleFactor, 1.0, 0.0, 0,
false, false, Interface::lowerlim);
static Switch<MatchboxFactory,bool> interfaceFixedCouplings
("FixedCouplings",
"Switch on or off fixed couplings.",
&MatchboxFactory::theFixedCouplings, true, false, false);
static SwitchOption interfaceFixedCouplingsOn
(interfaceFixedCouplings,
"On",
"On",
true);
static SwitchOption interfaceFixedCouplingsOff
(interfaceFixedCouplings,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceFixedQEDCouplings
("FixedQEDCouplings",
"Switch on or off fixed QED couplings.",
&MatchboxFactory::theFixedQEDCouplings, true, false, false);
static SwitchOption interfaceFixedQEDCouplingsOn
(interfaceFixedQEDCouplings,
"On",
"On",
true);
static SwitchOption interfaceFixedQEDCouplingsOff
(interfaceFixedQEDCouplings,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceVetoScales
("VetoScales",
"Switch on or setting veto scales.",
&MatchboxFactory::theVetoScales, false, false, false);
static SwitchOption interfaceVetoScalesOn
(interfaceVetoScales,
"On",
"On",
true);
static SwitchOption interfaceVetoScalesOff
(interfaceVetoScales,
"Off",
"Off",
false);
static RefVector<MatchboxFactory,MatchboxAmplitude> interfaceAmplitudes
("Amplitudes",
"The amplitude objects.",
&MatchboxFactory::theAmplitudes, -1, false, false, true, true, false);
static Reference<MatchboxFactory,MatchboxMECache> interfaceCache
("Cache",
"Set the matrix element cache object.",
&MatchboxFactory::theCache, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceBornMEs
("BornMEs",
"The Born matrix elements to be used",
&MatchboxFactory::theBornMEs, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxInsertionOperator> interfaceVirtuals
("Virtuals",
"The virtual corrections to include",
&MatchboxFactory::theVirtuals, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceRealEmissionMEs
("RealEmissionMEs",
"The RealEmission matrix elements to be used",
&MatchboxFactory::theRealEmissionMEs, -1, false, false, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceBornVirtuals
("BornVirtualMEs",
"The generated Born/virtual contributions",
&MatchboxFactory::theBornVirtualMEs, -1, false, true, true, true, false);
static RefVector<MatchboxFactory,SubtractedME> interfaceSubtractedMEs
("SubtractedMEs",
"The generated subtracted real emission contributions",
&MatchboxFactory::theSubtractedMEs, -1, false, true, true, true, false);
static RefVector<MatchboxFactory,MatchboxMEBase> interfaceFiniteRealMEs
("FiniteRealMEs",
"The generated finite real contributions",
&MatchboxFactory::theFiniteRealMEs, -1, false, true, true, true, false);
static Switch<MatchboxFactory,bool> interfaceVerbose
("Verbose",
"Print full infomation on each evaluated phase space point.",
&MatchboxFactory::theVerbose, false, false, false);
static SwitchOption interfaceVerboseOn
(interfaceVerbose,
"On",
"On",
true);
static SwitchOption interfaceVerboseOff
(interfaceVerbose,
"Off",
"Off",
false);
static Switch<MatchboxFactory,bool> interfaceInitVerbose
("InitVerbose",
"Print setup information.",
&MatchboxFactory::theInitVerbose, false, false, false);
static SwitchOption interfaceInitVerboseOn
(interfaceInitVerbose,
"On",
"On",
true);
static SwitchOption interfaceInitVerboseOff
(interfaceInitVerbose,
"Off",
"Off",
false);
static Parameter<MatchboxFactory,string> interfaceSubtractionData
("SubtractionData",
"Prefix for subtraction check data.",
&MatchboxFactory::theSubtractionData, "",
false, false);
static Switch<MatchboxFactory,bool> interfaceCheckPoles
("CheckPoles",
"Switch on or off checks of epsilon poles.",
&MatchboxFactory::theCheckPoles, true, false, false);
static SwitchOption interfaceCheckPolesOn
(interfaceCheckPoles,
"On",
"On",
true);
static SwitchOption interfaceCheckPolesOff
(interfaceCheckPoles,
"Off",
"Off",
false);
static RefVector<MatchboxFactory,ParticleData> interfaceParticleGroup
("ParticleGroup",
"The particle group just started.",
&MatchboxFactory::particleGroup, -1, false, false, true, false, false);
static Command<MatchboxFactory> interfaceStartParticleGroup
("StartParticleGroup",
"Start a particle group.",
&MatchboxFactory::startParticleGroup, false);
static Command<MatchboxFactory> interfaceEndParticleGroup
("EndParticleGroup",
"End a particle group.",
&MatchboxFactory::endParticleGroup, false);
static Command<MatchboxFactory> interfaceProcess
("Process",
"Set the process to consider.",
&MatchboxFactory::doProcess, false);
static Command<MatchboxFactory> interfaceSingleRealProcess
("SingleRealProcess",
"Set the process to consider.",
&MatchboxFactory::doSingleRealProcess, false);
static Reference<MatchboxFactory,ShowerApproximation> interfaceShowerApproximation
("ShowerApproximation",
"Set the shower approximation to be considered.",
&MatchboxFactory::theShowerApproximation, false, false, true, true, false);
}
// *** Attention *** The following static variable is needed for the type
// description system in ThePEG. Please check that the template arguments
// are correct (the class and its base class), and that the constructor
// arguments are correct (the class name and the name of the dynamically
// loadable library where the class implementation can be found).
DescribeClass<MatchboxFactory,SubProcessHandler>
describeHerwigMatchboxFactory("Herwig::MatchboxFactory", "HwMatchbox.so");
diff --git a/MatrixElement/Matchbox/MatchboxFactory.h b/MatrixElement/Matchbox/MatchboxFactory.h
--- a/MatrixElement/Matchbox/MatchboxFactory.h
+++ b/MatrixElement/Matchbox/MatchboxFactory.h
@@ -1,733 +1,761 @@
// -*- C++ -*-
//
// MatchboxFactory.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2012 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MatchboxFactory_H
#define HERWIG_MatchboxFactory_H
//
// This is the declaration of the MatchboxFactory class.
//
#include "ThePEG/Handlers/SubProcessHandler.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxAmplitude.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/Tree2toNGenerator.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/ProcessData.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxScaleChoice.h"
#include "Herwig++/MatrixElement/Matchbox/Utility/MatchboxMECache.h"
#include "Herwig++/MatrixElement/Matchbox/Phasespace/MatchboxPhasespace.h"
#include "Herwig++/MatrixElement/Matchbox/Base/MatchboxMEBase.h"
#include "Herwig++/MatrixElement/Matchbox/Base/SubtractedME.h"
namespace Herwig {
using namespace ThePEG;
/**
* \ingroup Matchbox
* \author Simon Platzer
*
* \brief MatchboxFactory automatically sets up a NLO
* QCD calculation carried out in dipole subtraction.
*
* @see \ref MatchboxFactoryInterfaces "The interfaces"
* defined for MatchboxFactory.
*/
class MatchboxFactory: public SubProcessHandler {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
MatchboxFactory();
/**
* The destructor.
*/
virtual ~MatchboxFactory();
//@}
public:
/** @name Process and diagram information */
//@{
/**
* Return the diagram generator.
*/
Ptr<Tree2toNGenerator>::tptr diagramGenerator() const { return theDiagramGenerator; }
/**
* Set the diagram generator.
*/
void diagramGenerator(Ptr<Tree2toNGenerator>::ptr dg) { theDiagramGenerator = dg; }
/**
* Return the process data.
*/
Ptr<ProcessData>::tptr processData() const { return theProcessData; }
/**
* Set the process data.
*/
void processData(Ptr<ProcessData>::ptr pd) { theProcessData = pd; }
/**
* Return the number of light flavours, this matrix
* element is calculated for.
*/
unsigned int nLight() const { return theNLight; }
/**
* Set the number of light flavours, this matrix
* element is calculated for.
*/
void nLight(unsigned int n) { theNLight = n; }
/**
* Return the order in \f$\alpha_S\f$.
*/
unsigned int orderInAlphaS() const { return theOrderInAlphaS; }
/**
* Set the order in \f$\alpha_S\f$.
*/
void orderInAlphaS(unsigned int o) { theOrderInAlphaS = o; }
/**
* Return the order in \f$\alpha_{EM}\f$.
*/
unsigned int orderInAlphaEW() const { return theOrderInAlphaEW; }
/**
* Set the order in \f$\alpha_{EM}\f$.
*/
void orderInAlphaEW(unsigned int o) { theOrderInAlphaEW = o; }
/**
* Return true, if Born contributions should be included.
*/
bool bornContributions() const { return theBornContributions; }
/**
* Switch on or off Born contributions
*/
void setBornContributions(bool on = true) { theBornContributions = on; }
/**
* Return true, if virtual contributions should be included.
*/
bool virtualContributions() const { return theVirtualContributions; }
/**
* Switch on or off virtual contributions
*/
void setVirtualContributions(bool on = true) { theVirtualContributions = on; }
/**
* Return true, if subtracted real emission contributions should be included.
*/
bool realContributions() const { return theRealContributions; }
/**
* Switch on or off subtracted real emission contributions
*/
void setRealContributions(bool on = true) { theRealContributions = on; }
/**
* Return true, if SubProcessGroups should be
* setup from this MEGroup. If not, a single SubProcess
* is constructed from the data provided by the
* head matrix element.
*/
bool subProcessGroups() const { return theSubProcessGroups; }
/**
* Switch on or off producing subprocess groups.
*/
void setSubProcessGroups(bool on = true) { theSubProcessGroups = on; }
/**
* Return true, if the integral over the unresolved emission should be
* calculated.
*/
bool inclusive() const { return theInclusive; }
/**
* Switch on or off inclusive mode.
*/
void setInclusive(bool on = true) { theInclusive = on; }
/**
* Set the shower approximation.
*/
void showerApproximation(Ptr<ShowerApproximation>::tptr app) { theShowerApproximation = app; }
/**
* Return the shower approximation.
*/
Ptr<ShowerApproximation>::tptr showerApproximation() const { return theShowerApproximation; }
//@}
/** @name Phasespace generation and scale choice */
//@{
/**
* Return the phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::tptr phasespace() const { return thePhasespace; }
/**
* Set the phase space generator to be used.
*/
void phasespace(Ptr<MatchboxPhasespace>::ptr ps) { thePhasespace = ps; }
/**
* Set the scale choice object
*/
void scaleChoice(Ptr<MatchboxScaleChoice>::ptr sc) { theScaleChoice = sc; }
/**
* Return the scale choice object
*/
Ptr<MatchboxScaleChoice>::tptr scaleChoice() const { return theScaleChoice; }
/**
* Get the factorization scale factor
*/
double factorizationScaleFactor() const { return theFactorizationScaleFactor; }
/**
* Set the factorization scale factor
*/
void factorizationScaleFactor(double f) { theFactorizationScaleFactor = f; }
/**
* Get the renormalization scale factor
*/
double renormalizationScaleFactor() const { return theRenormalizationScaleFactor; }
/**
* Set the renormalization scale factor
*/
void renormalizationScaleFactor(double f) { theRenormalizationScaleFactor = f; }
/**
* Return true, if fixed couplings are used.
*/
bool fixedCouplings() const { return theFixedCouplings; }
/**
* Switch on fixed couplings.
*/
void setFixedCouplings(bool on = true) { theFixedCouplings = on; }
/**
* Return true, if fixed couplings are used.
*/
bool fixedQEDCouplings() const { return theFixedQEDCouplings; }
/**
* Switch on fixed couplings.
*/
void setFixedQEDCouplings(bool on = true) { theFixedQEDCouplings = on; }
/**
* Return true, if veto scales should be set
* for the real emission
*/
bool vetoScales() const { return theVetoScales; }
/**
* Switch on setting veto scales
*/
void doVetoScales() { theVetoScales = true; }
/**
* Switch off setting veto scales
*/
void noVetoScales() { theVetoScales = true; }
//@}
/** @name Amplitudes and caching */
//@{
/**
* Return the amplitudes to be considered
*/
const vector<Ptr<MatchboxAmplitude>::ptr>& amplitudes() const { return theAmplitudes; }
/**
* Access the amplitudes to be considered
*/
vector<Ptr<MatchboxAmplitude>::ptr>& amplitudes() { return theAmplitudes; }
/**
* Set the ME cache object
*/
void cache(Ptr<MatchboxMECache>::ptr c) { theCache = c; }
/**
* Get the ME cache object
*/
Ptr<MatchboxMECache>::tptr cache() const { return theCache; }
//@}
/** @name Matrix element objects. */
//@{
/**
* Return the Born matrix elements to be considered
*/
const vector<Ptr<MatchboxMEBase>::ptr>& bornMEs() const { return theBornMEs; }
/**
* Access the Born matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr>& bornMEs() { return theBornMEs; }
/**
* Return the virtual corrections to be considered
*/
const vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() const { return theVirtuals; }
/**
* Access the virtual corrections to be considered
*/
vector<Ptr<MatchboxInsertionOperator>::ptr>& virtuals() { return theVirtuals; }
/**
* Return the produced NLO matrix elements
*/
const vector<Ptr<MatchboxMEBase>::ptr>& bornVirtualMEs() const { return theBornVirtualMEs; }
/**
* Access the produced NLO matrix elements
*/
vector<Ptr<MatchboxMEBase>::ptr>& bornVirtualMEs() { return theBornVirtualMEs; }
/**
* Return the real emission matrix elements to be considered
*/
const vector<Ptr<MatchboxMEBase>::ptr>& realEmissionMEs() const { return theRealEmissionMEs; }
/**
* Access the real emission matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr>& realEmissionMEs() { return theRealEmissionMEs; }
/**
* Return the produced subtracted matrix elements
*/
const vector<Ptr<SubtractedME>::ptr>& subtractedMEs() const { return theSubtractedMEs; }
/**
* Access the produced subtracted matrix elements
*/
vector<Ptr<SubtractedME>::ptr>& subtractedMEs() { return theSubtractedMEs; }
/**
* Return the produced finite real emission matrix elements
*/
const vector<Ptr<MatchboxMEBase>::ptr>& finiteRealMEs() const { return theFiniteRealMEs; }
/**
* Access the produced finite real emission elements
*/
vector<Ptr<MatchboxMEBase>::ptr>& finiteRealMEs() { return theFiniteRealMEs; }
/**
* Return the map of Born processes to splitting dipoles
*/
const map<cPDVector,set<Ptr<SubtractionDipole>::ptr> >& splittingDipoles() const {
return theSplittingDipoles;
}
+ /**
+ * Identify a splitting channel
+ */
+ struct SplittingChannel {
+
+ /**
+ * The Born XComb
+ */
+ StdXCombPtr bornXComb;
+
+ /**
+ * The real XComb
+ */
+ StdXCombPtr realXComb;
+
+ /**
+ * The dipole in charge of the splitting
+ */
+ Ptr<SubtractionDipole>::ptr dipole;
+
+ };
+
+ /**
+ * Generate all splitting channels for the Born process handled by
+ * the given XComb
+ */
+ list<SplittingChannel> getSplittingChannels(tStdXCombPtr xc) const;
+
//@}
/** @name Setup the matrix elements */
//@{
/**
* Return true if this object needs to be initialized before all
* other objects (except those for which this function also returns
* true). This default version always returns false, but subclasses
* may override it to return true.
*/
virtual bool preInitialize() const { return true; }
/**
* Prepare a matrix element.
*/
void prepareME(Ptr<MatchboxMEBase>::ptr) const;
/**
* Setup everything
*/
void setup();
//@}
/** @name Diagnostic information */
//@{
/**
* Return true, if verbose
*/
bool verbose() const { return theVerbose; }
/**
* Switch on diagnostic information.
*/
void setVerbose(bool on = true) { theVerbose = on; }
/**
* Return true, if verbose while initializing
*/
bool initVerbose() const { return theInitVerbose || verbose(); }
/**
* Switch on diagnostic information while initializing
*/
void setInitVerbose(bool on = true) { theInitVerbose = on; }
/**
* Dump the setup
*/
void print(ostream&) const;
/**
* Return the subtraction data prefix.
*/
const string& subtractionData() const { return theSubtractionData; }
/**
* Set the subtraction data prefix.
*/
void subtractionData(const string& s) { theSubtractionData = s; }
/**
* Return true, if cancellationn of epsilon poles should be checked.
*/
bool checkPoles() const { return theCheckPoles; }
/**
* Switch on checking of epsilon pole cancellation.
*/
void doCheckPoles() { theCheckPoles = true; }
//@}
/** @name Process generation */
//@{
/**
* Return the particle groups.
*/
const map<string,PDVector>& particleGroups() const { return theParticleGroups; }
/**
* Access the particle groups.
*/
map<string,PDVector>& particleGroups() { return theParticleGroups; }
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
//@}
private:
/**
* The diagram generator.
*/
Ptr<Tree2toNGenerator>::ptr theDiagramGenerator;
/**
* The process data object to be used
*/
Ptr<ProcessData>::ptr theProcessData;
/**
* The number of light flavours, this matrix
* element is calculated for.
*/
unsigned int theNLight;
/**
* The order in \f$\alpha_S\f$.
*/
unsigned int theOrderInAlphaS;
/**
* The order in \f$\alpha_{EM}\f$.
*/
unsigned int theOrderInAlphaEW;
/**
* Switch on or off Born contributions
*/
bool theBornContributions;
/**
* Switch on or off virtual contributions
*/
bool theVirtualContributions;
/**
* Switch on or off subtracted real emission contributions should be included.
*/
bool theRealContributions;
/**
* True, if SubProcessGroups should be
* setup from this MEGroup. If not, a single SubProcess
* is constructed from the data provided by the
* head matrix element.
*/
bool theSubProcessGroups;
/**
* True, if the integral over the unresolved emission should be
* calculated.
*/
bool theInclusive;
/**
* The phase space generator to be used.
*/
Ptr<MatchboxPhasespace>::ptr thePhasespace;
/**
* The scale choice object
*/
Ptr<MatchboxScaleChoice>::ptr theScaleChoice;
/**
* The factorization scale factor.
*/
double theFactorizationScaleFactor;
/**
* The renormalization scale factor.
*/
double theRenormalizationScaleFactor;
/**
* Use non-running couplings.
*/
bool theFixedCouplings;
/**
* Use non-running couplings.
*/
bool theFixedQEDCouplings;
/**
* True, if veto scales should be set
* for the real emission
*/
bool theVetoScales;
/**
* The amplitudes to be considered
*/
vector<Ptr<MatchboxAmplitude>::ptr> theAmplitudes;
/**
* The ME cache object
*/
Ptr<MatchboxMECache>::ptr theCache;
/**
* The Born matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr> theBornMEs;
/**
* The virtual corrections to be considered
*/
vector<Ptr<MatchboxInsertionOperator>::ptr> theVirtuals;
/**
* The real emission matrix elements to be considered
*/
vector<Ptr<MatchboxMEBase>::ptr> theRealEmissionMEs;
/**
* The produced NLO matrix elements
*/
vector<Ptr<MatchboxMEBase>::ptr> theBornVirtualMEs;
/**
* The produced subtracted matrix elements
*/
vector<Ptr<SubtractedME>::ptr> theSubtractedMEs;
/**
* The produced finite real emission matrix elements
*/
vector<Ptr<MatchboxMEBase>::ptr> theFiniteRealMEs;
/**
* Switch on or off verbosity
*/
bool theVerbose;
/**
* True, if verbose while initializing
*/
bool theInitVerbose;
/**
* Prefix for subtraction data
*/
string theSubtractionData;
/**
* Command to limit the real emission process to be considered.
*/
string doSingleRealProcess(string);
/**
* The real emission process to be included; if empty, all possible
* ones will be considered.
*/
vector<string> realEmissionProcess;
/**
* True, if cancellationn of epsilon poles should be checked.
*/
bool theCheckPoles;
/**
* Particle groups.
*/
map<string,PDVector> theParticleGroups;
/**
* Command to start a particle group.
*/
string startParticleGroup(string);
/**
* The name of the particle group currently edited.
*/
string particleGroupName;
/**
* The particle group currently edited.
*/
PDVector particleGroup;
/**
* Command to end a particle group.
*/
string endParticleGroup(string);
/**
* Command to set the process.
*/
string doProcess(string);
/**
* The process to consider in terms of particle groups.
*/
vector<string> process;
/**
* Generate subprocesses.
*/
set<PDVector> makeSubProcesses(const vector<string>&) const;
/**
* Generate matrix element objects for the given process.
*/
vector<Ptr<MatchboxMEBase>::ptr> makeMEs(const vector<string>&,
unsigned int orderas) const;
/**
* The shower approximation.
*/
Ptr<ShowerApproximation>::ptr theShowerApproximation;
/**
* The map of Born processes to splitting dipoles
*/
map<cPDVector,set<Ptr<SubtractionDipole>::ptr> > theSplittingDipoles;
private:
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MatchboxFactory & operator=(const MatchboxFactory &);
};
}
#endif /* HERWIG_MatchboxFactory_H */

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 4:03 PM (1 d, 13 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805074
Default Alt Text
(54 KB)

Event Timeline