Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877626
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
22 KB
Subscribers
None
View Options
diff --git a/Shower/Base/SudakovFormFactor.cc b/Shower/Base/SudakovFormFactor.cc
--- a/Shower/Base/SudakovFormFactor.cc
+++ b/Shower/Base/SudakovFormFactor.cc
@@ -1,675 +1,675 @@
// -*- C++ -*-
//
// SudakovFormFactor.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SudakovFormFactor class.
//
#include "SudakovFormFactor.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ShowerKinematics.h"
#include "ShowerParticle.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include "ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeAbstractClass<SudakovFormFactor,Interfaced>
describeSudakovFormFactor ("Herwig::SudakovFormFactor","");
void SudakovFormFactor::persistentOutput(PersistentOStream & os) const {
os << splittingFn_ << alpha_ << pdfmax_ << particles_ << pdffactor_
<< a_ << b_ << ounit(c_,GeV) << ounit(kinCutoffScale_,GeV) << cutOffOption_
<< ounit(vgcut_,GeV) << ounit(vqcut_,GeV)
<< ounit(pTmin_,GeV) << ounit(pT2min_,GeV2);
}
void SudakovFormFactor::persistentInput(PersistentIStream & is, int) {
is >> splittingFn_ >> alpha_ >> pdfmax_ >> particles_ >> pdffactor_
>> a_ >> b_ >> iunit(c_,GeV) >> iunit(kinCutoffScale_,GeV) >> cutOffOption_
>> iunit(vgcut_,GeV) >> iunit(vqcut_,GeV)
>> iunit(pTmin_,GeV) >> iunit(pT2min_,GeV2);
}
void SudakovFormFactor::Init() {
static ClassDocumentation<SudakovFormFactor> documentation
("The SudakovFormFactor class is the base class for the implementation of Sudakov"
" form factors in Herwig++");
static Reference<SudakovFormFactor,SplittingFunction>
interfaceSplittingFunction("SplittingFunction",
"A reference to the SplittingFunction object",
&Herwig::SudakovFormFactor::splittingFn_,
false, false, true, false);
static Reference<SudakovFormFactor,ShowerAlpha>
interfaceAlpha("Alpha",
"A reference to the Alpha object",
&Herwig::SudakovFormFactor::alpha_,
false, false, true, false);
static Parameter<SudakovFormFactor,double> interfacePDFmax
("PDFmax",
"Maximum value of PDF weight. ",
&SudakovFormFactor::pdfmax_, 35.0, 1.0, 100000.0,
false, false, Interface::limited);
static Switch<SudakovFormFactor,unsigned int> interfacePDFFactor
("PDFFactor",
"Include additional factors in the overestimate for the PDFs",
&SudakovFormFactor::pdffactor_, 0, false, false);
static SwitchOption interfacePDFFactorOff
(interfacePDFFactor,
"Off",
"Don't include any factors",
0);
static SwitchOption interfacePDFFactorOverZ
(interfacePDFFactor,
"OverZ",
"Include an additional factor of 1/z",
1);
static SwitchOption interfacePDFFactorOverOneMinusZ
(interfacePDFFactor,
"OverOneMinusZ",
"Include an additional factor of 1/(1-z)",
2);
static SwitchOption interfacePDFFactorOverZOneMinusZ
(interfacePDFFactor,
"OverZOneMinusZ",
"Include an additional factor of 1/z/(1-z)",
3);
static Switch<SudakovFormFactor,unsigned int> interfaceCutOffOption
("CutOffOption",
"The type of cut-off to use to end the shower",
&SudakovFormFactor::cutOffOption_, 0, false, false);
static SwitchOption interfaceCutOffOptionDefault
(interfaceCutOffOption,
"Default",
"Use the standard Herwig++ cut-off on virtualities with the minimum"
" virtuality depending on the mass of the branching particle",
0);
static SwitchOption interfaceCutOffOptionFORTRAN
(interfaceCutOffOption,
"FORTRAN",
"Use a FORTRAN-like cut-off on virtualities",
1);
static SwitchOption interfaceCutOffOptionpT
(interfaceCutOffOption,
"pT",
"Use a cut on the minimum allowed pT",
2);
static Parameter<SudakovFormFactor,double> interfaceaParameter
("aParameter",
"The a parameter for the kinematic cut-off",
&SudakovFormFactor::a_, 0.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,double> interfacebParameter
("bParameter",
"The b parameter for the kinematic cut-off",
&SudakovFormFactor::b_, 2.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacecParameter
("cParameter",
"The c parameter for the kinematic cut-off",
&SudakovFormFactor::c_, GeV, 0.3*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy>
interfaceKinScale ("cutoffKinScale",
"kinematic cutoff scale for the parton shower phase"
" space (unit [GeV])",
&SudakovFormFactor::kinCutoffScale_, GeV,
2.3*GeV, 0.001*GeV, 10.0*GeV,false,false,false);
static Parameter<SudakovFormFactor,Energy> interfaceGluonVirtualityCut
("GluonVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality of the gluon",
&SudakovFormFactor::vgcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfaceQuarkVirtualityCut
("QuarkVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality added to"
" the mass for particles other than the gluon",
&SudakovFormFactor::vqcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacepTmin
("pTmin",
"The minimum pT if using a cut-off on the pT",
&SudakovFormFactor::pTmin_, GeV, 1.0*GeV, ZERO, 10.0*GeV,
false, false, Interface::limited);
}
bool SudakovFormFactor::
PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
Ptr<BeamParticleData>::transient_const_pointer beam) const {
assert(pdf_);
Energy2 theScale = t;
if (theScale < sqr(freeze_)) theScale = sqr(freeze_);
double newpdf(0.0), oldpdf(0.0);
//different treatment of MPI ISR is done via CascadeHandler::resetPDFs()
newpdf=pdf_->xfx(beam,parton0,theScale,x/z());
oldpdf=pdf_->xfx(beam,parton1,theScale,x);
if(newpdf<=0.) return true;
if(oldpdf<=0.) return false;
double ratio = newpdf/oldpdf;
double maxpdf(pdfmax_);
switch (pdffactor_) {
case 1:
maxpdf /= z();
break;
case 2:
maxpdf /= 1.-z();
break;
case 3:
maxpdf /= (z()*(1.-z()));
break;
}
// ratio / PDFMax must be a probability <= 1.0
if (ratio > maxpdf) {
generator()->log() << "PDFVeto warning: Ratio > " << name()
<< ":PDFmax (by a factor of "
<< ratio/maxpdf <<") for "
<< parton0->PDGName() << " to "
<< parton1->PDGName() << "\n";
}
return ratio < UseRandom::rnd()*maxpdf;
}
void SudakovFormFactor::addSplitting(const IdList & in) {
bool add=true;
for(unsigned int ix=0;ix<particles_.size();++ix) {
if(particles_[ix].size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if(particles_[ix][iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
add=false;
break;
}
}
}
if(add) particles_.push_back(in);
}
namespace {
LorentzRotation boostToShower(const vector<Lorentz5Momentum> & basis,
ShowerKinematics::Frame frame,
Lorentz5Momentum & porig) {
LorentzRotation output;
if(frame==ShowerKinematics::BackToBack) {
// we are doing the evolution in the back-to-back frame
// work out the boostvector
Boost boostv(-(basis[0]+basis[1]).boostVector());
// momentum of the parton
Lorentz5Momentum ptest(basis[0]);
// construct the Lorentz boost
output = LorentzRotation(boostv);
ptest *= output;
Axis axis(ptest.vect().unit());
// now rotate so along the z axis as needed for the splitting functions
if(axis.perp2()>1e-10) {
double sinth(sqrt(1.-sqr(axis.z())));
output.rotate(-acos(axis.z()),Axis(-axis.y()/sinth,axis.x()/sinth,0.));
}
else if(axis.z()<0.) {
output.rotate(Constants::pi,Axis(1.,0.,0.));
}
porig = output*basis[0];
porig.setX(ZERO);
porig.setY(ZERO);
}
else {
output = LorentzRotation(-basis[0].boostVector());
porig = output*basis[0];
porig.setX(ZERO);
porig.setY(ZERO);
porig.setZ(ZERO);
}
return output;
}
RhoDMatrix bosonMapping(ShowerParticle & particle,
const Lorentz5Momentum & porig,
VectorSpinPtr vspin,
const LorentzRotation & rot) {
// rotate the original basis
vector<LorentzPolarizationVector> sbasis;
for(unsigned int ix=0;ix<3;++ix) {
sbasis.push_back(vspin->getProductionBasisState(ix));
sbasis.back().transform(rot);
}
// splitting basis
vector<LorentzPolarizationVector> fbasis;
bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
VectorWaveFunction wave(porig,particle.dataPtr(),outgoing);
for(unsigned int ix=0;ix<3;++ix) {
if(massless&&ix==1) {
fbasis.push_back(LorentzPolarizationVector());
}
else {
wave.reset(ix);
fbasis.push_back(wave.wave());
}
}
// work out the mapping
RhoDMatrix mapping=RhoDMatrix(PDT::Spin1,false);
for(unsigned int ix=0;ix<3;++ix) {
for(unsigned int iy=0;iy<3;++iy) {
mapping(ix,iy)= sbasis[iy].dot(fbasis[ix].conjugate());
if(particle.id()<0)
mapping(ix,iy)=conj(mapping(ix,iy));
}
}
// \todo need to fix this
mapping = RhoDMatrix(PDT::Spin1,false);
if(massless) {
mapping(0,0) = 1.;
mapping(2,2) = 1.;
}
else {
mapping(0,0) = 1.;
mapping(1,1) = 1.;
mapping(2,2) = 1.;
}
return mapping;
}
RhoDMatrix fermionMapping(ShowerParticle & particle,
const Lorentz5Momentum & porig,
FermionSpinPtr fspin,
const LorentzRotation & rot) {
// extract the original basis states
vector<LorentzSpinor<SqrtEnergy> > sbasis;
for(unsigned int ix=0;ix<2;++ix) {
sbasis.push_back(fspin->getProductionBasisState(ix));
sbasis.back().transform(rot);
}
// calculate the states in the splitting basis
vector<LorentzSpinor<SqrtEnergy> > fbasis;
SpinorWaveFunction wave(porig,particle.dataPtr(),
particle.id()>0 ? incoming : outgoing);
for(unsigned int ix=0;ix<2;++ix) {
wave.reset(ix);
fbasis.push_back(wave.dimensionedWave());
}
RhoDMatrix mapping=RhoDMatrix(PDT::Spin1Half,false);
for(unsigned int ix=0;ix<2;++ix) {
- if(fbasis[0].s2()==SqrtEnergy()) {
+ if(fbasis[0].s2()==complex<SqrtEnergy>()) {
mapping(ix,0) = sbasis[ix].s3()/fbasis[0].s3();
mapping(ix,1) = sbasis[ix].s2()/fbasis[1].s2();
}
else {
mapping(ix,0) = sbasis[ix].s2()/fbasis[0].s2();
mapping(ix,1) = sbasis[ix].s3()/fbasis[1].s3();
}
}
return mapping;
}
FermionSpinPtr createFermionSpinInfo(ShowerParticle & particle,
const Lorentz5Momentum & porig,
const LorentzRotation & rot,
Helicity::Direction dir) {
// calculate the splitting basis for the branching
// and rotate back to construct the basis states
LorentzRotation rinv = rot.inverse();
SpinorWaveFunction wave;
if(particle.id()>0)
wave=SpinorWaveFunction(porig,particle.dataPtr(),incoming);
else
wave=SpinorWaveFunction(porig,particle.dataPtr(),outgoing);
FermionSpinPtr fspin = new_ptr(FermionSpinInfo(particle.momentum(),dir==outgoing));
for(unsigned int ix=0;ix<2;++ix) {
wave.reset(ix);
LorentzSpinor<SqrtEnergy> basis = wave.dimensionedWave();
basis.transform(rinv);
fspin->setBasisState(ix,basis);
fspin->setDecayState(ix,basis);
}
particle.spinInfo(fspin);
return fspin;
}
VectorSpinPtr createVectorSpinInfo(ShowerParticle & particle,
const Lorentz5Momentum & porig,
const LorentzRotation & rot,
Helicity::Direction dir) {
// calculate the splitting basis for the branching
// and rotate back to construct the basis states
LorentzRotation rinv = rot.inverse();
bool massless(particle.id()==ParticleID::g||particle.id()==ParticleID::gamma);
VectorWaveFunction wave(porig,particle.dataPtr(),dir);
VectorSpinPtr vspin = new_ptr(VectorSpinInfo(particle.momentum(),dir==outgoing));
for(unsigned int ix=0;ix<3;++ix) {
LorentzPolarizationVector basis;
if(massless&&ix==1) {
basis = LorentzPolarizationVector();
}
else {
wave.reset(ix);
basis = wave.wave();
}
basis *= rinv;
vspin->setBasisState(ix,basis);
vspin->setDecayState(ix,basis);
}
particle.spinInfo(vspin);
vspin-> DMatrix() = RhoDMatrix(PDT::Spin1);
vspin->rhoMatrix() = RhoDMatrix(PDT::Spin1);
if(massless) {
vspin-> DMatrix()(0,0) = 0.5;
vspin->rhoMatrix()(0,0) = 0.5;
vspin-> DMatrix()(2,2) = 0.5;
vspin->rhoMatrix()(2,2) = 0.5;
}
return vspin;
}
}
bool SudakovFormFactor::getMapping(SpinPtr & output, RhoDMatrix & mapping,
ShowerParticle & particle,ShoKinPtr showerkin) {
// if the particle is not from the hard process
if(!particle.perturbative()) {
// mapping is the identity
output=particle.spinInfo();
mapping=RhoDMatrix(particle.dataPtr()->iSpin());
if(output) {
return false;
}
else {
Lorentz5Momentum porig;
LorentzRotation rot = boostToShower(showerkin->getBasis(),showerkin->frame(),porig);
Helicity::Direction dir = particle.isFinalState() ? outgoing : incoming;
if(particle.dataPtr()->iSpin()==PDT::Spin0) {
assert(false);
}
else if(particle.dataPtr()->iSpin()==PDT::Spin1Half) {
output = createFermionSpinInfo(particle,porig,rot,dir);
}
else if(particle.dataPtr()->iSpin()==PDT::Spin1) {
output = createVectorSpinInfo(particle,porig,rot,dir);
}
else {
assert(false);
}
return false;
}
}
// if particle is final-state and is from the hard process
else if(particle.isFinalState()) {
assert(particle.perturbative()==1 || particle.perturbative()==2);
// get transform to shower frame
Lorentz5Momentum porig;
LorentzRotation rot = boostToShower(showerkin->getBasis(),showerkin->frame(),porig);
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
mapping=RhoDMatrix(spin,false);
// do the spin dependent bit
if(spin==PDT::Spin0) {
ScalarSpinPtr sspin=dynamic_ptr_cast<ScalarSpinPtr>(particle.spinInfo());
if(!sspin) {
ScalarWaveFunction::constructSpinInfo(&particle,outgoing,true);
}
output=particle.spinInfo();
return false;
}
else if(spin==PDT::Spin1Half) {
FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(fspin) {
output=fspin;
mapping = fermionMapping(particle,porig,fspin,rot);
return true;
}
// spin info does not exist create it
else {
output = createFermionSpinInfo(particle,porig,rot,outgoing);
return false;
}
}
else if(spin==PDT::Spin1) {
VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(vspin) {
output=vspin;
mapping = bosonMapping(particle,porig,vspin,rot);
return true;
}
else {
output = createVectorSpinInfo(particle,porig,rot,outgoing);
return false;
}
}
// not scalar/fermion/vector
else
assert(false);
}
// incoming to hard process
else if(particle.perturbative()==1 && !particle.isFinalState()) {
// get the basis vectors
// get transform to shower frame
Lorentz5Momentum porig;
LorentzRotation rot = boostToShower(showerkin->getBasis(),showerkin->frame(),porig);
porig *= particle.x();
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
mapping=RhoDMatrix(spin);
// do the spin dependent bit
if(spin==PDT::Spin0) {
cerr << "testing spin 0 not yet implemented " << endl;
assert(false);
}
// spin-1/2
else if(spin==PDT::Spin1Half) {
FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// spin info exists get information from it
if(fspin) {
output=fspin;
mapping = fermionMapping(particle,porig,fspin,rot);
return true;
}
// spin info does not exist create it
else {
output = createFermionSpinInfo(particle,porig,rot,incoming);
return false;
}
}
// spin-1
else if(spin==PDT::Spin1) {
VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// spinInfo exists map it
if(vspin) {
output=vspin;
mapping = bosonMapping(particle,porig,vspin,rot);
return true;
}
// create the spininfo
else {
output = createVectorSpinInfo(particle,porig,rot,incoming);
return false;
}
}
assert(false);
}
// incoming to decay
else if(particle.perturbative() == 2 && !particle.isFinalState()) {
// get the basis vectors
Lorentz5Momentum porig;
LorentzRotation rot=boostToShower(showerkin->getBasis(),
showerkin->frame(),porig);
// the rest depends on the spin of the particle
PDT::Spin spin(particle.dataPtr()->iSpin());
mapping=RhoDMatrix(spin);
// do the spin dependent bit
if(spin==PDT::Spin0) {
cerr << "testing spin 0 not yet implemented " << endl;
assert(false);
}
// spin-1/2
else if(spin==PDT::Spin1Half) {
// FermionSpinPtr fspin=dynamic_ptr_cast<FermionSpinPtr>(particle.spinInfo());
// // spin info exists get information from it
// if(fspin) {
// output=fspin;
// mapping = fermionMapping(particle,porig,fspin,rot);
// return true;
// // spin info does not exist create it
// else {
// output = createFermionSpinInfo(particle,porig,rot,incoming);
// return false;
// }
// }
assert(false);
}
// // spin-1
// else if(spin==PDT::Spin1) {
// VectorSpinPtr vspin=dynamic_ptr_cast<VectorSpinPtr>(particle.spinInfo());
// // spinInfo exists map it
// if(vspin) {
// output=vspin;
// mapping = bosonMapping(particle,porig,vspin,rot);
// return true;
// }
// // create the spininfo
// else {
// output = createVectorSpinInfo(particle,porig,rot,incoming);
// return false;
// }
// }
// assert(false);
assert(false);
}
else
assert(false);
return true;
}
void SudakovFormFactor::removeSplitting(const IdList & in) {
for(vector<IdList>::iterator it=particles_.begin();
it!=particles_.end();++it) {
if(it->size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if((*it)[iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
vector<IdList>::iterator itemp=it;
--itemp;
particles_.erase(it);
it = itemp;
}
}
}
}
Energy2 SudakovFormFactor::guesst(Energy2 t1,unsigned int iopt,
const IdList &ids,
double enhance,bool ident) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double c =
1./((splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
splittingFn_->integOverP(zlimits_.first ,ids,pdfopt))*
alpha_->overestimateValue()/Constants::twopi*enhance);
assert(iopt<=2);
if(iopt==1) {
c/=pdfmax_;
if(ident) c*=0.5;
}
else if(iopt==2) c*=-1.;
if(splittingFn_->interactionOrder()==1) {
double r = UseRandom::rnd();
if(iopt!=2 || c*log(r)<log(Constants::MaxEnergy2/t1)) {
return t1*pow(r,c);
}
else
return Constants::MaxEnergy2;
}
else {
assert(false && "Units are dubious here.");
int nm(splittingFn()->interactionOrder()-1);
c/=Math::powi(alpha_->overestimateValue()/Constants::twopi,nm);
return t1 / pow (1. - nm*c*log(UseRandom::rnd())
* Math::powi(t1*UnitRemoval::InvE2,nm)
,1./double(nm));
}
}
double SudakovFormFactor::guessz (unsigned int iopt, const IdList &ids) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double lower = splittingFn_->integOverP(zlimits_.first,ids,pdfopt);
return splittingFn_->invIntegOverP
(lower + UseRandom::rnd()*(splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
lower),ids,pdfopt);
}
void SudakovFormFactor::doinit() {
Interfaced::doinit();
pT2min_ = cutOffOption()==2 ? sqr(pTmin_) : ZERO;
}
const vector<Energy> & SudakovFormFactor::virtualMasses(const IdList & ids) {
static vector<Energy> output;
output.clear();
if(cutOffOption() == 0) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
Energy kinCutoff=
kinematicCutOff(kinScale(),*std::max_element(output.begin(),output.end()));
for(unsigned int ix=0;ix<output.size();++ix)
output[ix]=max(kinCutoff,output[ix]);
}
else if(cutOffOption() == 1) {
for(unsigned int ix=0;ix<ids.size();++ix) {
output.push_back(getParticleData(ids[ix])->mass());
output.back() += ids[ix]==ParticleID::g ? vgCut() : vqCut();
}
}
else if(cutOffOption() == 2) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
}
else {
throw Exception() << "Unknown option for the cut-off"
<< " in SudakovFormFactor::virtualMasses()"
<< Exception::runerror;
}
return output;
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:55 PM (1 d, 19 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3805054
Default Alt Text
(22 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment