Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877466
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
108 KB
Subscribers
None
View Options
Index: branches/bach/release_2.1.1_hoppet_top_features/src/omega/src/modellib_SM.ml
===================================================================
--- branches/bach/release_2.1.1_hoppet_top_features/src/omega/src/modellib_SM.ml (revision 4071)
+++ branches/bach/release_2.1.1_hoppet_top_features/src/omega/src/modellib_SM.ml (revision 4072)
@@ -1,3070 +1,3069 @@
(* $Id$
Copyright (C) 1999-2012 by
Wolfgang Kilian <kilian@physik.uni-siegen.de>
Thorsten Ohl <ohl@physik.uni-wuerzburg.de>
Juergen Reuter <juergen.reuter@desy.de>
Christian Speckner <christian.speckner@physik.uni-freiburg.de>
Fabian Bach <fabian.bach@cern.ch> (only parts of this file)
WHIZARD is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
WHIZARD is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *)
let rcs_file = RCS.parse "Modellib_SM" ["Lagragians"]
{ RCS.revision = "$Revision$";
RCS.date = "$Date$";
RCS.author = "$Author$";
RCS.source
= "$URL$" }
(* \thocwmodulesection{$\phi^3$} *)
module Phi3 =
struct
let rcs = RCS.rename rcs_file "Modellib.Phi3"
["phi**3 with a single flavor"]
open Coupling
let options = Options.empty
type flavor = Phi
let external_flavors () = [ "", [Phi]]
let flavors () = ThoList.flatmap snd (external_flavors ())
type gauge = unit
type constant = G
let lorentz _ = Scalar
let color _ = Color.Singlet
let propagator _ = Prop_Scalar
let width _ = Timelike
let goldstone _ = None
let conjugate f = f
let fermion _ = 0
module Ch = Charges.Null
let charges _ = ()
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
let vertices () =
([(Phi, Phi, Phi), Scalar_Scalar_Scalar 1, G], [], [])
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 3
let parameters () = { input = [G, 1.0]; derived = []; derived_arrays = [] }
let flavor_of_string = function
| "p" -> Phi
| _ -> invalid_arg "Modellib.Phi3.flavor_of_string"
let flavor_to_string Phi = "phi"
let flavor_to_TeX Phi = "\\phi"
let flavor_symbol Phi = "phi"
let gauge_symbol () =
failwith "Modellib.Phi3.gauge_symbol: internal error"
let pdg _ = 1
let mass_symbol _ = "m"
let width_symbol _ = "w"
let constant_symbol G = "g"
end
(* \thocwmodulesection{$\lambda_3\phi^3+\lambda_4\phi^4$} *)
module Phi4 =
struct
let rcs = RCS.rename rcs_file "Modellib.Phi4"
["phi**4 with a single flavor"]
open Coupling
let options = Options.empty
type flavor = Phi
let external_flavors () = [ "", [Phi]]
let flavors () = ThoList.flatmap snd (external_flavors ())
type gauge = unit
type constant = G3 | G4
let lorentz _ = Scalar
let color _ = Color.Singlet
let propagator _ = Prop_Scalar
let width _ = Timelike
let goldstone _ = None
let conjugate f = f
let fermion _ = 0
module Ch = Charges.Null
let charges _ = ()
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
let vertices () =
([(Phi, Phi, Phi), Scalar_Scalar_Scalar 1, G3],
[(Phi, Phi, Phi, Phi), Scalar4 1, G4], [])
let fuse2 _ = failwith "Modellib.Phi4.fuse2"
let fuse3 _ = failwith "Modellib.Phi4.fuse3"
let fuse = function
| [] | [_] -> invalid_arg "Modellib.Phi4.fuse"
| [_; _] -> [Phi, V3 (Scalar_Scalar_Scalar 1, F23, G3)]
| [_; _; _] -> [Phi, V4 (Scalar4 1, F234, G4)]
| _ -> []
let max_degree () = 4
let parameters () =
{ input = [G3, 1.0; G4, 1.0]; derived = []; derived_arrays = [] }
let flavor_of_string = function
| "p" -> Phi
| _ -> invalid_arg "Modellib.Phi4.flavor_of_string"
let flavor_to_string Phi = "phi"
let flavor_to_TeX Phi = "\\phi"
let flavor_symbol Phi = "phi"
let gauge_symbol () =
failwith "Modellib.Phi4.gauge_symbol: internal error"
let pdg _ = 1
let mass_symbol _ = "m"
let width_symbol _ = "w"
let constant_symbol = function
| G3 -> "g3"
| G4 -> "g4"
end
(* \thocwmodulesection{Quantum Electro Dynamics} *)
module QED =
struct
let rcs = RCS.rename rcs_file "Modellib.QED"
["QED with two leptonic flavors"]
open Coupling
let options = Options.empty
type flavor =
| Electron | Positron
| Muon | AntiMuon
| Tau | AntiTau
| Photon
let external_flavors () =
[ "Leptons", [Electron; Positron; Muon; AntiMuon; Tau; AntiTau];
"Gauge Bosons", [Photon] ]
let flavors () = ThoList.flatmap snd (external_flavors ())
type gauge = unit
type constant = Q
let lorentz = function
| Electron | Muon | Tau -> Spinor
| Positron | AntiMuon | AntiTau -> ConjSpinor
| Photon -> Vector
let color _ = Color.Singlet
let propagator = function
| Electron | Muon | Tau -> Prop_Spinor
| Positron | AntiMuon | AntiTau -> Prop_ConjSpinor
| Photon -> Prop_Feynman
let width _ = Timelike
let goldstone _ =
None
let conjugate = function
| Electron -> Positron | Positron -> Electron
| Muon -> AntiMuon | AntiMuon -> Muon
| Tau -> AntiTau | AntiTau -> Tau
| Photon -> Photon
let fermion = function
| Electron | Muon | Tau -> 1
| Positron | AntiMuon | AntiTau -> -1
| Photon -> 0
(* Taking generation numbers makes electric charge redundant. *)
module Ch = Charges.ZZ
let charges = function
| Electron -> [1; 0; 0]
| Muon -> [0; 1; 0]
| Tau -> [0; 0; 1]
| Positron -> [-1;0; 0]
| AntiMuon -> [0;-1; 0]
| AntiTau -> [0; 0;-1]
| Photon -> [0; 0; 0]
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
let vertices () =
([(Positron, Photon, Electron), FBF (1, Psibar, V, Psi), Q;
(AntiMuon, Photon, Muon), FBF (1, Psibar, V, Psi), Q;
(AntiTau, Photon, Tau), FBF (1, Psibar, V, Psi), Q], [], [])
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 3
let parameters () = { input = [Q, 1.0]; derived = []; derived_arrays = [] }
let flavor_of_string = function
| "e-" -> Electron | "e+" -> Positron
| "m-" -> Muon | "m+" -> AntiMuon
| "t-" -> Tau | "t+" -> AntiTau
| "A" -> Photon
| _ -> invalid_arg "Modellib.QED.flavor_of_string"
let flavor_to_string = function
| Electron -> "e-" | Positron -> "e+"
| Muon -> "m-" | AntiMuon -> "m+"
| Tau -> "t-" | AntiTau -> "t+"
| Photon -> "A"
let flavor_to_TeX = function
| Electron -> "e^-" | Positron -> "e^+"
| Muon -> "\\mu^-" | AntiMuon -> "\\mu^+"
| Tau -> "^\\tau^-" | AntiTau -> "\\tau+^"
| Photon -> "\\gamma"
let flavor_symbol = function
| Electron -> "ele" | Positron -> "pos"
| Muon -> "muo" | AntiMuon -> "amu"
| Tau -> "tau" | AntiTau -> "ata"
| Photon -> "gam"
let gauge_symbol () =
failwith "Modellib.QED.gauge_symbol: internal error"
let pdg = function
| Electron -> 11 | Positron -> -11
| Muon -> 13 | AntiMuon -> -13
| Tau -> 15 | AntiTau -> -15
| Photon -> 22
let mass_symbol f =
"mass(" ^ string_of_int (abs (pdg f)) ^ ")"
let width_symbol f =
"width(" ^ string_of_int (abs (pdg f)) ^ ")"
let constant_symbol = function
| Q -> "qlep"
end
(* \thocwmodulesection{Quantum Chromo Dynamics} *)
module QCD =
struct
let rcs = RCS.rename rcs_file "Modellib.QCD"
["QCD"]
open Coupling
let options = Options.empty
type flavor =
| U | Ubar | D | Dbar
| C | Cbar | S | Sbar
| T | Tbar | B | Bbar
| Gl
let external_flavors () =
[ "Quarks", [U; D; C; S; T; B; Ubar; Dbar; Cbar; Sbar; Tbar; Bbar];
"Gauge Bosons", [Gl]]
let flavors () = ThoList.flatmap snd (external_flavors ())
type gauge = unit
type constant = Gs | G2 | I_Gs
let lorentz = function
| U | D | C | S | T | B -> Spinor
| Ubar | Dbar | Cbar | Sbar | Tbar | Bbar -> ConjSpinor
| Gl -> Vector
let color = function
| U | D | C | S | T | B -> Color.SUN 3
| Ubar | Dbar | Cbar | Sbar | Tbar | Bbar -> Color.SUN (-3)
| Gl -> Color.AdjSUN 3
let propagator = function
| U | D | C | S | T | B -> Prop_Spinor
| Ubar | Dbar | Cbar | Sbar | Tbar | Bbar -> Prop_ConjSpinor
| Gl -> Prop_Feynman
let width _ = Timelike
let goldstone _ =
None
let conjugate = function
| U -> Ubar
| D -> Dbar
| C -> Cbar
| S -> Sbar
| T -> Tbar
| B -> Bbar
| Ubar -> U
| Dbar -> D
| Cbar -> C
| Sbar -> S
| Tbar -> T
| Bbar -> B
| Gl -> Gl
let fermion = function
| U | D | C | S | T | B -> 1
| Ubar | Dbar | Cbar | Sbar | Tbar | Bbar -> -1
| Gl -> 0
module Ch = Charges.ZZ
let charges = function
| D -> [1; 0; 0; 0; 0; 0]
| U -> [0; 1; 0; 0; 0; 0]
| S -> [0; 0; 1; 0; 0; 0]
| C -> [0; 0; 0; 1; 0; 0]
| B -> [0; 0; 0; 0; 1; 0]
| T -> [0; 0; 0; 0; 0; 1]
| Dbar -> [-1; 0; 0; 0; 0; 0]
| Ubar -> [0; -1; 0; 0; 0; 0]
| Sbar -> [0; 0; -1; 0; 0; 0]
| Cbar -> [0; 0; 0; -1; 0; 0]
| Bbar -> [0; 0; 0; 0; -1; 0]
| Tbar -> [0; 0; 0; 0; 0; -1]
| Gl -> [0; 0; 0; 0; 0; 0]
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
(* This is compatible with CD+. *)
let color_current =
[ ((Dbar, Gl, D), FBF ((-1), Psibar, V, Psi), Gs);
((Ubar, Gl, U), FBF ((-1), Psibar, V, Psi), Gs);
((Cbar, Gl, C), FBF ((-1), Psibar, V, Psi), Gs);
((Sbar, Gl, S), FBF ((-1), Psibar, V, Psi), Gs);
((Tbar, Gl, T), FBF ((-1), Psibar, V, Psi), Gs);
((Bbar, Gl, B), FBF ((-1), Psibar, V, Psi), Gs)]
let three_gluon =
[ ((Gl, Gl, Gl), Gauge_Gauge_Gauge 1, I_Gs)]
let gauge4 = Vector4 [(2, C_13_42); (-1, C_12_34); (-1, C_14_23)]
let four_gluon =
[ ((Gl, Gl, Gl, Gl), gauge4, G2)]
let vertices3 =
(color_current @ three_gluon)
let vertices4 = four_gluon
let vertices () =
(vertices3, vertices4, [])
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 4
let parameters () = { input = [Gs, 1.0]; derived = []; derived_arrays = [] }
let flavor_of_string = function
| "u" -> U
| "d" -> D
| "c" -> C
| "s" -> S
| "t" -> T
| "b" -> B
| "ubar" -> Ubar
| "dbar" -> Dbar
| "cbar" -> Cbar
| "sbar" -> Sbar
| "tbar" -> Tbar
| "bbar" -> Bbar
| "gl" -> Gl
| _ -> invalid_arg "Modellib.QCD.flavor_of_string"
let flavor_to_string = function
| U -> "u"
| Ubar -> "ubar"
| D -> "d"
| Dbar -> "dbar"
| C -> "c"
| Cbar -> "cbar"
| S -> "s"
| Sbar -> "sbar"
| T -> "t"
| Tbar -> "tbar"
| B -> "b"
| Bbar -> "bbar"
| Gl -> "gl"
let flavor_to_TeX = function
| U -> "u"
| Ubar -> "\bar{u}"
| D -> "d"
| Dbar -> "\bar{d}"
| C -> "c"
| Cbar -> "bar{c}"
| S -> "s"
| Sbar -> "\bar{s}"
| T -> "t"
| Tbar -> "\bar{t}"
| B -> "b"
| Bbar -> "\bar{b}"
| Gl -> "g"
let flavor_symbol = function
| U -> "u"
| Ubar -> "ubar"
| D -> "d"
| Dbar -> "dbar"
| C -> "c"
| Cbar -> "cbar"
| S -> "s"
| Sbar -> "sbar"
| T -> "t"
| Tbar -> "tbar"
| B -> "b"
| Bbar -> "bbar"
| Gl -> "gl"
let gauge_symbol () =
failwith "Modellib.QCD.gauge_symbol: internal error"
let pdg = function
| D -> 1 | Dbar -> -1
| U -> 2 | Ubar -> -2
| S -> 3 | Sbar -> -3
| C -> 4 | Cbar -> -4
| B -> 5 | Bbar -> -5
| T -> 6 | Tbar -> -6
| Gl -> 21
let mass_symbol f =
"mass(" ^ string_of_int (abs (pdg f)) ^ ")"
let width_symbol f =
"width(" ^ string_of_int (abs (pdg f)) ^ ")"
let constant_symbol = function
| I_Gs -> "(0,1)*gs"
| Gs -> "gs"
| G2 -> "gs**2"
end
(* \thocwmodulesection{Complete Minimal Standard Model (Unitarity Gauge)} *)
module type SM_flags =
sig
val higgs_triangle : bool (* $H\gamma\gamma$, $Hg\gamma$ and $Hgg$ couplings *)
val higgs_hmm : bool
val triple_anom : bool
val quartic_anom : bool
val higgs_anom : bool
val k_matrix : bool
val ckm_present : bool
val top_anom : bool
val top_anom_4f : bool
end
module SM_no_anomalous : SM_flags =
struct
let higgs_triangle = false
let higgs_hmm = false
let triple_anom = false
let quartic_anom = false
let higgs_anom = false
let k_matrix = false
let ckm_present = false
let top_anom = false
let top_anom_4f = false
end
module SM_no_anomalous_ckm : SM_flags =
struct
let higgs_triangle = false
let higgs_hmm = false
let triple_anom = false
let quartic_anom = false
let higgs_anom = false
let k_matrix = false
let ckm_present = true
let top_anom = false
let top_anom_4f = false
end
module SM_anomalous : SM_flags =
struct
let higgs_triangle = false
let higgs_hmm = false
let triple_anom = true
let quartic_anom = true
let higgs_anom = true
let k_matrix = false
let ckm_present = false
let top_anom = false
let top_anom_4f = false
end
module SM_anomalous_ckm : SM_flags =
struct
let higgs_triangle = false
let higgs_hmm = false
let triple_anom = true
let quartic_anom = true
let higgs_anom = true
let k_matrix = false
let ckm_present = true
let top_anom = false
let top_anom_4f = false
end
module SM_k_matrix : SM_flags =
struct
let higgs_triangle = false
let higgs_hmm = false
let triple_anom = false
let quartic_anom = true
let higgs_anom = false
let k_matrix = true
let ckm_present = false
let top_anom = false
let top_anom_4f = false
end
module SM_Higgs : SM_flags =
struct
let higgs_triangle = true
let higgs_hmm = true
let triple_anom = false
let quartic_anom = false
let higgs_anom = false
let k_matrix = false
let ckm_present = false
let top_anom = false
let top_anom_4f = false
end
module SM_anomalous_top : SM_flags =
struct
let higgs_triangle = false
let higgs_hmm = false
let triple_anom = false
let quartic_anom = false
let higgs_anom = false
let k_matrix = false
let ckm_present = false
let top_anom = true
let top_anom_4f = true
end
(* \thocwmodulesection{Complete Minimal Standard Model (including some extensions)} *)
module SM (Flags : SM_flags) =
struct
let rcs = RCS.rename rcs_file "Modellib.SM"
[ "minimal electroweak standard model in unitarity gauge"]
open Coupling
let default_width = ref Timelike
let use_fudged_width = ref false
let options = Options.create
[ "constant_width", Arg.Unit (fun () -> default_width := Constant),
"use constant width (also in t-channel)";
"fudged_width", Arg.Set use_fudged_width,
"use fudge factor for charge particle width";
"custom_width", Arg.String (fun f -> default_width := Custom f),
"use custom width";
"cancel_widths", Arg.Unit (fun () -> default_width := Vanishing),
"use vanishing width"]
type f_aux_top = TTGG | TBWA | TBWZ | TTWW | BBWW | (*i top auxiliary field "flavors" *)
QGUG | QBUB | QW | DL | DR |
QUQD1L | QUQD1R | QUQD8L | QUQD8R
type matter_field = L of int | N of int | U of int | D of int
type gauge_boson = Ga | Wp | Wm | Z | Gl
type other = Phip | Phim | Phi0 | H
| Aux_top of int*int*int*bool*f_aux_top (*i lorentz*color*charge*top-side*flavor *)
type flavor = M of matter_field | G of gauge_boson | O of other
let matter_field f = M f
let gauge_boson f = G f
let other f = O f
type field =
| Matter of matter_field
| Gauge of gauge_boson
| Other of other
let field = function
| M f -> Matter f
| G f -> Gauge f
| O f -> Other f
type gauge = unit
let gauge_symbol () =
failwith "Modellib.SM.gauge_symbol: internal error"
let family n = List.map matter_field [ L n; N n; U n; D n ]
let rec aux_top_flavors (f,l,co,ch) = List.append
( List.map other [ Aux_top(l,co,ch/2,true,f); Aux_top(l,co,ch/2,false,f) ] )
( if ch > 1 then List.append
( List.map other [ Aux_top(l,co,-ch/2,true,f); Aux_top(l,co,-ch/2,false,f) ] )
( aux_top_flavors (f,l,co,(ch-2)) )
else [] )
let external_flavors () =
[ "1st Generation", ThoList.flatmap family [1; -1];
"2nd Generation", ThoList.flatmap family [2; -2];
"3rd Generation", ThoList.flatmap family [3; -3];
"Gauge Bosons", List.map gauge_boson [Ga; Z; Wp; Wm; Gl];
"Higgs", List.map other [H];
"Goldstone Bosons", List.map other [Phip; Phim; Phi0] ]
let flavors () = List.append
( ThoList.flatmap snd (external_flavors ()) )
( ThoList.flatmap aux_top_flavors
[ (TTGG,2,1,1); (TBWA,2,0,2); (TBWZ,2,0,2); (TTWW,2,0,1); (BBWW,2,0,1);
(QGUG,1,1,1); (QBUB,1,0,1); (QW,1,0,3); (DL,0,0,3); (DR,0,0,3);
(QUQD1L,0,0,3); (QUQD1R,0,0,3); (QUQD8L,0,1,3); (QUQD8R,0,1,3) ] )
let spinor n =
if n >= 0 then
Spinor
else
ConjSpinor
let lorentz_aux = function
| 2 -> Tensor_1
| 1 -> Vector
| 0 -> Scalar
| _ -> invalid_arg ("SM.lorentz_aux: wrong value")
let lorentz = function
| M f ->
begin match f with
| L n -> spinor n | N n -> spinor n
| U n -> spinor n | D n -> spinor n
end
| G f ->
begin match f with
| Ga | Gl -> Vector
| Wp | Wm | Z -> Massive_Vector
end
| O f ->
begin match f with
| Aux_top (l,_,_,_,_) -> lorentz_aux l
| _ -> Scalar
end
let color = function
| M (U n) -> Color.SUN (if n > 0 then 3 else -3)
| M (D n) -> Color.SUN (if n > 0 then 3 else -3)
| G Gl -> Color.AdjSUN 3
| O (Aux_top (_,co,_,_,_)) -> if co == 0 then Color.Singlet else Color.AdjSUN 3
| _ -> Color.Singlet
let prop_spinor n =
if n >= 0 then
Prop_Spinor
else
Prop_ConjSpinor
let prop_aux = function
| 2 -> Aux_Tensor_1
| 1 -> Aux_Vector
| 0 -> Aux_Scalar
| _ -> invalid_arg ("SM.prop_aux: wrong value")
let propagator = function
| M f ->
begin match f with
| L n -> prop_spinor n | N n -> prop_spinor n
| U n -> prop_spinor n | D n -> prop_spinor n
end
| G f ->
begin match f with
| Ga | Gl -> Prop_Feynman
| Wp | Wm | Z -> Prop_Unitarity
end
| O f ->
begin match f with
| Phip | Phim | Phi0 -> Only_Insertion
| H -> Prop_Scalar
| Aux_top (l,_,_,_,_) -> prop_aux l
end
(* Optionally, ask for the fudge factor treatment for the widths of
charged particles. Currently, this only applies to $W^\pm$ and top. *)
let width f =
if !use_fudged_width then
match f with
| G Wp | G Wm | M (U 3) | M (U (-3)) -> Fudged
| _ -> !default_width
else
!default_width
let goldstone = function
| G f ->
begin match f with
| Wp -> Some (O Phip, Coupling.Const 1)
| Wm -> Some (O Phim, Coupling.Const 1)
| Z -> Some (O Phi0, Coupling.Const 1)
| _ -> None
end
| _ -> None
let conjugate = function
| M f ->
M (begin match f with
| L n -> L (-n) | N n -> N (-n)
| U n -> U (-n) | D n -> D (-n)
end)
| G f ->
G (begin match f with
| Gl -> Gl | Ga -> Ga | Z -> Z
| Wp -> Wm | Wm -> Wp
end)
| O f ->
O (begin match f with
| Phip -> Phim | Phim -> Phip | Phi0 -> Phi0
| H -> H
| Aux_top (l,co,ch,n,f) -> Aux_top (l,co,(-ch),(not n),f)
end)
let fermion = function
| M f ->
begin match f with
| L n -> if n > 0 then 1 else -1
| N n -> if n > 0 then 1 else -1
| U n -> if n > 0 then 1 else -1
| D n -> if n > 0 then 1 else -1
end
| G f ->
begin match f with
| Gl | Ga | Z | Wp | Wm -> 0
end
| O _ -> 0
(* Electrical charge, lepton number, baryon number. We could avoid the
rationals altogether by multiplying the first and last by 3 \ldots *)
module Ch = Charges.QQ
let ( // ) = Algebra.Small_Rational.make
let generation' = function
| 1 -> [ 1//1; 0//1; 0//1]
| 2 -> [ 0//1; 1//1; 0//1]
| 3 -> [ 0//1; 0//1; 1//1]
| -1 -> [-1//1; 0//1; 0//1]
| -2 -> [ 0//1; -1//1; 0//1]
| -3 -> [ 0//1; 0//1; -1//1]
| n -> invalid_arg ("SM.generation': " ^ string_of_int n)
let generation f =
if Flags.ckm_present then
[]
else
match f with
| M (L n | N n | U n | D n) -> generation' n
| G _ | O _ -> [0//1; 0//1; 0//1]
let charge = function
| M f ->
begin match f with
| L n -> if n > 0 then -1//1 else 1//1
| N n -> 0//1
| U n -> if n > 0 then 2//3 else -2//3
| D n -> if n > 0 then -1//3 else 1//3
end
| G f ->
begin match f with
| Gl | Ga | Z -> 0//1
| Wp -> 1//1
| Wm -> -1//1
end
| O f ->
begin match f with
| H | Phi0 -> 0//1
| Phip -> 1//1
| Phim -> -1//1
| Aux_top (_,_,ch,_,_) -> ch//1
end
let lepton = function
| M f ->
begin match f with
| L n | N n -> if n > 0 then 1//1 else -1//1
| U _ | D _ -> 0//1
end
| G _ | O _ -> 0//1
let baryon = function
| M f ->
begin match f with
| L _ | N _ -> 0//1
| U n | D n -> if n > 0 then 1//1 else -1//1
end
| G _ | O _ -> 0//1
let charges f =
[ charge f; lepton f; baryon f] @ generation f
type constant =
| Unit | Half | Pi | Alpha_QED | Sin2thw
| Sinthw | Costhw | E | G_weak | I_G_weak | Vev
| Q_lepton | Q_up | Q_down | G_CC | G_CCQ of int*int
| G_NC_neutrino | G_NC_lepton | G_NC_up | G_NC_down
| G_TVA_ttA | G_TVA_bbA
| G_VLR_ttZ | G_TVA_ttZ | G_TVA_bbZ
| G_VLR_btW | G_VLR_tbW
| G_TLR_btW | G_TRL_tbW
| G_TLR_btWZ | G_TRL_tbWZ
| G_TLR_btWA | G_TRL_tbWA
| G_TVA_ttWW | G_TVA_bbWW
| G_TVA_ttG | G_TVA_ttGG
| G_SP_ttH
| G_VLR_qGuG | G_VLR_qBuB
| G_VLR_qBuB_u | G_VLR_qBuB_d | G_VLR_qBuB_e | G_VL_qBuB_n
| G_VL_qW | G_VL_qW_u | G_VL_qW_d
| G_SL_DttR | G_SR_DttR | G_SL_DttL | G_SLR_DbtR | G_SL_DbtL
| C_quqd1R_bt | C_quqd1R_tb | C_quqd1L_bt | C_quqd1L_tb
| C_quqd8R_bt | C_quqd8R_tb | C_quqd8L_bt | C_quqd8L_tb
| I_Q_W | I_G_ZWW
| G_WWWW | G_ZZWW | G_AZWW | G_AAWW
| I_G1_AWW | I_G1_ZWW
| I_G1_plus_kappa_plus_G4_AWW
| I_G1_plus_kappa_plus_G4_ZWW
| I_G1_plus_kappa_minus_G4_AWW
| I_G1_plus_kappa_minus_G4_ZWW
| I_G1_minus_kappa_plus_G4_AWW
| I_G1_minus_kappa_plus_G4_ZWW
| I_G1_minus_kappa_minus_G4_AWW
| I_G1_minus_kappa_minus_G4_ZWW
| I_lambda_AWW | I_lambda_ZWW
| G5_AWW | G5_ZWW
| I_kappa5_AWW | I_kappa5_ZWW
| I_lambda5_AWW | I_lambda5_ZWW
| Alpha_WWWW0 | Alpha_ZZWW1 | Alpha_WWWW2
| Alpha_ZZWW0 | Alpha_ZZZZ
| D_Alpha_ZZWW0_S | D_Alpha_ZZWW0_T | D_Alpha_ZZWW1_S
| D_Alpha_ZZWW1_T | D_Alpha_ZZWW1_U | D_Alpha_WWWW0_S
| D_Alpha_WWWW0_T | D_Alpha_WWWW0_U | D_Alpha_WWWW2_S
| D_Alpha_WWWW2_T | D_Alpha_ZZZZ_S | D_Alpha_ZZZZ_T
| G_HWW | G_HHWW | G_HZZ | G_HHZZ
| G_Htt | G_Hbb | G_Hcc | G_Hmm | G_Htautau | G_H3 | G_H4
| G_HGaZ | G_HGaGa | G_Hgg
| G_HGaZ_anom | G_HGaGa_anom | G_HZZ_anom | G_HWW_anom
| G_HGaZ_u | G_HZZ_u | G_HWW_u
| Gs | I_Gs | G2
| Mass of flavor | Width of flavor
| K_Matrix_Coeff of int | K_Matrix_Pole of int
(* \begin{dubious}
The current abstract syntax for parameter dependencies is admittedly
tedious. Later, there will be a parser for a convenient concrete syntax
as a part of a concrete syntax for models. But as these examples show,
it should include simple functions.
\end{dubious} *)
(* \begin{subequations}
\begin{align}
\alpha_{\text{QED}} &= \frac{1}{137.0359895} \\
\sin^2\theta_w &= 0.23124
\end{align}
\end{subequations} *)
let input_parameters =
[ Alpha_QED, 1. /. 137.0359895;
Sin2thw, 0.23124;
Mass (G Z), 91.187;
Mass (M (N 1)), 0.0; Mass (M (L 1)), 0.51099907e-3;
Mass (M (N 2)), 0.0; Mass (M (L 2)), 0.105658389;
Mass (M (N 3)), 0.0; Mass (M (L 3)), 1.77705;
Mass (M (U 1)), 5.0e-3; Mass (M (D 1)), 3.0e-3;
Mass (M (U 2)), 1.2; Mass (M (D 2)), 0.1;
Mass (M (U 3)), 174.0; Mass (M (D 3)), 4.2 ]
(* \begin{subequations}
\begin{align}
e &= \sqrt{4\pi\alpha} \\
\sin\theta_w &= \sqrt{\sin^2\theta_w} \\
\cos\theta_w &= \sqrt{1-\sin^2\theta_w} \\
g &= \frac{e}{\sin\theta_w} \\
m_W &= \cos\theta_w m_Z \\
v &= \frac{2m_W}{g} \\
g_{CC} =
-\frac{g}{2\sqrt2} &= -\frac{e}{2\sqrt2\sin\theta_w} \\
Q_{\text{lepton}} =
-q_{\text{lepton}}e &= e \\
Q_{\text{up}} =
-q_{\text{up}}e &= -\frac{2}{3}e \\
Q_{\text{down}} =
-q_{\text{down}}e &= \frac{1}{3}e \\
\ii q_We =
\ii g_{\gamma WW} &= \ii e \\
\ii g_{ZWW} &= \ii g \cos\theta_w \\
\ii g_{WWW} &= \ii g
\end{align}
\end{subequations} *)
(* \begin{dubious}
\ldots{} to be continued \ldots{}
The quartic couplings can't be correct, because the dimensions are wrong!
\begin{subequations}
\begin{align}
g_{HWW} &= g m_W = 2 \frac{m_W^2}{v}\\
g_{HHWW} &= 2 \frac{m_W^2}{v^2} = \frac{g^2}{2} \\
g_{HZZ} &= \frac{g}{\cos\theta_w}m_Z \\
g_{HHZZ} &= 2 \frac{m_Z^2}{v^2} = \frac{g^2}{2\cos\theta_w} \\
g_{Htt} &= \lambda_t \\
g_{Hbb} &= \lambda_b=\frac{m_b}{m_t}\lambda_t \\
g_{H^3} &= - \frac{3g}{2}\frac{m_H^2}{m_W} = - 3 \frac{m_H^2}{v}
g_{H^4} &= - \frac{3g^2}{4} \frac{m_W^2}{v^2} = -3 \frac{m_H^2}{v^2}
\end{align}
\end{subequations}
\end{dubious} *)
let derived_parameters =
[ Real E, Sqrt (Prod [Const 4; Atom Pi; Atom Alpha_QED]);
Real Sinthw, Sqrt (Atom Sin2thw);
Real Costhw, Sqrt (Diff (Const 1, Atom Sin2thw));
Real G_weak, Quot (Atom E, Atom Sinthw);
Real (Mass (G Wp)), Prod [Atom Costhw; Atom (Mass (G Z))];
Real Vev, Quot (Prod [Const 2; Atom (Mass (G Wp))], Atom G_weak);
Real Q_lepton, Atom E;
Real Q_up, Prod [Quot (Const (-2), Const 3); Atom E];
Real Q_down, Prod [Quot (Const 1, Const 3); Atom E];
Real G_CC, Neg (Quot (Atom G_weak, Prod [Const 2; Sqrt (Const 2)]));
Complex I_Q_W, Prod [I; Atom E];
Complex I_G_weak, Prod [I; Atom G_weak];
Complex I_G_ZWW, Prod [I; Atom G_weak; Atom Costhw] ]
(* \begin{equation}
- \frac{g}{2\cos\theta_w}
\end{equation} *)
let g_over_2_costh =
Quot (Neg (Atom G_weak), Prod [Const 2; Atom Costhw])
(* \begin{subequations}
\begin{align}
- \frac{g}{2\cos\theta_w} g_V
&= - \frac{g}{2\cos\theta_w} (T_3 - 2 q \sin^2\theta_w) \\
- \frac{g}{2\cos\theta_w} g_A
&= - \frac{g}{2\cos\theta_w} T_3
\end{align}
\end{subequations} *)
let nc_coupling c t3 q =
(Real_Array c,
[Prod [g_over_2_costh; Diff (t3, Prod [Const 2; q; Atom Sin2thw])];
Prod [g_over_2_costh; t3]])
let half = Quot (Const 1, Const 2)
let derived_parameter_arrays =
[ nc_coupling G_NC_neutrino half (Const 0);
nc_coupling G_NC_lepton (Neg half) (Const (-1));
nc_coupling G_NC_up half (Quot (Const 2, Const 3));
nc_coupling G_NC_down (Neg half) (Quot (Const (-1), Const 3)) ]
let parameters () =
{ input = input_parameters;
derived = derived_parameters;
derived_arrays = derived_parameter_arrays }
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
(* \begin{equation}
\mathcal{L}_{\textrm{EM}} =
- e \sum_i q_i \bar\psi_i\fmslash{A}\psi_i
\end{equation} *)
let mgm ((m1, g, m2), fbf, c) = ((M m1, G g, M m2), fbf, c)
let mom ((m1, o, m2), fbf, c) = ((M m1, O o, M m2), fbf, c)
let electromagnetic_currents n =
List.map mgm
[ ((L (-n), Ga, L n), FBF (1, Psibar, V, Psi), Q_lepton);
((U (-n), Ga, U n), FBF (1, Psibar, V, Psi), Q_up);
((D (-n), Ga, D n), FBF (1, Psibar, V, Psi), Q_down) ]
let color_currents n =
List.map mgm
[ ((U (-n), Gl, U n), FBF ((-1), Psibar, V, Psi), Gs);
((D (-n), Gl, D n), FBF ((-1), Psibar, V, Psi), Gs) ]
(* \begin{equation}
\mathcal{L}_{\textrm{NC}} =
- \frac{g}{2\cos\theta_W}
\sum_i \bar\psi_i\fmslash{Z}(g_V^i-g_A^i\gamma_5)\psi_i
\end{equation} *)
let neutral_currents n =
List.map mgm
[ ((L (-n), Z, L n), FBF (1, Psibar, VA, Psi), G_NC_lepton);
((N (-n), Z, N n), FBF (1, Psibar, VA, Psi), G_NC_neutrino);
((U (-n), Z, U n), FBF (1, Psibar, VA, Psi), G_NC_up);
((D (-n), Z, D n), FBF (1, Psibar, VA, Psi), G_NC_down) ]
(* \begin{equation}
\mathcal{L}_{\textrm{CC}} =
- \frac{g}{2\sqrt2} \sum_i \bar\psi_i
(T^+\fmslash{W}^+ + T^-\fmslash{W}^-)(1-\gamma_5)\psi_i
\end{equation} *)
let charged_currents' n =
List.map mgm
[ ((L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G_CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G_CC) ]
let charged_currents'' n =
List.map mgm
[ ((D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G_CC);
((U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G_CC) ]
let charged_currents_triv =
ThoList.flatmap charged_currents' [1;2;3] @
ThoList.flatmap charged_currents'' [1;2;3]
let charged_currents_ckm =
let charged_currents_2 n1 n2 =
List.map mgm
[ ((D (-n1), Wm, U n2), FBF (1, Psibar, VL, Psi), G_CCQ (n2,n1));
((U (-n1), Wp, D n2), FBF (1, Psibar, VL, Psi), G_CCQ (n1,n2)) ] in
ThoList.flatmap charged_currents' [1;2;3] @
List.flatten (Product.list2 charged_currents_2 [1;2;3] [1;2;3])
let yukawa =
[ ((M (U (-3)), O H, M (U 3)), FBF (1, Psibar, S, Psi), G_Htt);
((M (D (-3)), O H, M (D 3)), FBF (1, Psibar, S, Psi), G_Hbb);
((M (U (-2)), O H, M (U 2)), FBF (1, Psibar, S, Psi), G_Hcc);
((M (L (-3)), O H, M (L 3)), FBF (1, Psibar, S, Psi), G_Htautau) ] @
if Flags.higgs_hmm then
[ ((M (L (-2)), O H, M (L 2)), FBF (1, Psibar, S, Psi), G_Hmm)]
else
[]
(* \begin{equation}
\mathcal{L}_{\textrm{TGC}} =
- e \partial_\mu A_\nu W_+^\mu W_-^\nu + \ldots
- e \cot\theta_w \partial_\mu Z_\nu W_+^\mu W_-^\nu + \ldots
\end{equation} *)
let tgc ((g1, g2, g3), t, c) = ((G g1, G g2, G g3), t, c)
let standard_triple_gauge =
List.map tgc
[ ((Ga, Wm, Wp), Gauge_Gauge_Gauge 1, I_Q_W);
((Z, Wm, Wp), Gauge_Gauge_Gauge 1, I_G_ZWW);
((Gl, Gl, Gl), Gauge_Gauge_Gauge 1, I_Gs)]
(* \begin{multline}
\mathcal{L}_{\textrm{TGC}}(g_1,\kappa)
= g_1 \mathcal{L}_T(V,W^+,W^-) \\
+ \frac{\kappa+g_1}{2} \Bigl(\mathcal{L}_T(W^-,V,W^+)
- \mathcal{L}_T(W^+,V,W^-)\Bigr)\\
+ \frac{\kappa-g_1}{2} \Bigl(\mathcal{L}_L(W^-,V,W^+)
- \mathcal{L}_T(W^+,V,W^-)\Bigr)
\end{multline} *)
(* \begin{dubious}
The whole thing in the LEP2 workshop notation:
\begin{multline}
\ii\mathcal{L}_{\textrm{TGC},V} / g_{WWV} = \\
g_1^V V^\mu (W^-_{\mu\nu}W^{+,\nu}-W^+_{\mu\nu}W^{-,\nu})
+ \kappa_V W^+_\mu W^-_\nu V^{\mu\nu}
+ \frac{\lambda_V}{m_W^2} V_{\mu\nu}
W^-_{\rho\mu} W^{+,\hphantom{\nu}\rho}_{\hphantom{+,}\nu} \\
+ \ii g_5^V \epsilon_{\mu\nu\rho\sigma}
\left( (\partial^\rho W^{-,\mu}) W^{+,\nu}
- W^{-,\mu}(\partial^\rho W^{+,\nu}) \right) V^\sigma \\
+ \ii g_4^V W^-_\mu W^+_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu)
- \frac{\tilde\kappa_V}{2} W^-_\mu W^+_\nu \epsilon^{\mu\nu\rho\sigma}
V_{\rho\sigma}
- \frac{\tilde\lambda_V}{2m_W^2}
W^-_{\rho\mu} W^{+,\mu}_{\hphantom{+,\mu}\nu} \epsilon^{\nu\rho\alpha\beta}
V_{\alpha\beta}
\end{multline}
using the conventions of Itzykson and Zuber with $\epsilon^{0123} = +1$.
\end{dubious} *)
(* \begin{dubious}
This is equivalent to the notation of Hagiwara et al.~\cite{HPZH87}, if we
remember that they have opposite signs for~$g_{WWV}$:
\begin{multline}
\mathcal{L}_{WWV} / (-g_{WWV}) = \\
\ii g_1^V \left( W^\dagger_{\mu\nu} W^\mu
- W^\dagger_\mu W^\mu_{\hphantom{\mu}\nu} \right) V^\nu
+ \ii \kappa_V W^\dagger_\mu W_\nu V^{\mu\nu}
+ \ii \frac{\lambda_V}{m_W^2}
W^\dagger_{\lambda\mu} W^\mu_{\hphantom{\mu}\nu} V^{\nu\lambda} \\
- g_4^V W^\dagger_\mu W_\nu
\left(\partial^\mu V^\nu + \partial^\nu V^\mu \right)
+ g_5^V \epsilon^{\mu\nu\lambda\sigma}
\left( W^\dagger_\mu \stackrel{\leftrightarrow}{\partial_\lambda}
W_\nu \right) V_\sigma\\
+ \ii \tilde\kappa_V W^\dagger_\mu W_\nu \tilde{V}^{\mu\nu}
+ \ii\frac{\tilde\lambda_V}{m_W^2}
W^\dagger_{\lambda\mu} W^\mu_{\hphantom{\mu}\nu} \tilde{V}^{\nu\lambda}
\end{multline}
Here $V^\mu$ stands for either the photon or the~$Z$ field, $W^\mu$ is the
$W^-$ field, $W_{\mu\nu} = \partial_\mu W_\nu - \partial_\nu W_\mu$,
$V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu$, and
$\tilde{V}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\lambda\sigma}
V^{\lambda\sigma}$.
\end{dubious} *)
let anomalous_triple_gauge =
List.map tgc
[ ((Ga, Wm, Wp), Dim4_Vector_Vector_Vector_T (-1),
I_G1_AWW);
((Z, Wm, Wp), Dim4_Vector_Vector_Vector_T (-1),
I_G1_ZWW);
((Wm, Ga, Wp), Dim4_Vector_Vector_Vector_T 1,
I_G1_plus_kappa_minus_G4_AWW);
((Wm, Z, Wp), Dim4_Vector_Vector_Vector_T 1,
I_G1_plus_kappa_minus_G4_ZWW);
((Wp, Ga, Wm), Dim4_Vector_Vector_Vector_T (-1),
I_G1_plus_kappa_plus_G4_AWW);
((Wp, Z, Wm), Dim4_Vector_Vector_Vector_T (-1),
I_G1_plus_kappa_plus_G4_ZWW);
((Wm, Ga, Wp), Dim4_Vector_Vector_Vector_L (-1),
I_G1_minus_kappa_plus_G4_AWW);
((Wm, Z, Wp), Dim4_Vector_Vector_Vector_L (-1),
I_G1_minus_kappa_plus_G4_ZWW);
((Wp, Ga, Wm), Dim4_Vector_Vector_Vector_L 1,
I_G1_minus_kappa_minus_G4_AWW);
((Wp, Z, Wm), Dim4_Vector_Vector_Vector_L 1,
I_G1_minus_kappa_minus_G4_ZWW);
((Ga, Wm, Wp), Dim4_Vector_Vector_Vector_L5 (-1),
I_kappa5_AWW);
((Z, Wm, Wp), Dim4_Vector_Vector_Vector_L5 (-1),
I_kappa5_ZWW);
((Ga, Wm, Wp), Dim4_Vector_Vector_Vector_T5 (-1),
G5_AWW);
((Z, Wm, Wp), Dim4_Vector_Vector_Vector_T5 (-1),
G5_ZWW);
((Ga, Wp, Wm), Dim6_Gauge_Gauge_Gauge (-1),
I_lambda_AWW);
((Z, Wp, Wm), Dim6_Gauge_Gauge_Gauge (-1),
I_lambda_ZWW);
((Ga, Wp, Wm), Dim6_Gauge_Gauge_Gauge_5 (-1),
I_lambda5_AWW);
((Z, Wp, Wm), Dim6_Gauge_Gauge_Gauge_5 (-1),
I_lambda5_ZWW) ]
let triple_gauge =
if Flags.triple_anom then
anomalous_triple_gauge
else
standard_triple_gauge
(* \begin{equation}
\mathcal{L}_{\textrm{QGC}} =
- g^2 W_{+,\mu} W_{-,\nu} W_+^\mu W_-^\nu + \ldots
\end{equation} *)
(* Actually, quartic gauge couplings are a little bit more straightforward
using auxiliary fields. Here we have to impose the antisymmetry manually:
\begin{subequations}
\begin{multline}
(W^{+,\mu}_1 W^{-,\nu}_2 - W^{+,\nu}_1 W^{-,\mu}_2)
(W^+_{3,\mu} W^-_{4,\nu} - W^+_{3,\nu} W^-_{4,\mu}) \\
= 2(W^+_1W^+_3)(W^-_2W^-_4) - 2(W^+_1W^-_4)(W^-_2W^+_3)
\end{multline}
also ($V$ can be $A$ or $Z$)
\begin{multline}
(W^{+,\mu}_1 V^\nu_2 - W^{+,\nu}_1 V^\mu_2)
(W^-_{3,\mu} V_{4,\nu} - W^-_{3,\nu} V_{4,\mu}) \\
= 2(W^+_1W^-_3)(V_2V_4) - 2(W^+_1V_4)(V_2W^-_3)
\end{multline}
\end{subequations} *)
(* \begin{subequations}
\begin{multline}
W^{+,\mu} W^{-,\nu} W^+_\mu W^-_\nu
\end{multline}
\end{subequations} *)
let qgc ((g1, g2, g3, g4), t, c) = ((G g1, G g2, G g3, G g4), t, c)
let gauge4 = Vector4 [(2, C_13_42); (-1, C_12_34); (-1, C_14_23)]
let minus_gauge4 = Vector4 [(-2, C_13_42); (1, C_12_34); (1, C_14_23)]
let standard_quartic_gauge =
List.map qgc
[ (Wm, Wp, Wm, Wp), gauge4, G_WWWW;
(Wm, Z, Wp, Z), minus_gauge4, G_ZZWW;
(Wm, Z, Wp, Ga), minus_gauge4, G_AZWW;
(Wm, Ga, Wp, Ga), minus_gauge4, G_AAWW;
(Gl, Gl, Gl, Gl), gauge4, G2 ]
(* \begin{subequations}
\begin{align}
\mathcal{L}_4
&= \alpha_4 \left( \frac{g^4}{2}\left( (W^+_\mu W^{-,\mu})^2
+ W^+_\mu W^{+,\mu} W^-_\mu W^{-,\mu}
\right)\right.\notag \\
&\qquad\qquad\qquad \left.
+ \frac{g^4}{\cos^2\theta_w} W^+_\mu Z^\mu W^-_\nu Z^\nu
+ \frac{g^4}{4\cos^4\theta_w} (Z_\mu Z^\mu)^2 \right) \\
\mathcal{L}_5
&= \alpha_5 \left( g^4 (W^+_\mu W^{-,\mu})^2
+ \frac{g^4}{\cos^2\theta_w} W^+_\mu W^{-,\mu} Z_\nu Z^\nu
+ \frac{g^4}{4\cos^4\theta_w} (Z_\mu Z^\mu)^2 \right)
\end{align}
\end{subequations}
or
\begin{multline}
\mathcal{L}_4 + \mathcal{L}_5
= (\alpha_4+2\alpha_5) g^4 \frac{1}{2} (W^+_\mu W^{-,\mu})^2 \\
+ 2\alpha_4 g^4 \frac{1}{4} W^+_\mu W^{+,\mu} W^-_\mu W^{-,\mu}
+ \alpha_4 \frac{g^4}{\cos^2\theta_w} W^+_\mu Z^\mu W^-_\nu Z^\nu \\
+ 2\alpha_5 \frac{g^4}{\cos^2\theta_w} \frac{1}{2} W^+_\mu W^{-,\mu} Z_\nu Z^\nu
+ (2\alpha_4 + 2\alpha_5) \frac{g^4}{\cos^4\theta_w} \frac{1}{8} (Z_\mu Z^\mu)^2
\end{multline}
and therefore
\begin{subequations}
\begin{align}
\alpha_{(WW)_0} &= (\alpha_4+2\alpha_5) g^4 \\
\alpha_{(WW)_2} &= 2\alpha_4 g^4 \\
\alpha_{(WZ)_0} &= 2\alpha_5 \frac{g^4}{\cos^2\theta_w} \\
\alpha_{(WZ)_1} &= \alpha_4 \frac{g^4}{\cos^2\theta_w} \\
\alpha_{ZZ} &= (2\alpha_4 + 2\alpha_5) \frac{g^4}{\cos^4\theta_w}
\end{align}
\end{subequations} *)
let anomalous_quartic_gauge =
if Flags.quartic_anom then
List.map qgc
[ ((Wm, Wm, Wp, Wp),
Vector4 [(1, C_13_42); (1, C_14_23)], Alpha_WWWW0);
((Wm, Wm, Wp, Wp),
Vector4 [1, C_12_34], Alpha_WWWW2);
((Wm, Wp, Z, Z),
Vector4 [1, C_12_34], Alpha_ZZWW0);
((Wm, Wp, Z, Z),
Vector4 [(1, C_13_42); (1, C_14_23)], Alpha_ZZWW1);
((Z, Z, Z, Z),
Vector4 [(1, C_12_34); (1, C_13_42); (1, C_14_23)], Alpha_ZZZZ) ]
else
[]
(* In any diagonal channel~$\chi$, the scattering amplitude~$a_\chi(s)$ is
unitary iff\footnote{%
Trivial proof:
\begin{equation}
-1 = \textrm{Im}\left(\frac{1}{a_\chi(s)}\right)
= \frac{\textrm{Im}(a_\chi^*(s))}{|a_\chi(s)|^2}
= - \frac{\textrm{Im}(a_\chi(s))}{|a_\chi(s)|^2}
\end{equation}
i.\,e.~$\textrm{Im}(a_\chi(s)) = |a_\chi(s)|^2$.}
\begin{equation}
\textrm{Im}\left(\frac{1}{a_\chi(s)}\right) = -1
\end{equation}
For a real perturbative scattering amplitude~$r_\chi(s)$ this can be
enforced easily--and arbitrarily--by
\begin{equation}
\frac{1}{a_\chi(s)} = \frac{1}{r_\chi(s)} - \mathrm{i}
\end{equation}
*)
let k_matrix_quartic_gauge =
if Flags.k_matrix then
List.map qgc
[ ((Wm, Wp, Wm, Wp), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_WWWW0_S);
((Wm, Wp, Wm, Wp), Vector4_K_Matrix_jr (0,
[(1, C_14_23)]), D_Alpha_WWWW0_T);
((Wm, Wp, Wm, Wp), Vector4_K_Matrix_jr (0,
[(1, C_13_42)]), D_Alpha_WWWW0_U);
((Wp, Wm, Wp, Wm), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_WWWW0_S);
((Wp, Wm, Wp, Wm), Vector4_K_Matrix_jr (0,
[(1, C_14_23)]), D_Alpha_WWWW0_T);
((Wp, Wm, Wp, Wm), Vector4_K_Matrix_jr (0,
[(1, C_13_42)]), D_Alpha_WWWW0_U);
((Wm, Wm, Wp, Wp), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_WWWW2_S);
((Wm, Wm, Wp, Wp), Vector4_K_Matrix_jr (0,
[(1, C_13_42); (1, C_14_23)]), D_Alpha_WWWW2_T);
((Wm, Wp, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_ZZWW0_S);
((Wm, Wp, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_13_42); (1, C_14_23)]), D_Alpha_ZZWW0_T);
((Wm, Z, Wp, Z), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_ZZWW1_S);
((Wm, Z, Wp, Z), Vector4_K_Matrix_jr (0,
[(1, C_13_42)]), D_Alpha_ZZWW1_T);
((Wm, Z, Wp, Z), Vector4_K_Matrix_jr (0,
[(1, C_14_23)]), D_Alpha_ZZWW1_U);
((Wp, Z, Z, Wm), Vector4_K_Matrix_jr (1,
[(1, C_12_34)]), D_Alpha_ZZWW1_S);
((Wp, Z, Z, Wm), Vector4_K_Matrix_jr (1,
[(1, C_13_42)]), D_Alpha_ZZWW1_U);
((Wp, Z, Z, Wm), Vector4_K_Matrix_jr (1,
[(1, C_14_23)]), D_Alpha_ZZWW1_T);
((Z, Wp, Wm, Z), Vector4_K_Matrix_jr (2,
[(1, C_12_34)]), D_Alpha_ZZWW1_S);
((Z, Wp, Wm, Z), Vector4_K_Matrix_jr (2,
[(1, C_13_42)]), D_Alpha_ZZWW1_U);
((Z, Wp, Wm, Z), Vector4_K_Matrix_jr (2,
[(1, C_14_23)]), D_Alpha_ZZWW1_T);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_12_34)]), D_Alpha_ZZZZ_S);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (0,
[(1, C_13_42); (1, C_14_23)]), D_Alpha_ZZZZ_T);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (3,
[(1, C_14_23)]), D_Alpha_ZZZZ_S);
((Z, Z, Z, Z), Vector4_K_Matrix_jr (3,
[(1, C_13_42); (1, C_12_34)]), D_Alpha_ZZZZ_T)]
else
[]
(*i Thorsten's original implementation of the K matrix, which we keep since
it still might be usefull for the future.
let k_matrix_quartic_gauge =
if Flags.k_matrix then
List.map qgc
[ ((Wm, Wp, Wm, Wp), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 0,
K_Matrix_Pole 0]), Alpha_WWWW0);
((Wm, Wm, Wp, Wp), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 2,
K_Matrix_Pole 2]), Alpha_WWWW2);
((Wm, Wp, Z, Z), Vector4_K_Matrix_tho (0, [(K_Matrix_Coeff 0,
K_Matrix_Pole 0); (K_Matrix_Coeff 2,
K_Matrix_Pole 2)]), Alpha_ZZWW0);
((Wm, Z, Wp, Z), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 1,
K_Matrix_Pole 1]), Alpha_ZZWW1);
((Z, Z, Z, Z), Vector4_K_Matrix_tho (0, [K_Matrix_Coeff 0,
K_Matrix_Pole 0]), Alpha_ZZZZ) ]
else
[]
i*)
let quartic_gauge =
standard_quartic_gauge @ anomalous_quartic_gauge @ k_matrix_quartic_gauge
let standard_gauge_higgs =
[ ((O H, G Wp, G Wm), Scalar_Vector_Vector 1, G_HWW);
((O H, G Z, G Z), Scalar_Vector_Vector 1, G_HZZ) ]
let standard_gauge_higgs4 =
[ (O H, O H, G Wp, G Wm), Scalar2_Vector2 1, G_HHWW;
(O H, O H, G Z, G Z), Scalar2_Vector2 1, G_HHZZ ]
let standard_higgs =
[ (O H, O H, O H), Scalar_Scalar_Scalar 1, G_H3 ]
let standard_higgs4 =
[ (O H, O H, O H, O H), Scalar4 1, G_H4 ]
(* WK's couplings (apparently, he still intends to divide by
$\Lambda^2_{\text{EWSB}}=16\pi^2v_{\mathrm{F}}^2$):
\begin{subequations}
\begin{align}
\mathcal{L}^{\tau}_4 &=
\left\lbrack (\partial_{\mu}H)(\partial^{\mu}H)
+ \frac{g^2v_{\mathrm{F}}^2}{4} V_{\mu} V^{\mu} \right\rbrack^2 \\
\mathcal{L}^{\tau}_5 &=
\left\lbrack (\partial_{\mu}H)(\partial_{\nu}H)
+ \frac{g^2v_{\mathrm{F}}^2}{4} V_{\mu} V_{\nu} \right\rbrack^2
\end{align}
\end{subequations}
with
\begin{equation}
V_{\mu} V_{\nu} =
\frac{1}{2} \left( W^+_{\mu} W^-_{\nu} + W^+_{\nu} W^-_{\mu} \right)
+ \frac{1}{2\cos^2\theta_{w}} Z_{\mu} Z_{\nu}
\end{equation}
(note the symmetrization!), i.\,e.
\begin{subequations}
\begin{align}
\mathcal{L}_4 &= \alpha_4 \frac{g^4v_{\mathrm{F}}^4}{16} (V_{\mu} V_{\nu})^2 \\
\mathcal{L}_5 &= \alpha_5 \frac{g^4v_{\mathrm{F}}^4}{16} (V_{\mu} V^{\mu})^2
\end{align}
\end{subequations} *)
(* Breaking thinks up
\begin{subequations}
\begin{align}
\mathcal{L}^{\tau,H^4}_4 &=
\left\lbrack (\partial_{\mu}H)(\partial^{\mu}H) \right\rbrack^2 \\
\mathcal{L}^{\tau,H^4}_5 &=
\left\lbrack (\partial_{\mu}H)(\partial^{\mu}H) \right\rbrack^2
\end{align}
\end{subequations}
and
\begin{subequations}
\begin{align}
\mathcal{L}^{\tau,H^2V^2}_4 &= \frac{g^2v_{\mathrm{F}}^2}{2}
(\partial_{\mu}H)(\partial^{\mu}H) V_{\mu}V^{\mu} \\
\mathcal{L}^{\tau,H^2V^2}_5 &= \frac{g^2v_{\mathrm{F}}^2}{2}
(\partial_{\mu}H)(\partial_{\nu}H) V_{\mu}V_{\nu}
\end{align}
\end{subequations}
i.\,e.
\begin{subequations}
\begin{align}
\mathcal{L}^{\tau,H^2V^2}_4 &=
\frac{g^2v_{\mathrm{F}}^2}{2}
\left\lbrack
(\partial_{\mu}H)(\partial^{\mu}H) W^+_{\nu}W^{-,\nu}
+ \frac{1}{2\cos^2\theta_{w}} (\partial_{\mu}H)(\partial^{\mu}H) Z_{\nu} Z^{\nu}
\right\rbrack \\
\mathcal{L}^{\tau,H^2V^2}_5 &=
\frac{g^2v_{\mathrm{F}}^2}{2}
\left\lbrack
(W^{+,\mu}\partial_{\mu}H) (W^{-,\nu}\partial_{\nu}H)
+ \frac{1}{2\cos^2\theta_{w}} (Z^{\mu}\partial_{\mu}H)(Z^{\nu}\partial_{\nu}H)
\right\rbrack
\end{align}
\end{subequations} *)
(* \begin{multline}
\tau^4_8 \mathcal{L}^{\tau,H^2V^2}_4 + \tau^5_8 \mathcal{L}^{\tau,H^2V^2}_5 = \\
- \frac{g^2v_{\mathrm{F}}^2}{2} \Biggl\lbrack
2\tau^4_8
\frac{1}{2}(\ii\partial_{\mu}H)(\ii\partial^{\mu}H) W^+_{\nu}W^{-,\nu}
+ \tau^5_8
(W^{+,\mu}\ii\partial_{\mu}H) (W^{-,\nu}\ii\partial_{\nu}H) \\
+ \frac{2\tau^4_8}{\cos^2\theta_{w}}
\frac{1}{4} (\ii\partial_{\mu}H)(\ii\partial^{\mu}H) Z_{\nu} Z^{\nu}
+ \frac{\tau^5_8}{\cos^2\theta_{w}}
\frac{1}{2} (Z^{\mu}\ii\partial_{\mu}H)(Z^{\nu}\ii\partial_{\nu}H)
\Biggr\rbrack
\end{multline}
where the two powers of $\ii$ make the sign conveniently negative,
i.\,e.
\begin{subequations}
\begin{align}
\alpha_{(\partial H)^2W^2}^2 &= \tau^4_8 g^2v_{\mathrm{F}}^2\\
\alpha_{(\partial HW)^2}^2 &= \frac{\tau^5_8 g^2v_{\mathrm{F}}^2}{2} \\
\alpha_{(\partial H)^2Z^2}^2 &= \frac{\tau^4_8 g^2v_{\mathrm{F}}^2}{\cos^2\theta_{w}} \\
\alpha_{(\partial HZ)^2}^2 &=\frac{\tau^5_8 g^2v_{\mathrm{F}}^2}{2\cos^2\theta_{w}}
\end{align}
\end{subequations} *)
let anomalous_gauge_higgs =
[ (O H, G Ga, G Ga), Dim5_Scalar_Gauge2 1, G_HGaGa_anom;
(O H, G Ga, G Z), Dim5_Scalar_Gauge2 1, G_HGaZ_anom;
(O H, G Z, G Z), Dim5_Scalar_Gauge2 1, G_HZZ_anom;
(O H, G Wp, G Wm), Dim5_Scalar_Gauge2 1, G_HWW_anom;
(O H, G Ga, G Z), Dim5_Scalar_Vector_Vector_U 1, G_HGaZ_u;
(O H, G Z, G Z), Dim5_Scalar_Vector_Vector_U 1, G_HZZ_u;
(O H, G Wp, G Wm), Dim5_Scalar_Vector_Vector_U 1, G_HWW_u;
(O H, G Wm, G Wp), Dim5_Scalar_Vector_Vector_U 1, G_HWW_u
]
let anomalous_gauge_higgs4 =
[]
let anomalous_higgs =
[]
let higgs_triangle_vertices =
if Flags.higgs_triangle then
[ (O H, G Ga, G Ga), Dim5_Scalar_Gauge2 1, G_HGaGa;
(O H, G Ga, G Z), Dim5_Scalar_Gauge2 1, G_HGaZ;
(O H, G Gl, G Gl), Dim5_Scalar_Gauge2 1, G_Hgg ]
else
[]
let anomalous_higgs4 =
[]
let gauge_higgs =
if Flags.higgs_anom then
standard_gauge_higgs @ anomalous_gauge_higgs
else
standard_gauge_higgs
let gauge_higgs4 =
if Flags.higgs_anom then
standard_gauge_higgs4 @ anomalous_gauge_higgs4
else
standard_gauge_higgs4
let higgs =
if Flags.higgs_anom then
standard_higgs @ anomalous_higgs
else
standard_higgs
let higgs4 =
if Flags.higgs_anom then
standard_higgs4 @ anomalous_higgs4
else
standard_higgs4
let goldstone_vertices =
[ ((O Phi0, G Wm, G Wp), Scalar_Vector_Vector 1, I_G_ZWW);
((O Phip, G Ga, G Wm), Scalar_Vector_Vector 1, I_Q_W);
((O Phip, G Z, G Wm), Scalar_Vector_Vector 1, I_G_ZWW);
((O Phim, G Wp, G Ga), Scalar_Vector_Vector 1, I_Q_W);
((O Phim, G Wp, G Z), Scalar_Vector_Vector 1, I_G_ZWW) ]
(* Anomalous trilinear interactions $f_i f_j V$ and $ttH$:
\begin{equation}
\Delta\mathcal{L}_{tt\gamma} =
- e \frac{\upsilon}{\Lambda^2}
\bar{t} i\sigma^{\mu\nu} k_\nu (d_V(k^2) + i d_A(k^2) \gamma_5) t A_\mu
\end{equation} *)
let anomalous_ttA =
if Flags.top_anom then
[ ((M (U (-3)), G Ga, M (U 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_ttA) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{bb\gamma} =
- e \frac{\upsilon}{\Lambda^2}
\bar{b} i\sigma^{\mu\nu} k_\nu (d_V(k^2) + i d_A(k^2) \gamma_5) b A_\mu
\end{equation} *)
let anomalous_bbA =
if Flags.top_anom then
[ ((M (D (-3)), G Ga, M (D 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_bbA) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttg} =
- g_s \frac{\upsilon}{\Lambda^2}
\bar{t}\lambda^a i\sigma^{\mu\nu}k_\nu
(d_V(k^2)+id_A(k^2)\gamma_5)tG^a_\mu
\end{equation} *)
let anomalous_ttG =
if Flags.top_anom then
[ ((M (U (-3)), G Gl, M (U 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_ttG) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttZ} =
- \frac{g}{2 c_W} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{t} \fmslash{Z} (X_L(k^2) P_L + X_R(k^2) P_R) t
+ \bar{t}\frac{i\sigma^{\mu\nu}k_\nu}{m_Z}
(d_V(k^2)+id_A(k^2)\gamma_5)tZ_\mu\right\rbrack
\end{equation} *)
let anomalous_ttZ =
if Flags.top_anom then
[ ((M (U (-3)), G Z, M (U 3)), FBF (1, Psibar, VLRM, Psi), G_VLR_ttZ);
((M (U (-3)), G Z, M (U 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_ttZ) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{bbZ} =
- \frac{g}{2 c_W} \frac{\upsilon^2}{\Lambda^2}
\bar{b}\frac{i\sigma^{\mu\nu}k_\nu}{m_Z}
(d_V(k^2)+id_A(k^2)\gamma_5)bZ_\mu
\end{equation} *)
let anomalous_bbZ =
if Flags.top_anom then
[ ((M (D (-3)), G Z, M (D 3)), FBF (1, Psibar, TVAM, Psi), G_TVA_bbZ) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{tbW} =
- \frac{g}{\sqrt{2}} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{b}\fmslash{W}^-(V_L(k^2) P_L+V_R(k^2) P_R) t
+ \bar{b}\frac{i\sigma^{\mu\nu}k_\nu}{m_W}
(g_L(k^2)P_L+g_R(k^2)P_R)tW^-_\mu\right\rbrack
+ \textnormal{H.c.}
\end{equation} *)
let anomalous_tbW =
if Flags.top_anom then
[ ((M (D (-3)), G Wm, M (U 3)), FBF (1, Psibar, VLRM, Psi), G_VLR_btW);
((M (U (-3)), G Wp, M (D 3)), FBF (1, Psibar, VLRM, Psi), G_VLR_tbW);
((M (D (-3)), G Wm, M (U 3)), FBF (1, Psibar, TLRM, Psi), G_TLR_btW);
((M (U (-3)), G Wp, M (D 3)), FBF (1, Psibar, TRLM, Psi), G_TRL_tbW) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttH} =
- \frac{1}{\sqrt{2}} \bar{t} (Y_V(k^2)+iY_A(k^2)\gamma_5)t H
\end{equation} *)
let anomalous_ttH =
if Flags.top_anom then
[ ((M (U (-3)), O H, M (U 3)), FBF (1, Psibar, SPM, Psi), G_SP_ttH) ]
else
[]
(* quartic fermion-gauge interactions $f_i f_j V_1 V_2$ emerging from gauge-invariant
effective operators:
\begin{equation}
\Delta\mathcal{L}_{ttgg} =
- \frac{g_s^2}{2} f_{abc} \frac{\upsilon}{\Lambda^2}
\bar{t} \lambda^a \sigma^{\mu\nu}
(d_V(k^2)+id_A(k^2)\gamma_5)t G^b_\mu G^c_\nu
\end{equation} *)
let anomalous_ttGG =
if Flags.top_anom then
[ ((M (U (-3)), O (Aux_top (2,1,0,true,TTGG)), M (U 3)), FBF (1, Psibar, TVA, Psi), G_TVA_ttGG);
((O (Aux_top (2,1,0,false,TTGG)), G Gl, G Gl), Aux_Gauge_Gauge 1, I_Gs) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{tbWA} =
- i\sin\theta_w \frac{g^2}{2\sqrt{2}} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{b}\frac{\sigma^{\mu\nu}}{m_W}
(g_L(k^2)P_L+g_R(k^2)P_R)t A_\mu W^-_\nu \right\rbrack
+ \textnormal{H.c.}
\end{equation} *)
let anomalous_tbWA =
if Flags.top_anom then
[ ((M (D (-3)), O (Aux_top (2,0,-1,true,TBWA)), M (U 3)), FBF (1, Psibar, TLR, Psi), G_TLR_btWA);
((O (Aux_top (2,0,1,false,TBWA)), G Ga, G Wm), Aux_Gauge_Gauge 1, I_G_weak);
((M (U (-3)), O (Aux_top (2,0,1,true,TBWA)), M (D 3)), FBF (1, Psibar, TRL, Psi), G_TRL_tbWA);
((O (Aux_top (2,0,-1,false,TBWA)), G Wp, G Ga), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{tbWZ} =
- i\cos\theta_w \frac{g^2}{2\sqrt{2}} \frac{\upsilon^2}{\Lambda^2}\left\lbrack
\bar{b}\frac{\sigma^{\mu\nu}}{m_W}
(g_L(k^2)P_L+g_R(k^2)P_R)t Z_\mu W^-_\nu \right\rbrack
+ \textnormal{H.c.}
\end{equation} *)
let anomalous_tbWZ =
if Flags.top_anom then
[ ((M (D (-3)), O (Aux_top (2,0,-1,true,TBWZ)), M (U 3)), FBF (1, Psibar, TLR, Psi), G_TLR_btWZ);
((O (Aux_top (2,0,1,false,TBWZ)), G Z, G Wm), Aux_Gauge_Gauge 1, I_G_weak);
((M (U (-3)), O (Aux_top (2,0,1,true,TBWZ)), M (D 3)), FBF (1, Psibar, TRL, Psi), G_TRL_tbWZ);
((O (Aux_top (2,0,-1,false,TBWZ)), G Wp, G Z), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{ttWW} =
- i \frac{g^2}{2} \frac{\upsilon^2}{\Lambda^2}
\bar{t} \frac{\sigma^{\mu\nu}}{m_W}
(d_V(k^2)+id_A(k^2)\gamma_5)t W^-_\mu W^+_\nu
\end{equation} *)
let anomalous_ttWW =
if Flags.top_anom then
[ ((M (U (-3)), O (Aux_top (2,0,0,true,TTWW)), M (U 3)), FBF (1, Psibar, TVA, Psi), G_TVA_ttWW);
((O (Aux_top (2,0,0,false,TTWW)), G Wm, G Wp), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* \begin{equation}
\Delta\mathcal{L}_{bbWW} =
- i \frac{g^2}{2} \frac{\upsilon^2}{\Lambda^2}
\bar{b} \frac{\sigma^{\mu\nu}}{m_W}
(d_V(k^2)+id_A(k^2)\gamma_5)b W^-_\mu W^+_\nu
\end{equation} *)
let anomalous_bbWW =
if Flags.top_anom then
[ ((M (D (-3)), O (Aux_top (2,0,0,true,BBWW)), M (D 3)), FBF (1, Psibar, TVA, Psi), G_TVA_bbWW);
((O (Aux_top (2,0,0,false,BBWW)), G Wm, G Wp), Aux_Gauge_Gauge 1, I_G_weak) ]
else
[]
(* 4-fermion contact terms emerging from operator rewriting: *)
let anomalous_top_qGuG_tt =
[ ((M (U (-3)), O (Aux_top (1,1,0,true,QGUG)), M (U 3)), FBF (1, Psibar, VLR, Psi), G_VLR_qGuG) ]
let anomalous_top_qGuG_ff n =
List.map mom
[ ((U (-n), Aux_top (1,1,0,false,QGUG), U n), FBF (1, Psibar, V, Psi), Unit);
((D (-n), Aux_top (1,1,0,false,QGUG), D n), FBF (1, Psibar, V, Psi), Unit) ]
let anomalous_top_qGuG =
if Flags.top_anom_4f then
anomalous_top_qGuG_tt @ ThoList.flatmap anomalous_top_qGuG_ff [1;2;3]
else
[]
let anomalous_top_qBuB_tt =
[ ((M (U (-3)), O (Aux_top (1,0,0,true,QBUB)), M (U 3)), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB) ]
let anomalous_top_qBuB_ff n =
List.map mom
[ ((U (-n), Aux_top (1,0,0,false,QBUB), U n), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB_u);
((D (-n), Aux_top (1,0,0,false,QBUB), D n), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB_d);
((L (-n), Aux_top (1,0,0,false,QBUB), L n), FBF (1, Psibar, VLR, Psi), G_VLR_qBuB_e);
((N (-n), Aux_top (1,0,0,false,QBUB), N n), FBF (1, Psibar, VL, Psi), G_VL_qBuB_n) ]
let anomalous_top_qBuB =
if Flags.top_anom_4f then
anomalous_top_qBuB_tt @ ThoList.flatmap anomalous_top_qBuB_ff [1;2;3]
else
[]
let anomalous_top_qW_tq =
[ ((M (U (-3)), O (Aux_top (1,0,0,true,QW)), M (U 3)), FBF (1, Psibar, VL, Psi), G_VL_qW);
((M (D (-3)), O (Aux_top (1,0,-1,true,QW)), M (U 3)), FBF (1, Psibar, VL, Psi), G_VL_qW);
((M (U (-3)), O (Aux_top (1,0,1,true,QW)), M (D 3)), FBF (1, Psibar, VL, Psi), G_VL_qW) ]
let anomalous_top_qW_ff n =
List.map mom
[ ((U (-n), Aux_top (1,0,0,false,QW), U n), FBF (1, Psibar, VL, Psi), G_VL_qW_u);
((D (-n), Aux_top (1,0,0,false,QW), D n), FBF (1, Psibar, VL, Psi), G_VL_qW_d);
((N (-n), Aux_top (1,0,0,false,QW), N n), FBF (1, Psibar, VL, Psi), G_VL_qW_u);
((L (-n), Aux_top (1,0,0,false,QW), L n), FBF (1, Psibar, VL, Psi), G_VL_qW_d);
((D (-n), Aux_top (1,0,-1,false,QW), U n), FBF (1, Psibar, VL, Psi), Half);
((U (-n), Aux_top (1,0,1,false,QW), D n), FBF (1, Psibar, VL, Psi), Half);
((L (-n), Aux_top (1,0,-1,false,QW), N n), FBF (1, Psibar, VL, Psi), Half);
((N (-n), Aux_top (1,0,1,false,QW), L n), FBF (1, Psibar, VL, Psi), Half) ]
let anomalous_top_qW =
if Flags.top_anom_4f then
anomalous_top_qW_tq @ ThoList.flatmap anomalous_top_qW_ff [1;2;3]
else
[]
let anomalous_top_DuDd =
if Flags.top_anom_4f then
[ ((M (U (-3)), O (Aux_top (0,0,0,true,DR)), M (U 3)), FBF (1, Psibar, SR, Psi), Half);
((M (U (-3)), O (Aux_top (0,0,0,false,DR)), M (U 3)), FBF (1, Psibar, SL, Psi), G_SL_DttR);
((M (D (-3)), O (Aux_top (0,0,0,false,DR)), M (D 3)), FBF (1, Psibar, SR, Psi), G_SR_DttR);
((M (U (-3)), O (Aux_top (0,0,0,true,DL)), M (U 3)), FBF (1, Psibar, SL, Psi), Half);
((M (D (-3)), O (Aux_top (0,0,0,false,DL)), M (D 3)), FBF (1, Psibar, SL, Psi), G_SL_DttL);
((M (D (-3)), O (Aux_top (0,0,-1,true,DR)), M (U 3)), FBF (1, Psibar, SR, Psi), Half);
((M (U (-3)), O (Aux_top (0,0,1,false,DR)), M (D 3)), FBF (1, Psibar, SLR, Psi), G_SLR_DbtR);
((M (D (-3)), O (Aux_top (0,0,-1,true,DL)), M (U 3)), FBF (1, Psibar, SL, Psi), Half);
((M (U (-3)), O (Aux_top (0,0,1,false,DL)), M (D 3)), FBF (1, Psibar, SL, Psi), G_SL_DbtL) ]
else
[]
let anomalous_top_quqd1_tq =
[ ((M (D (-3)), O (Aux_top (0,0,-1,true,QUQD1R)), M (U 3)), FBF (1, Psibar, SR, Psi), C_quqd1R_bt);
((M (U (-3)), O (Aux_top (0,0, 1,true,QUQD1R)), M (D 3)), FBF (1, Psibar, SL, Psi), C_quqd1R_tb);
((M (D (-3)), O (Aux_top (0,0,-1,true,QUQD1L)), M (U 3)), FBF (1, Psibar, SL, Psi), C_quqd1L_bt);
((M (U (-3)), O (Aux_top (0,0, 1,true,QUQD1L)), M (D 3)), FBF (1, Psibar, SR, Psi), C_quqd1L_tb) ]
let anomalous_top_quqd1_ff n =
List.map mom
[ ((U (-n), Aux_top (0,0, 1,false,QUQD1R), D n), FBF (1, Psibar, SR, Psi), Half);
((D (-n), Aux_top (0,0,-1,false,QUQD1R), U n), FBF (1, Psibar, SL, Psi), Half);
((U (-n), Aux_top (0,0, 1,false,QUQD1L), D n), FBF (1, Psibar, SL, Psi), Half);
((D (-n), Aux_top (0,0,-1,false,QUQD1L), U n), FBF (1, Psibar, SR, Psi), Half) ]
let anomalous_top_quqd1 =
if Flags.top_anom_4f then
anomalous_top_quqd1_tq @ ThoList.flatmap anomalous_top_quqd1_ff [1;2;3]
else
[]
let anomalous_top_quqd8_tq =
[ ((M (D (-3)), O (Aux_top (0,1,-1,true,QUQD8R)), M (U 3)), FBF (1, Psibar, SR, Psi), C_quqd8R_bt);
((M (U (-3)), O (Aux_top (0,1, 1,true,QUQD8R)), M (D 3)), FBF (1, Psibar, SL, Psi), C_quqd8R_tb);
((M (D (-3)), O (Aux_top (0,1,-1,true,QUQD8L)), M (U 3)), FBF (1, Psibar, SL, Psi), C_quqd8L_bt);
((M (U (-3)), O (Aux_top (0,1, 1,true,QUQD8L)), M (D 3)), FBF (1, Psibar, SR, Psi), C_quqd8L_tb) ]
let anomalous_top_quqd8_ff n =
List.map mom
[ ((U (-n), Aux_top (0,1, 1,false,QUQD8R), D n), FBF (1, Psibar, SR, Psi), Half);
((D (-n), Aux_top (0,1,-1,false,QUQD8R), U n), FBF (1, Psibar, SL, Psi), Half);
((U (-n), Aux_top (0,1, 1,false,QUQD8L), D n), FBF (1, Psibar, SL, Psi), Half);
((D (-n), Aux_top (0,1,-1,false,QUQD8L), U n), FBF (1, Psibar, SR, Psi), Half) ]
let anomalous_top_quqd8 =
if Flags.top_anom_4f then
anomalous_top_quqd8_tq @ ThoList.flatmap anomalous_top_quqd8_ff [1;2;3]
else
[]
let vertices3 =
(ThoList.flatmap electromagnetic_currents [1;2;3] @
ThoList.flatmap color_currents [1;2;3] @
ThoList.flatmap neutral_currents [1;2;3] @
(if Flags.ckm_present then
charged_currents_ckm
else
charged_currents_triv) @
yukawa @ triple_gauge @
gauge_higgs @ higgs @ higgs_triangle_vertices
@ goldstone_vertices @
anomalous_ttA @ anomalous_bbA @
anomalous_ttZ @ anomalous_bbZ @
anomalous_tbW @ anomalous_tbWA @ anomalous_tbWZ @
anomalous_ttWW @ anomalous_bbWW @
anomalous_ttG @ anomalous_ttGG @
anomalous_ttH @
anomalous_top_qGuG @ anomalous_top_qBuB @
anomalous_top_qW @ anomalous_top_DuDd @
anomalous_top_quqd1 @ anomalous_top_quqd8)
let vertices4 =
quartic_gauge @ gauge_higgs4 @ higgs4
let vertices () = (vertices3, vertices4, [])
(* For efficiency, make sure that [F.of_vertices vertices] is
evaluated only once. *)
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 4
let flavor_of_string = function
| "e-" -> M (L 1) | "e+" -> M (L (-1))
| "mu-" -> M (L 2) | "mu+" -> M (L (-2))
| "tau-" -> M (L 3) | "tau+" -> M (L (-3))
| "nue" -> M (N 1) | "nuebar" -> M (N (-1))
| "numu" -> M (N 2) | "numubar" -> M (N (-2))
| "nutau" -> M (N 3) | "nutaubar" -> M (N (-3))
| "u" -> M (U 1) | "ubar" -> M (U (-1))
| "c" -> M (U 2) | "cbar" -> M (U (-2))
| "t" -> M (U 3) | "tbar" -> M (U (-3))
| "d" -> M (D 1) | "dbar" -> M (D (-1))
| "s" -> M (D 2) | "sbar" -> M (D (-2))
| "b" -> M (D 3) | "bbar" -> M (D (-3))
| "g" | "gl" -> G Gl
| "A" -> G Ga | "Z" | "Z0" -> G Z
| "W+" -> G Wp | "W-" -> G Wm
| "H" -> O H
| "Aux_t_ttGG0" -> O (Aux_top (2,1, 0,true,TTGG)) | "Aux_ttGG0" -> O (Aux_top (2,1, 0,false,TTGG))
| "Aux_t_tbWA+" -> O (Aux_top (2,0, 1,true,TBWA)) | "Aux_tbWA+" -> O (Aux_top (2,0, 1,false,TBWA))
| "Aux_t_tbWA-" -> O (Aux_top (2,0,-1,true,TBWA)) | "Aux_tbWA-" -> O (Aux_top (2,0,-1,false,TBWA))
| "Aux_t_tbWZ+" -> O (Aux_top (2,0, 1,true,TBWZ)) | "Aux_tbWZ+" -> O (Aux_top (2,0, 1,false,TBWZ))
| "Aux_t_tbWZ-" -> O (Aux_top (2,0,-1,true,TBWZ)) | "Aux_tbWZ-" -> O (Aux_top (2,0,-1,false,TBWZ))
| "Aux_t_ttWW0" -> O (Aux_top (2,0, 0,true,TTWW)) | "Aux_ttWW0" -> O (Aux_top (2,0, 0,false,TTWW))
| "Aux_t_bbWW0" -> O (Aux_top (2,0, 0,true,BBWW)) | "Aux_bbWW0" -> O (Aux_top (2,0, 0,false,BBWW))
| "Aux_t_qGuG0" -> O (Aux_top (1,1, 0,true,QGUG)) | "Aux_qGuG0" -> O (Aux_top (1,1, 0,false,QGUG))
| "Aux_t_qBuB0" -> O (Aux_top (1,0, 0,true,QBUB)) | "Aux_qBuB0" -> O (Aux_top (1,0, 0,false,QBUB))
| "Aux_t_qW0" -> O (Aux_top (1,0, 0,true,QW)) | "Aux_qW0" -> O (Aux_top (1,0, 0,false,QW))
| "Aux_t_qW+" -> O (Aux_top (1,0, 1,true,QW)) | "Aux_qW+" -> O (Aux_top (1,0, 1,false,QW))
| "Aux_t_qW-" -> O (Aux_top (1,0,-1,true,QW)) | "Aux_qW-" -> O (Aux_top (1,0,-1,false,QW))
| "Aux_t_dL0" -> O (Aux_top (0,0, 0,true,DL)) | "Aux_dL0" -> O (Aux_top (0,0, 0,false,DL))
| "Aux_t_dL+" -> O (Aux_top (0,0, 1,true,DL)) | "Aux_dL+" -> O (Aux_top (0,0, 1,false,DL))
| "Aux_t_dL-" -> O (Aux_top (0,0,-1,true,DL)) | "Aux_dL-" -> O (Aux_top (0,0,-1,false,DL))
| "Aux_t_dR0" -> O (Aux_top (0,0, 0,true,DR)) | "Aux_dR0" -> O (Aux_top (0,0, 0,false,DR))
| "Aux_t_dR+" -> O (Aux_top (0,0, 1,true,DR)) | "Aux_dR+" -> O (Aux_top (0,0, 1,false,DR))
| "Aux_t_dR-" -> O (Aux_top (0,0,-1,true,DR)) | "Aux_dR-" -> O (Aux_top (0,0,-1,false,DR))
| "Aux_t_quqd1L+" -> O (Aux_top (0,0, 1,true,QUQD1L)) | "Aux_quqd1L+" -> O (Aux_top (0,0, 1,false,QUQD1L))
| "Aux_t_quqd1L-" -> O (Aux_top (0,0,-1,true,QUQD1L)) | "Aux_quqd1L-" -> O (Aux_top (0,0,-1,false,QUQD1L))
| "Aux_t_quqd1R+" -> O (Aux_top (0,0, 1,true,QUQD1R)) | "Aux_quqd1R+" -> O (Aux_top (0,0, 1,false,QUQD1R))
| "Aux_t_quqd1R-" -> O (Aux_top (0,0,-1,true,QUQD1R)) | "Aux_quqd1R-" -> O (Aux_top (0,0,-1,false,QUQD1R))
| "Aux_t_quqd8L+" -> O (Aux_top (0,1, 1,true,QUQD8L)) | "Aux_quqd8L+" -> O (Aux_top (0,1, 1,false,QUQD8L))
| "Aux_t_quqd8L-" -> O (Aux_top (0,1,-1,true,QUQD8L)) | "Aux_quqd8L-" -> O (Aux_top (0,1,-1,false,QUQD8L))
| "Aux_t_quqd8R+" -> O (Aux_top (0,1, 1,true,QUQD8R)) | "Aux_quqd8R+" -> O (Aux_top (0,1, 1,false,QUQD8R))
| "Aux_t_quqd8R-" -> O (Aux_top (0,1,-1,true,QUQD8R)) | "Aux_quqd8R-" -> O (Aux_top (0,1,-1,false,QUQD8R))
| _ -> invalid_arg "Modellib.SM.flavor_of_string"
let flavor_to_string = function
| M f ->
begin match f with
| L 1 -> "e-" | L (-1) -> "e+"
| L 2 -> "mu-" | L (-2) -> "mu+"
| L 3 -> "tau-" | L (-3) -> "tau+"
| L _ -> invalid_arg
"Modellib.SM.flavor_to_string: invalid lepton"
| N 1 -> "nue" | N (-1) -> "nuebar"
| N 2 -> "numu" | N (-2) -> "numubar"
| N 3 -> "nutau" | N (-3) -> "nutaubar"
| N _ -> invalid_arg
"Modellib.SM.flavor_to_string: invalid neutrino"
| U 1 -> "u" | U (-1) -> "ubar"
| U 2 -> "c" | U (-2) -> "cbar"
| U 3 -> "t" | U (-3) -> "tbar"
| U _ -> invalid_arg
"Modellib.SM.flavor_to_string: invalid up type quark"
| D 1 -> "d" | D (-1) -> "dbar"
| D 2 -> "s" | D (-2) -> "sbar"
| D 3 -> "b" | D (-3) -> "bbar"
| D _ -> invalid_arg
"Modellib.SM.flavor_to_string: invalid down type quark"
end
| G f ->
begin match f with
| Gl -> "gl"
| Ga -> "A" | Z -> "Z"
| Wp -> "W+" | Wm -> "W-"
end
| O f ->
begin match f with
| Phip -> "phi+" | Phim -> "phi-" | Phi0 -> "phi0"
| H -> "H"
| Aux_top (_,_,ch,n,v) -> "Aux_" ^ (if n then "t_" else "") ^ (
begin match v with
| TTGG -> "ttGG" | TBWA -> "tbWA" | TBWZ -> "tbWZ"
| TTWW -> "ttWW" | BBWW -> "bbWW"
| QGUG -> "qGuG" | QBUB -> "qBuB"
| QW -> "qW" | DL -> "dL" | DR -> "dR"
| QUQD1L -> "quqd1L" | QUQD1R -> "quqd1R"
| QUQD8L -> "quqd8L" | QUQD8R -> "quqd8R"
end ) ^ ( if ch > 0 then "+" else if ch < 0 then "-" else "0" )
end
let flavor_to_TeX = function
| M f ->
begin match f with
| L 1 -> "e^-" | L (-1) -> "e^+"
| L 2 -> "\\mu^-" | L (-2) -> "\\mu^+"
| L 3 -> "\\tau^-" | L (-3) -> "\\tau^+"
| L _ -> invalid_arg
"Modellib.SM.flavor_to_TeX: invalid lepton"
| N 1 -> "\\nu_e" | N (-1) -> "\\bar{\\nu}_e"
| N 2 -> "\\nu_\\mu" | N (-2) -> "\\bar{\\nu}_\\mu"
| N 3 -> "\\nu_\\tau" | N (-3) -> "\\bar{\\nu}_\\tau"
| N _ -> invalid_arg
"Modellib.SM.flavor_to_TeX: invalid neutrino"
| U 1 -> "u" | U (-1) -> "\\bar{u}"
| U 2 -> "c" | U (-2) -> "\\bar{c}"
| U 3 -> "t" | U (-3) -> "\\bar{t}"
| U _ -> invalid_arg
"Modellib.SM.flavor_to_TeX: invalid up type quark"
| D 1 -> "d" | D (-1) -> "\\bar{d}"
| D 2 -> "s" | D (-2) -> "\\bar{s}"
| D 3 -> "b" | D (-3) -> "\\bar{b}"
| D _ -> invalid_arg
"Modellib.SM.flavor_to_TeX: invalid down type quark"
end
| G f ->
begin match f with
| Gl -> "g"
| Ga -> "\\gamma" | Z -> "Z"
| Wp -> "W^+" | Wm -> "W^-"
end
| O f ->
begin match f with
| Phip -> "\\phi^+" | Phim -> "\\phi^-" | Phi0 -> "\\phi^0"
| H -> "H"
| Aux_top (_,_,ch,n,v) -> "\\textnormal{Aux_" ^ (if n then "t_" else "") ^ (
begin match v with
| TTGG -> "ttGG" | TBWA -> "tbWA" | TBWZ -> "tbWZ"
| TTWW -> "ttWW" | BBWW -> "bbWW"
| QGUG -> "qGuG" | QBUB -> "qBuB"
| QW -> "qW" | DL -> "dL" | DR -> "dR"
| QUQD1L -> "quqd1L" | QUQD1R -> "quqd1R"
| QUQD8L -> "quqd8L" | QUQD8R -> "quqd8R"
end ) ^ ( if ch > 0 then "^+" else if ch < 0 then "^-" else "^0" ) ^ "}"
end
let flavor_symbol = function
| M f ->
begin match f with
| L n when n > 0 -> "l" ^ string_of_int n
| L n -> "l" ^ string_of_int (abs n) ^ "b"
| N n when n > 0 -> "n" ^ string_of_int n
| N n -> "n" ^ string_of_int (abs n) ^ "b"
| U n when n > 0 -> "u" ^ string_of_int n
| U n -> "u" ^ string_of_int (abs n) ^ "b"
| D n when n > 0 -> "d" ^ string_of_int n
| D n -> "d" ^ string_of_int (abs n) ^ "b"
end
| G f ->
begin match f with
| Gl -> "gl"
| Ga -> "a" | Z -> "z"
| Wp -> "wp" | Wm -> "wm"
end
| O f ->
begin match f with
| Phip -> "pp" | Phim -> "pm" | Phi0 -> "p0"
| H -> "h"
| Aux_top (_,_,ch,n,v) -> "aux_" ^ (if n then "t_" else "") ^ (
begin match v with
| TTGG -> "ttgg" | TBWA -> "tbwa" | TBWZ -> "tbwz"
| TTWW -> "ttww" | BBWW -> "bbww"
| QGUG -> "qgug" | QBUB -> "qbub"
| QW -> "qw" | DL -> "dl" | DR -> "dr"
| QUQD1L -> "quqd1l" | QUQD1R -> "quqd1r"
| QUQD8L -> "quqd8l" | QUQD8R -> "quqd8r"
end ) ^ "_" ^ ( if ch > 0 then "p" else if ch < 0 then "m" else "0" )
end
let pdg = function
| M f ->
begin match f with
| L n when n > 0 -> 9 + 2*n
| L n -> - 9 + 2*n
| N n when n > 0 -> 10 + 2*n
| N n -> - 10 + 2*n
| U n when n > 0 -> 2*n
| U n -> 2*n
| D n when n > 0 -> - 1 + 2*n
| D n -> 1 + 2*n
end
| G f ->
begin match f with
| Gl -> 21
| Ga -> 22 | Z -> 23
| Wp -> 24 | Wm -> (-24)
end
| O f ->
begin match f with
| Phip | Phim -> 27 | Phi0 -> 26
| H -> 25
| Aux_top (_,_,ch,t,f) -> let n =
begin match f with
| QW -> 0
| QUQD1R -> 1 | QUQD1L -> 2
| QUQD8R -> 3 | QUQD8L -> 4
- | _ -> invalid_arg
- "Modellib.SM_top_anom.pdg"
+ | _ -> 5
end
in (602 + 3*n - ch) * ( if t then (1) else (-1) )
end
let mass_symbol f =
"mass(" ^ string_of_int (abs (pdg f)) ^ ")"
let width_symbol f =
"width(" ^ string_of_int (abs (pdg f)) ^ ")"
let constant_symbol = function
| Unit -> "unit" | Half -> "half" | Pi -> "PI"
| Alpha_QED -> "alpha" | E -> "e" | G_weak -> "g" | Vev -> "vev"
| I_G_weak -> "ig"
| Sin2thw -> "sin2thw" | Sinthw -> "sinthw" | Costhw -> "costhw"
| Q_lepton -> "qlep" | Q_up -> "qup" | Q_down -> "qdwn"
| G_NC_lepton -> "gnclep" | G_NC_neutrino -> "gncneu"
| G_NC_up -> "gncup" | G_NC_down -> "gncdwn"
| G_TVA_ttA -> "gtva_tta" | G_TVA_bbA -> "gtva_bba"
| G_VLR_ttZ -> "gvlr_ttz" | G_TVA_ttZ -> "gtva_ttz" | G_TVA_bbZ -> "gtva_bbz"
| G_VLR_btW -> "gvlr_btw" | G_VLR_tbW -> "gvlr_tbw"
| G_TLR_btW -> "gtlr_btw" | G_TRL_tbW -> "gtrl_tbw"
| G_TLR_btWA -> "gtlr_btwa" | G_TRL_tbWA -> "gtrl_tbwa"
| G_TLR_btWZ -> "gtlr_btwz" | G_TRL_tbWZ -> "gtrl_tbwz"
| G_TVA_ttWW -> "gtva_ttww" | G_TVA_bbWW -> "gtva_bbww"
| G_TVA_ttG -> "gtva_ttg" | G_TVA_ttGG -> "gtva_ttgg"
| G_SP_ttH -> "gsp_tth"
| G_VLR_qGuG -> "gvlr_qgug"
| G_VLR_qBuB -> "gvlr_qbub"
| G_VLR_qBuB_u -> "gvlr_qbub_u" | G_VLR_qBuB_d -> "gvlr_qbub_d"
| G_VLR_qBuB_e -> "gvlr_qbub_e" | G_VL_qBuB_n -> "gvl_qbub_n"
| G_VL_qW -> "gvl_qw"
| G_VL_qW_u -> "gvl_qw_u" | G_VL_qW_d -> "gvl_qw_d"
| G_SL_DttR -> "gsl_dttr" | G_SR_DttR -> "gsr_dttr" | G_SL_DttL -> "gsl_dttl"
| G_SLR_DbtR -> "gslr_dbtr" | G_SL_DbtL -> "gsl_dbtl"
| C_quqd1R_bt -> "c_quqd1_1" | C_quqd1R_tb -> "conjg(c_quqd1_1)"
| C_quqd1L_bt -> "conjg(c_quqd1_2)" | C_quqd1L_tb -> "c_quqd1_2"
| C_quqd8R_bt -> "c_quqd8_1" | C_quqd8R_tb -> "conjg(c_quqd8_1)"
| C_quqd8L_bt -> "conjg(c_quqd8_2)" | C_quqd8L_tb -> "c_quqd8_2"
| G_CC -> "gcc"
| G_CCQ (n1,n2) -> "gccq" ^ string_of_int n1 ^ string_of_int n2
| I_Q_W -> "iqw" | I_G_ZWW -> "igzww"
| G_WWWW -> "gw4" | G_ZZWW -> "gzzww"
| G_AZWW -> "gazww" | G_AAWW -> "gaaww"
| I_G1_AWW -> "ig1a" | I_G1_ZWW -> "ig1z"
| I_G1_plus_kappa_plus_G4_AWW -> "ig1pkpg4a"
| I_G1_plus_kappa_plus_G4_ZWW -> "ig1pkpg4z"
| I_G1_plus_kappa_minus_G4_AWW -> "ig1pkmg4a"
| I_G1_plus_kappa_minus_G4_ZWW -> "ig1pkmg4z"
| I_G1_minus_kappa_plus_G4_AWW -> "ig1mkpg4a"
| I_G1_minus_kappa_plus_G4_ZWW -> "ig1mkpg4z"
| I_G1_minus_kappa_minus_G4_AWW -> "ig1mkmg4a"
| I_G1_minus_kappa_minus_G4_ZWW -> "ig1mkmg4z"
| I_lambda_AWW -> "ila"
| I_lambda_ZWW -> "ilz"
| G5_AWW -> "rg5a"
| G5_ZWW -> "rg5z"
| I_kappa5_AWW -> "ik5a"
| I_kappa5_ZWW -> "ik5z"
| I_lambda5_AWW -> "il5a" | I_lambda5_ZWW -> "il5z"
| Alpha_WWWW0 -> "alww0" | Alpha_WWWW2 -> "alww2"
| Alpha_ZZWW0 -> "alzw0" | Alpha_ZZWW1 -> "alzw1"
| Alpha_ZZZZ -> "alzz"
| D_Alpha_ZZWW0_S -> "dalzz0_s(gkm,mkm,"
| D_Alpha_ZZWW0_T -> "dalzz0_t(gkm,mkm,"
| D_Alpha_ZZWW1_S -> "dalzz1_s(gkm,mkm,"
| D_Alpha_ZZWW1_T -> "dalzz1_t(gkm,mkm,"
| D_Alpha_ZZWW1_U -> "dalzz1_u(gkm,mkm,"
| D_Alpha_WWWW0_S -> "dalww0_s(gkm,mkm,"
| D_Alpha_WWWW0_T -> "dalww0_t(gkm,mkm,"
| D_Alpha_WWWW0_U -> "dalww0_u(gkm,mkm,"
| D_Alpha_WWWW2_S -> "dalww2_s(gkm,mkm,"
| D_Alpha_WWWW2_T -> "dalww2_t(gkm,mkm,"
| D_Alpha_ZZZZ_S -> "dalz4_s(gkm,mkm,"
| D_Alpha_ZZZZ_T -> "dalz4_t(gkm,mkm,"
| G_HWW -> "ghww" | G_HZZ -> "ghzz"
| G_HHWW -> "ghhww" | G_HHZZ -> "ghhzz"
| G_Htt -> "ghtt" | G_Hbb -> "ghbb"
| G_Htautau -> "ghtautau" | G_Hcc -> "ghcc" | G_Hmm -> "ghmm"
| G_HGaZ -> "ghgaz" | G_HGaGa -> "ghgaga" | G_Hgg -> "ghgg"
| G_HGaGa_anom -> "ghgaga_ac" | G_HGaZ_anom -> "ghgaz_ac"
| G_HZZ_anom -> "ghzz_ac" | G_HWW_anom -> "ghww_ac"
| G_HGaZ_u -> "ghgaz_u" | G_HZZ_u -> "ghzz_u"
| G_HWW_u -> "ghww_u"
| G_H3 -> "gh3" | G_H4 -> "gh4"
| Gs -> "gs" | I_Gs -> "igs" | G2 -> "gs**2"
| Mass f -> "mass" ^ flavor_symbol f
| Width f -> "width" ^ flavor_symbol f
| K_Matrix_Coeff i -> "kc" ^ string_of_int i
| K_Matrix_Pole i -> "kp" ^ string_of_int i
end
(* \thocwmodulesection{Incomplete Standard Model in $R_\xi$ Gauge} *)
(* \begin{dubious}
At the end of the day, we want a functor mapping from gauge models
in unitarity gauge to $R_\xi$ gauge and vice versa. For this, we
will need a more abstract implementation of (spontaneously broken)
gauge theories.
\end{dubious} *)
module SM_Rxi =
struct
let rcs = RCS.rename rcs_file "Modellib.SM_Rxi"
[ "minimal electroweak standard model in R-xi gauge";
"NB: very incomplete still!, no CKM matrix" ]
open Coupling
module SM = SM(SM_no_anomalous)
let options = SM.options
type flavor = SM.flavor
let flavors = SM.flavors
let external_flavors = SM.external_flavors
type constant = SM.constant
let lorentz = SM.lorentz
let color = SM.color
let goldstone = SM.goldstone
let conjugate = SM.conjugate
let fermion = SM.fermion
(* \begin{dubious}
Check if it makes sense to have separate gauge fixing parameters
for each vector boson. There's probably only one independent
parameter for each group factor.
\end{dubious} *)
type gauge =
| XiA | XiZ | XiW
let gauge_symbol = function
| XiA -> "xia" | XiZ -> "xi0" | XiW -> "xipm"
(* Change the gauge boson propagators and make the Goldstone bosons
propagating. *)
let propagator = function
| SM.G SM.Ga -> Prop_Gauge XiA
| SM.G SM.Z -> Prop_Rxi XiZ
| SM.G SM.Wp | SM.G SM.Wm -> Prop_Rxi XiW
| SM.O SM.Phip | SM.O SM.Phim | SM.O SM.Phi0 -> Prop_Scalar
| f -> SM.propagator f
let width = SM.width
module Ch = Charges.QQ
let charges = SM.charges
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
let vertices = SM.vertices
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 3
let parameters = SM.parameters
let flavor_of_string = SM.flavor_of_string
let flavor_to_string = SM.flavor_to_string
let flavor_to_TeX = SM.flavor_to_TeX
let flavor_symbol = SM.flavor_symbol
let pdg = SM.pdg
let mass_symbol = SM.mass_symbol
let width_symbol = SM.width_symbol
let constant_symbol = SM.constant_symbol
end
(* \thocwmodulesection{QCD with electroweak insertions.} *)
module SM_QCD =
struct
let rcs = RCS.rename rcs_file "Modellib.SM_QCD"
[ "QCD with electroweak insertions"]
open Coupling
let default_width = ref Timelike
let use_fudged_width = ref false
let options = Options.create
[ "constant_width", Arg.Unit (fun () -> default_width := Constant),
"use constant width (also in t-channel)";
"fudged_width", Arg.Set use_fudged_width,
"use fudge factor for charge particle width";
"custom_width", Arg.String (fun f -> default_width := Custom f),
"use custom width";
"cancel_widths", Arg.Unit (fun () -> default_width := Vanishing),
"use vanishing width"]
type matter_field = L of int | N of int | U of int | D of int
type gauge_boson = Ga | GaX | Wp | Wm | Z | Gl
type other = H
type flavor = M of matter_field | G of gauge_boson | O of other
let matter_field f = M f
let gauge_boson f = G f
let other f = O f
type field =
| Matter of matter_field
| Gauge of gauge_boson
| Other of other
let field = function
| M f -> Matter f
| G f -> Gauge f
| O f -> Other f
type gauge = unit
let gauge_symbol () =
failwith "Modellib.SM_QCD.gauge_symbol: internal error"
let family n = List.map matter_field [ L n; N n; U n; D n ]
let external_flavors () =
[ "1st Generation", ThoList.flatmap family [1; -1];
"2nd Generation", ThoList.flatmap family [2; -2];
"3rd Generation", ThoList.flatmap family [3; -3];
"Gauge Bosons", List.map gauge_boson [Ga; GaX; Z; Wp; Wm; Gl];
"Higgs", List.map other [H] ]
let flavors () = ThoList.flatmap snd (external_flavors ())
let spinor n =
if n >= 0 then
Spinor
else
ConjSpinor
let lorentz_aux = function
| 2 -> Tensor_1
| 1 -> Vector
| 0 -> Scalar
| _ -> invalid_arg ("SM_QCD.lorentz_aux: wrong value")
let lorentz = function
| M f ->
begin match f with
| L n -> spinor n | N n -> spinor n
| U n -> spinor n | D n -> spinor n
end
| G f ->
begin match f with
| Ga | GaX | Gl -> Vector
| Wp | Wm | Z -> Massive_Vector
end
| O f ->
begin match f with
| _ -> Scalar
end
let color = function
| M (U n) -> Color.SUN (if n > 0 then 3 else -3)
| M (D n) -> Color.SUN (if n > 0 then 3 else -3)
| G Gl -> Color.AdjSUN 3
| _ -> Color.Singlet
let prop_spinor n =
if n >= 0 then
Prop_Spinor
else
Prop_ConjSpinor
let prop_aux = function
| 2 -> Aux_Tensor_1
| 1 -> Aux_Vector
| 0 -> Aux_Scalar
| _ -> invalid_arg ("SM_QCD.prop_aux: wrong value")
let propagator = function
| M f ->
begin match f with
| L n -> prop_spinor n | N n -> prop_spinor n
| U n -> prop_spinor n | D n -> prop_spinor n
end
| G f ->
begin match f with
| Ga | GaX | Gl -> Prop_Feynman
| Wp | Wm | Z -> Prop_Unitarity
end
| O f ->
begin match f with
| H -> Prop_Scalar
end
(* Optionally, ask for the fudge factor treatment for the widths of
charged particles. Currently, this only applies to $W^\pm$ and top. *)
let width f =
if !use_fudged_width then
match f with
| G Wp | G Wm | M (U 3) | M (U (-3)) -> Fudged
| _ -> !default_width
else
!default_width
let goldstone _ = None
let conjugate = function
| M f ->
M (begin match f with
| L n -> L (-n) | N n -> N (-n)
| U n -> U (-n) | D n -> D (-n)
end)
| G f ->
G (begin match f with
| Gl -> Gl | Ga -> GaX | Z -> Z
| GaX -> Ga | Wp -> Wm | Wm -> Wp
end)
| O f ->
O (begin match f with
| H -> H
end)
let fermion = function
| M f ->
begin match f with
| L n -> if n > 0 then 1 else -1
| N n -> if n > 0 then 1 else -1
| U n -> if n > 0 then 1 else -1
| D n -> if n > 0 then 1 else -1
end
| G f ->
begin match f with
| Gl | Ga | GaX | Z | Wp | Wm -> 0
end
| O _ -> 0
(* Electrical charge, lepton number, baryon number. We could avoid the
rationals altogether by multiplying the first and last by 3 \ldots *)
module Ch = Charges.QQ
let ( // ) = Algebra.Small_Rational.make
let generation' = function
| 1 -> [ 1//1; 0//1; 0//1]
| 2 -> [ 0//1; 1//1; 0//1]
| 3 -> [ 0//1; 0//1; 1//1]
| -1 -> [-1//1; 0//1; 0//1]
| -2 -> [ 0//1; -1//1; 0//1]
| -3 -> [ 0//1; 0//1; -1//1]
| n -> invalid_arg ("SM_QCD.generation': " ^ string_of_int n)
let generation f =
match f with
| M (L n | N n | U n | D n) -> generation' n
| G _ | O _ -> [0//1; 0//1; 0//1]
let charge = function
| M f ->
begin match f with
| L n -> if n > 0 then -1//1 else 1//1
| N n -> 0//1
| U n -> if n > 0 then 2//3 else -2//3
| D n -> if n > 0 then -1//3 else 1//3
end
| G f ->
begin match f with
| Gl | Ga | GaX | Z -> 0//1
| Wp -> 1//1
| Wm -> -1//1
end
| O f ->
begin match f with
| H -> 0//1
end
let lepton = function
| M f ->
begin match f with
| L n | N n -> if n > 0 then 1//1 else -1//1
| U _ | D _ -> 0//1
end
| G _ | O _ -> 0//1
let baryon = function
| M f ->
begin match f with
| L _ | N _ -> 0//1
| U n | D n -> if n > 0 then 1//1 else -1//1
end
| G _ | O _ -> 0//1
let charges f =
[ charge f; lepton f; baryon f] @ generation f
type constant =
| Unit | Half | Pi | Alpha_QED | Sin2thw
| Sinthw | Costhw | E | G_weak | I_G_weak | Vev
| Q_lepton | Q_up | Q_down | G_CC | G_CCQ of int*int
| G_NC_neutrino | G_NC_lepton | G_NC_up | G_NC_down
| I_Q_W | G_Htt | G_Hbb | G_Hcc | G_Hmm | G_Htautau
| Gs | I_Gs | G2
| Mass of flavor | Width of flavor
(* \begin{dubious}
The current abstract syntax for parameter dependencies is admittedly
tedious. Later, there will be a parser for a convenient concrete syntax
as a part of a concrete syntax for models. But as these examples show,
it should include simple functions.
\end{dubious} *)
(* \begin{subequations}
\begin{align}
\alpha_{\text{QED}} &= \frac{1}{137.0359895} \\
\sin^2\theta_w &= 0.23124
\end{align}
\end{subequations} *)
let input_parameters =
[ Alpha_QED, 1. /. 137.0359895;
Sin2thw, 0.23124;
Mass (G Z), 91.187;
Mass (M (N 1)), 0.0; Mass (M (L 1)), 0.51099907e-3;
Mass (M (N 2)), 0.0; Mass (M (L 2)), 0.105658389;
Mass (M (N 3)), 0.0; Mass (M (L 3)), 1.77705;
Mass (M (U 1)), 5.0e-3; Mass (M (D 1)), 3.0e-3;
Mass (M (U 2)), 1.2; Mass (M (D 2)), 0.1;
Mass (M (U 3)), 174.0; Mass (M (D 3)), 4.2 ]
let derived_parameters =
[ Real E, Sqrt (Prod [Const 4; Atom Pi; Atom Alpha_QED]);
Real Sinthw, Sqrt (Atom Sin2thw);
Real Costhw, Sqrt (Diff (Const 1, Atom Sin2thw));
Real G_weak, Quot (Atom E, Atom Sinthw);
Real (Mass (G Wp)), Prod [Atom Costhw; Atom (Mass (G Z))];
Real Vev, Quot (Prod [Const 2; Atom (Mass (G Wp))], Atom G_weak);
Real Q_lepton, Atom E;
Real Q_up, Prod [Quot (Const (-2), Const 3); Atom E];
Real Q_down, Prod [Quot (Const 1, Const 3); Atom E];
Real G_CC, Neg (Quot (Atom G_weak, Prod [Const 2; Sqrt (Const 2)]));
Complex I_Q_W, Prod [I; Atom E]]
let g_over_2_costh =
Quot (Neg (Atom G_weak), Prod [Const 2; Atom Costhw])
let nc_coupling c t3 q =
(Real_Array c,
[Prod [g_over_2_costh; Diff (t3, Prod [Const 2; q; Atom Sin2thw])];
Prod [g_over_2_costh; t3]])
let half = Quot (Const 1, Const 2)
let derived_parameter_arrays =
[ nc_coupling G_NC_neutrino half (Const 0);
nc_coupling G_NC_lepton (Neg half) (Const (-1));
nc_coupling G_NC_up half (Quot (Const 2, Const 3));
nc_coupling G_NC_down (Neg half) (Quot (Const (-1), Const 3)) ]
let parameters () =
{ input = input_parameters;
derived = derived_parameters;
derived_arrays = derived_parameter_arrays }
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
let mgm ((m1, g, m2), fbf, c) = ((M m1, G g, M m2), fbf, c)
let mom ((m1, o, m2), fbf, c) = ((M m1, O o, M m2), fbf, c)
let electromagnetic_currents n =
List.map mgm
[ ((L (-n), GaX, L n), FBF (1, Psibar, V, Psi), Q_lepton);
((U (-n), Ga, U n), FBF (1, Psibar, V, Psi), Q_up);
((D (-n), Ga, D n), FBF (1, Psibar, V, Psi), Q_down) ]
let color_currents n =
List.map mgm
[ ((U (-n), Gl, U n), FBF ((-1), Psibar, V, Psi), Gs);
((D (-n), Gl, D n), FBF ((-1), Psibar, V, Psi), Gs) ]
(* \begin{equation}
\mathcal{L}_{\textrm{NC}} =
- \frac{g}{2\cos\theta_W}
\sum_i \bar\psi_i\fmslash{Z}(g_V^i-g_A^i\gamma_5)\psi_i
\end{equation} *)
let neutral_currents n =
List.map mgm
[ ((L (-n), Z, L n), FBF (1, Psibar, VA, Psi), G_NC_lepton);
((N (-n), Z, N n), FBF (1, Psibar, VA, Psi), G_NC_neutrino);
((U (-n), Z, U n), FBF (1, Psibar, VA, Psi), G_NC_up);
((D (-n), Z, D n), FBF (1, Psibar, VA, Psi), G_NC_down) ]
(* \begin{equation}
\mathcal{L}_{\textrm{CC}} =
- \frac{g}{2\sqrt2} \sum_i \bar\psi_i
(T^+\fmslash{W}^+ + T^-\fmslash{W}^-)(1-\gamma_5)\psi_i
\end{equation} *)
let charged_currents' n =
List.map mgm
[ ((L (-n), Wm, N n), FBF (1, Psibar, VL, Psi), G_CC);
((N (-n), Wp, L n), FBF (1, Psibar, VL, Psi), G_CC) ]
let charged_currents'' n =
List.map mgm
[ ((D (-n), Wm, U n), FBF (1, Psibar, VL, Psi), G_CC);
((U (-n), Wp, D n), FBF (1, Psibar, VL, Psi), G_CC) ]
let charged_currents_triv =
ThoList.flatmap charged_currents' [1;2;3] @
ThoList.flatmap charged_currents'' [1;2;3]
let charged_currents_ckm =
let charged_currents_2 n1 n2 =
List.map mgm
[ ((D (-n1), Wm, U n2), FBF (1, Psibar, VL, Psi), G_CCQ (n2,n1));
((U (-n1), Wp, D n2), FBF (1, Psibar, VL, Psi), G_CCQ (n1,n2)) ] in
ThoList.flatmap charged_currents' [1;2;3] @
List.flatten (Product.list2 charged_currents_2 [1;2;3] [1;2;3])
let yukawa =
[ ((M (U (-3)), O H, M (U 3)), FBF (1, Psibar, S, Psi), G_Htt);
((M (D (-3)), O H, M (D 3)), FBF (1, Psibar, S, Psi), G_Hbb);
((M (U (-2)), O H, M (U 2)), FBF (1, Psibar, S, Psi), G_Hcc);
((M (L (-2)), O H, M (L 2)), FBF (1, Psibar, S, Psi), G_Hmm);
((M (L (-3)), O H, M (L 3)), FBF (1, Psibar, S, Psi), G_Htautau) ]
(* \begin{equation}
\mathcal{L}_{\textrm{TGC}} =
- e \partial_\mu A_\nu W_+^\mu W_-^\nu + \ldots
- e \cot\theta_w \partial_\mu Z_\nu W_+^\mu W_-^\nu + \ldots
\end{equation} *)
let tgc ((g1, g2, g3), t, c) = ((G g1, G g2, G g3), t, c)
let triple_gauge =
List.map tgc
[ ((Gl, Gl, Gl), Gauge_Gauge_Gauge 1, I_Gs)]
let qgc ((g1, g2, g3, g4), t, c) = ((G g1, G g2, G g3, G g4), t, c)
let gauge4 = Vector4 [(2, C_13_42); (-1, C_12_34); (-1, C_14_23)]
let minus_gauge4 = Vector4 [(-2, C_13_42); (1, C_12_34); (1, C_14_23)]
let quartic_gauge =
List.map qgc
[ (Gl, Gl, Gl, Gl), gauge4, G2 ]
let vertices3 =
(ThoList.flatmap electromagnetic_currents [1;2;3] @
ThoList.flatmap color_currents [1;2;3] @
ThoList.flatmap neutral_currents [1;2;3] @
charged_currents_triv @
yukawa @ triple_gauge)
let vertices4 =
quartic_gauge
let vertices () = (vertices3, vertices4, [])
(* For efficiency, make sure that [F.of_vertices vertices] is
evaluated only once. *)
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
let max_degree () = 4
let flavor_of_string = function
| "e-" -> M (L 1) | "e+" -> M (L (-1))
| "mu-" -> M (L 2) | "mu+" -> M (L (-2))
| "tau-" -> M (L 3) | "tau+" -> M (L (-3))
| "nue" -> M (N 1) | "nuebar" -> M (N (-1))
| "numu" -> M (N 2) | "numubar" -> M (N (-2))
| "nutau" -> M (N 3) | "nutaubar" -> M (N (-3))
| "u" -> M (U 1) | "ubar" -> M (U (-1))
| "c" -> M (U 2) | "cbar" -> M (U (-2))
| "t" -> M (U 3) | "tbar" -> M (U (-3))
| "d" -> M (D 1) | "dbar" -> M (D (-1))
| "s" -> M (D 2) | "sbar" -> M (D (-2))
| "b" -> M (D 3) | "bbar" -> M (D (-3))
| "g" | "gl" -> G Gl
| "A" -> G Ga | "Z" | "Z0" -> G Z
| "W+" -> G Wp | "W-" -> G Wm
| "H" -> O H
| _ -> invalid_arg "Modellib.SM_QCD.flavor_of_string"
let flavor_to_string = function
| M f ->
begin match f with
| L 1 -> "e-" | L (-1) -> "e+"
| L 2 -> "mu-" | L (-2) -> "mu+"
| L 3 -> "tau-" | L (-3) -> "tau+"
| L _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_string: invalid lepton"
| N 1 -> "nue" | N (-1) -> "nuebar"
| N 2 -> "numu" | N (-2) -> "numubar"
| N 3 -> "nutau" | N (-3) -> "nutaubar"
| N _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_string: invalid neutrino"
| U 1 -> "u" | U (-1) -> "ubar"
| U 2 -> "c" | U (-2) -> "cbar"
| U 3 -> "t" | U (-3) -> "tbar"
| U _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_string: invalid up type quark"
| D 1 -> "d" | D (-1) -> "dbar"
| D 2 -> "s" | D (-2) -> "sbar"
| D 3 -> "b" | D (-3) -> "bbar"
| D _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_string: invalid down type quark"
end
| G f ->
begin match f with
| Gl -> "gl"
| Ga | GaX -> "A" | Z -> "Z"
| Wp -> "W+" | Wm -> "W-"
end
| O f ->
begin match f with
| H -> "H"
end
let flavor_to_TeX = function
| M f ->
begin match f with
| L 1 -> "e^-" | L (-1) -> "e^+"
| L 2 -> "\\mu^-" | L (-2) -> "\\mu^+"
| L 3 -> "\\tau^-" | L (-3) -> "\\tau^+"
| L _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_TeX: invalid lepton"
| N 1 -> "\\nu_e" | N (-1) -> "\\bar{\\nu}_e"
| N 2 -> "\\nu_\\mu" | N (-2) -> "\\bar{\\nu}_\\mu"
| N 3 -> "\\nu_\\tau" | N (-3) -> "\\bar{\\nu}_\\tau"
| N _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_TeX: invalid neutrino"
| U 1 -> "u" | U (-1) -> "\\bar{u}"
| U 2 -> "c" | U (-2) -> "\\bar{c}"
| U 3 -> "t" | U (-3) -> "\\bar{t}"
| U _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_TeX: invalid up type quark"
| D 1 -> "d" | D (-1) -> "\\bar{d}"
| D 2 -> "s" | D (-2) -> "\\bar{s}"
| D 3 -> "b" | D (-3) -> "\\bar{b}"
| D _ -> invalid_arg
"Modellib.SM_QCD.flavor_to_TeX: invalid down type quark"
end
| G f ->
begin match f with
| Gl -> "g"
| Ga | GaX -> "\\gamma" | Z -> "Z"
| Wp -> "W^+" | Wm -> "W^-"
end
| O f ->
begin match f with
| H -> "H"
end
let flavor_symbol = function
| M f ->
begin match f with
| L n when n > 0 -> "l" ^ string_of_int n
| L n -> "l" ^ string_of_int (abs n) ^ "b"
| N n when n > 0 -> "n" ^ string_of_int n
| N n -> "n" ^ string_of_int (abs n) ^ "b"
| U n when n > 0 -> "u" ^ string_of_int n
| U n -> "u" ^ string_of_int (abs n) ^ "b"
| D n when n > 0 -> "d" ^ string_of_int n
| D n -> "d" ^ string_of_int (abs n) ^ "b"
end
| G f ->
begin match f with
| Gl -> "gl"
| Ga -> "a" | Z -> "z"
| GaX -> "gax"
| Wp -> "wp" | Wm -> "wm"
end
| O f ->
begin match f with
| H -> "h"
end
let pdg = function
| M f ->
begin match f with
| L n when n > 0 -> 9 + 2*n
| L n -> - 9 + 2*n
| N n when n > 0 -> 10 + 2*n
| N n -> - 10 + 2*n
| U n when n > 0 -> 2*n
| U n -> 2*n
| D n when n > 0 -> - 1 + 2*n
| D n -> 1 + 2*n
end
| G f ->
begin match f with
| Gl -> 21
| Ga | GaX -> 22 | Z -> 23
| Wp -> 24 | Wm -> (-24)
end
| O f ->
begin match f with
| H -> 25
end
let mass_symbol f =
"mass(" ^ string_of_int (abs (pdg f)) ^ ")"
let width_symbol f =
"width(" ^ string_of_int (abs (pdg f)) ^ ")"
let constant_symbol = function
| Unit -> "unit" | Half -> "half" | Pi -> "PI"
| Alpha_QED -> "alpha" | E -> "e" | G_weak -> "g" | Vev -> "vev"
| I_G_weak -> "ig"
| Sin2thw -> "sin2thw" | Sinthw -> "sinthw" | Costhw -> "costhw"
| Q_lepton -> "qlep" | Q_up -> "qup" | Q_down -> "qdwn"
| G_NC_lepton -> "gnclep" | G_NC_neutrino -> "gncneu"
| G_NC_up -> "gncup" | G_NC_down -> "gncdwn"
| G_CC -> "gcc"
| G_CCQ (n1,n2) -> "gccq" ^ string_of_int n1 ^ string_of_int n2
| I_Q_W -> "iqw"
| G_Htt -> "ghtt" | G_Hbb -> "ghbb"
| G_Htautau -> "ghtautau" | G_Hcc -> "ghcc" | G_Hmm -> "ghmm"
| Gs -> "gs" | I_Gs -> "igs" | G2 -> "gs**2"
| Mass f -> "mass" ^ flavor_symbol f
| Width f -> "width" ^ flavor_symbol f
end
(* \thocwmodulesection{Groves} *)
module Groves (M : Model.Gauge) : Model.Gauge with module Ch = M.Ch =
struct
let max_generations = 5
let rcs = RCS.rename M.rcs
("Modellib.Groves(" ^ (RCS.name M.rcs) ^ ")")
([ "experimental Groves functor";
Printf.sprintf "for maximally %d flavored legs"
(2 * max_generations) ] @
RCS.description M.rcs)
let options = M.options
type matter_field = M.matter_field * int
type gauge_boson = M.gauge_boson
type other = M.other
type field =
| Matter of matter_field
| Gauge of gauge_boson
| Other of other
type flavor = M of matter_field | G of gauge_boson | O of other
let matter_field (f, g) = M (f, g)
let gauge_boson f = G f
let other f = O f
let field = function
| M f -> Matter f
| G f -> Gauge f
| O f -> Other f
let project = function
| M (f, _) -> M.matter_field f
| G f -> M.gauge_boson f
| O f -> M.other f
let inject g f =
match M.field f with
| M.Matter f -> M (f, g)
| M.Gauge f -> G f
| M.Other f -> O f
type gauge = M.gauge
let gauge_symbol = M.gauge_symbol
let color f = M.color (project f)
let pdg f = M.pdg (project f)
let lorentz f = M.lorentz (project f)
let propagator f = M.propagator (project f)
let fermion f = M.fermion (project f)
let width f = M.width (project f)
let mass_symbol f = M.mass_symbol (project f)
let width_symbol f = M.width_symbol (project f)
let flavor_symbol f = M.flavor_symbol (project f)
type constant = M.constant
let constant_symbol = M.constant_symbol
let max_degree = M.max_degree
let parameters = M.parameters
let conjugate = function
| M (_, g) as f -> inject g (M.conjugate (project f))
| f -> inject 0 (M.conjugate (project f))
let read_generation s =
try
let offset = String.index s '/' in
(int_of_string
(String.sub s (succ offset) (String.length s - offset - 1)),
String.sub s 0 offset)
with
| Not_found -> (1, s)
let format_generation c s =
s ^ "/" ^ string_of_int c
let flavor_of_string s =
let g, s = read_generation s in
inject g (M.flavor_of_string s)
let flavor_to_string = function
| M (_, g) as f -> format_generation g (M.flavor_to_string (project f))
| f -> M.flavor_to_string (project f)
let flavor_to_TeX = function
| M (_, g) as f -> format_generation g (M.flavor_to_TeX (project f))
| f -> M.flavor_to_TeX (project f)
let goldstone = function
| G _ as f ->
begin match M.goldstone (project f) with
| None -> None
| Some (f, c) -> Some (inject 0 f, c)
end
| M _ | O _ -> None
let clone generations flavor =
match M.field flavor with
| M.Matter f -> List.map (fun g -> M (f, g)) generations
| M.Gauge f -> [G f]
| M.Other f -> [O f]
let generations = ThoList.range 1 max_generations
let flavors () =
ThoList.flatmap (clone generations) (M.flavors ())
let external_flavors () =
List.map (fun (s, fl) -> (s, ThoList.flatmap (clone generations) fl))
(M.external_flavors ())
module Ch = M.Ch
let charges f = M.charges (project f)
module F = Modeltools.Fusions (struct
type f = flavor
type c = constant
let compare = compare
let conjugate = conjugate
end)
(* In the following functions, we might replace [_] by [(M.Gauge _ | M.Other _)],
in order to allow the compiler to check completeness. However, this
makes the code much less readable. *)
let clone3 ((f1, f2, f3), v, c) =
match M.field f1, M.field f2, M.field f3 with
| M.Matter _, M.Matter _, M.Matter _ ->
invalid_arg "Modellib.Groves().vertices: three matter fields!"
| M.Matter f1', M.Matter f2', _ ->
List.map (fun g -> ((M (f1', g), M (f2', g), inject 0 f3), v, c))
generations
| M.Matter f1', _, M.Matter f3' ->
List.map (fun g -> ((M (f1', g), inject 0 f2, M (f3', g)), v, c))
generations
| _, M.Matter f2', M.Matter f3' ->
List.map (fun g -> ((inject 0 f1, M (f2', g), M (f3', g)), v, c))
generations
| M.Matter _, _, _ | _, M.Matter _, _ | _, _, M.Matter _ ->
invalid_arg "Modellib.Groves().vertices: lone matter field!"
| _, _, _ ->
[(inject 0 f1, inject 0 f2, inject 0 f3), v, c]
let clone4 ((f1, f2, f3, f4), v, c) =
match M.field f1, M.field f2, M.field f3, M.field f4 with
| M.Matter _, M.Matter _, M.Matter _, M.Matter _ ->
invalid_arg "Modellib.Groves().vertices: four matter fields!"
| M.Matter _, M.Matter _, M.Matter _, _
| M.Matter _, M.Matter _, _, M.Matter _
| M.Matter _, _, M.Matter _, M.Matter _
| _, M.Matter _, M.Matter _, M.Matter _ ->
invalid_arg "Modellib.Groves().vertices: three matter fields!"
| M.Matter f1', M.Matter f2', _, _ ->
List.map (fun g ->
((M (f1', g), M (f2', g), inject 0 f3, inject 0 f4), v, c))
generations
| M.Matter f1', _, M.Matter f3', _ ->
List.map (fun g ->
((M (f1', g), inject 0 f2, M (f3', g), inject 0 f4), v, c))
generations
| M.Matter f1', _, _, M.Matter f4' ->
List.map (fun g ->
((M (f1', g), inject 0 f2, inject 0 f3, M (f4', g)), v, c))
generations
| _, M.Matter f2', M.Matter f3', _ ->
List.map (fun g ->
((inject 0 f1, M (f2', g), M (f3', g), inject 0 f4), v, c))
generations
| _, M.Matter f2', _, M.Matter f4' ->
List.map (fun g ->
((inject 0 f1, M (f2', g), inject 0 f3, M (f4', g)), v, c))
generations
| _, _, M.Matter f3', M.Matter f4' ->
List.map (fun g ->
((inject 0 f1, inject 0 f2, M (f3', g), M (f4', g)), v, c))
generations
| M.Matter _, _, _, _ | _, M.Matter _, _, _
| _, _, M.Matter _, _ | _, _, _, M.Matter _ ->
invalid_arg "Modellib.Groves().vertices: lone matter field!"
| _, _, _, _ ->
[(inject 0 f1, inject 0 f2, inject 0 f3, inject 0 f4), v, c]
let clonen (fl, v, c) =
match List.map M.field fl with
| _ -> failwith "Modellib.Groves().vertices: incomplete"
let vertices () =
let vertices3, vertices4, verticesn = M.vertices () in
(ThoList.flatmap clone3 vertices3,
ThoList.flatmap clone4 vertices4,
ThoList.flatmap clonen verticesn)
let table = F.of_vertices (vertices ())
let fuse2 = F.fuse2 table
let fuse3 = F.fuse3 table
let fuse = F.fuse table
(* \begin{dubious}
The following (incomplete) alternative implementations are
included for illustrative purposes only:
\end{dubious} *)
let injectl g fcl =
List.map (fun (f, c) -> (inject g f, c)) fcl
let alt_fuse2 f1 f2 =
match f1, f2 with
| M (f1', g1'), M (f2', g2') ->
if g1' = g2' then
injectl 0 (M.fuse2 (M.matter_field f1') (M.matter_field f2'))
else
[]
| M (f1', g'), _ -> injectl g' (M.fuse2 (M.matter_field f1') (project f2))
| _, M (f2', g') -> injectl g' (M.fuse2 (project f1) (M.matter_field f2'))
| _, _ -> injectl 0 (M.fuse2 (project f1) (project f2))
let alt_fuse3 f1 f2 f3 =
match f1, f2, f3 with
| M (f1', g1'), M (f2', g2'), M (f3', g3') ->
invalid_arg "Modellib.Groves().fuse3: three matter fields!"
| M (f1', g1'), M (f2', g2'), _ ->
if g1' = g2' then
injectl 0
(M.fuse3 (M.matter_field f1') (M.matter_field f2') (project f3))
else
[]
| M (f1', g1'), _, M (f3', g3') ->
if g1' = g3' then
injectl 0
(M.fuse3 (M.matter_field f1') (project f2) (M.matter_field f3'))
else
[]
| _, M (f2', g2'), M (f3', g3') ->
if g2' = g3' then
injectl 0
(M.fuse3 (project f1) (M.matter_field f2') (M.matter_field f3'))
else
[]
| M (f1', g'), _, _ ->
injectl g' (M.fuse3 (M.matter_field f1') (project f2) (project f3))
| _, M (f2', g'), _ ->
injectl g' (M.fuse3 (project f1) (M.matter_field f2') (project f3))
| _, _, M (f3', g') ->
injectl g' (M.fuse3 (project f1) (project f2) (M.matter_field f3'))
| _, _, _ -> injectl 0 (M.fuse3 (project f1) (project f2) (project f3))
end
(* \thocwmodulesection{MSM With Cloned Families} *)
module SM_clones = Groves(SM(SM_no_anomalous))
(*i
* Local Variables:
* mode:caml
* indent-tabs-mode:nil
* page-delimiter:"^(\\* .*\n"
* End:
i*)
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:36 PM (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3804980
Default Alt Text
(108 KB)
Attached To
rWHIZARDSVN whizardsvn
Event Timeline
Log In to Comment