Page MenuHomeHEPForge

No OneTemporary

diff --git a/Shower/Base/Evolver.cc b/Shower/Base/Evolver.cc
--- a/Shower/Base/Evolver.cc
+++ b/Shower/Base/Evolver.cc
@@ -1,3225 +1,3227 @@
// -*- C++ -*-
//
// Evolver.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the Evolver class.
//
#include "Evolver.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/RefVector.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "Herwig/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "ShowerKinematics.h"
#include "ThePEG/PDT/EnumParticles.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Utilities/Throw.h"
#include "ShowerTree.h"
#include "ShowerProgenitor.h"
#include "KinematicsReconstructor.h"
#include "PartnerFinder.h"
#include "ThePEG/Handlers/StandardXComb.h"
#include "ThePEG/PDT/DecayMode.h"
#include "Herwig/Shower/ShowerHandler.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ShowerVertex.h"
#include "ThePEG/Repository/CurrentGenerator.h"
#include "Herwig/MatrixElement/Matchbox/Base/SubtractedME.h"
#include "Herwig/MatrixElement/Matchbox/MatchboxFactory.h"
#include "ThePEG/Handlers/StandardXComb.h"
using namespace Herwig;
namespace {
/**
* A struct to order the particles in the same way as in the DecayMode's
*/
struct ParticleOrdering {
/**
* Operator for the ordering
* @param p1 The first ParticleData object
* @param p2 The second ParticleData object
*/
bool operator() (tcPDPtr p1, tcPDPtr p2) {
return abs(p1->id()) > abs(p2->id()) ||
( abs(p1->id()) == abs(p2->id()) && p1->id() > p2->id() ) ||
( p1->id() == p2->id() && p1->fullName() > p2->fullName() );
}
};
typedef multiset<tcPDPtr,ParticleOrdering> OrderedParticles;
/**
* Cached lookup of decay modes.
* Generator::findDecayMode() is not efficient.
*/
tDMPtr findDecayMode(const string & tag) {
static map<string,DMPtr> cache;
map<string,DMPtr>::const_iterator pos = cache.find(tag);
if ( pos != cache.end() )
return pos->second;
tDMPtr dm = CurrentGenerator::current().findDecayMode(tag);
cache[tag] = dm;
return dm;
}
}
DescribeClass<Evolver,Interfaced>
describeEvolver ("Herwig::Evolver","HwShower.so");
bool Evolver::_hardEmissionModeWarn = true;
bool Evolver::_missingTruncWarn = true;
IBPtr Evolver::clone() const {
return new_ptr(*this);
}
IBPtr Evolver::fullclone() const {
return new_ptr(*this);
}
void Evolver::persistentOutput(PersistentOStream & os) const {
os << _model << _splittingGenerator << _maxtry
<< _meCorrMode << _hardVetoMode << _hardVetoRead << _hardVetoReadOption
<< _limitEmissions << _spinOpt << _softOpt << _hardPOWHEG
<< ounit(_iptrms,GeV) << _beta << ounit(_gamma,GeV) << ounit(_iptmax,GeV)
<< _vetoes << _trunc_Mode << _hardEmissionMode << _reconOpt
<< isMCatNLOSEvent << isMCatNLOHEvent
<< isPowhegSEvent << isPowhegHEvent
<< theFactorizationScaleFactor << theRenormalizationScaleFactor << ounit(muPt,GeV)
<< oenum(interaction_) << _maxTryFSR << _maxFailFSR << _fracFSR;
}
void Evolver::persistentInput(PersistentIStream & is, int) {
is >> _model >> _splittingGenerator >> _maxtry
>> _meCorrMode >> _hardVetoMode >> _hardVetoRead >> _hardVetoReadOption
>> _limitEmissions >> _spinOpt >> _softOpt >> _hardPOWHEG
>> iunit(_iptrms,GeV) >> _beta >> iunit(_gamma,GeV) >> iunit(_iptmax,GeV)
>> _vetoes >> _trunc_Mode >> _hardEmissionMode >> _reconOpt
>> isMCatNLOSEvent >> isMCatNLOHEvent
>> isPowhegSEvent >> isPowhegHEvent
>> theFactorizationScaleFactor >> theRenormalizationScaleFactor >> iunit(muPt,GeV)
>> ienum(interaction_) >> _maxTryFSR >> _maxFailFSR >> _fracFSR;
}
void Evolver::doinit() {
Interfaced::doinit();
// calculate max no of FSR vetos
_maxFailFSR = max(int(_maxFailFSR), int(_fracFSR*double(generator()->N())));
}
void Evolver::Init() {
static ClassDocumentation<Evolver> documentation
("This class is responsible for carrying out the showering,",
"including the kinematics reconstruction, in a given scale range,"
"including the option of the POWHEG approach to simulated next-to-leading order"
" radiation\\cite{Nason:2004rx}.",
"%\\cite{Nason:2004rx}\n"
"\\bibitem{Nason:2004rx}\n"
" P.~Nason,\n"
" ``A new method for combining NLO QCD with shower Monte Carlo algorithms,''\n"
" JHEP {\\bf 0411} (2004) 040\n"
" [arXiv:hep-ph/0409146].\n"
" %%CITATION = JHEPA,0411,040;%%\n");
static Reference<Evolver,SplittingGenerator>
interfaceSplitGen("SplittingGenerator",
"A reference to the SplittingGenerator object",
&Herwig::Evolver::_splittingGenerator,
false, false, true, false);
static Reference<Evolver,ShowerModel> interfaceShowerModel
("ShowerModel",
"The pointer to the object which defines the shower evolution model.",
&Evolver::_model, false, false, true, false, false);
static Parameter<Evolver,unsigned int> interfaceMaxTry
("MaxTry",
"The maximum number of attempts to generate the shower from a"
" particular ShowerTree",
&Evolver::_maxtry, 100, 1, 1000,
false, false, Interface::limited);
static Switch<Evolver, unsigned int> ifaceMECorrMode
("MECorrMode",
"Choice of the ME Correction Mode",
&Evolver::_meCorrMode, 1, false, false);
static SwitchOption off
(ifaceMECorrMode,"No","MECorrections off", 0);
static SwitchOption on
(ifaceMECorrMode,"Yes","hard+soft on", 1);
static SwitchOption hard
(ifaceMECorrMode,"Hard","only hard on", 2);
static SwitchOption soft
(ifaceMECorrMode,"Soft","only soft on", 3);
static Switch<Evolver, unsigned int> ifaceHardVetoMode
("HardVetoMode",
"Choice of the Hard Veto Mode",
&Evolver::_hardVetoMode, 1, false, false);
static SwitchOption HVoff
(ifaceHardVetoMode,"No","hard vetos off", 0);
static SwitchOption HVon
(ifaceHardVetoMode,"Yes","hard vetos on", 1);
static SwitchOption HVIS
(ifaceHardVetoMode,"Initial", "only IS emissions vetoed", 2);
static SwitchOption HVFS
(ifaceHardVetoMode,"Final","only FS emissions vetoed", 3);
static Switch<Evolver, unsigned int> ifaceHardVetoRead
("HardVetoScaleSource",
"If hard veto scale is to be read",
&Evolver::_hardVetoRead, 0, false, false);
static SwitchOption HVRcalc
(ifaceHardVetoRead,"Calculate","Calculate from hard process", 0);
static SwitchOption HVRread
(ifaceHardVetoRead,"Read","Read from XComb->lastScale", 1);
static Switch<Evolver, bool> ifaceHardVetoReadOption
("HardVetoReadOption",
"Apply read-in scale veto to all collisions or just the primary one?",
&Evolver::_hardVetoReadOption, false, false, false);
static SwitchOption AllCollisions
(ifaceHardVetoReadOption,
"AllCollisions",
"Read-in pT veto applied to primary and secondary collisions.",
false);
static SwitchOption PrimaryCollision
(ifaceHardVetoReadOption,
"PrimaryCollision",
"Read-in pT veto applied to primary but not secondary collisions.",
true);
static Parameter<Evolver, Energy> ifaceiptrms
("IntrinsicPtGaussian",
"RMS of intrinsic pT of Gaussian distribution:\n"
"2*(1-Beta)*exp(-sqr(intrinsicpT/RMS))/sqr(RMS)",
&Evolver::_iptrms, GeV, ZERO, ZERO, 1000000.0*GeV,
false, false, Interface::limited);
static Parameter<Evolver, double> ifacebeta
("IntrinsicPtBeta",
"Proportion of inverse quadratic distribution in generating intrinsic pT.\n"
"(1-Beta) is the proportion of Gaussian distribution",
&Evolver::_beta, 0, 0, 1,
false, false, Interface::limited);
static Parameter<Evolver, Energy> ifacegamma
("IntrinsicPtGamma",
"Parameter for inverse quadratic:\n"
"2*Beta*Gamma/(sqr(Gamma)+sqr(intrinsicpT))",
&Evolver::_gamma,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static Parameter<Evolver, Energy> ifaceiptmax
("IntrinsicPtIptmax",
"Upper bound on intrinsic pT for inverse quadratic",
&Evolver::_iptmax,GeV, ZERO, ZERO, 100000.0*GeV,
false, false, Interface::limited);
static RefVector<Evolver,ShowerVeto> ifaceVetoes
("Vetoes",
"The vetoes to be checked during showering",
&Evolver::_vetoes, -1,
false,false,true,true,false);
static Switch<Evolver,unsigned int> interfaceLimitEmissions
("LimitEmissions",
"Limit the number and type of emissions for testing",
&Evolver::_limitEmissions, 0, false, false);
static SwitchOption interfaceLimitEmissionsNoLimit
(interfaceLimitEmissions,
"NoLimit",
"Allow an arbitrary number of emissions",
0);
static SwitchOption interfaceLimitEmissionsOneInitialStateEmission
(interfaceLimitEmissions,
"OneInitialStateEmission",
"Allow one emission in the initial state and none in the final state",
1);
static SwitchOption interfaceLimitEmissionsOneFinalStateEmission
(interfaceLimitEmissions,
"OneFinalStateEmission",
"Allow one emission in the final state and none in the initial state",
2);
static SwitchOption interfaceLimitEmissionsHardOnly
(interfaceLimitEmissions,
"HardOnly",
"Only allow radiation from the hard ME correction",
3);
static SwitchOption interfaceLimitEmissionsOneEmission
(interfaceLimitEmissions,
"OneEmission",
"Allow one emission in either the final state or initial state, but not both",
4);
static Switch<Evolver,bool> interfaceTruncMode
("TruncatedShower", "Include the truncated shower?",
&Evolver::_trunc_Mode, 1, false, false);
static SwitchOption interfaceTruncMode0
(interfaceTruncMode,"No","Truncated Shower is OFF", 0);
static SwitchOption interfaceTruncMode1
(interfaceTruncMode,"Yes","Truncated Shower is ON", 1);
static Switch<Evolver,int> interfaceHardEmissionMode
("HardEmissionMode",
"Whether to use ME corrections or POWHEG for the hardest emission",
&Evolver::_hardEmissionMode, 0, false, false);
static SwitchOption interfaceHardEmissionModeDecayMECorrection
(interfaceHardEmissionMode,
"DecayMECorrection",
"Old fashioned ME correction for decays only",
-1);
static SwitchOption interfaceHardEmissionModeMECorrection
(interfaceHardEmissionMode,
"MECorrection",
"Old fashioned ME correction",
0);
static SwitchOption interfaceHardEmissionModePOWHEG
(interfaceHardEmissionMode,
"POWHEG",
"Powheg style hard emission using internal matrix elements",
1);
static SwitchOption interfaceHardEmissionModeMatchboxPOWHEG
(interfaceHardEmissionMode,
"MatchboxPOWHEG",
"Powheg style emission for the hard process using Matchbox",
2);
static SwitchOption interfaceHardEmissionModeFullPOWHEG
(interfaceHardEmissionMode,
"FullPOWHEG",
"Powheg style emission for the hard process using Matchbox "
"and decays using internal matrix elements",
3);
static Switch<Evolver,ShowerInteraction::Type > interfaceInteraction
("Interaction",
"The interactions to be used in the shower",
&Evolver::interaction_, ShowerInteraction::QEDQCD, false, false);
static SwitchOption interfaceInteractionQCD
(interfaceInteraction,
"QCDOnly",
"Only QCD",
ShowerInteraction::QCD);
static SwitchOption interfaceInteractionQEDOnly
(interfaceInteraction,
"QEDOnly",
"Only QED",
ShowerInteraction::QED);
static SwitchOption interfaceInteractionQEDQCD
(interfaceInteraction,
"QEDQCD",
"QED and QCD",
ShowerInteraction::QEDQCD);
static SwitchOption interfaceInteractionALL
(interfaceInteraction,
"ALL",
"QED, QCD and EW",
ShowerInteraction::ALL);
static Switch<Evolver,unsigned int> interfaceReconstructionOption
("ReconstructionOption",
"Treatment of the reconstruction of the transverse momentum of "
"a branching from the evolution scale.",
&Evolver::_reconOpt, 0, false, false);
static SwitchOption interfaceReconstructionOptionCutOff
(interfaceReconstructionOption,
"CutOff",
"Use the cut-off masses in the calculation",
0);
static SwitchOption interfaceReconstructionOptionOffShell
(interfaceReconstructionOption,
"OffShell",
"Use the off-shell masses in the calculation veto the emission of the parent,"
" no veto in generation of emissions from children",
1);
static SwitchOption interfaceReconstructionOptionOffShell2
(interfaceReconstructionOption,
"OffShell2",
"Use the off-shell masses in the calculation veto the emissions from the children."
" no veto in generation of emissions from children",
2);
static SwitchOption interfaceReconstructionOptionOffShell3
(interfaceReconstructionOption,
"OffShell3",
"Use the off-shell masses in the calculation veto the emissions from the children."
" veto in generation of emissions from children using cut-off for second parton",
3);
static Switch<Evolver,unsigned int> interfaceSpinCorrelations
("SpinCorrelations",
"Treatment of spin correlations in the parton shower",
&Evolver::_spinOpt, 1, false, false);
static SwitchOption interfaceSpinCorrelationsOff
(interfaceSpinCorrelations,
"No",
"No spin correlations",
0);
static SwitchOption interfaceSpinCorrelationsSpin
(interfaceSpinCorrelations,
"Yes",
"Include the azimuthal spin correlations only",
1);
static Switch<Evolver,unsigned int> interfaceSoftCorrelations
("SoftCorrelations",
"Option for the treatment of soft correlations in the parton shower",
&Evolver::_softOpt, 2, false, false);
static SwitchOption interfaceSoftCorrelationsNone
(interfaceSoftCorrelations,
"No",
"No soft correlations",
0);
static SwitchOption interfaceSoftCorrelationsFull
(interfaceSoftCorrelations,
"Full",
"Use the full eikonal",
1);
static SwitchOption interfaceSoftCorrelationsSingular
(interfaceSoftCorrelations,
"Singular",
"Use original Webber-Marchisini form",
2);
static Switch<Evolver,bool> interfaceHardPOWHEG
("HardPOWHEG",
"Treatment of powheg emissions which are too hard to have a shower interpretation",
&Evolver::_hardPOWHEG, false, false, false);
static SwitchOption interfaceHardPOWHEGAsShower
(interfaceHardPOWHEG,
"AsShower",
"Still interpret as shower emissions",
false);
static SwitchOption interfaceHardPOWHEGRealEmission
(interfaceHardPOWHEG,
"RealEmission",
"Generate shower from the real emmission configuration",
true);
static Parameter<Evolver,unsigned int> interfaceMaxTryFSR
("MaxTryFSR",
"The maximum number of attempted FSR emissions in"
" the generation of the FSR",
&Evolver::_maxTryFSR, 100000, 10, 100000000,
false, false, Interface::limited);
static Parameter<Evolver,unsigned int> interfaceMaxFailFSR
("MaxFailFSR",
"Maximum number of failures generating the FSR",
&Evolver::_maxFailFSR, 100, 1, 100000000,
false, false, Interface::limited);
static Parameter<Evolver,double> interfaceFSRFailureFraction
("FSRFailureFraction",
"Maximum fraction of events allowed to fail due to too many FSR emissions",
&Evolver::_fracFSR, 0.001, 1e-10, 1,
false, false, Interface::limited);
}
void Evolver::generateIntrinsicpT(vector<ShowerProgenitorPtr> particlesToShower) {
_intrinsic.clear();
if ( !ipTon() || !isISRadiationON() ) return;
// don't do anything for the moment for secondary scatters
if( !ShowerHandler::currentHandler()->firstInteraction() ) return;
// generate intrinsic pT
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
// only consider initial-state particles
if(particlesToShower[ix]->progenitor()->isFinalState()) continue;
if(!particlesToShower[ix]->progenitor()->dataPtr()->coloured()) continue;
Energy ipt;
if(UseRandom::rnd() > _beta) {
ipt=_iptrms*sqrt(-log(UseRandom::rnd()));
}
else {
ipt=_gamma*sqrt(pow(1.+sqr(_iptmax/_gamma), UseRandom::rnd())-1.);
}
pair<Energy,double> pt = make_pair(ipt,UseRandom::rnd(Constants::twopi));
_intrinsic[particlesToShower[ix]] = pt;
}
}
void Evolver::setupMaximumScales(const vector<ShowerProgenitorPtr> & p,
XCPtr xcomb) {
// let POWHEG events radiate freely
if(_hardEmissionMode>0&&hardTree()) {
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(Constants::MaxEnergy);
return;
}
// return if no vetos
if (!hardVetoOn()) return;
// find out if hard partonic subprocess.
bool isPartonic(false);
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = _currenttree->incomingLines().begin();
Lorentz5Momentum pcm;
for(; cit!=currentTree()->incomingLines().end(); ++cit) {
pcm += cit->first->progenitor()->momentum();
isPartonic |= cit->first->progenitor()->coloured();
}
// find minimum pt from hard process, the maximum pt from all outgoing
// coloured lines (this is simpler and more general than
// 2stu/(s^2+t^2+u^2)). Maximum scale for scattering processes will
// be transverse mass.
Energy ptmax = generator()->maximumCMEnergy();
// general case calculate the scale
if (!hardVetoXComb()||
(hardVetoReadOption()&&
!ShowerHandler::currentHandler()->firstInteraction())) {
// scattering process
if(currentTree()->isHard()) {
assert(xcomb);
// coloured incoming particles
if (isPartonic) {
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cjt = currentTree()->outgoingLines().begin();
for(; cjt!=currentTree()->outgoingLines().end(); ++cjt) {
if (cjt->first->progenitor()->coloured())
ptmax = min(ptmax,cjt->first->progenitor()->momentum().mt());
}
}
if (ptmax == generator()->maximumCMEnergy() ) ptmax = pcm.m();
if(hardVetoXComb()&&hardVetoReadOption()&&
!ShowerHandler::currentHandler()->firstInteraction()) {
ptmax=min(ptmax,sqrt(xcomb->lastShowerScale()));
}
}
// decay, incoming() is the decaying particle.
else {
ptmax = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
// hepeup.SCALUP is written into the lastXComb by the
// LesHouchesReader itself - use this by user's choice.
// Can be more general than this.
else {
if(currentTree()->isHard()) {
assert(xcomb);
ptmax = sqrt( xcomb->lastShowerScale() );
}
else {
ptmax = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
}
ptmax *= ShowerHandler::currentHandler()->hardScaleFactor();
// set maxHardPt for all progenitors. For partonic processes this
// is now the max pt in the FS, for non-partonic processes or
// processes with no coloured FS the invariant mass of the IS
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->maxHardPt(ptmax);
}
void Evolver::setupHardScales(const vector<ShowerProgenitorPtr> & p,
XCPtr xcomb) {
if ( hardVetoXComb() &&
(!hardVetoReadOption() ||
ShowerHandler::currentHandler()->firstInteraction()) ) {
Energy hardScale = ZERO;
if(currentTree()->isHard()) {
assert(xcomb);
hardScale = sqrt( xcomb->lastShowerScale() );
}
else {
hardScale = currentTree()->incomingLines().begin()->first
->progenitor()->momentum().mass();
}
hardScale *= ShowerHandler::currentHandler()->hardScaleFactor();
vector<ShowerProgenitorPtr>::const_iterator ckt = p.begin();
for (; ckt != p.end(); ckt++) (*ckt)->hardScale(hardScale);
muPt = hardScale;
}
}
void Evolver::showerHardProcess(ShowerTreePtr hard, XCPtr xcomb) {
isMCatNLOSEvent = false;
isMCatNLOHEvent = false;
isPowhegSEvent = false;
isPowhegHEvent = false;
Ptr<SubtractedME>::tptr subme;
Ptr<MatchboxMEBase>::tptr me;
Ptr<SubtractionDipole>::tptr dipme;
Ptr<StandardXComb>::ptr sxc = dynamic_ptr_cast<Ptr<StandardXComb>::ptr>(xcomb);
if ( sxc ) {
subme = dynamic_ptr_cast<Ptr<SubtractedME>::tptr>(sxc->matrixElement());
me = dynamic_ptr_cast<Ptr<MatchboxMEBase>::tptr>(sxc->matrixElement());
dipme = dynamic_ptr_cast<Ptr<SubtractionDipole>::tptr>(sxc->matrixElement());
}
if ( subme ) {
if ( subme->showerApproximation() ) {
theShowerApproximation = subme->showerApproximation();
// separate MCatNLO and POWHEG-type corrections
if ( !subme->showerApproximation()->needsSplittingGenerator() ) {
if ( subme->realShowerSubtraction() )
isMCatNLOHEvent = true;
else if ( subme->virtualShowerSubtraction() )
isMCatNLOSEvent = true;
}
else {
if ( subme->realShowerSubtraction() )
isPowhegHEvent = true;
else if ( subme->virtualShowerSubtraction() || subme->loopSimSubtraction() )
isPowhegSEvent = true;
}
}
} else if ( me ) {
if ( me->factory()->showerApproximation() ) {
theShowerApproximation = me->factory()->showerApproximation();
if ( !me->factory()->showerApproximation()->needsSplittingGenerator() )
isMCatNLOSEvent = true;
else
isPowhegSEvent = true;
}
}
string error = "Inconsistent hard emission set-up in Evolver::showerHardProcess(). ";
if ( ( isMCatNLOSEvent || isMCatNLOHEvent ) ){
if (_hardEmissionMode > 1)
throw Exception() << error
<< "Cannot generate POWHEG matching with MC@NLO shower "
<< "approximation. Add 'set Evolver:HardEmissionMode 0' to input file."
<< Exception::runerror;
if ( ShowerHandler::currentHandler()->canHandleMatchboxTrunc())
throw Exception() << error
<< "Cannot use truncated qtilde shower with MC@NLO shower "
<< "approximation. Set LHCGenerator:EventHandler"
<< ":CascadeHandler to '/Herwig/Shower/ShowerHandler' or "
<< "'/Herwig/DipoleShower/DipoleShowerHandler'."
<< Exception::runerror;
}
else if ( ((isPowhegSEvent || isPowhegHEvent) || dipme) &&
_hardEmissionMode < 2){
if ( ShowerHandler::currentHandler()->canHandleMatchboxTrunc())
throw Exception() << error
<< "Unmatched events requested for POWHEG shower "
<< "approximation. Set Evolver:HardEmissionMode to "
<< "'MatchboxPOWHEG' or 'FullPOWHEG'."
<< Exception::runerror;
else if (_hardEmissionModeWarn){
_hardEmissionModeWarn = false;
_hardEmissionMode+=2;
throw Exception() << error
<< "Unmatched events requested for POWHEG shower "
<< "approximation. Changing Evolver:HardEmissionMode from "
<< _hardEmissionMode-2 << " to " << _hardEmissionMode
<< Exception::warning;
}
}
if ( isPowhegSEvent || isPowhegHEvent) {
if (theShowerApproximation->needsTruncatedShower() &&
!ShowerHandler::currentHandler()->canHandleMatchboxTrunc() )
throw Exception() << error
<< "Current shower handler cannot generate truncated shower. "
<< "Set Generator:EventHandler:CascadeHandler to "
<< "'/Herwig/Shower/PowhegShowerHandler'."
<< Exception::runerror;
}
else if ( dipme && _missingTruncWarn){
_missingTruncWarn=false;
throw Exception() << "Warning: POWHEG shower approximation used without "
<< "truncated shower. Set Generator:EventHandler:"
<< "CascadeHandler to '/Herwig/Shower/PowhegShowerHandler' and "
<< "'MEMatching:TruncatedShower Yes'."
<< Exception::warning;
}
else if ( !dipme && _hardEmissionMode > 1 &&
ShowerHandler::currentHandler()->firstInteraction())
throw Exception() << error
<< "POWHEG matching requested for LO events. Include "
<< "'set Factory:ShowerApproximation MEMatching' in input file."
<< Exception::runerror;
_hardme = HwMEBasePtr();
// extract the matrix element
tStdXCombPtr lastXC = dynamic_ptr_cast<tStdXCombPtr>(xcomb);
if(lastXC) {
_hardme = dynamic_ptr_cast<HwMEBasePtr>(lastXC->matrixElement());
}
_decayme = HwDecayerBasePtr();
// set the current tree
currentTree(hard);
hardTree(HardTreePtr());
// number of attempts if more than one interaction switched on
unsigned int interactionTry=0;
do {
try {
// generate the showering
doShowering(true,xcomb);
// if no vetos return
return;
}
catch (InteractionVeto) {
currentTree()->clear();
++interactionTry;
}
}
while(interactionTry<=5);
throw Exception() << "Too many tries for shower in "
<< "Evolver::showerHardProcess()"
<< Exception::eventerror;
}
void Evolver::hardMatrixElementCorrection(bool hard) {
// set the initial enhancement factors for the soft correction
_initialenhance = 1.;
_finalenhance = 1.;
// if hard matrix element switched off return
if(!MECOn(hard)) return;
// see if we can get the correction from the matrix element
// or decayer
if(hard) {
if(_hardme&&_hardme->hasMECorrection()) {
_hardme->initializeMECorrection(_currenttree,
_initialenhance,_finalenhance);
if(hardMEC(hard))
_hardme->applyHardMatrixElementCorrection(_currenttree);
}
}
else {
if(_decayme&&_decayme->hasMECorrection()) {
_decayme->initializeMECorrection(_currenttree,
_initialenhance,_finalenhance);
if(hardMEC(hard))
_decayme->applyHardMatrixElementCorrection(_currenttree);
}
}
}
ShowerParticleVector Evolver::createTimeLikeChildren(tShowerParticlePtr particle, IdList ids) {
// Create the ShowerParticle objects for the two children of
// the emitting particle; set the parent/child relationship
// if same as definition create particles, otherwise create cc
tcPDPtr pdata[2];
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(ids[ix+1]);
if(particle->id()!=ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
ShowerParticleVector children;
for(unsigned int ix=0;ix<2;++ix) {
children.push_back(new_ptr(ShowerParticle(pdata[ix],true)));
if(children[ix]->id()==_progenitor->id()&&!pdata[ix]->stable())
children[ix]->set5Momentum(Lorentz5Momentum(_progenitor->progenitor()->mass()));
else
children[ix]->set5Momentum(Lorentz5Momentum(pdata[ix]->mass()));
}
return children;
}
bool Evolver::timeLikeShower(tShowerParticlePtr particle,
ShowerInteraction::Type type,
Branching fb, bool first) {
// don't do anything if not needed
if(_limitEmissions == 1 || hardOnly() ||
( _limitEmissions == 2 && _nfs != 0) ||
( _limitEmissions == 4 && _nfs + _nis != 0) ) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
// too many tries
if(_nFSR>=_maxTryFSR) {
++_nFailedFSR;
// too many failed events
if(_nFailedFSR>=_maxFailFSR)
throw Exception() << "Too many events have failed due to too many shower emissions, in\n"
<< "Evolver::timeLikeShower(). Terminating run\n"
<< Exception::runerror;
throw Exception() << "Too many attempted emissions in Evolver::timeLikeShower()\n"
<< Exception::eventerror;
}
// generate the emission
ShowerParticleVector children;
int ntry=0;
// generate the emission
if(!fb.kinematics)
fb = selectTimeLikeBranching(particle,type,HardBranchingPtr());
// no emission, return
if(!fb.kinematics) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
Branching fc[2];
bool setupChildren = true;
while (ntry<50) {
fc[0] = Branching();
fc[1] = Branching();
++ntry;
assert(fb.kinematics);
// has emitted
// Assign the shower kinematics to the emitting particle.
if(setupChildren) {
++_nFSR;
particle->showerKinematics(fb.kinematics);
// generate phi
fb.kinematics->phi(fb.sudakov->generatePhiForward(*particle,fb.ids,fb.kinematics));
// check highest pT
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the children
children = createTimeLikeChildren(particle,fb.ids);
// update the children
particle->showerKinematics()->
updateChildren(particle, children,fb.type,_reconOpt>=3);
// update number of emissions
++_nfs;
if(_limitEmissions!=0) {
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
setupChildren = false;
}
// select branchings for children
fc[0] = selectTimeLikeBranching(children[0],type,HardBranchingPtr());
fc[1] = selectTimeLikeBranching(children[1],type,HardBranchingPtr());
// old default
if(_reconOpt==0) {
// shower the first particle
if(fc[0].kinematics) timeLikeShower(children[0],type,fc[0],false);
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],false);
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
break;
}
// Herwig default
else if(_reconOpt==1) {
// shower the first particle
if(fc[0].kinematics) timeLikeShower(children[0],type,fc[0],false);
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],false);
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<children.size();++ix)
particle->abandonChild(children[ix]);
children.clear();
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
particle->vetoEmission(fb.type,fb.kinematics->scale());
// generate the new emission
fb = selectTimeLikeBranching(particle,type,HardBranchingPtr());
// no emission, return
if(!fb.kinematics) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
setupChildren = true;
continue;
}
else
break;
}
// veto children
else if(_reconOpt>=2) {
// cut-off masses for the branching
const vector<Energy> & virtualMasses = fb.sudakov->virtualMasses(fb.ids);
// compute the masses of the children
Energy masses[3];
for(unsigned int ix=0;ix<2;++ix) {
if(fc[ix].kinematics) {
const vector<Energy> & vm = fc[ix].sudakov->virtualMasses(fc[ix].ids);
Energy2 q2 =
fc[ix].kinematics->z()*(1.-fc[ix].kinematics->z())*sqr(fc[ix].kinematics->scale());
if(fc[ix].ids[0]!=ParticleID::g) q2 += sqr(vm[0]);
masses[ix+1] = sqrt(q2);
}
else {
masses[ix+1] = virtualMasses[ix+1];
}
}
masses[0] = fb.ids[0]!=ParticleID::g ? virtualMasses[0] : ZERO;
double z = fb.kinematics->z();
Energy2 pt2 = z*(1.-z)*(z*(1.-z)*sqr(fb.kinematics->scale()) + sqr(masses[0]))
- sqr(masses[1])*(1.-z) - sqr(masses[2])*z;
if(pt2>=ZERO) {
break;
}
else {
// reset the scales for the children
for(unsigned int ix=0;ix<2;++ix) {
if(fc[ix].kinematics)
children[ix]->vetoEmission(fc[ix].type,fc[ix].kinematics->scale());
else
children[ix]->vetoEmission(ShowerPartnerType::QCDColourLine,ZERO);
children[ix]->virtualMass(ZERO);
}
}
}
};
if(_reconOpt>=2) {
// shower the first particle
if(fc[0].kinematics) timeLikeShower(children[0],type,fc[0],false);
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],false);
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
}
if(first&&!children.empty())
particle->showerKinematics()->resetChildren(particle,children);
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
bool
Evolver::spaceLikeShower(tShowerParticlePtr particle, PPtr beam,
ShowerInteraction::Type type) {
//using the pdf's associated with the ShowerHandler assures, that
//modified pdf's are used for the secondary interactions via
//CascadeHandler::resetPDFs(...)
tcPDFPtr pdf;
if(ShowerHandler::currentHandler()->firstPDF().particle() == _beam)
pdf = ShowerHandler::currentHandler()->firstPDF().pdf();
if(ShowerHandler::currentHandler()->secondPDF().particle() == _beam)
pdf = ShowerHandler::currentHandler()->secondPDF().pdf();
Energy freeze = ShowerHandler::currentHandler()->pdfFreezingScale();
// don't do anything if not needed
if(_limitEmissions == 2 || hardOnly() ||
( _limitEmissions == 1 && _nis != 0 ) ||
( _limitEmissions == 4 && _nis + _nfs != 0 ) ) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
Branching bb;
// generate branching
while (true) {
bb=_splittingGenerator->chooseBackwardBranching(*particle,beam,
_initialenhance,
_beam,type,
pdf,freeze);
// return if no emission
if(!bb.kinematics) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return false;
}
// if not vetoed break
if(!spaceLikeVetoed(bb,particle)) break;
// otherwise reset scale and continue
particle->vetoEmission(bb.type,bb.kinematics->scale());
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
}
// assign the splitting function and shower kinematics
particle->showerKinematics(bb.kinematics);
if(bb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(bb.kinematics->pT());
// For the time being we are considering only 1->2 branching
// particles as in Sudakov form factor
tcPDPtr part[2]={getParticleData(bb.ids[0]),
getParticleData(bb.ids[2])};
if(particle->id()!=bb.ids[1]) {
if(part[0]->CC()) part[0]=part[0]->CC();
if(part[1]->CC()) part[1]=part[1]->CC();
}
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent=new_ptr(ShowerParticle(part[0],false));
ShowerParticlePtr otherChild = new_ptr(ShowerParticle(part[1],true,true));
ShowerParticleVector theChildren;
theChildren.push_back(particle);
theChildren.push_back(otherChild);
//this updates the evolution scale
particle->showerKinematics()->
updateParent(newParent, theChildren,bb.type);
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,newParent);
_currenttree->addInitialStateBranching(particle,newParent,otherChild);
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
++_nis;
bool emitted = _limitEmissions==0 ?
spaceLikeShower(newParent,beam,type) : false;
if(newParent->spinInfo()) newParent->spinInfo()->develop();
// now reconstruct the momentum
if(!emitted) {
if(_intrinsic.find(_progenitor)==_intrinsic.end()) {
bb.kinematics->updateLast(newParent,ZERO,ZERO);
}
else {
pair<Energy,double> kt=_intrinsic[_progenitor];
bb.kinematics->updateLast(newParent,
kt.first*cos(kt.second),
kt.first*sin(kt.second));
}
}
particle->showerKinematics()->
updateChildren(newParent, theChildren,bb.type,false);
if(_limitEmissions!=0) {
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
// perform the shower of the final-state particle
timeLikeShower(otherChild,type,Branching(),true);
updateHistory(otherChild);
if(theChildren[1]->spinInfo()) theChildren[1]->spinInfo()->develop();
// return the emitted
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
void Evolver::showerDecay(ShowerTreePtr decay) {
_decayme = HwDecayerBasePtr();
_hardme = HwMEBasePtr();
// find the decayer
// try the normal way if possible
tDMPtr dm = decay->incomingLines().begin()->first->original() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->copy() ->decayMode();
if(!dm) dm = decay->incomingLines().begin()->first->progenitor()->decayMode();
// otherwise make a string and look it up
if(!dm) {
string tag = decay->incomingLines().begin()->first->original()->dataPtr()->name()
+ "->";
OrderedParticles outgoing;
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it=decay->outgoingLines().begin();it!=decay->outgoingLines().end();++it) {
if(abs(decay->incomingLines().begin()->first->original()->id()) == ParticleID::t &&
abs(it->first->original()->id())==ParticleID::Wplus &&
decay->treelinks().size() == 1) {
ShowerTreePtr Wtree = decay->treelinks().begin()->first;
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
it2=Wtree->outgoingLines().begin();it2!=Wtree->outgoingLines().end();++it2) {
outgoing.insert(it2->first->original()->dataPtr());
}
}
else {
outgoing.insert(it->first->original()->dataPtr());
}
}
for(OrderedParticles::const_iterator it=outgoing.begin(); it!=outgoing.end();++it) {
if(it!=outgoing.begin()) tag += ",";
tag +=(**it).name();
}
tag += ";";
dm = findDecayMode(tag);
}
if(dm) _decayme = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// set the ShowerTree to be showered
currentTree(decay);
decay->applyTransforms();
hardTree(HardTreePtr());
unsigned int interactionTry=0;
do {
try {
// generate the showering
doShowering(false,XCPtr());
// if no vetos
// force calculation of spin correlations
SpinPtr spInfo = decay->incomingLines().begin()->first->progenitor()->spinInfo();
if(spInfo) {
if(!spInfo->developed()) spInfo->needsUpdate();
spInfo->develop();
}
// and then return
return;
}
catch (InteractionVeto) {
currentTree()->clear();
++interactionTry;
}
}
while(interactionTry<=5);
throw Exception() << "Too many tries for QED shower in Evolver::showerDecay()"
<< Exception::eventerror;
}
bool Evolver::spaceLikeDecayShower(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass,ShowerInteraction::Type type,
Branching fb) {
// too many tries
if(_nFSR>=_maxTryFSR) {
++_nFailedFSR;
// too many failed events
if(_nFailedFSR>=_maxFailFSR)
throw Exception() << "Too many events have failed due to too many shower emissions, in\n"
<< "Evolver::timeLikeShower(). Terminating run\n"
<< Exception::runerror;
throw Exception() << "Too many attempted emissions in Evolver::timeLikeShower()\n"
<< Exception::eventerror;
}
// generate the emission
ShowerParticleVector children;
int ntry=0;
// generate the emission
if(!fb.kinematics)
fb = selectSpaceLikeDecayBranching(particle,maxScales,minmass,type,
HardBranchingPtr());
// no emission, return
if(!fb.kinematics) return false;
Branching fc[2];
bool setupChildren = true;
while (ntry<50) {
if(particle->virtualMass()==ZERO)
particle->virtualMass(_progenitor->progenitor()->mass());
fc[0] = Branching();
fc[1] = Branching();
++ntry;
assert(fb.kinematics);
// has emitted
// Assign the shower kinematics to the emitting particle.
if(setupChildren) {
++_nFSR;
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the ShowerParticle objects for the two children
children = createTimeLikeChildren(particle,fb.ids);
// updateChildren the children
particle->showerKinematics()->
updateChildren(particle, children, fb.type,_reconOpt>=3);
setupChildren = false;
}
// select branchings for children
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,
type,HardBranchingPtr());
fc[1] = selectTimeLikeBranching (children[1],type,HardBranchingPtr());
// old default
if(_reconOpt==0) {
// shower the first particle
_currenttree->updateInitialStateShowerProduct(_progenitor,children[0]);
_currenttree->addInitialStateBranching(particle,children[0],children[1]);
if(fc[0].kinematics) spaceLikeDecayShower(children[0],maxScales,minmass,type,Branching());
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],true);
updateHistory(children[1]);
// branching has happened
break;
}
// Herwig default
else if(_reconOpt==1) {
// shower the first particle
_currenttree->updateInitialStateShowerProduct(_progenitor,children[0]);
_currenttree->addInitialStateBranching(particle,children[0],children[1]);
if(fc[0].kinematics) spaceLikeDecayShower(children[0],maxScales,minmass,type,Branching());
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],true);
updateHistory(children[1]);
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<children.size();++ix)
particle->abandonChild(children[ix]);
children.clear();
particle->vetoEmission(fb.type,fb.kinematics->scale());
// generate the new emission
fb = selectSpaceLikeDecayBranching(particle,maxScales,minmass,type,
HardBranchingPtr());
// no emission, return
if(!fb.kinematics) {
return false;
}
setupChildren = true;
continue;
}
else
break;
}
else if(_reconOpt>=2) {
// cut-off masses for the branching
const vector<Energy> & virtualMasses = fb.sudakov->virtualMasses(fb.ids);
// compute the masses of the children
Energy masses[3];
// space-like children
masses[1] = children[0]->virtualMass();
// time-like child
if(fc[1].kinematics) {
const vector<Energy> & vm = fc[1].sudakov->virtualMasses(fc[1].ids);
Energy2 q2 =
fc[1].kinematics->z()*(1.-fc[1].kinematics->z())*sqr(fc[1].kinematics->scale());
if(fc[1].ids[0]!=ParticleID::g) q2 += sqr(vm[0]);
masses[2] = sqrt(q2);
}
else {
masses[2] = virtualMasses[2];
}
masses[0]=particle->virtualMass();
double z = fb.kinematics->z();
Energy2 pt2 = (1.-z)*(z*sqr(masses[0])-sqr(masses[1])-z/(1.-z)*sqr(masses[2]));
if(pt2>=ZERO) {
break;
}
else {
// reset the scales for the children
for(unsigned int ix=0;ix<2;++ix) {
if(fc[ix].kinematics)
children[ix]->vetoEmission(fc[ix].type,fc[ix].kinematics->scale());
else {
if(ix==0)
children[ix]->vetoEmission(ShowerPartnerType::QCDColourLine,Constants::MaxEnergy);
else
children[ix]->vetoEmission(ShowerPartnerType::QCDColourLine,ZERO);
}
}
children[0]->virtualMass(_progenitor->progenitor()->mass());
children[1]->virtualMass(ZERO);
}
}
};
if(_reconOpt>=2) {
// In the case of splittings which involves coloured particles,
// set properly the colour flow of the branching.
// update the history if needed
_currenttree->updateInitialStateShowerProduct(_progenitor,children[0]);
_currenttree->addInitialStateBranching(particle,children[0],children[1]);
// shower the first particle
if(fc[0].kinematics) spaceLikeDecayShower(children[0],maxScales,minmass,type,Branching());
// shower the second particle
if(fc[1].kinematics) timeLikeShower(children[1],type,fc[1],true);
updateHistory(children[1]);
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
}
// branching has happened
return true;
}
vector<ShowerProgenitorPtr> Evolver::setupShower(bool hard) {
// generate POWHEG hard emission if needed
if(_hardEmissionMode>0) hardestEmission(hard);
ShowerInteraction::Type inter = interaction_;
if(_hardtree&&inter!=ShowerInteraction::QEDQCD && inter!=ShowerInteraction::ALL) {
inter = _hardtree->interaction();
}
// set the initial colour partners
setEvolutionPartners(hard,inter,false);
// generate hard me if needed
if(_hardEmissionMode==0 ||
(!hard && _hardEmissionMode==-1)) hardMatrixElementCorrection(hard);
// get the particles to be showered
vector<ShowerProgenitorPtr> particlesToShower =
currentTree()->extractProgenitors();
// remake the colour partners if needed
if(_currenttree->hardMatrixElementCorrection()) {
setEvolutionPartners(hard,interaction_,true);
_currenttree->resetShowerProducts();
}
// return the answer
return particlesToShower;
}
void Evolver::setEvolutionPartners(bool hard,ShowerInteraction::Type type,
bool clear) {
// match the particles in the ShowerTree and hardTree
if(hardTree() && !hardTree()->connect(currentTree()))
throw Exception() << "Can't match trees in "
<< "Evolver::setEvolutionPartners()"
<< Exception::eventerror;
// extract the progenitors
vector<ShowerParticlePtr> particles =
currentTree()->extractProgenitorParticles();
// clear the partners if needed
if(clear) {
for(unsigned int ix=0;ix<particles.size();++ix) {
particles[ix]->partner(ShowerParticlePtr());
particles[ix]->clearPartners();
}
}
// sort out the colour partners
if(hardTree()) {
// find the partner
for(unsigned int ix=0;ix<particles.size();++ix) {
tHardBranchingPtr partner =
hardTree()->particles()[particles[ix]]->colourPartner();
if(!partner) continue;
for(map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
it=hardTree()->particles().begin();
it!=hardTree()->particles().end();++it) {
if(it->second==partner) particles[ix]->partner(it->first);
}
if(!particles[ix]->partner())
throw Exception() << "Can't match partners in "
<< "Evolver::setEvolutionPartners()"
<< Exception::eventerror;
}
}
// Set the initial evolution scales
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,type,!_hardtree);
if(hardTree() && _hardPOWHEG) {
bool tooHard=false;
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end();
for(unsigned int ix=0;ix<particles.size();++ix) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
mit = hardTree()->particles().find(particles[ix]);
Energy hardScale(ZERO);
ShowerPartnerType::Type type(ShowerPartnerType::Undefined);
// final-state
if(particles[ix]->isFinalState()) {
if(mit!= eit && !mit->second->children().empty()) {
hardScale = mit->second->scale();
type = mit->second->type();
}
}
// initial-state
else {
if(mit!= eit && mit->second->parent()) {
hardScale = mit->second->parent()->scale();
type = mit->second->parent()->type();
}
}
if(type!=ShowerPartnerType::Undefined) {
if(type==ShowerPartnerType::QED) {
tooHard |= particles[ix]->scales().QED_noAO<hardScale;
}
else if(type==ShowerPartnerType::QCDColourLine) {
tooHard |= particles[ix]->scales().QCD_c_noAO<hardScale;
}
else if(type==ShowerPartnerType::QCDAntiColourLine) {
tooHard |= particles[ix]->scales().QCD_ac_noAO<hardScale;
}
else if(type==ShowerPartnerType::EW) {
tooHard |= particles[ix]->scales().EW<hardScale;
}
}
}
if(tooHard) convertHardTree(hard,type);
}
}
void Evolver::updateHistory(tShowerParticlePtr particle) {
if(!particle->children().empty()) {
ShowerParticleVector theChildren;
for(unsigned int ix=0;ix<particle->children().size();++ix) {
ShowerParticlePtr part = dynamic_ptr_cast<ShowerParticlePtr>
(particle->children()[ix]);
theChildren.push_back(part);
}
// update the history if needed
if(particle==_currenttree->getFinalStateShowerProduct(_progenitor))
_currenttree->updateFinalStateShowerProduct(_progenitor,
particle,theChildren);
_currenttree->addFinalStateBranching(particle,theChildren);
for(unsigned int ix=0;ix<theChildren.size();++ix)
updateHistory(theChildren[ix]);
}
}
bool Evolver::startTimeLikeShower(ShowerInteraction::Type type) {
_nFSR = 0;
// initialize basis vectors etc
progenitor()->progenitor()->initializeFinalState();
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit=hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && !mit->second->children().empty() ) {
bool output=truncatedTimeLikeShower(progenitor()->progenitor(),
mit->second ,type,Branching(),true);
if(output) updateHistory(progenitor()->progenitor());
return output;
}
}
// do the shower
bool output = hardOnly() ? false :
timeLikeShower(progenitor()->progenitor() ,type,Branching(),true) ;
if(output) updateHistory(progenitor()->progenitor());
return output;
}
bool Evolver::startSpaceLikeShower(PPtr parent, ShowerInteraction::Type type) {
// initialise the basis vectors
progenitor()->progenitor()->initializeInitialState(parent);
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
return truncatedSpaceLikeShower( progenitor()->progenitor(),
parent, mit->second->parent(), type );
}
}
// perform the shower
return hardOnly() ? false :
spaceLikeShower(progenitor()->progenitor(),parent,type);
}
bool Evolver::
startSpaceLikeDecayShower(const ShowerParticle::EvolutionScales & maxScales,
Energy minimumMass,ShowerInteraction::Type type) {
_nFSR = 0;
// set up the particle basis vectors
progenitor()->progenitor()->initializeDecay();
if(hardTree()) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
eit =hardTree()->particles().end(),
mit = hardTree()->particles().find(progenitor()->progenitor());
if( mit != eit && mit->second->parent() ) {
HardBranchingPtr branch=mit->second;
while(branch->parent()) branch=branch->parent();
return truncatedSpaceLikeDecayShower(progenitor()->progenitor(),maxScales,
minimumMass, branch ,type, Branching());
}
}
// perform the shower
return hardOnly() ? false :
spaceLikeDecayShower(progenitor()->progenitor(),maxScales,minimumMass,type,Branching());
}
bool Evolver::timeLikeVetoed(const Branching & fb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction::Type type = convertInteraction(fb.type);
// check whether emission was harder than largest pt of hard subprocess
if ( hardVetoFS() && fb.kinematics->pT() > _progenitor->maxHardPt() )
return true;
// soft matrix element correction veto
if( softMEC()) {
if(_hardme && _hardme->hasMECorrection()) {
if(_hardme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
else if(_decayme && _decayme->hasMECorrection()) {
if(_decayme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
}
// veto on maximum pt
if(fb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
// general vetos
if (fb.kinematics && !_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoTimeLike(_progenitor,particle,fb);
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if(vetoed) return true;
}
if ( ShowerHandler::currentHandler()->firstInteraction() &&
ShowerHandler::currentHandler()->profileScales() ) {
double weight =
ShowerHandler::currentHandler()->profileScales()->
hardScaleProfile(_progenitor->hardScale(),fb.kinematics->pT());
if ( UseRandom::rnd() > weight )
return true;
}
return false;
}
bool Evolver::spaceLikeVetoed(const Branching & bb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction::Type type = convertInteraction(bb.type);
// check whether emission was harder than largest pt of hard subprocess
if (hardVetoIS() && bb.kinematics->pT() > _progenitor->maxHardPt())
return true;
// apply the soft correction
if( softMEC() && _hardme && _hardme->hasMECorrection() ) {
if(_hardme->softMatrixElementVeto(_progenitor,particle,bb))
return true;
}
// the more general vetos
// check vs max pt for the shower
if(bb.kinematics->pT()>_progenitor->maximumpT(type)) return true;
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,bb);
switch ((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
}
if (vetoed) return true;
}
if ( ShowerHandler::currentHandler()->firstInteraction() &&
ShowerHandler::currentHandler()->profileScales() ) {
double weight =
ShowerHandler::currentHandler()->profileScales()->
hardScaleProfile(_progenitor->hardScale(),bb.kinematics->pT());
if ( UseRandom::rnd() > weight )
return true;
}
return false;
}
bool Evolver::spaceLikeDecayVetoed( const Branching & fb,
ShowerParticlePtr particle) {
// work out type of interaction
ShowerInteraction::Type type = convertInteraction(fb.type);
// apply the soft correction
if( softMEC() && _decayme && _decayme->hasMECorrection() ) {
if(_decayme->softMatrixElementVeto(_progenitor,particle,fb))
return true;
}
// veto on hardest pt in the shower
if(fb.kinematics->pT()> _progenitor->maximumpT(type)) return true;
// general vetos
if (!_vetoes.empty()) {
bool vetoed=false;
for (vector<ShowerVetoPtr>::iterator v = _vetoes.begin();
v != _vetoes.end(); ++v) {
bool test = (**v).vetoSpaceLike(_progenitor,particle,fb);
switch((**v).vetoType()) {
case ShowerVeto::Emission:
vetoed |= test;
break;
case ShowerVeto::Shower:
if(test) throw VetoShower();
break;
case ShowerVeto::Event:
if(test) throw Veto();
break;
}
if (vetoed) return true;
}
}
return false;
}
void Evolver::hardestEmission(bool hard) {
HardTreePtr ISRTree;
if( ( _hardme && _hardme->hasPOWHEGCorrection()!=0 && _hardEmissionMode< 2) ||
( _decayme && _decayme->hasPOWHEGCorrection()!=0 && _hardEmissionMode!=2) ) {
if(_hardme) {
assert(hard);
_hardtree = _hardme->generateHardest( currentTree(),interaction_);
}
else {
assert(!hard);
_hardtree = _decayme->generateHardest( currentTree() );
}
// store initial state POWHEG radiation
if(_hardtree && _hardme && _hardme->hasPOWHEGCorrection()==1)
ISRTree=_hardtree;
}
else if (_hardEmissionMode>1 && hard) {
// Get minimum pT cutoff used in shower approximation
Energy maxpt = 1.*GeV;
int colouredIn = 0;
int colouredOut = 0;
for( map< ShowerProgenitorPtr, tShowerParticlePtr >::iterator it
= currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if( it->second->coloured() ) colouredOut+=1;
}
for( map< ShowerProgenitorPtr, ShowerParticlePtr >::iterator it
= currentTree()->incomingLines().begin();
it != currentTree()->incomingLines().end(); ++it ) {
if( ! it->second->coloured() ) colouredIn+=1;
}
if ( theShowerApproximation ){
if ( theShowerApproximation->ffPtCut() == theShowerApproximation->fiPtCut() &&
theShowerApproximation->ffPtCut() == theShowerApproximation->iiPtCut() )
maxpt = theShowerApproximation->ffPtCut();
else if ( colouredIn == 2 && colouredOut == 0 )
maxpt = theShowerApproximation->iiPtCut();
else if ( colouredIn == 0 && colouredOut > 1 )
maxpt = theShowerApproximation->ffPtCut();
else if ( colouredIn == 2 && colouredOut == 1 )
maxpt = min(theShowerApproximation->iiPtCut(), theShowerApproximation->fiPtCut());
else if ( colouredIn == 1 && colouredOut > 1 )
maxpt = min(theShowerApproximation->ffPtCut(), theShowerApproximation->fiPtCut());
else
maxpt = min(min(theShowerApproximation->iiPtCut(), theShowerApproximation->fiPtCut()),
theShowerApproximation->ffPtCut());
}
// Generate hardtree from born and real emission subprocesses
_hardtree = ShowerHandler::currentHandler()->generateCKKW(currentTree());
// Find transverse momentum of hardest emission
if (_hardtree){
for(set<HardBranchingPtr>::iterator it=_hardtree->branchings().begin();
it!=_hardtree->branchings().end();++it) {
if ((*it)->parent() && (*it)->status()==HardBranching::Incoming)
maxpt=(*it)->branchingParticle()->momentum().perp();
if ((*it)->children().size()==2 && (*it)->status()==HardBranching::Outgoing){
if ((*it)->branchingParticle()->id()!=21 &&
abs((*it)->branchingParticle()->id())>5 ){
if ((*it)->children()[0]->branchingParticle()->id()==21 ||
abs((*it)->children()[0]->branchingParticle()->id())<6)
maxpt=(*it)->children()[0]->branchingParticle()->momentum().perp();
else if ((*it)->children()[1]->branchingParticle()->id()==21 ||
abs((*it)->children()[1]->branchingParticle()->id())<6)
maxpt=(*it)->children()[1]->branchingParticle()->momentum().perp();
}
else {
if ( abs((*it)->branchingParticle()->id())<6){
if (abs((*it)->children()[0]->branchingParticle()->id())<6)
maxpt = (*it)->children()[1]->branchingParticle()->momentum().perp();
else
maxpt = (*it)->children()[0]->branchingParticle()->momentum().perp();
}
else maxpt = (*it)->children()[1]->branchingParticle()->momentum().perp();
}
}
}
}
// Hardest (pt) emission should be the first powheg emission.
maxpt=min(sqrt(ShowerHandler::currentHandler()->lastXCombPtr()->lastShowerScale()),maxpt);
// Set maxpt to pT of emission when showering POWHEG real-emission subprocesses
if (!isPowhegSEvent && !isPowhegHEvent){
vector<int> outGluon;
vector<int> outQuark;
map< ShowerProgenitorPtr, tShowerParticlePtr >::iterator it;
for( it = currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if ( abs(it->second->id())< 6) outQuark.push_back(it->second->id());
if ( it->second->id()==21 ) outGluon.push_back(it->second->id());
}
if (outGluon.size() + outQuark.size() == 1){
for( it = currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if ( abs(it->second->id())< 6 || it->second->id()==21 )
maxpt = it->second->momentum().perp();
}
}
else if (outGluon.size() + outQuark.size() > 1){
// assume qqbar pair from a Z/gamma
if (outGluon.size()==1 && outQuark.size() == 2 && outQuark[0]==-outQuark[1]){
for( it = currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if ( it->second->id()==21 )
maxpt = it->second->momentum().perp();
}
}
// otherwise take the lowest pT avoiding born DY events
else {
maxpt = generator()->maximumCMEnergy();
for( it = currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if ( abs(it->second->id())< 6 || it->second->id()==21 )
maxpt = min(maxpt,it->second->momentum().perp());
}
}
}
}
// set maximum pT for subsequent emissions from S events
if ( isPowhegSEvent || (!isPowhegSEvent && !isPowhegHEvent)){
for( map< ShowerProgenitorPtr, tShowerParticlePtr >::iterator it
= currentTree()->outgoingLines().begin();
it != currentTree()->outgoingLines().end(); ++it ) {
if( ! it->second->coloured() ) continue;
it->first->maximumpT(maxpt, ShowerInteraction::QCD );
}
for( map< ShowerProgenitorPtr, ShowerParticlePtr >::iterator it
= currentTree()->incomingLines().begin();
it != currentTree()->incomingLines().end(); ++it ) {
if( ! it->second->coloured() ) continue;
it->first->maximumpT(maxpt, ShowerInteraction::QCD );
}
}
}
else
_hardtree = ShowerHandler::currentHandler()->generateCKKW(currentTree());
// if hard me doesn't have a FSR powheg
// correction use decay powheg correction
if (_hardme && _hardme->hasPOWHEGCorrection()<2) {
// check for intermediate colour singlet resonance
const ParticleVector inter = _hardme->subProcess()->intermediates();
if (inter.size()!=1 ||
inter[0]->momentum().m2()/GeV2 < 0 ||
inter[0]->dataPtr()->iColour()!=PDT::Colour0){
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
map<ShowerProgenitorPtr, tShowerParticlePtr > out = currentTree()->outgoingLines();
// ignore cases where outgoing particles are not coloured
if (out.size()!=2 ||
out. begin()->second->dataPtr()->iColour()==PDT::Colour0 ||
out.rbegin()->second->dataPtr()->iColour()==PDT::Colour0) {
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
// look up decay mode
tDMPtr dm;
string tag;
string inParticle = inter[0]->dataPtr()->name() + "->";
vector<string> outParticles;
outParticles.push_back(out.begin ()->first->progenitor()->dataPtr()->name());
outParticles.push_back(out.rbegin()->first->progenitor()->dataPtr()->name());
for (int it=0; it<2; ++it){
tag = inParticle + outParticles[it] + "," + outParticles[(it+1)%2] + ";";
dm = generator()->findDecayMode(tag);
if(dm) break;
}
// get the decayer
HwDecayerBasePtr decayer;
if(dm) decayer = dynamic_ptr_cast<HwDecayerBasePtr>(dm->decayer());
// check if decayer has a FSR POWHEG correction
if (!decayer || decayer->hasPOWHEGCorrection()<2){
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
// generate the hardest emission
ShowerDecayMap decay;
PPtr in = new_ptr(*inter[0]);
ShowerTreePtr decayTree = new_ptr(ShowerTree(in, decay));
HardTreePtr FSRTree = decayer->generateHardest(decayTree);
if (!FSRTree) {
if(_hardtree) connectTrees(currentTree(),_hardtree,hard);
return;
}
// if there is no ISRTree make _hardtree from FSRTree
if (!ISRTree){
vector<HardBranchingPtr> inBranch,hardBranch;
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit =currentTree()->incomingLines().begin();
cit!=currentTree()->incomingLines().end();++cit ) {
inBranch.push_back(new_ptr(HardBranching(cit->second,SudakovPtr(),
HardBranchingPtr(),
HardBranching::Incoming)));
inBranch.back()->beam(cit->first->original()->parents()[0]);
hardBranch.push_back(inBranch.back());
}
if(inBranch[0]->branchingParticle()->dataPtr()->coloured()) {
inBranch[0]->colourPartner(inBranch[1]);
inBranch[1]->colourPartner(inBranch[0]);
}
for(set<HardBranchingPtr>::iterator it=FSRTree->branchings().begin();
it!=FSRTree->branchings().end();++it) {
if((**it).branchingParticle()->id()!=in->id())
hardBranch.push_back(*it);
}
hardBranch[2]->colourPartner(hardBranch[3]);
hardBranch[3]->colourPartner(hardBranch[2]);
HardTreePtr newTree = new_ptr(HardTree(hardBranch,inBranch,
ShowerInteraction::QCD));
_hardtree = newTree;
}
// Otherwise modify the ISRTree to include the emission in FSRTree
else {
vector<tShowerParticlePtr> FSROut, ISROut;
set<HardBranchingPtr>::iterator itFSR, itISR;
// get outgoing particles
for(itFSR =FSRTree->branchings().begin();
itFSR!=FSRTree->branchings().end();++itFSR){
if ((**itFSR).status()==HardBranching::Outgoing)
FSROut.push_back((*itFSR)->branchingParticle());
}
for(itISR =ISRTree->branchings().begin();
itISR!=ISRTree->branchings().end();++itISR){
if ((**itISR).status()==HardBranching::Outgoing)
ISROut.push_back((*itISR)->branchingParticle());
}
// find COM frame formed by outgoing particles
LorentzRotation eventFrameFSR, eventFrameISR;
eventFrameFSR = ((FSROut[0]->momentum()+FSROut[1]->momentum()).findBoostToCM());
eventFrameISR = ((ISROut[0]->momentum()+ISROut[1]->momentum()).findBoostToCM());
// find rotation between ISR and FSR frames
int j=0;
if (ISROut[0]->id()!=FSROut[0]->id()) j=1;
eventFrameISR.rotateZ( (eventFrameFSR*FSROut[0]->momentum()).phi()-
(eventFrameISR*ISROut[j]->momentum()).phi() );
eventFrameISR.rotateY( (eventFrameFSR*FSROut[0]->momentum()).theta()-
(eventFrameISR*ISROut[j]->momentum()).theta() );
eventFrameISR.invert();
for (itFSR=FSRTree->branchings().begin();
itFSR!=FSRTree->branchings().end();++itFSR){
if ((**itFSR).branchingParticle()->id()==in->id()) continue;
for (itISR =ISRTree->branchings().begin();
itISR!=ISRTree->branchings().end();++itISR){
if ((**itISR).status()==HardBranching::Incoming) continue;
if ((**itFSR).branchingParticle()->id()==
(**itISR).branchingParticle()->id()){
// rotate FSRTree particle to ISRTree event frame
(**itISR).branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).branchingParticle()->momentum());
(**itISR).branchingParticle()->rescaleMass();
// add the children of the FSRTree particles to the ISRTree
if(!(**itFSR).children().empty()){
(**itISR).addChild((**itFSR).children()[0]);
(**itISR).addChild((**itFSR).children()[1]);
// rotate momenta to ISRTree event frame
(**itISR).children()[0]->branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).children()[0]->branchingParticle()->momentum());
(**itISR).children()[1]->branchingParticle()->setMomentum(eventFrameISR*
eventFrameFSR*
(**itFSR).children()[1]->branchingParticle()->momentum());
}
}
}
}
_hardtree = ISRTree;
}
}
if(_hardtree){
connectTrees(currentTree(),_hardtree,hard);
}
}
bool Evolver::truncatedTimeLikeShower(tShowerParticlePtr particle,
HardBranchingPtr branch,
ShowerInteraction::Type type,
Branching fb, bool first) {
// select a branching if we don't have one
if(!fb.kinematics)
fb = selectTimeLikeBranching(particle,type,branch);
// must be an emission, the forced one it not a truncated one
assert(fb.kinematics);
ShowerParticleVector children;
int ntry=0;
Branching fc[2];
bool setupChildren = true;
while (ntry<50) {
if(!fc[0].hard) fc[0] = Branching();
if(!fc[1].hard) fc[1] = Branching();
++ntry;
// Assign the shower kinematics to the emitting particle.
if(setupChildren) {
++_nFSR;
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// if not hard generate phi
if(!fb.hard)
fb.kinematics->phi(fb.sudakov->generatePhiForward(*particle,fb.ids,fb.kinematics));
// create the children
children = createTimeLikeChildren(particle,fb.ids);
// update the children
particle->showerKinematics()->
updateChildren(particle, children,fb.type,_reconOpt>=3);
setupChildren = false;
}
// select branchings for children
if(!fc[0].kinematics) {
// select branching for first particle
if(!fb.hard && fb.iout ==1 )
fc[0] = selectTimeLikeBranching(children[0],type,branch);
else if(fb.hard && !branch->children()[0]->children().empty() )
fc[0] = selectTimeLikeBranching(children[0],type,branch->children()[0]);
else
fc[0] = selectTimeLikeBranching(children[0],type,HardBranchingPtr());
}
// select branching for the second particle
if(!fc[1].kinematics) {
// select branching for first particle
if(!fb.hard && fb.iout ==2 )
fc[1] = selectTimeLikeBranching(children[1],type,branch);
else if(fb.hard && !branch->children()[1]->children().empty() )
fc[1] = selectTimeLikeBranching(children[1],type,branch->children()[1]);
else
fc[1] = selectTimeLikeBranching(children[1],type,HardBranchingPtr());
}
// old default
if(_reconOpt==0 || (_reconOpt==1 && fb.hard) ) {
// shower the first particle
if(fc[0].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 1)
truncatedTimeLikeShower(children[0],branch,type,fc[0],false);
// hard emission and subsquent hard emissions
else if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 2)
truncatedTimeLikeShower(children[1],branch,type,fc[1],false);
// hard emission and subsquent hard emissions
else if(fb.hard && !branch->children()[1]->children().empty() )
truncatedTimeLikeShower(children[1],branch->children()[1],type,fc[1],false);
else
timeLikeShower(children[1],type,fc[1],false);
}
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
break;
}
// H7 default
else if(_reconOpt==1) {
// shower the first particle
if(fc[0].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 1)
truncatedTimeLikeShower(children[0],branch,type,fc[0],false);
else
timeLikeShower(children[0],type,fc[0],false);
}
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 2)
truncatedTimeLikeShower(children[1],branch,type,fc[1],false);
else
timeLikeShower(children[1],type,fc[1],false);
}
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<children.size();++ix)
particle->abandonChild(children[ix]);
children.clear();
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
particle->vetoEmission(fb.type,fb.kinematics->scale());
// generate the new emission
fb = selectTimeLikeBranching(particle,type,branch);
// must be at least hard emission
assert(fb.kinematics);
setupChildren = true;
continue;
}
else
break;
}
else if(_reconOpt>=2) {
// cut-off masses for the branching
const vector<Energy> & virtualMasses = fb.sudakov->virtualMasses(fb.ids);
// compute the masses of the children
Energy masses[3];
for(unsigned int ix=0;ix<2;++ix) {
if(fc[ix].kinematics) {
const vector<Energy> & vm = fc[ix].sudakov->virtualMasses(fc[ix].ids);
Energy2 q2 =
fc[ix].kinematics->z()*(1.-fc[ix].kinematics->z())*sqr(fc[ix].kinematics->scale());
if(fc[ix].ids[0]!=ParticleID::g) q2 += sqr(vm[0]);
masses[ix+1] = sqrt(q2);
}
else {
masses[ix+1] = virtualMasses[ix+1];
}
}
masses[0] = fb.ids[0]!=ParticleID::g ? virtualMasses[0] : ZERO;
double z = fb.kinematics->z();
Energy2 pt2 = z*(1.-z)*(z*(1.-z)*sqr(fb.kinematics->scale()) + sqr(masses[0]))
- sqr(masses[1])*(1.-z) - sqr(masses[2])*z;
if(pt2>=ZERO) {
break;
}
// if only the hard emission have to accept it
else if ((fc[0].hard && !fc[1].kinematics) ||
(fc[1].hard && !fc[0].kinematics) ) {
break;
}
else {
// reset the scales for the children
for(unsigned int ix=0;ix<2;++ix) {
if(fc[ix].hard) continue;
if(fc[ix].kinematics && ! fc[ix].hard )
children[ix]->vetoEmission(fc[ix].type,fc[ix].kinematics->scale());
else
children[ix]->vetoEmission(ShowerPartnerType::QCDColourLine,ZERO);
children[ix]->virtualMass(ZERO);
}
}
}
};
if(_reconOpt>=2) {
// shower the first particle
if(fc[0].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 1)
truncatedTimeLikeShower(children[0],branch,type,fc[0],false);
// hard emission and subsquent hard emissions
else if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
if(children[0]->spinInfo()) children[0]->spinInfo()->develop();
// shower the second particle
if(fc[1].kinematics) {
// the parent has truncated emission and following line
if(!fb.hard && fb.iout == 2)
truncatedTimeLikeShower(children[1],branch,type,fc[1],false);
// hard emission and subsquent hard emissions
else if(fb.hard && !branch->children()[1]->children().empty() )
truncatedTimeLikeShower(children[1],branch->children()[1],type,fc[1],false);
else
timeLikeShower(children[1],type,fc[1],false);
}
if(children[1]->spinInfo()) children[1]->spinInfo()->develop();
// branching has happened
particle->showerKinematics()->updateParent(particle, children,fb.type);
}
if(first&&!children.empty())
particle->showerKinematics()->resetChildren(particle,children);
if(particle->spinInfo()) particle->spinInfo()->develop();
return true;
}
bool Evolver::truncatedSpaceLikeShower(tShowerParticlePtr particle, PPtr beam,
HardBranchingPtr branch,
ShowerInteraction::Type type) {
tcPDFPtr pdf;
if(ShowerHandler::currentHandler()->firstPDF().particle() == beamParticle())
pdf = ShowerHandler::currentHandler()->firstPDF().pdf();
if(ShowerHandler::currentHandler()->secondPDF().particle() == beamParticle())
pdf = ShowerHandler::currentHandler()->secondPDF().pdf();
Energy freeze = ShowerHandler::currentHandler()->pdfFreezingScale();
Branching bb;
// parameters of the force branching
double z(0.);
HardBranchingPtr timelike;
for( unsigned int ix = 0; ix < branch->children().size(); ++ix ) {
if( branch->children()[ix]->status() ==HardBranching::Outgoing) {
timelike = branch->children()[ix];
}
if( branch->children()[ix]->status() ==HardBranching::Incoming )
z = branch->children()[ix]->z();
}
// generate truncated branching
tcPDPtr part[2];
if(z>=0.&&z<=1.) {
while (true) {
if( !isTruncatedShowerON() || hardOnly() ) break;
bb = splittingGenerator()->chooseBackwardBranching( *particle,
beam, 1., beamParticle(),
type , pdf,freeze);
if( !bb.kinematics || bb.kinematics->scale() < branch->scale() ) {
bb = Branching();
break;
}
// particles as in Sudakov form factor
part[0] = getParticleData( bb.ids[0] );
part[1] = getParticleData( bb.ids[2] );
//is emitter anti-particle
if( particle->id() != bb.ids[1]) {
if( part[0]->CC() ) part[0] = part[0]->CC();
if( part[1]->CC() ) part[1] = part[1]->CC();
}
double zsplit = bb.kinematics->z();
// apply the vetos for the truncated shower
// if doesn't carry most of momentum
ShowerInteraction::Type type2 = convertInteraction(bb.type);
if(type2==branch->sudakov()->interactionType() &&
zsplit < 0.5) {
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
// others
if( part[0]->id() != particle->id() || // if particle changes type
bb.kinematics->pT() > progenitor()->maximumpT(type2) || // pt veto
bb.kinematics->scale() < branch->scale()) { // angular ordering veto
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
// and those from the base class
if(spaceLikeVetoed(bb,particle)) {
particle->vetoEmission(bb.type,bb.kinematics->scale());
continue;
}
break;
}
}
if( !bb.kinematics ) {
//do the hard emission
ShoKinPtr kinematics =
branch->sudakov()->createInitialStateBranching( branch->scale(), z, branch->phi(),
branch->children()[0]->pT() );
// assign the splitting function and shower kinematics
particle->showerKinematics( kinematics );
if(kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(kinematics->pT());
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent =
new_ptr( ShowerParticle( branch->branchingParticle()->dataPtr(), false ) );
ShowerParticlePtr otherChild =
new_ptr( ShowerParticle( timelike->branchingParticle()->dataPtr(),
true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren, branch->type());
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted=false;
if(!hardOnly()) {
if( branch->parent() ) {
emitted = truncatedSpaceLikeShower( newParent, beam, branch->parent() , type);
}
else {
emitted = spaceLikeShower( newParent, beam , type);
}
}
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[progenitor()];
kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren,bb.type,false);
if(hardOnly()) return true;
// perform the shower of the final-state particle
if( timelike->children().empty() ) {
timeLikeShower( otherChild , type,Branching(),true);
}
else {
truncatedTimeLikeShower( otherChild, timelike , type,Branching(), true);
}
updateHistory(otherChild);
// return the emitted
return true;
}
// assign the splitting function and shower kinematics
particle->showerKinematics( bb.kinematics );
if(bb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(bb.kinematics->pT());
// For the time being we are considering only 1->2 branching
// Now create the actual particles, make the otherChild a final state
// particle, while the newParent is not
ShowerParticlePtr newParent = new_ptr( ShowerParticle( part[0], false ) );
ShowerParticlePtr otherChild = new_ptr( ShowerParticle( part[1], true, true ) );
ShowerParticleVector theChildren;
theChildren.push_back( particle );
theChildren.push_back( otherChild );
particle->showerKinematics()->
updateParent( newParent, theChildren, bb.type);
// update the history if needed
currentTree()->updateInitialStateShowerProduct( progenitor(), newParent );
currentTree()->addInitialStateBranching( particle, newParent, otherChild );
// for the reconstruction of kinematics, parent/child
// relationships are according to the branching process:
// now continue the shower
bool emitted = truncatedSpaceLikeShower( newParent, beam, branch,type);
// now reconstruct the momentum
if( !emitted ) {
if( intrinsicpT().find( progenitor() ) == intrinsicpT().end() ) {
bb.kinematics->updateLast( newParent, ZERO, ZERO );
}
else {
pair<Energy,double> kt = intrinsicpT()[ progenitor() ];
bb.kinematics->updateLast( newParent,
kt.first*cos( kt.second ),
kt.first*sin( kt.second ) );
}
}
particle->showerKinematics()->
updateChildren( newParent, theChildren, bb.type,false);
// perform the shower of the final-state particle
timeLikeShower( otherChild , type,Branching(),true);
updateHistory(otherChild);
// return the emitted
return true;
}
bool Evolver::
truncatedSpaceLikeDecayShower(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass, HardBranchingPtr branch,
ShowerInteraction::Type type, Branching fb) {
// select a branching if we don't have one
if(!fb.kinematics)
fb = selectSpaceLikeDecayBranching(particle,maxScales,minmass,type,branch);
// must be an emission, the forced one it not a truncated one
assert(fb.kinematics);
ShowerParticleVector children;
int ntry=0;
Branching fc[2];
bool setupChildren = true;
while (ntry<50) {
if(!fc[0].hard) fc[0] = Branching();
if(!fc[1].hard) fc[1] = Branching();
++ntry;
if(setupChildren) {
++_nFSR;
// Assign the shower kinematics to the emitting particle.
particle->showerKinematics(fb.kinematics);
if(fb.kinematics->pT()>progenitor()->highestpT())
progenitor()->highestpT(fb.kinematics->pT());
// create the ShowerParticle objects for the two children
children = createTimeLikeChildren(particle,fb.ids);
// updateChildren the children
particle->showerKinematics()->
updateChildren(particle, children, fb.type,_reconOpt>=3);
setupChildren = false;
}
// select branchings for children
if(!fc[0].kinematics) {
if(children[0]->id()==particle->id()) {
// select branching for first particle
if(!fb.hard)
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,type,branch);
else if(fb.hard && ! branch->children()[0]->children().empty() )
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,type,
branch->children()[0]);
else
fc[0] = selectSpaceLikeDecayBranching(children[0],maxScales,minmass,type,
HardBranchingPtr());
}
else {
// select branching for first particle
if(fb.hard && !branch->children()[0]->children().empty() )
fc[0] = selectTimeLikeBranching(children[0],type,branch->children()[0]);
else
fc[0] = selectTimeLikeBranching(children[0],type,HardBranchingPtr());
}
}
// select branching for the second particle
if(!fc[1].kinematics) {
if(children[1]->id()==particle->id()) {
// select branching for first particle
if(!fb.hard)
fc[1] = selectSpaceLikeDecayBranching(children[1],maxScales,minmass,type,branch);
else if(fb.hard && ! branch->children()[1]->children().empty() )
fc[1] = selectSpaceLikeDecayBranching(children[1],maxScales,minmass,type,
branch->children()[1]);
else
fc[1] = selectSpaceLikeDecayBranching(children[1],maxScales,minmass,type,
HardBranchingPtr());
}
else {
if(fb.hard && !branch->children()[1]->children().empty() )
fc[1] = selectTimeLikeBranching(children[1],type,branch->children()[1]);
else
fc[1] = selectTimeLikeBranching(children[1],type,HardBranchingPtr());
}
}
// old default
if(_reconOpt==0 || (_reconOpt==1 && fb.hard) ) {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),children[0]);
currentTree()->addInitialStateBranching(particle,children[0],children[1]);
// shower the first particle
if(fc[0].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[0]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[0]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[0]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
}
// shower the second particle
if(fc[1].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[1]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[1]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[1]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[1],false);
// normal shower
else
timeLikeShower(children[0],type,fc[1],false);
}
}
updateHistory(children[1]);
// branching has happened
break;
}
// H7 default
else if(_reconOpt==1) {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),children[0]);
currentTree()->addInitialStateBranching(particle,children[0],children[1]);
// shower the first particle
if(fc[0].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[0]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[0]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[0]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
}
// shower the second particle
if(fc[1].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[1]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[1]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[1]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[1],false);
// normal shower
else
timeLikeShower(children[0],type,fc[1],false);
}
}
// clean up the vetoed emission
if(particle->virtualMass()==ZERO) {
particle->showerKinematics(ShoKinPtr());
for(unsigned int ix=0;ix<children.size();++ix)
particle->abandonChild(children[ix]);
children.clear();
particle->vetoEmission(fb.type,fb.kinematics->scale());
// generate the new emission
fb = selectSpaceLikeDecayBranching(particle,maxScales,minmass,type,branch);
// must be at least hard emission
assert(fb.kinematics);
setupChildren = true;
continue;
}
else {
updateHistory(children[1]);
break;
}
}
else if(_reconOpt>=2) {
// cut-off masses for the branching
const vector<Energy> & virtualMasses = fb.sudakov->virtualMasses(fb.ids);
// compute the masses of the children
Energy masses[3];
// space-like children
masses[1] = children[0]->virtualMass();
// time-like child
if(fc[1].kinematics) {
const vector<Energy> & vm = fc[1].sudakov->virtualMasses(fc[1].ids);
Energy2 q2 =
fc[1].kinematics->z()*(1.-fc[1].kinematics->z())*sqr(fc[1].kinematics->scale());
if(fc[1].ids[0]!=ParticleID::g) q2 += sqr(vm[0]);
masses[2] = sqrt(q2);
}
else {
masses[2] = virtualMasses[2];
}
masses[0]=particle->virtualMass();
double z = fb.kinematics->z();
Energy2 pt2 = (1.-z)*(z*sqr(masses[0])-sqr(masses[1])-z/(1.-z)*sqr(masses[2]));
if(pt2>=ZERO) {
break;
}
else {
// reset the scales for the children
for(unsigned int ix=0;ix<2;++ix) {
if(fc[ix].kinematics)
children[ix]->vetoEmission(fc[ix].type,fc[ix].kinematics->scale());
else {
if(ix==0)
children[ix]->vetoEmission(ShowerPartnerType::QCDColourLine,Constants::MaxEnergy);
else
children[ix]->vetoEmission(ShowerPartnerType::QCDColourLine,ZERO);
}
}
children[0]->virtualMass(_progenitor->progenitor()->mass());
children[1]->virtualMass(ZERO);
}
}
};
if(_reconOpt>=2) {
// update the history if needed
currentTree()->updateInitialStateShowerProduct(progenitor(),children[0]);
currentTree()->addInitialStateBranching(particle,children[0],children[1]);
// shower the first particle
if(fc[0].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[0]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[0]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[0]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[0],false);
// normal shower
else
timeLikeShower(children[0],type,fc[0],false);
}
}
// shower the second particle
if(fc[1].kinematics) {
if(children[0]->id()==particle->id()) {
if(!fb.hard)
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch,type,fc[1]);
else if(fb.hard && ! branch->children()[0]->children().empty() )
truncatedSpaceLikeDecayShower( children[0],maxScales,minmass,
branch->children()[0],type,fc[1]);
else
spaceLikeDecayShower( children[0],maxScales,minmass,type,fc[1]);
}
else {
if(fb.hard && !branch->children()[0]->children().empty() )
truncatedTimeLikeShower(children[0],branch->children()[0],type,fc[1],false);
// normal shower
else
timeLikeShower(children[0],type,fc[1],false);
}
}
updateHistory(children[1]);
}
return true;
}
void Evolver::connectTrees(ShowerTreePtr showerTree,
HardTreePtr hardTree, bool hard ) {
ShowerParticleVector particles;
// find the Sudakovs
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
// Sudakovs for ISR
if((**cit).parent()&&(**cit).status()==HardBranching::Incoming) {
++_nis;
IdList br(3);
br[0] = (**cit).parent()->branchingParticle()->id();
br[1] = (**cit). branchingParticle()->id();
br[2] = (**cit).parent()->children()[0]==*cit ?
(**cit).parent()->children()[1]->branchingParticle()->id() :
(**cit).parent()->children()[0]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->initialStateBranchings();
if(br[1]<0&&br[0]==br[1]) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
}
else if(br[1]<0) {
br[1] = -br[1];
br[2] = -br[2];
}
long index = abs(br[1]);
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.second;
if(ids[0]==br[0]&&ids[1]==br[1]&&ids[2]==br[2]) {
sudakov=cjt->second.first;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "Evolver::connectTrees() for ISR"
<< Exception::runerror;
(**cit).parent()->sudakov(sudakov);
}
// Sudakovs for FSR
else if(!(**cit).children().empty()) {
++_nfs;
IdList br(3);
br[0] = (**cit) .branchingParticle()->id();
br[1] = (**cit).children()[0]->branchingParticle()->id();
br[2] = (**cit).children()[1]->branchingParticle()->id();
BranchingList branchings = splittingGenerator()->finalStateBranchings();
if(br[0]<0) {
br[0] = abs(br[0]);
br[1] = abs(br[1]);
br[2] = abs(br[2]);
}
long index = br[0];
SudakovPtr sudakov;
for(BranchingList::const_iterator cjt = branchings.lower_bound(index);
cjt != branchings.upper_bound(index); ++cjt ) {
IdList ids = cjt->second.second;
if(ids[0]==br[0]&&ids[1]==br[1]&&ids[2]==br[2]) {
sudakov=cjt->second.first;
break;
}
}
if(!sudakov) throw Exception() << "Can't find Sudakov for the hard emission in "
<< "Evolver::connectTrees()"
<< Exception::runerror;
(**cit).sudakov(sudakov);
}
}
// calculate the evolution scale
for(set<HardBranchingPtr>::iterator cit=hardTree->branchings().begin();
cit!=hardTree->branchings().end();++cit) {
particles.push_back((*cit)->branchingParticle());
}
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,hardTree->interaction(),
!hardTree->partnersSet());
hardTree->partnersSet(true);
// inverse reconstruction
if(hard) {
showerModel()->kinematicsReconstructor()->
deconstructHardJets(hardTree,ShowerHandler::currentHandler()->evolver(),
hardTree->interaction());
}
else
showerModel()->kinematicsReconstructor()->
deconstructDecayJets(hardTree,ShowerHandler::currentHandler()->evolver(),
hardTree->interaction());
// now reset the momenta of the showering particles
vector<ShowerProgenitorPtr> particlesToShower;
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit=showerTree->incomingLines().begin();
cit!=showerTree->incomingLines().end();++cit )
particlesToShower.push_back(cit->first);
// extract the showering particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cit=showerTree->outgoingLines().begin();
cit!=showerTree->outgoingLines().end();++cit )
particlesToShower.push_back(cit->first);
// match them
map<ShowerProgenitorPtr,HardBranchingPtr> partners;
for(set<HardBranchingPtr>::const_iterator bit=hardTree->branchings().begin();
bit!=hardTree->branchings().end();++bit) {
Energy2 dmin( 1e30*GeV2 );
ShowerProgenitorPtr partner;
for(vector<ShowerProgenitorPtr>::const_iterator pit=particlesToShower.begin();
pit!=particlesToShower.end();++pit) {
if(partners.find(*pit)!=partners.end()) continue;
if( (**bit).branchingParticle()->id() != (**pit).progenitor()->id() ) continue;
if( (**bit).branchingParticle()->isFinalState() !=
(**pit).progenitor()->isFinalState() ) continue;
if( (**pit).progenitor()->isFinalState() ) {
Energy2 dtest =
sqr( (**pit).progenitor()->momentum().x() - (**bit).showerMomentum().x() ) +
sqr( (**pit).progenitor()->momentum().y() - (**bit).showerMomentum().y() ) +
sqr( (**pit).progenitor()->momentum().z() - (**bit).showerMomentum().z() ) +
sqr( (**pit).progenitor()->momentum().t() - (**bit).showerMomentum().t() );
// add mass difference for identical particles (e.g. Z0 Z0 production)
dtest += 1e10*sqr((**pit).progenitor()->momentum().m()-(**bit).showerMomentum().m());
if( dtest < dmin ) {
partner = *pit;
dmin = dtest;
}
}
else {
// ensure directions are right
if((**pit).progenitor()->momentum().z()/(**bit).showerMomentum().z()>ZERO) {
partner = *pit;
break;
}
}
}
if(!partner) throw Exception() << "Failed to match shower and hard trees in Evolver::hardestEmission"
<< Exception::eventerror;
partners[partner] = *bit;
}
for(vector<ShowerProgenitorPtr>::const_iterator pit=particlesToShower.begin();
pit!=particlesToShower.end();++pit) {
HardBranchingPtr partner = partners[*pit];
if((**pit).progenitor()->dataPtr()->stable()) {
(**pit).progenitor()->set5Momentum(partner->showerMomentum());
(**pit).copy()->set5Momentum(partner->showerMomentum());
}
else {
Lorentz5Momentum oldMomentum = (**pit).progenitor()->momentum();
Lorentz5Momentum newMomentum = partner->showerMomentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
(**pit).progenitor()->transform(boost);
(**pit).copy() ->transform(boost);
boost = LorentzRotation(-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
(**pit).progenitor()->transform(boost);
(**pit).copy() ->transform(boost);
}
}
// correction boosts for daughter trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit = showerTree->treelinks().begin();
tit != showerTree->treelinks().end();++tit) {
ShowerTreePtr decayTree = tit->first;
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit = decayTree->incomingLines().begin();
// reset the momentum of the decay particle
Lorentz5Momentum oldMomentum = cit->first->progenitor()->momentum();
Lorentz5Momentum newMomentum = tit->second.second->momentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
decayTree->transform(boost,true);
boost = LorentzRotation(-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
decayTree->transform(boost,true);
}
}
void Evolver::doShowering(bool hard,XCPtr xcomb) {
// zero number of emissions
_nis = _nfs = 0;
// if MC@NLO H event and limited emissions
// indicate both final and initial state emission
if ( isMCatNLOHEvent && _limitEmissions != 0 ) {
_nis = _nfs = 1;
}
// extract particles to shower
vector<ShowerProgenitorPtr> particlesToShower(setupShower(hard));
// setup the maximum scales for the shower
if (hardVetoOn()) setupMaximumScales(particlesToShower,xcomb);
// set the hard scales for the profiles
setupHardScales(particlesToShower,xcomb);
// specific stuff for hard processes and decays
Energy minmass(ZERO), mIn(ZERO);
// hard process generate the intrinsic p_T once and for all
if(hard) {
generateIntrinsicpT(particlesToShower);
}
// decay compute the minimum mass of the final-state
else {
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(particlesToShower[ix]->progenitor()->isFinalState()) {
if(particlesToShower[ix]->progenitor()->dataPtr()->stable())
minmass += particlesToShower[ix]->progenitor()->dataPtr()->constituentMass();
else
minmass += particlesToShower[ix]->progenitor()->mass();
}
else {
mIn = particlesToShower[ix]->progenitor()->mass();
}
}
// throw exception if decay can't happen
if ( minmass > mIn ) {
throw Exception() << "Evolver.cc: Mass of decaying particle is "
<< "below constituent masses of decay products."
<< Exception::eventerror;
}
}
// create random particle vector
vector<ShowerProgenitorPtr> tmp;
unsigned int nColouredIncoming = 0;
while(particlesToShower.size()>0){
unsigned int xx=UseRandom::irnd(particlesToShower.size());
tmp.push_back(particlesToShower[xx]);
particlesToShower.erase(particlesToShower.begin()+xx);
}
particlesToShower=tmp;
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
if(!particlesToShower[ix]->progenitor()->isFinalState() &&
particlesToShower[ix]->progenitor()->coloured()) ++nColouredIncoming;
}
bool switchRecon = hard && nColouredIncoming !=1;
// main shower loop
unsigned int ntry(0);
bool reconstructed = false;
do {
// clear results of last attempt if needed
if(ntry!=0) {
currentTree()->clear();
setEvolutionPartners(hard,interaction_,true);
_nis = _nfs = 0;
// if MC@NLO H event and limited emissions
// indicate both final and initial state emission
if ( isMCatNLOHEvent && _limitEmissions != 0 ) {
_nis = _nfs = 1;
}
for(unsigned int ix=0; ix<particlesToShower.size();++ix) {
SpinPtr spin = particlesToShower[ix]->progenitor()->spinInfo();
if(spin && spin->decayVertex() &&
dynamic_ptr_cast<tcSVertexPtr>(spin->decayVertex())) {
spin->decayVertex(VertexPtr());
}
}
}
// loop over particles
for(unsigned int ix=0;ix<particlesToShower.size();++ix) {
// extract the progenitor
progenitor(particlesToShower[ix]);
// final-state radiation
if(progenitor()->progenitor()->isFinalState()) {
if(!isFSRadiationON()) continue;
// perform shower
progenitor()->hasEmitted(startTimeLikeShower(interaction_));
}
// initial-state radiation
else {
if(!isISRadiationON()) continue;
// hard process
if(hard) {
// get the PDF
setBeamParticle(_progenitor->beam());
assert(beamParticle());
// perform the shower
// set the beam particle
tPPtr beamparticle=progenitor()->original();
if(!beamparticle->parents().empty())
beamparticle=beamparticle->parents()[0];
// generate the shower
progenitor()->hasEmitted(startSpaceLikeShower(beamparticle,
interaction_));
}
// decay
else {
// skip colour and electrically neutral particles
if(!progenitor()->progenitor()->dataPtr()->coloured() &&
!progenitor()->progenitor()->dataPtr()->charged()) {
progenitor()->hasEmitted(false);
continue;
}
// perform shower
// set the scales correctly. The current scale is the maximum scale for
// emission not the starting scale
ShowerParticle::EvolutionScales maxScales(progenitor()->progenitor()->scales());
progenitor()->progenitor()->scales() = ShowerParticle::EvolutionScales();
if(progenitor()->progenitor()->dataPtr()->charged()) {
progenitor()->progenitor()->scales().QED = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QED_noAO = progenitor()->progenitor()->mass();
}
if(progenitor()->progenitor()->hasColour()) {
progenitor()->progenitor()->scales().QCD_c = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QCD_c_noAO = progenitor()->progenitor()->mass();
}
if(progenitor()->progenitor()->hasAntiColour()) {
progenitor()->progenitor()->scales().QCD_ac = progenitor()->progenitor()->mass();
progenitor()->progenitor()->scales().QCD_ac_noAO = progenitor()->progenitor()->mass();
}
+ progenitor()->progenitor()->scales().EW = progenitor()->progenitor()->mass();
+ progenitor()->progenitor()->scales().EW_noAO = progenitor()->progenitor()->mass();
// perform the shower
progenitor()->hasEmitted(startSpaceLikeDecayShower(maxScales,minmass,
interaction_));
}
}
}
// do the kinematic reconstruction, checking if it worked
reconstructed = hard ?
showerModel()->kinematicsReconstructor()->
reconstructHardJets (currentTree(),intrinsicpT(),interaction_,
switchRecon && ntry>maximumTries()/2) :
showerModel()->kinematicsReconstructor()->
reconstructDecayJets(currentTree(),interaction_);
}
while(!reconstructed&&maximumTries()>++ntry);
// check if failed to generate the shower
if(ntry==maximumTries()) {
if(hard)
throw ShowerHandler::ShowerTriesVeto(ntry);
else
throw Exception() << "Failed to generate the shower after "
<< ntry << " attempts in Evolver::showerDecay()"
<< Exception::eventerror;
}
// tree has now showered
_currenttree->hasShowered(true);
hardTree(HardTreePtr());
}
void Evolver:: convertHardTree(bool hard,ShowerInteraction::Type type) {
map<ColinePtr,ColinePtr> cmap;
// incoming particles
for(map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator
cit=currentTree()->incomingLines().begin();cit!=currentTree()->incomingLines().end();++cit) {
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
mit = hardTree()->particles().find(cit->first->progenitor());
// put the colour lines in the map
ShowerParticlePtr oldParticle = cit->first->progenitor();
ShowerParticlePtr newParticle = mit->second->branchingParticle();
ColinePtr cLine = oldParticle-> colourLine();
ColinePtr aLine = oldParticle->antiColourLine();
if(newParticle->colourLine() &&
cmap.find(newParticle-> colourLine())==cmap.end())
cmap[newParticle-> colourLine()] = cLine;
if(newParticle->antiColourLine() &&
cmap.find(newParticle->antiColourLine())==cmap.end())
cmap[newParticle->antiColourLine()] = aLine;
// check whether or not particle emits
bool emission = mit->second->parent();
if(emission) {
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
}
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
}
newParticle = mit->second->parent()->branchingParticle();
}
// get the new colour lines
ColinePtr newCLine,newALine;
// sort out colour lines
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newCLine = cmap[ctemp];
}
else {
newCLine = new_ptr(ColourLine());
cmap[ctemp] = newCLine;
}
}
// and anticolour lines
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newALine = cmap[ctemp];
}
else {
newALine = new_ptr(ColourLine());
cmap[ctemp] = newALine;
}
}
// remove colour lines from old particle
if(aLine) {
aLine->removeAntiColoured(cit->first->copy());
aLine->removeAntiColoured(cit->first->progenitor());
}
if(cLine) {
cLine->removeColoured(cit->first->copy());
cLine->removeColoured(cit->first->progenitor());
}
// add particle to colour lines
if(newCLine) newCLine->addColoured (newParticle);
if(newALine) newALine->addAntiColoured(newParticle);
// insert new particles
cit->first->copy(newParticle);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*newParticle,1,false)));
cit->first->progenitor(sp);
currentTree()->incomingLines()[cit->first]=sp;
cit->first->perturbative(!emission);
// and the emitted particle if needed
if(emission) {
ShowerParticlePtr newOut = mit->second->parent()->children()[1]->branchingParticle();
if(newOut->colourLine()) {
ColinePtr ctemp = newOut-> colourLine();
ctemp->removeColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addColoured (newOut);
}
if(newOut->antiColourLine()) {
ColinePtr ctemp = newOut->antiColourLine();
ctemp->removeAntiColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addAntiColoured(newOut);
}
ShowerParticlePtr sout=new_ptr(ShowerParticle(*newOut,1,true));
ShowerProgenitorPtr out=new_ptr(ShowerProgenitor(cit->first->original(),newOut,sout));
out->perturbative(false);
currentTree()->outgoingLines().insert(make_pair(out,sout));
}
if(hard) {
// sort out the value of x
if(mit->second->beam()->momentum().z()>ZERO) {
sp->x(newParticle->momentum(). plus()/mit->second->beam()->momentum(). plus());
}
else {
sp->x(newParticle->momentum().minus()/mit->second->beam()->momentum().minus());
}
}
}
// outgoing particles
for(map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator
cit=currentTree()->outgoingLines().begin();cit!=currentTree()->outgoingLines().end();++cit) {
map<tShowerTreePtr,pair<tShowerProgenitorPtr,
tShowerParticlePtr> >::const_iterator tit;
for(tit = currentTree()->treelinks().begin();
tit != currentTree()->treelinks().end();++tit) {
if(tit->second.first && tit->second.second==cit->first->progenitor())
break;
}
map<ShowerParticlePtr,tHardBranchingPtr>::const_iterator
mit = hardTree()->particles().find(cit->first->progenitor());
if(mit==hardTree()->particles().end()) continue;
// put the colour lines in the map
ShowerParticlePtr oldParticle = cit->first->progenitor();
ShowerParticlePtr newParticle = mit->second->branchingParticle();
ShowerParticlePtr newOut;
ColinePtr cLine = oldParticle-> colourLine();
ColinePtr aLine = oldParticle->antiColourLine();
if(newParticle->colourLine() &&
cmap.find(newParticle-> colourLine())==cmap.end())
cmap[newParticle-> colourLine()] = cLine;
if(newParticle->antiColourLine() &&
cmap.find(newParticle->antiColourLine())==cmap.end())
cmap[newParticle->antiColourLine()] = aLine;
// check whether or not particle emits
bool emission = !mit->second->children().empty();
if(emission) {
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
}
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
}
newParticle = mit->second->children()[0]->branchingParticle();
newOut = mit->second->children()[1]->branchingParticle();
if(newParticle->id()!=oldParticle->id()&&newParticle->id()==newOut->id())
swap(newParticle,newOut);
}
// get the new colour lines
ColinePtr newCLine,newALine;
// sort out colour lines
if(newParticle->colourLine()) {
ColinePtr ctemp = newParticle-> colourLine();
ctemp->removeColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newCLine = cmap[ctemp];
}
else {
newCLine = new_ptr(ColourLine());
cmap[ctemp] = newCLine;
}
}
// and anticolour lines
if(newParticle->antiColourLine()) {
ColinePtr ctemp = newParticle->antiColourLine();
ctemp->removeAntiColoured(newParticle);
if(cmap.find(ctemp)!=cmap.end()) {
newALine = cmap[ctemp];
}
else {
newALine = new_ptr(ColourLine());
cmap[ctemp] = newALine;
}
}
// remove colour lines from old particle
if(aLine) {
aLine->removeAntiColoured(cit->first->copy());
aLine->removeAntiColoured(cit->first->progenitor());
}
if(cLine) {
cLine->removeColoured(cit->first->copy());
cLine->removeColoured(cit->first->progenitor());
}
// special for unstable particles
if(newParticle->id()==oldParticle->id() &&
(tit!=currentTree()->treelinks().end()||!oldParticle->dataPtr()->stable())) {
Lorentz5Momentum oldMomentum = oldParticle->momentum();
Lorentz5Momentum newMomentum = newParticle->momentum();
LorentzRotation boost( oldMomentum.findBoostToCM(),oldMomentum.e()/oldMomentum.mass());
if(tit!=currentTree()->treelinks().end()) tit->first->transform(boost,false);
oldParticle->transform(boost);
boost = LorentzRotation(-newMomentum.findBoostToCM(),newMomentum.e()/newMomentum.mass());
oldParticle->transform(boost);
if(tit!=currentTree()->treelinks().end()) tit->first->transform(boost,false);
newParticle=oldParticle;
}
// add particle to colour lines
if(newCLine) newCLine->addColoured (newParticle);
if(newALine) newALine->addAntiColoured(newParticle);
// insert new particles
cit->first->copy(newParticle);
ShowerParticlePtr sp(new_ptr(ShowerParticle(*newParticle,1,true)));
cit->first->progenitor(sp);
currentTree()->outgoingLines()[cit->first]=sp;
cit->first->perturbative(!emission);
// and the emitted particle if needed
if(emission) {
if(newOut->colourLine()) {
ColinePtr ctemp = newOut-> colourLine();
ctemp->removeColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addColoured (newOut);
}
if(newOut->antiColourLine()) {
ColinePtr ctemp = newOut->antiColourLine();
ctemp->removeAntiColoured(newOut);
assert(cmap.find(ctemp)!=cmap.end());
cmap[ctemp]->addAntiColoured(newOut);
}
ShowerParticlePtr sout=new_ptr(ShowerParticle(*newOut,1,true));
ShowerProgenitorPtr out=new_ptr(ShowerProgenitor(cit->first->original(),newOut,sout));
out->perturbative(false);
currentTree()->outgoingLines().insert(make_pair(out,sout));
}
// update any decay products
if(tit!=currentTree()->treelinks().end())
currentTree()->updateLink(tit->first,make_pair(cit->first,sp));
}
// reset the tree
currentTree()->resetShowerProducts();
// reextract the particles and set the colour partners
vector<ShowerParticlePtr> particles =
currentTree()->extractProgenitorParticles();
// clear the partners
for(unsigned int ix=0;ix<particles.size();++ix) {
particles[ix]->partner(ShowerParticlePtr());
particles[ix]->clearPartners();
}
// clear the tree
hardTree(HardTreePtr());
// Set the initial evolution scales
showerModel()->partnerFinder()->
setInitialEvolutionScales(particles,!hard,type,!_hardtree);
}
Branching Evolver::selectTimeLikeBranching(tShowerParticlePtr particle,
ShowerInteraction::Type type,
HardBranchingPtr branch) {
Branching fb;
unsigned int iout=0;
tcPDPtr pdata[2];
while (true) {
// break if doing truncated shower and no truncated shower needed
if(branch && (!isTruncatedShowerON()||hardOnly())) break;
fb=_splittingGenerator->chooseForwardBranching(*particle,_finalenhance,type);
// no emission break
if(!fb.kinematics) break;
// special for truncated shower
if(branch) {
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// get the particle data objects
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
// find the truncated line
iout=0;
if(pdata[0]->id()!=pdata[1]->id()) {
if(pdata[0]->id()==particle->id()) iout=1;
else if (pdata[1]->id()==particle->id()) iout=2;
}
else if(pdata[0]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
// only if same interaction for forced branching
ShowerInteraction::Type type2 = convertInteraction(fb.type);
// and evolution
if(type2==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type2)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// standard vetos for all emissions
if(timeLikeVetoed(fb,particle)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
if(particle->spinInfo()) particle->spinInfo()->decayVertex(VertexPtr());
continue;
}
break;
}
// normal case
if(!branch) {
if(fb.kinematics) fb.hard = false;
return fb;
}
// truncated emission
if(fb.kinematics) {
fb.hard = false;
fb.iout = iout;
return fb;
}
// otherwise need to return the hard emission
// construct the kinematics for the hard emission
ShoKinPtr showerKin=
branch->sudakov()->createFinalStateBranching(branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT());
IdList idlist(3);
idlist[0] = particle->id();
idlist[1] = branch->children()[0]->branchingParticle()->id();
idlist[2] = branch->children()[1]->branchingParticle()->id();
fb = Branching( showerKin, idlist, branch->sudakov(),branch->type() );
fb.hard = true;
fb.iout=0;
// return it
return fb;
}
Branching Evolver::selectSpaceLikeDecayBranching(tShowerParticlePtr particle,
const ShowerParticle::EvolutionScales & maxScales,
Energy minmass,ShowerInteraction::Type type,
HardBranchingPtr branch) {
Branching fb;
unsigned int iout=0;
tcPDPtr pdata[2];
while (true) {
// break if doing truncated shower and no truncated shower needed
if(branch && (!isTruncatedShowerON()||hardOnly())) break;
// select branching
fb=_splittingGenerator->chooseDecayBranching(*particle,maxScales,minmass,
_initialenhance,type);
// return if no radiation
if(!fb.kinematics) break;
// special for truncated shower
if(branch) {
// check haven't evolved too far
if(fb.kinematics->scale() < branch->scale()) {
fb=Branching();
break;
}
// get the particle data objects
for(unsigned int ix=0;ix<2;++ix) pdata[ix]=getParticleData(fb.ids[ix+1]);
if(particle->id()!=fb.ids[0]) {
for(unsigned int ix=0;ix<2;++ix) {
tPDPtr cc(pdata[ix]->CC());
if(cc) pdata[ix]=cc;
}
}
// find the truncated line
iout=0;
if(pdata[0]->id()!=pdata[1]->id()) {
if(pdata[0]->id()==particle->id()) iout=1;
else if (pdata[1]->id()==particle->id()) iout=2;
}
else if(pdata[0]->id()==particle->id()) {
if(fb.kinematics->z()>0.5) iout=1;
else iout=2;
}
// apply the vetos for the truncated shower
// no flavour changing branchings
if(iout==0) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
ShowerInteraction::Type type2 = convertInteraction(fb.type);
double zsplit = iout==1 ? fb.kinematics->z() : 1-fb.kinematics->z();
if(type2==branch->sudakov()->interactionType()) {
if(zsplit < 0.5 || // hardest line veto
fb.kinematics->scale()*zsplit < branch->scale() ) { // angular ordering veto
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// pt veto
if(fb.kinematics->pT() > progenitor()->maximumpT(type2)) {
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
}
// if not vetoed break
if(spaceLikeDecayVetoed(fb,particle)) {
// otherwise reset scale and continue
particle->vetoEmission(fb.type,fb.kinematics->scale());
continue;
}
break;
}
// normal case
if(!branch) {
if(fb.kinematics) fb.hard = false;
return fb;
}
// truncated emission
if(fb.kinematics) {
fb.hard = false;
fb.iout = iout;
return fb;
}
// otherwise need to return the hard emission
// construct the kinematics for the hard emission
ShoKinPtr showerKin=
branch->sudakov()->createDecayBranching(branch->scale(),
branch->children()[0]->z(),
branch->phi(),
branch->children()[0]->pT());
IdList idlist(3);
idlist[0] = particle->id();
idlist[1] = branch->children()[0]->branchingParticle()->id();
idlist[2] = branch->children()[1]->branchingParticle()->id();
// create the branching
fb = Branching( showerKin, idlist, branch->sudakov(),ShowerPartnerType::QCDColourLine );
fb.hard=true;
fb.iout=0;
// return it
return fb;
}
diff --git a/Shower/Base/ShowerParticle.h b/Shower/Base/ShowerParticle.h
--- a/Shower/Base/ShowerParticle.h
+++ b/Shower/Base/ShowerParticle.h
@@ -1,541 +1,543 @@
// -*- C++ -*-
//
// ShowerParticle.h is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_ShowerParticle_H
#define HERWIG_ShowerParticle_H
//
// This is the declaration of the ShowerParticle class.
//
#include "ThePEG/EventRecord/Particle.h"
#include "Herwig/Shower/SplittingFunctions/SplittingFunction.fh"
#include "Herwig/Shower/ShowerConfig.h"
#include "ShowerBasis.h"
#include "ShowerKinematics.h"
#include "ShowerParticle.fh"
#include <iosfwd>
namespace Herwig {
using namespace ThePEG;
/** \ingroup Shower
* This class represents a particle in the showering process.
* It inherits from the Particle class of ThePEG and has some
* specifics information useful only during the showering process.
*
* Notice that:
* - for forward evolution, it is clear what is meant by parent/child;
* for backward evolution, however, it depends whether we want
* to keep a physical picture or a Monte-Carlo effective one.
* In the former case, an incoming particle (emitting particle)
* splits into an emitted particle and the emitting particle after
* the emission: the latter two are then children of the
* emitting particle, the parent. In the Monte-Carlo effective
* picture, we have that the particle close to the hard subprocess,
* with higher (space-like) virtuality, splits into an emitted particle
* and the emitting particle at lower virtuality: the latter two are,
* in this case, the children of the first one, the parent. However we
* choose a more physical picture where the new emitting particle is the
* parented of the emitted final-state particle and the original emitting
* particle.
* - the pointer to a SplitFun object is set only in the case
* that the particle has undergone a shower emission. This is similar to
* the case of the decay of a normal Particle where
* the pointer to a Decayer object is set only in the case
* that the particle has undergone to a decay.
* In the case of particle connected directly to the hard subprocess,
* there is no pointer to the hard subprocess, but there is a method
* isFromHardSubprocess() which returns true only in this case.
*
* @see Particle
* @see ShowerConfig
* @see ShowerKinematics
*/
class ShowerParticle: public Particle {
public:
/**
* Struct for all the info on an evolution partner
*/
struct EvolutionPartner {
/**
* Constructor
*/
EvolutionPartner(tShowerParticlePtr p,double w, ShowerPartnerType::Type t,
Energy s) : partner(p), weight(w), type(t), scale(s)
{}
/**
* The partner
*/
tShowerParticlePtr partner;
/**
* Weight
*/
double weight;
/**
* Type
*/
ShowerPartnerType::Type type;
/**
* The assoicated evolution scale
*/
Energy scale;
};
/**
* Struct to store the evolution scales
*/
struct EvolutionScales {
/**
* Constructor
*/
EvolutionScales() : QED(),QCD_c(),QCD_ac(),
QED_noAO(),QCD_c_noAO(),QCD_ac_noAO(),EW(),
Max_Q2(Constants::MaxEnergy2)
{}
/**
* QED scale
*/
Energy QED;
/**
* QCD colour scale
*/
Energy QCD_c;
/**
* QCD anticolour scale
*/
Energy QCD_ac;
/**
* QED scale
*/
Energy QED_noAO;
/**
* QCD colour scale
*/
Energy QCD_c_noAO;
/**
* QCD anticolour scale
*/
Energy QCD_ac_noAO;
/**
* EW scale
*/
Energy EW;
/**
* EW scale
*/
Energy EW_noAO;
/**
* Maximum allowed virtuality of the particle
*/
Energy2 Max_Q2;
};
/** @name Construction and descruction functions. */
//@{
/**
* Standard Constructor. Note that the default constructor is
* private - there is no particle without a pointer to a
* ParticleData object.
* @param x the ParticleData object
* @param fs Whether or not the particle is an inital or final-state particle
* @param tls Whether or not the particle initiates a time-like shower
*/
ShowerParticle(tcEventPDPtr x, bool fs, bool tls=false)
: Particle(x), _isFinalState(fs),
_perturbative(0), _initiatesTLS(tls), _x(1.0), _showerKinematics(),
_vMass(ZERO), _thePEGBase() {}
/**
* Copy constructor from a ThePEG Particle
* @param x ThePEG particle
* @param pert Where the particle came from
* @param fs Whether or not the particle is an inital or final-state particle
* @param tls Whether or not the particle initiates a time-like shower
*/
ShowerParticle(const Particle & x, unsigned int pert, bool fs, bool tls=false)
: Particle(x), _isFinalState(fs),
_perturbative(pert), _initiatesTLS(tls), _x(1.0), _showerKinematics(),
_vMass(ZERO), _thePEGBase(&x) {}
//@}
public:
/**
* Set a preliminary momentum for the particle
*/
void setShowerMomentum(bool timelike);
/**
* Construct the spin info object for a shower particle
*/
void constructSpinInfo(bool timelike);
/**
* Perform any initial calculations needed after the branching has been selected
*/
void initializeDecay();
/**
* Perform any initial calculations needed after the branching has been selected
* @param parent The beam particle
*/
void initializeInitialState(PPtr parent);
/**
* Perform any initial calculations needed after the branching has been selected
*/
void initializeFinalState();
/**
* Access/Set various flags about the state of the particle
*/
//@{
/**
* Access the flag that tells if the particle is final state
* or initial state.
*/
bool isFinalState() const { return _isFinalState; }
/**
* Access the flag that tells if the particle is initiating a
* time like shower when it has been emitted in an initial state shower.
*/
bool initiatesTLS() const { return _initiatesTLS; }
/**
* Access the flag which tells us where the particle came from
* This is 0 for a particle produced in the shower, 1 if the particle came
* from the hard sub-process and 2 is it came from a decay.
*/
unsigned int perturbative() const { return _perturbative; }
//@}
/**
* Set/Get the momentum fraction for initial-state particles
*/
//@{
/**
* For an initial state particle get the fraction of the beam momentum
*/
void x(double x) { _x = x; }
/**
* For an initial state particle set the fraction of the beam momentum
*/
double x() const { return _x; }
//@}
/**
* Set/Get methods for the ShowerKinematics objects
*/
//@{
/**
* Access/ the ShowerKinematics object.
*/
const ShoKinPtr & showerKinematics() const { return _showerKinematics; }
/**
* Set the ShowerKinematics object.
*/
void showerKinematics(const ShoKinPtr in) { _showerKinematics = in; }
//@}
/**
* Set/Get methods for the ShowerBasis objects
*/
//@{
/**
* Access/ the ShowerBasis object.
*/
const ShowerBasisPtr & showerBasis() const { return _showerBasis; }
/**
* Set the ShowerBasis object.
*/
void showerBasis(const ShowerBasisPtr in, bool copy) {
if(!copy)
_showerBasis = in;
else {
_showerBasis = new_ptr(ShowerBasis());
_showerBasis->setBasis(in->pVector(),in->nVector(),in->frame());
}
}
//@}
/**
* Members relating to the initial evolution scale and partner for the particle
*/
//@{
/**
* Veto emission at a given scale
*/
void vetoEmission(ShowerPartnerType::Type type, Energy scale);
/**
* Access to the evolution scales
*/
const EvolutionScales & scales() const {return scales_;}
/**
* Access to the evolution scales
*/
EvolutionScales & scales() {return scales_;}
/**
* Return the virtual mass\f$
*/
Energy virtualMass() const { return _vMass; }
/**
* Set the virtual mass
*/
void virtualMass(Energy mass) { _vMass = mass; }
/**
* Return the partner
*/
tShowerParticlePtr partner() const { return _partner; }
/**
* Set the partner
*/
void partner(const tShowerParticlePtr partner) { _partner = partner; }
/**
* Get the possible partners
*/
vector<EvolutionPartner> & partners() { return partners_; }
/**
* Add a possible partners
*/
void addPartner(EvolutionPartner in );
/**
* Clear the evolution partners
*/
void clearPartners() { partners_.clear(); }
/**
* Return the progenitor of the shower
*/
tShowerParticlePtr progenitor() const { return _progenitor; }
/**
* Set the progenitor of the shower
*/
void progenitor(const tShowerParticlePtr progenitor) { _progenitor = progenitor; }
//@}
/**
* Members to store and provide access to variables for a specific
* shower evolution scheme
*/
//@{
struct Parameters {
Parameters() : alpha(1.), beta(), ptx(), pty(), pt() {}
double alpha;
double beta;
Energy ptx;
Energy pty;
Energy pt;
};
/**
* Set the vector containing dimensionless variables
*/
Parameters & showerParameters() { return _parameters; }
//@}
/**
* If this particle came from the hard process get a pointer to ThePEG particle
* it came from
*/
const tcPPtr thePEGBase() const { return _thePEGBase; }
public:
/**
* Extract the rho matrix including mapping needed in the shower
*/
RhoDMatrix extractRhoMatrix(bool forward);
protected:
/**
* For a particle which came from the hard process get the spin density and
* the mapping required to the basis used in the Shower
* @param rho The \f$\rho\f$ matrix
* @param mapping The mapping
* @param showerkin The ShowerKinematics object
*/
bool getMapping(SpinPtr &, RhoDMatrix & map);
protected:
/**
* Standard clone function.
*/
virtual PPtr clone() const;
/**
* Standard clone function.
*/
virtual PPtr fullclone() const;
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<ShowerParticle> initShowerParticle;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
ShowerParticle & operator=(const ShowerParticle &);
private:
/**
* Whether the particle is in the final or initial state
*/
bool _isFinalState;
/**
* Whether the particle came from
*/
unsigned int _perturbative;
/**
* Does a particle produced in the backward shower initiate a time-like shower
*/
bool _initiatesTLS;
/**
* Dimensionless parameters
*/
Parameters _parameters;
/**
* The beam energy fraction for particle's in the initial state
*/
double _x;
/**
* The shower kinematics for the particle
*/
ShoKinPtr _showerKinematics;
/**
* The shower basis for the particle
*/
ShowerBasisPtr _showerBasis;
/**
* Storage of the evolution scales
*/
EvolutionScales scales_;
/**
* Virtual mass
*/
Energy _vMass;
/**
* Partners
*/
tShowerParticlePtr _partner;
/**
* Pointer to ThePEG Particle this ShowerParticle was created from
*/
const tcPPtr _thePEGBase;
/**
* Progenitor
*/
tShowerParticlePtr _progenitor;
/**
* Partners
*/
vector<EvolutionPartner> partners_;
};
inline ostream & operator<<(ostream & os, const ShowerParticle::EvolutionScales & es) {
os << "Scales: QED=" << es.QED / GeV
<< " QCD_c=" << es.QCD_c / GeV
<< " QCD_ac=" << es.QCD_ac / GeV
+ << " EW=" << es.EW / GeV
<< " QED_noAO=" << es.QED_noAO / GeV
<< " QCD_c_noAO=" << es.QCD_c_noAO / GeV
<< " QCD_ac_noAO=" << es.QCD_ac_noAO / GeV
+ << " EW_noAO=" << es.EW_noAO / GeV
<< '\n';
return os;
}
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of ShowerParticle. */
template <>
struct BaseClassTrait<Herwig::ShowerParticle,1> {
/** Typedef of the first base class of ShowerParticle. */
typedef Particle NthBase;
};
/** This template specialization informs ThePEG about the name of
* the ShowerParticle class and the shared object where it is defined. */
template <>
struct ClassTraits<Herwig::ShowerParticle>
: public ClassTraitsBase<Herwig::ShowerParticle> {
/** Return a platform-independent class name */
static string className() { return "Herwig::ShowerParticle"; }
/** Create a Event object. */
static TPtr create() { return TPtr::Create(Herwig::ShowerParticle(tcEventPDPtr(),true)); }
};
/** @endcond */
}
#endif /* HERWIG_ShowerParticle_H */
diff --git a/Shower/Base/SudakovFormFactor.cc b/Shower/Base/SudakovFormFactor.cc
--- a/Shower/Base/SudakovFormFactor.cc
+++ b/Shower/Base/SudakovFormFactor.cc
@@ -1,326 +1,326 @@
// -*- C++ -*-
//
// SudakovFormFactor.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SudakovFormFactor class.
//
#include "SudakovFormFactor.h"
#include "ThePEG/Interface/ClassDocumentation.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Reference.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Interface/Parameter.h"
#include "ShowerKinematics.h"
#include "ShowerParticle.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "Herwig/Shower/ShowerHandler.h"
using namespace Herwig;
DescribeAbstractClass<SudakovFormFactor,Interfaced>
describeSudakovFormFactor ("Herwig::SudakovFormFactor","");
void SudakovFormFactor::persistentOutput(PersistentOStream & os) const {
os << splittingFn_ << alpha_ << pdfmax_ << particles_ << pdffactor_
<< a_ << b_ << ounit(c_,GeV) << ounit(kinCutoffScale_,GeV) << cutOffOption_
<< ounit(vgcut_,GeV) << ounit(vqcut_,GeV)
<< ounit(pTmin_,GeV) << ounit(pT2min_,GeV2)
<< theFactorizationScaleFactor << theRenormalizationScaleFactor;
}
void SudakovFormFactor::persistentInput(PersistentIStream & is, int) {
is >> splittingFn_ >> alpha_ >> pdfmax_ >> particles_ >> pdffactor_
>> a_ >> b_ >> iunit(c_,GeV) >> iunit(kinCutoffScale_,GeV) >> cutOffOption_
>> iunit(vgcut_,GeV) >> iunit(vqcut_,GeV)
>> iunit(pTmin_,GeV) >> iunit(pT2min_,GeV2)
>> theFactorizationScaleFactor >> theRenormalizationScaleFactor;
}
void SudakovFormFactor::Init() {
static ClassDocumentation<SudakovFormFactor> documentation
("The SudakovFormFactor class is the base class for the implementation of Sudakov"
" form factors in Herwig");
static Reference<SudakovFormFactor,SplittingFunction>
interfaceSplittingFunction("SplittingFunction",
"A reference to the SplittingFunction object",
&Herwig::SudakovFormFactor::splittingFn_,
false, false, true, false);
static Reference<SudakovFormFactor,ShowerAlpha>
interfaceAlpha("Alpha",
"A reference to the Alpha object",
&Herwig::SudakovFormFactor::alpha_,
false, false, true, false);
static Parameter<SudakovFormFactor,double> interfacePDFmax
("PDFmax",
"Maximum value of PDF weight. ",
&SudakovFormFactor::pdfmax_, 35.0, 1.0, 100000.0,
false, false, Interface::limited);
static Switch<SudakovFormFactor,unsigned int> interfacePDFFactor
("PDFFactor",
"Include additional factors in the overestimate for the PDFs",
&SudakovFormFactor::pdffactor_, 0, false, false);
static SwitchOption interfacePDFFactorOff
(interfacePDFFactor,
"Off",
"Don't include any factors",
0);
static SwitchOption interfacePDFFactorOverZ
(interfacePDFFactor,
"OverZ",
"Include an additional factor of 1/z",
1);
static SwitchOption interfacePDFFactorOverOneMinusZ
(interfacePDFFactor,
"OverOneMinusZ",
"Include an additional factor of 1/(1-z)",
2);
static SwitchOption interfacePDFFactorOverZOneMinusZ
(interfacePDFFactor,
"OverZOneMinusZ",
"Include an additional factor of 1/z/(1-z)",
3);
static Switch<SudakovFormFactor,unsigned int> interfaceCutOffOption
("CutOffOption",
"The type of cut-off to use to end the shower",
&SudakovFormFactor::cutOffOption_, 0, false, false);
static SwitchOption interfaceCutOffOptionDefault
(interfaceCutOffOption,
"Default",
"Use the standard Herwig cut-off on virtualities with the minimum"
" virtuality depending on the mass of the branching particle",
0);
static SwitchOption interfaceCutOffOptionFORTRAN
(interfaceCutOffOption,
"FORTRAN",
"Use a FORTRAN-like cut-off on virtualities",
1);
static SwitchOption interfaceCutOffOptionpT
(interfaceCutOffOption,
"pT",
"Use a cut on the minimum allowed pT",
2);
static Parameter<SudakovFormFactor,double> interfaceaParameter
("aParameter",
"The a parameter for the kinematic cut-off",
&SudakovFormFactor::a_, 0.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,double> interfacebParameter
("bParameter",
"The b parameter for the kinematic cut-off",
&SudakovFormFactor::b_, 2.3, -10.0, 10.0,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacecParameter
("cParameter",
"The c parameter for the kinematic cut-off",
&SudakovFormFactor::c_, GeV, 0.3*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy>
interfaceKinScale ("cutoffKinScale",
"kinematic cutoff scale for the parton shower phase"
" space (unit [GeV])",
&SudakovFormFactor::kinCutoffScale_, GeV,
2.3*GeV, 0.001*GeV, 10.0*GeV,false,false,false);
static Parameter<SudakovFormFactor,Energy> interfaceGluonVirtualityCut
("GluonVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality of the gluon",
&SudakovFormFactor::vgcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfaceQuarkVirtualityCut
("QuarkVirtualityCut",
"For the FORTRAN cut-off option the minimum virtuality added to"
" the mass for particles other than the gluon",
&SudakovFormFactor::vqcut_, GeV, 0.85*GeV, 0.1*GeV, 10.0*GeV,
false, false, Interface::limited);
static Parameter<SudakovFormFactor,Energy> interfacepTmin
("pTmin",
"The minimum pT if using a cut-off on the pT",
&SudakovFormFactor::pTmin_, GeV, 1.0*GeV, ZERO, 10.0*GeV,
false, false, Interface::limited);
}
bool SudakovFormFactor::alphaSVeto(Energy2 pt2) const {
pt2 *= sqr(renormalizationScaleFactor());
return UseRandom::rnd() > ThePEG::Math::powi(alpha_->ratio(pt2),
splittingFn_->interactionOrder());
}
bool SudakovFormFactor::
PDFVeto(const Energy2 t, const double x,
const tcPDPtr parton0, const tcPDPtr parton1,
Ptr<BeamParticleData>::transient_const_pointer beam) const {
assert(pdf_);
Energy2 theScale = t * sqr(factorizationScaleFactor());
if (theScale < sqr(freeze_)) theScale = sqr(freeze_);
double newpdf(0.0), oldpdf(0.0);
//different treatment of MPI ISR is done via CascadeHandler::resetPDFs()
newpdf=pdf_->xfx(beam,parton0,theScale,x/z());
oldpdf=pdf_->xfx(beam,parton1,theScale,x);
if(newpdf<=0.) return true;
if(oldpdf<=0.) return false;
double ratio = newpdf/oldpdf;
double maxpdf(pdfmax_);
switch (pdffactor_) {
case 1:
maxpdf /= z();
break;
case 2:
maxpdf /= 1.-z();
break;
case 3:
maxpdf /= (z()*(1.-z()));
break;
}
// ratio / PDFMax must be a probability <= 1.0
if (ratio > maxpdf) {
generator()->log() << "PDFVeto warning: Ratio > " << name()
<< ":PDFmax (by a factor of "
<< ratio/maxpdf <<") for "
<< parton0->PDGName() << " to "
<< parton1->PDGName() << "\n";
}
return ratio < UseRandom::rnd()*maxpdf;
}
void SudakovFormFactor::addSplitting(const IdList & in) {
bool add=true;
for(unsigned int ix=0;ix<particles_.size();++ix) {
if(particles_[ix].size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if(particles_[ix][iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
add=false;
break;
}
}
}
if(add) particles_.push_back(in);
}
void SudakovFormFactor::removeSplitting(const IdList & in) {
for(vector<IdList>::iterator it=particles_.begin();
it!=particles_.end();++it) {
if(it->size()==in.size()) {
bool match=true;
for(unsigned int iy=0;iy<in.size();++iy) {
if((*it)[iy]!=in[iy]) {
match=false;
break;
}
}
if(match) {
vector<IdList>::iterator itemp=it;
--itemp;
particles_.erase(it);
it = itemp;
}
}
}
}
Energy2 SudakovFormFactor::guesst(Energy2 t1,unsigned int iopt,
- const IdList &ids,
- double enhance,bool ident) const {
+ const IdList &ids,
+ double enhance,bool ident) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double c =
1./((splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
splittingFn_->integOverP(zlimits_.first ,ids,pdfopt))*
alpha_->overestimateValue()/Constants::twopi*enhance);
assert(iopt<=2);
if(iopt==1) {
c/=pdfmax_;
//symmetry of FS gluon splitting
if(ident) c*=0.5;
}
else if(iopt==2) c*=-1.;
if(splittingFn_->interactionOrder()==1) {
double r = UseRandom::rnd();
if(iopt!=2 || c*log(r)<log(Constants::MaxEnergy2/t1)) {
return t1*pow(r,c);
}
else
return Constants::MaxEnergy2;
}
else {
assert(false && "Units are dubious here.");
int nm(splittingFn()->interactionOrder()-1);
c/=Math::powi(alpha_->overestimateValue()/Constants::twopi,nm);
return t1 / pow (1. - nm*c*log(UseRandom::rnd())
* Math::powi(t1*UnitRemoval::InvE2,nm)
,1./double(nm));
}
}
double SudakovFormFactor::guessz (unsigned int iopt, const IdList &ids) const {
unsigned int pdfopt = iopt!=1 ? 0 : pdffactor_;
double lower = splittingFn_->integOverP(zlimits_.first,ids,pdfopt);
return splittingFn_->invIntegOverP
(lower + UseRandom::rnd()*(splittingFn_->integOverP(zlimits_.second,ids,pdfopt) -
lower),ids,pdfopt);
}
void SudakovFormFactor::doinit() {
Interfaced::doinit();
pT2min_ = cutOffOption()==2 ? sqr(pTmin_) : ZERO;
}
const vector<Energy> & SudakovFormFactor::virtualMasses(const IdList & ids) {
static vector<Energy> output;
output.clear();
if(cutOffOption() == 0) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
Energy kinCutoff=
kinematicCutOff(kinScale(),*std::max_element(output.begin(),output.end()));
for(unsigned int ix=0;ix<output.size();++ix)
output[ix]=max(kinCutoff,output[ix]);
}
else if(cutOffOption() == 1) {
for(unsigned int ix=0;ix<ids.size();++ix) {
output.push_back(getParticleData(ids[ix])->mass());
output.back() += ids[ix]==ParticleID::g ? vgCut() : vqCut();
}
}
else if(cutOffOption() == 2) {
for(unsigned int ix=0;ix<ids.size();++ix)
output.push_back(getParticleData(ids[ix])->mass());
}
else {
throw Exception() << "Unknown option for the cut-off"
<< " in SudakovFormFactor::virtualMasses()"
<< Exception::runerror;
}
return output;
}
diff --git a/Shower/SplittingFunctions/SplittingFunction.cc b/Shower/SplittingFunctions/SplittingFunction.cc
--- a/Shower/SplittingFunctions/SplittingFunction.cc
+++ b/Shower/SplittingFunctions/SplittingFunction.cc
@@ -1,1002 +1,1028 @@
// -*- C++ -*-
//
// SplittingFunction.cc is a part of Herwig - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
//
// This is the implementation of the non-inlined, non-templated member
// functions of the SplittingFunction class.
//
#include "SplittingFunction.h"
#include "ThePEG/Utilities/DescribeClass.h"
#include "ThePEG/Persistency/PersistentOStream.h"
#include "ThePEG/Persistency/PersistentIStream.h"
#include "ThePEG/Interface/Switch.h"
#include "ThePEG/Repository/UseRandom.h"
#include "ThePEG/Utilities/EnumIO.h"
#include "Herwig/Shower/Base/ShowerParticle.h"
#include "ThePEG/Utilities/DescribeClass.h"
using namespace Herwig;
DescribeAbstractClass<SplittingFunction,Interfaced>
describeSplittingFunction ("Herwig::SplittingFunction","");
void SplittingFunction::Init() {
static ClassDocumentation<SplittingFunction> documentation
("The SplittingFunction class is the based class for 1->2 splitting functions"
" in Herwig");
static Switch<SplittingFunction,ColourStructure> interfaceColourStructure
("ColourStructure",
"The colour structure for the splitting function",
&SplittingFunction::_colourStructure, Undefined, false, false);
static SwitchOption interfaceColourStructureTripletTripletOctet
(interfaceColourStructure,
"TripletTripletOctet",
"3 -> 3 8",
TripletTripletOctet);
static SwitchOption interfaceColourStructureOctetOctetOctet
(interfaceColourStructure,
"OctetOctetOctet",
"8 -> 8 8",
OctetOctetOctet);
static SwitchOption interfaceColourStructureOctetTripletTriplet
(interfaceColourStructure,
"OctetTripletTriplet",
"8 -> 3 3bar",
OctetTripletTriplet);
static SwitchOption interfaceColourStructureTripletOctetTriplet
(interfaceColourStructure,
"TripletOctetTriplet",
"3 -> 8 3",
TripletOctetTriplet);
static SwitchOption interfaceColourStructureSextetSextetOctet
(interfaceColourStructure,
"SextetSextetOctet",
"6 -> 6 8",
SextetSextetOctet);
static SwitchOption interfaceColourStructureChargedChargedNeutral
(interfaceColourStructure,
"ChargedChargedNeutral",
"q -> q 0",
ChargedChargedNeutral);
static SwitchOption interfaceColourStructureNeutralChargedCharged
(interfaceColourStructure,
"NeutralChargedCharged",
"0 -> q qbar",
NeutralChargedCharged);
static SwitchOption interfaceColourStructureChargedNeutralCharged
(interfaceColourStructure,
"ChargedNeutralCharged",
"q -> 0 q",
ChargedNeutralCharged);
static SwitchOption interfaceColourStructureEW
(interfaceColourStructure,
"EW",
"q -> q W/Z",
EW);
static Switch<SplittingFunction,ShowerInteraction::Type>
interfaceInteractionType
("InteractionType",
"Type of the interaction",
&SplittingFunction::_interactionType,
ShowerInteraction::UNDEFINED, false, false);
static SwitchOption interfaceInteractionTypeQCD
(interfaceInteractionType,
"QCD","QCD",ShowerInteraction::QCD);
static SwitchOption interfaceInteractionTypeQED
(interfaceInteractionType,
"QED","QED",ShowerInteraction::QED);
static SwitchOption interfaceInteractionTypeEW
(interfaceInteractionType,
"EW","EW",ShowerInteraction::EW);
static Switch<SplittingFunction,bool> interfaceAngularOrdered
("AngularOrdered",
"Whether or not this interaction is angular ordered, "
"normally only g->q qbar and gamma-> f fbar are the only ones which aren't.",
&SplittingFunction::angularOrdered_, true, false, false);
static SwitchOption interfaceAngularOrderedYes
(interfaceAngularOrdered,
"Yes",
"Interaction is angular ordered",
true);
static SwitchOption interfaceAngularOrderedNo
(interfaceAngularOrdered,
"No",
"Interaction isn't angular ordered",
false);
}
void SplittingFunction::persistentOutput(PersistentOStream & os) const {
using namespace ShowerInteraction;
os << oenum(_interactionType) << _interactionOrder
<< oenum(_colourStructure) << _colourFactor
<< angularOrdered_;
}
void SplittingFunction::persistentInput(PersistentIStream & is, int) {
using namespace ShowerInteraction;
is >> ienum(_interactionType) >> _interactionOrder
>> ienum(_colourStructure) >> _colourFactor
>> angularOrdered_;
}
void SplittingFunction::colourConnection(tShowerParticlePtr parent,
tShowerParticlePtr first,
tShowerParticlePtr second,
ShowerPartnerType::Type partnerType,
const bool back) const {
if(_colourStructure==TripletTripletOctet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(( cparent.first && !cparent.second &&
partnerType==ShowerPartnerType::QCDColourLine) ||
( !cparent.first && cparent.second &&
partnerType==ShowerPartnerType::QCDAntiColourLine));
// q -> q g
if(cparent.first) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
newline->addColoured ( first);
newline->addAntiColoured (second);
}
// qbar -> qbar g
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.second->addAntiColoured(second);
newline->addColoured(second);
newline->addAntiColoured(first);
}
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(( cfirst.first && !cfirst.second &&
partnerType==ShowerPartnerType::QCDColourLine) ||
( !cfirst.first && cfirst.second &&
partnerType==ShowerPartnerType::QCDAntiColourLine));
// q -> q g
if(cfirst.first) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addAntiColoured(second);
newline->addColoured(second);
newline->addColoured(parent);
}
// qbar -> qbar g
else {
ColinePtr newline=new_ptr(ColourLine());
cfirst.second->addColoured(second);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure==OctetOctetOctet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(cparent.first&&cparent.second);
// ensure first gluon is hardest
if( first->id()==second->id() && parent->showerKinematics()->z()<0.5 )
swap(first,second);
// colour line radiates
if(partnerType==ShowerPartnerType::QCDColourLine) {
// The colour line is radiating
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addAntiColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
// anti colour line radiates
else if(partnerType==ShowerPartnerType::QCDAntiColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addAntiColoured(second);
newline->addColoured(second);
newline->addAntiColoured(first);
}
else
assert(false);
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(cfirst.first&&cfirst.second);
// The colour line is radiating
if(partnerType==ShowerPartnerType::QCDColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addAntiColoured(second);
cfirst.second->addAntiColoured(parent);
newline->addColoured(parent);
newline->addColoured(second);
}
// anti colour line radiates
else if(partnerType==ShowerPartnerType::QCDAntiColourLine) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addColoured(parent);
cfirst.second->addColoured(second);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
else
assert(false);
}
}
else if(_colourStructure == OctetTripletTriplet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(cparent.first&&cparent.second);
cparent.first ->addColoured ( first);
cparent.second->addAntiColoured(second);
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(( cfirst.first && !cfirst.second) ||
(!cfirst.first && cfirst.second));
// g -> q qbar
if(cfirst.first) {
ColinePtr newline=new_ptr(ColourLine());
cfirst.first->addColoured(parent);
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
// g -> qbar q
else {
ColinePtr newline=new_ptr(ColourLine());
cfirst.second->addAntiColoured(parent);
newline->addColoured(second);
newline->addColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure == TripletOctetTriplet) {
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// ensure input consistency
assert(( cparent.first && !cparent.second) ||
(!cparent.first && cparent.second));
// q -> g q
if(cparent.first) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
newline->addColoured (second);
newline->addAntiColoured( first);
}
// qbar -> g qbar
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.second->addAntiColoured(first);
newline->addColoured ( first);
newline->addAntiColoured(second);
}
// Set progenitor
first->progenitor(parent->progenitor());
second->progenitor(parent->progenitor());
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// ensure input consistency
assert(cfirst.first&&cfirst.second);
// q -> g q
if(parent->id()>0) {
cfirst.first ->addColoured(parent);
cfirst.second->addColoured(second);
}
else {
cfirst.first ->addAntiColoured(second);
cfirst.second->addAntiColoured(parent);
}
// Set progenitor
parent->progenitor(first->progenitor());
second->progenitor(first->progenitor());
}
}
else if(_colourStructure==SextetSextetOctet) {
//make sure we're not doing backward evolution
assert(!back);
//make sure something sensible
assert(parent->colourLine() || parent->antiColourLine());
//get the colour lines or anti-colour lines
bool isAntiColour=true;
ColinePair cparent;
if(parent->colourLine()) {
cparent = ColinePair(const_ptr_cast<tColinePtr>(parent->colourInfo()->colourLines()[0]),
const_ptr_cast<tColinePtr>(parent->colourInfo()->colourLines()[1]));
isAntiColour=false;
}
else {
cparent = ColinePair(const_ptr_cast<tColinePtr>(parent->colourInfo()->antiColourLines()[0]),
const_ptr_cast<tColinePtr>(parent->colourInfo()->antiColourLines()[1]));
}
//check for sensible input
// assert(cparent.first && cparent.second);
// sextet has 2 colour lines
if(!isAntiColour) {
//pick at random which of the colour topolgies to take
double topology = UseRandom::rnd();
if(topology < 0.25) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else if(topology >=0.25 && topology < 0.5) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addColoured(second);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else if(topology >= 0.5 && topology < 0.75) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(second);
cparent.second->addColoured(first);
newline->addColoured(first);
newline->addAntiColoured(second);
}
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addColoured(first);
cparent.second->addColoured(second);
newline->addColoured(first);
newline->addAntiColoured(second);
}
}
// sextet has 2 anti-colour lines
else {
double topology = UseRandom::rnd();
if(topology < 0.25){
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(second);
cparent.second->addAntiColoured(first);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else if(topology >=0.25 && topology < 0.5) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(first);
cparent.second->addAntiColoured(second);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else if(topology >= 0.5 && topology < 0.75) {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(second);
cparent.second->addAntiColoured(first);
newline->addAntiColoured(first);
newline->addColoured(second);
}
else {
ColinePtr newline=new_ptr(ColourLine());
cparent.first->addAntiColoured(first);
cparent.second->addAntiColoured(second);
newline->addAntiColoured(first);
newline->addColoured(second);
}
}
}
else if(_colourStructure == ChargedChargedNeutral) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(first);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(first);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// q -> q g
if(cfirst.first) {
cfirst.first->addColoured(parent);
}
// qbar -> qbar g
if(cfirst.second) {
cfirst.second->addAntiColoured(parent);
}
}
}
else if(_colourStructure == ChargedNeutralCharged) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(second);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(second);
}
}
else {
if (second->dataPtr()->iColour()==PDT::Colour3 ) {
ColinePtr newline=new_ptr(ColourLine());
newline->addColoured(second);
newline->addColoured(parent);
}
else if (second->dataPtr()->iColour()==PDT::Colour3bar ) {
ColinePtr newline=new_ptr(ColourLine());
newline->addAntiColoured(second);
newline->addAntiColoured(parent);
}
}
}
else if(_colourStructure == NeutralChargedCharged ) {
if(!back) {
if(first->dataPtr()->coloured()) {
ColinePtr newline=new_ptr(ColourLine());
if(first->dataPtr()->iColour()==PDT::Colour3) {
newline->addColoured (first );
newline->addAntiColoured(second);
}
else if (first->dataPtr()->iColour()==PDT::Colour3bar) {
newline->addColoured (second);
newline->addAntiColoured(first );
}
else
assert(false);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// gamma -> q qbar
if(cfirst.first) {
cfirst.first->addAntiColoured(second);
}
// gamma -> qbar q
else if(cfirst.second) {
cfirst.second->addColoured(second);
}
else
assert(false);
}
}
else if(_colourStructure == EW) {
if(!parent->data().coloured()) return;
if(!back) {
ColinePair cparent = ColinePair(parent->colourLine(),
parent->antiColourLine());
// q -> q g
if(cparent.first) {
cparent.first->addColoured(first);
}
// qbar -> qbar g
if(cparent.second) {
cparent.second->addAntiColoured(first);
}
}
else {
ColinePair cfirst = ColinePair(first->colourLine(),
first->antiColourLine());
// q -> q g
if(cfirst.first) {
cfirst.first->addColoured(parent);
}
// qbar -> qbar g
if(cfirst.second) {
cfirst.second->addAntiColoured(parent);
}
}
}
else {
assert(false);
}
}
void SplittingFunction::doinit() {
Interfaced::doinit();
assert(_interactionType!=ShowerInteraction::UNDEFINED);
assert((_colourStructure>0&&_interactionType==ShowerInteraction::QCD) ||
(_colourStructure<0&&(_interactionType==ShowerInteraction::QED ||
_interactionType==ShowerInteraction::EW)) );
if(_colourFactor>0.) return;
// compute the colour factors if need
if(_colourStructure==TripletTripletOctet) {
_colourFactor = 4./3.;
}
else if(_colourStructure==OctetOctetOctet) {
_colourFactor = 3.;
}
else if(_colourStructure==OctetTripletTriplet) {
_colourFactor = 0.5;
}
else if(_colourStructure==TripletOctetTriplet) {
_colourFactor = 4./3.;
}
else if(_colourStructure==SextetSextetOctet) {
_colourFactor = 10./3.;
}
else if(_colourStructure<0) {
_colourFactor = 1.;
}
else {
assert(false);
}
}
bool SplittingFunction::checkColours(const IdList & ids) const {
tcPDPtr pd[3]={getParticleData(ids[0]),
getParticleData(ids[1]),
getParticleData(ids[2])};
if(_colourStructure==TripletTripletOctet) {
if(ids[0]!=ids[1]) return false;
if((pd[0]->iColour()==PDT::Colour3||pd[0]->iColour()==PDT::Colour3bar) &&
pd[2]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==OctetOctetOctet) {
for(unsigned int ix=0;ix<3;++ix) {
if(pd[ix]->iColour()!=PDT::Colour8) return false;
}
return true;
}
else if(_colourStructure==OctetTripletTriplet) {
if(pd[0]->iColour()!=PDT::Colour8) return false;
if(pd[1]->iColour()==PDT::Colour3&&pd[2]->iColour()==PDT::Colour3bar)
return true;
if(pd[1]->iColour()==PDT::Colour3bar&&pd[2]->iColour()==PDT::Colour3)
return true;
return false;
}
else if(_colourStructure==TripletOctetTriplet) {
if(ids[0]!=ids[2]) return false;
if((pd[0]->iColour()==PDT::Colour3||pd[0]->iColour()==PDT::Colour3bar) &&
pd[1]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==SextetSextetOctet) {
if(ids[0]!=ids[1]) return false;
if((pd[0]->iColour()==PDT::Colour6 || pd[0]->iColour()==PDT::Colour6bar) &&
pd[2]->iColour()==PDT::Colour8) return true;
return false;
}
else if(_colourStructure==ChargedChargedNeutral) {
if(ids[0]!=ids[1]) return false;
if(pd[2]->iCharge()!=0) return false;
if(pd[0]->iCharge()==pd[1]->iCharge()) return true;
return false;
}
else if(_colourStructure==ChargedNeutralCharged) {
if(ids[0]!=ids[2]) return false;
if(pd[1]->iCharge()!=0) return false;
if(pd[0]->iCharge()==pd[2]->iCharge()) return true;
return false;
}
else if(_colourStructure==NeutralChargedCharged) {
if(ids[1]!=-ids[2]) return false;
if(pd[0]->iCharge()!=0) return false;
if(pd[1]->iCharge()==-pd[2]->iCharge()) return true;
return false;
}
else {
assert(false);
}
return false;
}
namespace {
bool hasColour(tPPtr p) {
PDT::Colour colour = p->dataPtr()->iColour();
return colour==PDT::Colour3 || colour==PDT::Colour8 || colour == PDT::Colour6;
}
bool hasAntiColour(tPPtr p) {
PDT::Colour colour = p->dataPtr()->iColour();
return colour==PDT::Colour3bar || colour==PDT::Colour8 || colour == PDT::Colour6bar;
}
}
void SplittingFunction::evaluateFinalStateScales(ShowerPartnerType::Type partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr emitter,
tShowerParticlePtr emitted) {
// identify emitter and emitted
double zEmitter = z, zEmitted = 1.-z;
bool bosonSplitting(false);
// special for g -> gg, particle highest z is emitter
if(emitter->id() == emitted->id() && emitter->id() == parent->id() &&
zEmitted > zEmitter) {
swap(zEmitted,zEmitter);
swap( emitted, emitter);
}
// otherwise if particle ID same
else if(emitted->id()==parent->id()) {
swap(zEmitted,zEmitter);
swap( emitted, emitter);
}
// no real emitter/emitted
else if(emitter->id()!=parent->id()) {
bosonSplitting = true;
}
// may need to add angularOrder flag here
// now the various scales
// QED
if(partnerType==ShowerPartnerType::QED) {
assert(colourStructure()==ChargedChargedNeutral ||
colourStructure()==ChargedNeutralCharged ||
colourStructure()==NeutralChargedCharged );
// normal case
if(!bosonSplitting) {
assert(colourStructure()==ChargedChargedNeutral ||
colourStructure()==ChargedNeutralCharged );
// set the scales
// emitter
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
emitter->scales().QCD_c = min(scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min(scale,parent->scales().QCD_c_noAO );
emitter->scales().QCD_ac = min(scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min(scale,parent->scales().QCD_ac_noAO);
emitter->scales().EW = min(scale,parent->scales().EW );
emitter->scales().EW_noAO = min(scale,parent->scales().EW_noAO );
// emitted
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
emitted->scales().QCD_c = ZERO;
emitted->scales().QCD_c_noAO = ZERO;
emitted->scales().QCD_ac = ZERO;
emitted->scales().QCD_ac_noAO = ZERO;
emitted->scales().EW = min(scale,parent->scales().EW );
emitted->scales().EW_noAO = min(scale,parent->scales().EW_noAO );
}
// gamma -> f fbar
else {
assert(colourStructure()==NeutralChargedCharged );
// emitter
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
if(hasColour(emitter)) {
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(emitter)) {
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
}
emitter->scales().EW = zEmitter*scale;
emitter->scales().EW_noAO = scale;
// emitted
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
if(hasColour(emitted)) {
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(emitted)) {
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
emitted->scales().EW = zEmitted*scale;
emitted->scales().EW_noAO = scale;
}
}
// QCD
else if (partnerType==ShowerPartnerType::QCDColourLine ||
partnerType==ShowerPartnerType::QCDAntiColourLine) {
// normal case eg q -> q g and g -> g g
if(!bosonSplitting) {
emitter->scales().QED = min(scale,parent->scales().QED );
emitter->scales().QED_noAO = min(scale,parent->scales().QED_noAO);
emitter->scales().EW = min(scale,parent->scales().EW );
emitter->scales().EW_noAO = min(scale,parent->scales().EW_noAO);
if(partnerType==ShowerPartnerType::QCDColourLine) {
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
emitter->scales().QCD_ac = min(zEmitter*scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min( scale,parent->scales().QCD_ac_noAO);
}
else {
emitter->scales().QCD_c = min(zEmitter*scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min( scale,parent->scales().QCD_c_noAO );
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
}
// emitted
emitted->scales().QED = ZERO;
emitted->scales().QED_noAO = ZERO;
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
emitted->scales().EW = min(scale,parent->scales().EW );
emitted->scales().EW_noAO = min(scale,parent->scales().EW_noAO);
}
// g -> q qbar
else {
// emitter
if(emitter->dataPtr()->charged()) {
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
}
emitter->scales().EW = zEmitter*scale;
emitter->scales().EW_noAO = scale;
emitter->scales().QCD_c = zEmitter*scale;
emitter->scales().QCD_c_noAO = scale;
emitter->scales().QCD_ac = zEmitter*scale;
emitter->scales().QCD_ac_noAO = scale;
// emitted
if(emitted->dataPtr()->charged()) {
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
}
emitted->scales().EW = zEmitted*scale;
emitted->scales().EW_noAO = scale;
emitted->scales().QCD_c = zEmitted*scale;
emitted->scales().QCD_c_noAO = scale;
emitted->scales().QCD_ac = zEmitted*scale;
emitted->scales().QCD_ac_noAO = scale;
}
}
else if(partnerType==ShowerPartnerType::EW) {
// EW
emitter->scales().EW = zEmitter*scale;
emitter->scales().EW_noAO = scale;
emitted->scales().EW = zEmitted*scale;
emitted->scales().EW_noAO = scale;
// QED
// W radiation AO
if(emitted->dataPtr()->charged()) {
emitter->scales().QED = zEmitter*scale;
emitter->scales().QED_noAO = scale;
emitted->scales().QED = zEmitted*scale;
emitted->scales().QED_noAO = scale;
}
// Z don't
else {
emitter->scales().QED = min(scale,parent->scales().QED );
emitter->scales().QED_noAO = min(scale,parent->scales().QED_noAO);
emitted->scales().QED = ZERO;
emitted->scales().QED_noAO = ZERO;
}
// QCD
emitter->scales().QCD_c = min(scale,parent->scales().QCD_c );
emitter->scales().QCD_c_noAO = min(scale,parent->scales().QCD_c_noAO );
emitter->scales().QCD_ac = min(scale,parent->scales().QCD_ac );
emitter->scales().QCD_ac_noAO = min(scale,parent->scales().QCD_ac_noAO);
emitted->scales().QCD_c = ZERO;
emitted->scales().QCD_c_noAO = ZERO;
emitted->scales().QCD_ac = ZERO;
emitted->scales().QCD_ac_noAO = ZERO;
}
else
assert(false);
}
void SplittingFunction::evaluateInitialStateScales(ShowerPartnerType::Type partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr spacelike,
tShowerParticlePtr timelike) {
// scale for time-like child
Energy AOScale = (1.-z)*scale;
// QED
if(partnerType==ShowerPartnerType::QED) {
if(parent->id()==spacelike->id()) {
// parent
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
}
else if(parent->id()==timelike->id()) {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
if(hasColour(parent)) {
parent ->scales().QCD_c = scale;
parent ->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(parent)) {
parent ->scales().QCD_ac = scale;
parent ->scales().QCD_ac_noAO = scale;
}
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
if(hasColour(timelike)) {
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
}
}
else {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
parent ->scales().QCD_c = ZERO ;
parent ->scales().QCD_c_noAO = ZERO ;
parent ->scales().QCD_ac = ZERO ;
parent ->scales().QCD_ac_noAO = ZERO ;
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
if(hasColour(timelike)) {
timelike->scales().QCD_c = min(AOScale,spacelike->scales().QCD_ac );
timelike->scales().QCD_c_noAO = min( scale,spacelike->scales().QCD_ac_noAO);
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = min(AOScale,spacelike->scales().QCD_c );
timelike->scales().QCD_ac_noAO = min( scale,spacelike->scales().QCD_c_noAO );
}
}
}
// QCD
else if (partnerType==ShowerPartnerType::QCDColourLine ||
partnerType==ShowerPartnerType::QCDAntiColourLine) {
// timelike
if(timelike->dataPtr()->charged()) {
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
}
if(hasColour(timelike)) {
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(timelike)) {
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
}
if(parent->id()==spacelike->id()) {
parent ->scales().QED = min(scale,spacelike->scales().QED );
parent ->scales().QED_noAO = min(scale,spacelike->scales().QED_noAO );
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
}
else {
if(parent->dataPtr()->charged()) {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
}
if(hasColour(parent)) {
parent ->scales().QCD_c = scale;
parent ->scales().QCD_c_noAO = scale;
}
if(hasAntiColour(parent)) {
parent ->scales().QCD_ac = scale;
parent ->scales().QCD_ac_noAO = scale;
}
}
}
else if(partnerType==ShowerPartnerType::EW) {
if(abs(spacelike->id())!=ParticleID::Wplus &&
spacelike->id() !=ParticleID::Z0 ) {
// QCD scales
parent ->scales().QCD_c = min(scale,spacelike->scales().QCD_c );
parent ->scales().QCD_c_noAO = min(scale,spacelike->scales().QCD_c_noAO );
parent ->scales().QCD_ac = min(scale,spacelike->scales().QCD_ac );
parent ->scales().QCD_ac_noAO = min(scale,spacelike->scales().QCD_ac_noAO);
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
// QED scales
if(timelike->id()==ParticleID::Z0) {
parent ->scales().QED = min(scale,spacelike->scales().QED );
parent ->scales().QED_noAO = min(scale,spacelike->scales().QED_noAO );
timelike->scales().QED = ZERO;
timelike->scales().QED_noAO = ZERO;
}
else {
parent ->scales().QED = scale;
parent ->scales().QED_noAO = scale;
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
}
// EW scales
parent ->scales().EW = scale;
parent ->scales().EW_noAO = scale;
timelike->scales().EW = AOScale;
timelike->scales().EW_noAO = scale;
}
else assert(false);
}
else
assert(false);
}
void SplittingFunction::evaluateDecayScales(ShowerPartnerType::Type partnerType,
Energy scale, double z,
tShowerParticlePtr parent,
tShowerParticlePtr spacelike,
tShowerParticlePtr timelike) {
assert(parent->id()==spacelike->id());
// angular-ordered scale for 2nd child
Energy AOScale = (1.-z)*scale;
// QED
if(partnerType==ShowerPartnerType::QED) {
// timelike
timelike->scales().QED = AOScale;
timelike->scales().QED_noAO = scale;
timelike->scales().QCD_c = ZERO;
timelike->scales().QCD_c_noAO = ZERO;
timelike->scales().QCD_ac = ZERO;
timelike->scales().QCD_ac_noAO = ZERO;
+ timelike->scales().EW = ZERO;
+ timelike->scales().EW_noAO = ZERO;
// spacelike
spacelike->scales().QED = scale;
spacelike->scales().QED_noAO = scale;
+ spacelike->scales().EW = max(scale,parent->scales().EW );
+ spacelike->scales().EW_noAO = max(scale,parent->scales().EW_noAO );
}
// QCD
else if(partnerType==ShowerPartnerType::QCDColourLine ||
partnerType==ShowerPartnerType::QCDAntiColourLine) {
// timelike
timelike->scales().QED = ZERO;
timelike->scales().QED_noAO = ZERO;
timelike->scales().QCD_c = AOScale;
timelike->scales().QCD_c_noAO = scale;
timelike->scales().QCD_ac = AOScale;
timelike->scales().QCD_ac_noAO = scale;
+ timelike->scales().EW = ZERO;
+ timelike->scales().EW_noAO = ZERO;
// spacelike
spacelike->scales().QED = max(scale,parent->scales().QED );
spacelike->scales().QED_noAO = max(scale,parent->scales().QED_noAO );
+ spacelike->scales().EW = max(scale,parent->scales().EW );
+ spacelike->scales().EW_noAO = max(scale,parent->scales().EW_noAO );
}
- else {
+ else if(partnerType==ShowerPartnerType::EW) {
+ // EW
+ timelike->scales().EW = AOScale;
+ timelike->scales().EW_noAO = scale;
+ spacelike->scales().EW = max(scale,parent->scales().EW );
+ spacelike->scales().EW_noAO = max(scale,parent->scales().EW_noAO );
+ // QCD
+ timelike->scales().QCD_c = ZERO;
+ timelike->scales().QCD_c_noAO = ZERO;
+ timelike->scales().QCD_ac = ZERO;
+ timelike->scales().QCD_ac_noAO = ZERO;
+ timelike->scales().EW = ZERO;
+ timelike->scales().EW_noAO = ZERO;
+ // QED
+ timelike->scales().QED = ZERO;
+ timelike->scales().QED_noAO = ZERO;
+ spacelike->scales().QED = max(scale,parent->scales().QED );
+ spacelike->scales().QED_noAO = max(scale,parent->scales().QED_noAO );
+ }
+ else
assert(false);
- }
spacelike->scales().QCD_c = max(scale,parent->scales().QCD_c );
spacelike->scales().QCD_c_noAO = max(scale,parent->scales().QCD_c_noAO );
spacelike->scales().QCD_ac = max(scale,parent->scales().QCD_ac );
spacelike->scales().QCD_ac_noAO = max(scale,parent->scales().QCD_ac_noAO);
}

File Metadata

Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:24 PM (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3804942
Default Alt Text
(183 KB)

Event Timeline