Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877284
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
13 KB
Subscribers
None
View Options
Index: trunk/examples/sartreMain.cpp
===================================================================
--- trunk/examples/sartreMain.cpp (revision 451)
+++ trunk/examples/sartreMain.cpp (revision 452)
@@ -1,363 +1,362 @@
//==============================================================================
// sartreMain.cpp
//
// Copyright (C) 2010-2021 Tobias Toll and Thomas Ullrich
//
// This file is part of Sartre.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation.
// This program is distributed in the hope that it will be useful,
// but without any warranty; without even the implied warranty of
// merchantability or fitness for a particular purpose. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Author: Thomas Ullrich
// Last update:
// $Date$
// $Author$
//==============================================================================
//
// Example main program. Useful to get started and easy to modify to fit
// the user need. Data are stored in a simple but complete Root TTree.
//
//==============================================================================
#include <iostream>
#include <cmath>
#include "TTree.h"
#include "TFile.h"
#include "TGenPhaseSpace.h"
#include "TH1D.h"
#include "TROOT.h"
#include "TLorentzVector.h"
#include "TClonesArray.h"
#include "Sartre.h"
#include "Settings.h"
#include "DipoleModelParameters.h"
#include "TwoBodyVectorMesonDecay.h"
#include "EicSmearFormatWriter.h"
#define PR(x) cout << #x << " = " << (x) << endl;
#define EIC_SMEAR_OUTPUT 1
using namespace std;
struct rootSartreEvent {
double t;
double Q2;
double x;
double s;
double y;
double W;
double xpom;
int iEvent;
int pol; // 0=transverse or 1=longitudinal
int dmode; // 0=coherent, 1=Incoherent
};
rootSartreEvent myRootSartreEvent;
void randomlyReverseBeams(Event* ); // for UPC mode
int main(int argc, char *argv[])
{
//
// Check command line arguments
//
if (! (argc == 2 || argc == 3) ) {
cout << "Usage: " << argv[0] << " runcard [rootfile]" << endl;
return 2;
}
string runcard = argv[1];
//
// Create the generator and initialize it.
// Once initialized you cannot (should not) change
// the settings w/o re-initialing sartre.
//
Sartre sartre;
bool ok = sartre.init(runcard);
if (!ok) {
cerr << "Error: Initialization of sartre failed." << endl;
return 1;
}
EventGeneratorSettings* settings = sartre.runSettings();
//
// ROOT file
// Use the one from command line unless not given
// in which case the one in the runcard is used.
//
string rootfile;
if (argc == 3) {
rootfile = argv[2];
settings->setRootfile(argv[2]);
}
else
rootfile = settings->rootfile();
//
// Print out all Sartre settings
//
settings->list();
TFile *hfile = 0;
if (rootfile.size()) {
hfile = new TFile(rootfile.c_str(),"RECREATE");
cout << "ROOT file is '" << rootfile.c_str() << "'." << endl;
}
//
// Derive filename for eic smear compatible output
// from root file
//
#if defined(EIC_SMEAR_OUTPUT)
string eicSmearFilename;
eicSmearFilename = rootfile.substr(0, rootfile.find(".root"));
eicSmearFilename += ".out";
EicSmearFormatWriter eicSmearWriter;
eicSmearWriter.open(eicSmearFilename, settings->enableNuclearBreakup());
cout << "eic-smear compatible output file is '" << eicSmearFilename.c_str() << "'." << endl;
#endif
//
// Setup ROOT tree
//
TLorentzVector *eIn = new TLorentzVector;
TLorentzVector *pIn = new TLorentzVector;
TLorentzVector *vm = new TLorentzVector;
TLorentzVector *eOut = new TLorentzVector;
TLorentzVector *pOut = new TLorentzVector;
TLorentzVector *gamma = new TLorentzVector;
TLorentzVector *vmDaughter1 = new TLorentzVector;
TLorentzVector *vmDaughter2 = new TLorentzVector;
TClonesArray protons("TLorentzVector");
TClonesArray neutrons("TLorentzVector");
TClonesArray remnants("TLorentzVector");
TTree tree("tree","sartre");
tree.Branch("event", &myRootSartreEvent.t,
"t/D:Q2/D:x/D:s/D:y/D:W/D:xpom/D:iEvent/I:pol/I:dmode/I");
tree.Branch("eIn", "TLorentzVector", &eIn, 32000, 0);
tree.Branch("pIn", "TLorentzVector", &pIn, 32000, 0);
tree.Branch("vm", "TLorentzVector", &vm, 32000, 0);
tree.Branch("eOut", "TLorentzVector", &eOut, 32000, 0);
tree.Branch("pOut", "TLorentzVector", &pOut, 32000, 0);
tree.Branch("gamma","TLorentzVector", &gamma, 32000, 0);
tree.Branch("vmDaughter1", "TLorentzVector", &vmDaughter1, 32000, 0);
tree.Branch("vmDaughter2", "TLorentzVector", &vmDaughter2, 32000, 0);
if(settings->enableNuclearBreakup()) {
tree.Branch("protons", &protons);
tree.Branch("neutrons", &neutrons);
tree.Branch("nuclearRemnants", &remnants);
}
//
// Prepare event generation
//
TwoBodyVectorMesonDecay decayEngine;
pair<TLorentzVector, TLorentzVector> daughters;
int daughterID = settings->userInt();
bool doPerformDecay = false;
if (daughterID && settings->vectorMesonId() != 22) {
if (abs(daughterID) == 11 || abs(daughterID) == 13 ||
abs(daughterID) == 211 || abs(daughterID) == 321) {
doPerformDecay = true;
cout << "Will decay vector meson: ";
cout << settings->lookupPDG(settings->vectorMesonId())->GetName();
cout << " -> ";
cout << settings->lookupPDG(daughterID)->GetName();
cout << " ";
cout << settings->lookupPDG(-daughterID)->GetName();
cout << endl;
}
else {
cerr << "Error: Cannot decay vector meson to daughters with ID=" << daughterID << "." << endl;
return 1;
}
}
//
// Events and how often to show status
//
int nPrint;
if (settings->timesToShow())
nPrint = settings->numberOfEvents()/settings->timesToShow();
else
nPrint = 0;
unsigned long maxEvents = settings->numberOfEvents();
cout << "Generating " << maxEvents << " events." << endl << endl;
//
// Event generation
//
for (unsigned long iEvent = 0; iEvent < maxEvents; iEvent++) {
//
// Generate one event
//
Event *event = sartre.generateEvent();
if (nPrint && (iEvent+1)%nPrint == 0 && iEvent != 0) {
cout << "processed " << iEvent+1 << " events" << endl;
}
//
// If Sartre is run in UPC mode, half of the events needs to be
// rotated around and axis perpendicular to z:
//
if(settings->UPC() && settings->A() == settings->UPCA()){
randomlyReverseBeams(event);
}
//
// Fill ROOT tree
//
myRootSartreEvent.iEvent = event->eventNumber;
- myRootSartreEvent.t = event->t;
+ myRootSartreEvent.t = event->t;
myRootSartreEvent.Q2 = event->Q2;
- myRootSartreEvent.x = event->x;
- myRootSartreEvent.y = event->y;
- myRootSartreEvent.s = event->s;
- myRootSartreEvent.W = event->W;
- myRootSartreEvent.xpom = event->xpom;
- myRootSartreEvent.pol = event->polarization == transverse ? 0 : 1;
+ myRootSartreEvent.x = event->x;
+ myRootSartreEvent.y = event->y;
+ myRootSartreEvent.s = event->s;
+ myRootSartreEvent.W = event->W;
+ myRootSartreEvent.xpom = event->xpom;
+ myRootSartreEvent.pol = event->polarization == transverse ? 0 : 1;
myRootSartreEvent.dmode = event->diffractiveMode == coherent ? 0 : 1;
*eIn = event->particles[0].p;
*pIn = event->particles[1].p;
*eOut = event->particles[2].p;
*pOut = event->particles[6].p;
*vm = event->particles[4].p;
*gamma = event->particles[3].p;
//
// Decay the vector meson and fill the decay products in the tree.
// For the decay we use the version that is sensitive to the
// polarization of the virtual photon (on a statistical basis).
// Also update "event" with the decay product.
//
if (doPerformDecay) {
daughters = decayEngine.decayVectorMeson(*vm, *event, daughterID);
*vmDaughter1 = daughters.first;
*vmDaughter2 = daughters.second;
Particle vmD1, vmD2;
vmD1.index = 7;
vmD1.pdgId = daughterID;
vmD1.status = 1;
vmD1.p = daughters.first;
vmD1.parents.push_back(4);
vmD2.index = 8;
vmD2.pdgId = -daughterID;
vmD2.status = 1;
vmD2.p = daughters.second;
vmD2.parents.push_back(4);
event->particles[4].status = 2; // mark J/psi as decayed
event->particles[4].daughters.push_back(7);
event->particles[4].daughters.push_back(8);
//
// If there are no breakup fragments we simply
// add the decay daughters to the particle list.
// Otherwise we insert them before the fragments.
//
if (settings->enableNuclearBreakup() && event->diffractiveMode == incoherent) {
- vector<Particle>::iterator it;
- it = event->particles.begin();
+ vector<Particle>::iterator it = event->particles.begin();
event->particles.insert(it+7, vmD1);
it = event->particles.begin(); // it might have become invalid if reallocated
event->particles.insert(it+8, vmD2);
}
else {
event->particles.push_back(vmD1);
event->particles.push_back(vmD2);
}
}
- //If the event is incoherent, and nuclear breakup is enabled, fill the remnants to the tree
+ //
+ // If the event is incoherent, and nuclear breakup is enabled, fill the remnants to the tree
+ //
if (settings->enableNuclearBreakup() && event->diffractiveMode == incoherent){
protons.Clear();
neutrons.Clear();
remnants.Clear();
unsigned int startIndex = doPerformDecay ? 9 : 7;
for(unsigned int iParticle=startIndex; iParticle < event->particles.size(); iParticle++){
if(event->particles[iParticle].status == 1) { // Final-state particle
const Particle& particle = event->particles[iParticle];
switch (abs(particle.pdgId)) {
case 2212: // (Anti-)proton
new(protons[protons.GetEntries()]) TLorentzVector(particle.p);
break;
case 2112: // (Anti-)neutron
new(neutrons[neutrons.GetEntries()]) TLorentzVector(particle.p);
break;
default: // Any other remnant
new(remnants[remnants.GetEntries()]) TLorentzVector(particle.p);
break;
} // switch
} // if
} // for
} // if
//
// Print out (here only for the first few events)
//
if (iEvent < 10) event->list();
//
// Fill and write event to file
//
tree.Fill();
#if defined(EIC_SMEAR_OUTPUT)
eicSmearWriter.writeEvent(event);
#endif
}
cout << "All events processed\n" << endl;
//
// That's it, finish up
//
-#if defined(EIC_SMEAR_OUTPUT)
- eicSmearWriter.close();
-#endif
double totalCS=sartre.totalCrossSection();
TH1D* histoForCSandNumberOfEvents = new TH1D("histoForCSandNumberOfEvents", "Cross-section and Number of Events", 2, 0., 1.);
histoForCSandNumberOfEvents->SetBinContent(1, totalCS);
histoForCSandNumberOfEvents->SetBinContent(2, maxEvents);
double runTime = sartre.runTime();
hfile->Write();
- cout << rootfile.c_str() << " written." << endl;
+ cout << "File '" << rootfile << "' written." << endl;
#if defined(EIC_SMEAR_OUTPUT)
- cout << eicSmearWriter.filename() << " written." << endl;
+ eicSmearWriter.close();
+ cout << "File '" << eicSmearWriter.filename() << "' written." << endl;
#endif
cout << "Total cross-section: " << totalCS << " nb" << endl;
sartre.listStatus();
cout << "CPU Time/event: " << 1000*runTime/maxEvents << " msec/evt" << endl;
return 0;
}
// UPC only
void randomlyReverseBeams(Event* myEvent)
{
TRandom3 *random = EventGeneratorSettings::randomGenerator();
if(random->Uniform(1) > 0.5){
for(unsigned int i=0; i<myEvent->particles.size(); i++)
myEvent->particles.at(i).p.RotateX(M_PI);
}
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 3:03 PM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3804901
Default Alt Text
(13 KB)
Attached To
rSARTRESVN sartresvn
Event Timeline
Log In to Comment