Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7877179
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
59 KB
Subscribers
None
View Options
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index d3fbad8..57df05e 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,1644 +1,1707 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#include "HEJ/MatrixElement.hh"
#include <algorithm>
#include <assert.h>
#include <limits>
#include <math.h>
#include <stddef.h>
#include <unordered_map>
#include <utility>
#include "CLHEP/Vector/LorentzVector.h"
#include "HEJ/Constants.hh"
#include "HEJ/Wjets.hh"
#include "HEJ/Hjets.hh"
#include "HEJ/jets.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/event_types.hh"
#include "HEJ/Event.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/Particle.hh"
#include "HEJ/utility.hh"
namespace HEJ{
double MatrixElement::omega0(
double alpha_s, double mur,
fastjet::PseudoJet const & q_j
) const {
const double lambda = param_.regulator_lambda;
const double result = - alpha_s*N_C/M_PI*log(q_j.perp2()/(lambda*lambda));
if(! param_.log_correction) return result;
return (
1. + alpha_s/(4.*M_PI)*beta0*log(mur*mur/(q_j.perp()*lambda))
)*result;
}
Weights MatrixElement::operator()(Event const & event) const {
return tree(event)*virtual_corrections(event);
}
Weights MatrixElement::tree(Event const & event) const {
return tree_param(event)*tree_kin(event);
}
Weights MatrixElement::tree_param(Event const & event) const {
if(! is_resummable(event.type())) {
return Weights{0., std::vector<double>(event.variations().size(), 0.)};
}
Weights result;
// only compute once for each renormalisation scale
std::unordered_map<double, double> known;
result.central = tree_param(event, event.central().mur);
known.emplace(event.central().mur, result.central);
for(auto const & var: event.variations()) {
const auto ME_it = known.find(var.mur);
if(ME_it == end(known)) {
const double wt = tree_param(event, var.mur);
result.variations.emplace_back(wt);
known.emplace(var.mur, wt);
}
else {
result.variations.emplace_back(ME_it->second);
}
}
return result;
}
Weights MatrixElement::virtual_corrections(Event const & event) const {
if(! is_resummable(event.type())) {
return Weights{0., std::vector<double>(event.variations().size(), 0.)};
}
Weights result;
// only compute once for each renormalisation scale
std::unordered_map<double, double> known;
result.central = virtual_corrections(event, event.central().mur);
known.emplace(event.central().mur, result.central);
for(auto const & var: event.variations()) {
const auto ME_it = known.find(var.mur);
if(ME_it == end(known)) {
const double wt = virtual_corrections(event, var.mur);
result.variations.emplace_back(wt);
known.emplace(var.mur, wt);
}
else {
result.variations.emplace_back(ME_it->second);
}
}
return result;
}
double MatrixElement::virtual_corrections_W(
Event const & event,
double mur,
Particle const & WBoson
) const{
auto const & in = event.incoming();
const auto partons = filter_partons(event.outgoing());
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
assert(partons.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - partons[0].p;
size_t first_idx = 0;
size_t last_idx = partons.size() - 1;
#ifndef NDEBUG
bool wc = true;
#endif
bool wqq = false;
// With extremal qqx or unordered gluon outside the extremal
// partons then it is not part of the FKL ladder and does not
// contribute to the virtual corrections. W emitted from the
// most backward leg must be taken into account in t-channel
if (event.type() == event_type::unob) {
q -= partons[1].p;
++first_idx;
if (in[0].type != partons[1].type ){
q -= WBoson.p;
#ifndef NDEBUG
wc=false;
#endif
}
}
else if (event.type() == event_type::qqxexb) {
q -= partons[1].p;
++first_idx;
if (abs(partons[0].type) != abs(partons[1].type)){
q -= WBoson.p;
#ifndef NDEBUG
wc=false;
#endif
}
}
else {
if(event.type() == event_type::unof
|| event.type() == event_type::qqxexf){
--last_idx;
}
if (in[0].type != partons[0].type ){
q -= WBoson.p;
#ifndef NDEBUG
wc=false;
#endif
}
}
size_t first_idx_qqx = last_idx;
size_t last_idx_qqx = last_idx;
//if qqxMid event, virtual correction do not occur between
//qqx pair.
if(event.type() == event_type::qqxmid){
const auto backquark = std::find_if(
begin(partons) + 1, end(partons) - 1 ,
[](Particle const & s){ return (s.type != pid::gluon); }
);
if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0;
if(abs(backquark->type) != abs((backquark+1)->type)) {
wqq=true;
#ifndef NDEBUG
wc=false;
#endif
}
last_idx = std::distance(begin(partons), backquark);
first_idx_qqx = last_idx+1;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q)*(
partons[j+1].rapidity() - partons[j].rapidity()
);
q -=partons[j+1].p;
} // End Loop one
if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p;
if (wqq) q -= WBoson.p;
for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
exponent += omega0(alpha_s, mur, q)*(
partons[j+1].rapidity() - partons[j].rapidity()
);
q -= partons[j+1].p;
}
#ifndef NDEBUG
if (wc) q -= WBoson.p;
assert(
nearby(q, -1*pb, norm)
|| is_AWZH_boson(partons.back().type)
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf
);
#endif
return exp(exponent);
}
double MatrixElement::virtual_corrections(
Event const & event,
double mur
) const{
auto const & in = event.incoming();
auto const & out = event.outgoing();
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
const auto AWZH_boson = std::find_if(
begin(out), end(out),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson != end(out) && abs(AWZH_boson->type) == pid::Wp){
return virtual_corrections_W(event, mur, *AWZH_boson);
}
assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
assert(out.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - out[0].p;
size_t first_idx = 0;
size_t last_idx = out.size() - 1;
// if there is a Higgs boson, extremal qqx or unordered gluon
// outside the extremal partons then it is not part of the FKL
// ladder and does not contribute to the virtual corrections
if((out.front().type == pid::Higgs)
|| event.type() == event_type::unob
|| event.type() == event_type::qqxexb){
q -= out[1].p;
++first_idx;
}
if((out.back().type == pid::Higgs)
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf){
--last_idx;
}
size_t first_idx_qqx = last_idx;
size_t last_idx_qqx = last_idx;
//if qqxMid event, virtual correction do not occur between
//qqx pair.
if(event.type() == event_type::qqxmid){
const auto backquark = std::find_if(
begin(out) + 1, end(out) - 1 ,
[](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
);
if(backquark == end(out) || (backquark+1)->type==pid::gluon) return 0;
last_idx = std::distance(begin(out), backquark);
first_idx_qqx = last_idx+1;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
if (last_idx != first_idx_qqx) q -= out[last_idx+1].p;
for(size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
exponent += omega0(alpha_s, mur, q)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
assert(
nearby(q, -1*pb, norm)
|| out.back().type == pid::Higgs
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf
);
return exp(exponent);
}
namespace {
//! Lipatov vertex for partons emitted into extremal jets
double C2Lipatov(
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2
){
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans
+ p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
- p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction for partons emitted into extremal jets
double C2Lipatovots(
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
double lambda
) {
double kperp=(qav-qbv).perp();
if (kperp>lambda)
return C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2());
double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
return Cls-4./(kperp*kperp);
}
//! Lipatov vertex
double C2Lipatov( // B
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & pim,
CLHEP::HepLorentzVector const & pip,
CLHEP::HepLorentzVector const & pom,
CLHEP::HepLorentzVector const & pop
){
CLHEP::HepLorentzVector temptrans=-(qav+qbv);
CLHEP::HepLorentzVector p5=qav-qbv;
CLHEP::HepLorentzVector CL=temptrans
+ qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
- qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
+ ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
+ pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
- pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
- pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction
double C2Lipatovots(
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
double lambda
) {
double kperp=(qav-qbv).perp();
if (kperp>lambda)
return C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2());
double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
double temp=Cls-4./(kperp*kperp);
return temp;
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pg Unordered gluon momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*
* @note The unof contribution can be calculated by reversing the argument ordering.
*/
double ME_uno_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
assert(aptype!=21); // aptype cannot be gluon
if (bptype==21) {
if (aptype > 0)
return ME_unob_qg(pg,p1,pa,pn,pb);
else
return ME_unob_qbarg(pg,p1,pa,pn,pb);
}
else if (bptype<0) { // ----- || -----
if (aptype > 0)
return ME_unob_qQbar(pg,p1,pa,pn,pb);
else
return ME_unob_qbarQbar(pg,p1,pa,pn,pb);
}
else { //bptype == quark
if (aptype > 0)
return ME_unob_qQ(pg,p1,pa,pn,pb);
else
return ME_unob_qbarQ(pg,p1,pa,pn,pb);
}
}
/** Matrix element squared for tree-level current-current scattering
* @param bptype Particle b PDG ID
* @param pgin Incoming gluon momentum
* @param pq Quark from splitting Momentum
* @param pqbar Anti-quark from splitting Momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param swap_q_qx Boolean. Ordering of qqbar pair. False: pqbar extremal.
* @returns ME Squared for Tree-Level Current-Current Scattering
*
* @note The qqxf contribution can be calculated by reversing the argument ordering.
*/
double ME_qqx_current(
int bptype,
CLHEP::HepLorentzVector const & pgin,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
bool const swap_q_qx
){
if (bptype==21) {
if (swap_q_qx) // pq extremal
return ME_Exqqx_qqbarg(pgin,pq,pqbar,pn,pb);
else // pqbar extremal
return ME_Exqqx_qbarqg(pgin,pq,pqbar,pn,pb);
}
else { // b leg quark line
if (swap_q_qx) //extremal pq
return ME_Exqqx_qqbarQ(pgin,pq,pqbar,pn,pb);
else
return ME_Exqqx_qbarqQ(pgin,pq,pqbar,pn,pb);
}
throw std::logic_error("Unreachable in ME_Exqqx_current()");
}
/* \brief Matrix element squared for central qqx tree-level current-current
* scattering
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param nabove Number of gluons emitted before central qqxpair
* @param nbelow Number of gluons emitted after central qqxpair
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum
* @param pq Final state qbar Momentum
* @param pqbar Final state q Momentum
* @param partons Vector of all outgoing partons
* @returns ME Squared for qqxmid Tree-Level Current-Current Scattering
*/
double ME_qqxmid_current(
int aptype, int bptype,
int nabove, int nbelow,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
std::vector<HLV> const & partons){
// CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
const bool swap_q_qx=pqbar.rapidity() < pq.rapidity();
double wt=1.;
if (aptype==21) wt*=K_g(partons.front(),pa)/HEJ::C_F;
if (bptype==21) wt*=K_g(partons.back(),pb)/HEJ::C_F;
return wt*ME_Cenqqx_qq(pa, pb, partons,(bptype<0),(aptype<0), swap_q_qx, nabove, nbelow);
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
if (aptype==21&&bptype==21) {
return ME_gg(pn,pb,p1,pa);
} else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return ME_qg(pn,pb,p1,pa);
else
return ME_qbarg(pn,pb,p1,pa);
}
else if (bptype==21&&aptype!=21) { // ----- || -----
if (aptype > 0)
return ME_qg(p1,pa,pn,pb);
else
return ME_qbarg(p1,pa,pn,pb);
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return ME_qQ(pn,pb,p1,pa);
else
return ME_qQbar(pn,pb,p1,pa);
}
else {
if (aptype>0)
return ME_qQbar(p1,pa,pn,pb);
else
return ME_qbarQbar(pn,pb,p1,pa);
}
}
throw std::logic_error("unknown particle types");
}
/** Matrix element squared for tree-level current-current scattering With W+Jets
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_W_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc, ParticleProperties const & Wprop
){
// We know it cannot be gg incoming.
assert(!(aptype==21 && bptype==21));
if (aptype==21&&bptype!=21) {
if (bptype > 0)
return ME_W_qg(pn,plbar,pl,pb,p1,pa,Wprop);
else
return ME_W_qbarg(pn,plbar,pl,pb,p1,pa,Wprop);
}
else if (bptype==21&&aptype!=21) { // ----- || -----
if (aptype > 0)
return ME_W_qg(p1,plbar,pl,pa,pn,pb,Wprop);
else
return ME_W_qbarg(p1,plbar,pl,pa,pn,pb,Wprop);
}
else { // they are both quark
if (wc==true){ // emission off b, (first argument pbout)
if (bptype>0) {
if (aptype>0)
return ME_W_qQ(pn,plbar,pl,pb,p1,pa,Wprop);
else
return ME_W_qQbar(pn,plbar,pl,pb,p1,pa,Wprop);
}
else {
if (aptype>0)
return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa,Wprop);
else
return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa,Wprop);
}
}
else{ // emission off a, (first argument paout)
if (aptype > 0) {
if (bptype > 0)
return ME_W_qQ(p1,plbar,pl,pa,pn,pb,Wprop);
else
return ME_W_qQbar(p1,plbar,pl,pa,pn,pb,Wprop);
}
else { // a is anti-quark
if (bptype > 0)
return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb,Wprop);
else
return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb,Wprop);
}
}
}
throw std::logic_error("unknown particle types");
}
/** Matrix element squared for backwards uno tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param pg Unordered gluon momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for unob Tree-Level Current-Current Scattering
*
* @note The unof contribution can be calculated by reversing the argument ordering.
*/
double ME_W_uno_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc, ParticleProperties const & Wprop
){
// we know they are not both gluons
if (bptype == 21 && aptype != 21) { // b gluon => W emission off a
if (aptype > 0)
return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else
return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
else { // they are both quark
if (wc) {// emission off b, i.e. b is first current
if (bptype>0){
if (aptype>0)
return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else
return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
else{
if (aptype>0)
return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else
return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
}
else {// wc == false, emission off a, i.e. a is first current
if (aptype > 0) {
if (bptype > 0) //qq
return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else //qqbar
return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
else { // a is anti-quark
if (bptype > 0) //qbarq
return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else //qbarqbar
return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Matrix element squared for backward qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum
* @param pq Final state q Momentum
* @param pqbar Final state qbar Momentum
* @param pn Final state n Momentum
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param swap_q_qx Boolean. Ordering of qqbar pair. False: pqbar extremal.
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for qqxb Tree-Level Current-Current Scattering
*
* @note calculate forwards qqx contribution by reversing argument ordering.
*/
double ME_W_qqx_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const swap_q_qx, bool const wc,
ParticleProperties const & Wprop
){
// CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
const double CFbackward = K_g( (swap_q_qx)?pq:pqbar ,pa)/HEJ::C_F;
// With qqbar we could have 2 incoming gluons and W Emission
if (aptype==21&&bptype==21) {//a gluon, b gluon gg->qqbarWg
// This will be a wqqx emission as there is no other possible W Emission Site.
if (swap_q_qx)
return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)*CFbackward;
else
return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)*CFbackward;
}
else if (aptype==21&&bptype!=21 ) {//a gluon => W emission off b leg or qqx
if (!wc){ // W Emitted from backwards qqx
if (swap_q_qx)
return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)*CFbackward;
else
return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)*CFbackward;
}
else { // W Must be emitted from forwards leg.
if (swap_q_qx)
return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, bptype<0, Wprop)*CFbackward;
else
return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, bptype<0, Wprop)*CFbackward;
}
}
throw std::logic_error("Incompatible incoming particle types with qqxb");
}
/* \brief Matrix element squared for central qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param nabove Number of gluons emitted before central qqxpair
* @param nbelow Number of gluons emitted after central qqxpair
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum\
* @param pq Final state qbar Momentum
* @param pqbar Final state q Momentum
* @param partons Vector of all outgoing partons
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param wqq Boolean. True siginfies W boson is emitted from Central qqx
* @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
* @returns ME Squared for qqxmid Tree-Level Current-Current Scattering
*/
double ME_W_qqxmid_current(
int aptype, int bptype,
int nabove, int nbelow,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
std::vector<HLV> const & partons,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wqq, bool const wc,
ParticleProperties const & Wprop
){
// CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
const bool swap_q_qx=pqbar.rapidity() < pq.rapidity();
double wt=1.;
if (aptype==21) wt*=K_g(partons.front(),pa)/HEJ::C_F;
if (bptype==21) wt*=K_g(partons.back(),pb)/HEJ::C_F;
if(wqq)
return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons,(bptype<0),(aptype<0),
swap_q_qx, nabove, Wprop);
return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons, (bptype<0), (aptype<0),
swap_q_qx, nabove, nbelow, wc, Wprop);
}
/** \brief Matrix element squared for tree-level current-current scattering with Higgs
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared for Tree-Level Current-Current Scattering with Higgs
*/
double ME_Higgs_current(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb, double vev
){
if (aptype==21&&bptype==21) // gg initial state
return ME_H_gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev);
else if (aptype==21&&bptype!=21) {
if (bptype > 0)
return ME_H_qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.;
else
return ME_H_qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.;
}
else if (bptype==21&&aptype!=21) {
if (aptype > 0)
return ME_H_qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.;
else
return ME_H_qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.;
}
else { // they are both quark
if (bptype>0) {
if (aptype>0)
return ME_H_qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
else
return ME_H_qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
}
else {
if (aptype>0)
return ME_H_qQbar(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
else
return ME_H_qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
}
}
throw std::logic_error("unknown particle types");
}
/** \brief Current matrix element squared with Higgs and unordered backward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param pg Unordered back Particle Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered backward emission
*
* @note This function assumes unordered gluon backwards from pa-p1 current.
* For unof, reverse call order
*/
double ME_Higgs_current_uno(
int aptype, int bptype,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb, double vev
){
if (bptype==21&&aptype!=21) {
if (aptype > 0)
return ME_H_unob_gQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
else
return ME_H_unob_gQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
}
else { // they are both quark
if (aptype>0) {
if (bptype>0)
return ME_H_unob_qQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
else
return ME_H_unob_qbarQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
}
else {
if (bptype>0)
return ME_H_unob_qQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
else
return ME_H_unob_qbarQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
}
}
throw std::logic_error("unknown particle types");
}
CLHEP::HepLorentzVector to_HepLorentzVector(HEJ::Particle const & particle){
return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
}
void validate(HEJ::MatrixElementConfig const & config) {
#ifndef HEJ_BUILD_WITH_QCDLOOP
if(!config.Higgs_coupling.use_impact_factors) {
throw std::invalid_argument{
"Invalid Higgs coupling settings.\n"
"HEJ without QCDloop support can only use impact factors.\n"
"Set use_impact_factors to true or recompile HEJ.\n"
};
}
#endif
if(config.Higgs_coupling.use_impact_factors
&& config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
} // namespace anonymous
MatrixElement::MatrixElement(
std::function<double (double)> alpha_s,
MatrixElementConfig conf
):
alpha_s_{std::move(alpha_s)},
param_{std::move(conf)}
{
validate(param_);
}
double MatrixElement::tree_kin(
Event const & ev
) const {
if(! is_resummable(ev.type())) return 0.;
auto AWZH_boson = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(ev.outgoing()))
return tree_kin_jets(ev);
switch(AWZH_boson->type){
case pid::Higgs:
return tree_kin_Higgs(ev);
case pid::Wp:
case pid::Wm:
return tree_kin_W(ev);
// TODO
case pid::photon:
case pid::Z:
default:
throw not_implemented("Emission of boson of unsupported type");
}
}
namespace{
constexpr int extremal_jet_idx = 1;
constexpr int no_extremal_jet_idx = 0;
bool treat_as_extremal(Particle const & parton){
return parton.p.user_index() == extremal_jet_idx;
}
template<class InputIterator>
double FKL_ladder_weight(
InputIterator begin_gluon, InputIterator end_gluon,
CLHEP::HepLorentzVector const & q0,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
double lambda
){
double wt = 1;
auto qi = q0;
for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
assert(gluon_it->type == pid::gluon);
const auto g = to_HepLorentzVector(*gluon_it);
const auto qip1 = qi - g;
if(treat_as_extremal(*gluon_it)){
wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
} else{
wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
}
qi = qip1;
}
return wt;
}
} // namespace anonymous
std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
Event const & ev
) const{
auto out_partons = filter_partons(ev.outgoing());
if(out_partons.size() == ev.jets().size()){
// no additional emissions in extremal jets, don't need to tag anything
for(auto & parton: out_partons){
parton.p.set_user_index(no_extremal_jet_idx);
}
return out_partons;
}
const auto & jets = ev.jets();
assert(jets.size() >= 2);
auto most_backward = begin(jets);
auto most_forward = end(jets) - 1;
// skip jets caused by unordered emission or qqx
if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){
assert(jets.size() >= 3);
++most_backward;
}
else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){
assert(jets.size() >= 3);
--most_forward;
}
const auto extremal_jet_indices = ev.particle_jet_indices(
{*most_backward, *most_forward}
);
assert(extremal_jet_indices.size() == out_partons.size());
for(size_t i = 0; i < out_partons.size(); ++i){
assert(HEJ::is_parton(out_partons[i]));
const int idx = (extremal_jet_indices[i]>=0)?
extremal_jet_idx:
no_extremal_jet_idx;
out_partons[i].p.set_user_index(idx);
}
return out_partons;
}
namespace {
+ double tree_kin_jets_qqxmid(
+ int aptype, int bptype, HLV pa, HLV pb,
+ std::vector<Particle> const & partons,
+ double lambda
+ ){
+ HLV pq,pqbar;
+ const auto backmidquark = std::find_if(
+ begin(partons)+1, end(partons)-1,
+ [](Particle const & s){ return s.type != pid::gluon; }
+ );
+
+ assert(backmidquark!=end(partons)-1);
+
+ if (is_quark(backmidquark->type)){
+ pq = to_HepLorentzVector(*backmidquark);
+ pqbar = to_HepLorentzVector(*(backmidquark+1));
+ }
+ else {
+ pqbar = to_HepLorentzVector(*backmidquark);
+ pq = to_HepLorentzVector(*(backmidquark+1));
+ }
+
+ auto p1 = to_HepLorentzVector(partons[0]);
+ auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
+
+ auto q0 = pa - p1;
+ // t-channel momentum after qqx
+ auto qqxt = q0;
+
+ const auto begin_ladder = cbegin(partons) + 1;
+ const auto end_ladder_1 = (backmidquark);
+ const auto begin_ladder_2 = (backmidquark+2);
+ const auto end_ladder = cend(partons) - 1;
+ for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
+ qqxt -= to_HepLorentzVector(*parton_it);
+ }
+
+ int nabove = std::distance(begin_ladder, backmidquark);
+ int nbelow = std::distance(begin_ladder_2, end_ladder);
+
+ std::vector<HLV> partonsHLV;
+ partonsHLV.reserve(partons.size());
+ for (size_t i = 0; i != partons.size(); ++i) {
+ partonsHLV.push_back(to_HepLorentzVector(partons[i]));
+ }
+
+ const double current_factor = ME_qqxmid_current(
+ aptype, bptype, nabove, nbelow, pa, pb,
+ pq, pqbar, partonsHLV
+ );
+
+ const double ladder_factor = FKL_ladder_weight(
+ begin_ladder, end_ladder_1,
+ q0, pa, pb, p1, pn,
+ lambda
+ )*FKL_ladder_weight(
+ begin_ladder_2, end_ladder,
+ qqxt, pa, pb, p1, pn,
+ lambda
+ );
+ return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
+ }
+
+
template<class InIter, class partIter>
double tree_kin_jets_qqx(InIter BeginIn, InIter EndIn, partIter BeginPart,
partIter EndPart, double lambda){
-
const bool swap_q_qx = is_quark(*BeginPart);
const auto pgin = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(EndIn-1));
const auto pq = to_HepLorentzVector(*(BeginPart+(swap_q_qx?0:1)));
const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_q_qx?1:0)));
const auto p1 = to_HepLorentzVector(*(BeginPart));
const auto pn = to_HepLorentzVector(*(EndPart-1));
assert((BeginIn)->type==21); // Incoming a must be gluon.
const double current_factor = ME_qqx_current(
(EndIn-1)->type, pgin, pq, pqbar, pn, pb, swap_q_qx
)/(4.*(N_C*N_C - 1.));
const double ladder_factor = FKL_ladder_weight(
(BeginPart+2), (EndPart-1),
pgin-pq-pqbar, pgin, pb, p1, pn, lambda
);
return current_factor*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_jets_uno(InIter BeginIn, InIter EndIn, partIter BeginPart,
partIter EndPart, double lambda){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(EndIn-1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
const double current_factor = ME_uno_current(
(BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa
)/(4.*(N_C*N_C - 1.));
const double ladder_factor = FKL_ladder_weight(
(BeginPart+2), (EndPart-1),
pa-p1-pg, pa, pb, p1, pn, lambda
);
return current_factor*ladder_factor;
}
}
double MatrixElement::tree_kin_jets(Event const & ev) const {
auto const & incoming = ev.incoming();
const auto partons = tag_extremal_jet_partons(ev);
if (ev.type()==HEJ::event_type::FKL){
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
return ME_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa
)/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
pa - p1, pa, pb, p1, pn,
param_.regulator_lambda
);
}
else if (ev.type()==HEJ::event_type::unordered_backward){
return tree_kin_jets_uno(incoming.begin(), incoming.end(),
partons.begin(), partons.end(),
param_.regulator_lambda);
}
else if (ev.type()==HEJ::event_type::unordered_forward){
return tree_kin_jets_uno(incoming.rbegin(), incoming.rend(),
partons.rbegin(), partons.rend(),
param_.regulator_lambda);
}
else if (ev.type()==HEJ::event_type::extremal_qqxb){
return tree_kin_jets_qqx(incoming.begin(), incoming.end(),
partons.begin(), partons.end(),
param_.regulator_lambda);
}
else if (ev.type()==HEJ::event_type::extremal_qqxf){
return tree_kin_jets_qqx(incoming.rbegin(), incoming.rend(),
partons.rbegin(), partons.rend(),
param_.regulator_lambda);
}
else {
throw std::logic_error("Can only reweight FKL, uno or ExQQx processes in Pure Jets");
}
}
namespace{
double tree_kin_W_FKL(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda, ParticleProperties const & Wprop
){
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
const auto begin_ladder = cbegin(partons) + 1;
const auto end_ladder = cend(partons) - 1;
bool wc = aptype==partons[0].type; //leg b emits w
auto q0 = pa - p1;
if(!wc)
q0 -= pl + plbar;
const double current_factor = ME_W_current(
aptype, bptype, pn, pb,
p1, pa, plbar, pl, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_W_uno(InIter BeginIn, partIter BeginPart,
partIter EndPart, const HLV & plbar, const HLV & pl,
double lambda, ParticleProperties const & Wprop){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(BeginIn+1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
bool wc = (BeginIn)->type==(BeginPart+1)->type; //leg b emits w
auto q0 = pa - p1 - pg;
if(!wc)
q0 -= pl + plbar;
const double current_factor = ME_W_uno_current(
(BeginIn)->type, (BeginIn+1)->type, pn, pb,
p1, pa, pg, plbar, pl, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
BeginPart+2, EndPart-1,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_W_qqx(InIter BeginIn, partIter BeginPart,
partIter EndPart, const HLV & plbar, const HLV & pl,
double lambda, ParticleProperties const & Wprop){
const bool swap_q_qx=is_quark(*BeginPart);
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(BeginIn+1));
const auto pq = to_HepLorentzVector(*(BeginPart+(swap_q_qx?0:1)));
const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_q_qx?1:0)));
const auto p1 = to_HepLorentzVector(*(BeginPart));
const auto pn = to_HepLorentzVector(*(EndPart-1));
const bool wc = (BeginIn+1)->type!=(EndPart-1)->type; //leg b emits w
auto q0 = pa - pq - pqbar;
if(!wc)
q0 -= pl + plbar;
const double current_factor = ME_W_qqx_current(
(BeginIn)->type, (BeginIn+1)->type, pa, pb,
pq, pqbar, pn, plbar, pl, swap_q_qx, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
BeginPart+2, EndPart-1,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double tree_kin_W_qqxmid(
int aptype, int bptype, HLV pa, HLV pb,
std::vector<Particle> const & partons,
HLV plbar, HLV pl,
double lambda, ParticleProperties const & Wprop
){
HLV pq,pqbar;
const auto backmidquark = std::find_if(
begin(partons)+1, end(partons)-1,
[](Particle const & s){ return s.type != pid::gluon; }
);
assert(backmidquark!=end(partons)-1);
if (is_quark(backmidquark->type)){
pq = to_HepLorentzVector(*backmidquark);
pqbar = to_HepLorentzVector(*(backmidquark+1));
}
else {
pqbar = to_HepLorentzVector(*backmidquark);
pq = to_HepLorentzVector(*(backmidquark+1));
}
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto q0 = pa - p1;
// t-channel momentum after qqx
auto qqxt = q0;
bool wc, wqq;
if (backmidquark->type == -(backmidquark+1)->type){ // Central qqx does not emit
wqq=false;
if (aptype==partons[0].type) {
wc = true;
}
else{
wc = false;
q0-=pl+plbar;
}
}
else{
wqq = true;
wc = false;
qqxt-=pl+plbar;
}
const auto begin_ladder = cbegin(partons) + 1;
const auto end_ladder_1 = (backmidquark);
const auto begin_ladder_2 = (backmidquark+2);
const auto end_ladder = cend(partons) - 1;
for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
qqxt -= to_HepLorentzVector(*parton_it);
}
int nabove = std::distance(begin_ladder, backmidquark);
int nbelow = std::distance(begin_ladder_2, end_ladder);
std::vector<HLV> partonsHLV;
partonsHLV.reserve(partons.size());
for (size_t i = 0; i != partons.size(); ++i) {
partonsHLV.push_back(to_HepLorentzVector(partons[i]));
}
const double current_factor = ME_W_qqxmid_current(
aptype, bptype, nabove, nbelow, pa, pb,
pq, pqbar, partonsHLV, plbar, pl, wqq, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder_1,
q0, pa, pb, p1, pn,
lambda
)*FKL_ladder_weight(
begin_ladder_2, end_ladder,
qqxt, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
} // namespace anonymous
double MatrixElement::tree_kin_W(Event const & ev) const {
using namespace event_type;
auto const & incoming(ev.incoming());
#ifndef NDEBUG
// assert that there is exactly one decay corresponding to the W
assert(ev.decays().size() == 1);
auto const & w_boson{
std::find_if(ev.outgoing().cbegin(), ev.outgoing().cend(),
[] (Particle const & p) -> bool {
return std::abs(p.type) == ParticleID::Wp;
}) };
assert(w_boson != ev.outgoing().cend());
assert( (long int) ev.decays().cbegin()->first
== std::distance(ev.outgoing().cbegin(), w_boson) );
#endif
// find decay products of W
auto const & decay{ ev.decays().cbegin()->second };
assert(decay.size() == 2);
assert( ( is_anylepton(decay.at(0)) && is_anyneutrino(decay.at(1)) )
|| ( is_anylepton(decay.at(1)) && is_anyneutrino(decay.at(0)) ) );
// get lepton & neutrino
HLV plbar, pl;
if (decay.at(0).type < 0){
plbar = to_HepLorentzVector(decay.at(0));
pl = to_HepLorentzVector(decay.at(1));
}
else{
pl = to_HepLorentzVector(decay.at(0));
plbar = to_HepLorentzVector(decay.at(1));
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto partons = tag_extremal_jet_partons(ev);
if(ev.type() == FKL){
return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == unordered_backward){
return tree_kin_W_uno(cbegin(incoming), cbegin(partons),
cend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == unordered_forward){
return tree_kin_W_uno(crbegin(incoming), crbegin(partons),
crend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == extremal_qqxb){
return tree_kin_W_qqx(cbegin(incoming), cbegin(partons),
cend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == extremal_qqxf){
return tree_kin_W_qqx(crbegin(incoming), crbegin(partons),
crend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
assert(ev.type() == central_qqx);
return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
double MatrixElement::tree_kin_Higgs(Event const & ev) const {
if(is_uno(ev.type())){
return tree_kin_Higgs_between(ev);
}
if(ev.outgoing().front().type == pid::Higgs){
return tree_kin_Higgs_first(ev);
}
if(ev.outgoing().back().type == pid::Higgs){
return tree_kin_Higgs_last(ev);
}
return tree_kin_Higgs_between(ev);
}
namespace {
// Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
#ifdef HEJ_BUILD_WITH_QCDLOOP
// TODO: code duplication with jets.cc
double K_g(double p1minus, double paminus) {
return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
}
double K_g(
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
return K_g(pout.minus(), pin.minus());
}
double K(
ParticleID type,
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(type == ParticleID::gluon) return K_g(pout, pin);
return C_F;
}
#endif
// Colour factor in strict MRK limit
double K_MRK(ParticleID type) {
return (type == ParticleID::gluon)?C_A:C_F;
}
}
double MatrixElement::MH2_forwardH(
CLHEP::HepLorentzVector const & p1out,
CLHEP::HepLorentzVector const & p1in,
ParticleID type2,
CLHEP::HepLorentzVector const & p2out,
CLHEP::HepLorentzVector const & p2in,
CLHEP::HepLorentzVector const & pH,
double t1, double t2
) const{
ignore(p2out, p2in);
const double shat = p1in.invariantMass2(p2in);
const double vev = param_.ew_parameters.vev();
// gluon case
#ifdef HEJ_BUILD_WITH_QCDLOOP
if(!param_.Higgs_coupling.use_impact_factors){
return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*ME_Houtside_gq(
p1out, p1in, p2out, p2in, pH,
param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
param_.Higgs_coupling.mb, vev
)/(4*(N_C*N_C - 1));
}
#endif
return K_MRK(type2)/C_A*9./2.*shat*shat*(
C2gHgp(p1in,p1out,pH,vev) + C2gHgm(p1in,p1out,pH,vev)
)/(t1*t2);
}
double MatrixElement::tree_kin_Higgs_first(Event const & ev) const {
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
assert(outgoing.front().type == pid::Higgs);
if(outgoing[1].type != pid::gluon) {
assert(incoming.front().type == outgoing[1].type);
return tree_kin_Higgs_between(ev);
}
const auto pH = to_HepLorentzVector(outgoing.front());
const auto partons = tag_extremal_jet_partons(
ev
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
const auto q0 = pa - p1 - pH;
const double t1 = q0.m2();
const double t2 = (pn - pb).m2();
return MH2_forwardH(
p1, pa, incoming[1].type, pn, pb, pH,
t1, t2
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn,
param_.regulator_lambda
);
}
double MatrixElement::tree_kin_Higgs_last(Event const & ev) const {
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
assert(outgoing.back().type == pid::Higgs);
if(outgoing[outgoing.size()-2].type != pid::gluon) {
assert(incoming.back().type == outgoing[outgoing.size()-2].type);
return tree_kin_Higgs_between(ev);
}
const auto pH = to_HepLorentzVector(outgoing.back());
const auto partons = tag_extremal_jet_partons(
ev
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
auto q0 = pa - p1;
const double t1 = q0.m2();
const double t2 = (pn + pH - pb).m2();
return MH2_forwardH(
pn, pb, incoming[0].type, p1, pa, pH,
t2, t1
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn,
param_.regulator_lambda
);
}
namespace {
template<class InIter, class partIter>
double tree_kin_Higgs_uno(InIter BeginIn, InIter EndIn, partIter BeginPart,
partIter EndPart, const HLV & qH, const HLV & qHp1,
double mt, bool inc_bot, double mb, double vev){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(EndIn-1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
return ME_Higgs_current_uno(
(BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa,
qH, qHp1, mt, inc_bot, mb, vev
);
}
}
double MatrixElement::tree_kin_Higgs_between(Event const & ev) const {
using namespace event_type;
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
const auto the_Higgs = std::find_if(
begin(outgoing), end(outgoing),
[](Particle const & s){ return s.type == pid::Higgs; }
);
assert(the_Higgs != end(outgoing));
const auto pH = to_HepLorentzVector(*the_Higgs);
const auto partons = tag_extremal_jet_partons(ev);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(
partons[(ev.type() == unob)?1:0]
);
auto pn = to_HepLorentzVector(
partons[partons.size() - ((ev.type() == unof)?2:1)]
);
auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
assert(
(first_after_Higgs == end(partons) && (
(ev.type() == unob)
|| partons.back().type != pid::gluon
))
|| first_after_Higgs->rapidity() >= the_Higgs->rapidity()
);
assert(
(first_after_Higgs == begin(partons) && (
(ev.type() == unof)
|| partons.front().type != pid::gluon
))
|| (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
);
// always treat the Higgs as if it were in between the extremal FKL partons
if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
else if(first_after_Higgs == end(partons)) --first_after_Higgs;
// t-channel momentum before Higgs
auto qH = pa;
for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
qH -= to_HepLorentzVector(*parton_it);
}
auto q0 = pa - p1;
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 1;
double current_factor;
if(ev.type() == FKL){
current_factor = ME_Higgs_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
param_.ew_parameters.vev()
);
}
else if(ev.type() == unob){
current_factor = HEJ::C_A*HEJ::C_A/2*tree_kin_Higgs_uno(
begin(incoming), end(incoming), begin(partons),
end(partons), qH, qH-pH, param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
param_.ew_parameters.vev()
);
const auto p_unob = to_HepLorentzVector(partons.front());
q0 -= p_unob;
p1 += p_unob;
++begin_ladder;
}
else if(ev.type() == unof){
current_factor = HEJ::C_A*HEJ::C_A/2*tree_kin_Higgs_uno(
rbegin(incoming), rend(incoming), rbegin(partons),
rend(partons), qH-pH, qH, param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
param_.ew_parameters.vev()
);
pn += to_HepLorentzVector(partons.back());
--end_ladder;
}
else{
throw std::logic_error("Can only reweight FKL or uno processes in H+Jets");
}
const double ladder_factor = FKL_ladder_weight(
begin_ladder, first_after_Higgs,
q0, pa, pb, p1, pn,
param_.regulator_lambda
)*FKL_ladder_weight(
first_after_Higgs, end_ladder,
qH - pH, pa, pb, p1, pn,
param_.regulator_lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
namespace {
double get_AWZH_coupling(Event const & ev, double alpha_s, double alpha_w) {
const auto AWZH_boson = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](auto const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(ev.outgoing())) return 1.;
switch(AWZH_boson->type){
case pid::Higgs:
return alpha_s*alpha_s;
case pid::Wp:
case pid::Wm:
return alpha_w*alpha_w;
// TODO
case pid::photon:
case pid::Z:
default:
throw not_implemented("Emission of boson of unsupported type");
}
}
}
double MatrixElement::tree_param(Event const & ev, double mur) const {
assert(is_resummable(ev.type()));
const auto begin_partons = ev.begin_partons();
const auto end_partons = ev.end_partons();
const auto num_partons = std::distance(begin_partons, end_partons);
const double alpha_s = alpha_s_(mur);
const double gs2 = 4.*M_PI*alpha_s;
double res = std::pow(gs2, num_partons);
if(param_.log_correction){
// use alpha_s(q_perp), evolved to mur
assert(num_partons >= 2);
const auto first_emission = std::next(begin_partons);
const auto last_emission = std::prev(end_partons);
for(auto parton = first_emission; parton != last_emission; ++parton){
res *= 1. + alpha_s/(2.*M_PI)*beta0*log(mur/parton->perp());
}
}
return get_AWZH_coupling(ev, alpha_s, param_.ew_parameters.alpha_w())*res;
}
} // namespace HEJ
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 2:53 PM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3796594
Default Alt Text
(59 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment