Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F7876962
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
10 KB
Subscribers
None
View Options
diff --git a/pyext/professor2/ipol.py b/pyext/professor2/ipol.py
--- a/pyext/professor2/ipol.py
+++ b/pyext/professor2/ipol.py
@@ -1,169 +1,250 @@
# -*- python -*-
-from __future__ import division
from professor2.core import *
from professor2.histos import *
def mk_ipolinputs(params):
"""
Make sorted run and parameter lists suitable for passing to prof.Ipol
params is a dict (actually, prefer OrderedDict) of run_names -> param_vals,
as returned from read_rundata
"""
runs = sorted(params.keys())
if not runs:
return runs, [], [[]]
paramnames = params[runs[0]].keys()
paramslist = [[params[run][pn] for pn in paramnames] for run in runs]
return runs, paramnames, paramslist
def mk_ipolbin(P, V, E, xmin, xmax, order, errmode, errorder):
valipol = Ipol(P, V, order)
# nan check in coeffs
import math
if any([math.isnan(x) for x in valipol.coeffs]):
- print "Warning: nan coefficient encountered in value ipol for %s"%histos.values()[0].path
+ print "Warning: nan coefficient encountered in value ipol"
return None
## Build the error interpolation(s)
if not errmode or errmode == "none":
erripols = None
## Build the error interpolation(s)
elif errmode == "mean":
meanerr = sum(E) / float(len(E)) #histos[run].bins[binnr].err for run in runs) / float(len(runs))
erripols = Ipol(P, [meanerr], 0) #< const 0th order interpolation
elif errmode == "median":
medianerr = E[len(E)//2]
erripols = Ipol(P, [medianerr], 0) #< const 0th order interpolation
elif errmode == "symm":
erripols = Ipol(P, E, order)
elif errmode == "asymm":
raise Exception("Error interpolation mode 'asymm' not yet supported")
# errs0 = [histos[run].bins[n].errs[0] for run in runs]
# erripol0 = Ipol(paramslist, errs0, order)
# errs1 = [histos[run].bins[n].errs[1] for run in runs]
# erripol1 = Ipol(paramslist, errs1, order)
# erripols = [erripol0, erripol1]
else:
raise Exception("Unknown error interpolation mode '%s'" % errmode)
if erripols is not None:
if any([math.isnan(x) for x in erripols.coeffs]):
- print "Warning: nan coefficient encountered in error ipol for %s"%histos.values()[0].path
+ print "Warning: nan coefficient encountered in error ipol"
return None
return IpolBin(xmin, xmax, valipol, erripols)
# Keep this for backward compatibility
def mk_ipolhisto(histos, runs, paramslist, order, errmode=None, errorder=None):
"""\
Make a prof.IpolHisto from a dict of prof.DataHistos and the corresponding
runs and params lists, at the given polynomial order.
If errs is non-null, the data histo errors will also be interpolated.
If errmode is None or 'none', uncertainties will not be parameterised and
will return 0 if queried; 'mean' and 'median' will use fixed values derived
from the anchor points; 'symm' will parameterise the average of the + and -
errors of each bin at the polynomial order given by errorder. If errorder is
None, the same order as for the value parameterisation will be used.
Parameter range scaling will be applied, so a DoParamScaling=true flag will
need to be written to the metadata when persisting the resulting IpolHisto.
"""
if errmode is None:
errmode = "none"
if errorder is None:
errorder = order
#
nbins = len(histos.itervalues().next().bins)
ibins = []
for n in xrange(nbins):
## Check that the bin edges are consistent and extract their values
# TODO: move bin edge consistency checking into the Histo base class
xmax = histos.values()[0].bins[n].xmax
xmin = histos.values()[0].bins[n].xmin
vals = [histos[run].bins[n].val for run in runs]
errs = [histos[run].bins[n].err for run in runs]
ibins.append(mk_ipolbin(paramslist, vals, errs, xmin, xmax, order, errmode, errorder))
+ if ibins[-1] is None:
+ print "in bin %i of %s"%(n, histos.values()[0].path)
return Histo(ibins, histos.values()[0].path)
+# https://stackoverflow.com/questions/2130016/splitting-a-list-of-into-n-parts-of-approximately-equal-length
+def chunkIt(seq, num):
+ avg = len(seq) / float(num)
+ out = []
+ last = 0.0
+ while last < len(seq):
+ out.append(seq[int(last):int(last + avg)])
+ last += avg
-def mkStandardIpols(HISTOS, HNAMES, RUNS, PARAMSLIST, CFG):
+ return out
+
+def mkStandardIpols(HISTOS, HNAMES, RUNS, PARAMSLIST, CFG, nchunks=10):
BNAMES = []
for hn in HNAMES:
histos = HISTOS[hn]
nbins = histos.values()[0].nbins
for n in xrange(nbins):
BNAMES.append([hn, n])
NBINS=len(BNAMES)
MSGEVERY = int(NBINS/100.);
- import sys
+ import sys, zlib
import professor2 as prof
def worker(q, rdict, counter):
"Function to make bin ipols and store ipol persistency strings for each histo"
+ import sys
while True:
if q.empty():
break
- temp = q.get()
+ try:
+ temp = q.get(False)
+ except:
+ break
+
hn=temp[0]
histos = HISTOS[hn]
n = temp[1]
xmax = histos.values()[0].bins[n].xmax
xmin = histos.values()[0].bins[n].xmin
vals = [histos[run].bins[n].val for run in RUNS]
errs = [histos[run].bins[n].err for run in RUNS]
ib = prof.mk_ipolbin(PARAMSLIST, vals, errs, xmin, xmax, CFG["ORDER"], CFG["IERR"], CFG["ERR_ORDER"])
- if ib is None:
- print "Ignoring", hn, "Bin number", n
- else:
+ if ib is not None:
s = ""
s += "%s#%d %.5e %.5e\n" % (hn, n, ib.xmin, ib.xmax)
s += " " + ib.ival.toString("val") + "\n"
if ib.ierrs:
s += " " + ib.ierrs.toString("err") + "\n"
- rdict[(hn,n)] = s
+ rdict.put( [hn,n, zlib.compress(s, 9)])
del s
+ else:
+ print "in bin %i of %s"%(n, histos.values()[0].path)
del ib #< pro-actively clear up memory
+ del histos
counter.value+=1
if counter.value==MSGEVERY:
counter.value=0
- sys.stderr.write('\rProgress: {0:.1%}'.format(len(rdict.keys())/NBINS))
+ sys.stderr.write('\rProgress: {current}/{total}'.format(current=rdict.qsize(), total=NBINS))
+ q.task_done()
+ return
+ rDict={}
print "\n\nParametrising %i objects...\n"%len(BNAMES)
- import time, multiprocessing
- # time1 = time.time()
+ import time
+ time1 = time.time()
+ from multiprocessing import Manager, Process
+ manager = Manager()
+
+ # This for the status --- modulus is too expensive
+ ndone=manager.Value('i', 0)
## A shared memory object is required for coefficient retrieval
- from multiprocessing import Manager, Value
- manager = Manager()
- tempDict = manager.dict()
+ r = manager.Queue()
+ for chunk in chunkIt(BNAMES, nchunks): # The chunking is necessary as the memory blows up otherwise
- # This for the status --- modululs is too expensive
- ndone=Value('i', 0)
- ## The job queue
- q = multiprocessing.Queue()
+ ## The job queue
+ q = manager.Queue()
- map(lambda x:q.put(x), BNAMES)
+ ## Fire away
+ workers = [Process(target=worker, args=(q, r, ndone)) for i in xrange(CFG["MULTI"])]
+ map(lambda x:q.put(x), chunk)
+ map(lambda x:x.start(), workers)
+ map(lambda x:x.join(), workers)
+ map(lambda x:x.terminate(), workers)
+ # ## Timing
+ while not r.empty():
+ a,b,c = r.get()
+ rDict[(a,b)] =c
- ## Fire away
- workers = [multiprocessing.Process(target=worker, args=(q, tempDict, ndone)) for i in xrange(CFG["MULTI"])]
- map(lambda x:x.start(), workers)
- map(lambda x:x.join(), workers)
+ time2 = time.time()
+ sys.stderr.write('\rParametrisation took %0.2fs.\nWriting output...' % ((time2-time1)))
- # ## Timing
- # time2 = time.time()
- # sys.stderr.write('\rParametrisation took %0.2fs.\nWriting output...' % ((time2-time1)))
+ return rDict
- return tempDict
+def writeIpol(fname, ipolDict, params, runs=[], summary="", runsdir=""):
+ PARAMNAMES = params[0]
+ PARAMSLIST = params[1]
+
+ import os, tempfile, zlib
+ if fname=="temp":
+ f=tempfile.NamedTemporaryFile(delete=False)
+ else:
+ f=open(fname, "w")
+
+ import professor2 as prof
+ f.write("Summary: %s\n" % summary)
+ f.write("DataDir: %s\n" % os.path.abspath(runsdir))
+ f.write("ProfVersion: %s\n" % prof.version())
+ f.write("Date: %s\n" % prof.mk_timestamp())
+ f.write("DataFormat: binned 2\n") # This tells the reader how to treat the coefficients that follow
+ # Format and write out parameter names
+ pstring = "ParamNames:"
+ for p in PARAMNAMES:
+ pstring += " %s" % p
+ f.write(pstring + "\n")
+ # Dimension (consistency check)
+ f.write("Dimension: %i\n" % len(PARAMNAMES))
+ # Interpolation validity (hypercube edges)
+ minstring = "MinParamVals:"
+ for v in prof.mk_minvals(PARAMSLIST):
+ minstring += " %f" % v
+ f.write(minstring + "\n")
+ maxstring = "MaxParamVals:"
+ for v in prof.mk_maxvals(PARAMSLIST):
+ maxstring += " %f" % v
+ f.write(maxstring + "\n")
+ f.write("DoParamScaling: 1\n")
+ # Number of inputs per bin
+ f.write("NumInputs: %i\n" % len(PARAMSLIST))
+ s_runs = "Runs:"
+ for r in runs:
+ s_runs +=" %s"%r
+ f.write("%s\n"%s_runs)
+ f.write("---\n")
+
+ ## Write out numerical data for all interpolations
+ s = ""
+ HNAMES=sorted(list(set([x[0] for x in ipolDict.keys()])))
+ for hn in sorted(HNAMES):
+ thisbins=sorted(filter(lambda x: x[0]==hn, ipolDict.keys()))
+ for ipolstring in [ipolDict[x] for x in thisbins]:
+ s+=zlib.decompress(ipolstring)
+
+ f.write(s)
+ f.close()
+ if not fname=="temp":
+ print "\nOutput written to %s" % fname
+ else:
+ return f
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Tue, Nov 19, 2:44 PM (1 d, 10 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
3804799
Default Alt Text
(10 KB)
Attached To
rPROFESSORHG professorhg
Event Timeline
Log In to Comment