Page MenuHomeHEPForge

D41.1759196425.diff
No OneTemporary

Size
29 KB
Referenced Files
None
Subscribers
None

D41.1759196425.diff

diff --git a/inc/LauKMatrixProdPole.hh b/inc/LauKMatrixProdPole.hh
--- a/inc/LauKMatrixProdPole.hh
+++ b/inc/LauKMatrixProdPole.hh
@@ -44,7 +44,7 @@
class LauKMatrixProdPole : public LauAbsResonance {
- public:
+ public:
//! Constructor
/*!
\param [in] poleName name of the pole
@@ -54,34 +54,36 @@
\param [in] daughters the daughter particles
\param [in] useProdAdler boolean to turn on/off the production Adler zero factor
*/
- LauKMatrixProdPole(const TString& poleName, Int_t poleIndex, Int_t resPairAmpInt,
- LauKMatrixPropagator* propagator, const LauDaughters* daughters,
- Bool_t useProdAdler = kFALSE);
+ LauKMatrixProdPole( const TString& poleName, Int_t poleIndex, Int_t resPairAmpInt,
+ LauKMatrixPropagator* propagator, const LauDaughters* daughters,
+ Bool_t useProdAdler = kFALSE);
//! Destructor
- virtual ~LauKMatrixProdPole();
+ virtual ~LauKMatrixProdPole();
// Initialise the model
- virtual void initialise() {return;}
+ virtual void initialise() {return;}
//! The amplitude calculation
/*!
\param [in] kinematics the kinematic variables of the current event
\return the complex amplitude
*/
- virtual LauComplex amplitude(const LauKinematics* kinematics);
+ virtual LauComplex amplitude(const LauKinematics* kinematics);
//! Get the resonance model type
- /*!
- \return the resonance model type
- */
+ /*!
+ \return the resonance model type
+ */
virtual LauAbsResonance::LauResonanceModel getResonanceModel() const {return LauAbsResonance::KMatrix;}
+ virtual const std::vector<LauParameter*>& getFloatingParameters();
+
protected:
//! Function not meant to be called, amplitude is called directly in this case
- virtual LauComplex resAmp(Double_t mass, Double_t spinTerm);
+ virtual LauComplex resAmp(Double_t mass, Double_t spinTerm);
- private:
+ private:
//! Copy constructor (not implemented)
LauKMatrixProdPole(const LauKMatrixProdPole& rhs);
@@ -89,14 +91,14 @@
LauKMatrixProdPole& operator=(const LauKMatrixProdPole& rhs);
//! The K-matrix propagator
- LauKMatrixPropagator* thePropagator_;
+ LauKMatrixPropagator* thePropagator_;
//! The number of the pole
Int_t poleIndex_;
- //! Boolean to turn on/off the production Adler zero factor
- Bool_t useProdAdler_;
+ //! Boolean to turn on/off the production Adler zero factor
+ Bool_t useProdAdler_;
- ClassDef(LauKMatrixProdPole, 0) // K-matrix production pole
+ ClassDef(LauKMatrixProdPole, 0) // K-matrix production pole
};
diff --git a/inc/LauKMatrixProdSVP.hh b/inc/LauKMatrixProdSVP.hh
--- a/inc/LauKMatrixProdSVP.hh
+++ b/inc/LauKMatrixProdSVP.hh
@@ -76,6 +76,8 @@
\return the resonance model type
*/
virtual LauAbsResonance::LauResonanceModel getResonanceModel() const {return LauAbsResonance::KMatrix;}
+
+ const std::vector<LauParameter*>& getFloatingParameters();
protected:
//! Function not meant to be called
diff --git a/inc/LauKMatrixPropagator.hh b/inc/LauKMatrixPropagator.hh
--- a/inc/LauKMatrixPropagator.hh
+++ b/inc/LauKMatrixPropagator.hh
@@ -49,7 +49,7 @@
class LauKMatrixPropagator {
- public:
+ public:
//! Constructor
/*!
\param [in] name name of the propagator
@@ -59,12 +59,12 @@
\param [in] nPoles the number of poles
\param [in] rowIndex this specifies which row of the propagator should be used when summing over the amplitude channels
*/
- LauKMatrixPropagator(const TString& name, const TString& paramFileName,
- Int_t resPairAmpInt, Int_t nChannels, Int_t nPoles,
- Int_t rowIndex = 1);
+ LauKMatrixPropagator( const TString& name, const TString& paramFileName,
+ Int_t resPairAmpInt, Int_t nChannels, Int_t nPoles,
+ Int_t rowIndex = 1 );
//! Destructor
- virtual ~LauKMatrixPropagator();
+ virtual ~LauKMatrixPropagator();
//! Calculate the invariant mass squared s
/*!
@@ -82,25 +82,25 @@
/*!
\param [in] inputFile name of the input file
*/
- void setParameters(const TString& inputFile);
+ void setParameters(const TString& inputFile);
- //! Get the scattering K matrix
- /*!
- \return the real, symmetric scattering K matrix
+ //! Get the scattering K matrix
+ /*!
+ \return the real, symmetric scattering K matrix
*/
- TMatrixD getKMatrix() const {return ScattKMatrix_;}
+ TMatrixD getKMatrix() const {return ScattKMatrix_;}
- //! Get the real part of the propagator full matrix
- /*!
- \return the real part of the propagator full matrix
- */
- TMatrixD getRealPropMatrix() const {return realProp_;}
+ //! Get the real part of the propagator full matrix
+ /*!
+ \return the real part of the propagator full matrix
+ */
+ TMatrixD getRealPropMatrix() const {return realProp_;}
- //! Get the negative imaginary part of the full propagator matrix
- /*!
- \return the negative imaginary part of the full propagator matrix
- */
- TMatrixD getNegImagPropMatrix() const {return negImagProp_;}
+ //! Get the negative imaginary part of the full propagator matrix
+ /*!
+ \return the negative imaginary part of the full propagator matrix
+ */
+ TMatrixD getNegImagPropMatrix() const {return negImagProp_;}
//! Get the real part of the term of the propagator
/*!
@@ -131,6 +131,12 @@
*/
Double_t getCouplingConstant(Int_t poleIndex, Int_t channelIndex) const;
+ //! Get coupling parameters, set according to the input file
+ /*!
+ \param [in] poleIndex number of the required pole
+ \param [in] channelIndex number of the required channel
+ \return the parameter of the coupling constant
+ */s =
//! Get scattering constants that were loaded from the input file
/*!
\param [in] channel1Index number of the first channel index
@@ -143,6 +149,21 @@
/*!
\return the svp term
*/
+
+ //! Get scattering parameters, set according to the input file
+ /*!
+ \param [in] channel1Index number of the first channel index
+ \param [in] channel2Index number of the second channel index
+ \return the parameter of the scattering constant
+ */
+ LauParameter& getScatteringParameter(Int_t channel1Index, Int_t channel2Index);
+
+ //! Get s0 production parameter
+ /*!
+ \return the s0Prod parameter
+ */
+ LauParameter& gets0Prod() {return s0Prod_;}
+
Double_t getProdSVPTerm() const {return prodSVP_;}
//! Get the full complex propagator term for a given channel
@@ -154,62 +175,60 @@
//! Get the DP axis identifier
/*!
- /return the value to identify the DP axis in question
+ \return the value to identify the DP axis in question
*/
Int_t getResPairAmpInt() const {return resPairAmpInt_;}
//! Get the number of channels
/*!
- /return the number of channels
+ \return the number of channels
*/
Int_t getNChannels() const {return nChannels_;}
//! Get the number of poles
/*!
- /return the number of poles
+ \return the number of poles
*/
Int_t getNPoles() const {return nPoles_;}
//! Get the propagator name
/*!
- /return the name of the propagator
+ \return the name of the propagator
*/
TString getName() const {return name_;}
- //! Get the unitary transition amplitude for the given channel
- /*!
- \param [in] s The invariant mass squared
- \param [in] channel The index number of the channel process
- \return the complex amplitude T
+ //! Get the unitary transition amplitude for the given channel
+ /*!
+ \param [in] s The invariant mass squared
+ \param [in] channel The index number of the channel process
+ \return the complex amplitude T
*/
- LauComplex getTransitionAmp(Double_t s, Int_t channel);
+ LauComplex getTransitionAmp(Double_t s, Int_t channel);
-
- //! Get the complex phase space term for the given channel and invariant mass squared
- /*!
- \param [in] s The invariant mass squared
- \param [in] channel The index number of the channel process
- \return the complex phase space term rho(channel, channel)
+ //! Get the complex phase space term for the given channel and invariant mass squared
+ /*!
+ \param [in] s The invariant mass squared
+ \param [in] channel The index number of the channel process
+ \return the complex phase space term rho(channel, channel)
*/
- LauComplex getPhaseSpaceTerm(Double_t s, Int_t channel);
+ LauComplex getPhaseSpaceTerm(Double_t s, Int_t channel);
- //! Get the Adler zero factor, which is set when updatePropagator is called
- /*!
- \return the Adler zero factor
+ //! Get the Adler zero factor, which is set when updatePropagator is called
+ /*!
+ \return the Adler zero factor
*/
- Double_t getAdlerZero() const {return adlerZeroFactor_;}
+ Double_t getAdlerZero() const {return adlerZeroFactor_;}
- //! Get the THat amplitude for the given s and channel number
- /*!
- \param [in] s The invariant mass squared
+ //! Get the THat amplitude for the given s and channel number
+ /*!
+ \param [in] s The invariant mass squared
\param [in] channel The index number of the channel process
\return the complex THat amplitude
*/
- LauComplex getTHat(Double_t s, Int_t channel);
-
+ LauComplex getTHat(Double_t s, Int_t channel);
- protected:
+ protected:
//! Calculate the scattering K-matrix for the given value of s
/*!
\param [in] s the invariant mass squared
@@ -222,12 +241,41 @@
*/
void calcRhoMatrix(Double_t s);
+ //! Calculate the real and imaginary part of the gamma angular-momentum barrier matrix
+ /*!
+ \param [in] s the invariant mass squared
+ */
+ void calcGammaMatrix(Double_t s);
+
+ //! Calculate the Xspin matrix
+ void calcXspinMatrix();
+
+ //! Calculate the DK P-wave gamma angular-momentum barrier
+ /*!
+ \param [in] s the invariant mass squared
+ */
+ Double_t calcD0KPwaveGamma(Double_t s) const;
+
//! Calulate the term 1/(m_pole^2 - s) for the scattering and production K-matrix formulae
/*!
\param [in] s the invariant mass squared
*/
void calcPoleDenomVect(Double_t s);
+ //! Calculate the D0K+ phase space factor
+ /*!
+ \param [in] s the invariant mass squared
+ \return the complex phase space factor
+ */
+ LauComplex calcD0KRho(Double_t s) const;
+
+ //! Calculate the D*0K+ phase space factor
+ /*!
+ \param [in] s the invariant mass squared
+ \return the complex phase space factor
+ */
+ LauComplex calcDstar0KRho(Double_t s) const;
+
//! Calculate the pipi phase space factor
/*!
\param [in] s the invariant mass squared
@@ -318,22 +366,22 @@
Bool_t checkPhaseSpaceType(Int_t phaseSpaceInt) const;
- //! Get the unitary transition amplitude matrix for the given kinematics
- /*!
- \param [in] kinematics The pointer to the constant kinematics
+ //! Get the unitary transition amplitude matrix for the given kinematics
+ /*!
+ \param [in] kinematics The pointer to the constant kinematics
*/
- void getTMatrix(const LauKinematics* kinematics);
+ void getTMatrix(const LauKinematics* kinematics);
- //! Get the unitary transition amplitude matrix for the given kinematics
- /*!
- \param [in] s The invariant mass squared of the system
+ //! Get the unitary transition amplitude matrix for the given kinematics
+ /*!
+ \param [in] s The invariant mass squared of the system
*/
- void getTMatrix(Double_t s);
+ void getTMatrix(Double_t s);
- //! Get the square root of the phase space matrix
- void getSqrtRhoMatrix();
-
- private:
+ //! Get the square root of the phase space matrix
+ void getSqrtRhoMatrix();
+
+ private:
//! Copy constructor (not implemented)
LauKMatrixPropagator(const LauKMatrixPropagator& rhs);
@@ -341,39 +389,39 @@
LauKMatrixPropagator& operator=(const LauKMatrixPropagator& rhs);
//! Create a map for the K-matrix parameters
- typedef std::map<int, std::vector<LauParameter> > KMatrixParamMap;
+ typedef std::map<int, std::vector<LauParameter> > KMatrixParamMap;
- //! Initialise and set the dimensions for the internal matrices and parameter arrays
- void initialiseMatrices();
+ //! Initialise and set the dimensions for the internal matrices and parameter arrays
+ void initialiseMatrices();
- //! Store the (phase space) channel indices from a line in the parameter file
- /*!
- \param [in] theLine Vector of strings corresponding to the line from the parameter file
+ //! Store the (phase space) channel indices from a line in the parameter file
+ /*!
+ \param [in] theLine Vector of strings corresponding to the line from the parameter file
*/
- void storeChannels(const std::vector<std::string>& theLine);
+ void storeChannels(const std::vector<std::string>& theLine);
- //! Store the pole mass and couplings from a line in the parameter file
- /*!
- \param [in] theLine Vector of strings corresponding to the line from the parameter file
+ //! Store the pole mass and couplings from a line in the parameter file
+ /*!
+ \param [in] theLine Vector of strings corresponding to the line from the parameter file
*/
- void storePole(const std::vector<std::string>& theLine);
+ void storePole(const std::vector<std::string>& theLine);
- //! Store the scattering coefficients from a line in the parameter file
- /*!
- \param [in] theLine Vector of strings corresponding to the line from the parameter file
+ //! Store the scattering coefficients from a line in the parameter file
+ /*!
+ \param [in] theLine Vector of strings corresponding to the line from the parameter file
*/
- void storeScattering(const std::vector<std::string>& theLine);
+ void storeScattering(const std::vector<std::string>& theLine);
- //! Store miscelleanous parameters from a line in the parameter file
- /*!
- \param [in] keyword the name of the parameter to be set
- \param [in] parString the string containing the value of the parameter
+ //! Store miscelleanous parameters from a line in the parameter file
+ /*!
+ \param [in] keyword the name of the parameter to be set
+ \param [in] parString the string containing the value of the parameter
*/
- void storeParameter(const TString& keyword, const TString& parString);
+ void storeParameter(const TString& keyword, const TString& parString);
- //! String to store the propagator name
+ //! String to store the propagator name
TString name_;
//! Name of the input parameter file
TString paramFileName_;
@@ -398,7 +446,7 @@
// whenever more channels are added to this.
//! Integers to specify the allowed channels for the phase space calculations
enum KMatrixChannels {Zero, PiPi, KK, FourPi, EtaEta, EtaEtaP,
- KPi, KEtaP, KThreePi, TotChannels};
+ KPi, KEtaP, KThreePi, D0K_Pwave, Dstar0K_Swave, TotChannels};
//! Scattering K-matrix
TMatrixD ScattKMatrix_;
@@ -406,6 +454,10 @@
TMatrixD ReRhoMatrix_;
//! Imaginary part of the phase space density diagonal matrix
TMatrixD ImRhoMatrix_;
+ //! Gamma angular-momentum barrier matrix
+ TMatrixD GammaMatrix_;
+ //! Xspin matrix
+ TMatrixD XspinMatrix_;
//! Identity matrix
TMatrixD IMatrix_;
//! Null matrix
@@ -415,10 +467,10 @@
TMatrixD ReSqrtRhoMatrix_;
//! Imaginary part of the square root of the phase space density diagonal matrix
TMatrixD ImSqrtRhoMatrix_;
- //! Real part of the unitary T matrix
- TMatrixD ReTMatrix_;
- //! Imaginary part of the unitary T matrix
- TMatrixD ImTMatrix_;
+ //! Real part of the unitary T matrix
+ TMatrixD ReTMatrix_;
+ //! Imaginary part of the unitary T matrix
+ TMatrixD ImTMatrix_;
//! Number of channels
Int_t nChannels_;
@@ -426,12 +478,12 @@
Int_t nPoles_;
//! Vector of squared pole masses
- std::vector<LauParameter> mSqPoles_;
+ std::vector<LauParameter> mSqPoles_;
//! Array of coupling constants
- LauParArray gCouplings_;
+ LauParArray gCouplings_;
//! Array of scattering SVP values
- LauParArray fScattering_;
+ LauParArray fScattering_;
//! Vector of phase space types
std::vector<Int_t> phaseSpaceTypes_;
@@ -481,17 +533,28 @@
Double_t fourPiFactor1_;
//! Factor used to calculate the pipipipi phase space term
Double_t fourPiFactor2_;
+ //! Defined as (mD0+mK)^2
+ Double_t mD0KSumSq_;
+ //! Defined as (mD0-mK)^2
+ Double_t mD0KDiffSq_;
+ //! Defined as (mD*0+mK)^2
+ Double_t mDstar0KSumSq_;
+ //! Defined as (mD*0-mK)^2
+ Double_t mDstar0KDiffSq_;
//! Multiplicative factor containing various Adler zero constants
Double_t adlerZeroFactor_;
//! Tracks if all params have been set
Bool_t parametersSet_;
+ //! Helicity angle cosine
+ Double_t cosHel_;
+
//! Control the output of the functions
Bool_t verbose_;
- //! Control if scattering constants are channel symmetric: f_ji = f_ij
- Bool_t scattSymmetry_;
+ //! Control if scattering constants are channel symmetric: f_ji = f_ij
+ Bool_t scattSymmetry_;
ClassDef(LauKMatrixPropagator,0) // K-matrix amplitude model
};
diff --git a/src/LauBelleNR.cc b/src/LauBelleNR.cc
--- a/src/LauBelleNR.cc
+++ b/src/LauBelleNR.cc
@@ -49,7 +49,7 @@
parName += "_alpha";
alpha_ = resInfo->getExtraParameter( parName );
if ( alpha_ == 0 ) {
- alpha_ = new LauParameter( parName, 0.0, 0.0, 10.0, kTRUE );
+ alpha_ = new LauParameter( parName, 0.0, -2.0, 10.0, kTRUE );
alpha_->secondStage(kTRUE);
resInfo->addExtraParameter( alpha_ );
}
diff --git a/src/LauKMatrixProdPole.cc b/src/LauKMatrixProdPole.cc
--- a/src/LauKMatrixProdPole.cc
+++ b/src/LauKMatrixProdPole.cc
@@ -106,3 +106,21 @@
return amp;
}
+
+const std::vector<LauParameter*>& LauKMatrixProdPole::getFloatingParameters()
+{
+
+ this->clearFloatingParameters();
+
+ Int_t nChannels = thePropagator_->getNChannels();
+
+ for (int jChannel = 0 ; jChannel < nChannels ; jChannel++)
+ {
+ LauParameter& par_gj_ = thePropagator_->getCouplingParameter(poleIndex_, jChannel);
+ if ( !par_gj_.fixed() )
+ this->addFloatingParameter( &par_gj_ );
+ }
+
+ return this->getParameters();
+
+}
\ No newline at end of file
diff --git a/src/LauKMatrixProdSVP.cc b/src/LauKMatrixProdSVP.cc
--- a/src/LauKMatrixProdSVP.cc
+++ b/src/LauKMatrixProdSVP.cc
@@ -94,3 +94,26 @@
}
+const std::vector<LauParameter*>& LauKMatrixProdSVP::getFloatingParameters()
+{
+
+ this->clearFloatingParameters();
+
+ Int_t nChannels = thePropagator_->getNChannels();
+
+ for (int jChannel = 0 ; jChannel < nChannels ; jChannel++)
+ {
+ LauParameter& par_f_ = thePropagator_->getScatteringParameter(channelIndex_, jChannel);
+ if ( !par_f_.fixed() )
+ this->addFloatingParameter( &par_f_ );
+ }
+
+ LauParameter& par_s0Prod_ = thePropagator_->gets0Prod();
+ if ( !par_s0Prod_.fixed() )
+ {
+ this->addFloatingParameter( &par_s0Prod_ );
+ }
+
+ return this->getParameters();
+
+}
\ No newline at end of file
diff --git a/src/LauKMatrixPropagator.cc b/src/LauKMatrixPropagator.cc
--- a/src/LauKMatrixPropagator.cc
+++ b/src/LauKMatrixPropagator.cc
@@ -45,7 +45,7 @@
ClassImp(LauKMatrixPropagator)
LauKMatrixPropagator::LauKMatrixPropagator(const TString& name, const TString& paramFile,
- Int_t resPairAmpInt, Int_t nChannels,
+ Int_t resPairAmpInt, Int_t nChannels,
Int_t nPoles, Int_t rowIndex) :
name_(name),
paramFileName_(paramFile),
@@ -70,6 +70,10 @@
k3piFactor_(TMath::Power((1.44 - mK3piDiffSq_)/1.44, -2.5)),
fourPiFactor1_(16.0*LauConstants::mPiSq),
fourPiFactor2_(TMath::Sqrt(1.0 - fourPiFactor1_)),
+ mD0KSumSq_((LauConstants::mD0 + LauConstants::mK)*(LauConstants::mD0 + LauConstants::mK)),
+ mD0KDiffSq_((LauConstants::mD0 - LauConstants::mK)*(LauConstants::mD0 - LauConstants::mK)),
+ mDstar0KSumSq_((2.00696 + LauConstants::mK)*(2.00696 + LauConstants::mK)),
+ mDstar0KDiffSq_((2.00696 - LauConstants::mK)*(2.00696 - LauConstants::mK)),
adlerZeroFactor_(0.0),
parametersSet_(kFALSE),
verbose_(kFALSE),
@@ -93,9 +97,10 @@
// Destructor
realProp_.Clear();
negImagProp_.Clear();
- ScattKMatrix_.Clear();
- ReRhoMatrix_.Clear();
- ImRhoMatrix_.Clear();
+ ScattKMatrix_.Clear();
+ ReRhoMatrix_.Clear();
+ ImRhoMatrix_.Clear();
+ GammaMatrix_.Clear();
ReTMatrix_.Clear();
ImTMatrix_.Clear();
IMatrix_.Clear();
@@ -153,10 +158,13 @@
if (resPairAmpInt_ == 1) {
s = kinematics->getm23Sq();
+ cosHel_ = kinematics->getc23();
} else if (resPairAmpInt_ == 2) {
s = kinematics->getm13Sq();
+ cosHel_ = kinematics->getc13();
} else if (resPairAmpInt_ == 3) {
s = kinematics->getm12Sq();
+ cosHel_ = kinematics->getc12();
}
this->updatePropagator(s);
@@ -193,20 +201,28 @@
// if the quantity s is below various threshold values (analytic continuation).
this->calcRhoMatrix(s);
- // Calculate K*rho (real and imaginary parts, since rho can be complex)
- TMatrixD K_realRho(ScattKMatrix_);
- K_realRho *= ReRhoMatrix_;
- TMatrixD K_imagRho(ScattKMatrix_);
- K_imagRho *= ImRhoMatrix_;
+ // Calculate the angular momentum barrier matrix, which is diagonal
+ this->calcGammaMatrix(s);
+
+ // Calculate the Xspin matrix, which is diagonal
+ this->calcXspinMatrix();
+
+ // Calculate K*rho*(gamma^2) (real and imaginary parts, since rho can be complex)
+ TMatrixD K_realRhoGammasq(ScattKMatrix_);
+ K_realRhoGammasq *= ReRhoMatrix_;
+ K_realRhoGammasq *= (GammaMatrix_*GammaMatrix_);
+ TMatrixD K_imagRhoGammasq(ScattKMatrix_);
+ K_imagRhoGammasq *= ImRhoMatrix_;
+ K_imagRhoGammasq *= (GammaMatrix_*GammaMatrix_);
// A = I + K*Imag(rho), B = -K*Real(Rho)
// Calculate C and D matrices such that (A + iB)*(C + iD) = I,
// ie. C + iD = (I - i K*rho)^-1, separated into real and imaginary parts.
// realProp C = (A + B A^-1 B)^-1, imagProp D = -A^-1 B C
TMatrixD A(IMatrix_);
- A += K_imagRho;
+ A += K_imagRhoGammasq;
TMatrixD B(zeroMatrix_);
- B -= K_realRho;
+ B -= K_realRhoGammasq;
TMatrixD invA(TMatrixD::kInverted, A);
TMatrixD invA_B(invA);
@@ -216,7 +232,6 @@
TMatrixD invC(A);
invC += B_invA_B;
-
// Set the real part of the propagator matrix ("C")
realProp_ = TMatrixD(TMatrixD::kInverted, invC);
@@ -226,6 +241,15 @@
negImagProp_ = TMatrixD(invA);
negImagProp_ *= BC;
+ // Pre-multiply by the Gamma matrix:
+ realProp_ = GammaMatrix_ * realProp_;
+ negImagProp_ = GammaMatrix_ * negImagProp_;
+
+ // Pre-multiply by the Xspin matrix:
+ realProp_ = XspinMatrix_ * realProp_;
+ negImagProp_ = XspinMatrix_ * negImagProp_;
+
+
// Also calculate the production SVP term, since this uses Adler-zero parameters
// defined in the parameter file.
this->updateProdSVPTerm(s);
@@ -365,14 +389,23 @@
ReRhoMatrix_.ResizeTo(nChannels_, nChannels_);
ImRhoMatrix_.ResizeTo(nChannels_, nChannels_);
+ // Gamma matrices
+ GammaMatrix_.Clear();
+ GammaMatrix_.ResizeTo(nChannels_, nChannels_);
+
+ // Xspin matrices
+ XspinMatrix_.Clear();
+ XspinMatrix_.ResizeTo(nChannels_, nChannels_);
+ cosHel_=0.;
+
// Square-root phase space matrices
ReSqrtRhoMatrix_.Clear(); ImSqrtRhoMatrix_.Clear();
ReSqrtRhoMatrix_.ResizeTo(nChannels_, nChannels_);
ImSqrtRhoMatrix_.ResizeTo(nChannels_, nChannels_);
// T matrices
- ReTMatrix_.Clear(); ImTMatrix_.Clear();
- ReTMatrix_.ResizeTo(nChannels_, nChannels_);
+ ReTMatrix_.Clear(); ImTMatrix_.Clear();
+ ReTMatrix_.ResizeTo(nChannels_, nChannels_);
ImTMatrix_.ResizeTo(nChannels_, nChannels_);
// For the coupling and scattering constants, use LauParArrays instead of TMatrices
@@ -460,7 +493,7 @@
for (Int_t iChannel = 0; iChannel < nChannels_; iChannel++) {
Double_t couplingConst = std::atof(theLine[iChannel+3].c_str());
- LauParameter couplingParam(couplingConst);
+ LauParameter couplingParam(Form("KM_gCoupling_%i_%i",poleIndex,iChannel),couplingConst);
gCouplings_[poleIndex][iChannel] = couplingParam;
cout<<"Added coupling parameter g^{"<<poleIndex+1<<"}_"
@@ -663,6 +696,18 @@
}
+LauParameter& LauKMatrixPropagator::getCouplingParameter(Int_t poleIndex, Int_t channelIndex)
+{
+
+ if ( (parametersSet_ == kFALSE) || (poleIndex < 0 || poleIndex >= nPoles_) || (channelIndex < 0 || channelIndex >= nChannels_) ) {
+ std::cerr << "ERROR from LauKMatrixPropagator::getCouplingParameter(). Invalid coupling." << std::endl;
+ gSystem->Exit(EXIT_FAILURE);
+ }
+
+ //std::cout << "Minvalue + range for " << poleIndex << ", " << channelIndex << ": " << gCouplings_[poleIndex][channelIndex].minValue() << " => + " << gCouplings_[poleIndex][channelIndex].range() <<
+ // " and init value: " << gCouplings_[poleIndex][channelIndex].initValue() << std::endl;
+ return gCouplings_[poleIndex][channelIndex];
+}
Double_t LauKMatrixPropagator::getScatteringConstant(Int_t channel1Index, Int_t channel2Index) const
{
@@ -676,6 +721,17 @@
}
+LauParameter& LauKMatrixPropagator::getScatteringParameter(Int_t channel1Index, Int_t channel2Index)
+{
+
+ if ( (parametersSet_ == kFALSE) || (channel1Index < 0 || channel1Index >= nChannels_) || (channel2Index < 0 || channel2Index >= nChannels_) ) {
+ std::cerr << "ERROR from LauKMatrixPropagator::getScatteringParameter(). Invalid chanel index." << std::endl;
+ gSystem->Exit(EXIT_FAILURE);
+ }
+
+ return fScattering_[channel1Index][channel2Index];
+}
+
Double_t LauKMatrixPropagator::calcSVPTerm(Double_t s, Double_t s0) const
{
@@ -755,7 +811,11 @@
rho = this->calcKEtaPRho(s);
} else if (phaseSpaceIndex == LauKMatrixPropagator::KThreePi) {
rho = this->calcKThreePiRho(s);
- }
+ } else if (phaseSpaceIndex == LauKMatrixPropagator::D0K_Pwave) {
+ rho = this->calcD0KRho(s);
+ } else if (phaseSpaceIndex == LauKMatrixPropagator::Dstar0K_Swave) {
+ rho = this->calcDstar0KRho(s);
+ }
if (verbose_) {
cout<<"ReRhoMatrix("<<iChannel<<", "<<iChannel<<") = "<<rho.re()<<endl;
@@ -769,6 +829,123 @@
}
+void LauKMatrixPropagator::calcGammaMatrix(Double_t s)
+{
+ // Calculate the gamma angular momentum barrier matrix
+ // for the given invariant mass squared quantity, s.
+
+ // Initialise all entries to zero
+ GammaMatrix_.Zero();
+
+ Double_t gamma(0.0);
+ Int_t phaseSpaceIndex(0);
+
+ for (Int_t iChannel (0); iChannel < nChannels_; ++iChannel) {
+
+ phaseSpaceIndex = phaseSpaceTypes_[iChannel];
+
+ if (phaseSpaceIndex == LauKMatrixPropagator::D0K_Pwave) {
+ gamma = this->calcD0KPwaveGamma(s);
+ } else {
+ gamma = 1.0; // S-wave
+ }
+
+ if (verbose_) {
+ cout<<"GammaMatrix("<<iChannel<<", "<<iChannel<<") = "<<gamma<<endl;
+ }
+
+ GammaMatrix_(iChannel, iChannel) = gamma;
+
+ }
+
+}
+
+void LauKMatrixPropagator::calcXspinMatrix()
+{
+ // Calculate the X spin matrix (diagonal: 1 for S wave channel, cos(theta) for P wave channel)
+
+ // Initialise all entries to zero
+ XspinMatrix_.Zero();
+
+ Double_t Xspin(0.0);
+ Int_t phaseSpaceIndex(0);
+
+ for (Int_t iChannel (0); iChannel < nChannels_; ++iChannel) {
+
+ phaseSpaceIndex = phaseSpaceTypes_[iChannel];
+
+ if (phaseSpaceIndex == LauKMatrixPropagator::D0K_Pwave) {
+
+ Xspin = cosHel_;
+ } else {
+ Xspin = 1.0; // S-wave
+ }
+
+ if (verbose_) {
+ cout<<"XspinMatrix("<<iChannel<<", "<<iChannel<<") = "<<Xspin<<endl;
+ }
+
+ XspinMatrix_(iChannel, iChannel) = v;
+
+ }
+
+}
+
+
+Double_t LauKMatrixPropagator::calcD0KPwaveGamma(Double_t s) const
+{
+ // Calculate the DK P-wave angular momentum barrier factor
+ Double_t gamma(0.0);
+
+ Double_t sqrtTerm = (s - mD0KSumSq_) * (s - mD0KDiffSq_) / (4*s);
+
+ if (sqrtTerm < 0.0) {
+ std::cerr << "ERROR in LauKMatrixPropagator::calcD0KPwaveGamma(). The centre of mass energy for the D0K system is below the m(D0K) threshold. "
+ << "This should not happen" << std::endl;
+ gSystem->Exit(EXIT_FAILURE);
+ } else {
+ gamma = TMath::Sqrt(sqrtTerm);
+ }
+
+ return gamma;
+}
+
+LauComplex LauKMatrixPropagator::calcD0KRho(Double_t s) const
+{
+ // Calculate the D0K+ phase space factor
+ LauComplex rho(0.0, 0.0);
+ if (TMath::Abs(s) < 1e-10) {return rho;}
+
+ Double_t sqrtTerm1 = (-mD0KSumSq_/s) + 1.0;
+ Double_t sqrtTerm2 = (-mD0KDiffSq_/s) + 1.0;
+ Double_t sqrtTerm = sqrtTerm1*sqrtTerm2;
+ if (sqrtTerm < 0.0) {
+ rho.setImagPart( TMath::Sqrt(-sqrtTerm) );
+ } else {
+ rho.setRealPart( TMath::Sqrt(sqrtTerm) );
+ }
+
+ return rho;
+}
+
+LauComplex LauKMatrixPropagator::calcDstar0KRho(Double_t s) const
+{
+ // Calculate the Dstar0K+ phase space factor
+ LauComplex rho(0.0, 0.0);
+ if (TMath::Abs(s) < 1e-10) {return rho;}
+
+ Double_t sqrtTerm1 = (-mDstar0KSumSq_/s) + 1.0;
+ Double_t sqrtTerm2 = (-mDstar0KDiffSq_/s) + 1.0;
+ Double_t sqrtTerm = sqrtTerm1*sqrtTerm2;
+ if (sqrtTerm < 0.0) {
+ rho.setImagPart( TMath::Sqrt(-sqrtTerm) );
+ } else {
+ rho.setRealPart( TMath::Sqrt(sqrtTerm) );
+ }
+
+ return rho;
+}
+
LauComplex LauKMatrixPropagator::calcPiPiRho(Double_t s) const
{
// Calculate the pipi phase space factor

File Metadata

Mime Type
text/plain
Expires
Tue, Sep 30, 2:40 AM (22 h, 23 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
6567260
Default Alt Text
D41.1759196425.diff (29 KB)

Event Timeline