Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F19251362
MEPP2Higgs.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Award Token
Flag For Later
Size
18 KB
Referenced Files
None
Subscribers
None
MEPP2Higgs.h
View Options
// -*- C++ -*-
//
// MEPP2Higgs.h is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2011 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef HERWIG_MEPP2Higgs_H
#define HERWIG_MEPP2Higgs_H
//
// This is the declaration of the MEPP2Higgs class.
//
#include
"Herwig++/MatrixElement/HwMEBase.h"
#include
"ThePEG/Helicity/WaveFunction/ScalarWaveFunction.h"
#include
"ThePEG/Helicity/WaveFunction/VectorWaveFunction.h"
#include
"ThePEG/Helicity/WaveFunction/SpinorWaveFunction.h"
#include
"ThePEG/Helicity/WaveFunction/SpinorBarWaveFunction.h"
#include
"ThePEG/Helicity/Vertex/AbstractFFSVertex.h"
#include
"ThePEG/Helicity/Vertex/AbstractVVSVertex.h"
#include
"Herwig++/PDT/GenericMassGenerator.h"
#include
"Herwig++/MatrixElement/ProductionMatrixElement.h"
#include
"Herwig++/Shower/Couplings/ShowerAlpha.h"
namespace
Herwig
{
using
namespace
ThePEG
;
using
namespace
ThePEG
::
Helicity
;
/**
* The MEPP2Higgs class implements the matrix element for the process
* pp->Higgs with different Higgs shape prescriptions (see details in hep-ph/9505211)
* and the NLL corrected Higgs width (see details in the FORTRAN HERWIG manual).
*
* @see \ref MEPP2HiggsInterfaces "The interfaces"
* defined for MEPP2Higgs.
*/
class
MEPP2Higgs
:
public
HwMEBase
{
public
:
/**
* The default constructor.
*/
MEPP2Higgs
();
/**
* Return the matrix element for the kinematical configuation
* previously provided by the last call to setKinematics(). Uses
* me().
*/
virtual
CrossSection
dSigHatDR
()
const
;
/**
* Set the typed and momenta of the incoming and outgoing partons to
* be used in subsequent calls to me() and colourGeometries()
* according to the associated XComb object.
*/
virtual
void
setKinematics
()
{
HwMEBase
::
setKinematics
();
mh2_
=
sHat
();
}
public
:
/** @name Member functions for the generation of hard QCD radiation */
//@{
/**
* Has a POWHEG style correction
*/
virtual
POWHEGType
hasPOWHEGCorrection
()
{
return
ISR
;}
/**
* Has an old fashioned ME correction
*/
virtual
bool
hasMECorrection
()
{
return
true
;}
/**
* Initialize the ME correction
*/
virtual
void
initializeMECorrection
(
ShowerTreePtr
tree
,
double
&
initial
,
double
&
final
);
/**
* Apply the hard matrix element correction to a given hard process or decay
*/
virtual
void
applyHardMatrixElementCorrection
(
ShowerTreePtr
);
/**
* Apply the soft matrix element correction
* @param initial The particle from the hard process which started the
* shower
* @param parent The initial particle in the current branching
* @param br The branching struct
* @return If true the emission should be vetoed
*/
virtual
bool
softMatrixElementVeto
(
ShowerProgenitorPtr
initial
,
ShowerParticlePtr
parent
,
Branching
br
);
/**
* Apply the POWHEG style correction
*/
virtual
HardTreePtr
generateHardest
(
ShowerTreePtr
,
vector
<
ShowerInteraction
::
Type
>
);
//@}
public
:
/** @name Virtual functions required by the MEBase class. */
//@{
/**
* Return the order in \f$\alpha_S\f$ in which this matrix
* element is given.
*/
virtual
unsigned
int
orderInAlphaS
()
const
;
/**
* Return the order in \f$\alpha_{EW}\f$ in which this matrix
* element is given.
*/
virtual
unsigned
int
orderInAlphaEW
()
const
;
/**
* The matrix element for the kinematical configuration
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
* @return the matrix element scaled with sHat() to give a
* dimensionless number.
*/
virtual
double
me2
()
const
;
/**
* Generate internal degrees of freedom given nDim() uniform
* random numbers in the interval \f$ ]0,1[ \f$. To help the phase space
* generator, the dSigHatDR should be a smooth function of these
* numbers, although this is not strictly necessary.
* @param r a pointer to the first of nDim() consecutive random numbers.
* @return true if the generation succeeded, otherwise false.
*/
virtual
bool
generateKinematics
(
const
double
*
r
);
/**
* Return the scale associated with the last set phase space point.
*/
virtual
Energy2
scale
()
const
;
/**
* The number of internal degrees of freedom used in the matrix
* element.
*/
virtual
int
nDim
()
const
;
/**
* Add all possible diagrams with the add() function.
*/
virtual
void
getDiagrams
()
const
;
/**
* Get diagram selector. With the information previously supplied with the
* setKinematics method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
* @param dv the diagrams to be weighted.
* @return a Selector relating the given diagrams to their weights.
*/
virtual
Selector
<
DiagramIndex
>
diagrams
(
const
DiagramVector
&
dv
)
const
;
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
* @param diag the diagram chosen.
* @return the possible colour geometries weighted by their
* relative probabilities.
*/
virtual
Selector
<
const
ColourLines
*>
colourGeometries
(
tcDiagPtr
diag
)
const
;
/**
* Construct the vertex of spin correlations.
*/
virtual
void
constructVertex
(
tSubProPtr
);
//@}
public
:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void
persistentOutput
(
PersistentOStream
&
os
)
const
;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void
persistentInput
(
PersistentIStream
&
is
,
int
version
);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static
void
Init
();
protected
:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual
IBPtr
clone
()
const
{
return
new_ptr
(
*
this
);
}
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual
IBPtr
fullclone
()
const
{
return
new_ptr
(
*
this
);
}
//@}
protected
:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual
void
doinit
();
/**
* Finalize this object. Called in the run phase just after a
* run has ended. Used eg. to write out statistics.
*/
virtual
void
dofinish
();
//@}
protected
:
/**
* Members to calculate the real emission matrix elements
*/
//@{
/**
* The leading-order matrix element for \f$gg\to H\f$
*/
Energy4
loME
()
const
;
/**
* The matrix element for \f$gg\to H g\f$
*/
Energy2
ggME
(
Energy2
s
,
Energy2
t
,
Energy2
u
);
/**
* The matrix element for \f$qg\to H q\f$
*/
Energy2
qgME
(
Energy2
s
,
Energy2
t
,
Energy2
u
);
/**
* The matrix element for \f$qbarg\to H qbar\f$
*/
Energy2
qbargME
(
Energy2
s
,
Energy2
t
,
Energy2
u
);
//@}
/**
* Members to calculate the functions for the loop diagrams
*/
//@{
/**
* The \f$B(s)\f$ function of NBP339 (1990) 38-66
* @param s The scale
* @param mf2 The fermion mass squared.
*/
Complex
B
(
Energy2
s
,
Energy2
mf2
)
const
;
/**
* The \f$C(s)\f$ function of NBP339 (1990) 38-66
* @param s The scale
* @param mf2 The fermion mass squared.
*/
complex
<
InvEnergy2
>
C
(
Energy2
s
,
Energy2
mf2
)
const
;
/**
* The \f$C(s)\f$ function of NBP339 (1990) 38-66
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared
*/
complex
<
InvEnergy4
>
D
(
Energy2
s
,
Energy2
t
,
Energy2
u
,
Energy2
mf2
)
const
;
/**
* The integral \f$\int\frac{dy}{y-y_0}\log(a-i\epsilon-b y(1-y))\f$
* from NBP339 (1990) 38-66.
* @param a The parameter \f$a\f$.
* @param b The parameter \f$b\f$.
* @param y0 The parameter \f$y_0\f$.
*/
Complex
dIntegral
(
Energy2
a
,
Energy2
b
,
double
y0
)
const
;
/**
* The \f$M_{+++}\f$ matrix element of NBP339 (1990) 38-66.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
* @param i Which of the stored values to use for \f$D(u,t)\f$.
* @param j Which of the stored values to use for \f$D(u,s)\f$.
* @param k Which of the stored values to use for \f$D(s,t)\f$.
* @param i1 Which of the stored values to use for \f$C_1(s)\f$.
* @param j1 Which of the stored values to use for \f$C_1(t)\f$.
* @param k1 Which of the stored values to use for \f$C_1(u)\f$.
*/
complex
<
Energy
>
me1
(
Energy2
s
,
Energy2
t
,
Energy2
u
,
Energy2
mf2
,
unsigned
int
i
,
unsigned
int
j
,
unsigned
int
k
,
unsigned
int
i1
,
unsigned
int
j1
,
unsigned
int
k1
)
const
;
/**
* The \f$M_{++-}\f$ matrix element of NBP339 (1990) 38-66.
* @param s The \f$s\f$ invariant
* @param t The \f$t\f$ invariant
* @param u The \f$u\f$ invariant
* @param mf2 The fermion mass squared.
*/
complex
<
Energy
>
me2
(
Energy2
s
,
Energy2
t
,
Energy2
u
,
Energy2
mf2
)
const
;
/**
* The \f$F(x)\f$ function for the leading-order result
*/
Complex
F
(
double
x
)
const
;
//@}
/**
* Method to extract the PDF weight for quark/antiquark
* initiated processes and select the quark flavour
*/
tPDPtr
quarkFlavour
(
tcPDFPtr
pdf
,
Energy2
scale
,
double
x
,
tcBeamPtr
beam
,
double
&
pdfweight
,
bool
anti
);
/**
* Return the momenta and type of hard matrix element correction
* @param gluons The original incoming particles.
* @param beams The BeamParticleData objects
* @param higgs The original outgoing higgs
* @param iemit Whether the first (0) or second (1) particle emitted
* the radiation
* @param itype The type of radiated particle (0 is gluon, 1 is quark
* and 2 is antiquark)
* @param pnew The momenta of the new particles
* @param xnew The new values of the momentuym fractions
* @param out The ParticleData object for the outgoing parton
* @return Whether or not the matrix element correction needs to be applied
*/
bool
applyHard
(
ShowerParticleVector
gluons
,
vector
<
tcBeamPtr
>
beams
,
PPtr
higgs
,
unsigned
int
&
iemit
,
unsigned
int
&
itype
,
vector
<
Lorentz5Momentum
>
&
pnew
,
pair
<
double
,
double
>
&
xnew
,
tPDPtr
&
out
);
/**
* generates the hardest emission (yj,p)
* @param pnew The momenta of the new particles
* @param emissiontype The type of emission, as for getResult
* @return Whether not an emission was generated
*/
bool
getEvent
(
vector
<
Lorentz5Momentum
>
&
pnew
,
int
&
emissiontype
);
/**
* Returns the matrix element for a given type of process,
* rapidity of the jet \f$y_j\f$ and transverse momentum \f$p_T\f$
* @param emis_type the type of emission,
* (0 is \f$gg\to h^0g\f$, 1 is \f$qg\to h^0q\f$ and 2 is \f$g\bar{q}\to h^0\bar{q}\f$)
* @param pt The transverse momentum of the jet
* @param yj The rapidity of the jet
* @param outParton the outgoing parton
*/
double
getResult
(
int
emis_type
,
Energy
pt
,
double
yj
,
tcPDPtr
&
outParton
);
private
:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static
ClassDescription
<
MEPP2Higgs
>
initMEPP2Higgs
;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
MEPP2Higgs
&
operator
=
(
const
MEPP2Higgs
&
);
//@}
/**
* Members to return the matrix elements for the different subprocesses
*/
//@{
/**
* Calculates the matrix element for the process g,g->h (via quark loops)
* @param g1 a vector of wave functions of the first incoming gluon
* @param g2 a vector of wave functions of the second incoming gluon
* @param calc Whether or not to calculate the matrix element for spin correlations
* @return the amlitude value.
*/
double
ggME
(
vector
<
VectorWaveFunction
>
g1
,
vector
<
VectorWaveFunction
>
g2
,
ScalarWaveFunction
&
,
bool
calc
)
const
;
/**
* Calculates the matrix element for the process q,qbar->h
* @param fin a vector of quark spinors
* @param ain a vector of anti-quark spinors
* @param calc Whether or not to calculate the matrix element for spin correlations
* @return the amlitude value.
*/
double
qqME
(
vector
<
SpinorWaveFunction
>
&
fin
,
vector
<
SpinorBarWaveFunction
>
&
ain
,
ScalarWaveFunction
&
,
bool
calc
)
const
;
//@}
private
:
/**
* Selects a dynamic (sHat) or fixed factorization scale
*/
unsigned
int
scaleopt_
;
/**
* The value associated to the fixed factorization scale option
*/
Energy
mu_F_
;
/**
* Defines the Higgs resonance shape
*/
unsigned
int
shapeOption_
;
/**
* The processes to be included (GG->H and/or qq->H)
*/
unsigned
int
processOption_
;
/**
* Minimum flavour of incoming quarks
*/
int
minFlavour_
;
/**
* Maximum flavour of incoming quarks
*/
int
maxFlavour_
;
/**
* Matrix element for spin correlations
*/
ProductionMatrixElement
me_
;
/**
* Pointer to the H-> 2 gluon vertex (used in gg->H)
*/
AbstractVVSVertexPtr
HGGVertex_
;
/**
* Pointer to the fermion-fermion Higgs vertex (used in qq->H)
*/
AbstractFFSVertexPtr
HFFVertex_
;
/**
* The mass generator for the Higgs
*/
GenericMassGeneratorPtr
hmass_
;
/**
* On-shell mass for the higgs
*/
Energy
mh_
;
/**
* On-shell width for the higgs
*/
Energy
wh_
;
/**
* Stuff for the ME correction
*/
//@{
/**
* Parameters for the evaluation of the loops for the
* matrix elements
*/
//@{
/**
* Minimum flavour of quarks to include in the loops
*/
unsigned
int
minLoop_
;
/**
* Maximum flavour of quarks to include in the loops
*/
unsigned
int
maxLoop_
;
/**
* Option for treatment of the fermion loops
*/
unsigned
int
massOption_
;
/**
* Option for dynamic scale choice in alpha_S (0=mT,>0=pT)
*/
unsigned
int
mu_R_opt_
;
/**
* Option for dynamic scale choice in PDFs (0=mT,>0=pT)
*/
unsigned
int
mu_F_opt_
;
//@}
//@}
/**
* Small complex number to regularize some integrals
*/
static
const
complex
<
Energy2
>
epsi_
;
/**
* Storage of the loop functions
*/
//@{
/**
* B functions
*/
mutable
Complex
bi_
[
5
];
/**
* C functions
*/
mutable
complex
<
InvEnergy2
>
ci_
[
8
];
/**
* D functions
*/
mutable
complex
<
InvEnergy4
>
di_
[
4
];
//@}
/**
* Pointer to the object calculating the strong coupling
*/
ShowerAlphaPtr
alpha_
;
/**
* Mass squared of Higgs
*/
Energy2
mh2_
;
/**
* Relative weight of the \f$qg\f$ to the \f$gg\f$ channel
*/
double
channelwgtA_
;
/**
* Relative weight for the \f$\bar{q}g\f$ to the \f$gg\f$ channel
*/
double
channelwgtB_
;
/**
* Weights for the channels as a vector
*/
vector
<
double
>
channelWeights_
;
/**
* Power for the \f$\frac{{\rm d}\hat{s}}{\hat{s}^n}\f$ importance sampling
* of the \f$gg\f$ component
*/
double
ggPow_
;
/**
* Power for the \f$\frac{{\rm d}\hat{s}}{\hat{s}^n}\f$ importance sampling
* of the \f$qg\f$ and \f$\bar{q}g\f$ components
*/
double
qgPow_
;
/**
* The enhancement factor for initial-state radiation
*/
double
enhance_
;
/**
* Number of weights greater than 1
*/
unsigned
int
nover_
;
/**
* Number of attempts
*/
unsigned
int
ntry_
;
/**
* Number which suceed
*/
unsigned
int
ngen_
;
/**
* Maximum weight
*/
double
maxwgt_
;
//@}
/**
* Constants for the sampling. The distribution is assumed to have the
* form \f$\frac{c}{{\rm GeV}}\times\left(\frac{{\rm GeV}}{p_T}\right)^n\f$
*/
//@{
/**
* The power, \f$n\f$, for the sampling
*/
double
power_
;
/**
* The prefactor, \f$c\f$ for the \f$gg\f$ channel
*/
double
pregg_
;
/**
* The prefactor, \f$c\f$ for the \f$qg\f$ channel
*/
double
preqg_
;
/**
* The prefactor, \f$c\f$ for the \f$g\bar{q}\f$ channel
*/
double
pregqbar_
;
/**
* The prefactors as a vector for easy use
*/
vector
<
double
>
prefactor_
;
//@}
/**
* The transverse momentum of the jet
*/
Energy
minpT_
;
/**
* Properties of the incoming particles
*/
//@{
/**
* Pointers to the BeamParticleData objects
*/
vector
<
tcBeamPtr
>
beams_
;
/**
* Pointers to the ParticleDataObjects for the partons
*/
vector
<
tcPDPtr
>
partons_
;
//@}
/**
* Properties of the boson and jets
*/
//@{
/**
* The rapidity of the Higgs boson
*/
double
yh_
;
/**
* The mass of the Higgs boson
*/
Energy
mass_
;
/**
* the rapidity of the jet
*/
double
yj_
;
/**
* The transverse momentum of the jet
*/
Energy
pt_
;
/**
* The outgoing parton
*/
tcPDPtr
out_
;
//@}
};
}
#include
"ThePEG/Utilities/ClassTraits.h"
namespace
ThePEG
{
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the base classes of MEPP2Higgs. */
template
<>
struct
BaseClassTrait
<
Herwig
::
MEPP2Higgs
,
1
>
{
/** Typedef of the first base class of MEPP2Higgs. */
typedef
Herwig
::
HwMEBase
NthBase
;
};
/** This template specialization informs ThePEG about the name of
* the MEPP2Higgs class and the shared object where it is defined. */
template
<>
struct
ClassTraits
<
Herwig
::
MEPP2Higgs
>
:
public
ClassTraitsBase
<
Herwig
::
MEPP2Higgs
>
{
/** Return a platform-independent class name */
static
string
className
()
{
return
"Herwig::MEPP2Higgs"
;
}
/**
* The name of a file containing the dynamic library where the class
* MEPP2Higgs is implemented. It may also include several, space-separated,
* libraries if the class MEPP2Higgs depends on other classes (base classes
* excepted). In this case the listed libraries will be dynamically
* linked in the order they are specified.
*/
static
string
library
()
{
return
"HwMEHadron.so"
;
}
};
/** @endcond */
}
#endif
/* HERWIG_MEPP2Higgs_H */
File Metadata
Details
Attached
Mime Type
text/x-c++
Expires
Tue, Sep 30, 5:49 AM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
6550209
Default Alt Text
MEPP2Higgs.h (18 KB)
Attached To
Mode
rHERWIGHG herwighg
Attached
Detach File
Event Timeline
Log In to Comment