Page MenuHomeHEPForge

No OneTemporary

Size
892 KB
Referenced Files
None
Subscribers
None
This file is larger than 256 KB, so syntax highlighting was skipped.
Index: trunk/ChangeLog
===================================================================
--- trunk/ChangeLog (revision 8201)
+++ trunk/ChangeLog (revision 8202)
@@ -1,1801 +1,1804 @@
ChangeLog -- Summary of changes to the WHIZARD package
Use svn log to see detailed changes.
Version 2.6.5
2018-11-30
RELEASE: version 2.6.5
+2018-11-22
+ Fixed bug: rescanning events with beam structure could fail
+
2018-11-09
Major refactoring of internal process data
2018-11-02
PYTHIA8 interface
2018-10-29
Flat phase space parametrization with RAMBO (on diet) implemented
2018-10-17
Revise extended test suite
2018-09-27
Process container for RECOLA processes
2018-09-15
Fixes by M. Berggren for PYTHIA6 interface
2018-09-14
First fixes after HepForge modernization
##################################################################
2018-08-23
RELEASE: version 2.6.4
2018-08-09
Infrastructure to check colored subevents
2018-07-10
Infrastructure for running WHIZARD in batch mode
2018-07-04
MPI available from distribution tarball
2018-06-03
Support Intel Fortran Compiler under MAC OS X
2018-05-07
FKS slicing parameter delta_i (initial state) implementend
2018-05-03
Refactor structure function assignment for NLO
2018-05-02
FKS slicing parameter xi_cut, delta_0 implemented
2018-04-20
Workspace subdirectory for process integration (grid/phs files)
Packing/unpacking of files at job end/start
Exporting integration results from scan loops
2018-04-13
Extended QCD NLO test suite
2018-04-09
Bugfix for Higgs Singlet Extension model
2018-04-06
Workspace subdirectory for process generation and compilation
--job-id option for creating job-specific names
2018-03-20
Bug fix for color flow matching in hadron collisions
with identical initial state quarks
2018-03-08
Structure functions quantum numbers correctly assigned for NLO
2018-02-24
Configure setup includes 'pgfortran' and 'flang'
2018-02-21
Include spin-correlated matrix elements in interactions
2018-02-15
Separate module for QED ISR structure functions
##################################################################
2018-02-10
RELEASE: version 2.6.3
2018-02-08
Improvements in memory management for PS generation
2018-01-31
Partial refactoring: quantum number assigment NLO
Initial-state QCD splittings for hadron collisions
2018-01-25
Bug fix for weighted events with VAMP2
2018-01-17
Generalized interface for Recola versions 1.3+ and 2.1+
2018-01-15
Channel equivalences also for VAMP2 integrator
2018-01-12
Fix for OCaml compiler 4.06 (and newer)
2017-12-19
RECOLA matrix elements with flavor sums can be integrated
2017-12-18
Bug fix for segmentation fault in empty resonance histories
2017-12-16
Fixing a bug in PYTHIA6 PYHEPC routine by omitting CMShowers
from transferral between PYTHIA and WHIZARD event records
2017-12-15
Event index for multiple processes in event file correct
##################################################################
2017-12-13
RELEASE: version 2.6.2
2017-12-07
User can set offset in event numbers
2017-11-29
Possibility to have more than one RECOLA process in one file
2017-11-23
Transversal/mixed (and unitarized) dim-8 operators
2017-11-16
epa_q_max replaces epa_e_max (trivial factor 2)
2017-11-15
O'Mega matrix element compilation silent now
2017-11-14
Complete expanded P-wave form factor for top threshold
2017-11-10
Incoming particles can be accessed in SINDARIN
2017-11-08
Improved handling of resonance insertion, additional parameters
2017-11-04
Added Higgs-electron coupling (SM_Higgs)
##################################################################
2017-11-03
RELEASE: version 2.6.1
2017-10-20
More than 5 NLO components possible at same time
2017-10-19
Gaussian cutoff for shower resonance matching
2017-10-12
Alternative (more efficient) method to generate
phase space file
2017-10-11
Bug fix for shower resonance histories for processes
with multiple components
2017-09-25
Bugfix for process libraries in shower resonance histories
2017-09-21
Correctly generate pT distribution for EPA remnants
2017-09-20
Set branching ratios for unstable particles also by hand
2017-09-14
Correctly generate pT distribution for ISR photons
##################################################################
2017-09-08
RELEASE: version 2.6.0
2017-09-05
Bug fix for initial state NLO QCD flavor structures
Real and virtual NLO QCD hadron collider processes
work with internal interactions
2017-09-04
Fully validated MPI integration and event generation
2017-09-01
Resonance histories for shower: full support
Bug fix in O'Mega model constraints
O'Mega allows to output a parsable form of the DAG
2017-08-24
Resonance histories in events for transferral
to parton shower (e.g. in ee -> jjjj)
2017-08-01
Alpha version of HepMC v3 interface
(not yet really functional)
2017-07-31
Beta version for RECOLA OLP support
2017-07-06
Radiation generator fix for LHC processes
2017-06-30
Fix bug for NLO with structure
functions and/or polarization
2017-06-23
Collinear limit for QED corrections works
2017-06-17
POWHEG grids generated already during integration
2017-06-12
Soft limit for QED corrections works
2017-05-16
Beta version of full MPI parallelization (VAMP2)
Check consistency of POWHEG grid files
Logfile config-summary.log for configure summary
2017-05-12
Allow polarization in top threshold
2017-05-09
Minimal demand automake 1.12.2
Silent rules for make procedures
2017-05-07
Major fix for POWHEG damping
Correctly initialize FKS ISR phasespace
##################################################################
2017-05-06
RELEASE: version 2.5.0
2017-05-05
Full UFO support (SM-like models)
Fixed-beam ISR FKS phase space
2017-04-26
QED splittings in radiation generator
2017-04-10
Retire deprecated O'Mega vertex cache files
##################################################################
2017-03-24
RELEASE: version 2.4.1
2017-03-16
Distinguish resonance charge in phase space channels
Keep track of resonance histories in phase space
Complex mass scheme default for OpenLoops amplitudes
2017-03-13
Fix helicities for polarized OpenLoops calculations
2017-03-09
Possibility to advance RNG state in rng_stream
2017-03-04
General setup for partitioning real emission
phase space
2017-03-06
Bugfix on rescan command for converting event files
2017-02-27
Alternative multi-channel VEGAS implementation
VAMP2: serial backbone for MPI setup
Smoothstep top threshold matching
2017-02-25
Single-beam structure function with
s-channel mapping supported
Safeguard against invalid process libraries
2017-02-16
Radiation generator for photon emission
2017-02-10
Fixes for NLO QCD processes (color correlations)
2017-01-16
LCIO variable takes precedence over LCIO_DIR
2017-01-13
Alternative random number generator
rng_stream (cf. L'Ecuyer et al.)
2017-01-01
Fix for multi-flavor BLHA tree
matrix elements
2016-12-31
Grid path option for VAMP grids
2016-12-28
Alpha version of Recola OLP support
2016-12-27
Dalitz plots for FKS phase space
2016-12-14
NLO multi-flavor events possible
2016-12-09
LCIO event header information added
2016-12-02
Alpha version of RECOLA interface
Bugfix for generator status in LCIO
##################################################################
2016-11-28
RELEASE: version 2.4.0
2016-11-24
Bugfix for OpenLoops interface: EW scheme
is set by WHIZARD
Bugfixes for top threshold implementation
2016-11-11
Refactoring of dispatching
2016-10-18
Bug fix for LCIO output
2016-10-10
First implementation for collinear soft terms
2016-10-06
First full WHIZARD models from UFO files
2016-10-05
WHIZARD does not support legacy gcc 4.7.4 any longer
2016-09-30
Major refactoring of process core and NLO components
2016-09-23
WHIZARD homogeneous entity: discarding subconfigures
for CIRCE1/2, O'Mega, VAMP subpackages; these are
reconstructable by script projectors
2016-09-06
Introduce main configure summary
2016-08-26
Fix memory leak in event generation
##################################################################
2016-08-25
RELEASE: version 2.3.1
2016-08-19
Bug fix for EW-scheme dependence of gluino propagators
2016-08-01
Beta version of complex mass scheme support
2016-07-26
Fix bug in POWHEG damping for the matching
##################################################################
2016-07-21
RELEASE: version 2.3.0
2016-07-20
UFO file support (alpha version) in O'Mega
2016-07-13
New (more) stable of WHIZARD GUI
Support for EW schemes for OpenLoops
Factorized NLO top decays for threshold model
2016-06-15
Passing factorization scale to PYTHIA6
Adding charge and neutral observables
2016-06-14
Correcting angular distribution/tweaked kinematics in
non-collinear structure functions splittings
2016-05-10
Include (Fortran) TAUOLA/PHOTOS for tau decays via PYTHIA6
(backwards validation of LC CDR/TDR samples)
2016-04-27
Within OpenLoops virtuals: support for Collier library
2016-04-25
O'Mega vertex tables only loaded at first usage
2016-04-21
New CJ15 PDF parameterizations added
2016-04-21
Support for hadron collisions at NLO QCD
2016-04-05
Support for different (parameter) schemes in model files
2016-03-31
Correct transferral of lifetime/vertex from PYTHIA/TAUOLA
into the event record
2016-03-21
New internal implementation of polarization
via Bloch vectors, remove pointer constructions
2016-03-13
Extension of cascade syntax for processes:
exclude propagators/vertices etc. possible
2016-02-24
Full support for OpenLoops QCD NLO matrix
elements, inclusion in test suite
2016-02-12
Substantial progress on QCD NLO support
2016-02-02
Automated resonance mapping for FKS subtraction
2015-12-17
New BSM model WZW for diphoton resonances
##################################################################
2015-11-22
RELEASE: version 2.2.8
2015-11-21
Bugfix for fixed-order NLO events
2015-11-20
Anomalous FCNC top-charm vertices
2015-11-19
StdHEP output via HEPEVT/HEPEV4 supported
2015-11-18
Full set of electroweak dim-6 operators included
2015-10-22
Polarized one-loop amplitudes supported
2015-10-21
Fixes for event formats for showered events
2015-10-14
Callback mechanism for event output
2015-09-22
Bypass matrix elements in pure event sample rescans
StdHep frozen final version v5.06.01 included internally
2015-09-21
configure option --with-precision to
demand 64bit, 80bit, or 128bit Fortran
and bind C precision types
2015-09-07
More extensive tests of NLO
infrastructure and POWHEG matching
2015-09-01
NLO decay infrastructure
User-defined squared matrix elements
Inclusive FastJet algorithm plugin
Numerical improvement for small boosts
##################################################################
2015-08-11
RELEASE: version 2.2.7
2015-08-10
Infrastructure for damped POWHEG
Massive emitters in POWHEG
Born matrix elements via BLHA
GoSam filters via SINDARIN
Minor running coupling bug fixes
Fixed-order NLO events
2015-08-06
CT14 PDFs included (LO, NLO, NNLL)
2015-07-07
Revalidation of ILC WHIZARD-PYTHIA event chain
Extended test suite for showered events
Alpha version of massive FSR for POWHEG
2015-06-09
Fix memory leak in interaction for long cascades
Catch mismatch between beam definition and CIRCE2 spectrum
2015-06-08
Automated POWHEG matching: beta version
Infrastructure for GKS matching
Alpha version of fixed-order NLO events
CIRCE2 polarization averaged spectra with
explicitly polarized beams
2015-05-12
Abstract matching type: OO structure for matching/merging
2015-05-07
Bug fix in event record WHIZARD-PYTHIA6 transferral
Gaussian beam spectra for lepton colliders
##################################################################
2015-05-02
RELEASE: version 2.2.6
2015-05-01
Models for (unitarized) tensor resonances in VBS
2015-04-28
Bug fix in channel weights for event generation.
2015-04-18
Improved event record transfer WHIZARD/PYTHIA6
2015-03-19
POWHEG matching: alpha version
##################################################################
2015-02-27
RELEASE: version 2.2.5
2015-02-26
Abstract types for quantum numbers
2015-02-25
Read-in of StdHEP events, self-tests
2015-02-22
Bugfix for mother-daughter relations in
showered/hadronized events
2015-02-20
Projection on polarization in intermediate states
2015-02-13
Correct treatment of beam remnants in
event formats (also LC remnants)
##################################################################
2015-02-06
RELEASE: version 2.2.4
2015-02-06
Bugfix in event output
2015-02-05
LCIO event format supported
2015-01-30
Including state matrices in WHIZARD's internal IO
Versioning for WHIZARD's internal IO
Libtool update from 2.4.3 to 2.4.5
LCIO event output (beta version)
2015-01-27
Progress on NLO integration
Fixing a bug for multiple processes in a single
event file when using beam event files
2015-01-19
Bug fix for spin correlations evaluated in the rest
frame of the mother particle
2015-01-17
Regression fix for statically linked processes
from SARAH and FeynRules
2015-01-10
NLO: massive FKS emitters supported (experimental)
2015-01-06
MMHT2014 PDF sets included
2015-01-05
Handling mass degeneracies in auto_decays
2014-12-19
Fixing bug in rescan of event files
##################################################################
2014-11-30
RELEASE: version 2.2.3
2014-11-29
Beta version of LO continuum/NLL-threshold
matched top threshold model for e+e- physics
2014-11-28
More internal refactoring: disentanglement of module
dependencies
2014-11-21
OVM: O'Mega Virtual Machine, bytecode instructions
instead of compiled Fortran code
2014-11-01
Higgs Singlet extension model included
2014-10-18
Internal restructuring of code; half-way
WHIZARD main code file disassembled
2014-07-09
Alpha version of NLO infrastructure
##################################################################
2014-07-06
RELEASE: version 2.2.2
2014-07-05
CIRCE2: correlated LC beam spectra and
GuineaPig Interface to LC machine parameters
2014-07-01
Reading LHEF for decayed/factorized/showered/
hadronized events
2014-06-25
Configure support for GoSAM/Ninja/Form/QGraf
2014-06-22
LHAPDF6 interface
2014-06-18
Module for automatic generation of
radiation and loop infrastructure code
2014-06-11
Improved internal directory structure
##################################################################
2014-06-03
RELEASE: version 2.2.1
2014-05-30
Extensions of internal PDG arrays
2014-05-26
FastJet interface
2014-05-24
CJ12 PDFs included
2014-05-20
Regression fix for external models (via SARAH
or FeynRules)
##################################################################
2014-05-18
RELEASE: version 2.2.0
2014-04-11
Multiple components: inclusive process definitions,
syntax: process A + B + ...
2014-03-13
Improved PS mappings for e+e- ISR
ILC TDR and CLIC spectra included in CIRCE1
2014-02-23
New models: AltH w\ Higgs for exclusion purposes,
SM_rx for Dim 6-/Dim-8 operators, SSC for
general strong interactions (w/ Higgs), and
NoH_rx (w\ Higgs)
2014-02-14
Improved s-channel mapping, new on-shell
production mapping (e.g. Drell-Yan)
2014-02-03
PRE-RELEASE: version 2.2.0_beta
2014-01-26
O'Mega: Feynman diagram generation possible (again)
2013-12-16
HOPPET interface for b parton matching
2013-11-15
PRE-RELEASE: version 2.2.0_alpha-4
2013-10-27
LHEF standards 1.0/2.0/3.0 implemented
2013-10-15
PRE-RELEASE: version 2.2.0_alpha-3
2013-10-02
PRE-RELEASE: version 2.2.0_alpha-2
2013-09-25
PRE-RELEASE: version 2.2.0_alpha-1
2013-09-12
PRE-RELEASE: version 2.2.0_alpha
2013-09-03
General 2HDM implemented
2013-08-18
Rescanning/recalculating events
2013-06-07
Reconstruction of complete event
from 4-momenta possible
2013-05-06
Process library stacks
2013-05-02
Process stacks
2013-04-29
Single-particle phase space module
2013-04-26
Abstract interface for random
number generator
2013-04-24
More object-orientation on modules
Midpoint-rule integrator
2013-04-05
Object-oriented integration and
event generation
2013-03-12
Processes recasted object-oriented:
MEs, scales, structure functions
First infrastructure for general Lorentz
structures
2013-01-17
Object-orientated reworking of library and
process core, more variable internal structure,
unit tests
2012-12-14
Update Pythia version to 6.4.27
2012-12-04
Fix the phase in HAZ vertices
2012-11-21
First O'Mega unit tests, some infrastructure
2012-11-13
Bugfix in anom. HVV Lorentz structures
##################################################################
2012-09-18
RELEASE: version 2.1.1
2012-09-11
Model MSSM_Hgg with Hgg and HAA vertices
2012-09-10
First version of implementation of multiple
interactions in WHIZARD
2012-09-05
Infrastructure for internal CKKW matching
2012-09-02
C, C++, Python API
2012-07-19
Fixing particle numbering in HepMC format
##################################################################
2012-06-15
RELEASE: version 2.1.0
2012-06-14
Analytical and kT-ordered shower officially
released
PYTHIA interface officially released
2012-05-09
Intrisince PDFs can be used for showering
2012-05-04
Anomalous Higgs couplings a la hep-ph/9902321
##################################################################
2012-03-19
RELEASE: version 2.0.7
2012-03-15
Run IDs are available now
More event variables in analysis
Modified raw event format (compatibility mode exists)
2012-03-12
Bugfix in decay-integration order
MLM matching steered completely internally now
2012-03-09
Special phase space mapping for narrow resonances
decaying to 4-particle final states with far off-shell
intermediate states
Running alphas from PDF collaborations with
builtin PDFs
2012-02-16
Bug fix in cascades decay infrastructure
2012-02-04
WHIZARD documentation compatible with TeXLive 2011
2012-02-01
Bug fix in FeynRules interface with --prefix flag
2012-01-29
Bug fix with name clash of O'Mega variable names
2012-01-27
Update internal PYTHIA to version 6.4.26
Bug fix in LHEF output
2012-01-21
Catching stricter automake 1.11.2 rules
2011-12-23
Bug fix in decay cascade setup
2011-12-20
Bug fix in helicity selection rules
2011-12-16
Accuracy goal reimplemented
2011-12-14
WHIZARD compatible with TeXLive 2011
2011-12-09
Option --user-target added
##################################################################
2011-12-07
RELEASE: version 2.0.6
2011-12-07
Bug fixes in SM_top_anom
Added missing entries to HepMC format
2011-12-06
Allow to pass options to O'Mega
Bug fix for HEPEVT block for showered/hadronized events
2011-12-01
Reenabled user plug-in for external code for
cuts, structure functions, routines etc.
2011-11-29
Changed model SM_Higgs for Higgs phenomenology
2011-11-25
Supporting a Y, (B-L) Z' model
2011-11-23
Make WHIZARD compatible for MAC OS X Lion/XCode 4
2011-09-25
WHIZARD paper published: Eur.Phys.J. C71 (2011) 1742
2011-08-16
Model SM_QCD: QCD with one EW insertion
2011-07-19
Explicit output channel for dvips avoids printing
2011-07-10
Test suite for WHIZARD unit tests
2011-07-01
Commands for matrix element tests
More OpenMP parallelization of kinematics
Added unit tests
2011-06-23
Conversion of CIRCE2 from F77 to F90, major
clean-up
2011-06-14
Conversion of CIRCE1 from F77 to F90
2011-06-10
OpenMP parallelization of channel kinematics
(by Matthias Trudewind)
2011-05-31
RELEASE: version 1.97
2011-05-24
Minor bug fixes: update grids and elsif statement.
##################################################################
2011-05-10
RELEASE: version 2.0.5
2011-05-09
Fixed bug in final state flavor sums
Minor improvements on phase-space setup
2011-05-05
Minor bug fixes
2011-04-15
WHIZARD as a precompiled 64-bit binary available
2011-04-06
Wall clock instead of cpu time for time estimates
2011-04-05
Major improvement on the phase space setup
2011-04-02
OpenMP parallelization for helicity loop in O'Mega
matrix elements
2011-03-31
Tools for relocating WHIZARD and use in batch
environments
2011-03-29
Completely static builds possible, profiling options
2011-03-28
Visualization of integration history
2011-03-27
Fixed broken K-matrix implementation
2011-03-23
Including the GAMELAN manual in the distribution
2011-01-26
WHIZARD analysis can handle hadronized event files
2011-01-17
MSTW2008 and CT10 PDF sets included
2010-12-23
Inclusion of NMSSM with Hgg couplings
2010-12-21
Advanced options for integration passes
2010-11-16
WHIZARD supports CTEQ6 and possibly other PDFs
directly; data files included in the distribution
##################################################################
2010-10-26
RELEASE: version 2.0.4
2010-10-06
Bug fix in MSSM implementation
2010-10-01
Update to libtool 2.4
2010-09-29
Support for anomalous top couplings (form factors etc.)
Bug fix for running gauge Yukawa SUSY couplings
2010-09-28
RELEASE: version 1.96
2010-09-21
Beam remnants and pT spectra for lepton collider re-enabled
Restructuring subevt class
2010-09-16
Shower and matching are disabled by default
PYTHIA as a conditional on these two options
2010-09-14
Possibility to read in beam spectra re-enabled (e.g. Guinea
Pig)
2010-09-13
Energy scan as (pseudo-) structure functions re-implemented
2010-09-10
CIRCE2 included again in WHIZARD 2 and validated
2010-09-02
Re-implementation of asymmetric beam energies and collision
angles, e-p collisions work, inclusion of a HERA DIS test
case
##################################################################
2010-10-18
RELEASE: version 2.0.3
2010-08-08
Bug in CP-violating anomalous triple TGCs fixed
2010-08-06
Solving backwards compatibility problem with O'Caml 3.12.0
2010-07-12
Conserved quantum numbers speed up O'Mega code generation
2010-07-07
Attaching full ISR/FSR parton shower and MPI/ISR
module
Added SM model containing Hgg, HAA, HAZ vertices
2010-07-02
Matching output available as LHEF and STDHEP
2010-06-30
Various bug fixes, missing files, typos
2010-06-26
CIRCE1 completely re-enabled
Chaining structure functions supported
2010-06-25
Partial support for conserved quantum numbers in
O'Mega
2010-06-21
Major upgrade of the graphics package: error bars,
smarter SINDARIN steering, documentation, and all that...
2010-06-17
MLM matching with PYTHIA shower included
2010-06-16
Added full CIRCE1 and CIRCE2 versions including
full documentation and miscellanea to the trunk
2010-06-12
User file management supported, improved variable
and command structure
2010-05-24
Improved handling of variables in local command lists
2010-05-20
PYTHIA interface re-enabled
2010-05-19
ASCII file formats for interfacing ROOT and gnuplot in
data analysis
##################################################################
2010-05-18
RELEASE: version 2.0.2
2010-05-14
Reimplementation of visualization of phase space
channels
Minor bug fixes
2010-05-12
Improved phase space - elimination of redundancies
2010-05-08
Interface for polarization completed: polarized beams etc.
2010-05-06
Full quantum numbers appear in process log
Integration results are usable as user variables
Communication with external programs
2010-05-05
Split module commands into commands, integration,
simulation modules
2010-05-04
FSR+ISR for the first time connected to the WHIZARD 2 core
##################################################################
2010-04-25
RELEASE: version 2.0.1
2010-04-23
Automatic compile and integrate if simulate is called
Minor bug fixes in O'Mega
2010-04-21
Checkpointing for event generation
Flush statements to use WHIZARD inside a pipe
2010-04-20
Reimplementation of signal handling in WGIZARD 2.0
2010-04-19
VAMP is now a separately configurable and installable unit of
WHIZARD, included VAMP self-checks
Support again compilation in quadruple precision
2010-04-06
Allow for logarithmic plots in GAMELAN, reimplement the
possibility to set the number of bins
2010-04-15
Improvement on time estimates for event generation
##################################################################
2010-04-12
RELEASE: version 2.0.0
2010-04-09
Per default, the code for the amplitudes is subdivided to allow
faster compiler optimization
More advanced and unified and straightforward command language
syntax
Final bug fixes
2010-04-07
Improvement on SINDARIN syntax; printf, sprintf function
thorugh a C interface
2010-04-05
Colorizing DAGs instead of model vertices: speed boost
in colored code generation
2010-03-31
Generalized options for normalization of weighted and
unweighted events
Grid and weight histories added again to log files
Weights can be used in analyses
2010-03-28
Cascade decays completely implemented including color and
spin correlations
2010-03-07
Added new WHIZARD header with logo
2010-03-05
Removed conflict in O'Mega amplitudes between flavour sums
and cascades
StdHEP interface re-implemented
2010-03-03
RELEASE: version 2.0.0rc3
Several bug fixes for preventing abuse in input files
OpenMP support for amplitudes
Reimplementation of WHIZARD 1 HEPEVT ASCII event formats
FeynRules interface successfully passed MSSM test
2010-02-26
Eliminating ghost gluons from multi-gluon amplitudes
2010-02-25
RELEASE: version 1.95
HEPEVT format from WHIZARD 1 re-implemented in WHIZARD 2
2010-02-23
Running alpha_s implemented in the FeynRules interface
2010-02-19
MSSM (semi-) automatized self-tests finalized
2010-02-17
RELEASE: version 1.94
2010-02-16
Closed memory corruption in WHIZARD 1
Fixed problems of old MadGraph and CompHep drivers
with modern compilers
Uncolored vertex selection rules for colored amplitudes in
O'Mega
2010-02-15
Infrastructure for color correlation computation in O'Mega
finished
Forbidden processes are warned about, but treated as non-fatal
2010-02-14
Color correlation computation in O'Mega finalized
2010-02-10
Improving phase space mappings for identical particles in
initial and final states
Introduction of more extended multi-line error message
2010-02-08
First O'Caml code for computation of color correlations in
O'Mega
2010-02-07
First MLM matching with e+ e- -> jets
##################################################################
2010-02-06
RELEASE: version 2.0.0rc2
2010-02-05
Reconsidered the Makefile structure and more extended tests
Catch a crash between WHIZARD and O'Mega for forbidden processes
Tensor products of arbitrary color structures in jet definitions
2010-02-04
Color correlation computation in O'Mega finalized
##################################################################
2010-02-03
RELEASE: version 2.0.0rc1
##################################################################
2010-01-31
Reimplemented numerical helicity selection rules
Phase space functionality of version 1 restored and improved
2009-12-05
NMSSM validated with FeynRules in WHIZARD 1 (Felix Braam)
2009-12-04
RELEASE: version 2.0.0alpha
##################################################################
2009-04-16
RELEASE: version 1.93
2009-04-15
Clean-up of Makefiles and configure scripts
Reconfiguration of BSM model implementation
extended supersymmetric models
2008-12-23
New model NMSSM (Felix Braam)
SLHA2 added
Bug in LHAPDF interface fixed
2008-08-16
Bug fixed in K matrix implementation
Gravitino option in the MSSM added
2008-03-20
Improved color and flavor sums
##################################################################
2008-03-12
RELEASE: version 1.92
LHEF (Les Houches Event File) format added
Fortran 2003 command-line interface (if supported by the compiler)
Automated interface to colored models
More bug fixes and workarounds for compiler compatibility
##################################################################
2008-03-06
RELEASE: version 1.91
New model K-matrix (resonances and anom. couplings in WW scattering)
EWA spectrum
Energy-scan pseudo spectrum
Preliminary parton shower module (only from final-state quarks)
Cleanup and improvements of configure process
Improvements for O'Mega parameter files
Quadruple precision works again
More plotting options: lines, symbols, errors
Documentation with PDF bookmarks enabled
Various bug fixes
2007-11-29
New model UED
##################################################################
2007-11-23
RELEASE: version 1.90
O'Mega now part of the WHIZARD tree
Madgraph/CompHEP disabled by default (but still usable)
Support for LHAPDF (preliminary)
Added new models: SMZprime, SM_km, Template
Improved compiler recognition and compatibility
Minor bug fixes
##################################################################
2006-06-15
RELEASE: version 1.51
Support for anomaly-type Higgs couplings (to gluon and photon/Z)
Support for spin 3/2 and spin 2
New models: Little Higgs (4 versions), toy models for extra dimensions
and gravitinos
Fixes to the whizard.nw source documentation to run through LaTeX
Intel 9.0 bug workaround (deallocation of some arrays)
2006-05-15
O'Mega RELEASE: version 0.11
merged JRR's O'Mega extensions
##################################################################
2006-02-07
RELEASE: version 1.50
To avoid confusion: Mention outdated manual example in BUGS file
O'Mega becomes part of the WHIZARD generator
2006-02-02 [bug fix update]
Bug fix: spurious error when writing event files for weighted events
Bug fix: 'r' option for omega produced garbage for some particle names
Workaround for ifort90 bug (crash when compiling whizard_event)
Workaround for ifort90 bug (crash when compiling hepevt_common)
2006-01-27
Added process definition files for MSSM 2->2 processes
Included beam recoil for EPA (T.Barklow)
Updated STDHEP byte counts (for STDHEP 5.04.02)
Fixed STDHEP compatibility (avoid linking of incomplete .so libs)
Fixed issue with comphep requiring Xlibs on Opteron
Fixed issue with ifort 8.x on Opteron (compiling 'signal' interface)
Fixed color-flow code: was broken for omega with option 'c' and 'w'
Workaround hacks for g95 compatibility
2005-11-07
O'Mega RELEASE: version 0.10
O'Mega, merged JRR's and WK's color hack for WHiZard
O'Mega, EXPERIMENTAL: cache fusion tables (required for colors
a la JRR/WK)
O'Mega, make JRR's MSSM official
##################################################################
2005-10-25
RELEASE: version 1.43
Minor fixes in MSSM couplings (Higgs/3rd gen squarks).
This should be final, since the MSSM results agree now completely
with Madgraph and Sherpa
User-defined lower and upper limits for split event file count
Allow for counters (events, bytes) exceeding $2^{31}$
Revised checksum treatment and implementation (now MD5)
Bug fix: missing process energy scale in raw event file
##################################################################
2005-09-30
RELEASE: version 1.42
Graphical display of integration history ('make history')
Allow for switching off signals even if supported (configure option)
2005-09-29
Revised phase space generation code, in particular for flavor sums
Negative cut and histogram codes use initial beams instead of
initial parton momenta. This allows for computing, e.g., E_miss
Support constant-width and zero-width options for O'Mega
Width options now denoted by w:X (X=f,c,z). f option obsolescent
Bug fix: colorized code: flipped indices could screw up result
Bug fix: O'Mega with 'c' and 'w:f' option together (still some problem)
Bug fix: dvips on systems where dvips defaults to lpr
Bug fix: integer overflow if too many events are requested
2005-07-29
Allow for 2 -> 1 processes (if structure functions are on)
2005-07-26
Fixed and expanded the 'test' matrix element:
Unit matrix element with option 'u' / default: normalized phase space
##################################################################
2005-07-15
RELEASE: version 1.41
Bug fix: no result for particle decay processes with width=0
Bug fix: line breaks in O'Mega files with color decomposition
2005-06-02
New self-tests (make test-QED / test-QCD / test-SM)
check lists of 2->2 processes
Bug fix: HELAS calling convention for wwwwxx and jwwwxx (4W-Vertex)
2005-05-25
Revised Makefile structure
Eliminated obsolete references to ISAJET/SUSY (superseded by SLHA)
2005-05-19
Support for color in O'Mega (using color flow decomposition)
New model QCD
Parameter file changes that correspond to replaced SM module in O'Mega
Bug fixes in MSSM (O'Mega) parameter file
2005-05-18
New event file formats, useful for LHC applications:
ATHENA and Les Houches Accord (external fragmentation)
Naive (i.e., leading 1/N) color factor now implemented both for
incoming and outgoing partons
2005-01-26
include missing HELAS files for bundle
pgf90 compatibility issues [note: still internal error in pgf90]
##################################################################
2004-12-13
RELEASE: version 1.40
compatibility fix: preprocessor marks in helas code now commented out
minor bug fix: format string in madgraph source
2004-12-03
support for arbitray beam energies and directions
allow for pT kick in structure functions
bug fix: rounding error could result in zero cross section
(compiler-dependent)
2004-10-07
simulate decay processes
list fraction (of total width/cross section) instead of efficiency
in process summary
new cut/analysis parameters AA, AAD, CTA: absolute polar angle
2004-10-04
Replaced Madgraph I by Madgraph II. Main improvement: model no
longer hardcoded
introduced parameter reset_seed_each_process (useful for debugging)
bug fix: color initialization for some processes was undefined
2004-09-21
don't compile unix_args module if it is not required
##################################################################
2004-09-20
RELEASE: version 1.30
g95 compatibility issues resolved
some (irrelevant) memory leaks closed
removed obsolete warning in circe1
manual update (essentially) finished
2004-08-03
O'Mega RELEASE: version 0.9
O'Mega, src/trie.mli, src/trie.ml: make interface compatible with
the O'Caml 3.08 library (remains compatible with older
versions). Implementation of unused functions still
incomplete.
2004-07-26
minor fixes and improvements in make process
2004-06-29
workarounds for new Intel compiler bugs ...
no rebuild of madgraph/comphep executables after 'make clean'
bug fix in phase space routine:
wrong energy for massive initial particles
bug fix in (new) model interface: name checks for antiparticles
pre-run checks for comphep improved
ww-strong model file extended
Model files particle name fixes, chep SM vertices included
2004-06-22
O'Mega RELEASE: version 0.8
O'Mega MSSM: sign of W+/W-/A and W+/W-/Z couplings
2004-05-05
Fixed bug in PDFLIB interface: p+pbar was initialized as p+p (ThO)
NAG compiler: set number of continuation lines to 200 as default
Extended format for cross section summary; appears now in whizard.out
Fixed 'bundle' feature
2004-04-28
Fixed compatibility with revised O'Mega SM_ac model
Fixed problem with x=0 or x=1 when calling PDFLIB (ThO)
Fixed bug in comphep module: Vtb was overlooked
##################################################################
2004-04-15
RELEASE: version 1.28
Fixed bug: Color factor was missing for O'Mega processes with
four quarks and more
Manual partially updated
2004-04-08
Support for grid files in binary format
New default value show_histories=F (reduce output file size)
Revised phase space switches: removed annihilation_lines,
removed s_channel_resonance, changed meaning of
extra_off_shell_lines, added show_deleted_channels
Bug fixed which lead to omission of some phase space channels
Color flow guessed only if requested by guess_color_flow
2004-03-10
New model interface: Only one model name specified in whizard.prc
All model-dependent files reside in conf/models (modellib removed)
2004-03-03
Support for input/output in SUSY Les Houches Accord format
Split event files if requested
Support for overall time limit
Support for CIRCE and CIRCE2 generator mode
Support for reading beam events from file
2004-02-05
Fixed compiler problems with Intel Fortran 7.1 and 8.0
Support for catching signals
##################################################################
2003-08-06
RELEASE: version 1.27
User-defined PDF libraries as an alternative to the standard PDFLIB
2003-07-23
Revised phase space module: improved mappings for massless particles,
equivalences of phase space channels are exploited
Improved mapping for PDF (hadron colliders)
Madgraph module: increased max number of color flows from 250 to 1000
##################################################################
2003-06-23
RELEASE: version 1.26
CIRCE2 support
Fixed problem with 'TC' integer kind [Intel compiler complained]
2003-05-28
Support for drawing histograms of grids
Bug fixes for MSSM definitions
##################################################################
2003-05-22
RELEASE: version 1.25
Experimental MSSM support with ISAJET interface
Improved capabilities of generating/analyzing weighted events
Optional drawing phase space diagrams using FeynMF
##################################################################
2003-01-31
RELEASE: version 1.24
A few more fixes and workarounds (Intel and Lahey compiler)
2003-01-15
Fixes and workarounds needed for WHIZARD to run with Intel compiler
Command-line option interface for the Lahey compiler
Bug fix: problem with reading whizard.phs
##################################################################
2002-12-10
RELEASE: version 1.23
Command-line options (on some systems)
Allow for initial particles in the event record, ordered:
[beams, initials] - [remnants] - outgoing partons
Support for PYTHIA 6.2: Les Houches external process interface
String pythia_parameters can be up to 1000 characters long
Select color flow states in (internal) analysis
Bug fix in color flow content of raw event files
Support for transversal polarization of fermion beams
Cut codes: PHI now for absolute azimuthal angle, DPHI for distance
'Test' matrix elements optionally respect polarization
User-defined code can be inserted for spectra, structure functions
and fragmentation
Time limits can be specified for adaptation and simulation
User-defined file names and file directory
Initial weights in input file no longer supported
Bug fix in MadGraph (wave function counter could overflow)
Bug fix: Gamelan (graphical analysis) was not built if noweb absent
##################################################################
2002-03-16
RELEASE: version 1.22
Allow for beam remnants in the event record
2002-03-01
Handling of aliases in whizard.prc fixed (aliases are whole tokens)
2002-02-28
Optimized phase space handling routines
(total execution time reduced by 20-60%, depending on process)
##################################################################
2002-02-26
RELEASE: version 1.21
Fixed ISR formula (ISR was underestimated in previous versions).
New version includes ISR in leading-log approximation up to
third order. Parameter ISR_sqrts renamed to ISR_scale.
##################################################################
2002-02-19
RELEASE: version 1.20
New process-generating method 'test' (dummy matrix element)
Compatibility with autoconf 2.50 and current O'Mega version
2002-02-05
Prevent integration channels from being dropped (optionally)
New internal mapping for structure functions improves performance
Old whizard.phx file deleted after recompiling (could cause trouble)
2002-01-24
Support for user-defined cuts and matrix element reweighting
STDHEP output now written by write_events_format=20 (was 3)
2002-01-16
Improved structure function handling; small changes in user interface:
new parameter structured_beams in &process_input
parameter fixed_energy in &beam_input removed
Support for multiple initial states
Eta-phi (cone) cut possible (hadron collider applications)
Fixed bug: Whizard library was not always recompiled when necessary
Fixed bug: Default cuts were insufficient in some cases
Fixed bug: Unusable phase space mappings generated in some cases
2001-12-06
Reorganized document source
2001-12-05
Preliminary CIRCE2 support (no functionality yet)
2001-11-27
Intel compiler support (does not yet work because of compiler bugs)
New cut and analysis mode cos-theta* and related
Fixed circular jetset_interface dependency warning
Some broadcast routines removed (parallel support disabled anyway)
Minor shifts in cleanup targets (Makefiles)
Modified library search, check for pdflib8*
2001-08-06
Fixed bug: I/O unit number could be undefined when reading phase space
Fixed bug: Unitialized variable could cause segfault when
event generation was disabled
Fixed bug: Undefined subroutine in CIRCE replacement module
Enabled feature: TGCs in O'Mega (not yet CompHEP!) matrix elements
(CompHEP model sm-GF #5, O'Mega model SM_ac)
Fixed portability issue: Makefile did rely on PWD environment variable
Fixed portability issue: PYTHIA library search ambiguity resolved
2001-08-01
Default whizard.prc and whizard.in depend on activated modules
Fixed bug: TEX=latex was not properly enabled when making plots
2001-07-20
Fixed output settings in PERL script calls
Cache enabled in various configure checks
2001-07-13
Support for multiple processes in a single WHIZARD run. The
integrations are kept separate, but the generated events are mixed
The whizard.evx format has changed (incompatible), including now
the color flow information for PYTHIA fragmentation
Output files are now process-specific, except for the event file
Phase space file whizard.phs (if present) is used only as input,
program-generated phase space is now in whizard.phx
2001-07-10
Bug fix: Undefined parameters in parameters_SM_ac.f90 removed
2001-07-04
Bug fix: Compiler options for the case OMEGA is disabled
Small inconsistencies in whizard.out format fixed
2001-07-01
Workaround for missing PDFLIB dummy routines in PYTHIA library
##################################################################
2001-06-30
RELEASE: version 1.13
Default path /cern/pro/lib in configure script
2001-06-20
New fragmentation option: Interface for PYTHIA with full color flow
information, beam remnants etc.
2001-06-18
Severe bug fixed in madgraph interface: 3-gluon coupling was missing
Enabled color flow information in madgraph
2001-06-11
VAMP interface module rewritten
Revised output format: Multiple VAMP iterations count as one WHIZARD
iteration in integration passes 1 and 3
Improved message and error handling
Bug fix in VAMP: handle exceptional cases in rebinning_weights
2001-05-31
new parameters for grid adaptation: accuracy_goal and efficiency_goal
##################################################################
2001-05-29
RELEASE: version 1.12
bug fixes (compilation problems): deleted/modified unused functions
2001-05-16
diagram selection improved and documented
2001-05-06
allow for disabling packages during configuration
2001-05-03
slight changes in whizard.out format; manual extended
##################################################################
2001-04-20
RELEASE: version 1.11
fixed some configuration and compilation problems (PDFLIB etc.)
2001-04-18
linked PDFLIB: support for quark/gluon structure functions
2001-04-05
parameter interface written by PERL script
SM_ac model file: fixed error in continuation line
2001-03-13
O'Mega, O'Caml 3.01: incompatible changes
O'Mega, src/trie.mli: add covariance annotation to T.t
This breaks O'Caml 3.00, but is required for O'Caml 3.01.
O'Mega, many instances: replace `sig include Module.T end' by
`Module.T', since the bug is fixed in O'Caml 3.01
2001-02-28
O'Mega, src/model.mli:
new field Model.vertices required for model functors, will
retire Model.fuse2, Model.fuse3, Model.fusen soon.
##################################################################
2001-03-27
RELEASE: version 1.10
reorganized the modules as libraries
linked PYTHIA: support for parton fragmentation
2000-12-14
fixed some configuration problems (if noweb etc. are absent)
##################################################################
2000-12-01
RELEASE of first public version: version 1.00beta
Index: trunk/src/beams/beams.nw
===================================================================
--- trunk/src/beams/beams.nw (revision 8201)
+++ trunk/src/beams/beams.nw (revision 8202)
@@ -1,25201 +1,25235 @@
%% -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*-
% WHIZARD code as NOWEB source: beams and beam structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Beams}
\includemodulegraph{beams}
These modules implement beam configuration and beam structure, the
latter in abstract terms.
\begin{description}
\item[beam\_structures]
The [[beam_structure_t]] type is a messenger type that communicates
the user settings to the \whizard\ core.
\item[beams]
Beam configuration.
\item[sf\_aux]
Tools for handling structure functions and splitting
\item[sf\_mappings]
Mapping functions, useful for structure function implementation
\item[sf\_base]
The abstract structure-function interaction and structure-function
chain types.
\end{description}
These are the implementation modules, the concrete counterparts of
[[sf_base]]:
\begin{description}
\item[sf\_isr]
ISR structure function (photon radiation inclusive and resummed in
collinear and IR regions).
\item[sf\_epa]
Effective Photon Approximation.
\item[sf\_ewa]
Effective $W$ (and $Z$) approximation.
\item[sf\_escan]
Energy spectrum that emulates a uniform energy scan.
\item[sf\_gaussian]
Gaussian beam spread
\item[sf\_beam\_events]
Beam-event generator that reads its input from an external file.
\item[sf\_circe1]
CIRCE1 beam spectra for electrons and photons.
\item[sf\_circe2]
CIRCE2 beam spectra for electrons and photons.
\item[hoppet\_interface]
Support for $b$-quark matching, addon to PDF modules.
\item[sf\_pdf\_builtin]
Direct support for selected hadron PDFs.
\item[sf\_lhapdf]
LHAPDF library support.
\end{description}
\clearpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Beam structure}
This module stores the beam structure definition as it is declared in
the SINDARIN script. The structure definition is not analyzed, just
recorded for later use.
We do not capture any numerical parameters, just names of particles and
structure functions.
<<[[beam_structures.f90]]>>=
<<File header>>
module beam_structures
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_19
use diagnostics
use lorentz
use polarizations
<<Standard module head>>
<<Beam structures: public>>
<<Beam structures: types>>
<<Beam structures: interfaces>>
contains
<<Beam structures: procedures>>
end module beam_structures
@ %def beam_structures
@
\subsection{Beam structure elements}
An entry in a beam-structure record consists of a string
that denotes a type of structure function.
<<Beam structures: types>>=
type :: beam_structure_entry_t
logical :: is_valid = .false.
type(string_t) :: name
contains
<<Beam structures: beam structure entry: TBP>>
end type beam_structure_entry_t
@ %def beam_structure_entry_t
@ Output.
<<Beam structures: beam structure entry: TBP>>=
procedure :: to_string => beam_structure_entry_to_string
<<Beam structures: procedures>>=
function beam_structure_entry_to_string (object) result (string)
class(beam_structure_entry_t), intent(in) :: object
type(string_t) :: string
if (object%is_valid) then
string = object%name
else
string = "none"
end if
end function beam_structure_entry_to_string
@ %def beam_structure_entry_to_string
@
A record in the beam-structure sequence denotes either a
structure-function entry, a pair of such entries, or a pair spectrum.
<<Beam structures: types>>=
type :: beam_structure_record_t
type(beam_structure_entry_t), dimension(:), allocatable :: entry
end type beam_structure_record_t
@ %def beam_structure_record_t
@
\subsection{Beam structure type}
The beam-structure object contains the beam particle(s) as simple strings.
The sequence of records indicates the structure functions by name. No
numerical parameters are stored.
<<Beam structures: public>>=
public :: beam_structure_t
<<Beam structures: types>>=
type :: beam_structure_t
private
integer :: n_beam = 0
type(string_t), dimension(:), allocatable :: prt
type(beam_structure_record_t), dimension(:), allocatable :: record
type(smatrix_t), dimension(:), allocatable :: smatrix
real(default), dimension(:), allocatable :: pol_f
real(default), dimension(:), allocatable :: p
real(default), dimension(:), allocatable :: theta
real(default), dimension(:), allocatable :: phi
contains
<<Beam structures: beam structure: TBP>>
end type beam_structure_t
@ %def beam_structure_t
@ The finalizer deletes all contents explicitly, so we can continue
with an empty beam record. (It is not needed for deallocation.) We
have distinct finalizers for the independent parts of the beam structure.
<<Beam structures: beam structure: TBP>>=
procedure :: final_sf => beam_structure_final_sf
<<Beam structures: procedures>>=
subroutine beam_structure_final_sf (object)
class(beam_structure_t), intent(inout) :: object
if (allocated (object%prt)) deallocate (object%prt)
if (allocated (object%record)) deallocate (object%record)
object%n_beam = 0
end subroutine beam_structure_final_sf
@ %def beam_structure_final_sf
@ Output. The actual information fits in a single line, therefore we can
provide a [[to_string]] method. The [[show]] method also lists the
current values of relevant global variables.
<<Beam structures: beam structure: TBP>>=
procedure :: write => beam_structure_write
procedure :: to_string => beam_structure_to_string
<<Beam structures: procedures>>=
subroutine beam_structure_write (object, unit)
class(beam_structure_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u, i
u = given_output_unit (unit)
write (u, "(1x,A,A)") "Beam structure: ", char (object%to_string ())
if (allocated (object%smatrix)) then
do i = 1, size (object%smatrix)
write (u, "(3x,A,I0,A)") "polarization (beam ", i, "):"
call object%smatrix(i)%write (u, indent=2)
end do
end if
if (allocated (object%pol_f)) then
write (u, "(3x,A,F10.7,:,',',F10.7)") "polarization degree =", &
object%pol_f
end if
if (allocated (object%p)) then
write (u, "(3x,A," // FMT_19 // ",:,','," // FMT_19 // &
")") "momentum =", object%p
end if
if (allocated (object%theta)) then
write (u, "(3x,A," // FMT_19 // ",:,','," // FMT_19 // &
")") "angle th =", object%theta
end if
if (allocated (object%phi)) then
write (u, "(3x,A," // FMT_19 // ",:,','," // FMT_19 // &
")") "angle ph =", object%phi
end if
end subroutine beam_structure_write
function beam_structure_to_string (object, sf_only) result (string)
class(beam_structure_t), intent(in) :: object
logical, intent(in), optional :: sf_only
type(string_t) :: string
integer :: i, j
logical :: with_beams
with_beams = .true.; if (present (sf_only)) with_beams = .not. sf_only
select case (object%n_beam)
case (1)
if (with_beams) then
string = object%prt(1)
else
string = ""
end if
case (2)
if (with_beams) then
string = object%prt(1) // ", " // object%prt(2)
else
string = ""
end if
if (allocated (object%record)) then
if (size (object%record) > 0) then
if (with_beams) string = string // " => "
do i = 1, size (object%record)
if (i > 1) string = string // " => "
do j = 1, size (object%record(i)%entry)
if (j > 1) string = string // ", "
string = string // object%record(i)%entry(j)%to_string ()
end do
end do
end if
end if
case default
string = "[any particles]"
end select
end function beam_structure_to_string
@ %def beam_structure_write beam_structure_to_string
@ Initializer: dimension the beam structure record. Each array
element denotes the number of entries for a record within the
beam-structure sequence. The number of entries is either one or two,
while the number of records is unlimited.
<<Beam structures: beam structure: TBP>>=
procedure :: init_sf => beam_structure_init_sf
<<Beam structures: procedures>>=
subroutine beam_structure_init_sf (beam_structure, prt, dim_array)
class(beam_structure_t), intent(inout) :: beam_structure
type(string_t), dimension(:), intent(in) :: prt
integer, dimension(:), intent(in), optional :: dim_array
integer :: i
call beam_structure%final_sf ()
beam_structure%n_beam = size (prt)
allocate (beam_structure%prt (size (prt)))
beam_structure%prt = prt
if (present (dim_array)) then
allocate (beam_structure%record (size (dim_array)))
do i = 1, size (dim_array)
allocate (beam_structure%record(i)%entry (dim_array(i)))
end do
else
allocate (beam_structure%record (0))
end if
end subroutine beam_structure_init_sf
@ %def beam_structure_init_sf
@ Set an entry, specified by record number and entry number.
<<Beam structures: beam structure: TBP>>=
procedure :: set_sf => beam_structure_set_sf
<<Beam structures: procedures>>=
subroutine beam_structure_set_sf (beam_structure, i, j, name)
class(beam_structure_t), intent(inout) :: beam_structure
integer, intent(in) :: i, j
type(string_t), intent(in) :: name
associate (entry => beam_structure%record(i)%entry(j))
entry%name = name
entry%is_valid = .true.
end associate
end subroutine beam_structure_set_sf
@ %def beam_structure_set_sf
@ Expand the beam-structure object. (i) For a pair spectrum, keep the
entry. (ii) For a single-particle structure function written as a
single entry, replace this by a record with two entries.
(ii) For a record with two nontrivial entries, separate this into two
records with one trivial entry each.
To achieve this, we need a function that tells us whether an entry is
a spectrum or a structure function. It returns 0 for a trivial entry,
1 for a single-particle structure function, and 2 for a two-particle
spectrum.
<<Beam structures: interfaces>>=
abstract interface
function strfun_mode_fun (name) result (n)
import
type(string_t), intent(in) :: name
integer :: n
end function strfun_mode_fun
end interface
@ %def is_spectrum_t
@ Algorithm: (1) Mark entries as invalid where necessary. (2) Count
the number of entries that we will need. (3) Expand and copy
entries to a new record array. (4) Replace the old array by the new one.
<<Beam structures: beam structure: TBP>>=
procedure :: expand => beam_structure_expand
<<Beam structures: procedures>>=
subroutine beam_structure_expand (beam_structure, strfun_mode)
class(beam_structure_t), intent(inout) :: beam_structure
procedure(strfun_mode_fun) :: strfun_mode
type(beam_structure_record_t), dimension(:), allocatable :: new
integer :: n_record, i, j
if (.not. allocated (beam_structure%record)) return
do i = 1, size (beam_structure%record)
associate (entry => beam_structure%record(i)%entry)
do j = 1, size (entry)
select case (strfun_mode (entry(j)%name))
case (0); entry(j)%is_valid = .false.
end select
end do
end associate
end do
n_record = 0
do i = 1, size (beam_structure%record)
associate (entry => beam_structure%record(i)%entry)
select case (size (entry))
case (1)
if (entry(1)%is_valid) then
select case (strfun_mode (entry(1)%name))
case (1); n_record = n_record + 2
case (2); n_record = n_record + 1
end select
end if
case (2)
do j = 1, 2
if (entry(j)%is_valid) then
select case (strfun_mode (entry(j)%name))
case (1); n_record = n_record + 1
case (2)
call beam_structure%write ()
call msg_fatal ("Pair spectrum used as &
&single-particle structure function")
end select
end if
end do
end select
end associate
end do
allocate (new (n_record))
n_record = 0
do i = 1, size (beam_structure%record)
associate (entry => beam_structure%record(i)%entry)
select case (size (entry))
case (1)
if (entry(1)%is_valid) then
select case (strfun_mode (entry(1)%name))
case (1)
n_record = n_record + 1
allocate (new(n_record)%entry (2))
new(n_record)%entry(1) = entry(1)
n_record = n_record + 1
allocate (new(n_record)%entry (2))
new(n_record)%entry(2) = entry(1)
case (2)
n_record = n_record + 1
allocate (new(n_record)%entry (1))
new(n_record)%entry(1) = entry(1)
end select
end if
case (2)
do j = 1, 2
if (entry(j)%is_valid) then
n_record = n_record + 1
allocate (new(n_record)%entry (2))
new(n_record)%entry(j) = entry(j)
end if
end do
end select
end associate
end do
call move_alloc (from = new, to = beam_structure%record)
end subroutine beam_structure_expand
@ %def beam_structure_expand
@
\subsection{Polarization}
To record polarization, we provide an allocatable array of [[smatrix]]
objects, sparse matrices. The polarization structure is independent of the
structure-function setup, they are combined only when an actual beam object is
constructed.
<<Beam structures: beam structure: TBP>>=
procedure :: final_pol => beam_structure_final_pol
procedure :: init_pol => beam_structure_init_pol
<<Beam structures: procedures>>=
subroutine beam_structure_final_pol (beam_structure)
class(beam_structure_t), intent(inout) :: beam_structure
if (allocated (beam_structure%smatrix)) deallocate (beam_structure%smatrix)
if (allocated (beam_structure%pol_f)) deallocate (beam_structure%pol_f)
end subroutine beam_structure_final_pol
subroutine beam_structure_init_pol (beam_structure, n)
class(beam_structure_t), intent(inout) :: beam_structure
integer, intent(in) :: n
if (allocated (beam_structure%smatrix)) deallocate (beam_structure%smatrix)
allocate (beam_structure%smatrix (n))
if (.not. allocated (beam_structure%pol_f)) &
allocate (beam_structure%pol_f (n), source = 1._default)
end subroutine beam_structure_init_pol
@ %def beam_structure_final_pol
@ %def beam_structure_init_pol
@ Check if polarized beams are used.
<<Beam structures: beam structure: TBP>>=
procedure :: has_polarized_beams => beam_structure_has_polarized_beams
<<Beam structures: procedures>>=
elemental function beam_structure_has_polarized_beams (beam_structure) result (pol)
logical :: pol
class(beam_structure_t), intent(in) :: beam_structure
if (allocated (beam_structure%pol_f)) then
pol = any (beam_structure%pol_f /= 0)
else
pol = .false.
end if
end function beam_structure_has_polarized_beams
@ %def beam_structure_has_polarized_beams
@ Directly copy the spin density matrices.
<<Beam structures: beam structure: TBP>>=
procedure :: set_smatrix => beam_structure_set_smatrix
<<Beam structures: procedures>>=
subroutine beam_structure_set_smatrix (beam_structure, i, smatrix)
class(beam_structure_t), intent(inout) :: beam_structure
integer, intent(in) :: i
type(smatrix_t), intent(in) :: smatrix
beam_structure%smatrix(i) = smatrix
end subroutine beam_structure_set_smatrix
@ %def beam_structure_set_smatrix
@ Initialize one of the spin density matrices manually.
<<Beam structures: beam structure: TBP>>=
procedure :: init_smatrix => beam_structure_init_smatrix
<<Beam structures: procedures>>=
subroutine beam_structure_init_smatrix (beam_structure, i, n_entry)
class(beam_structure_t), intent(inout) :: beam_structure
integer, intent(in) :: i
integer, intent(in) :: n_entry
call beam_structure%smatrix(i)%init (2, n_entry)
end subroutine beam_structure_init_smatrix
@ %def beam_structure_init_smatrix
@ Set a polarization entry.
<<Beam structures: beam structure: TBP>>=
procedure :: set_sentry => beam_structure_set_sentry
<<Beam structures: procedures>>=
subroutine beam_structure_set_sentry &
(beam_structure, i, i_entry, index, value)
class(beam_structure_t), intent(inout) :: beam_structure
integer, intent(in) :: i
integer, intent(in) :: i_entry
integer, dimension(:), intent(in) :: index
complex(default), intent(in) :: value
call beam_structure%smatrix(i)%set_entry (i_entry, index, value)
end subroutine beam_structure_set_sentry
@ %def beam_structure_set_sentry
@ Set the array of polarization fractions.
<<Beam structures: beam structure: TBP>>=
procedure :: set_pol_f => beam_structure_set_pol_f
<<Beam structures: procedures>>=
subroutine beam_structure_set_pol_f (beam_structure, f)
class(beam_structure_t), intent(inout) :: beam_structure
real(default), dimension(:), intent(in) :: f
if (allocated (beam_structure%pol_f)) deallocate (beam_structure%pol_f)
allocate (beam_structure%pol_f (size (f)), source = f)
end subroutine beam_structure_set_pol_f
@ %def beam_structure_set_pol_f
@
\subsection{Beam momenta}
By default, beam momenta are deduced from the [[sqrts]] value or from
the mass of the decaying particle, assuming a c.m.\ setup. Here we
set them explicitly.
<<Beam structures: beam structure: TBP>>=
procedure :: final_mom => beam_structure_final_mom
<<Beam structures: procedures>>=
subroutine beam_structure_final_mom (beam_structure)
class(beam_structure_t), intent(inout) :: beam_structure
if (allocated (beam_structure%p)) deallocate (beam_structure%p)
if (allocated (beam_structure%theta)) deallocate (beam_structure%theta)
if (allocated (beam_structure%phi)) deallocate (beam_structure%phi)
end subroutine beam_structure_final_mom
@ %def beam_structure_final_mom
<<Beam structures: beam structure: TBP>>=
procedure :: set_momentum => beam_structure_set_momentum
procedure :: set_theta => beam_structure_set_theta
procedure :: set_phi => beam_structure_set_phi
<<Beam structures: procedures>>=
subroutine beam_structure_set_momentum (beam_structure, p)
class(beam_structure_t), intent(inout) :: beam_structure
real(default), dimension(:), intent(in) :: p
if (allocated (beam_structure%p)) deallocate (beam_structure%p)
allocate (beam_structure%p (size (p)), source = p)
end subroutine beam_structure_set_momentum
subroutine beam_structure_set_theta (beam_structure, theta)
class(beam_structure_t), intent(inout) :: beam_structure
real(default), dimension(:), intent(in) :: theta
if (allocated (beam_structure%theta)) deallocate (beam_structure%theta)
allocate (beam_structure%theta (size (theta)), source = theta)
end subroutine beam_structure_set_theta
subroutine beam_structure_set_phi (beam_structure, phi)
class(beam_structure_t), intent(inout) :: beam_structure
real(default), dimension(:), intent(in) :: phi
if (allocated (beam_structure%phi)) deallocate (beam_structure%phi)
allocate (beam_structure%phi (size (phi)), source = phi)
end subroutine beam_structure_set_phi
@ %def beam_structure_set_momentum
@ %def beam_structure_set_theta
@ %def beam_structure_set_phi
@
\subsection{Get contents}
Look at the incoming particles. We may also have the case that beam
particles are not specified, but polarization.
<<Beam structures: beam structure: TBP>>=
procedure :: is_set => beam_structure_is_set
procedure :: get_n_beam => beam_structure_get_n_beam
procedure :: get_prt => beam_structure_get_prt
<<Beam structures: procedures>>=
function beam_structure_is_set (beam_structure) result (flag)
class(beam_structure_t), intent(in) :: beam_structure
logical :: flag
flag = beam_structure%n_beam > 0 .or. beam_structure%asymmetric ()
end function beam_structure_is_set
function beam_structure_get_n_beam (beam_structure) result (n)
class(beam_structure_t), intent(in) :: beam_structure
integer :: n
n = beam_structure%n_beam
end function beam_structure_get_n_beam
function beam_structure_get_prt (beam_structure) result (prt)
class(beam_structure_t), intent(in) :: beam_structure
type(string_t), dimension(:), allocatable :: prt
allocate (prt (size (beam_structure%prt)))
prt = beam_structure%prt
end function beam_structure_get_prt
@ %def beam_structure_is_set
@ %def beam_structure_get_n_beam
@ %def beam_structure_get_prt
@
Return the number of records.
<<Beam structures: beam structure: TBP>>=
procedure :: get_n_record => beam_structure_get_n_record
<<Beam structures: procedures>>=
function beam_structure_get_n_record (beam_structure) result (n)
class(beam_structure_t), intent(in) :: beam_structure
integer :: n
if (allocated (beam_structure%record)) then
n = size (beam_structure%record)
else
n = 0
end if
end function beam_structure_get_n_record
@ %def beam_structure_get_n_record
@ Return an array consisting of the beam indices affected by the valid
entries within a record. After expansion, there should be exactly one
valid entry per record.
<<Beam structures: beam structure: TBP>>=
procedure :: get_i_entry => beam_structure_get_i_entry
<<Beam structures: procedures>>=
function beam_structure_get_i_entry (beam_structure, i) result (i_entry)
class(beam_structure_t), intent(in) :: beam_structure
integer, intent(in) :: i
integer, dimension(:), allocatable :: i_entry
associate (record => beam_structure%record(i))
select case (size (record%entry))
case (1)
if (record%entry(1)%is_valid) then
allocate (i_entry (2), source = [1, 2])
else
allocate (i_entry (0))
end if
case (2)
if (all (record%entry%is_valid)) then
allocate (i_entry (2), source = [1, 2])
else if (record%entry(1)%is_valid) then
allocate (i_entry (1), source = [1])
else if (record%entry(2)%is_valid) then
allocate (i_entry (1), source = [2])
else
allocate (i_entry (0))
end if
end select
end associate
end function beam_structure_get_i_entry
@ %def beam_structure_get_i_entry
@ Return the name of the first valid entry within a record. After
expansion, there should be exactly one valid entry per record.
<<Beam structures: beam structure: TBP>>=
procedure :: get_name => beam_structure_get_name
<<Beam structures: procedures>>=
function beam_structure_get_name (beam_structure, i) result (name)
type(string_t) :: name
class(beam_structure_t), intent(in) :: beam_structure
integer, intent(in) :: i
associate (record => beam_structure%record(i))
if (record%entry(1)%is_valid) then
name = record%entry(1)%name
else if (size (record%entry) == 2) then
name = record%entry(2)%name
end if
end associate
end function beam_structure_get_name
@ %def beam_structure_get_name
@
<<Beam structures: beam structure: TBP>>=
procedure :: has_pdf => beam_structure_has_pdf
<<Beam structures: procedures>>=
function beam_structure_has_pdf (beam_structure) result (has_pdf)
logical :: has_pdf
class(beam_structure_t), intent(in) :: beam_structure
integer :: i
type(string_t) :: name
has_pdf = .false.
do i = 1, beam_structure%get_n_record ()
name = beam_structure%get_name (i)
has_pdf = has_pdf .or. name == var_str ("pdf_builtin") .or. name == var_str ("lhapdf")
end do
end function beam_structure_has_pdf
@ %def beam_structure_has_pdf
@ Return true if the beam structure contains a particular structure
function identifier (such as [[lhapdf]], [[isr]], etc.)
<<Beam structures: beam structure: TBP>>=
procedure :: contains => beam_structure_contains
<<Beam structures: procedures>>=
function beam_structure_contains (beam_structure, name) result (flag)
class(beam_structure_t), intent(in) :: beam_structure
character(*), intent(in) :: name
logical :: flag
integer :: i, j
flag = .false.
if (allocated (beam_structure%record)) then
do i = 1, size (beam_structure%record)
do j = 1, size (beam_structure%record(i)%entry)
flag = beam_structure%record(i)%entry(j)%name == name
if (flag) return
end do
end do
end if
end function beam_structure_contains
@ %def beam_structure_contains
@ Return polarization data.
<<Beam structures: beam structure: TBP>>=
procedure :: polarized => beam_structure_polarized
procedure :: get_smatrix => beam_structure_get_smatrix
procedure :: get_pol_f => beam_structure_get_pol_f
procedure :: asymmetric => beam_structure_asymmetric
<<Beam structures: procedures>>=
function beam_structure_polarized (beam_structure) result (flag)
class(beam_structure_t), intent(in) :: beam_structure
logical :: flag
flag = allocated (beam_structure%smatrix)
end function beam_structure_polarized
function beam_structure_get_smatrix (beam_structure) result (smatrix)
class(beam_structure_t), intent(in) :: beam_structure
type(smatrix_t), dimension(:), allocatable :: smatrix
allocate (smatrix (size (beam_structure%smatrix)), &
source = beam_structure%smatrix)
end function beam_structure_get_smatrix
function beam_structure_get_pol_f (beam_structure) result (pol_f)
class(beam_structure_t), intent(in) :: beam_structure
real(default), dimension(:), allocatable :: pol_f
allocate (pol_f (size (beam_structure%pol_f)), &
source = beam_structure%pol_f)
end function beam_structure_get_pol_f
function beam_structure_asymmetric (beam_structure) result (flag)
class(beam_structure_t), intent(in) :: beam_structure
logical :: flag
flag = allocated (beam_structure%p) &
.or. allocated (beam_structure%theta) &
.or. allocated (beam_structure%phi)
end function beam_structure_asymmetric
@ %def beam_structure_polarized
@ %def beam_structure_get_smatrix
@ %def beam_structure_get_pol_f
@ %def beam_structure_asymmetric
@ Return the beam momenta (the space part, i.e., three-momenta). This
is meaningful only if momenta and, optionally, angles have been set.
<<Beam structures: beam structure: TBP>>=
procedure :: get_momenta => beam_structure_get_momenta
<<Beam structures: procedures>>=
function beam_structure_get_momenta (beam_structure) result (p)
class(beam_structure_t), intent(in) :: beam_structure
type(vector3_t), dimension(:), allocatable :: p
real(default), dimension(:), allocatable :: theta, phi
integer :: n, i
if (allocated (beam_structure%p)) then
n = size (beam_structure%p)
if (allocated (beam_structure%theta)) then
if (size (beam_structure%theta) == n) then
allocate (theta (n), source = beam_structure%theta)
else
call msg_fatal ("Beam structure: mismatch in momentum vs. &
&angle theta specification")
end if
else
allocate (theta (n), source = 0._default)
end if
if (allocated (beam_structure%phi)) then
if (size (beam_structure%phi) == n) then
allocate (phi (n), source = beam_structure%phi)
else
call msg_fatal ("Beam structure: mismatch in momentum vs. &
&angle phi specification")
end if
else
allocate (phi (n), source = 0._default)
end if
allocate (p (n))
do i = 1, n
p(i) = beam_structure%p(i) * vector3_moving ([ &
sin (theta(i)) * cos (phi(i)), &
sin (theta(i)) * sin (phi(i)), &
cos (theta(i))])
end do
if (n == 2) p(2) = - p(2)
else
call msg_fatal ("Beam structure: angle theta/phi specified but &
&momentum/a p undefined")
end if
end function beam_structure_get_momenta
@ %def beam_structure_get_momenta
@ Check for a complete beam structure. The [[applies]] flag tells if
the beam structure should actually be used for a process with the
given [[n_in]] number of incoming particles.
It set if the beam structure matches the process as either decay or
scattering. It is unset if beam structure references a scattering
setup but the process is a decay. It is also unset if the beam
structure itself is empty.
If the beam structure cannot be used, terminate with fatal error.
<<Beam structures: beam structure: TBP>>=
procedure :: check_against_n_in => beam_structure_check_against_n_in
<<Beam structures: procedures>>=
subroutine beam_structure_check_against_n_in (beam_structure, n_in, applies)
class(beam_structure_t), intent(in) :: beam_structure
integer, intent(in) :: n_in
logical, intent(out) :: applies
if (beam_structure%is_set ()) then
if (n_in == beam_structure%get_n_beam ()) then
applies = .true.
else if (beam_structure%get_n_beam () == 0) then
call msg_fatal &
("Asymmetric beams: missing beam particle specification")
applies = .false.
else
call msg_fatal &
("Mismatch of process and beam setup (scattering/decay)")
applies = .false.
end if
else
applies = .false.
end if
end subroutine beam_structure_check_against_n_in
@ %def beam_structure_check_against_n_in
@
\subsection{Unit Tests}
Test module, followed by the corresponding implementation module.
<<[[beam_structures_ut.f90]]>>=
<<File header>>
module beam_structures_ut
use unit_tests
use beam_structures_uti
<<Standard module head>>
<<Beam structures: public test>>
contains
<<Beam structures: test driver>>
end module beam_structures_ut
@ %def beam_structures_ut
@
<<[[beam_structures_uti.f90]]>>=
<<File header>>
module beam_structures_uti
<<Use kinds>>
<<Use strings>>
use beam_structures
<<Standard module head>>
<<Beam structures: test declarations>>
contains
<<Beam structures: tests>>
<<Beam structures: test auxiliary>>
end module beam_structures_uti
@ %def beam_structures_ut
@ API: driver for the unit tests below.
<<Beam structures: public test>>=
public :: beam_structures_test
<<Beam structures: test driver>>=
subroutine beam_structures_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<Beam structures: execute tests>>
end subroutine beam_structures_test
@ %def beam_structures_tests
@
\subsubsection{Empty structure}
<<Beam structures: execute tests>>=
call test (beam_structures_1, "beam_structures_1", &
"empty beam structure record", &
u, results)
<<Beam structures: test declarations>>=
public :: beam_structures_1
<<Beam structures: tests>>=
subroutine beam_structures_1 (u)
integer, intent(in) :: u
type(beam_structure_t) :: beam_structure
write (u, "(A)") "* Test output: beam_structures_1"
write (u, "(A)") "* Purpose: display empty beam structure record"
write (u, "(A)")
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_structures_1"
end subroutine beam_structures_1
@ %def beam_structures_1
@
\subsubsection{Nontrivial configurations}
<<Beam structures: execute tests>>=
call test (beam_structures_2, "beam_structures_2", &
"beam structure records", &
u, results)
<<Beam structures: test declarations>>=
public :: beam_structures_2
<<Beam structures: tests>>=
subroutine beam_structures_2 (u)
integer, intent(in) :: u
type(beam_structure_t) :: beam_structure
integer, dimension(0) :: empty_array
type(string_t) :: s
write (u, "(A)") "* Test output: beam_structures_2"
write (u, "(A)") "* Purpose: setup beam structure records"
write (u, "(A)")
s = "s"
call beam_structure%init_sf ([s], empty_array)
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%init_sf ([s, s], [1])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%init_sf ([s, s], [2])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%set_sf (1, 2, var_str ("b"))
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%init_sf ([s, s], [2, 1])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%set_sf (1, 2, var_str ("b"))
call beam_structure%set_sf (2, 1, var_str ("c"))
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_structures_2"
end subroutine beam_structures_2
@ %def beam_structures_2
@
\subsubsection{Expansion}
Provide a function that tells, for the dummy structure function names
used here, whether they are considered a two-particle spectrum or a
single-particle structure function:
<<Beam structures: test auxiliary>>=
function test_strfun_mode (name) result (n)
type(string_t), intent(in) :: name
integer :: n
select case (char (name))
case ("a"); n = 2
case ("b"); n = 1
case default; n = 0
end select
end function test_strfun_mode
@ %def test_ist_pair_spectrum
@
<<Beam structures: execute tests>>=
call test (beam_structures_3, "beam_structures_3", &
"beam structure expansion", &
u, results)
<<Beam structures: test declarations>>=
public :: beam_structures_3
<<Beam structures: tests>>=
subroutine beam_structures_3 (u)
integer, intent(in) :: u
type(beam_structure_t) :: beam_structure
type(string_t) :: s
write (u, "(A)") "* Test output: beam_structures_3"
write (u, "(A)") "* Purpose: expand beam structure records"
write (u, "(A)")
s = "s"
write (u, "(A)") "* Pair spectrum (keep as-is)"
write (u, "(A)")
call beam_structure%init_sf ([s, s], [1])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%expand (test_strfun_mode)
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Structure function pair (expand)"
write (u, "(A)")
call beam_structure%init_sf ([s, s], [2])
call beam_structure%set_sf (1, 1, var_str ("b"))
call beam_structure%set_sf (1, 2, var_str ("b"))
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%expand (test_strfun_mode)
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Structure function (separate and expand)"
write (u, "(A)")
call beam_structure%init_sf ([s, s], [1])
call beam_structure%set_sf (1, 1, var_str ("b"))
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%expand (test_strfun_mode)
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Combination"
write (u, "(A)")
call beam_structure%init_sf ([s, s], [1, 1])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%set_sf (2, 1, var_str ("b"))
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%expand (test_strfun_mode)
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_structures_3"
end subroutine beam_structures_3
@ %def beam_structures_3
@
\subsubsection{Public methods}
Check the methods that can be called to get the beam-structure
contents.
<<Beam structures: execute tests>>=
call test (beam_structures_4, "beam_structures_4", &
"beam structure contents", &
u, results)
<<Beam structures: test declarations>>=
public :: beam_structures_4
<<Beam structures: tests>>=
subroutine beam_structures_4 (u)
integer, intent(in) :: u
type(beam_structure_t) :: beam_structure
type(string_t) :: s
type(string_t), dimension(2) :: prt
integer :: i
write (u, "(A)") "* Test output: beam_structures_4"
write (u, "(A)") "* Purpose: check the API"
write (u, "(A)")
s = "s"
write (u, "(A)") "* Structure-function combination"
write (u, "(A)")
call beam_structure%init_sf ([s, s], [1, 2, 2])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%set_sf (2, 1, var_str ("b"))
call beam_structure%set_sf (3, 2, var_str ("c"))
call beam_structure%write (u)
write (u, *)
write (u, "(1x,A,I0)") "n_beam = ", beam_structure%get_n_beam ()
prt = beam_structure%get_prt ()
write (u, "(1x,A,2(1x,A))") "prt =", char (prt(1)), char (prt(2))
write (u, *)
write (u, "(1x,A,I0)") "n_record = ", beam_structure%get_n_record ()
do i = 1, 3
write (u, "(A)")
write (u, "(1x,A,I0,A,A)") "name(", i, ") = ", &
char (beam_structure%get_name (i))
write (u, "(1x,A,I0,A,2(1x,I0))") "i_entry(", i, ") =", &
beam_structure%get_i_entry (i)
end do
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_structures_4"
end subroutine beam_structures_4
@ %def beam_structures_4
@
\subsubsection{Polarization}
The polarization properties are independent from the structure-function setup.
<<Beam structures: execute tests>>=
call test (beam_structures_5, "beam_structures_5", &
"polarization", &
u, results)
<<Beam structures: test declarations>>=
public :: beam_structures_5
<<Beam structures: tests>>=
subroutine beam_structures_5 (u)
integer, intent(in) :: u
type(beam_structure_t) :: beam_structure
integer, dimension(0) :: empty_array
type(string_t) :: s
write (u, "(A)") "* Test output: beam_structures_5"
write (u, "(A)") "* Purpose: setup polarization in beam structure records"
write (u, "(A)")
s = "s"
call beam_structure%init_sf ([s], empty_array)
call beam_structure%init_pol (1)
call beam_structure%init_smatrix (1, 1)
call beam_structure%set_sentry (1, 1, [0,0], (1._default, 0._default))
call beam_structure%set_pol_f ([0.5_default])
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%final_sf ()
call beam_structure%final_pol ()
call beam_structure%init_sf ([s, s], [1])
call beam_structure%set_sf (1, 1, var_str ("a"))
call beam_structure%init_pol (2)
call beam_structure%init_smatrix (1, 2)
call beam_structure%set_sentry (1, 1, [-1,1], (0.5_default,-0.5_default))
call beam_structure%set_sentry (1, 2, [ 1,1], (1._default, 0._default))
call beam_structure%init_smatrix (2, 0)
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_structures_5"
end subroutine beam_structures_5
@ %def beam_structures_5
@
\subsubsection{Momenta}
The momenta are independent from the structure-function setup.
<<Beam structures: execute tests>>=
call test (beam_structures_6, "beam_structures_6", &
"momenta", &
u, results)
<<Beam structures: test declarations>>=
public :: beam_structures_6
<<Beam structures: tests>>=
subroutine beam_structures_6 (u)
integer, intent(in) :: u
type(beam_structure_t) :: beam_structure
integer, dimension(0) :: empty_array
type(string_t) :: s
write (u, "(A)") "* Test output: beam_structures_6"
write (u, "(A)") "* Purpose: setup momenta in beam structure records"
write (u, "(A)")
s = "s"
call beam_structure%init_sf ([s], empty_array)
call beam_structure%set_momentum ([500._default])
call beam_structure%write (u)
write (u, "(A)")
call beam_structure%final_sf ()
call beam_structure%final_mom ()
call beam_structure%init_sf ([s, s], [1])
call beam_structure%set_momentum ([500._default, 700._default])
call beam_structure%set_theta ([0._default, 0.1_default])
call beam_structure%set_phi ([0._default, 1.51_default])
call beam_structure%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_structures_6"
end subroutine beam_structures_6
@ %def beam_structures_6
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Beams for collisions and decays}
<<[[beams.f90]]>>=
<<File header>>
module beams
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_19
use numeric_utils
use diagnostics
use md5
use lorentz
use model_data
use flavors
use quantum_numbers
use state_matrices
use interactions
use polarizations
use beam_structures
<<Standard module head>>
<<Beams: public>>
<<Beams: types>>
<<Beams: interfaces>>
contains
<<Beams: procedures>>
end module beams
@ %def beams
@
\subsection{Beam data}
The beam data type contains beam data for one or two beams, depending
on whether we are dealing with beam collisions or particle decay. In
addition, it holds the c.m.\ energy [[sqrts]], the Lorentz
transformation [[L]] that transforms the c.m.\ system into the lab
system, and the pair of c.m.\ momenta.
<<Beams: public>>=
public :: beam_data_t
<<Beams: types>>=
type :: beam_data_t
logical :: initialized = .false.
integer :: n = 0
type(flavor_t), dimension(:), allocatable :: flv
real(default), dimension(:), allocatable :: mass
type(pmatrix_t), dimension(:), allocatable :: pmatrix
logical :: lab_is_cm_frame = .true.
type(vector4_t), dimension(:), allocatable :: p_cm
type(vector4_t), dimension(:), allocatable :: p
type(lorentz_transformation_t), allocatable :: L_cm_to_lab
real(default) :: sqrts = 0
character(32) :: md5sum = ""
contains
<<Beams: beam data: TBP>>
end type beam_data_t
@ %def beam_data_t
@ Generic initializer. This is called by the specific initializers
below. Initialize either for decay or for collision.
<<Beams: procedures>>=
subroutine beam_data_init (beam_data, n)
type(beam_data_t), intent(out) :: beam_data
integer, intent(in) :: n
beam_data%n = n
allocate (beam_data%flv (n))
allocate (beam_data%mass (n))
allocate (beam_data%pmatrix (n))
allocate (beam_data%p_cm (n))
allocate (beam_data%p (n))
beam_data%initialized = .true.
end subroutine beam_data_init
@ %def beam_data_init
@ Finalizer: needed for the polarization components of the beams.
<<Beams: beam data: TBP>>=
procedure :: final => beam_data_final
<<Beams: procedures>>=
subroutine beam_data_final (beam_data)
class(beam_data_t), intent(inout) :: beam_data
beam_data%initialized = .false.
end subroutine beam_data_final
@ %def beam_data_final
@ The verbose (default) version is for debugging. The short version
is for screen output in the UI.
<<Beams: beam data: TBP>>=
procedure :: write => beam_data_write
<<Beams: procedures>>=
subroutine beam_data_write (beam_data, unit, verbose, write_md5sum)
class(beam_data_t), intent(in) :: beam_data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose, write_md5sum
integer :: prt_name_len
logical :: verb, write_md5
integer :: u
u = given_output_unit (unit); if (u < 0) return
verb = .false.; if (present (verbose)) verb = verbose
write_md5 = verb; if (present (write_md5sum)) write_md5 = write_md5sum
if (.not. beam_data%initialized) then
write (u, "(1x,A)") "Beam data: [undefined]"
return
end if
prt_name_len = maxval (len (beam_data%flv%get_name ()))
select case (beam_data%n)
case (1)
write (u, "(1x,A)") "Beam data (decay):"
if (verb) then
call write_prt (1)
call beam_data%pmatrix(1)%write (u)
write (u, *) "R.f. momentum:"
call vector4_write (beam_data%p_cm(1), u)
write (u, *) "Lab momentum:"
call vector4_write (beam_data%p(1), u)
else
call write_prt (1)
end if
case (2)
write (u, "(1x,A)") "Beam data (collision):"
if (verb) then
call write_prt (1)
call beam_data%pmatrix(1)%write (u)
call write_prt (2)
call beam_data%pmatrix(2)%write (u)
call write_sqrts
write (u, *) "C.m. momenta:"
call vector4_write (beam_data%p_cm(1), u)
call vector4_write (beam_data%p_cm(2), u)
write (u, *) "Lab momenta:"
call vector4_write (beam_data%p(1), u)
call vector4_write (beam_data%p(2), u)
else
call write_prt (1)
call write_prt (2)
call write_sqrts
end if
end select
if (allocated (beam_data%L_cm_to_lab)) then
if (verb) then
call lorentz_transformation_write (beam_data%L_cm_to_lab, u)
else
write (u, "(1x,A)") "Beam structure: lab and c.m. frame differ"
end if
end if
if (write_md5) then
write (u, *) "MD5 sum: ", beam_data%md5sum
end if
contains
subroutine write_sqrts
character(80) :: sqrts_str
write (sqrts_str, "(" // FMT_19 // ")") beam_data%sqrts
write (u, "(3x,A)") "sqrts = " // trim (adjustl (sqrts_str)) // " GeV"
end subroutine write_sqrts
subroutine write_prt (i)
integer, intent(in) :: i
character(80) :: name_str, mass_str
write (name_str, "(A)") char (beam_data%flv(i)%get_name ())
write (mass_str, "(ES13.7)") beam_data%mass(i)
write (u, "(3x,A)", advance="no") &
name_str(:prt_name_len) // " (mass = " &
// trim (adjustl (mass_str)) // " GeV)"
if (beam_data%pmatrix(i)%is_polarized ()) then
write (u, "(2x,A)") "polarized"
else
write (u, *)
end if
end subroutine write_prt
end subroutine beam_data_write
@ %def beam_data_write
@ Return initialization status:
<<Beams: beam data: TBP>>=
procedure :: are_valid => beam_data_are_valid
<<Beams: procedures>>=
function beam_data_are_valid (beam_data) result (flag)
class(beam_data_t), intent(in) :: beam_data
logical :: flag
flag = beam_data%initialized
end function beam_data_are_valid
@ %def beam_data_are_valid
@ Check whether beam data agree with the current values of relevant
parameters.
<<Beams: beam data: TBP>>=
procedure :: check_scattering => beam_data_check_scattering
<<Beams: procedures>>=
subroutine beam_data_check_scattering (beam_data, sqrts)
class(beam_data_t), intent(in) :: beam_data
real(default), intent(in), optional :: sqrts
if (beam_data_are_valid (beam_data)) then
if (present (sqrts)) then
if (.not. nearly_equal (sqrts, beam_data%sqrts)) then
call msg_error ("Current setting of sqrts is inconsistent " &
// "with beam setup (ignored).")
end if
end if
else
call msg_bug ("Beam setup: invalid beam data")
end if
end subroutine beam_data_check_scattering
@ %def beam_data_check_scattering
@ Return the number of beams (1 for decays, 2 for collisions).
<<Beams: beam data: TBP>>=
procedure :: get_n_in => beam_data_get_n_in
<<Beams: procedures>>=
function beam_data_get_n_in (beam_data) result (n_in)
class(beam_data_t), intent(in) :: beam_data
integer :: n_in
n_in = beam_data%n
end function beam_data_get_n_in
@ %def beam_data_get_n_in
@ Return the beam flavor
<<Beams: beam data: TBP>>=
procedure :: get_flavor => beam_data_get_flavor
<<Beams: procedures>>=
function beam_data_get_flavor (beam_data) result (flv)
class(beam_data_t), intent(in) :: beam_data
type(flavor_t), dimension(:), allocatable :: flv
allocate (flv (beam_data%n))
flv = beam_data%flv
end function beam_data_get_flavor
@ %def beam_data_get_flavor
@ Return the beam energies
<<Beams: beam data: TBP>>=
procedure :: get_energy => beam_data_get_energy
<<Beams: procedures>>=
function beam_data_get_energy (beam_data) result (e)
class(beam_data_t), intent(in) :: beam_data
real(default), dimension(:), allocatable :: e
integer :: i
allocate (e (beam_data%n))
if (beam_data%initialized) then
do i = 1, beam_data%n
e(i) = energy (beam_data%p(i))
end do
else
e = 0
end if
end function beam_data_get_energy
@ %def beam_data_get_energy
@ Return the c.m.\ energy.
<<Beams: beam data: TBP>>=
procedure :: get_sqrts => beam_data_get_sqrts
<<Beams: procedures>>=
function beam_data_get_sqrts (beam_data) result (sqrts)
class(beam_data_t), intent(in) :: beam_data
real(default) :: sqrts
sqrts = beam_data%sqrts
end function beam_data_get_sqrts
@ %def beam_data_get_sqrts
@ Return true if the lab and c.m.\ frame are specified as identical.
<<Beams: beam data: TBP>>=
procedure :: cm_frame => beam_data_cm_frame
<<Beams: procedures>>=
function beam_data_cm_frame (beam_data) result (flag)
class(beam_data_t), intent(in) :: beam_data
logical :: flag
flag = beam_data%lab_is_cm_frame
end function beam_data_cm_frame
@ %def beam_data_cm_frame
@ Return the polarization in case it is just two degrees
<<Beams: beam data: TBP>>=
procedure :: get_polarization => beam_data_get_polarization
<<Beams: procedures>>=
function beam_data_get_polarization (beam_data) result (pol)
class(beam_data_t), intent(in) :: beam_data
real(default), dimension(2) :: pol
if (beam_data%n /= 2) &
call msg_fatal ("Beam data: can only treat scattering processes.")
pol = beam_data%pmatrix%get_simple_pol ()
end function beam_data_get_polarization
@ %def beam_data_get_polarization
@
<<Beams: beam data: TBP>>=
procedure :: get_helicity_state_matrix => beam_data_get_helicity_state_matrix
<<Beams: procedures>>=
function beam_data_get_helicity_state_matrix (beam_data) result (state_hel)
type(state_matrix_t) :: state_hel
class(beam_data_t), intent(in) :: beam_data
type(polarization_t), dimension(:), allocatable :: pol
integer :: i
allocate (pol (beam_data%n))
do i = 1, beam_data%n
call pol(i)%init_pmatrix (beam_data%pmatrix(i))
end do
call combine_polarization_states (pol, state_hel)
end function beam_data_get_helicity_state_matrix
@ %def beam_data_get_helicity_state_matrix
@
<<Beams: beam data: TBP>>=
procedure :: is_initialized => beam_data_is_initialized
<<Beams: procedures>>=
function beam_data_is_initialized (beam_data) result (initialized)
logical :: initialized
class(beam_data_t), intent(in) :: beam_data
initialized = any (beam_data%pmatrix%exists ())
end function beam_data_is_initialized
@ %def beam_data_is_initialized
@ Return a MD5 checksum for beam data. If no checksum is present
(because beams have not been initialized), compute the checksum of the
sqrts value.
<<Beams: beam data: TBP>>=
procedure :: get_md5sum => beam_data_get_md5sum
<<Beams: procedures>>=
function beam_data_get_md5sum (beam_data, sqrts) result (md5sum_beams)
class(beam_data_t), intent(in) :: beam_data
real(default), intent(in) :: sqrts
character(32) :: md5sum_beams
character(80) :: buffer
if (beam_data%md5sum /= "") then
md5sum_beams = beam_data%md5sum
else
write (buffer, *) sqrts
md5sum_beams = md5sum (buffer)
end if
end function beam_data_get_md5sum
@ %def beam_data_get_md5sum
@
\subsection{Initializers: beam structure}
Initialize the beam data object from a beam structure object, given energy and
model.
<<Beams: beam data: TBP>>=
procedure :: init_structure => beam_data_init_structure
<<Beams: procedures>>=
subroutine beam_data_init_structure &
(beam_data, structure, sqrts, model, decay_rest_frame)
class(beam_data_t), intent(out) :: beam_data
type(beam_structure_t), intent(in) :: structure
integer :: n_beam
real(default), intent(in) :: sqrts
class(model_data_t), intent(in), target :: model
logical, intent(in), optional :: decay_rest_frame
type(flavor_t), dimension(:), allocatable :: flv
n_beam = structure%get_n_beam ()
allocate (flv (n_beam))
call flv%init (structure%get_prt (), model)
if (structure%asymmetric ()) then
if (structure%polarized ()) then
call beam_data%init_momenta (structure%get_momenta (), flv, &
structure%get_smatrix (), structure%get_pol_f ())
else
call beam_data%init_momenta (structure%get_momenta (), flv)
end if
else
select case (n_beam)
case (1)
if (structure%polarized ()) then
call beam_data%init_decay (flv, &
structure%get_smatrix (), structure%get_pol_f (), &
rest_frame = decay_rest_frame)
else
call beam_data%init_decay (flv, &
rest_frame = decay_rest_frame)
end if
case (2)
if (structure%polarized ()) then
call beam_data%init_sqrts (sqrts, flv, &
structure%get_smatrix (), structure%get_pol_f ())
else
call beam_data%init_sqrts (sqrts, flv)
end if
case default
call msg_bug ("Beam data: invalid beam structure object")
end select
end if
end subroutine beam_data_init_structure
@ %def beam_data_init_structure
@
\subsection{Initializers: collisions}
This is the simplest one: just the two flavors, c.m.\ energy,
polarization. Color is inferred from flavor. Beam momenta and c.m.\
momenta coincide.
<<Beams: beam data: TBP>>=
procedure :: init_sqrts => beam_data_init_sqrts
<<Beams: procedures>>=
subroutine beam_data_init_sqrts (beam_data, sqrts, flv, smatrix, pol_f)
class(beam_data_t), intent(out) :: beam_data
real(default), intent(in) :: sqrts
type(flavor_t), dimension(:), intent(in) :: flv
type(smatrix_t), dimension(:), intent(in), optional :: smatrix
real(default), dimension(:), intent(in), optional :: pol_f
real(default), dimension(size(flv)) :: E, p
call beam_data_init (beam_data, size (flv))
beam_data%sqrts = sqrts
beam_data%lab_is_cm_frame = .true.
select case (beam_data%n)
case (1)
E = sqrts; p = 0
beam_data%p_cm = vector4_moving (E, p, 3)
beam_data%p = beam_data%p_cm
case (2)
beam_data%p_cm = colliding_momenta (sqrts, flv%get_mass ())
beam_data%p = colliding_momenta (sqrts, flv%get_mass ())
end select
call beam_data_finish_initialization (beam_data, flv, smatrix, pol_f)
end subroutine beam_data_init_sqrts
@ %def beam_data_init_sqrts
@ This version sets beam momenta directly, assuming that they are
asymmetric, i.e., lab frame and c.m.\ frame do not coincide.
Polarization info is deferred to a common initializer.
The Lorentz transformation that we compute here is not actually used
in the calculation; instead, it will be recomputed for each event in
the subroutine [[phs_set_incoming_momenta]]. We compute it here for
the nominal beam setup nevertheless, so we can print it and, in
particular, include it in the MD5 sum.
<<Beams: beam data: TBP>>=
procedure :: init_momenta => beam_data_init_momenta
<<Beams: procedures>>=
subroutine beam_data_init_momenta (beam_data, p3, flv, smatrix, pol_f)
class(beam_data_t), intent(out) :: beam_data
type(vector3_t), dimension(:), intent(in) :: p3
type(flavor_t), dimension(:), intent(in) :: flv
type(smatrix_t), dimension(:), intent(in), optional :: smatrix
real(default), dimension(:), intent(in), optional :: pol_f
type(vector4_t) :: p0
type(vector4_t), dimension(:), allocatable :: p, p_cm_rot
real(default), dimension(size(p3)) :: e
real(default), dimension(size(flv)) :: m
type(lorentz_transformation_t) :: L_boost, L_rot
call beam_data_init (beam_data, size (flv))
m = flv%get_mass ()
e = sqrt (p3 ** 2 + m ** 2)
allocate (p (beam_data%n))
p = vector4_moving (e, p3)
p0 = sum (p)
beam_data%p = p
beam_data%lab_is_cm_frame = .false.
beam_data%sqrts = p0 ** 1
L_boost = boost (p0, beam_data%sqrts)
allocate (p_cm_rot (beam_data%n))
p_cm_rot = inverse (L_boost) * p
allocate (beam_data%L_cm_to_lab)
select case (beam_data%n)
case (1)
beam_data%L_cm_to_lab = L_boost
beam_data%p_cm = vector4_at_rest (beam_data%sqrts)
case (2)
L_rot = rotation_to_2nd (3, space_part (p_cm_rot(1)))
beam_data%L_cm_to_lab = L_boost * L_rot
beam_data%p_cm = &
colliding_momenta (beam_data%sqrts, flv%get_mass ())
end select
call beam_data_finish_initialization (beam_data, flv, smatrix, pol_f)
end subroutine beam_data_init_momenta
@ %def beam_data_init_momenta
@
Final steps:
If requested, rotate the beams in the lab frame, and set
the beam-data components.
<<Beams: procedures>>=
subroutine beam_data_finish_initialization (beam_data, flv, smatrix, pol_f)
type(beam_data_t), intent(inout) :: beam_data
type(flavor_t), dimension(:), intent(in) :: flv
type(smatrix_t), dimension(:), intent(in), optional :: smatrix
real(default), dimension(:), intent(in), optional :: pol_f
integer :: i
do i = 1, beam_data%n
beam_data%flv(i) = flv(i)
beam_data%mass(i) = flv(i)%get_mass ()
if (present (smatrix)) then
if (size (smatrix) /= beam_data%n) &
call msg_fatal ("Beam data: &
&polarization density array has wrong dimension")
beam_data%pmatrix(i) = smatrix(i)
if (present (pol_f)) then
if (size (pol_f) /= size (smatrix)) &
call msg_fatal ("Beam data: &
&polarization fraction array has wrong dimension")
call beam_data%pmatrix(i)%normalize (flv(i), pol_f(i))
else
call beam_data%pmatrix(i)%normalize (flv(i), 1._default)
end if
else
call beam_data%pmatrix(i)%init (2, 0)
call beam_data%pmatrix(i)%normalize (flv(i), 0._default)
end if
end do
call beam_data%compute_md5sum ()
end subroutine beam_data_finish_initialization
@ %def beam_data_finish_initialization
@
The MD5 sum is stored within the beam-data record, so it can be
checked for integrity in subsequent runs.
<<Beams: beam data: TBP>>=
procedure :: compute_md5sum => beam_data_compute_md5sum
<<Beams: procedures>>=
subroutine beam_data_compute_md5sum (beam_data)
class(beam_data_t), intent(inout) :: beam_data
integer :: unit
unit = free_unit ()
open (unit = unit, status = "scratch", action = "readwrite")
call beam_data%write (unit, write_md5sum = .false., &
verbose = .true.)
rewind (unit)
beam_data%md5sum = md5sum (unit)
close (unit)
end subroutine beam_data_compute_md5sum
@ %def beam_data_compute_md5sum
@
\subsection{Initializers: decays}
This is the simplest one: decay in rest frame. We need just flavor
and polarization. Color is inferred from flavor. Beam momentum and
c.m.\ momentum coincide.
<<Beams: beam data: TBP>>=
procedure :: init_decay => beam_data_init_decay
<<Beams: procedures>>=
subroutine beam_data_init_decay (beam_data, flv, smatrix, pol_f, rest_frame)
class(beam_data_t), intent(out) :: beam_data
type(flavor_t), dimension(1), intent(in) :: flv
type(smatrix_t), dimension(1), intent(in), optional :: smatrix
real(default), dimension(:), intent(in), optional :: pol_f
logical, intent(in), optional :: rest_frame
real(default), dimension(1) :: m
m = flv%get_mass ()
if (present (smatrix)) then
call beam_data%init_sqrts (m(1), flv, smatrix, pol_f)
else
call beam_data%init_sqrts (m(1), flv, smatrix, pol_f)
end if
if (present (rest_frame)) beam_data%lab_is_cm_frame = rest_frame
end subroutine beam_data_init_decay
@ %def beam_data_init_decay
@
\subsection{Sanity check}
After the beams have been set, the initial-particle masses may have
been modified. This can be checked here.
<<Beams: beam data: TBP>>=
procedure :: masses_are_consistent => beam_data_masses_are_consistent
<<Beams: procedures>>=
function beam_data_masses_are_consistent (beam_data) result (flag)
logical :: flag
class(beam_data_t), intent(in) :: beam_data
flag = all (nearly_equal (beam_data%mass, beam_data%flv%get_mass ()))
end function beam_data_masses_are_consistent
@ %def beam_data_masses_are_consistent
@
\subsection{The beams type}
Beam objects are interaction objects that contain the actual beam
data including polarization and density matrix. For collisions, the
beam object actually contains two beams.
<<Beams: public>>=
public :: beam_t
<<Beams: types>>=
type :: beam_t
private
type(interaction_t) :: int
end type beam_t
@ %def beam_t
@ The constructor contains code that converts beam data into the
(entangled) particle-pair quantum state. First, we set the number of
particles and polarization mask. (The polarization mask is handed
over to all later interactions, so if helicity is diagonal or absent, this fact
is used when constructing the hard-interaction events.) Then, we
construct the entangled state that combines helicity, flavor and color
of the two particles (where flavor and color are unique, while several
helicity states are possible). Then, we transfer this state together
with the associated values from the spin density matrix into the
[[interaction_t]] object.
Calling the [[add_state]] method of the interaction object, we keep
the entries of the helicity density matrix without adding them up.
This ensures that for unpolarized states, we do not normalize but end
up with an $1/N$ entry, where $N$ is the initial-state multiplicity.
<<Beams: public>>=
public :: beam_init
<<Beams: procedures>>=
subroutine beam_init (beam, beam_data)
type(beam_t), intent(out) :: beam
type(beam_data_t), intent(in), target :: beam_data
logical, dimension(beam_data%n) :: polarized, diagonal
type(quantum_numbers_mask_t), dimension(beam_data%n) :: mask, mask_d
type(state_matrix_t), target :: state_hel, state_fc, state_tmp
type(state_iterator_t) :: it_hel, it_tmp
type(quantum_numbers_t), dimension(:), allocatable :: qn
complex(default) :: value
real(default), parameter :: tolerance = 100 * epsilon (1._default)
polarized = beam_data%pmatrix%is_polarized ()
diagonal = beam_data%pmatrix%is_diagonal ()
mask = quantum_numbers_mask (.false., .false., &
mask_h = .not. polarized, &
mask_hd = diagonal)
mask_d = quantum_numbers_mask (.false., .false., .false., &
mask_hd = polarized .and. diagonal)
call beam%int%basic_init &
(0, 0, beam_data%n, mask = mask, store_values = .true.)
state_hel = beam_data%get_helicity_state_matrix ()
allocate (qn (beam_data%n))
call qn%init (beam_data%flv, color_from_flavor (beam_data%flv, 1))
call state_fc%init ()
call state_fc%add_state (qn)
call merge_state_matrices (state_hel, state_fc, state_tmp)
call it_hel%init (state_hel)
call it_tmp%init (state_tmp)
do while (it_hel%is_valid ())
qn = it_tmp%get_quantum_numbers ()
value = it_hel%get_matrix_element ()
if (any (qn%are_redundant (mask_d))) then
! skip off-diagonal elements for diagonal polarization
else if (abs (value) <= tolerance) then
! skip zero entries
else
call beam%int%add_state (qn, value = value)
end if
call it_hel%advance ()
call it_tmp%advance ()
end do
call beam%int%freeze ()
call beam%int%set_momenta (beam_data%p, outgoing = .true.)
call state_hel%final ()
call state_fc%final ()
call state_tmp%final ()
end subroutine beam_init
@ %def beam_init
@ Finalizer:
<<Beams: public>>=
public :: beam_final
<<Beams: procedures>>=
subroutine beam_final (beam)
type(beam_t), intent(inout) :: beam
call beam%int%final ()
end subroutine beam_final
@ %def beam_final
@ I/O:
<<Beams: public>>=
public :: beam_write
<<Beams: procedures>>=
subroutine beam_write (beam, unit, verbose, show_momentum_sum, show_mass, col_verbose)
type(beam_t), intent(in) :: beam
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose, show_momentum_sum, show_mass
logical, intent(in), optional :: col_verbose
integer :: u
u = given_output_unit (unit); if (u < 0) return
select case (beam%int%get_n_out ())
case (1); write (u, *) "Decaying particle:"
case (2); write (u, *) "Colliding beams:"
end select
call beam%int%basic_write &
(unit, verbose = verbose, show_momentum_sum = &
show_momentum_sum, show_mass = show_mass, &
col_verbose = col_verbose)
end subroutine beam_write
@ %def beam_write
@ Defined assignment: deep copy
<<Beams: public>>=
public :: assignment(=)
<<Beams: interfaces>>=
interface assignment(=)
module procedure beam_assign
end interface
<<Beams: procedures>>=
subroutine beam_assign (beam_out, beam_in)
type(beam_t), intent(out) :: beam_out
type(beam_t), intent(in) :: beam_in
beam_out%int = beam_in%int
end subroutine beam_assign
@ %def beam_assign
@
\subsection{Inherited procedures}
<<Beams: public>>=
public :: interaction_set_source_link
<<Beams: interfaces>>=
interface interaction_set_source_link
module procedure interaction_set_source_link_beam
end interface
<<Beams: procedures>>=
subroutine interaction_set_source_link_beam (int, i, beam1, i1)
type(interaction_t), intent(inout) :: int
type(beam_t), intent(in), target :: beam1
integer, intent(in) :: i, i1
call int%set_source_link (i, beam1%int, i1)
end subroutine interaction_set_source_link_beam
@ %def interaction_set_source_link_beam
@
\subsection{Accessing contents}
Return the interaction component -- as a pointer, to avoid any copying.
<<Beams: public>>=
public :: beam_get_int_ptr
<<Beams: procedures>>=
function beam_get_int_ptr (beam) result (int)
type(interaction_t), pointer :: int
type(beam_t), intent(in), target :: beam
int => beam%int
end function beam_get_int_ptr
@ %def beam_get_int_ptr
@ Set beam momenta directly. (Used for cascade decays.)
<<Beams: public>>=
public :: beam_set_momenta
<<Beams: procedures>>=
subroutine beam_set_momenta (beam, p)
type(beam_t), intent(inout) :: beam
type(vector4_t), dimension(:), intent(in) :: p
call beam%int%set_momenta (p)
end subroutine beam_set_momenta
@ %def beam_set_momenta
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[beams_ut.f90]]>>=
<<File header>>
module beams_ut
use unit_tests
use beams_uti
<<Standard module head>>
<<Beams: public test>>
contains
<<Beams: test driver>>
end module beams_ut
@ %def beams_ut
@
<<[[beams_uti.f90]]>>=
<<File header>>
module beams_uti
<<Use kinds>>
use lorentz
use flavors
use interactions, only: reset_interaction_counter
use polarizations, only: smatrix_t
use model_data
use beam_structures
use beams
<<Standard module head>>
<<Beams: test declarations>>
contains
<<Beams: tests>>
end module beams_uti
@ %def beams_ut
@ API: driver for the unit tests below.
<<Beams: public test>>=
public :: beams_test
<<Beams: test driver>>=
subroutine beams_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<Beams: execute tests>>
end subroutine beams_test
@ %def beams_test
@ Test the basic beam setup.
<<Beams: execute tests>>=
call test (beam_1, "beam_1", &
"check basic beam setup", &
u, results)
<<Beams: test declarations>>=
public :: beam_1
<<Beams: tests>>=
subroutine beam_1 (u)
integer, intent(in) :: u
type(beam_data_t), target :: beam_data
type(beam_t) :: beam
real(default) :: sqrts
type(flavor_t), dimension(2) :: flv
type(smatrix_t), dimension(2) :: smatrix
real(default), dimension(2) :: pol_f
type(model_data_t), target :: model
write (u, "(A)") "* Test output: beam_1"
write (u, "(A)") "* Purpose: test basic beam setup"
write (u, "(A)")
write (u, "(A)") "* Reading model file"
write (u, "(A)")
call reset_interaction_counter ()
call model%init_sm_test ()
write (u, "(A)") "* Unpolarized scattering, massless fermions"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([1,-1], model)
call beam_data%init_sqrts (sqrts, flv)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Unpolarized scattering, massless bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([22,22], model)
call beam_data%init_sqrts (sqrts, flv)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Unpolarized scattering, massive bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([24,-24], model)
call beam_data%init_sqrts (sqrts, flv)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Polarized scattering, massless fermions"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([1,-1], model)
call smatrix(1)%init (2, 1)
call smatrix(1)%set_entry (1, [1,1], (1._default, 0._default))
pol_f(1) = 0.5_default
call smatrix(2)%init (2, 3)
call smatrix(2)%set_entry (1, [1,1], (1._default, 0._default))
call smatrix(2)%set_entry (2, [-1,-1], (1._default, 0._default))
call smatrix(2)%set_entry (3, [-1,1], (1._default, 0._default))
pol_f(2) = 1._default
call beam_data%init_sqrts (sqrts, flv, smatrix, pol_f)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Semi-polarized scattering, massless bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([22,22], model)
call smatrix(1)%init (2, 0)
pol_f(1) = 0._default
call smatrix(2)%init (2, 1)
call smatrix(2)%set_entry (1, [1,1], (1._default, 0._default))
pol_f(2) = 1._default
call beam_data%init_sqrts (sqrts, flv, smatrix, pol_f)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Semi-polarized scattering, massive bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([24,-24], model)
call smatrix(1)%init (2, 0)
pol_f(1) = 0._default
call smatrix(2)%init (2, 1)
call smatrix(2)%set_entry (1, [0,0], (1._default, 0._default))
pol_f(2) = 1._default
call beam_data%init_sqrts (sqrts, flv, smatrix, pol_f)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Unpolarized decay, massive boson"
write (u, "(A)")
call reset_interaction_counter ()
call flv(1)%init (23, model)
call beam_data%init_decay (flv(1:1))
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
write (u, "(A)")
write (u, "(A)") "* Polarized decay, massive boson"
write (u, "(A)")
call reset_interaction_counter ()
call flv(1)%init (23, model)
call smatrix(1)%init (2, 1)
call smatrix(1)%set_entry (1, [0,0], (1._default, 0._default))
pol_f(1) = 0.4_default
call beam_data%init_decay (flv(1:1), smatrix(1:1), pol_f(1:1))
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call beam_final (beam)
call beam_data%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_1"
end subroutine beam_1
@ %def beam_1
@ Test advanced beam setup.
<<Beams: execute tests>>=
call test (beam_2, "beam_2", &
"beam initialization", &
u, results)
<<Beams: test declarations>>=
public :: beam_2
<<Beams: tests>>=
subroutine beam_2 (u)
integer, intent(in) :: u
type(beam_data_t), target :: beam_data
type(beam_t) :: beam
real(default) :: sqrts
type(flavor_t), dimension(2) :: flv
integer, dimension(0) :: no_records
type(beam_structure_t) :: beam_structure
type(model_data_t), target :: model
write (u, "(A)") "* Test output: beam_2"
write (u, "(A)") "* Purpose: transfer beam polarization using &
&beam structure"
write (u, "(A)")
write (u, "(A)") "* Reading model file"
write (u, "(A)")
call model%init_sm_test ()
write (u, "(A)") "* Unpolarized scattering, massless fermions"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([1,-1], model)
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%final_pol ()
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Unpolarized scattering, massless bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([22,22], model)
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%final_pol ()
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Unpolarized scattering, massive bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([24,-24], model)
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%final_pol ()
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Polarized scattering, massless fermions"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([1,-1], model)
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%init_pol (2)
call beam_structure%init_smatrix (1, 1)
call beam_structure%set_sentry (1, 1, [1,1], (1._default, 0._default))
call beam_structure%init_smatrix (2, 3)
call beam_structure%set_sentry (2, 1, [1,1], (1._default, 0._default))
call beam_structure%set_sentry (2, 2, [-1,-1], (1._default, 0._default))
call beam_structure%set_sentry (2, 3, [-1,1], (1._default, 0._default))
call beam_structure%set_pol_f ([0.5_default, 1._default])
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, *)
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
call beam_structure%final_pol ()
call beam_structure%final_sf ()
write (u, "(A)")
write (u, "(A)") "* Semi-polarized scattering, massless bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([22,22], model)
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%init_pol (2)
call beam_structure%init_smatrix (1, 0)
call beam_structure%init_smatrix (2, 1)
call beam_structure%set_sentry (2, 1, [1,1], (1._default, 0._default))
call beam_structure%set_pol_f ([0._default, 1._default])
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Semi-polarized scattering, massive bosons"
write (u, "(A)")
call reset_interaction_counter ()
sqrts = 500
call flv%init ([24,-24], model)
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%init_pol (2)
call beam_structure%init_smatrix (1, 0)
call beam_structure%init_smatrix (2, 1)
call beam_structure%set_sentry (2, 1, [0,0], (1._default, 0._default))
call beam_structure%write (u)
write (u, "(A)")
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
write (u, "(A)")
write (u, "(A)") "* Unpolarized decay, massive boson"
write (u, "(A)")
call reset_interaction_counter ()
call flv(1)%init (23, model)
call beam_structure%init_sf ([flv(1)%get_name ()], no_records)
call beam_structure%final_pol ()
call beam_structure%write (u)
write (u, "(A)")
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
write (u, "(A)")
write (u, "(A)") "* Polarized decay, massive boson"
write (u, "(A)")
call reset_interaction_counter ()
call flv(1)%init (23, model)
call beam_structure%init_sf ([flv(1)%get_name ()], no_records)
call beam_structure%init_pol (1)
call beam_structure%init_smatrix (1, 1)
call beam_structure%set_sentry (1, 1, [0,0], (1._default, 0._default))
call beam_structure%set_pol_f ([0.4_default])
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, sqrts, model)
call beam_data%write (u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call beam_final (beam)
call beam_data%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_2"
end subroutine beam_2
@ %def beam_2
@ Test advanced beam setup, completely arbitrary momenta.
<<Beams: execute tests>>=
call test (beam_3, "beam_3", &
"generic beam momenta", &
u, results)
<<Beams: test declarations>>=
public :: beam_3
<<Beams: tests>>=
subroutine beam_3 (u)
integer, intent(in) :: u
type(beam_data_t), target :: beam_data
type(beam_t) :: beam
type(flavor_t), dimension(2) :: flv
integer, dimension(0) :: no_records
type(model_data_t), target :: model
type(beam_structure_t) :: beam_structure
type(vector3_t), dimension(2) :: p3
type(vector4_t), dimension(2) :: p
write (u, "(A)") "* Test output: beam_3"
write (u, "(A)") "* Purpose: set up beams with generic momenta"
write (u, "(A)")
write (u, "(A)") "* Reading model file"
write (u, "(A)")
call reset_interaction_counter ()
call model%init_sm_test ()
write (u, "(A)") "* 1: Scattering process"
write (u, "(A)")
call flv%init ([2212,2212], model)
p3(1) = vector3_moving ([5._default, 0._default, 10._default])
p3(2) = -vector3_moving ([1._default, 1._default, -10._default])
call beam_structure%init_sf (flv%get_name (), no_records)
call beam_structure%set_momentum (p3 ** 1)
call beam_structure%set_theta (polar_angle (p3))
call beam_structure%set_phi (azimuthal_angle (p3))
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, 0._default, model)
call pacify (beam_data%l_cm_to_lab, 1e-20_default)
call beam_data%compute_md5sum ()
call beam_data%write (u, verbose = .true.)
write (u, *)
write (u, "(1x,A)") "Beam momenta reconstructed from LT:"
p = beam_data%L_cm_to_lab * beam_data%p_cm
call pacify (p, 1e-12_default)
call vector4_write (p(1), u)
call vector4_write (p(2), u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
call beam_final (beam)
call beam_data%final ()
call beam_structure%final_sf ()
call beam_structure%final_mom ()
write (u, "(A)")
write (u, "(A)") "* 2: Decay"
write (u, "(A)")
call flv(1)%init (23, model)
p3(1) = vector3_moving ([10._default, 5._default, 50._default])
call beam_structure%init_sf ([flv(1)%get_name ()], no_records)
call beam_structure%set_momentum ([p3(1) ** 1])
call beam_structure%set_theta ([polar_angle (p3(1))])
call beam_structure%set_phi ([azimuthal_angle (p3(1))])
call beam_structure%write (u)
write (u, *)
call beam_data%init_structure (beam_structure, 0._default, model)
call beam_data%write (u, verbose = .true.)
write (u, "(A)")
write (u, "(1x,A)") "Beam momentum reconstructed from LT:"
p(1) = beam_data%L_cm_to_lab * beam_data%p_cm(1)
call pacify (p(1), 1e-12_default)
call vector4_write (p(1), u)
write (u, "(A)")
call beam_init (beam, beam_data)
call beam_write (beam, u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call beam_final (beam)
call beam_data%final ()
call beam_structure%final_sf ()
call beam_structure%final_mom ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: beam_3"
end subroutine beam_3
@ %def beam_3
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Tools}
This module contains auxiliary procedures that can be accessed by the
structure function code.
<<[[sf_aux.f90]]>>=
<<File header>>
module sf_aux
<<Use kinds>>
use io_units
use constants, only: twopi
use numeric_utils
use lorentz
<<Standard module head>>
<<SF aux: public>>
<<SF aux: parameters>>
<<SF aux: types>>
contains
<<SF aux: procedures>>
end module sf_aux
@ %def sf_aux
@
\subsection{Momentum splitting}
Let us consider first an incoming parton with momentum $k$ and
invariant mass squared $s=k^2$ that splits into two partons with
momenta $q,p$ and invariant masses $t=q^2$ and $u=p^2$. (This is an
abuse of the Mandelstam notation. $t$ is actually the momentum
transfer, assuming that $p$ is radiated and $q$ initiates the hard
process.) The energy is split among the partons such that if $E=k^0$,
we have $q^0 = xE$ and $p^0=\bar x E$, where $\bar x\equiv 1-x$.
We define the angle $\theta$ as the polar angle of $p$ w.r.t.\ the
momentum axis of the incoming momentum $k$. Ignoring azimuthal angle,
we can write the four-momenta in the basis $(E,p_T,p_L)$ as
\begin{equation}
k =
\begin{pmatrix}
E \\ 0 \\ p
\end{pmatrix},
\qquad
p =
\begin{pmatrix}
\bar x E \\ \bar x\bar p\sin\theta \\ \bar x\bar p\cos\theta
\end{pmatrix},
\qquad
q =
\begin{pmatrix}
x E \\ -\bar x\bar p\sin\theta \\ p - \bar x\bar p\cos\theta
\end{pmatrix},
\end{equation}
where the first two mass-shell conditions are
\begin{equation}
p^2 = E^2 - s,
\qquad
\bar p^2 = E^2 - \frac{u}{\bar x^2}.
\end{equation}
The second condition implies that, for positive $u$, $\bar x^2 >
u/E^2$, or equivalently
\begin{equation}
x < 1 - \sqrt{u} / E.
\end{equation}
We are interested in the third mass-shell conditions: $s$ and $u$ are
fixed, so we need $t$ as a function of $\cos\theta$:
\begin{equation}
t = -2\bar x \left(E^2 - p\bar p\cos\theta\right) + s + u.
\end{equation}
Solving for $\cos\theta$, we get
\begin{equation}
\cos\theta = \frac{2\bar x E^2 + t - s - u}{2\bar x p\bar p}.
\end{equation}
We can compute $\sin\theta$ numerically as
$\sin^2\theta=1-\cos^2\theta$, but it is important to reexpress this
in view of numerical stability. To this end, we first determine the
bounds for $t$. The cosine must be between $-1$ and $1$, so the
bounds are
\begin{align}
t_0 &= -2\bar x\left(E^2 + p\bar p\right) + s + u,
\\
t_1 &= -2\bar x\left(E^2 - p\bar p\right) + s + u.
\end{align}
Computing $\sin^2\theta$ from $\cos\theta$ above, we observe that the
numerator is a quadratic polynomial in $t$ which has the zeros $t_0$
and $t_1$, while the common denominator is given by $(2\bar x p\bar
p)^2$. Hence, we can write
\begin{equation}
\sin^2\theta = -\frac{(t - t_0)(t - t_1)}{(2\bar x p\bar p)^2}
\qquad\text{and}\qquad
\cos\theta = \frac{(t-t_0) + (t-t_1)}{4\bar x p\bar p},
\end{equation}
which is free of large cancellations near $t=t_0$ or $t=t_1$.
If all is massless, i.e., $s=u=0$, this simplifies to
\begin{align}
t_0 &= -4\bar x E^2,
&
t_1 &= 0,
\\
\sin^2\theta &= -\frac{t}{\bar x E^2}
\left(1 + \frac{t}{4\bar x E^2}\right),
&
\cos\theta &= 1 + \frac{t}{2\bar x E^2}.
\end{align}
Here is the implementation. First, we define a container for the
kinematical integration limits and some further data.
Note: contents are public only for easy access in unit test.
<<SF aux: public>>=
public :: splitting_data_t
<<SF aux: types>>=
type :: splitting_data_t
! private
logical :: collinear = .false.
real(default) :: x0 = 0
real(default) :: x1
real(default) :: t0
real(default) :: t1
real(default) :: phi0 = 0
real(default) :: phi1 = twopi
real(default) :: E, p, s, u, m2
real(default) :: x, xb, pb
real(default) :: t = 0
real(default) :: phi = 0
contains
<<SF aux: splitting data: TBP>>
end type splitting_data_t
@ %def splitting_data_t
@ I/O for debugging:
<<SF aux: splitting data: TBP>>=
procedure :: write => splitting_data_write
<<SF aux: procedures>>=
subroutine splitting_data_write (d, unit)
class(splitting_data_t), intent(in) :: d
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit); if (u < 0) return
write (u, "(A)") "Splitting data:"
write (u, "(2x,A,L1)") "collinear = ", d%collinear
1 format (2x,A,1x,ES15.8)
write (u, 1) "x0 =", d%x0
write (u, 1) "x =", d%x
write (u, 1) "xb =", d%xb
write (u, 1) "x1 =", d%x1
write (u, 1) "t0 =", d%t0
write (u, 1) "t =", d%t
write (u, 1) "t1 =", d%t1
write (u, 1) "phi0 =", d%phi0
write (u, 1) "phi =", d%phi
write (u, 1) "phi1 =", d%phi1
write (u, 1) "E =", d%E
write (u, 1) "p =", d%p
write (u, 1) "pb =", d%pb
write (u, 1) "s =", d%s
write (u, 1) "u =", d%u
write (u, 1) "m2 =", d%m2
end subroutine splitting_data_write
@ %def splitting_data_write
@
\subsection{Constant data}
This is the initializer for the data. The input consists of the
incoming momentum, its invariant mass squared, and the invariant mass
squared of the radiated particle. $m2$ is the \emph{physical} mass
squared of the outgoing particle. The $t$ bounds depend on the chosen $x$
value and cannot be determined yet.
<<SF aux: splitting data: TBP>>=
procedure :: init => splitting_data_init
<<SF aux: procedures>>=
subroutine splitting_data_init (d, k, mk2, mr2, mo2, collinear)
class(splitting_data_t), intent(out) :: d
type(vector4_t), intent(in) :: k
real(default), intent(in) :: mk2, mr2, mo2
logical, intent(in), optional :: collinear
if (present (collinear)) d%collinear = collinear
d%E = energy (k)
d%x1 = 1 - sqrt (max (mr2, 0._default)) / d%E
d%p = sqrt (d%E**2 - mk2)
d%s = mk2
d%u = mr2
d%m2 = mo2
end subroutine splitting_data_init
@ %def splitting_data_init
@ Retrieve the $x$ bounds, if needed for $x$ sampling. Generating an
$x$ value is done by the caller, since this is the part that depends
on the nature of the structure function.
<<SF aux: splitting data: TBP>>=
procedure :: get_x_bounds => splitting_get_x_bounds
<<SF aux: procedures>>=
function splitting_get_x_bounds (d) result (x)
class(splitting_data_t), intent(in) :: d
real(default), dimension(2) :: x
x = [ d%x0, d%x1 ]
end function splitting_get_x_bounds
@ %def splitting_get_x_bounds
@ Now set the momentum fraction and compute $t_0$ and $t_1$.
[The calculation of $t_1$ is subject to numerical problems. The exact
formula is ($s=m_i^2$, $u=m_r^2$)
\begin{equation}
t_1 = -2\bar x E^2 + m_i^2 + m_r^2
+ 2\bar x \sqrt{E^2-m_i^2}\,\sqrt{E^2 - m_r^2/\bar x^2}.
\end{equation}
The structure-function paradigm is useful only if $E\gg m_i,m_r$. In
a Taylor expansion for large $E$, the leading term cancels. The
expansion of the square roots (to subleading order) yields
\begin{equation}
t_1 = xm_i^2 - \frac{x}{\bar x}m_r^2.
\end{equation}
There are two cases of interest: $m_i=m_o$ and $m_r=0$,
\begin{equation}
t_1 = xm_o^2
\end{equation}
and $m_i=m_r$ and $m_o=0$,
\begin{equation}
t_1 = -\frac{x^2}{\bar x}m_i^2.
\end{equation}
In both cases, $t_1\leq m_o^2$.]
That said, it turns out that taking the $t_1$ evaluation at face value
leads to less problems than the approximation. We express the angles
in terms of $t-t_0$ and $t-t_1$. Numerical noise in $t_1$ can then be
tolerated.
<<SF aux: splitting data: TBP>>=
procedure :: set_t_bounds => splitting_set_t_bounds
<<SF aux: procedures>>=
elemental subroutine splitting_set_t_bounds (d, x, xb)
class(splitting_data_t), intent(inout) :: d
real(default), intent(in), optional :: x, xb
real(default) :: tp, tm
if (present (x)) d%x = x
if (present (xb)) d%xb = xb
if (vanishes (d%u)) then
d%pb = d%E
else
if (.not. vanishes (d%xb)) then
d%pb = sqrt (max (d%E**2 - d%u / d%xb**2, 0._default))
else
d%pb = 0
end if
end if
tp = -2 * d%xb * d%E**2 + d%s + d%u
tm = -2 * d%xb * d%p * d%pb
d%t0 = tp + tm
d%t1 = tp - tm
d%t = d%t1
end subroutine splitting_set_t_bounds
@ %def splitting_set_t_bounds
@
\subsection{Sampling recoil}
Compute a value for the momentum transfer $t$, using a random number
$r$. We assume a logarithmic distribution for $t-m^2$, corresponding
to the propagator $1/(t-m^2)$ with the physical mass $m$ for the
outgoing particle. Optionally, we can narrow the kinematical bounds.
If all three masses in the splitting vanish, the upper limit for $t$
is zero. In that case, the $t$ value is set to zero and the splitting
will be collinear.
<<SF aux: splitting data: TBP>>=
procedure :: sample_t => splitting_sample_t
<<SF aux: procedures>>=
subroutine splitting_sample_t (d, r, t0, t1)
class(splitting_data_t), intent(inout) :: d
real(default), intent(in) :: r
real(default), intent(in), optional :: t0, t1
real(default) :: tt0, tt1, tt0m, tt1m
if (d%collinear) then
d%t = d%t1
else
tt0 = d%t0; if (present (t0)) tt0 = max (t0, tt0)
tt1 = d%t1; if (present (t1)) tt1 = min (t1, tt1)
tt0m = tt0 - d%m2
tt1m = tt1 - d%m2
if (tt0m < 0 .and. tt1m < 0 .and. abs(tt0m) > &
epsilon(tt0m) .and. abs(tt1m) > epsilon(tt0m)) then
d%t = d%m2 + tt0m * exp (r * log (tt1m / tt0m))
else
d%t = tt1
end if
end if
end subroutine splitting_sample_t
@ %def splitting_sample_t
@ The inverse operation: Given $t$, we recover the value of $r$ that
would have produced this value.
<<SF aux: splitting data: TBP>>=
procedure :: inverse_t => splitting_inverse_t
<<SF aux: procedures>>=
subroutine splitting_inverse_t (d, r, t0, t1)
class(splitting_data_t), intent(in) :: d
real(default), intent(out) :: r
real(default), intent(in), optional :: t0, t1
real(default) :: tt0, tt1, tt0m, tt1m
if (d%collinear) then
r = 0
else
tt0 = d%t0; if (present (t0)) tt0 = max (t0, tt0)
tt1 = d%t1; if (present (t1)) tt1 = min (t1, tt1)
tt0m = tt0 - d%m2
tt1m = tt1 - d%m2
if (tt0m < 0 .and. tt1m < 0) then
r = log ((d%t - d%m2) / tt0m) / log (tt1m / tt0m)
else
r = 0
end if
end if
end subroutine splitting_inverse_t
@ %def splitting_inverse_t
@ This is trivial, but provided for convenience:
<<SF aux: splitting data: TBP>>=
procedure :: sample_phi => splitting_sample_phi
<<SF aux: procedures>>=
subroutine splitting_sample_phi (d, r)
class(splitting_data_t), intent(inout) :: d
real(default), intent(in) :: r
if (d%collinear) then
d%phi = 0
else
d%phi = (1-r) * d%phi0 + r * d%phi1
end if
end subroutine splitting_sample_phi
@ %def splitting_sample_phi
@ Inverse:
<<SF aux: splitting data: TBP>>=
procedure :: inverse_phi => splitting_inverse_phi
<<SF aux: procedures>>=
subroutine splitting_inverse_phi (d, r)
class(splitting_data_t), intent(in) :: d
real(default), intent(out) :: r
if (d%collinear) then
r = 0
else
r = (d%phi - d%phi0) / (d%phi1 - d%phi0)
end if
end subroutine splitting_inverse_phi
@ %def splitting_inverse_phi
@
\subsection{Splitting}
In this function, we actually perform the splitting. The incoming momentum
$k$ is split into (if no recoil) $q_1=(1-x)k$ and $q_2=xk$.
Apart from the splitting data, we need the incoming momentum $k$, the momentum
transfer $t$, and the azimuthal angle $\phi$. The momentum fraction $x$ is
already known here.
Alternatively, we can split without recoil. The azimuthal angle is
irrelevant, and the momentum transfer is always equal to the upper
limit $t_1$, so the polar angle is zero. Obviously, if there are
nonzero masses it is not possible to keep both energy-momentum
conservation and at the same time all particles on shell. We choose
for dropping the on-shell condition here.
<<SF aux: splitting data: TBP>>=
procedure :: split_momentum => splitting_split_momentum
<<SF aux: procedures>>=
function splitting_split_momentum (d, k) result (q)
class(splitting_data_t), intent(in) :: d
type(vector4_t), dimension(2) :: q
type(vector4_t), intent(in) :: k
real(default) :: st2, ct2, st, ct, cp, sp
type(lorentz_transformation_t) :: rot
real(default) :: tt0, tt1, den
type(vector3_t) :: kk, q1, q2
if (d%collinear) then
if (vanishes (d%s) .and. vanishes(d%u)) then
q(1) = d%xb * k
q(2) = d%x * k
else
kk = space_part (k)
q1 = d%xb * (d%pb / d%p) * kk
q2 = kk - q1
q(1) = vector4_moving (d%xb * d%E, q1)
q(2) = vector4_moving (d%x * d%E, q2)
end if
else
den = 2 * d%xb * d%p * d%pb
tt0 = max (d%t - d%t0, 0._default)
tt1 = min (d%t - d%t1, 0._default)
if (den**2 <= epsilon(den)) then
st2 = 0
else
st2 = - (tt0 * tt1) / den ** 2
end if
if (st2 > 1) then
st2 = 1
end if
ct2 = 1 - st2
st = sqrt (max (st2, 0._default))
ct = sqrt (max (ct2, 0._default))
if ((d%t - d%t0 + d%t - d%t1) < 0) then
ct = - ct
end if
sp = sin (d%phi)
cp = cos (d%phi)
rot = rotation_to_2nd (3, space_part (k))
q1 = vector3_moving (d%xb * d%pb * [st * cp, st * sp, ct])
q2 = vector3_moving (d%p, 3) - q1
q(1) = rot * vector4_moving (d%xb * d%E, q1)
q(2) = rot * vector4_moving (d%x * d%E, q2)
end if
end function splitting_split_momentum
@ %def splitting_split_momentum
@
Momenta generated by splitting will in general be off-shell. They are
on-shell only if they are collinear and massless. This subroutine
puts them on shell by brute force, violating either momentum or energy
conservation. The direction of three-momentum is always retained.
If the energy is below mass shell, we return a zero momentum.
<<SF aux: parameters>>=
integer, parameter, public :: KEEP_ENERGY = 0, KEEP_MOMENTUM = 1
@ %def KEEP_ENERGY KEEP_MOMENTUM
<<SF aux: public>>=
public :: on_shell
<<SF aux: procedures>>=
elemental subroutine on_shell (p, m2, keep)
type(vector4_t), intent(inout) :: p
real(default), intent(in) :: m2
integer, intent(in) :: keep
real(default) :: E, E2, pn
select case (keep)
case (KEEP_ENERGY)
E = energy (p)
E2 = E ** 2
if (E2 >= m2) then
pn = sqrt (E2 - m2)
p = vector4_moving (E, pn * direction (space_part (p)))
else
p = vector4_null
end if
case (KEEP_MOMENTUM)
E = sqrt (space_part (p) ** 2 + m2)
p = vector4_moving (E, space_part (p))
end select
end subroutine on_shell
@ %def on_shell
@
\subsection{Recovering the splitting}
This is the inverse problem. We have on-shell momenta and want to
deduce the splitting parameters $x$, $t$, and $\phi$.
Update 2018-08-22: As a true inverse to [[splitting_split_momentum]], we now use
not just a single momentum [[q2]] as before, but the momentum pair [[q1]], [[q2]]
for recovering $x$ and $\bar x$ separately. If $x$ happens to be
close to $1$, we would completely lose the tiny $\bar x$ value,
otherwise, and thus get a meaningless result.
<<SF aux: splitting data: TBP>>=
procedure :: recover => splitting_recover
<<SF aux: procedures>>=
subroutine splitting_recover (d, k, q, keep)
class(splitting_data_t), intent(inout) :: d
type(vector4_t), intent(in) :: k
type(vector4_t), dimension(2), intent(in) :: q
integer, intent(in) :: keep
type(lorentz_transformation_t) :: rot
type(vector4_t) :: k0
type(vector4_t), dimension(2) :: q0
real(default) :: p1, p2, p3, pt2, pp2, pl
real(default) :: aux, den, norm
real(default) :: st2, ct2, ct
rot = inverse (rotation_to_2nd (3, space_part (k)))
q0 = rot * q
p1 = vector4_get_component (q0(2), 1)
p2 = vector4_get_component (q0(2), 2)
p3 = vector4_get_component (q0(2), 3)
pt2 = p1 ** 2 + p2 ** 2
pp2 = p1 ** 2 + p2 ** 2 + p3 ** 2
pl = abs (p3)
k0 = vector4_moving (d%E, d%p, 3)
select case (keep)
case (KEEP_ENERGY)
d%x = energy (q0(2)) / d%E
d%xb = energy (q0(1)) / d%E
call d%set_t_bounds ()
if (.not. d%collinear) then
aux = (d%xb * d%pb) ** 2 * pp2 - d%p ** 2 * pt2
den = d%p ** 2 - (d%xb * d%pb) ** 2
if (aux >= 0 .and. den > 0) then
norm = (d%p * pl + sqrt (aux)) / den
else
norm = 1
end if
end if
case (KEEP_MOMENTUM)
d%xb = sqrt (space_part (q0(1)) ** 2 + d%u) / d%E
d%x = 1 - d%xb
call d%set_t_bounds ()
norm = 1
end select
if (d%collinear) then
d%t = d%t1
d%phi = 0
else
if ((d%xb * d%pb * norm)**2 < epsilon(d%xb)) then
st2 = 1
else
st2 = pt2 / (d%xb * d%pb * norm ) ** 2
end if
if (st2 > 1) then
st2 = 1
end if
ct2 = 1 - st2
ct = sqrt (max (ct2, 0._default))
if (.not. vanishes (1 + ct)) then
d%t = d%t1 - 2 * d%xb * d%p * d%pb * st2 / (1 + ct)
else
d%t = d%t0
end if
if (.not. vanishes (p1) .or. .not. vanishes (p2)) then
d%phi = atan2 (-p2, -p1)
else
d%phi = 0
end if
end if
end subroutine splitting_recover
@ %def splitting_recover
@
\subsection{Extract data}
<<SF aux: splitting data: TBP>>=
procedure :: get_x => splitting_get_x
procedure :: get_xb => splitting_get_xb
<<SF aux: procedures>>=
function splitting_get_x (sd) result (x)
class(splitting_data_t), intent(in) :: sd
real(default) :: x
x = sd%x
end function splitting_get_x
function splitting_get_xb (sd) result (xb)
class(splitting_data_t), intent(in) :: sd
real(default) :: xb
xb = sd%xb
end function splitting_get_xb
@ %def splitting_get_x
@ %def splitting_get_xb
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_aux_ut.f90]]>>=
<<File header>>
module sf_aux_ut
use unit_tests
use sf_aux_uti
<<Standard module head>>
<<SF aux: public test>>
contains
<<SF aux: test driver>>
end module sf_aux_ut
@ %def sf_aux_ut
@
<<[[sf_aux_uti.f90]]>>=
<<File header>>
module sf_aux_uti
<<Use kinds>>
use lorentz
use sf_aux
<<Standard module head>>
<<SF aux: test declarations>>
contains
<<SF aux: tests>>
end module sf_aux_uti
@ %def sf_aux_ut
@ API: driver for the unit tests below.
<<SF aux: public test>>=
public :: sf_aux_test
<<SF aux: test driver>>=
subroutine sf_aux_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF aux: execute tests>>
end subroutine sf_aux_test
@ %def sf_aux_test
@
\subsubsection{Momentum splitting: massless radiation}
Compute momentum splitting for generic kinematics. It turns out that
for $x=0.5$, where $t-m^2$ is the geometric mean between its upper and
lower bounds (this can be directly seen from the logarithmic
distribution in the function [[sample_t]] for $r \equiv x = 1 - x =
0.5$), we arrive at an exact number $t=-0.15$ for the given
input values.
<<SF aux: execute tests>>=
call test (sf_aux_1, "sf_aux_1", &
"massless radiation", &
u, results)
<<SF aux: test declarations>>=
public :: sf_aux_1
<<SF aux: tests>>=
subroutine sf_aux_1 (u)
integer, intent(in) :: u
type(splitting_data_t) :: sd
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q, q0
real(default) :: E, mk, mp, mq
real(default) :: x, r1, r2, r1o, r2o
real(default) :: k2, q0_2, q1_2, q2_2
write (u, "(A)") "* Test output: sf_aux_1"
write (u, "(A)") "* Purpose: compute momentum splitting"
write (u, "(A)") " (massless radiated particle)"
write (u, "(A)")
E = 1
mk = 0.3_default
mp = 0
mq = mk
k = vector4_moving (E, sqrt (E**2 - mk**2), 3)
k2 = k ** 2; call pacify (k2, 1e-10_default)
x = 0.6_default
r1 = 0.5_default
r2 = 0.125_default
write (u, "(A)") "* (1) Non-collinear setup"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%sample_t (r1)
call sd%sample_phi (r2)
call sd%write (u)
q = sd%split_momentum (k)
q1_2 = q(1) ** 2; call pacify (q1_2, 1e-10_default)
q2_2 = q(2) ** 2; call pacify (q2_2, 1e-10_default)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: s"
write (u, "(2(1x,F11.8))") sd%s, k2
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") sd%t, q2_2
write (u, "(A)") "Compare: u"
write (u, "(2(1x,F11.8))") sd%u, q1_2
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") sd%x, energy (q(2)) / energy (k)
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") sd%xb, energy (q(1)) / energy (k)
write (u, "(A)")
write (u, "(A)") "Extract: x, 1-x"
write (u, "(2(1x,F11.8))") sd%get_x (), sd%get_xb ()
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep energy)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_ENERGY)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q0_2 = q0(2) ** 2; call pacify (q0_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q0_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%recover (k, q0, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
call sd%inverse_t (r1o)
write (u, "(A)") "Compare: r1"
write (u, "(2(1x,F11.8))") r1, r1o
call sd%inverse_phi (r2o)
write (u, "(A)") "Compare: r2"
write (u, "(2(1x,F11.8))") r2, r2o
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep momentum)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_MOMENTUM)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q0_2 = q0(2) ** 2; call pacify (q0_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q0_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%recover (k, q0, KEEP_MOMENTUM)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
call sd%inverse_t (r1o)
write (u, "(A)") "Compare: r1"
write (u, "(2(1x,F11.8))") r1, r1o
call sd%inverse_phi (r2o)
write (u, "(A)") "Compare: r2"
write (u, "(2(1x,F11.8))") r2, r2o
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* (2) Collinear setup"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, 1 - x)
call sd%write (u)
q = sd%split_momentum (k)
q1_2 = q(1) ** 2; call pacify (q1_2, 1e-10_default)
q2_2 = q(2) ** 2; call pacify (q2_2, 1e-10_default)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: s"
write (u, "(2(1x,F11.8))") sd%s, k2
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") sd%t, q2_2
write (u, "(A)") "Compare: u"
write (u, "(2(1x,F11.8))") sd%u, q1_2
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") sd%x, energy (q(2)) / energy (k)
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") sd%xb, energy (q(1)) / energy (k)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep energy)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_ENERGY)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q0_2 = q0(2) ** 2; call pacify (q0_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q0_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%recover (k, q0, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep momentum)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_MOMENTUM)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q0_2 = q0(2) ** 2; call pacify (q0_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q0_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%recover (k, q0, KEEP_MOMENTUM)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_aux_1"
end subroutine sf_aux_1
@ %def sf_aux_1
@
\subsubsection{Momentum splitting: massless parton}
Compute momentum splitting for generic kinematics. It turns out that
for $x=0.5$, where $t-m^2$ is the geometric mean between its upper and
lower bounds, we arrive at an exact number $t=-0.36$ for the given
input values.
<<SF aux: execute tests>>=
call test (sf_aux_2, "sf_aux_2", &
"massless parton", &
u, results)
<<SF aux: test declarations>>=
public :: sf_aux_2
<<SF aux: tests>>=
subroutine sf_aux_2 (u)
integer, intent(in) :: u
type(splitting_data_t) :: sd
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q, q0
real(default) :: E, mk, mp, mq
real(default) :: x, r1, r2, r1o, r2o
real(default) :: k2, q02_2, q1_2, q2_2
write (u, "(A)") "* Test output: sf_aux_2"
write (u, "(A)") "* Purpose: compute momentum splitting"
write (u, "(A)") " (massless outgoing particle)"
write (u, "(A)")
E = 1
mk = 0.3_default
mp = mk
mq = 0
k = vector4_moving (E, sqrt (E**2 - mk**2), 3)
k2 = k ** 2; call pacify (k2, 1e-10_default)
x = 0.6_default
r1 = 0.5_default
r2 = 0.125_default
write (u, "(A)") "* (1) Non-collinear setup"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%sample_t (r1)
call sd%sample_phi (r2)
call sd%write (u)
q = sd%split_momentum (k)
q1_2 = q(1) ** 2; call pacify (q1_2, 1e-10_default)
q2_2 = q(2) ** 2; call pacify (q2_2, 1e-10_default)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: s"
write (u, "(2(1x,F11.8))") sd%s, k2
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") sd%t, q2_2
write (u, "(A)") "Compare: u"
write (u, "(2(1x,F11.8))") sd%u, q1_2
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") sd%x, energy (q(2)) / energy (k)
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") sd%xb, energy (q(1)) / energy (k)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep energy)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_ENERGY)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
call sd%inverse_t (r1o)
write (u, "(A)") "Compare: r1"
write (u, "(2(1x,F11.8))") r1, r1o
call sd%inverse_phi (r2o)
write (u, "(A)") "Compare: r2"
write (u, "(2(1x,F11.8))") r2, r2o
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep momentum)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_MOMENTUM)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_MOMENTUM)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
call sd%inverse_t (r1o)
write (u, "(A)") "Compare: r1"
write (u, "(2(1x,F11.8))") r1, r1o
call sd%inverse_phi (r2o)
write (u, "(A)") "Compare: r2"
write (u, "(2(1x,F11.8))") r2, r2o
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* (2) Collinear setup"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, 1 - x)
call sd%write (u)
q = sd%split_momentum (k)
q1_2 = q(1) ** 2; call pacify (q1_2, 1e-10_default)
q2_2 = q(2) ** 2; call pacify (q2_2, 1e-10_default)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: s"
write (u, "(2(1x,F11.8))") sd%s, k2
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") sd%t, q2_2
write (u, "(A)") "Compare: u"
write (u, "(2(1x,F11.8))") sd%u, q1_2
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") sd%x, energy (q(2)) / energy (k)
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") sd%xb, energy (q(1)) / energy (k)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep energy)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_ENERGY)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep momentum)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_MOMENTUM)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_MOMENTUM)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_aux_2"
end subroutine sf_aux_2
@ %def sf_aux_2
@
\subsubsection{Momentum splitting: all massless}
Compute momentum splitting for massless kinematics. In the non-collinear
case, we need a lower cutoff for $|t|$, otherwise a logarithmic distribution
is not possible.
<<SF aux: execute tests>>=
call test (sf_aux_3, "sf_aux_3", &
"massless parton", &
u, results)
<<SF aux: test declarations>>=
public :: sf_aux_3
<<SF aux: tests>>=
subroutine sf_aux_3 (u)
integer, intent(in) :: u
type(splitting_data_t) :: sd
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q, q0
real(default) :: E, mk, mp, mq, qmin, qmax
real(default) :: x, r1, r2, r1o, r2o
real(default) :: k2, q02_2, q1_2, q2_2
write (u, "(A)") "* Test output: sf_aux_3"
write (u, "(A)") "* Purpose: compute momentum splitting"
write (u, "(A)") " (all massless, q cuts)"
write (u, "(A)")
E = 1
mk = 0
mp = 0
mq = 0
qmin = 1e-2_default
qmax = 1e0_default
k = vector4_moving (E, sqrt (E**2 - mk**2), 3)
k2 = k ** 2; call pacify (k2, 1e-10_default)
x = 0.6_default
r1 = 0.5_default
r2 = 0.125_default
write (u, "(A)") "* (1) Non-collinear setup"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%sample_t (r1, t1 = - qmin ** 2, t0 = - qmax **2)
call sd%sample_phi (r2)
call sd%write (u)
q = sd%split_momentum (k)
q1_2 = q(1) ** 2; call pacify (q1_2, 1e-10_default)
q2_2 = q(2) ** 2; call pacify (q2_2, 1e-10_default)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: s"
write (u, "(2(1x,F11.8))") sd%s, k2
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") sd%t, q2_2
write (u, "(A)") "Compare: u"
write (u, "(2(1x,F11.8))") sd%u, q1_2
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") sd%x, energy (q(2)) / energy (k)
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") sd%xb, energy (q(1)) / energy (k)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep energy)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_ENERGY)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
call sd%inverse_t (r1o, t1 = - qmin ** 2, t0 = - qmax **2)
write (u, "(A)") "Compare: r1"
write (u, "(2(1x,F11.8))") r1, r1o
call sd%inverse_phi (r2o)
write (u, "(A)") "Compare: r2"
write (u, "(2(1x,F11.8))") r2, r2o
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep momentum)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_MOMENTUM)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_MOMENTUM)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
call sd%inverse_t (r1o, t1 = - qmin ** 2, t0 = - qmax **2)
write (u, "(A)") "Compare: r1"
write (u, "(2(1x,F11.8))") r1, r1o
call sd%inverse_phi (r2o)
write (u, "(A)") "Compare: r2"
write (u, "(2(1x,F11.8))") r2, r2o
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* (2) Collinear setup"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, 1 - x)
call sd%write (u)
q = sd%split_momentum (k)
q1_2 = q(1) ** 2; call pacify (q1_2, 1e-10_default)
q2_2 = q(2) ** 2; call pacify (q2_2, 1e-10_default)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: s"
write (u, "(2(1x,F11.8))") sd%s, k2
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") sd%t, q2_2
write (u, "(A)") "Compare: u"
write (u, "(2(1x,F11.8))") sd%u, q1_2
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") sd%x, energy (q(2)) / energy (k)
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") sd%xb, energy (q(1)) / energy (k)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep energy)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_ENERGY)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Project on-shell (keep momentum)"
q0 = q
call on_shell (q0, [mp**2, mq**2], KEEP_MOMENTUM)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q0), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q0(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q0(2), u)
write (u, "(A)")
write (u, "(A)") "Compare: mo^2"
q02_2 = q0(2) ** 2; call pacify (q02_2, 1e-10_default)
write (u, "(2(1x,F11.8))") sd%m2, q02_2
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momentum"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2)
call sd%set_t_bounds (x, 1 - x)
call sd%recover (k, q0, KEEP_MOMENTUM)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: t"
write (u, "(2(1x,F11.8))") q2_2, sd%t
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_aux_3"
end subroutine sf_aux_3
@ %def sf_aux_3
@
\subsubsection{Endpoint stability}
Compute momentum splitting for collinear kinematics close to both
endpoints. In particular, check both directions $x\to$ momenta and
momenta $\to x$.
For purely massless collinear splitting, the [[KEEP_XXX]] flag is
irrelevant. We choose [[KEEP_ENERGY]] here.
<<SF aux: execute tests>>=
call test (sf_aux_4, "sf_aux_4", &
"endpoint numerics", &
u, results)
<<SF aux: test declarations>>=
public :: sf_aux_4
<<SF aux: tests>>=
subroutine sf_aux_4 (u)
integer, intent(in) :: u
type(splitting_data_t) :: sd
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E, mk, mp, mq, qmin, qmax
real(default) :: x, xb
write (u, "(A)") "* Test output: sf_aux_4"
write (u, "(A)") "* Purpose: compute massless collinear splitting near endpoint"
E = 1
mk = 0
mp = 0
mq = 0
qmin = 1e-2_default
qmax = 1e0_default
k = vector4_moving (E, sqrt (E**2 - mk**2), 3)
x = 0.1_default
xb = 1 - x
write (u, "(A)")
write (u, "(A)") "* (1) Collinear setup, moderate kinematics"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, xb)
call sd%write (u)
q = sd%split_momentum (k)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momenta"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, xb)
call sd%recover (k, q, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") xb, sd%xb
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* (2) Close to x=0"
write (u, "(A)")
x = 1e-9_default
xb = 1 - x
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, xb)
call sd%write (u)
q = sd%split_momentum (k)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momenta"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, xb)
call sd%recover (k, q, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") xb, sd%xb
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* (3) Close to x=1"
write (u, "(A)")
xb = 1e-9_default
x = 1 - xb
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, xb)
call sd%write (u)
q = sd%split_momentum (k)
write (u, "(A)")
write (u, "(A)") "Incoming momentum k ="
call vector4_write (k, u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum sum p + q ="
call vector4_write (sum (q), u)
write (u, "(A)")
write (u, "(A)") "Radiated momentum p ="
call vector4_write (q(1), u)
write (u, "(A)")
write (u, "(A)") "Outgoing momentum q ="
call vector4_write (q(2), u)
write (u, "(A)")
write (u, "(A)") "* Recover parameters from outgoing momenta"
write (u, "(A)")
call sd%init (k, mk**2, mp**2, mq**2, collinear = .true.)
call sd%set_t_bounds (x, xb)
call sd%recover (k, q, KEEP_ENERGY)
write (u, "(A)") "Compare: x"
write (u, "(2(1x,F11.8))") x, sd%x
write (u, "(A)") "Compare: 1-x"
write (u, "(2(1x,F11.8))") xb, sd%xb
write (u, "(A)")
call sd%write (u)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_aux_4"
end subroutine sf_aux_4
@ %def sf_aux_4
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Mappings for structure functions}
In this module, we provide a wrapper for useful mappings of the unit
(hyper-)square that we can apply to a set of structure functions.
In some cases it is useful, or even mandatory, to map the MC input
parameters nontrivially onto a set of structure functions for the two
beams. In all cases considered here, instead of $x_1,x_2,\ldots$ as
parameters for the beams, we generate one parameter that is equal, or
related to, the product $x_1x_2\cdots$ (so it directly corresponds to
$\sqrt{s}$). The other parameters describe the distribution of energy
(loss) between beams and radiations.
<<[[sf_mappings.f90]]>>=
<<File header>>
module sf_mappings
<<Use kinds>>
use kinds, only: double
use io_units
use constants, only: pi, zero, one
use numeric_utils
use diagnostics
<<Standard module head>>
<<SF mappings: public>>
<<SF mappings: parameters>>
<<SF mappings: types>>
<<SF mappings: interfaces>>
contains
<<SF mappings: procedures>>
end module sf_mappings
@ %def sf_mappings
@
\subsection{Base type}
First, we define an abstract base type for the mapping. In all cases
we need to store the indices of the parameters on which the mapping
applies. Additional parameters can be stored in the extensions of
this type.
<<SF mappings: public>>=
public :: sf_mapping_t
<<SF mappings: types>>=
type, abstract :: sf_mapping_t
integer, dimension(:), allocatable :: i
contains
<<SF mappings: sf mapping: TBP>>
end type sf_mapping_t
@ %def sf_mapping_t
@ The output routine is deferred:
<<SF mappings: sf mapping: TBP>>=
procedure (sf_mapping_write), deferred :: write
<<SF mappings: interfaces>>=
abstract interface
subroutine sf_mapping_write (object, unit)
import
class(sf_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
end subroutine sf_mapping_write
end interface
@ %def sf_mapping_write
@ Initializer for the base type. The array of parameter indices is
allocated but initialized to zero.
<<SF mappings: sf mapping: TBP>>=
procedure :: base_init => sf_mapping_base_init
<<SF mappings: procedures>>=
subroutine sf_mapping_base_init (mapping, n_par)
class(sf_mapping_t), intent(out) :: mapping
integer, intent(in) :: n_par
allocate (mapping%i (n_par))
mapping%i = 0
end subroutine sf_mapping_base_init
@ %def sf_mapping_base_init
@ Set an index value.
<<SF mappings: sf mapping: TBP>>=
procedure :: set_index => sf_mapping_set_index
<<SF mappings: procedures>>=
subroutine sf_mapping_set_index (mapping, j, i)
class(sf_mapping_t), intent(inout) :: mapping
integer, intent(in) :: j, i
mapping%i(j) = i
end subroutine sf_mapping_set_index
@ %def sf_mapping_set_index
@ Retrieve an index value.
<<SF mappings: sf mapping: TBP>>=
procedure :: get_index => sf_mapping_get_index
<<SF mappings: procedures>>=
function sf_mapping_get_index (mapping, j) result (i)
class(sf_mapping_t), intent(inout) :: mapping
integer, intent(in) :: j
integer :: i
i = mapping%i(j)
end function sf_mapping_get_index
@ %def sf_mapping_get_index
@ Return the dimensionality, i.e., the number of parameters.
<<SF mappings: sf mapping: TBP>>=
procedure :: get_n_dim => sf_mapping_get_n_dim
<<SF mappings: procedures>>=
function sf_mapping_get_n_dim (mapping) result (n)
class(sf_mapping_t), intent(in) :: mapping
integer :: n
n = size (mapping%i)
end function sf_mapping_get_n_dim
@ %def sf_mapping_get_n_dim
@ Computation: the values [[p]] are the input parameters, the values
[[r]] are the output parameters. The values [[rb]] are defined as
$\bar r = 1 - r$, but provided explicitly. They allow us to avoid
numerical problems near $r=1$.
The extra parameter [[x_free]]
indicates that the total energy has already been renormalized by this
factor. We have to take such a factor into account in a resonance or
on-shell mapping.
The Jacobian is [[f]]. We modify only
the two parameters indicated by the indices [[i]].
<<SF mappings: sf mapping: TBP>>=
procedure (sf_mapping_compute), deferred :: compute
<<SF mappings: interfaces>>=
abstract interface
subroutine sf_mapping_compute (mapping, r, rb, f, p, pb, x_free)
import
class(sf_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
end subroutine sf_mapping_compute
end interface
@ %def sf_mapping_compute
@ The inverse mapping. Use [[r]] and/or [[rb]] to reconstruct [[p]]
and also compute [[f]].
<<SF mappings: sf mapping: TBP>>=
procedure (sf_mapping_inverse), deferred :: inverse
<<SF mappings: interfaces>>=
abstract interface
subroutine sf_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
import
class(sf_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
end subroutine sf_mapping_inverse
end interface
@ %def sf_mapping_inverse
@
\subsection{Methods for self-tests}
This is a shorthand for: inject parameters, compute the mapping,
display results, compute the inverse, display again. We provide an
output format for the parameters and, optionally, a different output
format for the Jacobians.
<<SF mappings: sf mapping: TBP>>=
procedure :: check => sf_mapping_check
<<SF mappings: procedures>>=
subroutine sf_mapping_check (mapping, u, p_in, pb_in, fmt_p, fmt_f)
class(sf_mapping_t), intent(inout) :: mapping
integer, intent(in) :: u
real(default), dimension(:), intent(in) :: p_in, pb_in
character(*), intent(in) :: fmt_p
character(*), intent(in), optional :: fmt_f
real(default), dimension(size(p_in)) :: p, pb, r, rb
real(default) :: f, tolerance
tolerance = 1.5E-17
p = p_in
pb= pb_in
call mapping%compute (r, rb, f, p, pb)
call pacify (p, tolerance)
call pacify (pb, tolerance)
call pacify (r, tolerance)
call pacify (rb, tolerance)
write (u, "(3x,A,9(1x," // fmt_p // "))") "p =", p
write (u, "(3x,A,9(1x," // fmt_p // "))") "pb=", pb
write (u, "(3x,A,9(1x," // fmt_p // "))") "r =", r
write (u, "(3x,A,9(1x," // fmt_p // "))") "rb=", rb
if (present (fmt_f)) then
write (u, "(3x,A,9(1x," // fmt_f // "))") "f =", f
else
write (u, "(3x,A,9(1x," // fmt_p // "))") "f =", f
end if
write (u, *)
call mapping%inverse (r, rb, f, p, pb)
call pacify (p, tolerance)
call pacify (pb, tolerance)
call pacify (r, tolerance)
call pacify (rb, tolerance)
write (u, "(3x,A,9(1x," // fmt_p // "))") "p =", p
write (u, "(3x,A,9(1x," // fmt_p // "))") "pb=", pb
write (u, "(3x,A,9(1x," // fmt_p // "))") "r =", r
write (u, "(3x,A,9(1x," // fmt_p // "))") "rb=", rb
if (present (fmt_f)) then
write (u, "(3x,A,9(1x," // fmt_f // "))") "f =", f
else
write (u, "(3x,A,9(1x," // fmt_p // "))") "f =", f
end if
write (u, *)
write (u, "(3x,A,9(1x," // fmt_p // "))") "*r=", product (r)
end subroutine sf_mapping_check
@ %def sf_mapping_check
@ This is a consistency check for the self-tests: the integral over the unit
square should be unity. We estimate this by a simple binning and adding up
the values; this should be sufficient for a self-test.
The argument is the requested number of sampling points. We take the square
root for binning in both dimensions, so the precise number might be
different.
<<SF mappings: sf mapping: TBP>>=
procedure :: integral => sf_mapping_integral
<<SF mappings: procedures>>=
function sf_mapping_integral (mapping, n_calls) result (integral)
class(sf_mapping_t), intent(inout) :: mapping
integer, intent(in) :: n_calls
real(default) :: integral
integer :: n_dim, n_bin, k
real(default), dimension(:), allocatable :: p, pb, r, rb
integer, dimension(:), allocatable :: ii
real(default) :: dx, f, s
n_dim = mapping%get_n_dim ()
allocate (p (n_dim))
allocate (pb(n_dim))
allocate (r (n_dim))
allocate (rb(n_dim))
allocate (ii(n_dim))
n_bin = nint (real (n_calls, default) ** (1._default / n_dim))
dx = 1._default / n_bin
s = 0
ii = 1
SAMPLE: do
do k = 1, n_dim
p(k) = ii(k) * dx - dx/2
pb(k) = (n_bin - ii(k)) * dx + dx/2
end do
call mapping%compute (r, rb, f, p, pb)
s = s + f
INCR: do k = 1, n_dim
ii(k) = ii(k) + 1
if (ii(k) <= n_bin) then
exit INCR
else if (k < n_dim) then
ii(k) = 1
else
exit SAMPLE
end if
end do INCR
end do SAMPLE
integral = s / real (n_bin, default) ** n_dim
end function sf_mapping_integral
@ %def sf_mapping_integral
@
\subsection{Implementation: standard mapping}
This maps the unit square ($r_1,r_2$) such that $p_1$ is the product $r_1r_2$,
while $p_2$ is related to the ratio.
<<SF mappings: public>>=
public :: sf_s_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_s_mapping_t
logical :: power_set = .false.
real(default) :: power = 1
contains
<<SF mappings: sf standard mapping: TBP>>
end type sf_s_mapping_t
@ %def sf_s_mapping_t
@ Output.
<<SF mappings: sf standard mapping: TBP>>=
procedure :: write => sf_s_mapping_write
<<SF mappings: procedures>>=
subroutine sf_s_mapping_write (object, unit)
class(sf_s_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,A)") ": standard (", object%power, ")"
end subroutine sf_s_mapping_write
@ %def sf_s_mapping_write
@ Initialize: index pair and power parameter.
<<SF mappings: sf standard mapping: TBP>>=
procedure :: init => sf_s_mapping_init
<<SF mappings: procedures>>=
subroutine sf_s_mapping_init (mapping, power)
class(sf_s_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: power
call mapping%base_init (2)
if (present (power)) then
mapping%power_set = .true.
mapping%power = power
end if
end subroutine sf_s_mapping_init
@ %def sf_s_mapping_init
@ Apply mapping.
<<SF mappings: sf standard mapping: TBP>>=
procedure :: compute => sf_s_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_s_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_s_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2
integer :: j
if (mapping%power_set) then
call map_unit_square (r2, f, p(mapping%i), mapping%power)
else
call map_unit_square (r2, f, p(mapping%i))
end if
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2(j)
rb(mapping%i(j)) = 1 - r2(j)
end do
end subroutine sf_s_mapping_compute
@ %def sf_s_mapping_compute
@ Apply inverse.
<<SF mappings: sf standard mapping: TBP>>=
procedure :: inverse => sf_s_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_s_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_s_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: p2
integer :: j
if (mapping%power_set) then
call map_unit_square_inverse (r(mapping%i), f, p2, mapping%power)
else
call map_unit_square_inverse (r(mapping%i), f, p2)
end if
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = 1 - p2(j)
end do
end subroutine sf_s_mapping_inverse
@ %def sf_s_mapping_inverse
@
\subsection{Implementation: resonance pair mapping}
This maps the unit square ($r_1,r_2$) such that $p_1$ is the product $r_1r_2$,
while $p_2$ is related to the ratio, then it maps $p_1$ to itself
according to a Breit-Wigner shape, i.e., a flat prior distribution in $p_1$
results in a Breit-Wigner distribution. Mass and width of the BW are
rescaled by the energy, thus dimensionless fractions.
<<SF mappings: public>>=
public :: sf_res_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_res_mapping_t
real(default) :: m = 0
real(default) :: w = 0
contains
<<SF mappings: sf resonance mapping: TBP>>
end type sf_res_mapping_t
@ %def sf_res_mapping_t
@ Output.
<<SF mappings: sf resonance mapping: TBP>>=
procedure :: write => sf_res_mapping_write
<<SF mappings: procedures>>=
subroutine sf_res_mapping_write (object, unit)
class(sf_res_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,', ',F7.5,A)") ": resonance (", object%m, object%w, ")"
end subroutine sf_res_mapping_write
@ %def sf_res_mapping_write
@ Initialize: index pair and dimensionless mass and width parameters.
<<SF mappings: sf resonance mapping: TBP>>=
procedure :: init => sf_res_mapping_init
<<SF mappings: procedures>>=
subroutine sf_res_mapping_init (mapping, m, w)
class(sf_res_mapping_t), intent(out) :: mapping
real(default), intent(in) :: m, w
call mapping%base_init (2)
mapping%m = m
mapping%w = w
end subroutine sf_res_mapping_init
@ %def sf_res_mapping_init
@ Apply mapping.
<<SF mappings: sf resonance mapping: TBP>>=
procedure :: compute => sf_res_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_res_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_res_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2, p2
real(default) :: fbw, f2, p1m
integer :: j
p2 = p(mapping%i)
call map_breit_wigner &
(p1m, fbw, p2(1), mapping%m, mapping%w, x_free)
call map_unit_square (r2, f2, [p1m, p2(2)])
f = fbw * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2(j)
rb(mapping%i(j)) = 1 - r2(j)
end do
end subroutine sf_res_mapping_compute
@ %def sf_res_mapping_compute
@ Apply inverse.
<<SF mappings: sf resonance mapping: TBP>>=
procedure :: inverse => sf_res_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_res_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_res_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: p2
real(default) :: fbw, f2, p1m
call map_unit_square_inverse (r(mapping%i), f2, p2)
call map_breit_wigner_inverse &
(p2(1), fbw, p1m, mapping%m, mapping%w, x_free)
p = r
pb= rb
p (mapping%i(1)) = p1m
pb(mapping%i(1)) = 1 - p1m
p (mapping%i(2)) = p2(2)
pb(mapping%i(2)) = 1 - p2(2)
f = fbw * f2
end subroutine sf_res_mapping_inverse
@ %def sf_res_mapping_inverse
@
\subsection{Implementation: resonance single mapping}
While simpler, this is needed for structure-function setups only in
exceptional cases.
This maps the unit interval ($r_1$) to itself
according to a Breit-Wigner shape, i.e., a flat prior distribution in $r_1$
results in a Breit-Wigner distribution. Mass and width of the BW are
rescaled by the energy, thus dimensionless fractions.
<<SF mappings: public>>=
public :: sf_res_mapping_single_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_res_mapping_single_t
real(default) :: m = 0
real(default) :: w = 0
contains
<<SF mappings: sf resonance single mapping: TBP>>
end type sf_res_mapping_single_t
@ %def sf_res_mapping_single_t
@ Output.
<<SF mappings: sf resonance single mapping: TBP>>=
procedure :: write => sf_res_mapping_single_write
<<SF mappings: procedures>>=
subroutine sf_res_mapping_single_write (object, unit)
class(sf_res_mapping_single_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,', ',F7.5,A)") ": resonance (", object%m, object%w, ")"
end subroutine sf_res_mapping_single_write
@ %def sf_res_mapping_single_write
@ Initialize: single index (!) and dimensionless mass and width parameters.
<<SF mappings: sf resonance single mapping: TBP>>=
procedure :: init => sf_res_mapping_single_init
<<SF mappings: procedures>>=
subroutine sf_res_mapping_single_init (mapping, m, w)
class(sf_res_mapping_single_t), intent(out) :: mapping
real(default), intent(in) :: m, w
call mapping%base_init (1)
mapping%m = m
mapping%w = w
end subroutine sf_res_mapping_single_init
@ %def sf_res_mapping_single_init
@ Apply mapping.
<<SF mappings: sf resonance single mapping: TBP>>=
procedure :: compute => sf_res_mapping_single_compute
<<SF mappings: procedures>>=
subroutine sf_res_mapping_single_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_res_mapping_single_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(1) :: r2, p2
real(default) :: fbw
integer :: j
p2 = p(mapping%i)
call map_breit_wigner &
(r2(1), fbw, p2(1), mapping%m, mapping%w, x_free)
f = fbw
r = p
rb= pb
r (mapping%i(1)) = r2(1)
rb(mapping%i(1)) = 1 - r2(1)
end subroutine sf_res_mapping_single_compute
@ %def sf_res_mapping_single_compute
@ Apply inverse.
<<SF mappings: sf resonance single mapping: TBP>>=
procedure :: inverse => sf_res_mapping_single_inverse
<<SF mappings: procedures>>=
subroutine sf_res_mapping_single_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_res_mapping_single_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(1) :: p2
real(default) :: fbw
call map_breit_wigner_inverse &
(r(mapping%i(1)), fbw, p2(1), mapping%m, mapping%w, x_free)
p = r
pb= rb
p (mapping%i(1)) = p2(1)
pb(mapping%i(1)) = 1 - p2(1)
f = fbw
end subroutine sf_res_mapping_single_inverse
@ %def sf_res_mapping_single_inverse
@
\subsection{Implementation: on-shell mapping}
This is a degenerate version of the unit-square mapping where the
product $r_1r_2$ is constant. This product is given by the rescaled
squared mass. We introduce an artificial first parameter $p_1$ to
keep the counting, but nothing depends on it. The second parameter is
the same $p_2$ as for the standard unit-square mapping for $\alpha=1$,
it parameterizes the ratio of $r_1$ and $r_2$.
<<SF mappings: public>>=
public :: sf_os_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_os_mapping_t
real(default) :: m = 0
real(default) :: lm2 = 0
contains
<<SF mappings: sf on-shell mapping: TBP>>
end type sf_os_mapping_t
@ %def sf_os_mapping_t
@ Output.
<<SF mappings: sf on-shell mapping: TBP>>=
procedure :: write => sf_os_mapping_write
<<SF mappings: procedures>>=
subroutine sf_os_mapping_write (object, unit)
class(sf_os_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,A)") ": on-shell (", object%m, ")"
end subroutine sf_os_mapping_write
@ %def sf_os_mapping_write
@ Initialize: index pair and dimensionless mass parameter.
<<SF mappings: sf on-shell mapping: TBP>>=
procedure :: init => sf_os_mapping_init
<<SF mappings: procedures>>=
subroutine sf_os_mapping_init (mapping, m)
class(sf_os_mapping_t), intent(out) :: mapping
real(default), intent(in) :: m
call mapping%base_init (2)
mapping%m = m
mapping%lm2 = abs (2 * log (mapping%m))
end subroutine sf_os_mapping_init
@ %def sf_os_mapping_init
@ Apply mapping. The [[x_free]] parameter rescales the total energy,
which must be accounted for in the enclosed mapping.
<<SF mappings: sf on-shell mapping: TBP>>=
procedure :: compute => sf_os_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_os_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_os_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2, p2
integer :: j
p2 = p(mapping%i)
call map_on_shell (r2, f, p2, mapping%lm2, x_free)
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2(j)
rb(mapping%i(j)) = 1 - r2(j)
end do
end subroutine sf_os_mapping_compute
@ %def sf_os_mapping_compute
@ Apply inverse. The irrelevant parameter $p_1$ is always set zero.
<<SF mappings: sf on-shell mapping: TBP>>=
procedure :: inverse => sf_os_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_os_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_os_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: p2, r2
r2 = r(mapping%i)
call map_on_shell_inverse (r2, f, p2, mapping%lm2, x_free)
p = r
pb= rb
p (mapping%i(1)) = p2(1)
pb(mapping%i(1)) = 1 - p2(1)
p (mapping%i(2)) = p2(2)
pb(mapping%i(2)) = 1 - p2(2)
end subroutine sf_os_mapping_inverse
@ %def sf_os_mapping_inverse
@
\subsection{Implementation: on-shell single mapping}
This is a degenerate version of the unit-interval mapping where the
result $r$ is constant. The value is given by the rescaled squared
mass. The input parameter $p_1$ is actually ignored, nothing depends
on it.
<<SF mappings: public>>=
public :: sf_os_mapping_single_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_os_mapping_single_t
real(default) :: m = 0
real(default) :: lm2 = 0
contains
<<SF mappings: sf on-shell mapping single: TBP>>
end type sf_os_mapping_single_t
@ %def sf_os_mapping_single_t
@ Output.
<<SF mappings: sf on-shell mapping single: TBP>>=
procedure :: write => sf_os_mapping_single_write
<<SF mappings: procedures>>=
subroutine sf_os_mapping_single_write (object, unit)
class(sf_os_mapping_single_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,A)") ": on-shell (", object%m, ")"
end subroutine sf_os_mapping_single_write
@ %def sf_os_mapping_single_write
@ Initialize: index pair and dimensionless mass parameter.
<<SF mappings: sf on-shell mapping single: TBP>>=
procedure :: init => sf_os_mapping_single_init
<<SF mappings: procedures>>=
subroutine sf_os_mapping_single_init (mapping, m)
class(sf_os_mapping_single_t), intent(out) :: mapping
real(default), intent(in) :: m
call mapping%base_init (1)
mapping%m = m
mapping%lm2 = abs (2 * log (mapping%m))
end subroutine sf_os_mapping_single_init
@ %def sf_os_mapping_single_init
@ Apply mapping. The [[x_free]] parameter rescales the total energy,
which must be accounted for in the enclosed mapping.
<<SF mappings: sf on-shell mapping single: TBP>>=
procedure :: compute => sf_os_mapping_single_compute
<<SF mappings: procedures>>=
subroutine sf_os_mapping_single_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_os_mapping_single_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(1) :: r2, p2
integer :: j
p2 = p(mapping%i)
call map_on_shell_single (r2, f, p2, mapping%lm2, x_free)
r = p
rb= pb
r (mapping%i(1)) = r2(1)
rb(mapping%i(1)) = 1 - r2(1)
end subroutine sf_os_mapping_single_compute
@ %def sf_os_mapping_single_compute
@ Apply inverse. The irrelevant parameter $p_1$ is always set zero.
<<SF mappings: sf on-shell mapping single: TBP>>=
procedure :: inverse => sf_os_mapping_single_inverse
<<SF mappings: procedures>>=
subroutine sf_os_mapping_single_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_os_mapping_single_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(1) :: p2, r2
r2 = r(mapping%i)
call map_on_shell_single_inverse (r2, f, p2, mapping%lm2, x_free)
p = r
pb= rb
p (mapping%i(1)) = p2(1)
pb(mapping%i(1)) = 1 - p2(1)
end subroutine sf_os_mapping_single_inverse
@ %def sf_os_mapping_single_inverse
@
\subsection{Implementation: endpoint mapping}
This maps the unit square ($r_1,r_2$) such that $p_1$ is the product $r_1r_2$,
while $p_2$ is related to the ratio. Furthermore, we enhance the
region at $r_1=1$ and $r_2=1$, which translates into $p_1=1$ and
$p_2=0,1$. The enhancement is such that any power-like singularity is
caught. This is useful for beamstrahlung spectra.
In addition, we allow for a delta-function singularity in $r_1$ and/or
$r_2$. The singularity is smeared to an interval of width
$\epsilon$. If nonzero, we distinguish the kinematical momentum
fractions $r_i$ from effective values $x_i$, which should go into the
structure-function evaluation. A bin of width $\epsilon$ in $r$ is
mapped to $x=1$ exactly, while the interval $(0,1-\epsilon)$ is mapped
to $(0,1)$ in $x$. The Jacobian reflects this distinction, and the
logical [[in_peak]] allows for an unambiguous distinction.
The delta-peak fraction is used only for the integration self-test.
<<SF mappings: public>>=
public :: sf_ep_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_ep_mapping_t
real(default) :: a = 1
contains
<<SF mappings: sf endpoint mapping: TBP>>
end type sf_ep_mapping_t
@ %def sf_ep_mapping_t
@ Output.
<<SF mappings: sf endpoint mapping: TBP>>=
procedure :: write => sf_ep_mapping_write
<<SF mappings: procedures>>=
subroutine sf_ep_mapping_write (object, unit)
class(sf_ep_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,ES12.5,A)") ": endpoint (a =", object%a, ")"
end subroutine sf_ep_mapping_write
@ %def sf_ep_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf endpoint mapping: TBP>>=
procedure :: init => sf_ep_mapping_init
<<SF mappings: procedures>>=
subroutine sf_ep_mapping_init (mapping, a)
class(sf_ep_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: a
call mapping%base_init (2)
if (present (a)) mapping%a = a
end subroutine sf_ep_mapping_init
@ %def sf_ep_mapping_init
@ Apply mapping.
<<SF mappings: sf endpoint mapping: TBP>>=
procedure :: compute => sf_ep_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_ep_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_ep_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, r2
real(default) :: f1, f2
integer :: j
call map_endpoint_1 (px(1), f1, p(mapping%i(1)), mapping%a)
call map_endpoint_01 (px(2), f2, p(mapping%i(2)), mapping%a)
call map_unit_square (r2, f, px)
f = f * f1 * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2(j)
rb(mapping%i(j)) = 1 - r2(j)
end do
end subroutine sf_ep_mapping_compute
@ %def sf_ep_mapping_compute
@ Apply inverse.
<<SF mappings: sf endpoint mapping: TBP>>=
procedure :: inverse => sf_ep_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_ep_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_ep_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2, px, p2
real(default) :: f1, f2
integer :: j
do j = 1, 2
r2(j) = r(mapping%i(j))
end do
call map_unit_square_inverse (r2, f, px)
call map_endpoint_inverse_1 (px(1), f1, p2(1), mapping%a)
call map_endpoint_inverse_01 (px(2), f2, p2(2), mapping%a)
f = f * f1 * f2
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = 1 - p2(j)
end do
end subroutine sf_ep_mapping_inverse
@ %def sf_ep_mapping_inverse
@
\subsection{Implementation: endpoint mapping with resonance}
Like the endpoint mapping for $p_2$, but replace the endpoint mapping
by a Breit-Wigner mapping for $p_1$. This covers resonance production
in the presence of beamstrahlung.
If the flag [[resonance]] is unset, we skip the resonance mapping, so
the parameter $p_1$ remains equal to $r_1r_2$, as in the standard
s-channel mapping.
<<SF mappings: public>>=
public :: sf_epr_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_epr_mapping_t
real(default) :: a = 1
real(default) :: m = 0
real(default) :: w = 0
logical :: resonance = .true.
contains
<<SF mappings: sf endpoint/res mapping: TBP>>
end type sf_epr_mapping_t
@ %def sf_epr_mapping_t
@ Output.
<<SF mappings: sf endpoint/res mapping: TBP>>=
procedure :: write => sf_epr_mapping_write
<<SF mappings: procedures>>=
subroutine sf_epr_mapping_write (object, unit)
class(sf_epr_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
if (object%resonance) then
write (u, "(A,F7.5,A,F7.5,', ',F7.5,A)") ": ep/res (a = ", object%a, &
" | ", object%m, object%w, ")"
else
write (u, "(A,F7.5,A)") ": ep/nores (a = ", object%a, ")"
end if
end subroutine sf_epr_mapping_write
@ %def sf_epr_mapping_write
@ Initialize: if mass and width are not given, we initialize a
non-resonant version of the mapping.
<<SF mappings: sf endpoint/res mapping: TBP>>=
procedure :: init => sf_epr_mapping_init
<<SF mappings: procedures>>=
subroutine sf_epr_mapping_init (mapping, a, m, w)
class(sf_epr_mapping_t), intent(out) :: mapping
real(default), intent(in) :: a
real(default), intent(in), optional :: m, w
call mapping%base_init (2)
mapping%a = a
if (present (m) .and. present (w)) then
mapping%m = m
mapping%w = w
else
mapping%resonance = .false.
end if
end subroutine sf_epr_mapping_init
@ %def sf_epr_mapping_init
@ Apply mapping.
<<SF mappings: sf endpoint/res mapping: TBP>>=
procedure :: compute => sf_epr_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_epr_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_epr_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, r2
real(default) :: f1, f2
integer :: j
if (mapping%resonance) then
call map_breit_wigner &
(px(1), f1, p(mapping%i(1)), mapping%m, mapping%w, x_free)
else
px(1) = p(mapping%i(1))
f1 = 1
end if
call map_endpoint_01 (px(2), f2, p(mapping%i(2)), mapping%a)
call map_unit_square (r2, f, px)
f = f * f1 * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2(j)
rb(mapping%i(j)) = 1 - r2(j)
end do
end subroutine sf_epr_mapping_compute
@ %def sf_epr_mapping_compute
@ Apply inverse.
<<SF mappings: sf endpoint/res mapping: TBP>>=
procedure :: inverse => sf_epr_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_epr_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_epr_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, p2
real(default) :: f1, f2
integer :: j
call map_unit_square_inverse (r(mapping%i), f, px)
if (mapping%resonance) then
call map_breit_wigner_inverse &
(px(1), f1, p2(1), mapping%m, mapping%w, x_free)
else
p2(1) = px(1)
f1 = 1
end if
call map_endpoint_inverse_01 (px(2), f2, p2(2), mapping%a)
f = f * f1 * f2
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = 1 - p2(j)
end do
end subroutine sf_epr_mapping_inverse
@ %def sf_epr_mapping_inverse
@
\subsection{Implementation: endpoint mapping for on-shell particle}
Analogous to the resonance mapping, but the $p_1$ input is ignored
altogether. This covers on-shell particle production
in the presence of beamstrahlung.
<<SF mappings: public>>=
public :: sf_epo_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_epo_mapping_t
real(default) :: a = 1
real(default) :: m = 0
real(default) :: lm2 = 0
contains
<<SF mappings: sf endpoint/os mapping: TBP>>
end type sf_epo_mapping_t
@ %def sf_epo_mapping_t
@ Output.
<<SF mappings: sf endpoint/os mapping: TBP>>=
procedure :: write => sf_epo_mapping_write
<<SF mappings: procedures>>=
subroutine sf_epo_mapping_write (object, unit)
class(sf_epo_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,A,F7.5,A)") ": ep/on-shell (a = ", object%a, &
" | ", object%m, ")"
end subroutine sf_epo_mapping_write
@ %def sf_epo_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf endpoint/os mapping: TBP>>=
procedure :: init => sf_epo_mapping_init
<<SF mappings: procedures>>=
subroutine sf_epo_mapping_init (mapping, a, m)
class(sf_epo_mapping_t), intent(out) :: mapping
real(default), intent(in) :: a, m
call mapping%base_init (2)
mapping%a = a
mapping%m = m
mapping%lm2 = abs (2 * log (mapping%m))
end subroutine sf_epo_mapping_init
@ %def sf_epo_mapping_init
@ Apply mapping.
<<SF mappings: sf endpoint/os mapping: TBP>>=
procedure :: compute => sf_epo_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_epo_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_epo_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, r2
real(default) :: f2
integer :: j
px(1) = 0
call map_endpoint_01 (px(2), f2, p(mapping%i(2)), mapping%a)
call map_on_shell (r2, f, px, mapping%lm2)
f = f * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2(j)
rb(mapping%i(j)) = 1 - r2(j)
end do
end subroutine sf_epo_mapping_compute
@ %def sf_epo_mapping_compute
@ Apply inverse.
<<SF mappings: sf endpoint/os mapping: TBP>>=
procedure :: inverse => sf_epo_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_epo_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_epo_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, p2
real(default) :: f2
integer :: j
call map_on_shell_inverse (r(mapping%i), f, px, mapping%lm2)
p2(1) = 0
call map_endpoint_inverse_01 (px(2), f2, p2(2), mapping%a)
f = f * f2
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = 1 - p2(j)
end do
end subroutine sf_epo_mapping_inverse
@ %def sf_epo_mapping_inverse
@
\subsection{Implementation: ISR endpoint mapping}
Similar to the endpoint mapping above: This maps the unit square
($r_1,r_2$) such that $p_1$ is the product $r_1r_2$, while $p_2$ is
related to the ratio. Furthermore, we enhance the region at $r_1=1$
and $r_2=1$, which translates into $p_1=1$ and $p_2=0,1$.
The enhancement is such that ISR singularity $(1-x)^{-1+\epsilon}$ is
flattened. This would be easy in one dimension, but becomes
nontrivial in two dimensions.
<<SF mappings: public>>=
public :: sf_ip_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_ip_mapping_t
real(default) :: eps = 0
contains
<<SF mappings: sf power mapping: TBP>>
end type sf_ip_mapping_t
@ %def sf_ip_mapping_t
@ Output.
<<SF mappings: sf power mapping: TBP>>=
procedure :: write => sf_ip_mapping_write
<<SF mappings: procedures>>=
subroutine sf_ip_mapping_write (object, unit)
class(sf_ip_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,ES12.5,A)") ": isr (eps =", object%eps, ")"
end subroutine sf_ip_mapping_write
@ %def sf_ip_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf power mapping: TBP>>=
procedure :: init => sf_ip_mapping_init
<<SF mappings: procedures>>=
subroutine sf_ip_mapping_init (mapping, eps)
class(sf_ip_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: eps
call mapping%base_init (2)
if (present (eps)) mapping%eps = eps
if (mapping%eps <= 0) &
call msg_fatal ("ISR mapping: regulator epsilon must not be zero")
end subroutine sf_ip_mapping_init
@ %def sf_ip_mapping_init
@ Apply mapping.
<<SF mappings: sf power mapping: TBP>>=
procedure :: compute => sf_ip_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_ip_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_ip_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, pxb, r2, r2b
real(default) :: f1, f2, xb, y, yb
integer :: j
call map_power_1 (xb, f1, pb(mapping%i(1)), 2 * mapping%eps)
call map_power_01 (y, yb, f2, pb(mapping%i(2)), mapping%eps)
px(1) = 1 - xb
pxb(1) = xb
px(2) = y
pxb(2) = yb
call map_unit_square_prec (r2, r2b, f, px, pxb)
f = f * f1 * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2 (j)
rb(mapping%i(j)) = r2b(j)
end do
end subroutine sf_ip_mapping_compute
@ %def sf_ip_mapping_compute
@ Apply inverse.
<<SF mappings: sf power mapping: TBP>>=
procedure :: inverse => sf_ip_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_ip_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_ip_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2, r2b, px, pxb, p2, p2b
real(default) :: f1, f2, xb, y, yb
integer :: j
do j = 1, 2
r2 (j) = r (mapping%i(j))
r2b(j) = rb(mapping%i(j))
end do
call map_unit_square_inverse_prec (r2, r2b, f, px, pxb)
xb = pxb(1)
if (px(1) > 0) then
y = px(2)
yb = pxb(2)
else
y = 0.5_default
yb = 0.5_default
end if
call map_power_inverse_1 (xb, f1, p2b(1), 2 * mapping%eps)
call map_power_inverse_01 (y, yb, f2, p2b(2), mapping%eps)
p2 = 1 - p2b
f = f * f1 * f2
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = p2b(j)
end do
end subroutine sf_ip_mapping_inverse
@ %def sf_ip_mapping_inverse
@
\subsection{Implementation: ISR endpoint mapping, resonant}
Similar to the endpoint mapping above: This maps the unit square
($r_1,r_2$) such that $p_1$ is the product $r_1r_2$, while $p_2$ is
related to the ratio. Furthermore, we enhance the region at $r_1=1$
and $r_2=1$, which translates into $p_1=1$ and $p_2=0,1$.
The enhancement is such that ISR singularity $(1-x)^{-1+\epsilon}$ is
flattened. This would be easy in one dimension, but becomes
nontrivial in two dimensions.
The resonance can be turned off by the flag [[resonance]].
<<SF mappings: public>>=
public :: sf_ipr_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_ipr_mapping_t
real(default) :: eps = 0
real(default) :: m = 0
real(default) :: w = 0
logical :: resonance = .true.
contains
<<SF mappings: sf power/res mapping: TBP>>
end type sf_ipr_mapping_t
@ %def sf_ipr_mapping_t
@ Output.
<<SF mappings: sf power/res mapping: TBP>>=
procedure :: write => sf_ipr_mapping_write
<<SF mappings: procedures>>=
subroutine sf_ipr_mapping_write (object, unit)
class(sf_ipr_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
if (object%resonance) then
write (u, "(A,F7.5,A,F7.5,', ',F7.5,A)") ": isr/res (eps = ", &
object%eps, " | ", object%m, object%w, ")"
else
write (u, "(A,F7.5,A)") ": isr/res (eps = ", object%eps, ")"
end if
end subroutine sf_ipr_mapping_write
@ %def sf_ipr_mapping_write
@ Initialize:
<<SF mappings: sf power/res mapping: TBP>>=
procedure :: init => sf_ipr_mapping_init
<<SF mappings: procedures>>=
subroutine sf_ipr_mapping_init (mapping, eps, m, w)
class(sf_ipr_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: eps, m, w
call mapping%base_init (2)
if (present (eps)) mapping%eps = eps
if (mapping%eps <= 0) &
call msg_fatal ("ISR mapping: regulator epsilon must not be zero")
if (present (m) .and. present (w)) then
mapping%m = m
mapping%w = w
else
mapping%resonance = .false.
end if
end subroutine sf_ipr_mapping_init
@ %def sf_ipr_mapping_init
@ Apply mapping.
<<SF mappings: sf power/res mapping: TBP>>=
procedure :: compute => sf_ipr_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_ipr_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_ipr_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, pxb, r2, r2b
real(default) :: f1, f2, y, yb
integer :: j
if (mapping%resonance) then
call map_breit_wigner &
(px(1), f1, p(mapping%i(1)), mapping%m, mapping%w, x_free)
else
px(1) = p(mapping%i(1))
f1 = 1
end if
call map_power_01 (y, yb, f2, pb(mapping%i(2)), mapping%eps)
pxb(1) = 1 - px(1)
px(2) = y
pxb(2) = yb
call map_unit_square_prec (r2, r2b, f, px, pxb)
f = f * f1 * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2 (j)
rb(mapping%i(j)) = r2b(j)
end do
end subroutine sf_ipr_mapping_compute
@ %def sf_ipr_mapping_compute
@ Apply inverse.
<<SF mappings: sf power/res mapping: TBP>>=
procedure :: inverse => sf_ipr_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_ipr_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_ipr_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2, r2b, px, pxb, p2, p2b
real(default) :: f1, f2, y, yb
integer :: j
do j = 1, 2
r2 (j) = r (mapping%i(j))
r2b(j) = rb(mapping%i(j))
end do
call map_unit_square_inverse_prec (r2, r2b, f, px, pxb)
if (px(1) > 0) then
y = px(2)
yb = pxb(2)
else
y = 0.5_default
yb = 0.5_default
end if
if (mapping%resonance) then
call map_breit_wigner_inverse &
(px(1), f1, p2(1), mapping%m, mapping%w, x_free)
else
p2(1) = px(1)
f1 = 1
end if
call map_power_inverse_01 (y, yb, f2, p2b(2), mapping%eps)
p2b(1) = 1 - p2(1)
p2 (2) = 1 - p2b(2)
f = f * f1 * f2
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = p2b(j)
end do
end subroutine sf_ipr_mapping_inverse
@ %def sf_ipr_mapping_inverse
@
\subsection{Implementation: ISR on-shell mapping}
Similar to the endpoint mapping above: This maps the unit square
($r_1,r_2$) such that $p_1$ is ignored while the product $r_1r_2$ is
constant. $p_2$ is related to the ratio. Furthermore, we enhance the
region at $r_1=1$ and $r_2=1$, which translates into $p_1=1$ and
$p_2=0,1$.
The enhancement is such that ISR singularity $(1-x)^{-1+\epsilon}$ is
flattened. This would be easy in one dimension, but becomes
nontrivial in two dimensions.
<<SF mappings: public>>=
public :: sf_ipo_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_ipo_mapping_t
real(default) :: eps = 0
real(default) :: m = 0
contains
<<SF mappings: sf power/os mapping: TBP>>
end type sf_ipo_mapping_t
@ %def sf_ipo_mapping_t
@ Output.
<<SF mappings: sf power/os mapping: TBP>>=
procedure :: write => sf_ipo_mapping_write
<<SF mappings: procedures>>=
subroutine sf_ipo_mapping_write (object, unit)
class(sf_ipo_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,',',I0,')')", advance="no") object%i
end if
write (u, "(A,F7.5,A,F7.5,A)") ": isr/os (eps = ", object%eps, &
" | ", object%m, ")"
end subroutine sf_ipo_mapping_write
@ %def sf_ipo_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf power/os mapping: TBP>>=
procedure :: init => sf_ipo_mapping_init
<<SF mappings: procedures>>=
subroutine sf_ipo_mapping_init (mapping, eps, m)
class(sf_ipo_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: eps, m
call mapping%base_init (2)
if (present (eps)) mapping%eps = eps
if (mapping%eps <= 0) &
call msg_fatal ("ISR mapping: regulator epsilon must not be zero")
mapping%m = m
end subroutine sf_ipo_mapping_init
@ %def sf_ipo_mapping_init
@ Apply mapping.
<<SF mappings: sf power/os mapping: TBP>>=
procedure :: compute => sf_ipo_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_ipo_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_ipo_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: px, pxb, r2, r2b
real(default) :: f1, f2, y, yb
integer :: j
call map_power_01 (y, yb, f2, pb(mapping%i(2)), mapping%eps)
px(1) = mapping%m ** 2
if (present (x_free)) px(1) = px(1) / x_free
pxb(1) = 1 - px(1)
px(2) = y
pxb(2) = yb
call map_unit_square_prec (r2, r2b, f1, px, pxb)
f = f1 * f2
r = p
rb= pb
do j = 1, 2
r (mapping%i(j)) = r2 (j)
rb(mapping%i(j)) = r2b(j)
end do
end subroutine sf_ipo_mapping_compute
@ %def sf_ipo_mapping_compute
@ Apply inverse.
<<SF mappings: sf power/os mapping: TBP>>=
procedure :: inverse => sf_ipo_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_ipo_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_ipo_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: r2, r2b, px, pxb, p2, p2b
real(default) :: f1, f2, y, yb
integer :: j
do j = 1, 2
r2 (j) = r (mapping%i(j))
r2b(j) = rb(mapping%i(j))
end do
call map_unit_square_inverse_prec (r2, r2b, f1, px, pxb)
y = px(2)
yb = pxb(2)
call map_power_inverse_01 (y, yb, f2, p2b(2), mapping%eps)
p2(1) = 0
p2b(1)= 1
p2(2) = 1 - p2b(2)
f = f1 * f2
p = r
pb= rb
do j = 1, 2
p (mapping%i(j)) = p2(j)
pb(mapping%i(j)) = p2b(j)
end do
end subroutine sf_ipo_mapping_inverse
@ %def sf_ipo_mapping_inverse
@
\subsection{Implementation: Endpoint + ISR power mapping}
This is a combination of endpoint (i.e., beamstrahlung) and ISR power
mapping. The first two parameters apply to the beamstrahlung
spectrum, the last two to the ISR function for the first and second
beam, respectively.
<<SF mappings: public>>=
public :: sf_ei_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_ei_mapping_t
type(sf_ep_mapping_t) :: ep
type(sf_ip_mapping_t) :: ip
contains
<<SF mappings: sf ep-ip mapping: TBP>>
end type sf_ei_mapping_t
@ %def sf_ei_mapping_t
@ Output.
<<SF mappings: sf ep-ip mapping: TBP>>=
procedure :: write => sf_ei_mapping_write
<<SF mappings: procedures>>=
subroutine sf_ei_mapping_write (object, unit)
class(sf_ei_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,3(',',I0),')')", advance="no") object%i
end if
write (u, "(A,ES12.5,A,ES12.5,A)") ": ep/isr (a =", object%ep%a, &
", eps =", object%ip%eps, ")"
end subroutine sf_ei_mapping_write
@ %def sf_ei_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf ep-ip mapping: TBP>>=
procedure :: init => sf_ei_mapping_init
<<SF mappings: procedures>>=
subroutine sf_ei_mapping_init (mapping, a, eps)
class(sf_ei_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: a, eps
call mapping%base_init (4)
call mapping%ep%init (a)
call mapping%ip%init (eps)
end subroutine sf_ei_mapping_init
@ %def sf_ei_mapping_init
@ Set an index value. We should communicate the appropriate indices to the
enclosed sub-mappings, therefore override the method.
<<SF mappings: sf ep-ip mapping: TBP>>=
procedure :: set_index => sf_ei_mapping_set_index
<<SF mappings: procedures>>=
subroutine sf_ei_mapping_set_index (mapping, j, i)
class(sf_ei_mapping_t), intent(inout) :: mapping
integer, intent(in) :: j, i
mapping%i(j) = i
select case (j)
case (1:2); call mapping%ep%set_index (j, i)
case (3:4); call mapping%ip%set_index (j-2, i)
end select
end subroutine sf_ei_mapping_set_index
@ %def sf_mapping_set_index
@ Apply mapping. Now, the beamstrahlung and ISR mappings are
independent of each other. The parameter subsets that are actually
used should not overlap. The Jacobians are multiplied.
<<SF mappings: sf ep-ip mapping: TBP>>=
procedure :: compute => sf_ei_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_ei_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_ei_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(size(p)) :: q, qb
real(default) :: f1, f2
call mapping%ep%compute (q, qb, f1, p, pb, x_free)
call mapping%ip%compute (r, rb, f2, q, qb, x_free)
f = f1 * f2
end subroutine sf_ei_mapping_compute
@ %def sf_ei_mapping_compute
@ Apply inverse.
<<SF mappings: sf ep-ip mapping: TBP>>=
procedure :: inverse => sf_ei_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_ei_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_ei_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(size(p)) :: q, qb
real(default) :: f1, f2
call mapping%ip%inverse (r, rb, f2, q, qb, x_free)
call mapping%ep%inverse (q, qb, f1, p, pb, x_free)
f = f1 * f2
end subroutine sf_ei_mapping_inverse
@ %def sf_ei_mapping_inverse
@
\subsection{Implementation: Endpoint + ISR + resonance}
This is a combination of endpoint (i.e., beamstrahlung) and ISR power
mapping, adapted for an s-channel resonance. The first two internal
parameters apply to the beamstrahlung spectrum, the last two to the
ISR function for the first and second beam, respectively. The first
and third parameters are the result of an overall resonance mapping,
so on the outside, the first parameter is the total momentum fraction,
the third one describes the distribution between beamstrahlung and ISR.
<<SF mappings: public>>=
public :: sf_eir_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_eir_mapping_t
type(sf_res_mapping_t) :: res
type(sf_epr_mapping_t) :: ep
type(sf_ipr_mapping_t) :: ip
contains
<<SF mappings: sf ep-ip-res mapping: TBP>>
end type sf_eir_mapping_t
@ %def sf_eir_mapping_t
@ Output.
<<SF mappings: sf ep-ip-res mapping: TBP>>=
procedure :: write => sf_eir_mapping_write
<<SF mappings: procedures>>=
subroutine sf_eir_mapping_write (object, unit)
class(sf_eir_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,3(',',I0),')')", advance="no") object%i
end if
write (u, "(A,F7.5,A,F7.5,A,F7.5,', ',F7.5,A)") &
": ep/isr/res (a =", object%ep%a, &
", eps =", object%ip%eps, " | ", object%res%m, object%res%w, ")"
end subroutine sf_eir_mapping_write
@ %def sf_eir_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf ep-ip-res mapping: TBP>>=
procedure :: init => sf_eir_mapping_init
<<SF mappings: procedures>>=
subroutine sf_eir_mapping_init (mapping, a, eps, m, w)
class(sf_eir_mapping_t), intent(out) :: mapping
real(default), intent(in) :: a, eps, m, w
call mapping%base_init (4)
call mapping%res%init (m, w)
call mapping%ep%init (a)
call mapping%ip%init (eps)
end subroutine sf_eir_mapping_init
@ %def sf_eir_mapping_init
@ Set an index value. We should communicate the appropriate indices to the
enclosed sub-mappings, therefore override the method.
<<SF mappings: sf ep-ip-res mapping: TBP>>=
procedure :: set_index => sf_eir_mapping_set_index
<<SF mappings: procedures>>=
subroutine sf_eir_mapping_set_index (mapping, j, i)
class(sf_eir_mapping_t), intent(inout) :: mapping
integer, intent(in) :: j, i
mapping%i(j) = i
select case (j)
case (1); call mapping%res%set_index (1, i)
case (3); call mapping%res%set_index (2, i)
end select
select case (j)
case (1:2); call mapping%ep%set_index (j, i)
case (3:4); call mapping%ip%set_index (j-2, i)
end select
end subroutine sf_eir_mapping_set_index
@ %def sf_mapping_set_index
@ Apply mapping. Now, the beamstrahlung and ISR mappings are
independent of each other. The parameter subsets that are actually
used should not overlap. The Jacobians are multiplied.
<<SF mappings: sf ep-ip-res mapping: TBP>>=
procedure :: compute => sf_eir_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_eir_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_eir_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(size(p)) :: px, pxb, q, qb
real(default) :: f0, f1, f2
call mapping%res%compute (px, pxb, f0, p, pb, x_free)
call mapping%ep%compute (q, qb, f1, px, pxb, x_free)
call mapping%ip%compute (r, rb, f2, q, qb, x_free)
f = f0 * f1 * f2
end subroutine sf_eir_mapping_compute
@ %def sf_eir_mapping_compute
@ Apply inverse.
<<SF mappings: sf ep-ip-res mapping: TBP>>=
procedure :: inverse => sf_eir_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_eir_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_eir_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(size(p)) :: px, pxb, q, qb
real(default) :: f0, f1, f2
call mapping%ip%inverse (r, rb, f2, q, qb, x_free)
call mapping%ep%inverse (q, qb, f1, px, pxb, x_free)
call mapping%res%inverse (px, pxb, f0, p, pb, x_free)
f = f0 * f1 * f2
end subroutine sf_eir_mapping_inverse
@ %def sf_eir_mapping_inverse
@
\subsection{Implementation: Endpoint + ISR power mapping, on-shell}
This is a combination of endpoint (i.e., beamstrahlung) and ISR power
mapping. The first two parameters apply to the beamstrahlung
spectrum, the last two to the ISR function for the first and second
beam, respectively. On top of that, we map the first and third parameter
such that the product is constant. From the outside, the first
parameter is irrelevant while the third parameter describes the
distribution of energy (loss) among beamstrahlung and ISR.
<<SF mappings: public>>=
public :: sf_eio_mapping_t
<<SF mappings: types>>=
type, extends (sf_mapping_t) :: sf_eio_mapping_t
type(sf_os_mapping_t) :: os
type(sf_epr_mapping_t) :: ep
type(sf_ipr_mapping_t) :: ip
contains
<<SF mappings: sf ep-ip-os mapping: TBP>>
end type sf_eio_mapping_t
@ %def sf_eio_mapping_t
@ Output.
<<SF mappings: sf ep-ip-os mapping: TBP>>=
procedure :: write => sf_eio_mapping_write
<<SF mappings: procedures>>=
subroutine sf_eio_mapping_write (object, unit)
class(sf_eio_mapping_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "map"
if (any (object%i /= 0)) then
write (u, "('(',I0,3(',',I0),')')", advance="no") object%i
end if
write (u, "(A,F7.5,A,F7.5,A,F7.5,A)") ": ep/isr/os (a =", object%ep%a, &
", eps =", object%ip%eps, " | ", object%os%m, ")"
end subroutine sf_eio_mapping_write
@ %def sf_eio_mapping_write
@ Initialize: no extra parameters.
<<SF mappings: sf ep-ip-os mapping: TBP>>=
procedure :: init => sf_eio_mapping_init
<<SF mappings: procedures>>=
subroutine sf_eio_mapping_init (mapping, a, eps, m)
class(sf_eio_mapping_t), intent(out) :: mapping
real(default), intent(in), optional :: a, eps, m
call mapping%base_init (4)
call mapping%os%init (m)
call mapping%ep%init (a)
call mapping%ip%init (eps)
end subroutine sf_eio_mapping_init
@ %def sf_eio_mapping_init
@ Set an index value. We should communicate the appropriate indices to the
enclosed sub-mappings, therefore override the method.
<<SF mappings: sf ep-ip-os mapping: TBP>>=
procedure :: set_index => sf_eio_mapping_set_index
<<SF mappings: procedures>>=
subroutine sf_eio_mapping_set_index (mapping, j, i)
class(sf_eio_mapping_t), intent(inout) :: mapping
integer, intent(in) :: j, i
mapping%i(j) = i
select case (j)
case (1); call mapping%os%set_index (1, i)
case (3); call mapping%os%set_index (2, i)
end select
select case (j)
case (1:2); call mapping%ep%set_index (j, i)
case (3:4); call mapping%ip%set_index (j-2, i)
end select
end subroutine sf_eio_mapping_set_index
@ %def sf_mapping_set_index
@ Apply mapping. Now, the beamstrahlung and ISR mappings are
independent of each other. The parameter subsets that are actually
used should not overlap. The Jacobians are multiplied.
<<SF mappings: sf ep-ip-os mapping: TBP>>=
procedure :: compute => sf_eio_mapping_compute
<<SF mappings: procedures>>=
subroutine sf_eio_mapping_compute (mapping, r, rb, f, p, pb, x_free)
class(sf_eio_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(size(p)) :: px, pxb, q, qb
real(default) :: f0, f1, f2
call mapping%os%compute (px, pxb, f0, p, pb, x_free)
call mapping%ep%compute (q, qb, f1, px, pxb, x_free)
call mapping%ip%compute (r, rb, f2, q, qb, x_free)
f = f0 * f1 * f2
end subroutine sf_eio_mapping_compute
@ %def sf_eio_mapping_compute
@ Apply inverse.
<<SF mappings: sf ep-ip-os mapping: TBP>>=
procedure :: inverse => sf_eio_mapping_inverse
<<SF mappings: procedures>>=
subroutine sf_eio_mapping_inverse (mapping, r, rb, f, p, pb, x_free)
class(sf_eio_mapping_t), intent(inout) :: mapping
real(default), dimension(:), intent(in) :: r, rb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: p, pb
real(default), intent(inout), optional :: x_free
real(default), dimension(size(p)) :: px, pxb, q, qb
real(default) :: f0, f1, f2
call mapping%ip%inverse (r, rb, f2, q, qb, x_free)
call mapping%ep%inverse (q, qb, f1, px, pxb, x_free)
call mapping%os%inverse (px, pxb, f0, p, pb, x_free)
f = f0 * f1 * f2
end subroutine sf_eio_mapping_inverse
@ %def sf_eio_mapping_inverse
@
\subsection{Basic formulas}
\subsubsection{Standard mapping of the unit square}
This mapping of the unit square is appropriate in particular for
structure functions which are concentrated at the lower end. Instead
of a rectangular grid, one set of grid lines corresponds to constant
parton c.m. energy. The other set is chosen such that the jacobian is
only mildly singular ($\ln x$ which is zero at $x=1$), corresponding
to an initial concentration of sampling points at the maximum energy.
If [[power]] is greater than one (the default), points are also
concentrated at the lower end.
The formula is ([[power]]=$\alpha$):
\begin{align}
r_1 &= (p_1 ^ {p_2})^\alpha \\
r_2 &= (p_1 ^ {1 - p_2})^\alpha\\
f &= \alpha^2 p_1 ^ {\alpha - 1} |\log p_1|
\end{align}
and for the default case $\alpha=1$:
\begin{align}
r_1 &= p_1 ^ {p_2} \\
r_2 &= p_1 ^ {1 - p_2} \\
f &= |\log p_1|
\end{align}
<<SF mappings: procedures>>=
subroutine map_unit_square (r, factor, p, power)
real(default), dimension(2), intent(out) :: r
real(default), intent(out) :: factor
real(default), dimension(2), intent(in) :: p
real(default), intent(in), optional :: power
real(default) :: xx, yy
factor = 1
xx = p(1)
yy = p(2)
if (present(power)) then
if (p(1) > 0 .and. power > 1) then
xx = p(1)**power
factor = factor * power * xx / p(1)
end if
end if
if (.not. vanishes (xx)) then
r(1) = xx ** yy
r(2) = xx / r(1)
factor = factor * abs (log (xx))
else
r = 0
end if
end subroutine map_unit_square
@ %def map_unit_square
@ This is the inverse mapping.
<<SF mappings: procedures>>=
subroutine map_unit_square_inverse (r, factor, p, power)
real(kind=default), dimension(2), intent(in) :: r
real(kind=default), intent(out) :: factor
real(kind=default), dimension(2), intent(out) :: p
real(kind=default), intent(in), optional :: power
real(kind=default) :: lg, xx, yy
factor = 1
xx = r(1) * r(2)
if (.not. vanishes (xx)) then
lg = log (xx)
if (.not. vanishes (lg)) then
yy = log (r(1)) / lg
else
yy = 0
end if
p(2) = yy
factor = factor * abs (lg)
if (present(power)) then
p(1) = xx**(1._default/power)
factor = factor * power * xx / p(1)
else
p(1) = xx
end if
else
p = 0
end if
end subroutine map_unit_square_inverse
@ %def map_unit_square_inverse
@
\subsubsection{Precise mapping of the unit square}
A more precise version (with unit power parameter). This version
should be numerically stable near $x=1$ and $y=0,1$. The formulas are again
\begin{equation}
r_1 = p_1^{p_2}, \qquad
r_2 = p_1^{\bar p_2}, \qquad
f = - \log p_1
\end{equation}
but we compute both $r_i$ and $\bar r_i$ simultaneously and make
direct use of both $p_i$ and $\bar p_i$ as appropriate.
<<SF mappings: procedures>>=
subroutine map_unit_square_prec (r, rb, factor, p, pb)
real(default), dimension(2), intent(out) :: r
real(default), dimension(2), intent(out) :: rb
real(default), intent(out) :: factor
real(default), dimension(2), intent(in) :: p
real(default), dimension(2), intent(in) :: pb
if (p(1) > 0.5_default) then
call compute_prec_xy_1 (r(1), rb(1), p(1), pb(1), p (2))
call compute_prec_xy_1 (r(2), rb(2), p(1), pb(1), pb(2))
factor = - log_prec (p(1), pb(1))
else if (.not. vanishes (p(1))) then
call compute_prec_xy_0 (r(1), rb(1), p(1), pb(1), p (2))
call compute_prec_xy_0 (r(2), rb(2), p(1), pb(1), pb(2))
factor = - log_prec (p(1), pb(1))
else
r = 0
rb = 1
factor = 0
end if
end subroutine map_unit_square_prec
@ %def map_unit_square_prec
@ This is the inverse mapping.
<<SF mappings: procedures>>=
subroutine map_unit_square_inverse_prec (r, rb, factor, p, pb)
real(default), dimension(2), intent(in) :: r
real(default), dimension(2), intent(in) :: rb
real(default), intent(out) :: factor
real(default), dimension(2), intent(out) :: p
real(default), dimension(2), intent(out) :: pb
call inverse_prec_x (r, rb, p(1), pb(1))
if (all (r > 0)) then
if (rb(1) < rb(2)) then
call inverse_prec_y (r, rb, p(2), pb(2))
else
call inverse_prec_y ([r(2),r(1)], [rb(2),rb(1)], pb(2), p(2))
end if
factor = - log_prec (p(1), pb(1))
else
p(1) = 0
pb(1) = 1
p(2) = 0.5_default
pb(2) = 0.5_default
factor = 0
end if
end subroutine map_unit_square_inverse_prec
@ %def map_unit_square_prec_inverse
@ This is an auxiliary function: evaluate the expression $\bar z = 1 -
x^y$ in a numerically stable way. Instabilities occur for $y=0$ and
$x=1$. The idea is to replace the bracket by the first terms of its
Taylor expansion around $x=1$ (read $\bar x\equiv 1 -x$)
\begin{equation}
1 - x^y = y\bar x\left(1 + \frac12(1-y)\bar x +
\frac16(2-y)(1-y)\bar x^2\right)
\end{equation}
whenever this is the better approximation. Actually, the relative
numerical error of the exact formula is about $\eta/(y\bar x)$ where
$\eta$ is given by [[epsilon(KIND)]] in Fortran. The relative error
of the approximation is better than the last included term divided by
$(y\bar x)$.
The first subroutine computes $z$ and $\bar z$ near $x=1$ where $\log
x$ should be expanded, the second one near $x=0$ where $\log x$ can be
kept.
<<SF mappings: procedures>>=
subroutine compute_prec_xy_1 (z, zb, x, xb, y)
real(default), intent(out) :: z, zb
real(default), intent(in) :: x, xb, y
real(default) :: a1, a2, a3
a1 = y * xb
a2 = a1 * (1 - y) * xb / 2
a3 = a2 * (2 - y) * xb / 3
if (abs (a3) < epsilon (a3)) then
zb = a1 + a2 + a3
z = 1 - zb
else
z = x ** y
zb = 1 - z
end if
end subroutine compute_prec_xy_1
subroutine compute_prec_xy_0 (z, zb, x, xb, y)
real(default), intent(out) :: z, zb
real(default), intent(in) :: x, xb, y
real(default) :: a1, a2, a3, lx
lx = -log (x)
a1 = y * lx
a2 = a1 * y * lx / 2
a3 = a2 * y * lx / 3
if (abs (a3) < epsilon (a3)) then
zb = a1 + a2 + a3
z = 1 - zb
else
z = x ** y
zb = 1 - z
end if
end subroutine compute_prec_xy_0
@ %def compute_prec_xy_1
@ %def compute_prec_xy_0
@ For the inverse calculation, we evaluate $x=r_1r_2$ in a stable way.
Since it is just a polynomial, the expansion near $x=1$ is
analytically exact, and we don't need to choose based on precision.
<<SF mappings: procedures>>=
subroutine inverse_prec_x (r, rb, x, xb)
real(default), dimension(2), intent(in) :: r, rb
real(default), intent(out) :: x, xb
real(default) :: a0, a1
a0 = rb(1) + rb(2)
a1 = rb(1) * rb(2)
if (a0 > 0.5_default) then
xb = a0 - a1
x = 1 - xb
else
x = r(1) * r(2)
xb = 1 - x
end if
end subroutine inverse_prec_x
@ %def inverse_prec_x
@ The inverse calculation for the relative momentum fraction
\begin{equation}
y = \frac{1}{1 + \frac{\log{r_2}}{\log{r_1}}}
\end{equation}
is slightly more complicated. We should take the precise form of the
logarithm, so we are safe near $r_i=1$. A series expansion is
required if $r_1\ll r_2$, since then $y$ becomes small. (We assume
$r_1<r_2$ here; for the opposite case, the arguments can be
exchanged.)
<<SF mappings: procedures>>=
subroutine inverse_prec_y (r, rb, y, yb)
real(default), dimension(2), intent(in) :: r, rb
real(default), intent(out) :: y, yb
real(default) :: log1, log2, a1, a2, a3
log1 = log_prec (r(1), rb(1))
log2 = log_prec (r(2), rb(2))
if (abs (log2**3) < epsilon (one)) then
if (abs(log1) < epsilon (one)) then
y = zero
else
y = one / (one + log2 / log1)
end if
if (abs(log2) < epsilon (one)) then
yb = zero
else
yb = one / (one + log1 / log2)
end if
return
end if
a1 = - rb(1) / log2
a2 = - rb(1) ** 2 * (one / log2**2 + one / (2 * log2))
a3 = - rb(1) ** 3 * (one / log2**3 + one / log2**2 + one/(3 * log2))
if (abs (a3) < epsilon (a3)) then
y = a1 + a2 + a3
yb = one - y
else
y = one / (one + log2 / log1)
yb = one / (one + log1 / log2)
end if
end subroutine inverse_prec_y
@ %def inverse_prec_y
@
\subsubsection{Mapping for on-shell s-channel}
The limiting case, if the product $r_1r_2$ is fixed for on-shell
production. The parameter $p_1$ is ignored. In the inverse mapping,
it is returned zero.
The parameter [[x_free]], if present, rescales the total energy. If
it is less than one, the rescaled mass parameter $m^2$ should be increased
accordingly.
Public for access in unit test.
<<SF mappings: public>>=
public :: map_on_shell
public :: map_on_shell_inverse
<<SF mappings: procedures>>=
subroutine map_on_shell (r, factor, p, lm2, x_free)
real(default), dimension(2), intent(out) :: r
real(default), intent(out) :: factor
real(default), dimension(2), intent(in) :: p
real(default), intent(in) :: lm2
real(default), intent(in), optional :: x_free
real(default) :: lx
lx = lm2; if (present (x_free)) lx = lx + log (x_free)
r(1) = exp (- p(2) * lx)
r(2) = exp (- (1 - p(2)) * lx)
factor = lx
end subroutine map_on_shell
subroutine map_on_shell_inverse (r, factor, p, lm2, x_free)
real(default), dimension(2), intent(in) :: r
real(default), intent(out) :: factor
real(default), dimension(2), intent(out) :: p
real(default), intent(in) :: lm2
real(default), intent(in), optional :: x_free
real(default) :: lx
lx = lm2; if (present (x_free)) lx = lx + log (x_free)
p(1) = 0
p(2) = abs (log (r(1))) / lx
factor = lx
end subroutine map_on_shell_inverse
@ %def map_on_shell
@ %def map_on_shell_inverse
@
\subsubsection{Mapping for on-shell s-channel, single parameter}
This is a pseudo-mapping which applies if there is actually just one
parameter [[p]]. The output parameter [[r]] is fixed for on-shell
production. The lone parameter $p_1$ is ignored. In the inverse mapping,
it is returned zero.
The parameter [[x_free]], if present, rescales the total energy. If
it is less than one, the rescaled mass parameter $m^2$ should be increased
accordingly.
Public for access in unit test.
<<SF mappings: public>>=
public :: map_on_shell_single
public :: map_on_shell_single_inverse
<<SF mappings: procedures>>=
subroutine map_on_shell_single (r, factor, p, lm2, x_free)
real(default), dimension(1), intent(out) :: r
real(default), intent(out) :: factor
real(default), dimension(1), intent(in) :: p
real(default), intent(in) :: lm2
real(default), intent(in), optional :: x_free
real(default) :: lx
lx = lm2; if (present (x_free)) lx = lx + log (x_free)
r(1) = exp (- lx)
factor = 1
end subroutine map_on_shell_single
subroutine map_on_shell_single_inverse (r, factor, p, lm2, x_free)
real(default), dimension(1), intent(in) :: r
real(default), intent(out) :: factor
real(default), dimension(1), intent(out) :: p
real(default), intent(in) :: lm2
real(default), intent(in), optional :: x_free
real(default) :: lx
lx = lm2; if (present (x_free)) lx = lx + log (x_free)
p(1) = 0
factor = 1
end subroutine map_on_shell_single_inverse
@ %def map_on_shell_single
@ %def map_on_shell_single_inverse
@
\subsubsection{Mapping for a Breit-Wigner resonance}
This is the standard Breit-Wigner mapping. We apply it to a single
variable, independently of or in addition to a unit-square mapping. We
assume here that the limits for the variable are 0 and 1, and that the
mass $m$ and width $w$ are rescaled appropriately, so they are
dimensionless and usually between 0 and 1.
If [[x_free]] is set, it rescales the total energy and thus mass and
width, since these are defined with respect to the total energy.
<<SF mappings: procedures>>=
subroutine map_breit_wigner (r, factor, p, m, w, x_free)
real(default), intent(out) :: r
real(default), intent(out) :: factor
real(default), intent(in) :: p
real(default), intent(in) :: m
real(default), intent(in) :: w
real(default), intent(in), optional :: x_free
real(default) :: m2, mw, a1, a2, a3, z, tmp
m2 = m ** 2
mw = m * w
if (present (x_free)) then
m2 = m2 / x_free
mw = mw / x_free
end if
a1 = atan (- m2 / mw)
a2 = atan ((1 - m2) / mw)
a3 = (a2 - a1) * mw
z = (1-p) * a1 + p * a2
if (-pi/2 < z .and. z < pi/2) then
tmp = tan (z)
r = max (m2 + mw * tmp, 0._default)
factor = a3 * (1 + tmp ** 2)
else
r = 0
factor = 0
end if
end subroutine map_breit_wigner
subroutine map_breit_wigner_inverse (r, factor, p, m, w, x_free)
real(default), intent(in) :: r
real(default), intent(out) :: factor
real(default), intent(out) :: p
real(default), intent(in) :: m
real(default), intent(in) :: w
real(default) :: m2, mw, a1, a2, a3, tmp
real(default), intent(in), optional :: x_free
m2 = m ** 2
mw = m * w
if (present (x_free)) then
m2 = m2 / x_free
mw = mw / x_free
end if
a1 = atan (- m2 / mw)
a2 = atan ((1 - m2) / mw)
a3 = (a2 - a1) * mw
tmp = (r - m2) / mw
p = (atan (tmp) - a1) / (a2 - a1)
factor = a3 * (1 + tmp ** 2)
end subroutine map_breit_wigner_inverse
@ %def map_breit_wigner
@ %def map_breit_wigner_inverse
@
\subsubsection{Mapping with endpoint enhancement}
This is a mapping which is close to the unit mapping, except that at
the endpoint(s), the output values are exponentially enhanced.
\begin{equation}
y = \tanh (a \tan (\frac{\pi}{2}x))
\end{equation}
We have two variants: one covers endpoints at $0$ and $1$
symmetrically, while the other one (which essentially maps one-half of
the range), covers only the endpoint at $1$.
<<SF mappings: procedures>>=
subroutine map_endpoint_1 (x3, factor, x1, a)
real(default), intent(out) :: x3, factor
real(default), intent(in) :: x1
real(default), intent(in) :: a
real(default) :: x2
if (abs (x1) < 1) then
x2 = tan (x1 * pi / 2)
x3 = tanh (a * x2)
factor = a * pi/2 * (1 + x2 ** 2) * (1 - x3 ** 2)
else
x3 = x1
factor = 0
end if
end subroutine map_endpoint_1
subroutine map_endpoint_inverse_1 (x3, factor, x1, a)
real(default), intent(in) :: x3
real(default), intent(out) :: x1, factor
real(default), intent(in) :: a
real(default) :: x2
if (abs (x3) < 1) then
x2 = atanh (x3) / a
x1 = 2 / pi * atan (x2)
factor = a * pi/2 * (1 + x2 ** 2) * (1 - x3 ** 2)
else
x1 = x3
factor = 0
end if
end subroutine map_endpoint_inverse_1
subroutine map_endpoint_01 (x4, factor, x0, a)
real(default), intent(out) :: x4, factor
real(default), intent(in) :: x0
real(default), intent(in) :: a
real(default) :: x1, x3
x1 = 2 * x0 - 1
call map_endpoint_1 (x3, factor, x1, a)
x4 = (x3 + 1) / 2
end subroutine map_endpoint_01
subroutine map_endpoint_inverse_01 (x4, factor, x0, a)
real(default), intent(in) :: x4
real(default), intent(out) :: x0, factor
real(default), intent(in) :: a
real(default) :: x1, x3
x3 = 2 * x4 - 1
call map_endpoint_inverse_1 (x3, factor, x1, a)
x0 = (x1 + 1) / 2
end subroutine map_endpoint_inverse_01
@ %def map_endpoint_1
@ %def map_endpoint_inverse_1
@ %def map_endpoint_01
@ %def map_endpoint_inverse_01
@
\subsubsection{Mapping with endpoint enhancement (ISR)}
This is another endpoint mapping. It is designed to flatten the ISR
singularity which is of power type at $x=1$, i.e., if
\begin{equation}
\sigma = \int_0^1 dx\,f(x)\,G(x)
= \int_0^1 dx\,\epsilon(1-x)^{-1+\epsilon} G(x),
\end{equation}
we replace this by
\begin{equation}
r = x^\epsilon \quad\Longrightarrow\quad
\sigma = \int_0^1 dr\,G(1- (1-r)^{1/\epsilon}).
\end{equation}
We expect that $\epsilon$ is small.
The actual mapping is $r\to x$ (so $x$ emerges closer to $1$). The
Jacobian that we return is thus $1/f(x)$. We compute the mapping in
terms of $\bar x\equiv 1 - x$, so we can achieve the required precision.
Because some compilers show quite wild numeric fluctuations, we
internally convert numeric types to explicit [[double]] precision.
<<SF mappings: public>>=
public :: map_power_1
public :: map_power_inverse_1
<<SF mappings: procedures>>=
subroutine map_power_1 (xb, factor, rb, eps)
real(default), intent(out) :: xb, factor
real(default), intent(in) :: rb
real(double) :: rb_db, factor_db, eps_db, xb_db
real(default), intent(in) :: eps
rb_db = real (rb, kind=double)
eps_db = real (eps, kind=double)
xb_db = rb_db ** (1 / eps_db)
if (rb_db > 0) then
factor_db = xb_db / rb_db / eps_db
factor = real (factor_db, kind=default)
else
factor = 0
end if
xb = real (xb_db, kind=default)
end subroutine map_power_1
subroutine map_power_inverse_1 (xb, factor, rb, eps)
real(default), intent(in) :: xb
real(default), intent(out) :: rb, factor
real(double) :: xb_db, factor_db, eps_db, rb_db
real(default), intent(in) :: eps
xb_db = real (xb, kind=double)
eps_db = real (eps, kind=double)
rb_db = xb_db ** eps_db
if (xb_db > 0) then
factor_db = xb_db / rb_db / eps_db
factor = real (factor_db, kind=default)
else
factor = 0
end if
rb = real (rb_db, kind=default)
end subroutine map_power_inverse_1
@ %def map_power_1
@ %def map_power_inverse_1
@ Here we apply a power mapping to both endpoints. We divide the
interval in two equal halves and apply the power mapping for the
nearest endpoint, either $0$ or $1$.
<<SF mappings: procedures>>=
subroutine map_power_01 (y, yb, factor, r, eps)
real(default), intent(out) :: y, yb, factor
real(default), intent(in) :: r
real(default), intent(in) :: eps
real(default) :: u, ub, zp, zm
u = 2 * r - 1
if (u > 0) then
ub = 2 * (1 - r)
call map_power_1 (zm, factor, ub, eps)
zp = 2 - zm
else if (u < 0) then
ub = 2 * r
call map_power_1 (zp, factor, ub, eps)
zm = 2 - zp
else
factor = 1 / eps
zp = 1
zm = 1
end if
y = zp / 2
yb = zm / 2
end subroutine map_power_01
subroutine map_power_inverse_01 (y, yb, factor, r, eps)
real(default), intent(in) :: y, yb
real(default), intent(out) :: r, factor
real(default), intent(in) :: eps
real(default) :: ub, zp, zm
zp = 2 * y
zm = 2 * yb
if (zm < zp) then
call map_power_inverse_1 (zm, factor, ub, eps)
r = 1 - ub / 2
else if (zp < zm) then
call map_power_inverse_1 (zp, factor, ub, eps)
r = ub / 2
else
factor = 1 / eps
ub = 1
r = ub / 2
end if
end subroutine map_power_inverse_01
@ %def map_power_01
@ %def map_power_inverse_01
@
\subsubsection{Structure-function channels}
A structure-function chain parameterization (channel) may contain a
mapping that applies to multiple structure functions. This is
described by an extension of the [[sf_mapping_t]] type. In addition,
it may contain mappings that apply to (other) individual structure
functions. The details of these mappings are implementation-specific.
The [[sf_channel_t]] type combines this information. It contains an
array of map codes, one for each structure-function entry. The code
values are:
\begin{description}
\item[none] MC input parameters $r$ directly become energy fractions $x$
\item[single] default mapping for a single structure-function entry
\item[multi/s] map $r\to x$ such that one MC input parameter is $\hat s/s$
\item[multi/resonance] as before, adapted to s-channel resonance
\item[multi/on-shell] as before, adapted to an on-shell particle in
the s channel
\item[multi/endpoint] like multi/s, but enhance the region near $r_i=1$
\item[multi/endpoint/res] endpoint mapping with resonance
\item[multi/endpoint/os] endpoint mapping for on-shell
\item[multi/power/os] like multi/endpoint, regulating a power singularity
\end{description}
<<SF mappings: parameters>>=
integer, parameter :: SFMAP_NONE = 0
integer, parameter :: SFMAP_SINGLE = 1
integer, parameter :: SFMAP_MULTI_S = 2
integer, parameter :: SFMAP_MULTI_RES = 3
integer, parameter :: SFMAP_MULTI_ONS = 4
integer, parameter :: SFMAP_MULTI_EP = 5
integer, parameter :: SFMAP_MULTI_EPR = 6
integer, parameter :: SFMAP_MULTI_EPO = 7
integer, parameter :: SFMAP_MULTI_IP = 8
integer, parameter :: SFMAP_MULTI_IPR = 9
integer, parameter :: SFMAP_MULTI_IPO = 10
integer, parameter :: SFMAP_MULTI_EI = 11
integer, parameter :: SFMAP_MULTI_SRS = 13
integer, parameter :: SFMAP_MULTI_SON = 14
@ %def SFMAP_NONE SFMAP_SINGLE
@ %def SFMAP_MULTI_S SFMAP_MULTI_RES SFMAP_MULTI_ONS
@ %def SFMAP_MULTI_EP SFMAP_MULTI_EPR SFMAP_MULTI_EPO
@ %def SFMAP_MULTI_IP SFMAP_MULTI_IPR SFMAP_MULTI_IPO
@ %def SFMAP_MULTI_EI
@ %def SFMAP_MULTI_SRS SFMAP_MULTI_SON
@ Then, it contains an allocatable entry for the multi mapping. This
entry holds the MC-parameter indices on which the mapping applies
(there may be more than one MC parameter per structure-function entry)
and any parameters associated with the mapping.
There can be only one multi-mapping per channel.
<<SF mappings: public>>=
public :: sf_channel_t
<<SF mappings: types>>=
type :: sf_channel_t
integer, dimension(:), allocatable :: map_code
class(sf_mapping_t), allocatable :: multi_mapping
contains
<<SF mappings: sf channel: TBP>>
end type sf_channel_t
@ %def sf_channel_t
@ The output format prints a single character for each
structure-function entry and, if applicable, an account of the mapping
parameters.
<<SF mappings: sf channel: TBP>>=
procedure :: write => sf_channel_write
<<SF mappings: procedures>>=
subroutine sf_channel_write (object, unit)
class(sf_channel_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u, i
u = given_output_unit (unit)
if (allocated (object%map_code)) then
do i = 1, size (object%map_code)
select case (object%map_code (i))
case (SFMAP_NONE)
write (u, "(1x,A)", advance="no") "-"
case (SFMAP_SINGLE)
write (u, "(1x,A)", advance="no") "+"
case (SFMAP_MULTI_S)
write (u, "(1x,A)", advance="no") "s"
case (SFMAP_MULTI_RES, SFMAP_MULTI_SRS)
write (u, "(1x,A)", advance="no") "r"
case (SFMAP_MULTI_ONS, SFMAP_MULTI_SON)
write (u, "(1x,A)", advance="no") "o"
case (SFMAP_MULTI_EP)
write (u, "(1x,A)", advance="no") "e"
case (SFMAP_MULTI_EPR)
write (u, "(1x,A)", advance="no") "p"
case (SFMAP_MULTI_EPO)
write (u, "(1x,A)", advance="no") "q"
case (SFMAP_MULTI_IP)
write (u, "(1x,A)", advance="no") "i"
case (SFMAP_MULTI_IPR)
write (u, "(1x,A)", advance="no") "i"
case (SFMAP_MULTI_IPO)
write (u, "(1x,A)", advance="no") "i"
case (SFMAP_MULTI_EI)
write (u, "(1x,A)", advance="no") "i"
case default
write (u, "(1x,A)", advance="no") "?"
end select
end do
else
write (u, "(1x,A)", advance="no") "-"
end if
if (allocated (object%multi_mapping)) then
write (u, "(1x,'/')", advance="no")
call object%multi_mapping%write (u)
else
write (u, *)
end if
end subroutine sf_channel_write
@ %def sf_channel_write
@ Initializer for a single [[sf_channel]] object.
<<SF mappings: sf channel: TBP>>=
procedure :: init => sf_channel_init
<<SF mappings: procedures>>=
subroutine sf_channel_init (channel, n_strfun)
class(sf_channel_t), intent(out) :: channel
integer, intent(in) :: n_strfun
allocate (channel%map_code (n_strfun))
channel%map_code = SFMAP_NONE
end subroutine sf_channel_init
@ %def sf_channel_init
@ Assignment. This merely copies intrinsic assignment, but apparently
the latter is bugged in gfortran 4.6.3, causing memory corruption.
<<SF mappings: sf channel: TBP>>=
generic :: assignment (=) => sf_channel_assign
procedure :: sf_channel_assign
<<SF mappings: procedures>>=
subroutine sf_channel_assign (copy, original)
class(sf_channel_t), intent(out) :: copy
type(sf_channel_t), intent(in) :: original
allocate (copy%map_code (size (original%map_code)))
copy%map_code = original%map_code
if (allocated (original%multi_mapping)) then
allocate (copy%multi_mapping, source = original%multi_mapping)
end if
end subroutine sf_channel_assign
@ %def sf_channel_assign
@ This initializer allocates an array of channels with common number of
structure-function entries, therefore it is not a type-bound procedure.
<<SF mappings: public>>=
public :: allocate_sf_channels
<<SF mappings: procedures>>=
subroutine allocate_sf_channels (channel, n_channel, n_strfun)
type(sf_channel_t), dimension(:), intent(out), allocatable :: channel
integer, intent(in) :: n_channel
integer, intent(in) :: n_strfun
integer :: c
allocate (channel (n_channel))
do c = 1, n_channel
call channel(c)%init (n_strfun)
end do
end subroutine allocate_sf_channels
@ %def allocate_sf_channels
@ This marks a given subset of indices as single-mapping.
<<SF mappings: sf channel: TBP>>=
procedure :: activate_mapping => sf_channel_activate_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_activate_mapping (channel, i_sf)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
channel%map_code(i_sf) = SFMAP_SINGLE
end subroutine sf_channel_activate_mapping
@ %def sf_channel_activate_mapping
@ This sets an s-channel multichannel mapping. The parameter indices
are not yet set.
<<SF mappings: sf channel: TBP>>=
procedure :: set_s_mapping => sf_channel_set_s_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_s_mapping (channel, i_sf, power)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: power
channel%map_code(i_sf) = SFMAP_MULTI_S
allocate (sf_s_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_s_mapping_t)
call mapping%init (power)
end select
end subroutine sf_channel_set_s_mapping
@ %def sf_channel_set_s_mapping
@ This sets an s-channel resonance multichannel mapping.
<<SF mappings: sf channel: TBP>>=
procedure :: set_res_mapping => sf_channel_set_res_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_res_mapping (channel, i_sf, m, w, single)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in) :: m, w
logical, intent(in) :: single
if (single) then
channel%map_code(i_sf) = SFMAP_MULTI_SRS
allocate (sf_res_mapping_single_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_res_mapping_single_t)
call mapping%init (m, w)
end select
else
channel%map_code(i_sf) = SFMAP_MULTI_RES
allocate (sf_res_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_res_mapping_t)
call mapping%init (m, w)
end select
end if
end subroutine sf_channel_set_res_mapping
@ %def sf_channel_set_res_mapping
@ This sets an s-channel on-shell multichannel mapping. The length of the
[[i_sf]] array must be 2. (The first parameter actually becomes an
irrelevant dummy.)
<<SF mappings: sf channel: TBP>>=
procedure :: set_os_mapping => sf_channel_set_os_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_os_mapping (channel, i_sf, m, single)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in) :: m
logical, intent(in) :: single
if (single) then
channel%map_code(i_sf) = SFMAP_MULTI_SON
allocate (sf_os_mapping_single_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_os_mapping_single_t)
call mapping%init (m)
end select
else
channel%map_code(i_sf) = SFMAP_MULTI_ONS
allocate (sf_os_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_os_mapping_t)
call mapping%init (m)
end select
end if
end subroutine sf_channel_set_os_mapping
@ %def sf_channel_set_os_mapping
@ This sets an s-channel endpoint mapping. The parameter $a$ is the
slope parameter (default 1); increasing it moves the endpoint region
(at $x=1$ to lower values in the input parameter.
region even more.
<<SF mappings: sf channel: TBP>>=
procedure :: set_ep_mapping => sf_channel_set_ep_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_ep_mapping (channel, i_sf, a)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: a
channel%map_code(i_sf) = SFMAP_MULTI_EP
allocate (sf_ep_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_ep_mapping_t)
call mapping%init (a = a)
end select
end subroutine sf_channel_set_ep_mapping
@ %def sf_channel_set_ep_mapping
@ This sets a resonant endpoint mapping.
<<SF mappings: sf channel: TBP>>=
procedure :: set_epr_mapping => sf_channel_set_epr_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_epr_mapping (channel, i_sf, a, m, w)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in) :: a, m, w
channel%map_code(i_sf) = SFMAP_MULTI_EPR
allocate (sf_epr_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_epr_mapping_t)
call mapping%init (a, m, w)
end select
end subroutine sf_channel_set_epr_mapping
@ %def sf_channel_set_epr_mapping
@ This sets an on-shell endpoint mapping.
<<SF mappings: sf channel: TBP>>=
procedure :: set_epo_mapping => sf_channel_set_epo_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_epo_mapping (channel, i_sf, a, m)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in) :: a, m
channel%map_code(i_sf) = SFMAP_MULTI_EPO
allocate (sf_epo_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_epo_mapping_t)
call mapping%init (a, m)
end select
end subroutine sf_channel_set_epo_mapping
@ %def sf_channel_set_epo_mapping
@ This sets an s-channel power mapping, regulating a singularity of
type $(1-x)^{-1+\epsilon}$. The parameter $\epsilon$ depends on the
structure function.
<<SF mappings: sf channel: TBP>>=
procedure :: set_ip_mapping => sf_channel_set_ip_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_ip_mapping (channel, i_sf, eps)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: eps
channel%map_code(i_sf) = SFMAP_MULTI_IP
allocate (sf_ip_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_ip_mapping_t)
call mapping%init (eps)
end select
end subroutine sf_channel_set_ip_mapping
@ %def sf_channel_set_ip_mapping
@ This sets an s-channel resonant power mapping, regulating a
singularity of type $(1-x)^{-1+\epsilon}$ in the presence of an
s-channel resonance. The parameter $\epsilon$ depends on the
structure function.
<<SF mappings: sf channel: TBP>>=
procedure :: set_ipr_mapping => sf_channel_set_ipr_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_ipr_mapping (channel, i_sf, eps, m, w)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: eps, m, w
channel%map_code(i_sf) = SFMAP_MULTI_IPR
allocate (sf_ipr_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_ipr_mapping_t)
call mapping%init (eps, m, w)
end select
end subroutine sf_channel_set_ipr_mapping
@ %def sf_channel_set_ipr_mapping
@ This sets an on-shell power mapping, regulating a
singularity of type $(1-x)^{-1+\epsilon}$ for the production of a
single on-shell particle.. The parameter $\epsilon$ depends on the
structure function.
<<SF mappings: sf channel: TBP>>=
procedure :: set_ipo_mapping => sf_channel_set_ipo_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_ipo_mapping (channel, i_sf, eps, m)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: eps, m
channel%map_code(i_sf) = SFMAP_MULTI_IPO
allocate (sf_ipo_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_ipo_mapping_t)
call mapping%init (eps, m)
end select
end subroutine sf_channel_set_ipo_mapping
@ %def sf_channel_set_ipo_mapping
@ This sets a combined endpoint/ISR mapping.
<<SF mappings: sf channel: TBP>>=
procedure :: set_ei_mapping => sf_channel_set_ei_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_ei_mapping (channel, i_sf, a, eps)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: a, eps
channel%map_code(i_sf) = SFMAP_MULTI_EI
allocate (sf_ei_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_ei_mapping_t)
call mapping%init (a, eps)
end select
end subroutine sf_channel_set_ei_mapping
@ %def sf_channel_set_ei_mapping
@ This sets a combined endpoint/ISR mapping with resonance.
<<SF mappings: sf channel: TBP>>=
procedure :: set_eir_mapping => sf_channel_set_eir_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_eir_mapping (channel, i_sf, a, eps, m, w)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: a, eps, m, w
channel%map_code(i_sf) = SFMAP_MULTI_EI
allocate (sf_eir_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_eir_mapping_t)
call mapping%init (a, eps, m, w)
end select
end subroutine sf_channel_set_eir_mapping
@ %def sf_channel_set_eir_mapping
@ This sets a combined endpoint/ISR mapping, on-shell.
<<SF mappings: sf channel: TBP>>=
procedure :: set_eio_mapping => sf_channel_set_eio_mapping
<<SF mappings: procedures>>=
subroutine sf_channel_set_eio_mapping (channel, i_sf, a, eps, m)
class(sf_channel_t), intent(inout) :: channel
integer, dimension(:), intent(in) :: i_sf
real(default), intent(in), optional :: a, eps, m
channel%map_code(i_sf) = SFMAP_MULTI_EI
allocate (sf_eio_mapping_t :: channel%multi_mapping)
select type (mapping => channel%multi_mapping)
type is (sf_eio_mapping_t)
call mapping%init (a, eps, m)
end select
end subroutine sf_channel_set_eio_mapping
@ %def sf_channel_set_eio_mapping
@ Return true if the mapping code at position [[i_sf]] is [[SFMAP_SINGLE]].
<<SF mappings: sf channel: TBP>>=
procedure :: is_single_mapping => sf_channel_is_single_mapping
<<SF mappings: procedures>>=
function sf_channel_is_single_mapping (channel, i_sf) result (flag)
class(sf_channel_t), intent(in) :: channel
integer, intent(in) :: i_sf
logical :: flag
flag = channel%map_code(i_sf) == SFMAP_SINGLE
end function sf_channel_is_single_mapping
@ %def sf_channel_is_single_mapping
@ Return true if the mapping code at position [[i_sf]] is any of the
[[SFMAP_MULTI]] mappings.
<<SF mappings: sf channel: TBP>>=
procedure :: is_multi_mapping => sf_channel_is_multi_mapping
<<SF mappings: procedures>>=
function sf_channel_is_multi_mapping (channel, i_sf) result (flag)
class(sf_channel_t), intent(in) :: channel
integer, intent(in) :: i_sf
logical :: flag
select case (channel%map_code(i_sf))
case (SFMAP_NONE, SFMAP_SINGLE)
flag = .false.
case default
flag = .true.
end select
end function sf_channel_is_multi_mapping
@ %def sf_channel_is_multi_mapping
@ Return the number of parameters that the multi-mapping requires. The
mapping object must be allocated.
<<SF mappings: sf channel: TBP>>=
procedure :: get_multi_mapping_n_par => sf_channel_get_multi_mapping_n_par
<<SF mappings: procedures>>=
function sf_channel_get_multi_mapping_n_par (channel) result (n_par)
class(sf_channel_t), intent(in) :: channel
integer :: n_par
if (allocated (channel%multi_mapping)) then
n_par = channel%multi_mapping%get_n_dim ()
else
n_par = 0
end if
end function sf_channel_get_multi_mapping_n_par
@ %def sf_channel_is_multi_mapping
@ Return true if there is any nontrivial mapping in any of the channels.
Note: we provide an explicit public function. gfortran 4.6.3 has
problems with the alternative implementation as a type-bound
procedure for an array base object.
<<SF mappings: public>>=
public :: any_sf_channel_has_mapping
<<SF mappings: procedures>>=
function any_sf_channel_has_mapping (channel) result (flag)
type(sf_channel_t), dimension(:), intent(in) :: channel
logical :: flag
integer :: c
flag = .false.
do c = 1, size (channel)
flag = flag .or. any (channel(c)%map_code /= SFMAP_NONE)
end do
end function any_sf_channel_has_mapping
@ %def any_sf_channel_has_mapping
@ Set a parameter index for an active multi mapping. We assume that
the index array is allocated properly.
<<SF mappings: sf channel: TBP>>=
procedure :: set_par_index => sf_channel_set_par_index
<<SF mappings: procedures>>=
subroutine sf_channel_set_par_index (channel, j, i_par)
class(sf_channel_t), intent(inout) :: channel
integer, intent(in) :: j
integer, intent(in) :: i_par
associate (mapping => channel%multi_mapping)
if (j >= 1 .and. j <= mapping%get_n_dim ()) then
if (mapping%get_index (j) == 0) then
call channel%multi_mapping%set_index (j, i_par)
else
call msg_bug ("Structure-function setup: mapping index set twice")
end if
else
call msg_bug ("Structure-function setup: mapping index out of range")
end if
end associate
end subroutine sf_channel_set_par_index
@ %def sf_channel_set_par_index
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_mappings_ut.f90]]>>=
<<File header>>
module sf_mappings_ut
use unit_tests
use sf_mappings_uti
<<Standard module head>>
<<SF mappings: public test>>
contains
<<SF mappings: test driver>>
end module sf_mappings_ut
@ %def sf_mappings_ut
@
<<[[sf_mappings_uti.f90]]>>=
<<File header>>
module sf_mappings_uti
<<Use kinds>>
use format_defs, only: FMT_11, FMT_12, FMT_13, FMT_14, FMT_15, FMT_16
use sf_mappings
<<Standard module head>>
<<SF mappings: test declarations>>
contains
<<SF mappings: tests>>
end module sf_mappings_uti
@ %def sf_mappings_ut
@ API: driver for the unit tests below.
<<SF mappings: public test>>=
public :: sf_mappings_test
<<SF mappings: test driver>>=
subroutine sf_mappings_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF mappings: execute tests>>
end subroutine sf_mappings_test
@ %def sf_mappings_test
@
\subsubsection{Check standard mapping}
Probe the standard mapping of the unit square for different parameter
values. Also calculates integrals. For a finite number of bins, they differ
slightly from $1$, but the result is well-defined because we are not using
random points.
<<SF mappings: execute tests>>=
call test (sf_mappings_1, "sf_mappings_1", &
"standard pair mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_1
<<SF mappings: tests>>=
subroutine sf_mappings_1 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p
write (u, "(A)") "* Test output: sf_mappings_1"
write (u, "(A)") "* Purpose: probe standard mapping"
write (u, "(A)")
allocate (sf_s_mapping_t :: mapping)
select type (mapping)
type is (sf_s_mapping_t)
call mapping%init ()
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.1):"
p = [0.1_default, 0.1_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
allocate (sf_s_mapping_t :: mapping)
select type (mapping)
type is (sf_s_mapping_t)
call mapping%init (power=2._default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
write (u, *)
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.1):"
p = [0.1_default, 0.1_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_1"
end subroutine sf_mappings_1
@ %def sf_mappings_1
@
\subsubsection{Channel entries}
Construct channel entries and print them.
<<SF mappings: execute tests>>=
call test (sf_mappings_2, "sf_mappings_2", &
"structure-function mapping channels", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_2
<<SF mappings: tests>>=
subroutine sf_mappings_2 (u)
integer, intent(in) :: u
type(sf_channel_t), dimension(:), allocatable :: channel
integer :: c
write (u, "(A)") "* Test output: sf_mappings_2"
write (u, "(A)") "* Purpose: construct and display &
&mapping-channel objects"
write (u, "(A)")
call allocate_sf_channels (channel, n_channel = 8, n_strfun = 2)
call channel(2)%activate_mapping ([1])
call channel(3)%set_s_mapping ([1,2])
call channel(4)%set_s_mapping ([1,2], power=2._default)
call channel(5)%set_res_mapping ([1,2], m = 0.5_default, w = 0.1_default, single = .false.)
call channel(6)%set_os_mapping ([1,2], m = 0.5_default, single = .false.)
call channel(7)%set_res_mapping ([1], m = 0.5_default, w = 0.1_default, single = .true.)
call channel(8)%set_os_mapping ([1], m = 0.5_default, single = .true.)
call channel(3)%set_par_index (1, 1)
call channel(3)%set_par_index (2, 4)
call channel(4)%set_par_index (1, 1)
call channel(4)%set_par_index (2, 4)
call channel(5)%set_par_index (1, 1)
call channel(5)%set_par_index (2, 3)
call channel(6)%set_par_index (1, 1)
call channel(6)%set_par_index (2, 2)
call channel(7)%set_par_index (1, 1)
call channel(8)%set_par_index (1, 1)
do c = 1, size (channel)
write (u, "(I0,':')", advance="no") c
call channel(c)%write (u)
end do
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_2"
end subroutine sf_mappings_2
@ %def sf_mappings_2
@
\subsubsection{Check resonance mapping}
Probe the resonance mapping of the unit square for different parameter
values. Also calculates integrals. For a finite number of bins, they differ
slightly from $1$, but the result is well-defined because we are not using
random points.
The resonance mass is at $1/2$ the energy, the width is $1/10$.
<<SF mappings: execute tests>>=
call test (sf_mappings_3, "sf_mappings_3", &
"resonant pair mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_3
<<SF mappings: tests>>=
subroutine sf_mappings_3 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p
write (u, "(A)") "* Test output: sf_mappings_3"
write (u, "(A)") "* Purpose: probe resonance pair mapping"
write (u, "(A)")
allocate (sf_res_mapping_t :: mapping)
select type (mapping)
type is (sf_res_mapping_t)
call mapping%init (0.5_default, 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.1):"
p = [0.1_default, 0.1_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_3"
end subroutine sf_mappings_3
@ %def sf_mappings_3
@
\subsubsection{Check on-shell mapping}
Probe the on-shell mapping of the unit square for different parameter
values. Also calculates integrals. In this case, the Jacobian is
constant and given by $|\log m^2|$, so this is also the value of the
integral. The factor results from the variable change in the $\delta$
function $\delta (m^2 - x_1x_2)$ which multiplies the cross section
for the case at hand.
For the test, the (rescaled) resonance mass is set at $1/2$ the
energy.
<<SF mappings: execute tests>>=
call test (sf_mappings_4, "sf_mappings_4", &
"on-shell pair mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_4
<<SF mappings: tests>>=
subroutine sf_mappings_4 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p
write (u, "(A)") "* Test output: sf_mappings_4"
write (u, "(A)") "* Purpose: probe on-shell pair mapping"
write (u, "(A)")
allocate (sf_os_mapping_t :: mapping)
select type (mapping)
type is (sf_os_mapping_t)
call mapping%init (0.5_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0,0.1):"
p = [0._default, 0.1_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0,1.0):"
p = [0._default, 1.0_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_4"
end subroutine sf_mappings_4
@ %def sf_mappings_4
@
\subsubsection{Check endpoint mapping}
Probe the endpoint mapping of the unit square for different parameter
values. Also calculates integrals. For a finite number of bins, they differ
slightly from $1$, but the result is well-defined because we are not using
random points.
<<SF mappings: execute tests>>=
call test (sf_mappings_5, "sf_mappings_5", &
"endpoint pair mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_5
<<SF mappings: tests>>=
subroutine sf_mappings_5 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p
write (u, "(A)") "* Test output: sf_mappings_5"
write (u, "(A)") "* Purpose: probe endpoint pair mapping"
write (u, "(A)")
allocate (sf_ep_mapping_t :: mapping)
select type (mapping)
type is (sf_ep_mapping_t)
call mapping%init ()
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_5"
end subroutine sf_mappings_5
@ %def sf_mappings_5
@
\subsubsection{Check endpoint resonant mapping}
Probe the endpoint mapping with resonance. Also calculates integrals.
<<SF mappings: execute tests>>=
call test (sf_mappings_6, "sf_mappings_6", &
"endpoint resonant mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_6
<<SF mappings: tests>>=
subroutine sf_mappings_6 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p
write (u, "(A)") "* Test output: sf_mappings_6"
write (u, "(A)") "* Purpose: probe endpoint resonant mapping"
write (u, "(A)")
allocate (sf_epr_mapping_t :: mapping)
select type (mapping)
type is (sf_epr_mapping_t)
call mapping%init (a = 1._default, m = 0.5_default, w = 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Same mapping without resonance:"
write (u, "(A)")
allocate (sf_epr_mapping_t :: mapping)
select type (mapping)
type is (sf_epr_mapping_t)
call mapping%init (a = 1._default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_6"
end subroutine sf_mappings_6
@ %def sf_mappings_6
@
\subsubsection{Check endpoint on-shell mapping}
Probe the endpoint mapping with an on-shell particle. Also calculates
integrals.
<<SF mappings: execute tests>>=
call test (sf_mappings_7, "sf_mappings_7", &
"endpoint on-shell mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_7
<<SF mappings: tests>>=
subroutine sf_mappings_7 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p
write (u, "(A)") "* Test output: sf_mappings_7"
write (u, "(A)") "* Purpose: probe endpoint on-shell mapping"
write (u, "(A)")
allocate (sf_epo_mapping_t :: mapping)
select type (mapping)
type is (sf_epo_mapping_t)
call mapping%init (a = 1._default, m = 0.5_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0):"
p = [0._default, 0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1,0.5):"
p = [0.1_default, 0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_7"
end subroutine sf_mappings_7
@ %def sf_mappings_7
@
\subsubsection{Check power mapping}
Probe the power mapping of the unit square for different parameter
values. Also calculates integrals. For a finite number of bins, they differ
slightly from $1$, but the result is well-defined because we are not using
random points.
<<SF mappings: execute tests>>=
call test (sf_mappings_8, "sf_mappings_8", &
"power pair mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_8
<<SF mappings: tests>>=
subroutine sf_mappings_8 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p, pb
write (u, "(A)") "* Test output: sf_mappings_8"
write (u, "(A)") "* Purpose: probe power pair mapping"
write (u, "(A)")
allocate (sf_ip_mapping_t :: mapping)
select type (mapping)
type is (sf_ip_mapping_t)
call mapping%init (eps = 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0.5):"
p = [0._default, 0.5_default]
pb= [1._default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
pb= [0.5_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9,0.5):"
p = [0.9_default, 0.5_default]
pb= [0.1_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
pb= [0.3_default, 0.8_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7,0.8):"
p = [0.7_default, 0.8_default]
pb= [0.3_default, 0.2_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.99,0.02):"
p = [0.99_default, 0.02_default]
pb= [0.01_default, 0.98_default]
call mapping%check (u, p, pb, FMT_14, FMT_12)
write (u, *)
write (u, "(A)") "Probe at (0.99,0.98):"
p = [0.99_default, 0.98_default]
pb= [0.01_default, 0.02_default]
call mapping%check (u, p, pb, FMT_14, FMT_12)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_8"
end subroutine sf_mappings_8
@ %def sf_mappings_8
@
\subsubsection{Check resonant power mapping}
Probe the power mapping of the unit square, adapted for an s-channel
resonance, for different parameter values. Also calculates integrals.
For a finite number of bins, they differ slightly from $1$, but the
result is well-defined because we are not using random points.
<<SF mappings: execute tests>>=
call test (sf_mappings_9, "sf_mappings_9", &
"power resonance mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_9
<<SF mappings: tests>>=
subroutine sf_mappings_9 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p, pb
write (u, "(A)") "* Test output: sf_mappings_9"
write (u, "(A)") "* Purpose: probe power resonant pair mapping"
write (u, "(A)")
allocate (sf_ipr_mapping_t :: mapping)
select type (mapping)
type is (sf_ipr_mapping_t)
call mapping%init (eps = 0.1_default, m = 0.5_default, w = 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0.5):"
p = [0._default, 0.5_default]
pb= [1._default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
pb= [0.5_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9,0.5):"
p = [0.9_default, 0.5_default]
pb= [0.1_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
pb= [0.3_default, 0.8_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7,0.8):"
p = [0.7_default, 0.8_default]
pb= [0.3_default, 0.2_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9999,0.02):"
p = [0.9999_default, 0.02_default]
pb= [0.0001_default, 0.98_default]
call mapping%check (u, p, pb, FMT_11, FMT_12)
write (u, *)
write (u, "(A)") "Probe at (0.9999,0.98):"
p = [0.9999_default, 0.98_default]
pb= [0.0001_default, 0.02_default]
call mapping%check (u, p, pb, FMT_11, FMT_12)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Same mapping without resonance:"
write (u, "(A)")
allocate (sf_ipr_mapping_t :: mapping)
select type (mapping)
type is (sf_ipr_mapping_t)
call mapping%init (eps = 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0.5):"
p = [0._default, 0.5_default]
pb= [1._default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.5,0.5):"
p = [0.5_default, 0.5_default]
pb= [0.5_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9,0.5):"
p = [0.9_default, 0.5_default]
pb= [0.1_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7,0.2):"
p = [0.7_default, 0.2_default]
pb= [0.3_default, 0.8_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7,0.8):"
p = [0.7_default, 0.8_default]
pb= [0.3_default, 0.2_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_9"
end subroutine sf_mappings_9
@ %def sf_mappings_9
@
\subsubsection{Check on-shell power mapping}
Probe the power mapping of the unit square, adapted for
single-particle production, for different parameter values. Also
calculates integrals. For a finite number of bins, they differ
slightly from $1$, but the result is well-defined because we are not
using random points.
<<SF mappings: execute tests>>=
call test (sf_mappings_10, "sf_mappings_10", &
"power on-shell mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_10
<<SF mappings: tests>>=
subroutine sf_mappings_10 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(2) :: p, pb
write (u, "(A)") "* Test output: sf_mappings_10"
write (u, "(A)") "* Purpose: probe power on-shell mapping"
write (u, "(A)")
allocate (sf_ipo_mapping_t :: mapping)
select type (mapping)
type is (sf_ipo_mapping_t)
call mapping%init (eps = 0.1_default, m = 0.5_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0,0.5):"
p = [0._default, 0.5_default]
pb= [1._default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0,0.02):"
p = [0._default, 0.02_default]
pb= [1._default, 0.98_default]
call mapping%check (u, p, pb, FMT_15, FMT_12)
write (u, *)
write (u, "(A)") "Probe at (0,0.98):"
p = [0._default, 0.98_default]
pb= [1._default, 0.02_default]
call mapping%check (u, p, pb, FMT_15, FMT_12)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_10"
end subroutine sf_mappings_10
@ %def sf_mappings_10
@
\subsubsection{Check combined endpoint-power mapping}
Probe the mapping for the beamstrahlung/ISR combination.
<<SF mappings: execute tests>>=
call test (sf_mappings_11, "sf_mappings_11", &
"endpoint/power combined mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_11
<<SF mappings: tests>>=
subroutine sf_mappings_11 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(4) :: p, pb
write (u, "(A)") "* Test output: sf_mappings_11"
write (u, "(A)") "* Purpose: probe power pair mapping"
write (u, "(A)")
allocate (sf_ei_mapping_t :: mapping)
select type (mapping)
type is (sf_ei_mapping_t)
call mapping%init (eps = 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
call mapping%set_index (3, 3)
call mapping%set_index (4, 4)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0.5, 0.5, 0.5, 0.5):"
p = [0.5_default, 0.5_default, 0.5_default, 0.5_default]
pb= [0.5_default, 0.5_default, 0.5_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7, 0.2, 0.4, 0.8):"
p = [0.7_default, 0.2_default, 0.4_default, 0.8_default]
pb= [0.3_default, 0.8_default, 0.6_default, 0.2_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9, 0.06, 0.95, 0.1):"
p = [0.9_default, 0.06_default, 0.95_default, 0.1_default]
pb= [0.1_default, 0.94_default, 0.05_default, 0.9_default]
call mapping%check (u, p, pb, FMT_13, FMT_12)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_11"
end subroutine sf_mappings_11
@ %def sf_mappings_11
@
\subsubsection{Check resonant endpoint-power mapping}
Probe the mapping for the beamstrahlung/ISR combination.
<<SF mappings: execute tests>>=
call test (sf_mappings_12, "sf_mappings_12", &
"endpoint/power resonant combined mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_12
<<SF mappings: tests>>=
subroutine sf_mappings_12 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(4) :: p, pb
write (u, "(A)") "* Test output: sf_mappings_12"
write (u, "(A)") "* Purpose: probe resonant combined mapping"
write (u, "(A)")
allocate (sf_eir_mapping_t :: mapping)
select type (mapping)
type is (sf_eir_mapping_t)
call mapping%init (a = 1._default, &
eps = 0.1_default, m = 0.5_default, w = 0.1_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
call mapping%set_index (3, 3)
call mapping%set_index (4, 4)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0.5, 0.5, 0.5, 0.5):"
p = [0.5_default, 0.5_default, 0.5_default, 0.5_default]
pb= [0.5_default, 0.5_default, 0.5_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7, 0.2, 0.4, 0.8):"
p = [0.7_default, 0.2_default, 0.4_default, 0.8_default]
pb= [0.3_default, 0.8_default, 0.6_default, 0.2_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9, 0.06, 0.95, 0.1):"
p = [0.9_default, 0.06_default, 0.95_default, 0.1_default]
pb= [0.1_default, 0.94_default, 0.05_default, 0.9_default]
call mapping%check (u, p, pb, FMT_15, FMT_12)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_12"
end subroutine sf_mappings_12
@ %def sf_mappings_12
@
\subsubsection{Check on-shell endpoint-power mapping}
Probe the mapping for the beamstrahlung/ISR combination.
<<SF mappings: execute tests>>=
call test (sf_mappings_13, "sf_mappings_13", &
"endpoint/power on-shell combined mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_13
<<SF mappings: tests>>=
subroutine sf_mappings_13 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(4) :: p, pb
write (u, "(A)") "* Test output: sf_mappings_13"
write (u, "(A)") "* Purpose: probe on-shell combined mapping"
write (u, "(A)")
allocate (sf_eio_mapping_t :: mapping)
select type (mapping)
type is (sf_eio_mapping_t)
call mapping%init (a = 1._default, eps = 0.1_default, m = 0.5_default)
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
call mapping%set_index (3, 3)
call mapping%set_index (4, 4)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0.5, 0.5, 0.5, 0.5):"
p = [0.5_default, 0.5_default, 0.5_default, 0.5_default]
pb= [0.5_default, 0.5_default, 0.5_default, 0.5_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.7, 0.2, 0.4, 0.8):"
p = [0.7_default, 0.2_default, 0.4_default, 0.8_default]
pb= [0.3_default, 0.8_default, 0.6_default, 0.2_default]
call mapping%check (u, p, pb, FMT_16)
write (u, *)
write (u, "(A)") "Probe at (0.9, 0.06, 0.95, 0.1):"
p = [0.9_default, 0.06_default, 0.95_default, 0.1_default]
pb= [0.1_default, 0.94_default, 0.05_default, 0.9_default]
call mapping%check (u, p, pb, FMT_14, FMT_12)
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_13"
end subroutine sf_mappings_13
@ %def sf_mappings_13
@
\subsubsection{Check rescaling}
Check the rescaling factor in on-shell basic mapping.
<<SF mappings: execute tests>>=
call test (sf_mappings_14, "sf_mappings_14", &
"rescaled on-shell mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_14
<<SF mappings: tests>>=
subroutine sf_mappings_14 (u)
integer, intent(in) :: u
real(default), dimension(2) :: p2, r2
real(default), dimension(1) :: p1, r1
real(default) :: f, x_free, m2
write (u, "(A)") "* Test output: sf_mappings_14"
write (u, "(A)") "* Purpose: probe rescaling in os mapping"
write (u, "(A)")
x_free = 0.9_default
m2 = 0.5_default
write (u, "(A)") "* Two parameters"
write (u, "(A)")
p2 = [0.1_default, 0.2_default]
call map_on_shell (r2, f, p2, -log (m2), x_free)
write (u, "(A,9(1x," // FMT_14 // "))") "p =", p2
write (u, "(A,9(1x," // FMT_14 // "))") "r =", r2
write (u, "(A,9(1x," // FMT_14 // "))") "f =", f
write (u, "(A,9(1x," // FMT_14 // "))") "*r=", x_free * product (r2)
write (u, *)
call map_on_shell_inverse (r2, f, p2, -log (m2), x_free)
write (u, "(A,9(1x," // FMT_14 // "))") "p =", p2
write (u, "(A,9(1x," // FMT_14 // "))") "r =", r2
write (u, "(A,9(1x," // FMT_14 // "))") "f =", f
write (u, "(A,9(1x," // FMT_14 // "))") "*r=", x_free * product (r2)
write (u, "(A)")
write (u, "(A)") "* One parameter"
write (u, "(A)")
p1 = [0.1_default]
call map_on_shell_single (r1, f, p1, -log (m2), x_free)
write (u, "(A,9(1x," // FMT_14 // "))") "p =", p1
write (u, "(A,9(1x," // FMT_14 // "))") "r =", r1
write (u, "(A,9(1x," // FMT_14 // "))") "f =", f
write (u, "(A,9(1x," // FMT_14 // "))") "*r=", x_free * product (r1)
write (u, *)
call map_on_shell_single_inverse (r1, f, p1, -log (m2), x_free)
write (u, "(A,9(1x," // FMT_14 // "))") "p =", p1
write (u, "(A,9(1x," // FMT_14 // "))") "r =", r1
write (u, "(A,9(1x," // FMT_14 // "))") "f =", f
write (u, "(A,9(1x," // FMT_14 // "))") "*r=", x_free * product (r1)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_14"
end subroutine sf_mappings_14
@ %def sf_mappings_14
@
\subsubsection{Check single parameter resonance mapping}
Probe the resonance mapping of the unit interval for different parameter
values. Also calculates integrals.
The resonance mass is at $1/2$ the energy, the width is $1/10$.
<<SF mappings: execute tests>>=
call test (sf_mappings_15, "sf_mappings_15", &
"resonant single mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_15
<<SF mappings: tests>>=
subroutine sf_mappings_15 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(1) :: p
write (u, "(A)") "* Test output: sf_mappings_15"
write (u, "(A)") "* Purpose: probe resonance single mapping"
write (u, "(A)")
allocate (sf_res_mapping_single_t :: mapping)
select type (mapping)
type is (sf_res_mapping_single_t)
call mapping%init (0.5_default, 0.1_default)
call mapping%set_index (1, 1)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0):"
p = [0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5):"
p = [0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.1):"
p = [0.1_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_15"
end subroutine sf_mappings_15
@ %def sf_mappings_15
@
\subsubsection{Check single parameter on-shell mapping}
Probe the on-shell (pseudo) mapping of the unit interval for different parameter
values. Also calculates integrals.
The resonance mass is at $1/2$ the energy.
<<SF mappings: execute tests>>=
call test (sf_mappings_16, "sf_mappings_16", &
"on-shell single mapping", &
u, results)
<<SF mappings: test declarations>>=
public :: sf_mappings_16
<<SF mappings: tests>>=
subroutine sf_mappings_16 (u)
integer, intent(in) :: u
class(sf_mapping_t), allocatable :: mapping
real(default), dimension(1) :: p
write (u, "(A)") "* Test output: sf_mappings_16"
write (u, "(A)") "* Purpose: probe on-shell single mapping"
write (u, "(A)")
allocate (sf_os_mapping_single_t :: mapping)
select type (mapping)
type is (sf_os_mapping_single_t)
call mapping%init (0.5_default)
call mapping%set_index (1, 1)
end select
call mapping%write (u)
write (u, *)
write (u, "(A)") "Probe at (0):"
p = [0._default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Probe at (0.5):"
p = [0.5_default]
call mapping%check (u, p, 1-p, "F7.5")
write (u, *)
write (u, "(A)") "Compute integral:"
write (u, "(3x,A,1x,F7.5)") "I =", mapping%integral (100000)
deallocate (mapping)
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_mappings_16"
end subroutine sf_mappings_16
@ %def sf_mappings_16
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Structure function base}
<<[[sf_base.f90]]>>=
<<File header>>
module sf_base
<<Use kinds>>
<<Use strings>>
use io_units
use format_utils, only: write_separator
use format_defs, only: FMT_17, FMT_19
use physics_defs, only: n_beam_structure_int
use diagnostics
use lorentz
use quantum_numbers
use interactions
use evaluators
use pdg_arrays
use beams
use sf_aux
use sf_mappings
<<Standard module head>>
<<SF base: public>>
<<SF base: parameters>>
<<SF base: types>>
<<SF base: interfaces>>
contains
<<SF base: procedures>>
end module sf_base
@ %def sf_base
@
\subsection{Abstract rescale data-type}
NLO calculations involve treatment of initial state parton radiation.
The radiation of a parton rescale the energy fraction which enters the hard process.
We allow for different rescale settings by extending the abstract
[[sf_rescale_t]] data type.
<<SF base: public>>=
public :: sf_rescale_t
<<SF base: types>>=
type, abstract :: sf_rescale_t
integer :: i_restricted_beam = -1
integer :: i_beam = 0
logical :: gluon = .false.
contains
<<SF base: rescaling function: TBP>>
end type sf_rescale_t
@ %def sf_rescale_t
@
<<SF base: rescaling function: TBP>>=
procedure (sf_rescale_apply), deferred :: apply
<<SF base: interfaces>>=
abstract interface
subroutine sf_rescale_apply (func, x)
import
class(sf_rescale_t), intent(in) :: func
real(default), intent(inout) :: x
end subroutine sf_rescale_apply
end interface
@ %def rescale_apply
@
<<SF base: rescaling function: TBP>>=
procedure :: set_i_beam => sf_rescale_set_i_beam
<<SF base: procedures>>=
subroutine sf_rescale_set_i_beam (func, i_beam)
class(sf_rescale_t), intent(inout) :: func
integer, intent(in) :: i_beam
func%i_beam = i_beam
end subroutine sf_rescale_set_i_beam
@ %def rescale_set_i_beam
@ Restrict rescaling to beam with index [[i_beam]].
<<SF base: rescaling function: TBP>>=
procedure :: restrict_to_beam => sf_rescale_restrict_to_beam
<<SF base: procedures>>=
subroutine sf_rescale_restrict_to_beam (func, i_beam)
class(sf_rescale_t), intent(inout) :: func
integer, intent(in) :: i_beam
if (func%i_restricted_beam > 0) &
call msg_bug ("[sf_rescale_restrict_to_beam] restricted beam already set.")
func%i_restricted_beam = i_beam
end subroutine sf_rescale_restrict_to_beam
@ %def sf_rescale_set_rescaled_beam
@ Test on restricted beam momentum rescaling or no restriction.
<<SF base: rescaling function: TBP>>=
procedure :: is_restricted => sf_rescale_is_restricted
<<SF base: procedures>>=
logical function sf_rescale_is_restricted (func, i_beam) result (yorn)
class(sf_rescale_t), intent(in) :: func
integer, intent(in) :: i_beam
yorn = (func%i_restricted_beam > 0)
yorn = yorn .and. (func%i_restricted_beam /= i_beam)
end function sf_rescale_is_restricted
@ %def sf_rescale_is_restricted
@ In case, gluon splits into quark/anti-quark, the DGLAP formulas become
degenerate over flavours. We add subtraction with gluonic pdfs only which are
convoluted with all quark/anti-quark flavours - hence PDF singlet.
<<SF base: rescaling function: TBP>>=
procedure :: set_gluons => sf_rescale_set_gluons
procedure :: has_gluons => sf_rescale_has_gluons
<<SF base: procedures>>=
subroutine sf_rescale_set_gluons (func, yorn)
class(sf_rescale_t), intent(inout) :: func
logical, intent(in) :: yorn
func%gluon = yorn
end subroutine sf_rescale_set_gluons
logical function sf_rescale_has_gluons (func) result (yorn)
class(sf_rescale_t), intent(in) :: func
yorn = func%gluon
end function sf_rescale_has_gluons
@ %def sf_rescale_set_gluons rescale_has_gluons
@
\subsection{Abstract structure-function data type}
This type should hold all configuration data for a specific type of
structure function. The base object is empty; the implementations
will fill it.
<<SF base: public>>=
public :: sf_data_t
<<SF base: types>>=
type, abstract :: sf_data_t
contains
<<SF base: sf data: TBP>>
end type sf_data_t
@ %def sf_data_t
@ Output.
<<SF base: sf data: TBP>>=
procedure (sf_data_write), deferred :: write
<<SF base: interfaces>>=
abstract interface
subroutine sf_data_write (data, unit, verbose)
import
class(sf_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
end subroutine sf_data_write
end interface
@ %def sf_data_write
@ Return true if this structure function is in generator mode. In
that case, all parameters are free, otherwise bound. (We do not
support mixed cases.) Default is: no generator.
<<SF base: sf data: TBP>>=
procedure :: is_generator => sf_data_is_generator
<<SF base: procedures>>=
function sf_data_is_generator (data) result (flag)
class(sf_data_t), intent(in) :: data
logical :: flag
flag = .false.
end function sf_data_is_generator
@ %def sf_data_is_generator
@ Return the number of input parameters that determine the
structure function.
<<SF base: sf data: TBP>>=
procedure (sf_data_get_int), deferred :: get_n_par
<<SF base: interfaces>>=
abstract interface
function sf_data_get_int (data) result (n)
import
class(sf_data_t), intent(in) :: data
integer :: n
end function sf_data_get_int
end interface
@ %def sf_data_get_int
@ Return the outgoing particle PDG codes for the current setup. The codes can
be an array of particles, for each beam.
<<SF base: sf data: TBP>>=
procedure (sf_data_get_pdg_out), deferred :: get_pdg_out
<<SF base: interfaces>>=
abstract interface
subroutine sf_data_get_pdg_out (data, pdg_out)
import
class(sf_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
end subroutine sf_data_get_pdg_out
end interface
@ %def sf_data_get_pdg_out
@ Allocate a matching structure function interaction object and
properly initialize it.
<<SF base: sf data: TBP>>=
procedure (sf_data_allocate_sf_int), deferred :: allocate_sf_int
<<SF base: interfaces>>=
abstract interface
subroutine sf_data_allocate_sf_int (data, sf_int)
import
class(sf_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
end subroutine sf_data_allocate_sf_int
end interface
@ %def sf_data_allocate_sf_int
@ Return the PDF set index, if applicable. We implement a default
method which returns zero. The PDF (builtin and LHA) implementations
will override this.
<<SF base: sf data: TBP>>=
procedure :: get_pdf_set => sf_data_get_pdf_set
<<SF base: procedures>>=
elemental function sf_data_get_pdf_set (data) result (pdf_set)
class(sf_data_t), intent(in) :: data
integer :: pdf_set
pdf_set = 0
end function sf_data_get_pdf_set
@ %def sf_data_get_pdf_set
@ Return the spectrum file, if applicable. We implement a default
method which returns zero. CIRCE1, CIRCE2 and the beam spectrum will
override this.
<<SF base: sf data: TBP>>=
procedure :: get_beam_file => sf_data_get_beam_file
<<SF base: procedures>>=
function sf_data_get_beam_file (data) result (file)
class(sf_data_t), intent(in) :: data
type(string_t) :: file
file = ""
end function sf_data_get_beam_file
@ %def sf_data_get_beam_file
@
\subsection{Structure-function chain configuration}
This is the data type that the [[process]] module uses for setting
up its structure-function chain. For each structure function described
by the beam data, there is an entry. The [[i]] array indicates the
beam(s) to which this structure function applies, and the [[data]]
object contains the actual configuration data.
<<SF base: public>>=
public :: sf_config_t
<<SF base: types>>=
type :: sf_config_t
integer, dimension(:), allocatable :: i
class(sf_data_t), allocatable :: data
contains
<<SF base: sf config: TBP>>
end type sf_config_t
@ %def sf_config_t
@ Output:
<<SF base: sf config: TBP>>=
procedure :: write => sf_config_write
<<SF base: procedures>>=
subroutine sf_config_write (object, unit)
class(sf_config_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
if (allocated (object%i)) then
write (u, "(1x,A,2(1x,I0))") "Structure-function configuration: &
&beam(s)", object%i
if (allocated (object%data)) call object%data%write (u)
else
write (u, "(1x,A)") "Structure-function configuration: [undefined]"
end if
end subroutine sf_config_write
@ %def sf_config_write
@ Initialize.
<<SF base: sf config: TBP>>=
procedure :: init => sf_config_init
<<SF base: procedures>>=
subroutine sf_config_init (sf_config, i_beam, sf_data)
class(sf_config_t), intent(out) :: sf_config
integer, dimension(:), intent(in) :: i_beam
class(sf_data_t), intent(in) :: sf_data
allocate (sf_config%i (size (i_beam)), source = i_beam)
allocate (sf_config%data, source = sf_data)
end subroutine sf_config_init
@ %def sf_config_init
@ Return the PDF set, if any.
<<SF base: sf config: TBP>>=
procedure :: get_pdf_set => sf_config_get_pdf_set
<<SF base: procedures>>=
elemental function sf_config_get_pdf_set (sf_config) result (pdf_set)
class(sf_config_t), intent(in) :: sf_config
integer :: pdf_set
pdf_set = sf_config%data%get_pdf_set ()
end function sf_config_get_pdf_set
@ %def sf_config_get_pdf_set
@ Return the beam spectrum file, if any.
<<SF base: sf config: TBP>>=
procedure :: get_beam_file => sf_config_get_beam_file
<<SF base: procedures>>=
function sf_config_get_beam_file (sf_config) result (file)
class(sf_config_t), intent(in) :: sf_config
type(string_t) :: file
file = sf_config%data%get_beam_file ()
end function sf_config_get_beam_file
@ %def sf_config_get_beam_file
@
\subsection{Structure-function instance}
The [[sf_int_t]] data type contains an [[interaction_t]] object (it is
an extension of this type) and a pointer to the [[sf_data_t]]
configuration data. This interaction, or copies of it, is used to
implement structure-function kinematics and dynamics in the context of
process evaluation.
The status code [[status]] tells whether the interaction is undefined,
has defined kinematics (but matrix elements invalid), or is completely
defined. There is also a status code for failure. The implementation
is responsible for updating the status.
The entries [[mi2]], [[mr2]], and [[mo2]] hold the squared
invariant masses of the incoming, radiated, and outgoing particle,
respectively. They are supposed to be set upon initialization, but
could also be varied event by event.
If the radiated or outgoing mass is nonzero, we may need to apply an
on-shell projection. The projection mode is stored as
[[on_shell_mode]].
The array [[beam_index]] is the list of beams on which this structure
function applies ($1$, $2$, or both). The arrays [[incoming]],
[[radiated]], and [[outgoing]] contain the indices of the respective
particle sets within the interaction, for convenient lookup. The
array [[par_index]] indicates the MC input parameters that this entry
will use up in the structure-function chain. The first parameter (or
the first two, for a spectrum) in this array determines the momentum
fraction and is thus subject to global mappings.
In the abstract base type, we do not implement the data pointer. This
allows us to restrict its type in the implementations.
<<SF base: public>>=
public :: sf_int_t
<<SF base: types>>=
type, abstract, extends (interaction_t) :: sf_int_t
integer :: status = SF_UNDEFINED
real(default), dimension(:), allocatable :: mi2
real(default), dimension(:), allocatable :: mr2
real(default), dimension(:), allocatable :: mo2
integer :: on_shell_mode = KEEP_ENERGY
logical :: qmin_defined = .false.
logical :: qmax_defined = .false.
real(default), dimension(:), allocatable :: qmin
real(default), dimension(:), allocatable :: qmax
integer, dimension(:), allocatable :: beam_index
integer, dimension(:), allocatable :: incoming
integer, dimension(:), allocatable :: radiated
integer, dimension(:), allocatable :: outgoing
integer, dimension(:), allocatable :: par_index
integer, dimension(:), allocatable :: par_primary
contains
<<SF base: sf int: TBP>>
end type sf_int_t
@ %def sf_int_t
@ Status codes. The codes that refer to links, masks, and
connections, apply to structure-function chains only.
The status codes are public.
<<SF base: parameters>>=
integer, parameter, public :: SF_UNDEFINED = 0
integer, parameter, public :: SF_INITIAL = 1
integer, parameter, public :: SF_DONE_LINKS = 2
integer, parameter, public :: SF_FAILED_MASK = 3
integer, parameter, public :: SF_DONE_MASK = 4
integer, parameter, public :: SF_FAILED_CONNECTIONS = 5
integer, parameter, public :: SF_DONE_CONNECTIONS = 6
integer, parameter, public :: SF_SEED_KINEMATICS = 10
integer, parameter, public :: SF_FAILED_KINEMATICS = 11
integer, parameter, public :: SF_DONE_KINEMATICS = 12
integer, parameter, public :: SF_FAILED_EVALUATION = 13
integer, parameter, public :: SF_EVALUATED = 20
@ %def SF_UNDEFINED SF_INITIAL
@ %def SF_DONE_LINKS SF_DONE_MASK SF_DONE_CONNECTIONS
@ %def SF_DONE_KINEMATICS SF_EVALUATED
@ %def SF_FAILED_MASK SF_FAILED_CONNECTIONS
@ %def SF_FAILED_KINEMATICS SF_FAILED_EVALUATION
@ Write a string version of the status code:
<<SF base: procedures>>=
subroutine write_sf_status (status, u)
integer, intent(in) :: status
integer, intent(in) :: u
select case (status)
case (SF_UNDEFINED)
write (u, "(1x,'[',A,']')") "undefined"
case (SF_INITIAL)
write (u, "(1x,'[',A,']')") "initialized"
case (SF_DONE_LINKS)
write (u, "(1x,'[',A,']')") "links set"
case (SF_FAILED_MASK)
write (u, "(1x,'[',A,']')") "mask mismatch"
case (SF_DONE_MASK)
write (u, "(1x,'[',A,']')") "mask set"
case (SF_FAILED_CONNECTIONS)
write (u, "(1x,'[',A,']')") "connections failed"
case (SF_DONE_CONNECTIONS)
write (u, "(1x,'[',A,']')") "connections set"
case (SF_SEED_KINEMATICS)
write (u, "(1x,'[',A,']')") "incoming momenta set"
case (SF_FAILED_KINEMATICS)
write (u, "(1x,'[',A,']')") "kinematics failed"
case (SF_DONE_KINEMATICS)
write (u, "(1x,'[',A,']')") "kinematics set"
case (SF_FAILED_EVALUATION)
write (u, "(1x,'[',A,']')") "evaluation failed"
case (SF_EVALUATED)
write (u, "(1x,'[',A,']')") "evaluated"
end select
end subroutine write_sf_status
@ %def write_sf_status
@ This is the basic output routine. Display status and interaction.
<<SF base: sf int: TBP>>=
procedure :: base_write => sf_int_base_write
<<SF base: procedures>>=
subroutine sf_int_base_write (object, unit, testflag)
class(sf_int_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "SF instance:"
call write_sf_status (object%status, u)
if (allocated (object%beam_index)) &
write (u, "(3x,A,2(1x,I0))") "beam =", object%beam_index
if (allocated (object%incoming)) &
write (u, "(3x,A,2(1x,I0))") "incoming =", object%incoming
if (allocated (object%radiated)) &
write (u, "(3x,A,2(1x,I0))") "radiated =", object%radiated
if (allocated (object%outgoing)) &
write (u, "(3x,A,2(1x,I0))") "outgoing =", object%outgoing
if (allocated (object%par_index)) &
write (u, "(3x,A,2(1x,I0))") "parameter =", object%par_index
if (object%qmin_defined) &
write (u, "(3x,A,1x," // FMT_19 // ")") "q_min =", object%qmin
if (object%qmax_defined) &
write (u, "(3x,A,1x," // FMT_19 // ")") "q_max =", object%qmax
call object%interaction_t%basic_write (u, testflag = testflag)
end subroutine sf_int_base_write
@ %def sf_int_base_write
@ The type string identifies the structure function class, and possibly more
details about the structure function.
<<SF base: sf int: TBP>>=
procedure (sf_int_type_string), deferred :: type_string
<<SF base: interfaces>>=
abstract interface
function sf_int_type_string (object) result (string)
import
class(sf_int_t), intent(in) :: object
type(string_t) :: string
end function sf_int_type_string
end interface
@ %def sf_int_type_string
@ Output of the concrete object. We should not forget to call the
output routine for the base type.
<<SF base: sf int: TBP>>=
procedure (sf_int_write), deferred :: write
<<SF base: interfaces>>=
abstract interface
subroutine sf_int_write (object, unit, testflag)
import
class(sf_int_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
end subroutine sf_int_write
end interface
@ %def sf_int_write
@ Basic initialization: set the invariant masses for the particles and
initialize the interaction. The caller should then add states to the
interaction and freeze it.
The dimension of the mask should be equal to the sum of the dimensions
of the mass-squared arrays, which determine incoming, radiated, and
outgoing particles, respectively.
Optionally, we can define minimum and maximum values for the momentum
transfer to the outgoing particle(s). If all masses are zero, this is
actually required for non-collinear splitting.
<<SF base: sf int: TBP>>=
procedure :: base_init => sf_int_base_init
<<SF base: procedures>>=
subroutine sf_int_base_init &
(sf_int, mask, mi2, mr2, mo2, qmin, qmax, hel_lock)
class(sf_int_t), intent(out) :: sf_int
type (quantum_numbers_mask_t), dimension(:), intent(in) :: mask
real(default), dimension(:), intent(in) :: mi2, mr2, mo2
real(default), dimension(:), intent(in), optional :: qmin, qmax
integer, dimension(:), intent(in), optional :: hel_lock
allocate (sf_int%mi2 (size (mi2)))
sf_int%mi2 = mi2
allocate (sf_int%mr2 (size (mr2)))
sf_int%mr2 = mr2
allocate (sf_int%mo2 (size (mo2)))
sf_int%mo2 = mo2
if (present (qmin)) then
sf_int%qmin_defined = .true.
allocate (sf_int%qmin (size (qmin)))
sf_int%qmin = qmin
end if
if (present (qmax)) then
sf_int%qmax_defined = .true.
allocate (sf_int%qmax (size (qmax)))
sf_int%qmax = qmax
end if
call sf_int%interaction_t%basic_init &
(size (mi2), 0, size (mr2) + size (mo2), &
mask = mask, hel_lock = hel_lock, set_relations = .true.)
end subroutine sf_int_base_init
@ %def sf_int_base_init
@ Set the indices of the incoming, radiated, and outgoing particles,
respectively.
<<SF base: sf int: TBP>>=
procedure :: set_incoming => sf_int_set_incoming
procedure :: set_radiated => sf_int_set_radiated
procedure :: set_outgoing => sf_int_set_outgoing
<<SF base: procedures>>=
subroutine sf_int_set_incoming (sf_int, incoming)
class(sf_int_t), intent(inout) :: sf_int
integer, dimension(:), intent(in) :: incoming
allocate (sf_int%incoming (size (incoming)))
sf_int%incoming = incoming
end subroutine sf_int_set_incoming
subroutine sf_int_set_radiated (sf_int, radiated)
class(sf_int_t), intent(inout) :: sf_int
integer, dimension(:), intent(in) :: radiated
allocate (sf_int%radiated (size (radiated)))
sf_int%radiated = radiated
end subroutine sf_int_set_radiated
subroutine sf_int_set_outgoing (sf_int, outgoing)
class(sf_int_t), intent(inout) :: sf_int
integer, dimension(:), intent(in) :: outgoing
allocate (sf_int%outgoing (size (outgoing)))
sf_int%outgoing = outgoing
end subroutine sf_int_set_outgoing
@ %def sf_int_set_incoming
@ %def sf_int_set_radiated
@ %def sf_int_set_outgoing
@ Initialization. This proceeds via an abstract data object, which
for the actual implementation should have the matching concrete type.
Since all implementations have the same signature, we can prepare a
deferred procedure. The data object will become the target of a
corresponding pointer within the [[sf_int_t]] implementation.
This should call the previous procedure.
<<SF base: sf int: TBP>>=
procedure (sf_int_init), deferred :: init
<<SF base: interfaces>>=
abstract interface
subroutine sf_int_init (sf_int, data)
import
class(sf_int_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
end subroutine sf_int_init
end interface
@ %def sf_int_init
@ Complete initialization. This routine contains initializations that can
only be performed after the interaction object got its final shape, i.e.,
redundant helicities have been eliminated by matching with beams and process.
The default implementation does nothing.
The [[target]] attribute is formally required since some overriding
implementations use a temporary pointer (iterator) to the state-matrix
component. It doesn't appear to make a real difference, though.
<<SF base: sf int: TBP>>=
procedure :: setup_constants => sf_int_setup_constants
<<SF base: procedures>>=
subroutine sf_int_setup_constants (sf_int)
class(sf_int_t), intent(inout), target :: sf_int
end subroutine sf_int_setup_constants
@ %def sf_int_setup_constants
@ Set beam indices, i.e., the beam(s) on which
this structure function applies.
<<SF base: sf int: TBP>>=
procedure :: set_beam_index => sf_int_set_beam_index
<<SF base: procedures>>=
subroutine sf_int_set_beam_index (sf_int, beam_index)
class(sf_int_t), intent(inout) :: sf_int
integer, dimension(:), intent(in) :: beam_index
allocate (sf_int%beam_index (size (beam_index)))
sf_int%beam_index = beam_index
end subroutine sf_int_set_beam_index
@ %def sf_int_set_beam_index
@ Set parameter indices, indicating which MC input parameters are to
be used for evaluating this structure function.
<<SF base: sf int: TBP>>=
procedure :: set_par_index => sf_int_set_par_index
<<SF base: procedures>>=
subroutine sf_int_set_par_index (sf_int, par_index)
class(sf_int_t), intent(inout) :: sf_int
integer, dimension(:), intent(in) :: par_index
allocate (sf_int%par_index (size (par_index)))
sf_int%par_index = par_index
end subroutine sf_int_set_par_index
@ %def sf_int_set_par_index
@ Initialize the structure-function kinematics, setting incoming
momenta. We assume that array shapes match.
Three versions. The first version relies on the momenta being linked
to another interaction. The second version sets the momenta
explicitly. In the third version, we first compute momenta for the
specified energies and store those.
<<SF base: sf int: TBP>>=
generic :: seed_kinematics => sf_int_receive_momenta
generic :: seed_kinematics => sf_int_seed_momenta
generic :: seed_kinematics => sf_int_seed_energies
procedure :: sf_int_receive_momenta
procedure :: sf_int_seed_momenta
procedure :: sf_int_seed_energies
<<SF base: procedures>>=
subroutine sf_int_receive_momenta (sf_int)
class(sf_int_t), intent(inout) :: sf_int
if (sf_int%status >= SF_INITIAL) then
call sf_int%receive_momenta ()
sf_int%status = SF_SEED_KINEMATICS
end if
end subroutine sf_int_receive_momenta
subroutine sf_int_seed_momenta (sf_int, k)
class(sf_int_t), intent(inout) :: sf_int
type(vector4_t), dimension(:), intent(in) :: k
if (sf_int%status >= SF_INITIAL) then
call sf_int%set_momenta (k, outgoing=.false.)
sf_int%status = SF_SEED_KINEMATICS
end if
end subroutine sf_int_seed_momenta
subroutine sf_int_seed_energies (sf_int, E)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: E
type(vector4_t), dimension(:), allocatable :: k
integer :: j
if (sf_int%status >= SF_INITIAL) then
allocate (k (size (E)))
if (all (E**2 >= sf_int%mi2)) then
do j = 1, size (E)
k(j) = vector4_moving (E(j), &
(3-2*j) * sqrt (E(j)**2 - sf_int%mi2(j)), 3)
end do
call sf_int%seed_kinematics (k)
end if
end if
end subroutine sf_int_seed_energies
@ %def sf_int_seed_momenta
@ %def sf_int_seed_energies
@ Tell if in generator mode. By default, this is false. To be
overridden where appropriate; we may refer to the [[is_generator]]
method of the [[data]] component in the concrete type.
<<SF base: sf int: TBP>>=
procedure :: is_generator => sf_int_is_generator
<<SF base: procedures>>=
function sf_int_is_generator (sf_int) result (flag)
class(sf_int_t), intent(in) :: sf_int
logical :: flag
flag = .false.
end function sf_int_is_generator
@ %def sf_int_is_generator
@ Generate free parameters [[r]]. Parameters are free if they do not
correspond to integration parameters (i.e., are bound), but are
generated by the structure function object itself. By default, all
parameters are bound, and the output values of this procedure will be
discarded. With free parameters, we have to override this procedure.
The value [[x_free]] is the renormalization factor of the total energy
that corresponds to the free parameters. If there are no free
parameters, the procedure will not change its value, which starts as
unity. Otherwise, the fraction is typically decreased, but may also
be increased in some cases.
<<SF base: sf int: TBP>>=
procedure :: generate_free => sf_int_generate_free
<<SF base: procedures>>=
subroutine sf_int_generate_free (sf_int, r, rb, x_free)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(inout) :: x_free
r = 0
rb= 1
end subroutine sf_int_generate_free
@ %def sf_int_generate_free
@ Complete the structure-function kinematics, derived from an input
parameter (array) $r$ between 0 and 1. The interaction momenta are
calculated, and we return $x$ (the momentum fraction), and $f$ (the
Jacobian factor for the map $r\to x$), if [[map]] is set.
If the [[map]] flag is unset, $r$ and $x$ values will coincide, and $f$ will
become unity. If it is set, the structure-function implementation chooses a
convenient mapping from $r$ to $x$ with Jacobian $f$.
In the [[inverse_kinematics]] variant, we exchange the intent of [[x]]
and [[r]]. The momenta are calculated only if the optional flag
-[[set_momenta]] is present and set.
+[[set_momenta]] is present and set. Internal parameters of [[sf_int]]
+are calculated only if the optional flag [[set_x]] is present and set.
Update 2018-08-22: Throughout this algorithm, we now carry
[[xb]]=$1-x$ together with [[x]] values, as we did for [[r]] before.
This allows us to handle unstable endpoint numerics wherever
necessary. The only place where the changes actually did matter was
for inverse kinematics in the ISR setup, with a very soft photon, but
it might be most sensible to apply the extension with [[xb]] everywhere.
<<SF base: sf int: TBP>>=
procedure (sf_int_complete_kinematics), deferred :: complete_kinematics
procedure (sf_int_inverse_kinematics), deferred :: inverse_kinematics
<<SF base: interfaces>>=
abstract interface
subroutine sf_int_complete_kinematics (sf_int, x, xb, f, r, rb, map)
import
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
end subroutine sf_int_complete_kinematics
end interface
abstract interface
- subroutine sf_int_inverse_kinematics (sf_int, x, xb, f, r, rb, map, &
- set_momenta)
+ subroutine sf_int_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
import
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
end subroutine sf_int_inverse_kinematics
end interface
@ %def sf_int_complete_kinematics
@ %def sf_int_inverse_kinematics
@ Single splitting: compute momenta, given $x$ input parameters. We
assume that the incoming momentum is set. The status code is set to
[[SF_FAILED_KINEMATICS]] if
the $x$ array does not correspond to a valid momentum configuration.
Otherwise, it is updated to [[SF_DONE_KINEMATICS]].
We force the outgoing particle on-shell. The on-shell projection is
determined by the [[on_shell_mode]]. The radiated particle should already be
on shell.
<<SF base: sf int: TBP>>=
procedure :: split_momentum => sf_int_split_momentum
<<SF base: procedures>>=
subroutine sf_int_split_momentum (sf_int, x, xb)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
type(splitting_data_t) :: sd
real(default) :: E1, E2
logical :: fail
if (sf_int%status >= SF_SEED_KINEMATICS) then
k = sf_int%get_momentum (1)
call sd%init (k, &
sf_int%mi2(1), sf_int%mr2(1), sf_int%mo2(1), &
collinear = size (x) == 1)
call sd%set_t_bounds (x(1), xb(1))
select case (size (x))
case (1)
case (3)
if (sf_int%qmax_defined) then
if (sf_int%qmin_defined) then
call sd%sample_t (x(2), &
t0 = - sf_int%qmax(1) ** 2, t1 = - sf_int%qmin(1) ** 2)
else
call sd%sample_t (x(2), &
t0 = - sf_int%qmax(1) ** 2)
end if
else
if (sf_int%qmin_defined) then
call sd%sample_t (x(2), t1 = - sf_int%qmin(1) ** 2)
else
call sd%sample_t (x(2))
end if
end if
call sd%sample_phi (x(3))
case default
call msg_bug ("Structure function: impossible number of parameters")
end select
q = sd%split_momentum (k)
call on_shell (q, [sf_int%mr2, sf_int%mo2], &
sf_int%on_shell_mode)
call sf_int%set_momenta (q, outgoing=.true.)
E1 = energy (q(1))
E2 = energy (q(2))
fail = E1 < 0 .or. E2 < 0 &
.or. E1 ** 2 < sf_int%mr2(1) &
.or. E2 ** 2 < sf_int%mo2(1)
if (fail) then
sf_int%status = SF_FAILED_KINEMATICS
else
sf_int%status = SF_DONE_KINEMATICS
end if
end if
end subroutine sf_int_split_momentum
@ %def sf_test_split_momentum
@ Pair splitting: two incoming momenta, two radiated, two outgoing.
This is simple because we insist on all momenta being collinear.
<<SF base: sf int: TBP>>=
procedure :: split_momenta => sf_int_split_momenta
<<SF base: procedures>>=
subroutine sf_int_split_momenta (sf_int, x, xb)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
type(vector4_t), dimension(2) :: k
type(vector4_t), dimension(4) :: q
real(default), dimension(4) :: E
logical :: fail
if (sf_int%status >= SF_SEED_KINEMATICS) then
select case (size (x))
case (2)
case default
call msg_bug ("Pair structure function: recoil requested &
&but not implemented yet")
end select
k(1) = sf_int%get_momentum (1)
k(2) = sf_int%get_momentum (2)
q(1:2) = xb * k
q(3:4) = x * k
select case (size (sf_int%mr2))
case (2)
call on_shell (q, &
[sf_int%mr2(1), sf_int%mr2(2), &
sf_int%mo2(1), sf_int%mo2(2)], &
sf_int%on_shell_mode)
call sf_int%set_momenta (q, outgoing=.true.)
E = energy (q)
fail = any (E < 0) &
.or. any (E(1:2) ** 2 < sf_int%mr2) &
.or. any (E(3:4) ** 2 < sf_int%mo2)
case default; call msg_bug ("split momenta: incorrect use")
end select
if (fail) then
sf_int%status = SF_FAILED_KINEMATICS
else
sf_int%status = SF_DONE_KINEMATICS
end if
end if
end subroutine sf_int_split_momenta
@ %def sf_int_split_momenta
@ Pair spectrum: the reduced version of the previous splitting,
without radiated momenta.
<<SF base: sf int: TBP>>=
procedure :: reduce_momenta => sf_int_reduce_momenta
<<SF base: procedures>>=
subroutine sf_int_reduce_momenta (sf_int, x)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
type(vector4_t), dimension(2) :: k
type(vector4_t), dimension(2) :: q
real(default), dimension(2) :: E
logical :: fail
if (sf_int%status >= SF_SEED_KINEMATICS) then
select case (size (x))
case (2)
case default
call msg_bug ("Pair spectrum: recoil requested &
&but not implemented yet")
end select
k(1) = sf_int%get_momentum (1)
k(2) = sf_int%get_momentum (2)
q = x * k
call on_shell (q, &
[sf_int%mo2(1), sf_int%mo2(2)], &
sf_int%on_shell_mode)
call sf_int%set_momenta (q, outgoing=.true.)
E = energy (q)
fail = any (E < 0) &
.or. any (E ** 2 < sf_int%mo2)
if (fail) then
sf_int%status = SF_FAILED_KINEMATICS
else
sf_int%status = SF_DONE_KINEMATICS
end if
end if
end subroutine sf_int_reduce_momenta
@ %def sf_int_reduce_momenta
@ The inverse procedure: we compute the [[x]] array from the momentum
configuration. In an overriding TBP, we may also set internal data
that depend on this, for convenience.
NOTE: Here and above, the single-particle case is treated in detail,
allowing for non-collinearity and non-vanishing masses and nontrivial
momentum-transfer bounds. For the pair case, we currently implement
only collinear splitting and assume massless particles. This should
be improved.
Update 2017-08-22: recover also [[xb]], using the updated [[recover]]
method of the splitting-data object. Th
<<SF base: sf int: TBP>>=
procedure :: recover_x => sf_int_recover_x
procedure :: base_recover_x => sf_int_recover_x
<<SF base: procedures>>=
subroutine sf_int_recover_x (sf_int, x, xb, x_free)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(inout), optional :: x_free
type(vector4_t), dimension(:), allocatable :: k
type(vector4_t), dimension(:), allocatable :: q
type(splitting_data_t) :: sd
if (sf_int%status >= SF_SEED_KINEMATICS) then
allocate (k (sf_int%interaction_t%get_n_in ()))
allocate (q (sf_int%interaction_t%get_n_out ()))
k = sf_int%get_momenta (outgoing=.false.)
q = sf_int%get_momenta (outgoing=.true.)
select case (size (k))
case (1)
call sd%init (k(1), &
sf_int%mi2(1), sf_int%mr2(1), sf_int%mo2(1), &
collinear = size (x) == 1)
call sd%recover (k(1), q, sf_int%on_shell_mode)
x(1) = sd%get_x ()
xb(1) = sd%get_xb ()
select case (size (x))
case (1)
case (3)
if (sf_int%qmax_defined) then
if (sf_int%qmin_defined) then
call sd%inverse_t (x(2), &
t0 = - sf_int%qmax(1) ** 2, t1 = - sf_int%qmin(1) ** 2)
else
call sd%inverse_t (x(2), &
t0 = - sf_int%qmax(1) ** 2)
end if
else
if (sf_int%qmin_defined) then
call sd%inverse_t (x(2), t1 = - sf_int%qmin(1) ** 2)
else
call sd%inverse_t (x(2))
end if
end if
call sd%inverse_phi (x(3))
xb(2:3) = 1 - x(2:3)
case default
call msg_bug ("Structure function: impossible number &
&of parameters")
end select
case (2)
select case (size (x))
case (2)
case default
call msg_bug ("Pair structure function: recoil requested &
&but not implemented yet")
end select
select case (sf_int%on_shell_mode)
case (KEEP_ENERGY)
select case (size (q))
case (4)
x = energy (q(3:4)) / energy (k)
xb= energy (q(1:2)) / energy (k)
case (2)
x = energy (q) / energy (k)
xb= 1 - x
end select
case (KEEP_MOMENTUM)
select case (size (q))
case (4)
x = longitudinal_part (q(3:4)) / longitudinal_part (k)
xb= longitudinal_part (q(1:2)) / longitudinal_part (k)
case (2)
x = longitudinal_part (q) / longitudinal_part (k)
xb= 1 - x
end select
end select
end select
end if
end subroutine sf_int_recover_x
@ %def sf_int_recover_x
@ Apply the structure function, i.e., evaluate the interaction. For
the calculation, we may use the stored momenta, any further
information stored inside the [[sf_int]] implementation during
kinematics setup, and the given energy scale. It may happen that for
the given kinematics the value is not defined. This should be
indicated by the status code.
<<SF base: sf int: TBP>>=
procedure (sf_int_apply), deferred :: apply
<<SF base: interfaces>>=
abstract interface
subroutine sf_int_apply (sf_int, scale, rescale, i_sub, fill_sub)
import
class(sf_int_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
end subroutine sf_int_apply
end interface
@ %def sf_int_apply
@
\subsection{Accessing the structure function}
Return metadata. Once [[interaction_t]] is rewritten in OO, some of this will
be inherited.
The number of outgoing is equal to the number of incoming particles. The
radiated particles are the difference.
<<SF base: sf int: TBP>>=
procedure :: get_n_in => sf_int_get_n_in
procedure :: get_n_rad => sf_int_get_n_rad
procedure :: get_n_out => sf_int_get_n_out
<<SF base: procedures>>=
pure function sf_int_get_n_in (object) result (n_in)
class(sf_int_t), intent(in) :: object
integer :: n_in
n_in = object%interaction_t%get_n_in ()
end function sf_int_get_n_in
pure function sf_int_get_n_rad (object) result (n_rad)
class(sf_int_t), intent(in) :: object
integer :: n_rad
n_rad = object%interaction_t%get_n_out () &
- object%interaction_t%get_n_in ()
end function sf_int_get_n_rad
pure function sf_int_get_n_out (object) result (n_out)
class(sf_int_t), intent(in) :: object
integer :: n_out
n_out = object%interaction_t%get_n_in ()
end function sf_int_get_n_out
@ %def sf_int_get_n_in
@ %def sf_int_get_n_rad
@ %def sf_int_get_n_out
@ Number of matrix element entries in the interaction:
<<SF base: sf int: TBP>>=
procedure :: get_n_states => sf_int_get_n_states
<<SF base: procedures>>=
function sf_int_get_n_states (sf_int) result (n_states)
class(sf_int_t), intent(in) :: sf_int
integer :: n_states
n_states = sf_int%get_n_matrix_elements ()
end function sf_int_get_n_states
@ %def sf_int_get_n_states
@ Return a specific state as a quantum-number array.
<<SF base: sf int: TBP>>=
procedure :: get_state => sf_int_get_state
<<SF base: procedures>>=
function sf_int_get_state (sf_int, i) result (qn)
class(sf_int_t), intent(in) :: sf_int
type(quantum_numbers_t), dimension(:), allocatable :: qn
integer, intent(in) :: i
allocate (qn (sf_int%get_n_tot ()))
qn = sf_int%get_quantum_numbers (i)
end function sf_int_get_state
@ %def sf_int_get_state
@ Return the matrix-element values for all states. We can assume that
the matrix elements are real, so we take the real part.
<<SF base: sf int: TBP>>=
procedure :: get_values => sf_int_get_values
<<SF base: procedures>>=
subroutine sf_int_get_values (sf_int, value)
class(sf_int_t), intent(in) :: sf_int
real(default), dimension(:), intent(out) :: value
integer :: i
if (sf_int%status >= SF_EVALUATED) then
do i = 1, size (value)
value(i) = real (sf_int%get_matrix_element (i))
end do
else
value = 0
end if
end subroutine sf_int_get_values
@ %def sf_int_get_values
@
\subsection{Direct calculations}
Compute a structure function value (array) directly, given an array of $x$
values and a scale. If the energy is also given, we initialize the
kinematics for that energy, otherwise take it from a previous run.
We assume that the [[E]] array has dimension [[n_in]], and the [[x]]
array has [[n_par]].
Note: the output x values ([[xx]] and [[xxb]]) are unused in this use case.
<<SF base: sf int: TBP>>=
procedure :: compute_values => sf_int_compute_values
<<SF base: procedures>>=
subroutine sf_int_compute_values (sf_int, value, x, xb, scale, E)
class(sf_int_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: value
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(in) :: scale
real(default), dimension(:), intent(in), optional :: E
real(default), dimension(size (x)) :: xx, xxb
real(default) :: f
if (present (E)) call sf_int%seed_kinematics (E)
if (sf_int%status >= SF_SEED_KINEMATICS) then
call sf_int%complete_kinematics (xx, xxb, f, x, xb, map=.false.)
call sf_int%apply (scale)
call sf_int%get_values (value)
value = value * f
else
value = 0
end if
end subroutine sf_int_compute_values
@ %def sf_int_compute_values
@ Compute just a single value for one of the states, i.e., throw the
others away.
<<SF base: sf int: TBP>>=
procedure :: compute_value => sf_int_compute_value
<<SF base: procedures>>=
subroutine sf_int_compute_value &
(sf_int, i_state, value, x, xb, scale, E)
class(sf_int_t), intent(inout) :: sf_int
integer, intent(in) :: i_state
real(default), intent(out) :: value
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(in) :: scale
real(default), dimension(:), intent(in), optional :: E
real(default), dimension(:), allocatable :: value_array
if (sf_int%status >= SF_INITIAL) then
allocate (value_array (sf_int%get_n_states ()))
call sf_int%compute_values (value_array, x, xb, scale, E)
value = value_array(i_state)
else
value = 0
end if
end subroutine sf_int_compute_value
@ %def sf_int_compute_value
@
\subsection{Structure-function instance}
This is a wrapper for [[sf_int_t]] objects, such that we can
build an array with different structure-function types. The
structure-function contains an array (a sequence) of [[sf_int_t]]
objects.
The object, it holds the evaluator that connects the preceding part of the
structure-function chain to the current interaction.
It also stores the input and output parameter values for the
contained structure function. The [[r]] array has a second dimension,
corresponding to the mapping channels in a multi-channel
configuration. There is a Jacobian entry [[f]] for each channel. The
corresponding logical array [[mapping]] tells whether we apply the
mapping appropriate for the current structure function in this channel.
The [[x]] parameter values (energy fractions) are common to all
channels.
<<SF base: types>>=
type :: sf_instance_t
class(sf_int_t), allocatable :: int
type(evaluator_t) :: eval
real(default), dimension(:,:), allocatable :: r
real(default), dimension(:,:), allocatable :: rb
real(default), dimension(:), allocatable :: f
logical, dimension(:), allocatable :: m
real(default), dimension(:), allocatable :: x
real(default), dimension(:), allocatable :: xb
end type sf_instance_t
@ %def sf_instance_t
@
\subsection{Structure-function chain}
A chain is an array of structure functions [[sf]], initiated by a beam setup.
We do not use this directly for evaluation, but create instances with
copies of the contained interactions.
[[n_par]] is the total number of parameters that is necessary for
completely determining the structure-function chain. [[n_bound]] is
the number of MC input parameters that are requested from the
integrator. The difference of [[n_par]] and [[n_bound]] is the number
of free parameters, which are generated by a structure-function
object in generator mode.
<<SF base: public>>=
public :: sf_chain_t
<<SF base: types>>=
type, extends (beam_t) :: sf_chain_t
type(beam_data_t), pointer :: beam_data => null ()
integer :: n_in = 0
integer :: n_strfun = 0
integer :: n_par = 0
integer :: n_bound = 0
type(sf_instance_t), dimension(:), allocatable :: sf
logical :: trace_enable = .false.
integer :: trace_unit = 0
contains
<<SF base: sf chain: TBP>>
end type sf_chain_t
@ %def sf_chain_t
@ Finalizer.
<<SF base: sf chain: TBP>>=
procedure :: final => sf_chain_final
<<SF base: procedures>>=
subroutine sf_chain_final (object)
class(sf_chain_t), intent(inout) :: object
integer :: i
call object%final_tracing ()
if (allocated (object%sf)) then
do i = 1, size (object%sf, 1)
associate (sf => object%sf(i))
if (allocated (sf%int)) then
call sf%int%final ()
end if
end associate
end do
end if
call beam_final (object%beam_t)
end subroutine sf_chain_final
@ %def sf_chain_final
@ Output.
<<SF base: sf chain: TBP>>=
procedure :: write => sf_chain_write
<<SF base: procedures>>=
subroutine sf_chain_write (object, unit)
class(sf_chain_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u, i
u = given_output_unit (unit)
write (u, "(1x,A)") "Incoming particles / structure-function chain:"
if (associated (object%beam_data)) then
write (u, "(3x,A,I0)") "n_in = ", object%n_in
write (u, "(3x,A,I0)") "n_strfun = ", object%n_strfun
write (u, "(3x,A,I0)") "n_par = ", object%n_par
if (object%n_par /= object%n_bound) then
write (u, "(3x,A,I0)") "n_bound = ", object%n_bound
end if
call object%beam_data%write (u)
call write_separator (u)
call beam_write (object%beam_t, u)
if (allocated (object%sf)) then
do i = 1, object%n_strfun
associate (sf => object%sf(i))
call write_separator (u)
if (allocated (sf%int)) then
call sf%int%write (u)
else
write (u, "(1x,A)") "SF instance: [undefined]"
end if
end associate
end do
end if
else
write (u, "(3x,A)") "[undefined]"
end if
end subroutine sf_chain_write
@ %def sf_chain_write
@ Initialize: setup beams. The [[beam_data]] target must remain valid
for the lifetime of the chain, since we just establish a pointer. The
structure-function configuration array is used to initialize the
individual structure-function entries. The target attribute is needed
because the [[sf_int]] entries establish pointers to the configuration data.
<<SF base: sf chain: TBP>>=
procedure :: init => sf_chain_init
<<SF base: procedures>>=
subroutine sf_chain_init (sf_chain, beam_data, sf_config)
class(sf_chain_t), intent(out) :: sf_chain
type(beam_data_t), intent(in), target :: beam_data
type(sf_config_t), dimension(:), intent(in), optional, target :: sf_config
integer :: i
sf_chain%beam_data => beam_data
sf_chain%n_in = beam_data%get_n_in ()
call beam_init (sf_chain%beam_t, beam_data)
if (present (sf_config)) then
sf_chain%n_strfun = size (sf_config)
allocate (sf_chain%sf (sf_chain%n_strfun))
do i = 1, sf_chain%n_strfun
call sf_chain%set_strfun (i, sf_config(i)%i, sf_config(i)%data)
end do
end if
end subroutine sf_chain_init
@ %def sf_chain_init
@ Receive the beam momenta from a source to which the beam interaction
is linked.
<<SF base: sf chain: TBP>>=
procedure :: receive_beam_momenta => sf_chain_receive_beam_momenta
<<SF base: procedures>>=
subroutine sf_chain_receive_beam_momenta (sf_chain)
class(sf_chain_t), intent(inout), target :: sf_chain
type(interaction_t), pointer :: beam_int
beam_int => sf_chain%get_beam_int_ptr ()
call beam_int%receive_momenta ()
end subroutine sf_chain_receive_beam_momenta
@ %def sf_chain_receive_beam_momenta
@ Explicitly set the beam momenta.
<<SF base: sf chain: TBP>>=
procedure :: set_beam_momenta => sf_chain_set_beam_momenta
<<SF base: procedures>>=
subroutine sf_chain_set_beam_momenta (sf_chain, p)
class(sf_chain_t), intent(inout) :: sf_chain
type(vector4_t), dimension(:), intent(in) :: p
call beam_set_momenta (sf_chain%beam_t, p)
end subroutine sf_chain_set_beam_momenta
@ %def sf_chain_set_beam_momenta
@ Set a structure-function entry. We use the [[data]] input to
allocate the [[int]] structure-function instance with appropriate
type, then initialize the entry. The entry establishes a pointer to
[[data]].
The index [[i]] is the structure-function index in the chain.
<<SF base: sf chain: TBP>>=
procedure :: set_strfun => sf_chain_set_strfun
<<SF base: procedures>>=
subroutine sf_chain_set_strfun (sf_chain, i, beam_index, data)
class(sf_chain_t), intent(inout) :: sf_chain
integer, intent(in) :: i
integer, dimension(:), intent(in) :: beam_index
class(sf_data_t), intent(in), target :: data
integer :: n_par, j
n_par = data%get_n_par ()
call data%allocate_sf_int (sf_chain%sf(i)%int)
associate (sf_int => sf_chain%sf(i)%int)
call sf_int%init (data)
call sf_int%set_beam_index (beam_index)
call sf_int%set_par_index &
([(j, j = sf_chain%n_par + 1, sf_chain%n_par + n_par)])
sf_chain%n_par = sf_chain%n_par + n_par
if (.not. data%is_generator ()) then
sf_chain%n_bound = sf_chain%n_bound + n_par
end if
end associate
end subroutine sf_chain_set_strfun
@ %def sf_chain_set_strfun
@ Return the number of structure-function parameters.
<<SF base: sf chain: TBP>>=
procedure :: get_n_par => sf_chain_get_n_par
procedure :: get_n_bound => sf_chain_get_n_bound
<<SF base: procedures>>=
function sf_chain_get_n_par (sf_chain) result (n)
class(sf_chain_t), intent(in) :: sf_chain
integer :: n
n = sf_chain%n_par
end function sf_chain_get_n_par
function sf_chain_get_n_bound (sf_chain) result (n)
class(sf_chain_t), intent(in) :: sf_chain
integer :: n
n = sf_chain%n_bound
end function sf_chain_get_n_bound
@ %def sf_chain_get_n_par
@ %def sf_chain_get_n_bound
@ Return a pointer to the beam interaction.
<<SF base: sf chain: TBP>>=
procedure :: get_beam_int_ptr => sf_chain_get_beam_int_ptr
<<SF base: procedures>>=
function sf_chain_get_beam_int_ptr (sf_chain) result (int)
type(interaction_t), pointer :: int
class(sf_chain_t), intent(in), target :: sf_chain
int => beam_get_int_ptr (sf_chain%beam_t)
end function sf_chain_get_beam_int_ptr
@ %def sf_chain_get_beam_int_ptr
@ Enable the trace feature: record structure function data (input
parameters, $x$ values, evaluation result) to an external file.
<<SF base: sf chain: TBP>>=
procedure :: setup_tracing => sf_chain_setup_tracing
procedure :: final_tracing => sf_chain_final_tracing
<<SF base: procedures>>=
subroutine sf_chain_setup_tracing (sf_chain, file)
class(sf_chain_t), intent(inout) :: sf_chain
type(string_t), intent(in) :: file
if (sf_chain%n_strfun > 0) then
sf_chain%trace_enable = .true.
sf_chain%trace_unit = free_unit ()
open (sf_chain%trace_unit, file = char (file), action = "write", &
status = "replace")
call sf_chain%write_trace_header ()
else
call msg_error ("Beam structure: no structure functions, tracing &
&disabled")
end if
end subroutine sf_chain_setup_tracing
subroutine sf_chain_final_tracing (sf_chain)
class(sf_chain_t), intent(inout) :: sf_chain
if (sf_chain%trace_enable) then
close (sf_chain%trace_unit)
sf_chain%trace_enable = .false.
end if
end subroutine sf_chain_final_tracing
@ %def sf_chain_setup_tracing
@ %def sf_chain_final_tracing
@ Write the header for the tracing file.
<<SF base: sf chain: TBP>>=
procedure :: write_trace_header => sf_chain_write_trace_header
<<SF base: procedures>>=
subroutine sf_chain_write_trace_header (sf_chain)
class(sf_chain_t), intent(in) :: sf_chain
integer :: u
if (sf_chain%trace_enable) then
u = sf_chain%trace_unit
write (u, "('# ',A)") "WHIZARD output: &
&structure-function sampling data"
write (u, "('# ',A,1x,I0)") "Number of sf records:", sf_chain%n_strfun
write (u, "('# ',A,1x,I0)") "Number of parameters:", sf_chain%n_par
write (u, "('# ',A)") "Columns: channel, p(n_par), x(n_par), f, Jac * f"
end if
end subroutine sf_chain_write_trace_header
@ %def sf_chain_write_trace_header
@ Write a record which collects the structure function data for the
current data point. For the selected channel, we print first the
input integration parameters, then the $x$ values, then the
structure-function value summed over all quantum numbers, then the
structure function value times the mapping Jacobian.
<<SF base: sf chain: TBP>>=
procedure :: trace => sf_chain_trace
<<SF base: procedures>>=
subroutine sf_chain_trace (sf_chain, c_sel, p, x, f, sf_sum)
class(sf_chain_t), intent(in) :: sf_chain
integer, intent(in) :: c_sel
real(default), dimension(:,:), intent(in) :: p
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: f
real(default), intent(in) :: sf_sum
real(default) :: sf_sum_pac, f_sf_sum_pac
integer :: u, i
if (sf_chain%trace_enable) then
u = sf_chain%trace_unit
write (u, "(1x,I0)", advance="no") c_sel
write (u, "(2x)", advance="no")
do i = 1, sf_chain%n_par
write (u, "(1x," // FMT_17 // ")", advance="no") p(i,c_sel)
end do
write (u, "(2x)", advance="no")
do i = 1, sf_chain%n_par
write (u, "(1x," // FMT_17 // ")", advance="no") x(i)
end do
write (u, "(2x)", advance="no")
sf_sum_pac = sf_sum
f_sf_sum_pac = f(c_sel) * sf_sum
call pacify (sf_sum_pac, 1.E-28_default)
call pacify (f_sf_sum_pac, 1.E-28_default)
write (u, "(2(1x," // FMT_17 // "))") sf_sum_pac, f_sf_sum_pac
end if
end subroutine sf_chain_trace
@ %def sf_chain_trace
@
\subsection{Chain instances}
A structure-function chain instance contains copies of the
interactions in the configuration chain, suitably linked to each other
and connected by evaluators.
After initialization, [[out_sf]] should point, for each beam, to the
last structure function that affects this beam. [[out_sf_i]] should
indicate the index of the corresponding outgoing particle within that
structure-function interaction.
Analogously, [[out_eval]] is the last evaluator in the
structure-function chain, which contains the complete set of outgoing
particles. [[out_eval_i]] should indicate the index of the outgoing
particles, within that evaluator, which will initiate the collision.
When calculating actual kinematics, we fill the [[p]], [[r]], and
[[x]] arrays and the [[f]] factor. The [[p]] array denotes the MC
input parameters as they come from the random-number generator. The
[[r]] array results from applying global mappings. The [[x]] array
results from applying structure-function local mappings. The $x$
values can be interpreted directly as momentum fractions (or angle
fractions, where recoil is involved). The [[f]] factor is the
Jacobian that results from applying all mappings.
Update 2017-08-22: carry and output all complements ([[pb]], [[rb]],
[[xb]]). Previously, [[xb]] was not included in the record, and the
output did not contain either. It does become more verbose, however.
The [[mapping]] entry may store a global mapping that is applied to a
combination of $x$ values and structure functions, as opposed to mappings that
affect only a single structure function. It is applied before the latter
mappings, in the transformation from the [[p]] array to the [[r]] array. For
parameters affected by this mapping, we should ensure that they are not
involved in a local mapping.
<<SF base: public>>=
public :: sf_chain_instance_t
<<SF base: types>>=
type, extends (beam_t) :: sf_chain_instance_t
type(sf_chain_t), pointer :: config => null ()
integer :: status = SF_UNDEFINED
type(sf_instance_t), dimension(:), allocatable :: sf
integer, dimension(:), allocatable :: out_sf
integer, dimension(:), allocatable :: out_sf_i
integer :: out_eval = 0
integer, dimension(:), allocatable :: out_eval_i
integer :: selected_channel = 0
real(default), dimension(:,:), allocatable :: p, pb
real(default), dimension(:,:), allocatable :: r, rb
real(default), dimension(:), allocatable :: f
real(default), dimension(:), allocatable :: x, xb
logical, dimension(:), allocatable :: bound
real(default) :: x_free = 1
type(sf_channel_t), dimension(:), allocatable :: channel
contains
<<SF base: sf chain instance: TBP>>
end type sf_chain_instance_t
@ %def sf_chain_instance_t
@ Finalizer.
<<SF base: sf chain instance: TBP>>=
procedure :: final => sf_chain_instance_final
<<SF base: procedures>>=
subroutine sf_chain_instance_final (object)
class(sf_chain_instance_t), intent(inout) :: object
integer :: i
if (allocated (object%sf)) then
do i = 1, size (object%sf, 1)
associate (sf => object%sf(i))
if (allocated (sf%int)) then
call sf%eval%final ()
call sf%int%final ()
end if
end associate
end do
end if
call beam_final (object%beam_t)
end subroutine sf_chain_instance_final
@ %def sf_chain_instance_final
@ Output.
Note: nagfor 5.3.1 appears to be slightly confused with the allocation
status. We check both for allocation and nonzero size.
<<SF base: sf chain instance: TBP>>=
procedure :: write => sf_chain_instance_write
<<SF base: procedures>>=
subroutine sf_chain_instance_write (object, unit, col_verbose)
class(sf_chain_instance_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: col_verbose
integer :: u, i, c
u = given_output_unit (unit)
write (u, "(1x,A)", advance="no") "Structure-function chain instance:"
call write_sf_status (object%status, u)
if (allocated (object%out_sf)) then
write (u, "(3x,A)", advance="no") "outgoing (interactions) ="
do i = 1, size (object%out_sf)
write (u, "(1x,I0,':',I0)", advance="no") &
object%out_sf(i), object%out_sf_i(i)
end do
write (u, *)
end if
if (object%out_eval /= 0) then
write (u, "(3x,A)", advance="no") "outgoing (evaluators) ="
do i = 1, size (object%out_sf)
write (u, "(1x,I0,':',I0)", advance="no") &
object%out_eval, object%out_eval_i(i)
end do
write (u, *)
end if
if (allocated (object%sf)) then
if (size (object%sf) /= 0) then
write (u, "(1x,A)") "Structure-function parameters:"
do c = 1, size (object%f)
write (u, "(1x,A,I0,A)", advance="no") "Channel #", c, ":"
if (c == object%selected_channel) then
write (u, "(1x,A)") "[selected]"
else
write (u, *)
end if
write (u, "(3x,A,9(1x,F9.7))") "p =", object%p(:,c)
write (u, "(3x,A,9(1x,F9.7))") "pb=", object%pb(:,c)
write (u, "(3x,A,9(1x,F9.7))") "r =", object%r(:,c)
write (u, "(3x,A,9(1x,F9.7))") "rb=", object%rb(:,c)
write (u, "(3x,A,9(1x,ES13.7))") "f =", object%f(c)
write (u, "(3x,A)", advance="no") "m ="
call object%channel(c)%write (u)
end do
write (u, "(3x,A,9(1x,F9.7))") "x =", object%x
write (u, "(3x,A,9(1x,F9.7))") "xb=", object%xb
if (.not. all (object%bound)) then
write (u, "(3x,A,9(1x,L1))") "bound =", object%bound
end if
end if
end if
call write_separator (u)
call beam_write (object%beam_t, u, col_verbose = col_verbose)
if (allocated (object%sf)) then
do i = 1, size (object%sf)
associate (sf => object%sf(i))
call write_separator (u)
if (allocated (sf%int)) then
if (allocated (sf%r)) then
write (u, "(1x,A)") "Structure-function parameters:"
do c = 1, size (sf%f)
write (u, "(1x,A,I0,A)", advance="no") "Channel #", c, ":"
if (c == object%selected_channel) then
write (u, "(1x,A)") "[selected]"
else
write (u, *)
end if
write (u, "(3x,A,9(1x,F9.7))") "r =", sf%r(:,c)
write (u, "(3x,A,9(1x,F9.7))") "rb=", sf%rb(:,c)
write (u, "(3x,A,9(1x,ES13.7))") "f =", sf%f(c)
write (u, "(3x,A,9(1x,L1,7x))") "m =", sf%m(c)
end do
write (u, "(3x,A,9(1x,F9.7))") "x =", sf%x
write (u, "(3x,A,9(1x,F9.7))") "xb=", sf%xb
end if
call sf%int%write(u)
if (.not. sf%eval%is_empty ()) then
call sf%eval%write (u, col_verbose = col_verbose)
end if
end if
end associate
end do
end if
end subroutine sf_chain_instance_write
@ %def sf_chain_instance_write
@ Initialize. This creates a copy of the interactions in the
configuration chain, assumed to be properly initialized. In the copy,
we allocate the [[p]] etc.\ arrays.
The brute-force assignment of the [[sf]] component would be
straightforward, but at least gfortran 4.6.3 would like a more
fine-grained copy. In any case, the copy is deep
as far as allocatables are concerned, but for the contained
[[interaction_t]] objects the copy is shallow, as long as we do not
bind defined assignment to the type. Therefore, we have to re-assign
the [[interaction_t]] components explicitly, this time calling the
proper defined assignment. Furthermore, we allocate the parameter
arrays for each structure function.
<<SF base: sf chain instance: TBP>>=
procedure :: init => sf_chain_instance_init
<<SF base: procedures>>=
subroutine sf_chain_instance_init (chain, config, n_channel)
class(sf_chain_instance_t), intent(out), target :: chain
type(sf_chain_t), intent(in), target :: config
integer, intent(in) :: n_channel
integer :: i, j
integer :: n_par_tot, n_par, n_strfun
chain%config => config
n_strfun = config%n_strfun
chain%beam_t = config%beam_t
allocate (chain%out_sf (config%n_in), chain%out_sf_i (config%n_in))
allocate (chain%out_eval_i (config%n_in))
chain%out_sf = 0
chain%out_sf_i = [(i, i = 1, config%n_in)]
chain%out_eval_i = chain%out_sf_i
n_par_tot = 0
if (n_strfun /= 0) then
allocate (chain%sf (n_strfun))
do i = 1, n_strfun
associate (sf => chain%sf(i))
allocate (sf%int, source=config%sf(i)%int)
sf%int%interaction_t = config%sf(i)%int%interaction_t
n_par = size (sf%int%par_index)
allocate (sf%r (n_par, n_channel)); sf%r = 0
allocate (sf%rb(n_par, n_channel)); sf%rb= 0
allocate (sf%f (n_channel)); sf%f = 0
allocate (sf%m (n_channel)); sf%m = .false.
allocate (sf%x (n_par)); sf%x = 0
allocate (sf%xb(n_par)); sf%xb= 0
n_par_tot = n_par_tot + n_par
end associate
end do
allocate (chain%p (n_par_tot, n_channel)); chain%p = 0
allocate (chain%pb(n_par_tot, n_channel)); chain%pb= 0
allocate (chain%r (n_par_tot, n_channel)); chain%r = 0
allocate (chain%rb(n_par_tot, n_channel)); chain%rb= 0
allocate (chain%f (n_channel)); chain%f = 0
allocate (chain%x (n_par_tot)); chain%x = 0
allocate (chain%xb(n_par_tot)); chain%xb= 0
call allocate_sf_channels &
(chain%channel, n_channel=n_channel, n_strfun=n_strfun)
end if
allocate (chain%bound (n_par_tot), source = .true.)
do i = 1, n_strfun
associate (sf => chain%sf(i))
if (sf%int%is_generator ()) then
do j = 1, size (sf%int%par_index)
chain%bound(sf%int%par_index(j)) = .false.
end do
end if
end associate
end do
chain%status = SF_INITIAL
end subroutine sf_chain_instance_init
@ %def sf_chain_instance_init
@ Manually select a channel.
<<SF base: sf chain instance: TBP>>=
procedure :: select_channel => sf_chain_instance_select_channel
<<SF base: procedures>>=
subroutine sf_chain_instance_select_channel (chain, channel)
class(sf_chain_instance_t), intent(inout) :: chain
integer, intent(in), optional :: channel
if (present (channel)) then
chain%selected_channel = channel
else
chain%selected_channel = 0
end if
end subroutine sf_chain_instance_select_channel
@ %def sf_chain_instance_select_channel
@ Copy a channel-mapping object to the structure-function
chain instance. We assume that assignment is sufficient, i.e., any
non-static components of the [[channel]] object are allocatable und
thus recursively copied.
After the copy, we extract the single-entry mappings and activate them
for the individual structure functions. If there is a multi-entry
mapping, we obtain the corresponding MC parameter indices and set them
in the copy of the channel object.
<<SF base: sf chain instance: TBP>>=
procedure :: set_channel => sf_chain_instance_set_channel
<<SF base: procedures>>=
subroutine sf_chain_instance_set_channel (chain, c, channel)
class(sf_chain_instance_t), intent(inout) :: chain
integer, intent(in) :: c
type(sf_channel_t), intent(in) :: channel
integer :: i, j, k
if (chain%status >= SF_INITIAL) then
chain%channel(c) = channel
j = 0
do i = 1, chain%config%n_strfun
associate (sf => chain%sf(i))
sf%m(c) = channel%is_single_mapping (i)
if (channel%is_multi_mapping (i)) then
do k = 1, size (sf%int%beam_index)
j = j + 1
call chain%channel(c)%set_par_index &
(j, sf%int%par_index(k))
end do
end if
end associate
end do
if (j /= chain%channel(c)%get_multi_mapping_n_par ()) then
print *, "index last filled = ", j
print *, "number of parameters = ", &
chain%channel(c)%get_multi_mapping_n_par ()
call msg_bug ("Structure-function setup: mapping index mismatch")
end if
chain%status = SF_INITIAL
end if
end subroutine sf_chain_instance_set_channel
@ %def sf_chain_instance_set_channel
@ Link the interactions in the chain. First, link the beam instance
to its template in the configuration chain, which should have the
appropriate momenta fixed.
Then, we follow the chain via the
arrays [[out_sf]] and [[out_sf_i]]. The arrays are (up to)
two-dimensional, the entries correspond to the beam particle(s).
For each beam, the entry [[out_sf]] points to the last interaction
that affected this beam, and [[out_sf_i]] is the
out-particle index within that interaction. For the initial beam,
[[out_sf]] is zero by definition.
For each entry in the chain, we scan the affected beams (one or two).
We look for [[out_sf]] and link the out-particle there to the
corresponding in-particle in the current interaction. Then, we update
the entry in [[out_sf]] and [[out_sf_i]] to point to the current
interaction.
<<SF base: sf chain instance: TBP>>=
procedure :: link_interactions => sf_chain_instance_link_interactions
<<SF base: procedures>>=
subroutine sf_chain_instance_link_interactions (chain)
class(sf_chain_instance_t), intent(inout), target :: chain
type(interaction_t), pointer :: int
integer :: i, j, b
if (chain%status >= SF_INITIAL) then
do b = 1, chain%config%n_in
int => beam_get_int_ptr (chain%beam_t)
call interaction_set_source_link (int, b, &
chain%config%beam_t, b)
end do
if (allocated (chain%sf)) then
do i = 1, size (chain%sf)
associate (sf_int => chain%sf(i)%int)
do j = 1, size (sf_int%beam_index)
b = sf_int%beam_index(j)
call link (sf_int%interaction_t, b, sf_int%incoming(j))
chain%out_sf(b) = i
chain%out_sf_i(b) = sf_int%outgoing(j)
end do
end associate
end do
end if
chain%status = SF_DONE_LINKS
end if
contains
subroutine link (int, b, in_index)
type(interaction_t), intent(inout) :: int
integer, intent(in) :: b, in_index
integer :: i
i = chain%out_sf(b)
select case (i)
case (0)
call interaction_set_source_link (int, in_index, &
chain%beam_t, chain%out_sf_i(b))
case default
call int%set_source_link (in_index, &
chain%sf(i)%int, chain%out_sf_i(b))
end select
end subroutine link
end subroutine sf_chain_instance_link_interactions
@ %def sf_chain_instance_link_interactions
@ Exchange the quantum-number masks between the interactions in the
chain, so we can combine redundant entries and detect any obvious mismatch.
We proceed first in the forward direction and then backwards again.
After this is finished, we finalize initialization by calling the
[[setup_constants]] method, which prepares constant data that depend on the
matrix element structure.
<<SF base: sf chain instance: TBP>>=
procedure :: exchange_mask => sf_chain_exchange_mask
<<SF base: procedures>>=
subroutine sf_chain_exchange_mask (chain)
class(sf_chain_instance_t), intent(inout), target :: chain
type(interaction_t), pointer :: int
type(quantum_numbers_mask_t), dimension(:), allocatable :: mask
integer :: i
if (chain%status >= SF_DONE_LINKS) then
if (allocated (chain%sf)) then
int => beam_get_int_ptr (chain%beam_t)
allocate (mask (int%get_n_out ()))
mask = int%get_mask ()
if (size (chain%sf) /= 0) then
do i = 1, size (chain%sf) - 1
call interaction_exchange_mask (chain%sf(i)%int%interaction_t)
end do
do i = size (chain%sf), 1, -1
call interaction_exchange_mask (chain%sf(i)%int%interaction_t)
end do
if (any (mask .neqv. int%get_mask ())) then
chain%status = SF_FAILED_MASK
return
end if
do i = 1, size (chain%sf)
call chain%sf(i)%int%setup_constants ()
end do
end if
end if
chain%status = SF_DONE_MASK
end if
end subroutine sf_chain_exchange_mask
@ %def sf_chain_exchange_mask
@ Initialize the evaluators that connect the interactions in the
chain.
<<SF base: sf chain instance: TBP>>=
procedure :: init_evaluators => sf_chain_instance_init_evaluators
<<SF base: procedures>>=
subroutine sf_chain_instance_init_evaluators (chain, extended_sf)
class(sf_chain_instance_t), intent(inout), target :: chain
logical, intent(in), optional :: extended_sf
type(interaction_t), pointer :: int
type(quantum_numbers_mask_t) :: mask
integer :: i
logical :: yorn
yorn = .false.; if (present (extended_sf)) yorn = extended_sf
if (chain%status >= SF_DONE_MASK) then
if (allocated (chain%sf)) then
if (size (chain%sf) /= 0) then
mask = quantum_numbers_mask (.false., .false., .true.)
int => beam_get_int_ptr (chain%beam_t)
do i = 1, size (chain%sf)
associate (sf => chain%sf(i))
if (yorn) then
if (int%get_n_sub () == 0) then
call int%declare_subtraction (n_beam_structure_int)
end if
if (sf%int%interaction_t%get_n_sub () == 0) then
call sf%int%interaction_t%declare_subtraction &
(n_beam_structure_int)
end if
end if
call sf%eval%init_product (int, sf%int%interaction_t, mask,&
& ignore_sub = .true.)
if (sf%eval%is_empty ()) then
chain%status = SF_FAILED_CONNECTIONS
return
end if
int => sf%eval%interaction_t
end associate
end do
call find_outgoing_particles ()
end if
else if (chain%out_eval == 0) then
int => beam_get_int_ptr (chain%beam_t)
call int%tag_hard_process ()
end if
chain%status = SF_DONE_CONNECTIONS
end if
contains
<<SF base: init evaluators: find outgoing particles>>
end subroutine sf_chain_instance_init_evaluators
@ %def sf_chain_instance_init_evaluators
@ For debug purposes
<<SF base: sf chain instance: TBP>>=
procedure :: write_interaction => sf_chain_instance_write_interaction
<<SF base: procedures>>=
subroutine sf_chain_instance_write_interaction (chain, i_sf, i_int, unit)
class(sf_chain_instance_t), intent(in) :: chain
integer, intent(in) :: i_sf, i_int
integer, intent(in) :: unit
class(interaction_t), pointer :: int_in1 => null ()
class(interaction_t), pointer :: int_in2 => null ()
integer :: u
u = given_output_unit (unit); if (u < 0) return
if (chain%status >= SF_DONE_MASK) then
if (allocated (chain%sf)) then
int_in1 => evaluator_get_int_in_ptr (chain%sf(i_sf)%eval, 1)
int_in2 => evaluator_get_int_in_ptr (chain%sf(i_sf)%eval, 2)
if (int_in1%get_tag () == i_int) then
call int_in1%basic_write (u)
else if (int_in2%get_tag () == i_int) then
call int_in2%basic_write (u)
else
write (u, "(A,1x,I0,1x,A,1x,I0)") 'No tag of sf', i_sf, 'matches' , i_int
end if
else
write (u, "(A)") 'No sf_chain allocated!'
end if
else
write (u, "(A)") 'sf_chain not ready!'
end if
end subroutine sf_chain_instance_write_interaction
@ %def sf_chain_instance_write_interaction
@ This is an internal subroutine of the previous one: After evaluators
are set, trace the outgoing particles to the last evaluator. We only
need the first channel, all channels are equivalent for this purpose.
For each beam, the outgoing particle is located by [[out_sf]] (the
structure-function object where it originates) and [[out_sf_i]] (the
index within that object). This particle is referenced by the
corresponding evaluator, which in turn is referenced by the next
evaluator, until we are at the end of the chain. We can trace back
references by [[interaction_find_link]]. Knowing that [[out_eval]] is
the index of the last evaluator, we thus determine [[out_eval_i]], the
index of the outgoing particle within that evaluator.
<<SF base: init evaluators: find outgoing particles>>=
subroutine find_outgoing_particles ()
type(interaction_t), pointer :: int, int_next
integer :: i, j, out_sf, out_i
chain%out_eval = size (chain%sf)
do j = 1, size (chain%out_eval_i)
out_sf = chain%out_sf(j)
out_i = chain%out_sf_i(j)
if (out_sf == 0) then
int => beam_get_int_ptr (chain%beam_t)
out_sf = 1
else
int => chain%sf(out_sf)%int%interaction_t
end if
do i = out_sf, chain%out_eval
int_next => chain%sf(i)%eval%interaction_t
out_i = interaction_find_link (int_next, int, out_i)
int => int_next
end do
chain%out_eval_i(j) = out_i
end do
call int%tag_hard_process (chain%out_eval_i)
end subroutine find_outgoing_particles
@ %def find_outgoing_particles
@ Compute the kinematics in the chain instance. We can assume that
the seed momenta are set in the configuration beams. Scanning the
chain, we first transfer the incoming momenta. Then, the use up the MC input
parameter array [[p]] to compute the radiated and outgoing momenta.
In the multi-channel case, [[c_sel]] is the channel which we use for
computing the kinematics and the [[x]] values. In the other channels,
we invert the kinematics in order to recover the corresponding rows in
the [[r]] array, and the Jacobian [[f]].
We first apply any global mapping to transform the input [[p]] into
the array [[r]]. This is then given to the structure functions which
compute the final array [[x]] and Jacobian factors [[f]], which we
multiply to obtain the overall Jacobian.
<<SF base: sf chain instance: TBP>>=
procedure :: compute_kinematics => sf_chain_instance_compute_kinematics
<<SF base: procedures>>=
subroutine sf_chain_instance_compute_kinematics (chain, c_sel, p_in)
class(sf_chain_instance_t), intent(inout), target :: chain
integer, intent(in) :: c_sel
real(default), dimension(:), intent(in) :: p_in
type(interaction_t), pointer :: int
real(default) :: f_mapping
logical, dimension(size (chain%bound)) :: bound
integer :: i, j, c
if (chain%status >= SF_DONE_CONNECTIONS) then
call chain%select_channel (c_sel)
int => beam_get_int_ptr (chain%beam_t)
call int%receive_momenta ()
if (allocated (chain%sf)) then
if (size (chain%sf) /= 0) then
forall (i = 1:size (chain%sf)) chain%sf(i)%int%status = SF_INITIAL
!!! Bug in nagfor 5.3.1(907), fixed in 5.3.1(982)
! chain%p (:,c_sel) = unpack (p_in, chain%bound, 0._default)
!!! Workaround:
bound = chain%bound
chain%p (:,c_sel) = unpack (p_in, bound, 0._default)
chain%pb(:,c_sel) = 1 - chain%p(:,c_sel)
chain%f = 1
chain%x_free = 1
do i = 1, size (chain%sf)
associate (sf => chain%sf(i))
call sf%int%generate_free (sf%r(:,c_sel), sf%rb(:,c_sel), &
chain%x_free)
do j = 1, size (sf%x)
if (.not. chain%bound(sf%int%par_index(j))) then
chain%p (sf%int%par_index(j),c_sel) = sf%r (j,c_sel)
chain%pb(sf%int%par_index(j),c_sel) = sf%rb(j,c_sel)
end if
end do
end associate
end do
if (allocated (chain%channel(c_sel)%multi_mapping)) then
call chain%channel(c_sel)%multi_mapping%compute &
(chain%r(:,c_sel), chain%rb(:,c_sel), &
f_mapping, &
chain%p(:,c_sel), chain%pb(:,c_sel), &
chain%x_free)
chain%f(c_sel) = f_mapping
else
chain%r (:,c_sel) = chain%p (:,c_sel)
chain%rb(:,c_sel) = chain%pb(:,c_sel)
chain%f(c_sel) = 1
end if
do i = 1, size (chain%sf)
associate (sf => chain%sf(i))
call sf%int%seed_kinematics ()
do j = 1, size (sf%x)
sf%r (j,c_sel) = chain%r (sf%int%par_index(j),c_sel)
sf%rb(j,c_sel) = chain%rb(sf%int%par_index(j),c_sel)
end do
call sf%int%complete_kinematics &
(sf%x, sf%xb, sf%f(c_sel), sf%r(:,c_sel), sf%rb(:,c_sel), &
sf%m(c_sel))
do j = 1, size (sf%x)
chain%x(sf%int%par_index(j)) = sf%x(j)
chain%xb(sf%int%par_index(j)) = sf%xb(j)
end do
if (sf%int%status <= SF_FAILED_KINEMATICS) then
chain%status = SF_FAILED_KINEMATICS
return
end if
do c = 1, size (sf%f)
if (c /= c_sel) then
call sf%int%inverse_kinematics &
(sf%x, sf%xb, sf%f(c), sf%r(:,c), sf%rb(:,c), sf%m(c))
do j = 1, size (sf%x)
chain%r (sf%int%par_index(j),c) = sf%r (j,c)
chain%rb(sf%int%par_index(j),c) = sf%rb(j,c)
end do
end if
chain%f(c) = chain%f(c) * sf%f(c)
end do
if (.not. sf%eval%is_empty ()) then
call sf%eval%receive_momenta ()
end if
end associate
end do
do c = 1, size (chain%f)
if (c /= c_sel) then
if (allocated (chain%channel(c)%multi_mapping)) then
call chain%channel(c)%multi_mapping%inverse &
(chain%r(:,c), chain%rb(:,c), &
f_mapping, &
chain%p(:,c), chain%pb(:,c), &
chain%x_free)
chain%f(c) = chain%f(c) * f_mapping
else
chain%p (:,c) = chain%r (:,c)
chain%pb(:,c) = chain%rb(:,c)
end if
end if
end do
end if
end if
chain%status = SF_DONE_KINEMATICS
end if
end subroutine sf_chain_instance_compute_kinematics
@ %def sf_chain_instance_compute_kinematics
@ This is a variant of the previous procedure. We know the $x$ parameters and
reconstruct the momenta and the MC input parameters [[p]]. We do not need to
select a channel.
Note: this is probably redundant, since the method we actually want
starts from the momenta, recovers all $x$ parameters, and then
inverts mappings. See below [[recover_kinematics]].
<<SF base: sf chain instance: TBP>>=
procedure :: inverse_kinematics => sf_chain_instance_inverse_kinematics
<<SF base: procedures>>=
subroutine sf_chain_instance_inverse_kinematics (chain, x, xb)
class(sf_chain_instance_t), intent(inout), target :: chain
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
type(interaction_t), pointer :: int
real(default) :: f_mapping
integer :: i, j, c
if (chain%status >= SF_DONE_CONNECTIONS) then
call chain%select_channel ()
int => beam_get_int_ptr (chain%beam_t)
call int%receive_momenta ()
if (allocated (chain%sf)) then
chain%f = 1
if (size (chain%sf) /= 0) then
forall (i = 1:size (chain%sf)) chain%sf(i)%int%status = SF_INITIAL
chain%x = x
chain%xb= xb
do i = 1, size (chain%sf)
associate (sf => chain%sf(i))
call sf%int%seed_kinematics ()
do j = 1, size (sf%x)
sf%x(j) = chain%x(sf%int%par_index(j))
sf%xb(j) = chain%xb(sf%int%par_index(j))
end do
do c = 1, size (sf%f)
call sf%int%inverse_kinematics &
- (sf%x, sf%xb, sf%f(c), sf%r(:,c), sf%rb(:,c), sf%m(c), c==1)
+ (sf%x, sf%xb, sf%f(c), sf%r(:,c), sf%rb(:,c), sf%m(c), &
+ set_momenta = c==1)
chain%f(c) = chain%f(c) * sf%f(c)
do j = 1, size (sf%x)
chain%r (sf%int%par_index(j),c) = sf%r (j,c)
chain%rb(sf%int%par_index(j),c) = sf%rb(j,c)
end do
end do
if (.not. sf%eval%is_empty ()) then
call sf%eval%receive_momenta ()
end if
end associate
end do
do c = 1, size (chain%f)
if (allocated (chain%channel(c)%multi_mapping)) then
call chain%channel(c)%multi_mapping%inverse &
(chain%r(:,c), chain%rb(:,c), &
f_mapping, &
chain%p(:,c), chain%pb(:,c), &
chain%x_free)
chain%f(c) = chain%f(c) * f_mapping
else
chain%p (:,c) = chain%r (:,c)
chain%pb(:,c) = chain%rb(:,c)
end if
end do
end if
end if
chain%status = SF_DONE_KINEMATICS
end if
end subroutine sf_chain_instance_inverse_kinematics
@ %def sf_chain_instance_inverse_kinematics
@ Recover the kinematics: assuming that the last evaluator has
been filled with a valid set of momenta, we travel the momentum links
backwards and fill the preceding evaluators and, as a side effect,
interactions. We stop at the beam interaction.
After all momenta are set, apply the [[inverse_kinematics]] procedure
above, suitably modified, to recover the $x$ and $p$ parameters and
the Jacobian factors.
The [[c_sel]] (channel) argument is just used to mark a selected
channel for the records, otherwise the recovery procedure is
independent of this.
<<SF base: sf chain instance: TBP>>=
procedure :: recover_kinematics => sf_chain_instance_recover_kinematics
<<SF base: procedures>>=
subroutine sf_chain_instance_recover_kinematics (chain, c_sel)
class(sf_chain_instance_t), intent(inout), target :: chain
integer, intent(in) :: c_sel
real(default) :: f_mapping
integer :: i, j, c
if (chain%status >= SF_DONE_CONNECTIONS) then
call chain%select_channel (c_sel)
if (allocated (chain%sf)) then
do i = size (chain%sf), 1, -1
associate (sf => chain%sf(i))
if (.not. sf%eval%is_empty ()) then
call interaction_send_momenta (sf%eval%interaction_t)
end if
end associate
end do
chain%f = 1
if (size (chain%sf) /= 0) then
forall (i = 1:size (chain%sf)) chain%sf(i)%int%status = SF_INITIAL
chain%x_free = 1
do i = 1, size (chain%sf)
associate (sf => chain%sf(i))
call sf%int%seed_kinematics ()
call sf%int%recover_x (sf%x, sf%xb, chain%x_free)
do j = 1, size (sf%x)
chain%x(sf%int%par_index(j)) = sf%x(j)
chain%xb(sf%int%par_index(j)) = sf%xb(j)
end do
do c = 1, size (sf%f)
call sf%int%inverse_kinematics &
- (sf%x, sf%xb, sf%f(c), sf%r(:,c), sf%rb(:,c), sf%m(c), c==1)
+ (sf%x, sf%xb, sf%f(c), sf%r(:,c), sf%rb(:,c), sf%m(c), &
+ set_momenta = .false.)
chain%f(c) = chain%f(c) * sf%f(c)
do j = 1, size (sf%x)
chain%r (sf%int%par_index(j),c) = sf%r (j,c)
chain%rb(sf%int%par_index(j),c) = sf%rb(j,c)
end do
end do
end associate
end do
do c = 1, size (chain%f)
if (allocated (chain%channel(c)%multi_mapping)) then
call chain%channel(c)%multi_mapping%inverse &
(chain%r(:,c), chain%rb(:,c), &
f_mapping, &
chain%p(:,c), chain%pb(:,c), &
chain%x_free)
chain%f(c) = chain%f(c) * f_mapping
else
chain%p (:,c) = chain%r (:,c)
chain%pb(:,c) = chain%rb(:,c)
end if
end do
end if
end if
chain%status = SF_DONE_KINEMATICS
end if
end subroutine sf_chain_instance_recover_kinematics
@ %def sf_chain_instance_recover_kinematics
@ Return the initial beam momenta to their source, thus completing
kinematics recovery. Obviously, this works as a side effect.
<<SF base: sf chain instance: TBP>>=
procedure :: return_beam_momenta => sf_chain_instance_return_beam_momenta
<<SF base: procedures>>=
subroutine sf_chain_instance_return_beam_momenta (chain)
class(sf_chain_instance_t), intent(in), target :: chain
type(interaction_t), pointer :: int
if (chain%status >= SF_DONE_KINEMATICS) then
int => beam_get_int_ptr (chain%beam_t)
call interaction_send_momenta (int)
end if
end subroutine sf_chain_instance_return_beam_momenta
@ %def sf_chain_instance_return_beam_momenta
@ Evaluate all interactions in the chain and the product evaluators.
We provide a [[scale]] argument that is given to all structure
functions in the chain.
Hadronic NLO calculations involve rescaled fractions of the original beam
momentum and PDF singlets (sums over flavors). In particular, we have to handle the following cases:
\begin{itemize}
\item normal evaluation (where [[n_sub = 0]]) for Born and Virtual processes,
\item rescaled momentum fraction for matching [[i_beam == i_sub]], [[n_sub > 0]] and
[[sf_rescale]] present, the other beam is kept at born kinematics,
\item filling the subtraction terms with values from the current evaluation
[[fill_sub = .true.]], used for the non-rescaled beam,
\item restricted rescaling to only one beam with [[sf_rescale%is_restricted]].
\end{itemize}
For the collinear final or intial state counter terms, we apply a rescaling to
one beam, and keep the other beam as is. We redo it then vice versa having now two subtractions.
We add two more subtraction where we apply the rescaled gluonic PDF to
\textit{all} flavors for the PDF singlet calculations.
For the real rescalation, we have only one rescaled beams, therefore, we have only one
subtraction.
<<SF base: sf chain instance: TBP>>=
procedure :: evaluate => sf_chain_instance_evaluate
<<SF base: procedures>>=
subroutine sf_chain_instance_evaluate (chain, scale, sf_rescale)
class(sf_chain_instance_t), intent(inout), target :: chain
real(default), intent(in) :: scale
class(sf_rescale_t), intent(inout), optional :: sf_rescale
type(interaction_t), pointer :: out_int
real(default) :: sf_sum
integer :: i_beam, i_sub, n_sub
if (chain%status >= SF_DONE_KINEMATICS) then
if (allocated (chain%sf)) then
if (size (chain%sf) /= 0) then
do i_beam = 1, size (chain%sf)
associate (sf => chain%sf(i_beam))
n_sub = 0 ! default: no looping over rescaled beams
if (present (sf_rescale)) then
! TODO sbrass cache n_sub as it is computed from the state matrix
n_sub = sf%int%get_n_sub ()
call sf_rescale%set_i_beam (i_beam)
end if
SUB: do i_sub = 0, n_sub
select case (i_sub)
case (0)
if (n_sub == 0) then
call sf%int%apply (scale, sf_rescale)
else
call sf%int%apply (scale, fill_sub = .true.)
end if
case (1:2)
if (present (sf_rescale)) then
if (sf_rescale%is_restricted (i_beam)) cycle SUB
end if
if (i_sub == i_beam) then
call sf%int%apply(scale, sf_rescale, i_sub)
end if
case (3:4)
! dummy : handled more appropriately on a lower level (sf%int%apply ())
case default
call msg_bug ("sf_chain_instance_evaluate: more than 2&
& subtraction indices are curently not handled.")
end select
if (sf%int%status <= SF_FAILED_EVALUATION) then
chain%status = SF_FAILED_EVALUATION
return
end if
end do SUB
if (.not. sf%eval%is_empty ()) call sf%eval%evaluate ()
end associate
end do
out_int => chain%get_out_int_ptr ()
sf_sum = real (out_int%sum ())
call chain%config%trace &
(chain%selected_channel, chain%p, chain%x, chain%f, sf_sum)
end if
end if
chain%status = SF_EVALUATED
end if
end subroutine sf_chain_instance_evaluate
@ %def sf_chain_instance_evaluate
@
\subsection{Access to the chain instance}
Transfer the outgoing momenta to the array [[p]]. We assume that
array sizes match.
<<SF base: sf chain instance: TBP>>=
procedure :: get_out_momenta => sf_chain_instance_get_out_momenta
<<SF base: procedures>>=
subroutine sf_chain_instance_get_out_momenta (chain, p)
class(sf_chain_instance_t), intent(in), target :: chain
type(vector4_t), dimension(:), intent(out) :: p
type(interaction_t), pointer :: int
integer :: i, j
if (chain%status >= SF_DONE_KINEMATICS) then
do j = 1, size (chain%out_sf)
i = chain%out_sf(j)
select case (i)
case (0)
int => beam_get_int_ptr (chain%beam_t)
case default
int => chain%sf(i)%int%interaction_t
end select
p(j) = int%get_momentum (chain%out_sf_i(j))
end do
end if
end subroutine sf_chain_instance_get_out_momenta
@ %def sf_chain_instance_get_out_momenta
@ Return a pointer to the last evaluator in the chain (to the interaction).
<<SF base: sf chain instance: TBP>>=
procedure :: get_out_int_ptr => sf_chain_instance_get_out_int_ptr
<<SF base: procedures>>=
function sf_chain_instance_get_out_int_ptr (chain) result (int)
class(sf_chain_instance_t), intent(in), target :: chain
type(interaction_t), pointer :: int
if (chain%out_eval == 0) then
int => beam_get_int_ptr (chain%beam_t)
else
int => chain%sf(chain%out_eval)%eval%interaction_t
end if
end function sf_chain_instance_get_out_int_ptr
@ %def sf_chain_instance_get_out_int_ptr
@ Return the index of the [[j]]-th outgoing particle, within the last
evaluator.
<<SF base: sf chain instance: TBP>>=
procedure :: get_out_i => sf_chain_instance_get_out_i
<<SF base: procedures>>=
function sf_chain_instance_get_out_i (chain, j) result (i)
class(sf_chain_instance_t), intent(in) :: chain
integer, intent(in) :: j
integer :: i
i = chain%out_eval_i(j)
end function sf_chain_instance_get_out_i
@ %def sf_chain_instance_get_out_i
@ Return the mask for the outgoing particle(s), within the last evaluator.
<<SF base: sf chain instance: TBP>>=
procedure :: get_out_mask => sf_chain_instance_get_out_mask
<<SF base: procedures>>=
function sf_chain_instance_get_out_mask (chain) result (mask)
class(sf_chain_instance_t), intent(in), target :: chain
type(quantum_numbers_mask_t), dimension(:), allocatable :: mask
type(interaction_t), pointer :: int
allocate (mask (chain%config%n_in))
int => chain%get_out_int_ptr ()
mask = int%get_mask (chain%out_eval_i)
end function sf_chain_instance_get_out_mask
@ %def sf_chain_instance_get_out_mask
@ Return the array of MC input parameters that corresponds to channel [[c]].
This is the [[p]] array, the parameters before all mappings.
The [[p]] array may be deallocated. This should correspond to a
zero-size [[r]] argument, so nothing to do then.
<<SF base: sf chain instance: TBP>>=
procedure :: get_mcpar => sf_chain_instance_get_mcpar
<<SF base: procedures>>=
subroutine sf_chain_instance_get_mcpar (chain, c, r)
class(sf_chain_instance_t), intent(in) :: chain
integer, intent(in) :: c
real(default), dimension(:), intent(out) :: r
if (allocated (chain%p)) r = pack (chain%p(:,c), chain%bound)
end subroutine sf_chain_instance_get_mcpar
@ %def sf_chain_instance_get_mcpar
@ Return the Jacobian factor that corresponds to channel [[c]].
<<SF base: sf chain instance: TBP>>=
procedure :: get_f => sf_chain_instance_get_f
<<SF base: procedures>>=
function sf_chain_instance_get_f (chain, c) result (f)
class(sf_chain_instance_t), intent(in) :: chain
integer, intent(in) :: c
real(default) :: f
if (allocated (chain%f)) then
f = chain%f(c)
else
f = 1
end if
end function sf_chain_instance_get_f
@ %def sf_chain_instance_get_f
@ Return the evaluation status.
<<SF base: sf chain instance: TBP>>=
procedure :: get_status => sf_chain_instance_get_status
<<SF base: procedures>>=
function sf_chain_instance_get_status (chain) result (status)
class(sf_chain_instance_t), intent(in) :: chain
integer :: status
status = chain%status
end function sf_chain_instance_get_status
@ %def sf_chain_instance_get_status
@
<<SF base: sf chain instance: TBP>>=
procedure :: get_matrix_elements => sf_chain_instance_get_matrix_elements
<<SF base: procedures>>=
subroutine sf_chain_instance_get_matrix_elements (chain, i, ff)
class(sf_chain_instance_t), intent(in) :: chain
integer, intent(in) :: i
real(default), intent(out), dimension(:), allocatable :: ff
associate (sf => chain%sf(i))
ff = real (sf%int%get_matrix_element ())
end associate
end subroutine sf_chain_instance_get_matrix_elements
@ %def sf_chain_instance_get_matrix_elements
@
<<SF base: sf chain instance: TBP>>=
procedure :: get_beam_int_ptr => sf_chain_instance_get_beam_int_ptr
<<SF base: procedures>>=
function sf_chain_instance_get_beam_int_ptr (chain) result (int)
type(interaction_t), pointer :: int
class(sf_chain_instance_t), intent(in), target :: chain
int => beam_get_int_ptr (chain%beam_t)
end function sf_chain_instance_get_beam_int_ptr
@ %def sf_chain_instance_get_beam_ptr
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_base_ut.f90]]>>=
<<File header>>
module sf_base_ut
use unit_tests
use sf_base_uti
<<Standard module head>>
<<SF base: public test auxiliary>>
<<SF base: public test>>
contains
<<SF base: test driver>>
end module sf_base_ut
@ %def sf_base_ut
@
<<[[sf_base_uti.f90]]>>=
<<File header>>
module sf_base_uti
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_19
use format_utils, only: write_separator
use diagnostics
use lorentz
use pdg_arrays
use flavors
use colors
use helicities
use quantum_numbers
use state_matrices, only: FM_IGNORE_HELICITY
use interactions
use particles
use model_data
use beams
use sf_aux
use sf_mappings
use sf_base
<<Standard module head>>
<<SF base: test declarations>>
<<SF base: public test auxiliary>>
<<SF base: test types>>
contains
<<SF base: tests>>
<<SF base: test auxiliary>>
end module sf_base_uti
@ %def sf_base_ut
@ API: driver for the unit tests below.
<<SF base: public test>>=
public :: sf_base_test
<<SF base: test driver>>=
subroutine sf_base_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF base: execute tests>>
end subroutine sf_base_test
@ %def sf_base_test
@
\subsection{Test implementation: structure function}
This is a template for the actual structure-function implementation
which will be defined in separate modules.
\subsubsection{Configuration data}
The test structure function uses the [[Test]] model. It describes a
scalar within an arbitrary initial particle, which is given in the
initialization. The radiated particle is also a scalar, the same one,
but we set its mass artificially to zero.
<<SF base: public test auxiliary>>=
public :: sf_test_data_t
<<SF base: test types>>=
type, extends (sf_data_t) :: sf_test_data_t
class(model_data_t), pointer :: model => null ()
integer :: mode = 0
type(flavor_t) :: flv_in
type(flavor_t) :: flv_out
type(flavor_t) :: flv_rad
real(default) :: m = 0
logical :: collinear = .true.
real(default), dimension(:), allocatable :: qbounds
contains
<<SF base: sf test data: TBP>>
end type sf_test_data_t
@ %def sf_test_data_t
@ Output.
<<SF base: sf test data: TBP>>=
procedure :: write => sf_test_data_write
<<SF base: test auxiliary>>=
subroutine sf_test_data_write (data, unit, verbose)
class(sf_test_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)") "SF test data:"
write (u, "(3x,A,A)") "model = ", char (data%model%get_name ())
write (u, "(3x,A)", advance="no") "incoming = "
call data%flv_in%write (u); write (u, *)
write (u, "(3x,A)", advance="no") "outgoing = "
call data%flv_out%write (u); write (u, *)
write (u, "(3x,A)", advance="no") "radiated = "
call data%flv_rad%write (u); write (u, *)
write (u, "(3x,A," // FMT_19 // ")") "mass = ", data%m
write (u, "(3x,A,L1)") "collinear = ", data%collinear
if (.not. data%collinear .and. allocated (data%qbounds)) then
write (u, "(3x,A," // FMT_19 // ")") "qmin = ", data%qbounds(1)
write (u, "(3x,A," // FMT_19 // ")") "qmax = ", data%qbounds(2)
end if
end subroutine sf_test_data_write
@ %def sf_test_data_write
@ Initialization.
<<SF base: sf test data: TBP>>=
procedure :: init => sf_test_data_init
<<SF base: test auxiliary>>=
subroutine sf_test_data_init (data, model, pdg_in, collinear, qbounds, mode)
class(sf_test_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
logical, intent(in), optional :: collinear
real(default), dimension(2), intent(in), optional :: qbounds
integer, intent(in), optional :: mode
data%model => model
if (present (mode)) data%mode = mode
if (pdg_array_get (pdg_in, 1) /= 25) then
call msg_fatal ("Test spectrum function: input flavor must be 's'")
end if
call data%flv_in%init (25, model)
data%m = data%flv_in%get_mass ()
if (present (collinear)) data%collinear = collinear
call data%flv_out%init (25, model)
call data%flv_rad%init (25, model)
if (present (qbounds)) then
allocate (data%qbounds (2))
data%qbounds = qbounds
end if
end subroutine sf_test_data_init
@ %def sf_test_data_init
@ Return the number of parameters: 1 if only consider collinear
splitting, 3 otherwise.
<<SF base: sf test data: TBP>>=
procedure :: get_n_par => sf_test_data_get_n_par
<<SF base: test auxiliary>>=
function sf_test_data_get_n_par (data) result (n)
class(sf_test_data_t), intent(in) :: data
integer :: n
if (data%collinear) then
n = 1
else
n = 3
end if
end function sf_test_data_get_n_par
@ %def sf_test_data_get_n_par
@ Return the outgoing particle PDG code: 25
<<SF base: sf test data: TBP>>=
procedure :: get_pdg_out => sf_test_data_get_pdg_out
<<SF base: test auxiliary>>=
subroutine sf_test_data_get_pdg_out (data, pdg_out)
class(sf_test_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
pdg_out(1) = 25
end subroutine sf_test_data_get_pdg_out
@ %def sf_test_data_get_pdg_out
@ Allocate the matching interaction.
<<SF base: sf test data: TBP>>=
procedure :: allocate_sf_int => sf_test_data_allocate_sf_int
<<SF base: test auxiliary>>=
subroutine sf_test_data_allocate_sf_int (data, sf_int)
class(sf_test_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
if (allocated (sf_int)) deallocate (sf_int)
allocate (sf_test_t :: sf_int)
end subroutine sf_test_data_allocate_sf_int
@ %def sf_test_data_allocate_sf_int
@
\subsubsection{Interaction}
<<SF base: test types>>=
type, extends (sf_int_t) :: sf_test_t
type(sf_test_data_t), pointer :: data => null ()
real(default) :: x = 0
contains
<<SF base: sf test int: TBP>>
end type sf_test_t
@ %def sf_test_t
@ Type string: constant
<<SF base: sf test int: TBP>>=
procedure :: type_string => sf_test_type_string
<<SF base: test auxiliary>>=
function sf_test_type_string (object) result (string)
class(sf_test_t), intent(in) :: object
type(string_t) :: string
string = "Test"
end function sf_test_type_string
@ %def sf_test_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF base: sf test int: TBP>>=
procedure :: write => sf_test_write
<<SF base: test auxiliary>>=
subroutine sf_test_write (object, unit, testflag)
class(sf_test_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "SF test data: [undefined]"
end if
end subroutine sf_test_write
@ %def sf_test_write
@ Initialize. We know that [[data]] will be of concrete type
[[sf_test_data_t]], but we have to cast this explicitly.
For this implementation, we set the incoming and outgoing masses equal
to the physical particle mass, but keep the radiated mass zero.
Optionally, we can provide minimum and maximum values for the momentum
transfer.
<<SF base: sf test int: TBP>>=
procedure :: init => sf_test_init
<<SF base: test auxiliary>>=
subroutine sf_test_init (sf_int, data)
class(sf_test_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(3) :: mask
type(helicity_t) :: hel0
type(color_t) :: col0
type(quantum_numbers_t), dimension(3) :: qn
mask = quantum_numbers_mask (.false., .false., .false.)
select type (data)
type is (sf_test_data_t)
if (allocated (data%qbounds)) then
call sf_int%base_init (mask, &
[data%m**2], [0._default], [data%m**2], &
[data%qbounds(1)], [data%qbounds(2)])
else
call sf_int%base_init (mask, &
[data%m**2], [0._default], [data%m**2])
end if
sf_int%data => data
call hel0%init (0)
call col0%init ()
call qn(1)%init (data%flv_in, col0, hel0)
call qn(2)%init (data%flv_rad, col0, hel0)
call qn(3)%init (data%flv_out, col0, hel0)
call sf_int%add_state (qn)
call sf_int%freeze ()
call sf_int%set_incoming ([1])
call sf_int%set_radiated ([2])
call sf_int%set_outgoing ([3])
end select
sf_int%status = SF_INITIAL
end subroutine sf_test_init
@ %def sf_test_init
@ Set kinematics. If [[map]] is unset, the $r$ and $x$ values
coincide, and the Jacobian $f(r)$ is trivial.
If [[map]] is set, we are asked to provide an efficient mapping.
For the test case, we set $x=r^2$ and consequently $f(r)=2r$.
<<SF base: sf test int: TBP>>=
procedure :: complete_kinematics => sf_test_complete_kinematics
<<SF base: test auxiliary>>=
subroutine sf_test_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(sf_test_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
if (map) then
x(1) = r(1)**2
f = 2 * r(1)
else
x(1) = r(1)
f = 1
end if
xb(1) = 1 - x(1)
if (size (x) == 3) then
x(2:3) = r(2:3)
xb(2:3) = rb(2:3)
end if
call sf_int%split_momentum (x, xb)
sf_int%x = x(1)
select case (sf_int%status)
case (SF_FAILED_KINEMATICS); f = 0
end select
end subroutine sf_test_complete_kinematics
@ %def sf_test_complete_kinematics
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF base: sf test int: TBP>>=
procedure :: inverse_kinematics => sf_test_inverse_kinematics
<<SF base: test auxiliary>>=
subroutine sf_test_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(sf_test_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
r(1) = sqrt (x(1))
f = 2 * r(1)
else
r(1) = x(1)
f = 1
end if
if (size (x) == 3) r(2:3) = x(2:3)
rb = 1 - r
sf_int%x = x(1)
if (set_mom) then
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_FAILED_KINEMATICS); f = 0
end select
end if
end subroutine sf_test_inverse_kinematics
@ %def sf_test_inverse_kinematics
@ Apply the structure function. The matrix element becomes unity and
the application always succeeds.
If the [[mode]] indicator is one, the matrix element is equal to the
parameter~$x$.
<<SF base: sf test int: TBP>>=
procedure :: apply => sf_test_apply
<<SF base: test auxiliary>>=
subroutine sf_test_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(sf_test_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
select case (sf_int%data%mode)
case (0)
call sf_int%set_matrix_element &
(cmplx (1._default, kind=default))
case (1)
call sf_int%set_matrix_element &
(cmplx (sf_int%x, kind=default))
end select
sf_int%status = SF_EVALUATED
end subroutine sf_test_apply
@ %def sf_test_apply
@
\subsection{Test implementation: pair spectrum}
Another template, this time for a incoming particle pair, splitting
into two radiated and two outgoing particles.
\subsubsection{Configuration data}
For simplicity, the spectrum contains two mirror images of the
previous structure-function configuration: the incoming and all
outgoing particles are test scalars.
We have two versions, one with radiated particles, one without.
<<SF base: test types>>=
type, extends (sf_data_t) :: sf_test_spectrum_data_t
class(model_data_t), pointer :: model => null ()
type(flavor_t) :: flv_in
type(flavor_t) :: flv_out
type(flavor_t) :: flv_rad
logical :: with_radiation = .true.
real(default) :: m = 0
contains
<<SF base: sf test spectrum data: TBP>>
end type sf_test_spectrum_data_t
@ %def sf_test_spectrum_data_t
@ Output.
<<SF base: sf test spectrum data: TBP>>=
procedure :: write => sf_test_spectrum_data_write
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_data_write (data, unit, verbose)
class(sf_test_spectrum_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)") "SF test spectrum data:"
write (u, "(3x,A,A)") "model = ", char (data%model%get_name ())
write (u, "(3x,A)", advance="no") "incoming = "
call data%flv_in%write (u); write (u, *)
write (u, "(3x,A)", advance="no") "outgoing = "
call data%flv_out%write (u); write (u, *)
write (u, "(3x,A)", advance="no") "radiated = "
call data%flv_rad%write (u); write (u, *)
write (u, "(3x,A," // FMT_19 // ")") "mass = ", data%m
end subroutine sf_test_spectrum_data_write
@ %def sf_test_spectrum_data_write
@ Initialization.
<<SF base: sf test spectrum data: TBP>>=
procedure :: init => sf_test_spectrum_data_init
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_data_init (data, model, pdg_in, with_radiation)
class(sf_test_spectrum_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
logical, intent(in) :: with_radiation
data%model => model
data%with_radiation = with_radiation
if (pdg_array_get (pdg_in, 1) /= 25) then
call msg_fatal ("Test structure function: input flavor must be 's'")
end if
call data%flv_in%init (25, model)
data%m = data%flv_in%get_mass ()
call data%flv_out%init (25, model)
if (with_radiation) then
call data%flv_rad%init (25, model)
end if
end subroutine sf_test_spectrum_data_init
@ %def sf_test_spectrum_data_init
@ Return the number of parameters: 2, since we have only collinear
splitting here.
<<SF base: sf test spectrum data: TBP>>=
procedure :: get_n_par => sf_test_spectrum_data_get_n_par
<<SF base: test auxiliary>>=
function sf_test_spectrum_data_get_n_par (data) result (n)
class(sf_test_spectrum_data_t), intent(in) :: data
integer :: n
n = 2
end function sf_test_spectrum_data_get_n_par
@ %def sf_test_spectrum_data_get_n_par
@ Return the outgoing particle PDG codes: 25
<<SF base: sf test spectrum data: TBP>>=
procedure :: get_pdg_out => sf_test_spectrum_data_get_pdg_out
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_data_get_pdg_out (data, pdg_out)
class(sf_test_spectrum_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
pdg_out(1) = 25
pdg_out(2) = 25
end subroutine sf_test_spectrum_data_get_pdg_out
@ %def sf_test_spectrum_data_get_pdg_out
@ Allocate the matching interaction.
<<SF base: sf test spectrum data: TBP>>=
procedure :: allocate_sf_int => &
sf_test_spectrum_data_allocate_sf_int
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_data_allocate_sf_int (data, sf_int)
class(sf_test_spectrum_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (sf_test_spectrum_t :: sf_int)
end subroutine sf_test_spectrum_data_allocate_sf_int
@ %def sf_test_spectrum_data_allocate_sf_int
@
\subsubsection{Interaction}
<<SF base: test types>>=
type, extends (sf_int_t) :: sf_test_spectrum_t
type(sf_test_spectrum_data_t), pointer :: data => null ()
contains
<<SF base: sf test spectrum: TBP>>
end type sf_test_spectrum_t
@ %def sf_test_spectrum_t
<<SF base: sf test spectrum: TBP>>=
procedure :: type_string => sf_test_spectrum_type_string
<<SF base: test auxiliary>>=
function sf_test_spectrum_type_string (object) result (string)
class(sf_test_spectrum_t), intent(in) :: object
type(string_t) :: string
string = "Test Spectrum"
end function sf_test_spectrum_type_string
@ %def sf_test_spectrum_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF base: sf test spectrum: TBP>>=
procedure :: write => sf_test_spectrum_write
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_write (object, unit, testflag)
class(sf_test_spectrum_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "SF test spectrum data: [undefined]"
end if
end subroutine sf_test_spectrum_write
@ %def sf_test_spectrum_write
@ Initialize. We know that [[data]] will be of concrete type
[[sf_test_spectrum_data_t]], but we have to cast this explicitly.
For this implementation, we set the incoming and outgoing masses equal
to the physical particle mass, but keep the radiated mass zero.
Optionally, we can provide minimum and maximum values for the momentum
transfer.
<<SF base: sf test spectrum: TBP>>=
procedure :: init => sf_test_spectrum_init
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_init (sf_int, data)
class(sf_test_spectrum_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(6) :: mask
type(helicity_t) :: hel0
type(color_t) :: col0
type(quantum_numbers_t), dimension(6) :: qn
mask = quantum_numbers_mask (.false., .false., .false.)
select type (data)
type is (sf_test_spectrum_data_t)
if (data%with_radiation) then
call sf_int%base_init (mask(1:6), &
[data%m**2, data%m**2], &
[0._default, 0._default], &
[data%m**2, data%m**2])
sf_int%data => data
call hel0%init (0)
call col0%init ()
call qn(1)%init (data%flv_in, col0, hel0)
call qn(2)%init (data%flv_in, col0, hel0)
call qn(3)%init (data%flv_rad, col0, hel0)
call qn(4)%init (data%flv_rad, col0, hel0)
call qn(5)%init (data%flv_out, col0, hel0)
call qn(6)%init (data%flv_out, col0, hel0)
call sf_int%add_state (qn(1:6))
call sf_int%set_incoming ([1,2])
call sf_int%set_radiated ([3,4])
call sf_int%set_outgoing ([5,6])
else
call sf_int%base_init (mask(1:4), &
[data%m**2, data%m**2], &
[real(default) :: ], &
[data%m**2, data%m**2])
sf_int%data => data
call hel0%init (0)
call col0%init ()
call qn(1)%init (data%flv_in, col0, hel0)
call qn(2)%init (data%flv_in, col0, hel0)
call qn(3)%init (data%flv_out, col0, hel0)
call qn(4)%init (data%flv_out, col0, hel0)
call sf_int%add_state (qn(1:4))
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
end if
call sf_int%freeze ()
end select
sf_int%status = SF_INITIAL
end subroutine sf_test_spectrum_init
@ %def sf_test_spectrum_init
@ Set kinematics. If [[map]] is unset, the $r$ and $x$ values
coincide, and the Jacobian $f(r)$ is trivial.
If [[map]] is set, we are asked to provide an efficient mapping.
For the test case, we set $x=r^2$ (as above) for both $x$ parameters
and consequently $f(r)=4r_1r_2$.
<<SF base: sf test spectrum: TBP>>=
procedure :: complete_kinematics => sf_test_spectrum_complete_kinematics
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(sf_test_spectrum_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
real(default), dimension(2) :: xb1
if (map) then
x = r**2
f = 4 * r(1) * r(2)
else
x = r
f = 1
end if
xb = 1 - x
if (sf_int%data%with_radiation) then
call sf_int%split_momenta (x, xb)
else
call sf_int%reduce_momenta (x)
end if
select case (sf_int%status)
case (SF_FAILED_KINEMATICS); f = 0
end select
end subroutine sf_test_spectrum_complete_kinematics
@ %def sf_test_spectrum_complete_kinematics
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF base: sf test spectrum: TBP>>=
procedure :: inverse_kinematics => sf_test_spectrum_inverse_kinematics
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_inverse_kinematics &
(sf_int, x, xb, f, r, rb, map, set_momenta)
class(sf_test_spectrum_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
real(default), dimension(2) :: xb1
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
r = sqrt (x)
f = 4 * r(1) * r(2)
else
r = x
f = 1
end if
rb = 1 - r
if (set_mom) then
if (sf_int%data%with_radiation) then
call sf_int%split_momenta (x, xb)
else
call sf_int%reduce_momenta (x)
end if
select case (sf_int%status)
case (SF_FAILED_KINEMATICS); f = 0
end select
end if
end subroutine sf_test_spectrum_inverse_kinematics
@ %def sf_test_spectrum_inverse_kinematics
@ Apply the structure function. The matrix element becomes unity and
the application always succeeds.
<<SF base: sf test spectrum: TBP>>=
procedure :: apply => sf_test_spectrum_apply
<<SF base: test auxiliary>>=
subroutine sf_test_spectrum_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(sf_test_spectrum_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
call sf_int%set_matrix_element &
(cmplx (1._default, kind=default))
sf_int%status = SF_EVALUATED
end subroutine sf_test_spectrum_apply
@ %def sf_test_spectrum_apply
@
\subsection{Test implementation: generator spectrum}
A generator for two beams, no radiation (for simplicity).
\subsubsection{Configuration data}
For simplicity, the spectrum contains two mirror images of the
previous structure-function configuration: the incoming and all
outgoing particles are test scalars.
We have two versions, one with radiated particles, one without.
<<SF base: test types>>=
type, extends (sf_data_t) :: sf_test_generator_data_t
class(model_data_t), pointer :: model => null ()
type(flavor_t) :: flv_in
type(flavor_t) :: flv_out
type(flavor_t) :: flv_rad
real(default) :: m = 0
contains
<<SF base: sf test generator data: TBP>>
end type sf_test_generator_data_t
@ %def sf_test_generator_data_t
@ Output.
<<SF base: sf test generator data: TBP>>=
procedure :: write => sf_test_generator_data_write
<<SF base: test auxiliary>>=
subroutine sf_test_generator_data_write (data, unit, verbose)
class(sf_test_generator_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit)
write (u, "(1x,A)") "SF test generator data:"
write (u, "(3x,A,A)") "model = ", char (data%model%get_name ())
write (u, "(3x,A)", advance="no") "incoming = "
call data%flv_in%write (u); write (u, *)
write (u, "(3x,A)", advance="no") "outgoing = "
call data%flv_out%write (u); write (u, *)
write (u, "(3x,A," // FMT_19 // ")") "mass = ", data%m
end subroutine sf_test_generator_data_write
@ %def sf_test_generator_data_write
@ Initialization.
<<SF base: sf test generator data: TBP>>=
procedure :: init => sf_test_generator_data_init
<<SF base: test auxiliary>>=
subroutine sf_test_generator_data_init (data, model, pdg_in)
class(sf_test_generator_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
data%model => model
if (pdg_array_get (pdg_in, 1) /= 25) then
call msg_fatal ("Test generator: input flavor must be 's'")
end if
call data%flv_in%init (25, model)
data%m = data%flv_in%get_mass ()
call data%flv_out%init (25, model)
end subroutine sf_test_generator_data_init
@ %def sf_test_generator_data_init
@ This structure function is a generator.
<<SF base: sf test generator data: TBP>>=
procedure :: is_generator => sf_test_generator_data_is_generator
<<SF base: test auxiliary>>=
function sf_test_generator_data_is_generator (data) result (flag)
class(sf_test_generator_data_t), intent(in) :: data
logical :: flag
flag = .true.
end function sf_test_generator_data_is_generator
@ %def sf_test_generator_data_is_generator
@ Return the number of parameters: 2, since we have only collinear
splitting here.
<<SF base: sf test generator data: TBP>>=
procedure :: get_n_par => sf_test_generator_data_get_n_par
<<SF base: test auxiliary>>=
function sf_test_generator_data_get_n_par (data) result (n)
class(sf_test_generator_data_t), intent(in) :: data
integer :: n
n = 2
end function sf_test_generator_data_get_n_par
@ %def sf_test_generator_data_get_n_par
@ Return the outgoing particle PDG codes: 25
<<SF base: sf test generator data: TBP>>=
procedure :: get_pdg_out => sf_test_generator_data_get_pdg_out
<<SF base: test auxiliary>>=
subroutine sf_test_generator_data_get_pdg_out (data, pdg_out)
class(sf_test_generator_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
pdg_out(1) = 25
pdg_out(2) = 25
end subroutine sf_test_generator_data_get_pdg_out
@ %def sf_test_generator_data_get_pdg_out
@ Allocate the matching interaction.
<<SF base: sf test generator data: TBP>>=
procedure :: allocate_sf_int => &
sf_test_generator_data_allocate_sf_int
<<SF base: test auxiliary>>=
subroutine sf_test_generator_data_allocate_sf_int (data, sf_int)
class(sf_test_generator_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (sf_test_generator_t :: sf_int)
end subroutine sf_test_generator_data_allocate_sf_int
@ %def sf_test_generator_data_allocate_sf_int
@
\subsubsection{Interaction}
<<SF base: test types>>=
type, extends (sf_int_t) :: sf_test_generator_t
type(sf_test_generator_data_t), pointer :: data => null ()
contains
<<SF base: sf test generator: TBP>>
end type sf_test_generator_t
@ %def sf_test_generator_t
<<SF base: sf test generator: TBP>>=
procedure :: type_string => sf_test_generator_type_string
<<SF base: test auxiliary>>=
function sf_test_generator_type_string (object) result (string)
class(sf_test_generator_t), intent(in) :: object
type(string_t) :: string
string = "Test Generator"
end function sf_test_generator_type_string
@ %def sf_test_generator_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF base: sf test generator: TBP>>=
procedure :: write => sf_test_generator_write
<<SF base: test auxiliary>>=
subroutine sf_test_generator_write (object, unit, testflag)
class(sf_test_generator_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "SF test generator data: [undefined]"
end if
end subroutine sf_test_generator_write
@ %def sf_test_generator_write
@ Initialize. We know that [[data]] will be of concrete type
[[sf_test_generator_data_t]], but we have to cast this explicitly.
For this implementation, we set the incoming and outgoing masses equal
to the physical particle mass. No radiation.
<<SF base: sf test generator: TBP>>=
procedure :: init => sf_test_generator_init
<<SF base: test auxiliary>>=
subroutine sf_test_generator_init (sf_int, data)
class(sf_test_generator_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(4) :: mask
type(helicity_t) :: hel0
type(color_t) :: col0
type(quantum_numbers_t), dimension(4) :: qn
mask = quantum_numbers_mask (.false., .false., .false.)
select type (data)
type is (sf_test_generator_data_t)
call sf_int%base_init (mask(1:4), &
[data%m**2, data%m**2], &
[real(default) :: ], &
[data%m**2, data%m**2])
sf_int%data => data
call hel0%init (0)
call col0%init ()
call qn(1)%init (data%flv_in, col0, hel0)
call qn(2)%init (data%flv_in, col0, hel0)
call qn(3)%init (data%flv_out, col0, hel0)
call qn(4)%init (data%flv_out, col0, hel0)
call sf_int%add_state (qn(1:4))
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
call sf_int%freeze ()
end select
sf_int%status = SF_INITIAL
end subroutine sf_test_generator_init
@ %def sf_test_generator_init
@ This structure function is a generator.
<<SF base: sf test generator: TBP>>=
procedure :: is_generator => sf_test_generator_is_generator
<<SF base: test auxiliary>>=
function sf_test_generator_is_generator (sf_int) result (flag)
class(sf_test_generator_t), intent(in) :: sf_int
logical :: flag
flag = sf_int%data%is_generator ()
end function sf_test_generator_is_generator
@ %def sf_test_generator_is_generator
@ Generate free parameters. This mock generator always produces the
nubmers 0.8 and 0.5.
<<SF base: sf test generator: TBP>>=
procedure :: generate_free => sf_test_generator_generate_free
<<SF base: test auxiliary>>=
subroutine sf_test_generator_generate_free (sf_int, r, rb, x_free)
class(sf_test_generator_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(inout) :: x_free
r = [0.8, 0.5]
rb= 1 - r
x_free = x_free * product (r)
end subroutine sf_test_generator_generate_free
@ %def sf_test_generator_generate_free
@ Recover momentum fractions. Since the x values are free, we also set the [[x_free]] parameter.
<<SF base: sf test generator: TBP>>=
procedure :: recover_x => sf_test_generator_recover_x
<<SF base: test auxiliary>>=
subroutine sf_test_generator_recover_x (sf_int, x, xb, x_free)
class(sf_test_generator_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(inout), optional :: x_free
call sf_int%base_recover_x (x, xb)
if (present (x_free)) x_free = x_free * product (x)
end subroutine sf_test_generator_recover_x
@ %def sf_test_generator_recover_x
@ Set kinematics. Since this is a generator, just transfer input to output.
<<SF base: sf test generator: TBP>>=
procedure :: complete_kinematics => sf_test_generator_complete_kinematics
<<SF base: test auxiliary>>=
subroutine sf_test_generator_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(sf_test_generator_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
x = r
xb= rb
f = 1
call sf_int%reduce_momenta (x)
end subroutine sf_test_generator_complete_kinematics
@ %def sf_test_generator_complete_kinematics
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF base: sf test generator: TBP>>=
procedure :: inverse_kinematics => sf_test_generator_inverse_kinematics
<<SF base: test auxiliary>>=
subroutine sf_test_generator_inverse_kinematics &
(sf_int, x, xb, f, r, rb, map, set_momenta)
class(sf_test_generator_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
r = x
rb= xb
f = 1
if (set_mom) call sf_int%reduce_momenta (x)
end subroutine sf_test_generator_inverse_kinematics
@ %def sf_test_generator_inverse_kinematics
@ Apply the structure function. The matrix element becomes unity and
the application always succeeds.
<<SF base: sf test generator: TBP>>=
procedure :: apply => sf_test_generator_apply
<<SF base: test auxiliary>>=
subroutine sf_test_generator_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(sf_test_generator_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
call sf_int%set_matrix_element &
(cmplx (1._default, kind=default))
sf_int%status = SF_EVALUATED
end subroutine sf_test_generator_apply
@ %def sf_test_generator_apply
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF base: execute tests>>=
call test (sf_base_1, "sf_base_1", &
"structure function configuration", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_1
<<SF base: tests>>=
subroutine sf_base_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(1) :: pdg_out
integer, dimension(:), allocatable :: pdg1
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_base_1"
write (u, "(A)") "* Purpose: initialize and display &
&test structure function data"
write (u, "(A)")
call model%init_test ()
pdg_in = 25
allocate (sf_test_data_t :: data)
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle code:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_1"
end subroutine sf_base_1
@ %def sf_base_1
@
\subsubsection{Test and probe structure function}
Construct and display a structure function object based on the test
structure function.
<<SF base: execute tests>>=
call test (sf_base_2, "sf_base_2", &
"structure function instance", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_2
<<SF base: tests>>=
subroutine sf_base_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_base_2"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
pdg_in = 25
call flv%init (25, model)
call reset_interaction_counter ()
allocate (sf_test_data_t :: data)
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=1"
write (u, "(A)")
r = 1
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Set kinematics with mapping for r=0.8"
write (u, "(A)")
r = 0.8_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A)")
write (u, "(A)") "* Compute inverse kinematics for x=0.64 and evaluate"
write (u, "(A)")
x = 0.64_default
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true.)
call sf_int%apply (scale=0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_2"
end subroutine sf_base_2
@ %def sf_base_2
@
\subsubsection{Collinear kinematics}
Scan over the possibilities for mass assignment and on-shell
projections, collinear case.
<<SF base: execute tests>>=
call test (sf_base_3, "sf_base_3", &
"alternatives for collinear kinematics", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_3
<<SF base: tests>>=
subroutine sf_base_3 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(flavor_t) :: flv
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_base_3"
write (u, "(A)") "* Purpose: check various kinematical setups"
write (u, "(A)") "* for collinear structure-function splitting."
write (u, "(A)") " (two masses equal, one zero)"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
pdg_in = 25
call flv%init (25, model)
call reset_interaction_counter ()
allocate (sf_test_data_t :: data)
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%write (u)
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set radiated mass to zero"
sf_int%mr2 = 0
sf_int%mo2 = sf_int%mi2
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping energy"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping momentum"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set outgoing mass to zero"
sf_int%mr2 = sf_int%mi2
sf_int%mo2 = 0
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping energy"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping momentum"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set incoming mass to zero"
k = vector4_moving (E, E, 3)
call sf_int%seed_kinematics ([k])
sf_int%mr2 = sf_int%mi2
sf_int%mo2 = sf_int%mi2
sf_int%mi2 = 0
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping energy"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping momentum"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set all masses to zero"
sf_int%mr2 = 0
sf_int%mo2 = 0
sf_int%mi2 = 0
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping energy"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5, keeping momentum"
write (u, "(A)")
r = 0.5_default
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_3"
end subroutine sf_base_3
@ %def sf_base_3
@
\subsubsection{Non-collinear kinematics}
Scan over the possibilities for mass assignment and on-shell
projections, non-collinear case.
<<SF base: execute tests>>=
call test (sf_base_4, "sf_base_4", &
"alternatives for non-collinear kinematics", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_4
<<SF base: tests>>=
subroutine sf_base_4 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(flavor_t) :: flv
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_base_4"
write (u, "(A)") "* Purpose: check various kinematical setups"
write (u, "(A)") "* for free structure-function splitting."
write (u, "(A)") " (two masses equal, one zero)"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
pdg_in = 25
call flv%init (25, model)
call reset_interaction_counter ()
allocate (sf_test_data_t :: data)
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in, collinear=.false.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%write (u)
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set radiated mass to zero"
sf_int%mr2 = 0
sf_int%mo2 = sf_int%mi2
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping energy"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping momentum"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set outgoing mass to zero"
sf_int%mr2 = sf_int%mi2
sf_int%mo2 = 0
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping energy"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping momentum"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set incoming mass to zero"
k = vector4_moving (E, E, 3)
call sf_int%seed_kinematics ([k])
sf_int%mr2 = sf_int%mi2
sf_int%mo2 = sf_int%mi2
sf_int%mi2 = 0
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping energy"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping momentum"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set all masses to zero"
sf_int%mr2 = 0
sf_int%mo2 = 0
sf_int%mi2 = 0
write (u, "(A)")
write (u, "(A)") "* Re-Initialize structure-function object with Q bounds"
call reset_interaction_counter ()
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in, collinear=.false., &
qbounds = [1._default, 100._default])
end select
call sf_int%init (data)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping energy"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.125, keeping momentum"
write (u, "(A)")
r = [0.5_default, 0.5_default, 0.125_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_MOMENTUM
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Recover x and r"
write (u, "(A)")
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_4"
end subroutine sf_base_4
@ %def sf_base_4
@
\subsubsection{Pair spectrum}
Construct and display a structure function object for a pair spectrum
(a structure function involving two particles simultaneously).
<<SF base: execute tests>>=
call test (sf_base_5, "sf_base_5", &
"pair spectrum with radiation", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_5
<<SF base: tests>>=
subroutine sf_base_5 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(2) :: pdg_out
integer, dimension(:), allocatable :: pdg1, pdg2
type(flavor_t) :: flv
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t), dimension(2) :: k
type(vector4_t), dimension(4) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_base_5"
write (u, "(A)") "* Purpose: initialize and fill &
&a pair spectrum object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
allocate (sf_test_spectrum_data_t :: data)
select type (data)
type is (sf_test_spectrum_data_t)
call data%init (model, pdg_in, with_radiation=.true.)
end select
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
pdg2 = pdg_out(2)
write (u, "(2x,99(1x,I0))") pdg1, pdg2
write (u, "(A)")
write (u, "(A)") "* Initialize spectrum object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momenta with sqrts=1000"
E = 500
k(1) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
k(2) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call sf_int%seed_kinematics (k)
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.4,0.8"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = [0.4_default, 0.8_default]
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Set kinematics with mapping for r=0.6,0.8"
write (u, "(A)")
r = [0.6_default, 0.8_default]
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call reset_interaction_counter ()
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%seed_kinematics (k)
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A)")
write (u, "(A)") "* Compute inverse kinematics for x=0.36,0.64 &
&and evaluate"
write (u, "(A)")
x = [0.36_default, 0.64_default]
xb = 1 - x
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true.)
call sf_int%apply (scale=0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_5"
end subroutine sf_base_5
@ %def sf_base_5
@
\subsubsection{Pair spectrum without radiation}
Construct and display a structure function object for a pair spectrum
(a structure function involving two particles simultaneously).
<<SF base: execute tests>>=
call test (sf_base_6, "sf_base_6", &
"pair spectrum without radiation", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_6
<<SF base: tests>>=
subroutine sf_base_6 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(flavor_t) :: flv
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t), dimension(2) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_base_6"
write (u, "(A)") "* Purpose: initialize and fill &
&a pair spectrum object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
allocate (sf_test_spectrum_data_t :: data)
select type (data)
type is (sf_test_spectrum_data_t)
call data%init (model, pdg_in, with_radiation=.false.)
end select
write (u, "(A)") "* Initialize spectrum object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
write (u, "(A)") "* Initialize incoming momenta with sqrts=1000"
E = 500
k(1) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
k(2) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call sf_int%seed_kinematics (k)
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.4,0.8"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = [0.4_default, 0.8_default]
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call reset_interaction_counter ()
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%seed_kinematics (k)
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A)")
write (u, "(A)") "* Compute inverse kinematics for x=0.4,0.8 &
&and evaluate"
write (u, "(A)")
x = [0.4_default, 0.8_default]
xb = 1 - x
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%apply (scale=0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_6"
end subroutine sf_base_6
@ %def sf_base_6
@
\subsubsection{Direct access to structure function}
Probe a structure function directly.
<<SF base: execute tests>>=
call test (sf_base_7, "sf_base_7", &
"direct access", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_7
<<SF base: tests>>=
subroutine sf_base_7 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(flavor_t) :: flv
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
real(default), dimension(:), allocatable :: value
write (u, "(A)") "* Test output: sf_base_7"
write (u, "(A)") "* Purpose: check direct access method"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
allocate (sf_test_data_t :: data)
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in)
end select
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
write (u, "(A)") "* Probe structure function: states"
write (u, "(A)")
write (u, "(A,I0)") "n_states = ", sf_int%get_n_states ()
write (u, "(A,I0)") "n_in = ", sf_int%get_n_in ()
write (u, "(A,I0)") "n_rad = ", sf_int%get_n_rad ()
write (u, "(A,I0)") "n_out = ", sf_int%get_n_out ()
write (u, "(A)")
write (u, "(A)", advance="no") "state(1) = "
call quantum_numbers_write (sf_int%get_state (1), u)
write (u, *)
allocate (value (sf_int%get_n_states ()))
call sf_int%compute_values (value, &
E=[500._default], x=[0.5_default], xb=[0.5_default], scale=0._default)
write (u, "(A)")
write (u, "(A)", advance="no") "value (E=500, x=0.5) ="
write (u, "(9(1x," // FMT_19 // "))") value
call sf_int%compute_values (value, &
x=[0.1_default], xb=[0.9_default], scale=0._default)
write (u, "(A)")
write (u, "(A)", advance="no") "value (E=500, x=0.1) ="
write (u, "(9(1x," // FMT_19 // "))") value
write (u, "(A)")
write (u, "(A)") "* Initialize spectrum object"
write (u, "(A)")
deallocate (value)
call sf_int%final ()
deallocate (sf_int)
deallocate (data)
allocate (sf_test_spectrum_data_t :: data)
select type (data)
type is (sf_test_spectrum_data_t)
call data%init (model, pdg_in, with_radiation=.false.)
end select
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
write (u, "(A)") "* Probe spectrum: states"
write (u, "(A)")
write (u, "(A,I0)") "n_states = ", sf_int%get_n_states ()
write (u, "(A,I0)") "n_in = ", sf_int%get_n_in ()
write (u, "(A,I0)") "n_rad = ", sf_int%get_n_rad ()
write (u, "(A,I0)") "n_out = ", sf_int%get_n_out ()
write (u, "(A)")
write (u, "(A)", advance="no") "state(1) = "
call quantum_numbers_write (sf_int%get_state (1), u)
write (u, *)
allocate (value (sf_int%get_n_states ()))
call sf_int%compute_value (1, value(1), &
E = [500._default, 500._default], &
x = [0.5_default, 0.6_default], &
xb= [0.5_default, 0.4_default], &
scale = 0._default)
write (u, "(A)")
write (u, "(A)", advance="no") "value (E=500,500, x=0.5,0.6) ="
write (u, "(9(1x," // FMT_19 // "))") value
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_7"
end subroutine sf_base_7
@ %def sf_base_7
@
\subsubsection{Structure function chain configuration}
<<SF base: execute tests>>=
call test (sf_base_8, "sf_base_8", &
"structure function chain configuration", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_8
<<SF base: tests>>=
subroutine sf_base_8 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
type(beam_data_t), target :: beam_data
class(sf_data_t), allocatable, target :: data_strfun
class(sf_data_t), allocatable, target :: data_spectrum
type(sf_config_t), dimension(:), allocatable :: sf_config
type(sf_chain_t) :: sf_chain
write (u, "(A)") "* Test output: sf_base_8"
write (u, "(A)") "* Purpose: set up a structure-function chain"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
call beam_data%init_sqrts (1000._default, [flv, flv])
allocate (sf_test_data_t :: data_strfun)
select type (data_strfun)
type is (sf_test_data_t)
call data_strfun%init (model, pdg_in)
end select
allocate (sf_test_spectrum_data_t :: data_spectrum)
select type (data_spectrum)
type is (sf_test_spectrum_data_t)
call data_spectrum%init (model, pdg_in, with_radiation=.true.)
end select
write (u, "(A)") "* Set up chain with beams only"
write (u, "(A)")
call sf_chain%init (beam_data)
call write_separator (u, 2)
call sf_chain%write (u)
call write_separator (u, 2)
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Set up chain with structure function"
write (u, "(A)")
allocate (sf_config (1))
call sf_config(1)%init ([1], data_strfun)
call sf_chain%init (beam_data, sf_config)
call write_separator (u, 2)
call sf_chain%write (u)
call write_separator (u, 2)
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Set up chain with spectrum and structure function"
write (u, "(A)")
deallocate (sf_config)
allocate (sf_config (2))
call sf_config(1)%init ([1,2], data_spectrum)
call sf_config(2)%init ([2], data_strfun)
call sf_chain%init (beam_data, sf_config)
call write_separator (u, 2)
call sf_chain%write (u)
call write_separator (u, 2)
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_8"
end subroutine sf_base_8
@ %def sf_base_8
@
\subsubsection{Structure function instance configuration}
We create a structure-function chain instance which implements a
configured structure-function chain. We link the momentum entries in
the interactions and compute kinematics.
We do not actually connect the interactions and create evaluators. We
skip this step and manually advance the status of the chain instead.
<<SF base: execute tests>>=
call test (sf_base_9, "sf_base_9", &
"structure function chain instance", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_9
<<SF base: tests>>=
subroutine sf_base_9 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
type(beam_data_t), target :: beam_data
class(sf_data_t), allocatable, target :: data_strfun
class(sf_data_t), allocatable, target :: data_spectrum
type(sf_config_t), dimension(:), allocatable, target :: sf_config
type(sf_chain_t), target :: sf_chain
type(sf_chain_instance_t), target :: sf_chain_instance
type(sf_channel_t), dimension(2) :: sf_channel
type(vector4_t), dimension(2) :: p
integer :: j
write (u, "(A)") "* Test output: sf_base_9"
write (u, "(A)") "* Purpose: set up a structure-function chain &
&and create an instance"
write (u, "(A)") "* compute kinematics"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
call beam_data%init_sqrts (1000._default, [flv, flv])
allocate (sf_test_data_t :: data_strfun)
select type (data_strfun)
type is (sf_test_data_t)
call data_strfun%init (model, pdg_in)
end select
allocate (sf_test_spectrum_data_t :: data_spectrum)
select type (data_spectrum)
type is (sf_test_spectrum_data_t)
call data_spectrum%init (model, pdg_in, with_radiation=.true.)
end select
write (u, "(A)") "* Set up chain with beams only"
write (u, "(A)")
call sf_chain%init (beam_data)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_chain_instance%link_interactions ()
sf_chain_instance%status = SF_DONE_CONNECTIONS
call sf_chain_instance%compute_kinematics (1, [real(default) ::])
call write_separator (u, 2)
call sf_chain%write (u)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call sf_chain_instance%get_out_momenta (p)
write (u, "(A)")
write (u, "(A)") "* Outgoing momenta:"
do j = 1, 2
write (u, "(A)")
call vector4_write (p(j), u)
end do
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Set up chain with structure function"
write (u, "(A)")
allocate (sf_config (1))
call sf_config(1)%init ([1], data_strfun)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(1)%init (1)
call sf_channel(1)%activate_mapping ([1])
call sf_chain_instance%set_channel (1, sf_channel(1))
call sf_chain_instance%link_interactions ()
sf_chain_instance%status = SF_DONE_CONNECTIONS
call sf_chain_instance%compute_kinematics (1, [0.8_default])
call write_separator (u, 2)
call sf_chain%write (u)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call sf_chain_instance%get_out_momenta (p)
write (u, "(A)")
write (u, "(A)") "* Outgoing momenta:"
do j = 1, 2
write (u, "(A)")
call vector4_write (p(j), u)
end do
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Set up chain with spectrum and structure function"
write (u, "(A)")
deallocate (sf_config)
allocate (sf_config (2))
call sf_config(1)%init ([1,2], data_spectrum)
call sf_config(2)%init ([2], data_strfun)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(2)%init (2)
call sf_channel(2)%activate_mapping ([2])
call sf_chain_instance%set_channel (1, sf_channel(2))
call sf_chain_instance%link_interactions ()
sf_chain_instance%status = SF_DONE_CONNECTIONS
call sf_chain_instance%compute_kinematics &
(1, [0.5_default, 0.6_default, 0.8_default])
call write_separator (u, 2)
call sf_chain%write (u)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call sf_chain_instance%get_out_momenta (p)
write (u, "(A)")
write (u, "(A)") "* Outgoing momenta:"
do j = 1, 2
write (u, "(A)")
call vector4_write (p(j), u)
end do
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_9"
end subroutine sf_base_9
@ %def sf_base_9
@
\subsubsection{Structure function chain mappings}
Set up a structure function chain instance with a pair of
single-particle structure functions. We test different global
mappings for this setup.
Again, we skip evaluators.
<<SF base: execute tests>>=
call test (sf_base_10, "sf_base_10", &
"structure function chain mapping", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_10
<<SF base: tests>>=
subroutine sf_base_10 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
type(beam_data_t), target :: beam_data
class(sf_data_t), allocatable, target :: data_strfun
type(sf_config_t), dimension(:), allocatable, target :: sf_config
type(sf_chain_t), target :: sf_chain
type(sf_chain_instance_t), target :: sf_chain_instance
type(sf_channel_t), dimension(2) :: sf_channel
real(default), dimension(2) :: x_saved
write (u, "(A)") "* Test output: sf_base_10"
write (u, "(A)") "* Purpose: set up a structure-function chain"
write (u, "(A)") "* and check mappings"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
call beam_data%init_sqrts (1000._default, [flv, flv])
allocate (sf_test_data_t :: data_strfun)
select type (data_strfun)
type is (sf_test_data_t)
call data_strfun%init (model, pdg_in)
end select
write (u, "(A)") "* Set up chain with structure function pair &
&and standard mapping"
write (u, "(A)")
allocate (sf_config (2))
call sf_config(1)%init ([1], data_strfun)
call sf_config(2)%init ([2], data_strfun)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(1)%init (2)
call sf_channel(1)%set_s_mapping ([1,2])
call sf_chain_instance%set_channel (1, sf_channel(1))
call sf_chain_instance%link_interactions ()
sf_chain_instance%status = SF_DONE_CONNECTIONS
call sf_chain_instance%compute_kinematics (1, [0.8_default, 0.6_default])
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
write (u, "(A)")
write (u, "(A)") "* Invert the kinematics calculation"
write (u, "(A)")
x_saved = sf_chain_instance%x
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(2)%init (2)
call sf_channel(2)%set_s_mapping ([1, 2])
call sf_chain_instance%set_channel (1, sf_channel(2))
call sf_chain_instance%link_interactions ()
sf_chain_instance%status = SF_DONE_CONNECTIONS
call sf_chain_instance%inverse_kinematics (x_saved, 1 - x_saved)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_10"
end subroutine sf_base_10
@ %def sf_base_10
@
\subsubsection{Structure function chain evaluation}
Here, we test the complete workflow for structure-function chains.
First, we create the template chain, then initialize an instance. We
set up links, mask, and evaluators. Finally, we set kinematics and
evaluate the matrix elements and their products.
<<SF base: execute tests>>=
call test (sf_base_11, "sf_base_11", &
"structure function chain evaluation", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_11
<<SF base: tests>>=
subroutine sf_base_11 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
type(beam_data_t), target :: beam_data
class(sf_data_t), allocatable, target :: data_strfun
class(sf_data_t), allocatable, target :: data_spectrum
type(sf_config_t), dimension(:), allocatable, target :: sf_config
type(sf_chain_t), target :: sf_chain
type(sf_chain_instance_t), target :: sf_chain_instance
type(sf_channel_t), dimension(2) :: sf_channel
type(particle_set_t) :: pset
type(interaction_t), pointer :: int
logical :: ok
write (u, "(A)") "* Test output: sf_base_11"
write (u, "(A)") "* Purpose: set up a structure-function chain"
write (u, "(A)") "* create an instance and evaluate"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
call beam_data%init_sqrts (1000._default, [flv, flv])
allocate (sf_test_data_t :: data_strfun)
select type (data_strfun)
type is (sf_test_data_t)
call data_strfun%init (model, pdg_in)
end select
allocate (sf_test_spectrum_data_t :: data_spectrum)
select type (data_spectrum)
type is (sf_test_spectrum_data_t)
call data_spectrum%init (model, pdg_in, with_radiation=.true.)
end select
write (u, "(A)") "* Set up chain with beams only"
write (u, "(A)")
call sf_chain%init (beam_data)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
call sf_chain_instance%compute_kinematics (1, [real(default) ::])
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
int => sf_chain_instance%get_out_int_ptr ()
call pset%init (ok, int, int, FM_IGNORE_HELICITY, &
[0._default, 0._default], .false., .true.)
call sf_chain_instance%final ()
write (u, "(A)")
write (u, "(A)") "* Particle content:"
write (u, "(A)")
call write_separator (u)
call pset%write (u)
call write_separator (u)
write (u, "(A)")
write (u, "(A)") "* Recover chain:"
write (u, "(A)")
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
int => sf_chain_instance%get_out_int_ptr ()
call pset%fill_interaction (int, 2, check_match=.false.)
call sf_chain_instance%recover_kinematics (1)
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call pset%final ()
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)")
write (u, "(A)")
write (u, "(A)") "* Set up chain with structure function"
write (u, "(A)")
allocate (sf_config (1))
call sf_config(1)%init ([1], data_strfun)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(1)%init (1)
call sf_channel(1)%activate_mapping ([1])
call sf_chain_instance%set_channel (1, sf_channel(1))
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
call sf_chain_instance%compute_kinematics (1, [0.8_default])
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
int => sf_chain_instance%get_out_int_ptr ()
call pset%init (ok, int, int, FM_IGNORE_HELICITY, &
[0._default, 0._default], .false., .true.)
call sf_chain_instance%final ()
write (u, "(A)")
write (u, "(A)") "* Particle content:"
write (u, "(A)")
call write_separator (u)
call pset%write (u)
call write_separator (u)
write (u, "(A)")
write (u, "(A)") "* Recover chain:"
write (u, "(A)")
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(1)%init (1)
call sf_channel(1)%activate_mapping ([1])
call sf_chain_instance%set_channel (1, sf_channel(1))
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
int => sf_chain_instance%get_out_int_ptr ()
call pset%fill_interaction (int, 2, check_match=.false.)
call sf_chain_instance%recover_kinematics (1)
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call pset%final ()
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)")
write (u, "(A)")
write (u, "(A)") "* Set up chain with spectrum and structure function"
write (u, "(A)")
deallocate (sf_config)
allocate (sf_config (2))
call sf_config(1)%init ([1,2], data_spectrum)
call sf_config(2)%init ([2], data_strfun)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(2)%init (2)
call sf_channel(2)%activate_mapping ([2])
call sf_chain_instance%set_channel (1, sf_channel(2))
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
call sf_chain_instance%compute_kinematics &
(1, [0.5_default, 0.6_default, 0.8_default])
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
int => sf_chain_instance%get_out_int_ptr ()
call pset%init (ok, int, int, FM_IGNORE_HELICITY, &
[0._default, 0._default], .false., .true.)
call sf_chain_instance%final ()
write (u, "(A)")
write (u, "(A)") "* Particle content:"
write (u, "(A)")
call write_separator (u)
call pset%write (u)
call write_separator (u)
write (u, "(A)")
write (u, "(A)") "* Recover chain:"
write (u, "(A)")
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_channel(2)%init (2)
call sf_channel(2)%activate_mapping ([2])
call sf_chain_instance%set_channel (1, sf_channel(2))
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
int => sf_chain_instance%get_out_int_ptr ()
call pset%fill_interaction (int, 2, check_match=.false.)
call sf_chain_instance%recover_kinematics (1)
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
call pset%final ()
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_11"
end subroutine sf_base_11
@ %def sf_base_11
@
\subsubsection{Multichannel case}
We set up a structure-function chain as before, but with three
different parameterizations. The first instance is without mappings,
the second one with single-particle mappings, and the third one with
two-particle mappings.
<<SF base: execute tests>>=
call test (sf_base_12, "sf_base_12", &
"multi-channel structure function chain", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_12
<<SF base: tests>>=
subroutine sf_base_12 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
type(beam_data_t), target :: beam_data
class(sf_data_t), allocatable, target :: data
type(sf_config_t), dimension(:), allocatable, target :: sf_config
type(sf_chain_t), target :: sf_chain
type(sf_chain_instance_t), target :: sf_chain_instance
real(default), dimension(2) :: x_saved
real(default), dimension(2,3) :: p_saved
type(sf_channel_t), dimension(:), allocatable :: sf_channel
write (u, "(A)") "* Test output: sf_base_12"
write (u, "(A)") "* Purpose: set up and evaluate a multi-channel &
&structure-function chain"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
call beam_data%init_sqrts (1000._default, [flv, flv])
allocate (sf_test_data_t :: data)
select type (data)
type is (sf_test_data_t)
call data%init (model, pdg_in)
end select
write (u, "(A)") "* Set up chain with structure function pair &
&and three different mappings"
write (u, "(A)")
allocate (sf_config (2))
call sf_config(1)%init ([1], data)
call sf_config(2)%init ([2], data)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 3)
call allocate_sf_channels (sf_channel, n_channel = 3, n_strfun = 2)
! channel 1: no mapping
call sf_chain_instance%set_channel (1, sf_channel(1))
! channel 2: single-particle mappings
call sf_channel(2)%activate_mapping ([1,2])
! call sf_chain_instance%activate_mapping (2, [1,2])
call sf_chain_instance%set_channel (2, sf_channel(2))
! channel 3: two-particle mapping
call sf_channel(3)%set_s_mapping ([1,2])
! call sf_chain_instance%set_s_mapping (3, [1, 2])
call sf_chain_instance%set_channel (3, sf_channel(3))
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
write (u, "(A)") "* Compute kinematics in channel 1 and evaluate"
write (u, "(A)")
call sf_chain_instance%compute_kinematics (1, [0.8_default, 0.6_default])
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
write (u, "(A)")
write (u, "(A)") "* Invert the kinematics calculation"
write (u, "(A)")
x_saved = sf_chain_instance%x
call sf_chain_instance%inverse_kinematics (x_saved, 1 - x_saved)
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
write (u, "(A)")
write (u, "(A)") "* Compute kinematics in channel 2 and evaluate"
write (u, "(A)")
p_saved = sf_chain_instance%p
call sf_chain_instance%compute_kinematics (2, p_saved(:,2))
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
write (u, "(A)")
write (u, "(A)") "* Compute kinematics in channel 3 and evaluate"
write (u, "(A)")
call sf_chain_instance%compute_kinematics (3, p_saved(:,3))
call sf_chain_instance%evaluate (scale=0._default)
call write_separator (u, 2)
call sf_chain_instance%write (u)
call write_separator (u, 2)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_chain_instance%final ()
call sf_chain%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_12"
end subroutine sf_base_12
@ %def sf_base_12
@
\subsubsection{Generated spectrum}
Construct and evaluate a structure function object for a pair spectrum
which is evaluated as a beam-event generator.
<<SF base: execute tests>>=
call test (sf_base_13, "sf_base_13", &
"pair spectrum generator", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_13
<<SF base: tests>>=
subroutine sf_base_13 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t), dimension(2) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, x_free
write (u, "(A)") "* Test output: sf_base_13"
write (u, "(A)") "* Purpose: initialize and fill &
&a pair generator object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
allocate (sf_test_generator_data_t :: data)
select type (data)
type is (sf_test_generator_data_t)
call data%init (model, pdg_in)
end select
write (u, "(A)") "* Initialize generator object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
write (u, "(A)") "* Generate free r values"
write (u, "(A)")
x_free = 1
call sf_int%generate_free (r, rb, x_free)
write (u, "(A)") "* Initialize incoming momenta with sqrts=1000"
E = 500
k(1) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
k(2) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call sf_int%seed_kinematics (k)
write (u, "(A)")
write (u, "(A)") "* Complete kinematics"
write (u, "(A)")
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call reset_interaction_counter ()
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%seed_kinematics (k)
call sf_int%set_momenta (q, outgoing=.true.)
x_free = 1
call sf_int%recover_x (x, xb, x_free)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Compute inverse kinematics &
&and evaluate"
write (u, "(A)")
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%apply (scale=0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_13"
end subroutine sf_base_13
@ %def sf_base_13
@
\subsubsection{Structure function chain evaluation}
Here, we test the complete workflow for a structure-function chain
with generator. First, we create the template chain, then initialize
an instance. We set up links, mask, and evaluators. Finally, we set
kinematics and evaluate the matrix elements and their products.
<<SF base: execute tests>>=
call test (sf_base_14, "sf_base_14", &
"structure function generator evaluation", &
u, results)
<<SF base: test declarations>>=
public :: sf_base_14
<<SF base: tests>>=
subroutine sf_base_14 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
type(beam_data_t), target :: beam_data
class(sf_data_t), allocatable, target :: data_strfun
class(sf_data_t), allocatable, target :: data_generator
type(sf_config_t), dimension(:), allocatable, target :: sf_config
real(default), dimension(:), allocatable :: p_in
type(sf_chain_t), target :: sf_chain
type(sf_chain_instance_t), target :: sf_chain_instance
write (u, "(A)") "* Test output: sf_base_14"
write (u, "(A)") "* Purpose: set up a structure-function chain"
write (u, "(A)") "* create an instance and evaluate"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_test ()
call flv%init (25, model)
pdg_in = 25
call reset_interaction_counter ()
call beam_data%init_sqrts (1000._default, [flv, flv])
allocate (sf_test_data_t :: data_strfun)
select type (data_strfun)
type is (sf_test_data_t)
call data_strfun%init (model, pdg_in)
end select
allocate (sf_test_generator_data_t :: data_generator)
select type (data_generator)
type is (sf_test_generator_data_t)
call data_generator%init (model, pdg_in)
end select
write (u, "(A)") "* Set up chain with generator and structure function"
write (u, "(A)")
allocate (sf_config (2))
call sf_config(1)%init ([1,2], data_generator)
call sf_config(2)%init ([2], data_strfun)
call sf_chain%init (beam_data, sf_config)
call sf_chain_instance%init (sf_chain, n_channel = 1)
call sf_chain_instance%link_interactions ()
call sf_chain_instance%exchange_mask ()
call sf_chain_instance%init_evaluators ()
write (u, "(A)") "* Inject integration parameter"
write (u, "(A)")
allocate (p_in (sf_chain%get_n_bound ()), source = 0.9_default)
write (u, "(A,9(1x,F10.7))") "p_in =", p_in
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_chain_instance%compute_kinematics (1, p_in)
call sf_chain_instance%evaluate (scale=0._default)
call sf_chain_instance%write (u)
write (u, "(A)")
write (u, "(A)") "* Extract integration parameter"
write (u, "(A)")
call sf_chain_instance%get_mcpar (1, p_in)
write (u, "(A,9(1x,F10.7))") "p_in =", p_in
call sf_chain_instance%final ()
call sf_chain%final ()
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_base_14"
end subroutine sf_base_14
@ %def sf_base_14
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Photon radiation: ISR}
<<[[sf_isr.f90]]>>=
<<File header>>
module sf_isr
<<Use kinds>>
<<Use strings>>
use io_units
use constants, only: pi
use format_defs, only: FMT_15, FMT_19
use numeric_utils
use diagnostics
use physics_defs, only: PHOTON
use lorentz
use sm_physics, only: Li2
use pdg_arrays
use model_data
use flavors
use colors
use quantum_numbers
use polarizations
use sf_aux
use sf_mappings
use sf_base
use electron_pdfs
<<Standard module head>>
<<SF isr: public>>
<<SF isr: parameters>>
<<SF isr: types>>
contains
<<SF isr: procedures>>
end module sf_isr
@ %def sf_isr
@
\subsection{Physics}
The ISR structure function is in the most crude approximation (LLA
without $\alpha$ corrections, i.e. $\epsilon^0$)
\begin{equation}
f_0(x) = \epsilon (1-x)^{-1+\epsilon} \qquad\text{with}\qquad
\epsilon = \frac{\alpha}{\pi}q_e^2\ln\frac{s}{m^2},
\end{equation}
where $m$ is the mass of the incoming (and outgoing) particle, which
is initially assumed on-shell.
In $f_0(x)$, there is an integrable singularity at $x=1$ which does
not spoil the integration, but would lead to an unbounded $f_{\rm
max}$. Therefore, we map this singularity like
\begin{equation}\label{ISR-mapping}
x = 1 - (1-x')^{1/\epsilon}
\end{equation}
such that
\begin{equation}
\int dx\,f_0(x) = \int dx'
\end{equation}
For the detailed form of the QED ISR structure function
cf. Chap.~\ref{chap:qed_pdf}.
\subsection{Implementation}
In the concrete implementation, the zeroth order mapping
(\ref{ISR-mapping}) is implemented, and the Jacobian is equal to
$f_i(x)/f_0(x)$. This can be written as
\begin{align}
\frac{f_0(x)}{f_0(x)} &= 1 \\
\frac{f_1(x)}{f_0(x)} &= 1 + \frac34\epsilon - \frac{1-x^2}{2(1-x')} \\
\begin{split}\label{ISR-f2}
\frac{f_2(x)}{f_0(x)} &= 1 + \frac34\epsilon
+ \frac{27 - 8\pi^2}{96}\epsilon^2
- \frac{1-x^2}{2(1-x')} \\
&\quad - \frac{(1+3x^2)\ln x
+ (1-x)\left(4(1+x)\ln(1-x) + 5 + x\right)}{8(1-x')}\epsilon
\end{split}
\end{align}
%'
For $x=1$ (i.e., numerically indistinguishable from $1$), this reduces to
\begin{align}
\frac{f_0(x)}{f_0(x)} &= 1 \\
\frac{f_1(x)}{f_0(x)} &= 1 + \frac34\epsilon \\
\frac{f_2(x)}{f_0(x)} &= 1 + \frac34\epsilon
+ \frac{27 - 8\pi^2}{96}\epsilon^2
\end{align}
The last line in (\ref{ISR-f2}) is zero for
\begin{equation}
x_{\rm min} = 0.00714053329734592839549879772019
\end{equation}
(Mathematica result), independent of $\epsilon$. For $x$ values less
than this we ignore this correction because of the logarithmic
singularity which should in principle be resummed.
\subsection{The ISR data block}
<<SF isr: public>>=
public :: isr_data_t
<<SF isr: types>>=
type, extends (sf_data_t) :: isr_data_t
private
class(model_data_t), pointer :: model => null ()
type(flavor_t), dimension(:), allocatable :: flv_in
type(qed_pdf_t) :: pdf
real(default) :: alpha = 0
real(default) :: q_max = 0
real(default) :: real_mass = 0
real(default) :: mass = 0
real(default) :: eps = 0
real(default) :: log = 0
logical :: recoil = .false.
logical :: keep_energy = .true.
integer :: order = 3
integer :: error = NONE
contains
<<SF isr: isr data: TBP>>
end type isr_data_t
@ %def isr_data_t
@ Error codes
<<SF isr: parameters>>=
integer, parameter :: NONE = 0
integer, parameter :: ZERO_MASS = 1
integer, parameter :: Q_MAX_TOO_SMALL = 2
integer, parameter :: EPS_TOO_LARGE = 3
integer, parameter :: INVALID_ORDER = 4
integer, parameter :: CHARGE_MIX = 5
integer, parameter :: CHARGE_ZERO = 6
integer, parameter :: MASS_MIX = 7
@ Generate flavor-dependent ISR data:
<<SF isr: isr data: TBP>>=
procedure :: init => isr_data_init
<<SF isr: procedures>>=
subroutine isr_data_init (data, model, pdg_in, alpha, q_max, &
mass, order, recoil, keep_energy)
class(isr_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
real(default), intent(in) :: alpha
real(default), intent(in) :: q_max
real(default), intent(in), optional :: mass
integer, intent(in), optional :: order
logical, intent(in), optional :: recoil
logical, intent(in), optional :: keep_energy
integer :: i, n_flv
real(default) :: charge
data%model => model
n_flv = pdg_array_get_length (pdg_in)
allocate (data%flv_in (n_flv))
do i = 1, n_flv
call data%flv_in(i)%init (pdg_array_get (pdg_in, i), model)
end do
data%alpha = alpha
data%q_max = q_max
if (present (order)) then
call data%set_order (order)
end if
if (present (recoil)) then
data%recoil = recoil
end if
if (present (keep_energy)) then
data%keep_energy = keep_energy
end if
data%real_mass = data%flv_in(1)%get_mass ()
if (present (mass)) then
if (mass > 0) then
data%mass = mass
else
data%mass = data%real_mass
if (any (data%flv_in%get_mass () /= data%mass)) then
data%error = MASS_MIX; return
end if
end if
else
data%mass = data%real_mass
if (any (data%flv_in%get_mass () /= data%mass)) then
data%error = MASS_MIX; return
end if
end if
if (vanishes (data%mass)) then
data%error = ZERO_MASS; return
else if (data%mass >= data%q_max) then
data%error = Q_MAX_TOO_SMALL; return
end if
data%log = log (1 + (data%q_max / data%mass)**2)
charge = data%flv_in(1)%get_charge ()
if (any (abs (data%flv_in%get_charge ()) /= abs (charge))) then
data%error = CHARGE_MIX; return
else if (charge == 0) then
data%error = CHARGE_ZERO; return
end if
data%eps = data%alpha / pi * charge ** 2 &
* (2 * log (data%q_max / data%mass) - 1)
if (data%eps > 1) then
data%error = EPS_TOO_LARGE; return
end if
call data%pdf%init &
(data%mass, data%alpha, charge, data%q_max, data%order)
end subroutine isr_data_init
@ %def isr_data_init
@ Explicitly set ISR order
<<SF isr: isr data: TBP>>=
procedure :: set_order => isr_data_set_order
<<SF isr: procedures>>=
elemental subroutine isr_data_set_order (data, order)
class(isr_data_t), intent(inout) :: data
integer, intent(in) :: order
if (order < 0 .or. order > 3) then
data%error = INVALID_ORDER
else
data%order = order
end if
end subroutine isr_data_set_order
@ %def isr_data_set_order
@ Handle error conditions. Should always be done after
initialization, unless we are sure everything is ok.
<<SF isr: isr data: TBP>>=
procedure :: check => isr_data_check
<<SF isr: procedures>>=
subroutine isr_data_check (data)
class(isr_data_t), intent(in) :: data
select case (data%error)
case (ZERO_MASS)
call msg_fatal ("ISR: Particle mass is zero")
case (Q_MAX_TOO_SMALL)
call msg_fatal ("ISR: Particle mass exceeds Qmax")
case (EPS_TOO_LARGE)
call msg_fatal ("ISR: Expansion parameter too large, " // &
"perturbative expansion breaks down")
case (INVALID_ORDER)
call msg_error ("ISR: LLA order invalid (valid values are 0,1,2,3)")
case (MASS_MIX)
call msg_fatal ("ISR: Incoming particle masses must be uniform")
case (CHARGE_MIX)
call msg_fatal ("ISR: Incoming particle charges must be uniform")
case (CHARGE_ZERO)
call msg_fatal ("ISR: Incoming particle must be charged")
end select
end subroutine isr_data_check
@ %def isr_data_check
@ Output
<<SF isr: isr data: TBP>>=
procedure :: write => isr_data_write
<<SF isr: procedures>>=
subroutine isr_data_write (data, unit, verbose)
class(isr_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u, i
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "ISR data:"
if (allocated (data%flv_in)) then
write (u, "(3x,A)", advance="no") " flavor = "
do i = 1, size (data%flv_in)
if (i > 1) write (u, "(',',1x)", advance="no")
call data%flv_in(i)%write (u)
end do
write (u, *)
write (u, "(3x,A," // FMT_19 // ")") " alpha = ", data%alpha
write (u, "(3x,A," // FMT_19 // ")") " q_max = ", data%q_max
write (u, "(3x,A," // FMT_19 // ")") " mass = ", data%mass
write (u, "(3x,A," // FMT_19 // ")") " eps = ", data%eps
write (u, "(3x,A," // FMT_19 // ")") " log = ", data%log
write (u, "(3x,A,I2)") " order = ", data%order
write (u, "(3x,A,L2)") " recoil = ", data%recoil
write (u, "(3x,A,L2)") " keep en. = ", data%keep_energy
else
write (u, "(3x,A)") "[undefined]"
end if
end subroutine isr_data_write
@ %def isr_data_write
@ For ISR, there is the option to generate transverse momentum is
generated. Hence, there can be up to three parameters, $x$, and two
angles.
<<SF isr: isr data: TBP>>=
procedure :: get_n_par => isr_data_get_n_par
<<SF isr: procedures>>=
function isr_data_get_n_par (data) result (n)
class(isr_data_t), intent(in) :: data
integer :: n
if (data%recoil) then
n = 3
else
n = 1
end if
end function isr_data_get_n_par
@ %def isr_data_get_n_par
@ Return the outgoing particles PDG codes. For ISR, these are
identical to the incoming particles.
<<SF isr: isr data: TBP>>=
procedure :: get_pdg_out => isr_data_get_pdg_out
<<SF isr: procedures>>=
subroutine isr_data_get_pdg_out (data, pdg_out)
class(isr_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
pdg_out(1) = data%flv_in%get_pdg ()
end subroutine isr_data_get_pdg_out
@ %def isr_data_get_pdg_out
@ Return the [[eps]] value. We need it for an appropriate mapping of
structure-function parameters.
<<SF isr: isr data: TBP>>=
procedure :: get_eps => isr_data_get_eps
<<SF isr: procedures>>=
function isr_data_get_eps (data) result (eps)
class(isr_data_t), intent(in) :: data
real(default) :: eps
eps = data%eps
end function isr_data_get_eps
@ %def isr_data_get_eps
@ Allocate the interaction record.
<<SF isr: isr data: TBP>>=
procedure :: allocate_sf_int => isr_data_allocate_sf_int
<<SF isr: procedures>>=
subroutine isr_data_allocate_sf_int (data, sf_int)
class(isr_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (isr_t :: sf_int)
end subroutine isr_data_allocate_sf_int
@ %def isr_data_allocate_sf_int
@
\subsection{The ISR object}
The [[isr_t]] data type is a $1\to 2$ interaction, i.e., we allow for
single-photon emission only (but use the multi-photon resummed
radiator function). The particles are ordered as (incoming, photon,
outgoing).
There is no need to handle several flavors (and data blocks) in
parallel, since ISR is always applied immediately after beam
collision. (ISR for partons is accounted for by the PDFs themselves.)
Polarization is carried through, i.e., we retain the polarization of
the incoming particle and treat the emitted photon as unpolarized.
Color is trivially carried through. This implies that particles 1 and
3 should be locked together. For ISR we don't need the q variable.
<<SF isr: public>>=
public :: isr_t
<<SF isr: types>>=
type, extends (sf_int_t) :: isr_t
private
type(isr_data_t), pointer :: data => null ()
real(default) :: x = 0
real(default) :: xb= 0
contains
<<SF isr: isr: TBP>>
end type isr_t
@ %def isr_t
@ Type string: has to be here, but there is no string variable on which ISR
depends. Hence, a dummy routine.
<<SF isr: isr: TBP>>=
procedure :: type_string => isr_type_string
<<SF isr: procedures>>=
function isr_type_string (object) result (string)
class(isr_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "ISR: e+ e- ISR spectrum"
else
string = "ISR: [undefined]"
end if
end function isr_type_string
@ %def isr_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF isr: isr: TBP>>=
procedure :: write => isr_write
<<SF isr: procedures>>=
subroutine isr_write (object, unit, testflag)
class(isr_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
if (object%status >= SF_DONE_KINEMATICS) then
write (u, "(1x,A)") "SF parameters:"
write (u, "(3x,A," // FMT_15 // ")") "x =", object%x
write (u, "(3x,A," // FMT_15 // ")") "xb=", object%xb
end if
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "ISR data: [undefined]"
end if
end subroutine isr_write
@ %def isr_write
@ Explicitly set ISR order (for unit test).
<<SF isr: isr: TBP>>=
procedure :: set_order => isr_set_order
<<SF isr: procedures>>=
subroutine isr_set_order (object, order)
class(isr_t), intent(inout) :: object
integer, intent(in) :: order
call object%data%set_order (order)
call object%data%pdf%set_order (order)
end subroutine isr_set_order
@ %def isr_set_order
@
\subsection{Kinematics}
Set kinematics. If [[map]] is unset, the $r$ and $x$ values
coincide, and the Jacobian $f(r)$ were trivial. The ISR structure
function allows for a straightforward mapping of the unit interval.
So, to leading order, the structure function value is unity, but the
$x$ value is transformed. Higher orders affect the function value.
The structure function implementation applies the above mapping to the
input (random) number [[r]] to generate the momentum fraction [[x]]
and the function value [[f]]. For numerical stability reasons, we
also output [[xb]], which is $\bar x=1-x$.
For the ISR structure function, the mapping Jacobian cancels the
structure function (to order zero). We apply the cancellation
explicitly, therefore both the Jacobian [[f]] and the zeroth-order value
(see the [[apply]] method) are unity if mapping is turned on. If
mapping is turned off, the Jacobian [[f]] includes the value of the
(zeroth-order) structure function, and strongly peaked.
<<SF isr: isr: TBP>>=
procedure :: complete_kinematics => isr_complete_kinematics
<<SF isr: procedures>>=
subroutine isr_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(isr_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
real(default) :: eps
eps = sf_int%data%eps
if (map) then
call map_power_1 (sf_int%xb, f, rb(1), eps)
else
sf_int%xb = rb(1)
if (rb(1) > 0) then
f = 1
else
f = 0
end if
end if
sf_int%x = 1 - sf_int%xb
x(1) = sf_int%x
xb(1) = sf_int%xb
if (size (x) == 3) then
x(2:3) = r(2:3)
xb(2:3) = rb(2:3)
end if
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_FAILED_KINEMATICS)
sf_int%x = 0
sf_int%xb= 0
f = 0
end select
end subroutine isr_complete_kinematics
@ %def isr_complete_kinematics
@ Overriding the default method: we compute the [[x]] array from the
momentum configuration. In the specific case of ISR, we also set the
internally stored $x$ and $\bar x$ values, so they can be used in the
following routine.
<<SF isr: isr: TBP>>=
procedure :: recover_x => sf_isr_recover_x
<<SF isr: procedures>>=
subroutine sf_isr_recover_x (sf_int, x, xb, x_free)
class(isr_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(inout), optional :: x_free
call sf_int%base_recover_x (x, xb, x_free)
sf_int%x = x(1)
sf_int%xb = xb(1)
end subroutine sf_isr_recover_x
@ %def sf_isr_recover_x
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
For extracting $x$, we rely on the stored $\bar x$ value, since the
$x$ value in the argument is likely imprecise. This means that either
[[complete_kinematics]] or [[recover_x]] must be called first, for the
current sampling point (but maybe another channel).
<<SF isr: isr: TBP>>=
procedure :: inverse_kinematics => isr_inverse_kinematics
<<SF isr: procedures>>=
subroutine isr_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(isr_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
real(default) :: eps
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
eps = sf_int%data%eps
if (map) then
call map_power_inverse_1 (xb(1), f, rb(1), eps)
else
rb(1) = xb(1)
if (rb(1) > 0) then
f = 1
else
f = 0
end if
end if
r(1) = 1 - rb(1)
if (size(r) == 3) then
r(2:3) = x(2:3)
rb(2:3)= xb(2:3)
end if
if (set_mom) then
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_FAILED_KINEMATICS)
r = 0
rb= 0
f = 0
end select
end if
end subroutine isr_inverse_kinematics
@ %def isr_inverse_kinematics
@
<<SF isr: isr: TBP>>=
procedure :: init => isr_init
<<SF isr: procedures>>=
subroutine isr_init (sf_int, data)
class(isr_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(3) :: mask
integer, dimension(3) :: hel_lock
type(polarization_t), target :: pol
type(quantum_numbers_t), dimension(1) :: qn_fc
type(flavor_t) :: flv_photon
type(color_t) :: col_photon
type(quantum_numbers_t) :: qn_hel, qn_photon, qn
type(polarization_iterator_t) :: it_hel
real(default) :: m2
integer :: i
mask = quantum_numbers_mask (.false., .false., &
mask_h = [.false., .true., .false.])
hel_lock = [3, 0, 1]
select type (data)
type is (isr_data_t)
m2 = data%mass**2
call sf_int%base_init (mask, [m2], [0._default], [m2], &
hel_lock = hel_lock)
sf_int%data => data
call flv_photon%init (PHOTON, data%model)
call col_photon%init ()
call qn_photon%init (flv_photon, col_photon)
call qn_photon%tag_radiated ()
do i = 1, size (data%flv_in)
call pol%init_generic (data%flv_in(i))
call qn_fc(1)%init (&
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i), 1))
call it_hel%init (pol)
do while (it_hel%is_valid ())
qn_hel = it_hel%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc(1)
call sf_int%add_state ([qn, qn_photon, qn])
call it_hel%advance ()
end do
! call pol%final () !!! Obsolete
end do
call sf_int%freeze ()
if (data%keep_energy) then
sf_int%on_shell_mode = KEEP_ENERGY
else
sf_int%on_shell_mode = KEEP_MOMENTUM
end if
call sf_int%set_incoming ([1])
call sf_int%set_radiated ([2])
call sf_int%set_outgoing ([3])
sf_int%status = SF_INITIAL
end select
end subroutine isr_init
@ %def isr_init
@
\subsection{ISR application}
For ISR, we could in principle compute kinematics and function value
in a single step. In order to be able to reweight matrix elements
including structure functions we split kinematics and structure
function calculation. The structure function works on a single beam,
assuming that the input momentum has been set.
For the structure-function evaluation, we rely on the fact that the
power mapping, which we apply in the kinematics method (if the [[map]]
flag is set), has a Jacobian which is just the inverse lowest-order
structure function. With mapping active, the two should cancel
exactly.
After splitting momenta, we set the outgoing momenta on-shell. We
choose to conserve momentum, so energy conservation may be violated.
<<SF isr: isr: TBP>>=
procedure :: apply => isr_apply
<<SF isr: procedures>>=
subroutine isr_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(isr_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: f, finv, x, xb, eps, rb
real(default) :: log_x, log_xb, x_2
associate (data => sf_int%data)
eps = sf_int%data%eps
x = sf_int%x
xb = sf_int%xb
call map_power_inverse_1 (xb, finv, rb, eps)
if (finv > 0) then
f = 1 / finv
else
f = 0
end if
call data%pdf%evolve_qed_pdf (x, xb, rb, f)
end associate
call sf_int%set_matrix_element (cmplx (f, kind=default))
sf_int%status = SF_EVALUATED
end subroutine isr_apply
@ %def isr_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_isr_ut.f90]]>>=
<<File header>>
module sf_isr_ut
use unit_tests
use sf_isr_uti
<<Standard module head>>
<<SF isr: public test>>
contains
<<SF isr: test driver>>
end module sf_isr_ut
@ %def sf_isr_ut
@
<<[[sf_isr_uti.f90]]>>=
<<File header>>
module sf_isr_uti
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_12
use physics_defs, only: ELECTRON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use interactions, only: interaction_pacify_momenta
use model_data
use sf_aux, only: KEEP_ENERGY
use sf_mappings
use sf_base
use sf_isr
<<Standard module head>>
<<SF isr: test declarations>>
contains
<<SF isr: tests>>
end module sf_isr_uti
@ %def sf_isr_ut
@ API: driver for the unit tests below.
<<SF isr: public test>>=
public :: sf_isr_test
<<SF isr: test driver>>=
subroutine sf_isr_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF isr: execute tests>>
end subroutine sf_isr_test
@ %def sf_isr_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF isr: execute tests>>=
call test (sf_isr_1, "sf_isr_1", &
"structure function configuration", &
u, results)
<<SF isr: test declarations>>=
public :: sf_isr_1
<<SF isr: tests>>=
subroutine sf_isr_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(1) :: pdg_out
integer, dimension(:), allocatable :: pdg1
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_isr_1"
write (u, "(A)") "* Purpose: initialize and display &
&test structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call model%init_qed_test ()
pdg_in = ELECTRON
allocate (isr_data_t :: data)
call data%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize"
write (u, "(A)")
select type (data)
type is (isr_data_t)
call data%init (model, pdg_in, 1./137._default, 10._default, &
0.000511_default, order = 3, recoil = .false.)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_isr_1"
end subroutine sf_isr_1
@ %def sf_isr_1
@
\subsubsection{Structure function without mapping}
Direct ISR evaluation. This is the use case for a double-beam
structure function. The parameter pair is mapped in the calling program.
<<SF isr: execute tests>>=
call test (sf_isr_2, "sf_isr_2", &
"no ISR mapping", &
u, results)
<<SF isr: test declarations>>=
public :: sf_isr_2
<<SF isr: tests>>=
subroutine sf_isr_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(flavor_t) :: flv
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, f_isr
write (u, "(A)") "* Test output: sf_isr_2"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
pdg_in = ELECTRON
call flv%init (ELECTRON, model)
call reset_interaction_counter ()
allocate (isr_data_t :: data)
select type (data)
type is (isr_data_t)
call data%init (model, pdg_in, 1./137._default, 500._default, &
0.000511_default, order = 3, recoil = .false.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.9, no ISR mapping, &
&collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.9_default
rb = 1 - r
write (u, "(A,9(1x," // FMT_12 // "))") "r =", r
write (u, "(A,9(1x," // FMT_12 // "))") "rb=", rb
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A)")
write (u, "(A,9(1x," // FMT_12 // "))") "x =", x
write (u, "(A,9(1x," // FMT_12 // "))") "xb=", xb
write (u, "(A,9(1x," // FMT_12 // "))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Invert kinematics"
write (u, "(A)")
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x," // FMT_12 // "))") "r =", r
write (u, "(A,9(1x," // FMT_12 // "))") "rb=", rb
write (u, "(A,9(1x," // FMT_12 // "))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate ISR structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Structure-function value, default order"
write (u, "(A)")
f_isr = sf_int%get_matrix_element (1)
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr =", f_isr
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr * f_map =", f_isr * f
write (u, "(A)")
write (u, "(A)") "* Re-evaluate structure function, leading order"
write (u, "(A)")
select type (sf_int)
type is (isr_t)
call sf_int%set_order (0)
end select
call sf_int%apply (scale = 100._default)
f_isr = sf_int%get_matrix_element (1)
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr =", f_isr
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr * f_map =", f_isr * f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_isr_2"
end subroutine sf_isr_2
@ %def sf_isr_2
@
\subsubsection{Structure function with mapping}
Apply the optimal ISR mapping. This is the use case for a single-beam
structure function.
<<SF isr: execute tests>>=
call test (sf_isr_3, "sf_isr_3", &
"ISR mapping", &
u, results)
<<SF isr: test declarations>>=
public :: sf_isr_3
<<SF isr: tests>>=
subroutine sf_isr_3 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, f_isr
write (u, "(A)") "* Test output: sf_isr_3"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv%init (ELECTRON, model)
pdg_in = ELECTRON
call reset_interaction_counter ()
allocate (isr_data_t :: data)
select type (data)
type is (isr_data_t)
call data%init (model, pdg_in, 1./137._default, 500._default, &
0.000511_default, order = 3, recoil = .false.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.7, with ISR mapping, &
&collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.7_default
rb = 1 - r
write (u, "(A,9(1x," // FMT_12 // "))") "r =", r
write (u, "(A,9(1x," // FMT_12 // "))") "rb=", rb
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
write (u, "(A)")
write (u, "(A,9(1x," // FMT_12 // "))") "x =", x
write (u, "(A,9(1x," // FMT_12 // "))") "xb=", xb
write (u, "(A,9(1x," // FMT_12 // "))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Invert kinematics"
write (u, "(A)")
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true.)
write (u, "(A,9(1x," // FMT_12 // "))") "r =", r
write (u, "(A,9(1x," // FMT_12 // "))") "rb=", rb
write (u, "(A,9(1x," // FMT_12 // "))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate ISR structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Structure-function value, default order"
write (u, "(A)")
f_isr = sf_int%get_matrix_element (1)
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr =", f_isr
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr * f_map =", f_isr * f
write (u, "(A)")
write (u, "(A)") "* Re-evaluate structure function, leading order"
write (u, "(A)")
select type (sf_int)
type is (isr_t)
call sf_int%set_order (0)
end select
call sf_int%apply (scale = 100._default)
f_isr = sf_int%get_matrix_element (1)
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr =", f_isr
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr * f_map =", f_isr * f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_isr_3"
end subroutine sf_isr_3
@ %def sf_isr_3
@
\subsubsection{Non-collinear ISR splitting}
Construct and display a structure function object based on the ISR
structure function. We blank out numerical fluctuations for 32bit.
<<SF isr: execute tests>>=
call test (sf_isr_4, "sf_isr_4", &
"ISR non-collinear", &
u, results)
<<SF isr: test declarations>>=
public :: sf_isr_4
<<SF isr: tests>>=
subroutine sf_isr_4 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, f_isr
character(len=80) :: buffer
integer :: u_scratch, iostat
write (u, "(A)") "* Test output: sf_isr_4"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv%init (ELECTRON, model)
pdg_in = ELECTRON
call reset_interaction_counter ()
write (u, "(A)")
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
allocate (isr_data_t :: data)
select type (data)
type is (isr_data_t)
call data%init (model, pdg_in, 1./137._default, 500._default, &
0.000511_default, order = 3, recoil = .true.)
end select
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5/0.5/0.25, with ISR mapping, "
write (u, "(A)") " non-coll., keeping energy"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = [0.5_default, 0.5_default, 0.25_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
call interaction_pacify_momenta (sf_int%interaction_t, 1e-10_default)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x and r from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A)")
write (u, "(A)") "* Evaluate ISR structure function"
write (u, "(A)")
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
call interaction_pacify_momenta (sf_int%interaction_t, 1e-10_default)
call sf_int%apply (scale = 10._default)
u_scratch = free_unit ()
open (u_scratch, status="scratch", action = "readwrite")
call sf_int%write (u_scratch, testflag = .true.)
rewind (u_scratch)
do
read (u_scratch, "(A)", iostat=iostat) buffer
if (iostat /= 0) exit
if (buffer(1:25) == " P = 0.000000E+00 9.57") then
buffer = replace (buffer, 26, "XXXX")
end if
if (buffer(1:25) == " P = 0.000000E+00 -9.57") then
buffer = replace (buffer, 26, "XXXX")
end if
write (u, "(A)") buffer
end do
close (u_scratch)
write (u, "(A)")
write (u, "(A)") "* Structure-function value"
write (u, "(A)")
f_isr = sf_int%get_matrix_element (1)
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr =", f_isr
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr * f_map =", f_isr * f
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_isr_4"
end subroutine sf_isr_4
@ %def sf_isr_4
@
\subsubsection{Structure function pair with mapping}
Apply the ISR mapping for a ISR pair.
structure function.
<<SF isr: execute tests>>=
call test (sf_isr_5, "sf_isr_5", &
"ISR pair mapping", &
u, results)
<<SF isr: test declarations>>=
public :: sf_isr_5
<<SF isr: tests>>=
subroutine sf_isr_5 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_mapping_t), allocatable :: mapping
class(sf_int_t), dimension(:), allocatable :: sf_int
type(vector4_t), dimension(2) :: k
real(default) :: E, f_map
real(default), dimension(:), allocatable :: p, pb, r, rb, x, xb
real(default), dimension(2) :: f, f_isr
integer :: i
write (u, "(A)") "* Test output: sf_isr_5"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv%init (ELECTRON, model)
pdg_in = ELECTRON
call reset_interaction_counter ()
allocate (isr_data_t :: data)
select type (data)
type is (isr_data_t)
call data%init (model, pdg_in, 1./137._default, 500._default, &
0.000511_default, order = 3, recoil = .false.)
end select
allocate (sf_ip_mapping_t :: mapping)
select type (mapping)
type is (sf_ip_mapping_t)
select type (data)
type is (isr_data_t)
call mapping%init (eps = data%get_eps ())
end select
call mapping%set_index (1, 1)
call mapping%set_index (2, 2)
end select
call mapping%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
allocate (isr_t :: sf_int (2))
do i = 1, 2
call sf_int(i)%init (data)
call sf_int(i)%set_beam_index ([i])
end do
write (u, "(A)") "* Initialize incoming momenta with E=500"
write (u, "(A)")
E = 500
k(1) = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
k(2) = vector4_moving (E, - sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
do i = 1, 2
call vector4_write (k(i), u)
call sf_int(i)%seed_kinematics (k(i:i))
end do
write (u, "(A)")
write (u, "(A)") "* Set kinematics for p=[0.7,0.4], collinear"
write (u, "(A)")
allocate (p (2 * data%get_n_par ()))
allocate (pb(size (p)))
allocate (r (size (p)))
allocate (rb(size (p)))
allocate (x (size (p)))
allocate (xb(size (p)))
p = [0.7_default, 0.4_default]
pb= 1 - p
call mapping%compute (r, rb, f_map, p, pb)
write (u, "(A,9(1x," // FMT_12 // "))") "p =", p
write (u, "(A,9(1x," // FMT_12 // "))") "pb=", pb
write (u, "(A,9(1x," // FMT_12 // "))") "r =", r
write (u, "(A,9(1x," // FMT_12 // "))") "rb=", rb
write (u, "(A,9(1x," // FMT_12 // "))") "fm=", f_map
do i = 1, 2
call sf_int(i)%complete_kinematics (x(i:i), xb(i:i), f(i), r(i:i), rb(i:i), &
map=.false.)
end do
write (u, "(A)")
write (u, "(A,9(1x," // FMT_12 // "))") "x =", x
write (u, "(A,9(1x," // FMT_12 // "))") "xb=", xb
write (u, "(A,9(1x," // FMT_12 // "))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Invert kinematics"
write (u, "(A)")
do i = 1, 2
call sf_int(i)%inverse_kinematics (x(i:i), xb(i:i), f(i), r(i:i), rb(i:i), &
map=.false.)
end do
call mapping%inverse (r, rb, f_map, p, pb)
write (u, "(A,9(1x," // FMT_12 // "))") "p =", p
write (u, "(A,9(1x," // FMT_12 // "))") "pb=", pb
write (u, "(A,9(1x," // FMT_12 // "))") "r =", r
write (u, "(A,9(1x," // FMT_12 // "))") "rb=", rb
write (u, "(A,9(1x," // FMT_12 // "))") "fm=", f_map
write (u, "(A)")
write (u, "(A)") "* Evaluate ISR structure function"
call sf_int(1)%apply (scale = 100._default)
call sf_int(2)%apply (scale = 100._default)
write (u, "(A)")
write (u, "(A)") "* Structure function #1"
write (u, "(A)")
call sf_int(1)%write (u, testflag = .true.)
write (u, "(A)")
write (u, "(A)") "* Structure function #2"
write (u, "(A)")
call sf_int(2)%write (u, testflag = .true.)
write (u, "(A)")
write (u, "(A)") "* Structure-function value, default order"
write (u, "(A)")
do i = 1, 2
f_isr(i) = sf_int(i)%get_matrix_element (1)
end do
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr =", &
product (f_isr)
write (u, "(A,9(1x," // FMT_12 // "))") "f_isr * f_map =", &
product (f_isr * f) * f_map
write (u, "(A)")
write (u, "(A)") "* Cleanup"
do i = 1, 2
call sf_int(i)%final ()
end do
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_isr_5"
end subroutine sf_isr_5
@ %def sf_isr_5
@
\clearpage
%------------------------------------------------------------------------
\section{EPA}
<<[[sf_epa.f90]]>>=
<<File header>>
module sf_epa
<<Use kinds>>
<<Use strings>>
use io_units
use constants, only: pi
use format_defs, only: FMT_17, FMT_19
use numeric_utils
use diagnostics
use physics_defs, only: PHOTON
use lorentz
use pdg_arrays
use model_data
use flavors
use colors
use quantum_numbers
use state_matrices
use polarizations
use interactions
use sf_aux
use sf_base
<<Standard module head>>
<<SF epa: public>>
<<SF epa: parameters>>
<<SF epa: types>>
contains
<<SF epa: procedures>>
end module sf_epa
@ %def sf_epa
@
\subsection{Physics}
The EPA structure function for a photon inside an (elementary)
particle $p$ with energy $E$, mass $m$ and charge $q_p$ (e.g.,
electron) is given by ($\bar x \equiv 1-x$)
%% %\cite{Budnev:1974de}
%% \bibitem{Budnev:1974de}
%% V.~M.~Budnev, I.~F.~Ginzburg, G.~V.~Meledin and V.~G.~Serbo,
%% %``The Two photon particle production mechanism. Physical problems.
%% %Applications. Equivalent photon approximation,''
%% Phys.\ Rept.\ {\bf 15} (1974) 181.
%% %%CITATION = PRPLC,15,181;%%
\begin{multline}
\label{EPA}
f(x) =
\frac{\alpha}{\pi}\,q_p^2\,
\frac{1}{x}\,
\biggl[\left(\bar x + \frac{x^2}{2}\right)
\ln\frac{Q^2_{\rm max}}{Q^2_{\rm min}}
\\
- \left(1 - \frac{x}{2}\right)^2
\ln\frac{x^2+\frac{Q^2_{\rm max}}{E^2}}
{x^2+\frac{Q^2_{\rm min}}{E^2}}
- x^2\frac{m^2}{Q^2_{\rm min}}
\left(1 - \frac{Q^2_{\rm min}}{Q^2_{\rm max}}\right)
\biggr].
\end{multline}
If no explicit $Q$ bounds are provided, the kinematical bounds are
\begin{align}
-Q^2_{\rm max} &= t_0 = -2\bar x(E^2+p\bar p) + 2m^2 \approx -4\bar x E^2,
\\
-Q^2_{\rm min} &= t_1 = -2\bar x(E^2-p\bar p) + 2m^2
\approx
-\frac{x^2}{\bar x}m^2.
\end{align}
The second and third terms in (\ref{EPA}) are negative definite (and
subleading). Noting that $\bar x + x^2/2$ is bounded between
$1/2$ and $1$, we derive that $f(x)$ is always smaller than
\begin{equation}
\bar f(x) = \frac{\alpha}{\pi}\,q_p^2\,\frac{L - 2\ln x}{x}
\qquad\text{where}\qquad
L = \ln\frac{\min(4E_{\rm max}^2,Q^2_{\rm max})}{\max(m^2,Q_{\rm min}^2)},
\end{equation}
where we allow for explicit $Q$ bounds that narrow the kinematical range.
Therefore, we generate this distribution:
\begin{equation}\label{EPA-subst}
\int_{x_0}^{x_1} dx\,\bar f(x) = C(x_0,x_1)\int_0^1 dx'
\end{equation}
We set
\begin{equation}\label{EPA-x(x')}
\ln x = \frac12\left\{ L - \sqrt{L^2 - 4\left[ x'\ln x_1(L-\ln x_1)
+ \bar x'\ln x_0(L-\ln x_0) \right]} \right\}
\end{equation}
such that $x(0)=x_0$ and $x(1)=x_1$ and
\begin{equation}
\frac{dx}{dx'} = \left(\frac{\alpha}{\pi} q_p^2 \right)^{-1}
x\frac{C(x_0,x_1)}{L - 2\ln x}
\end{equation}
with
\begin{equation}
C(x_0,x_1) = \frac{\alpha}{\pi} q_p^2\,\left[\ln x_1(L-\ln x_1) - \ln
x_0(L-\ln x_0)\right]
\end{equation}
such that (\ref{EPA-subst}) is satisfied. Finally, we have
\begin{equation}
\int_{x_0}^{x_1} dx\,f(x) = C(x_0,x_1)\int_0^1 dx'\,
\frac{f(x(x'))}{\bar f(x(x'))}
\end{equation}
where $x'$ is calculated from $x$ via (\ref{EPA-x(x')}).
The structure of the mapping is most obvious from:
\begin{equation}
x'(x) = \frac{\log x ( L - \log x) - \log x_0 (L - \log x_0)}
{\log x_1 ( L - \log x_1) - \log x_0 (L - \log x_0)} \; .
\end{equation}
\subsection{The EPA data block}
The EPA parameters are: $\alpha$, $E_{\rm max}$, $m$, $Q_{\rm min}$, and
$x_{\rm min}$. Instead of $m$ we can use the incoming particle PDG
code as input; from this we can deduce the mass and charge.
Internally we store in addition $C_{0/1} = \frac{\alpha}{\pi}q_e^2\ln
x_{0/1} (L - \ln x_{0/1})$, the c.m. energy squared and the incoming
particle mass.
<<SF epa: public>>=
public :: epa_data_t
<<SF epa: types>>=
type, extends(sf_data_t) :: epa_data_t
private
class(model_data_t), pointer :: model => null ()
type(flavor_t), dimension(:), allocatable :: flv_in
real(default) :: alpha
real(default) :: x_min
real(default) :: x_max
real(default) :: q_min
real(default) :: q_max
real(default) :: E_max
real(default) :: mass
real(default) :: log
real(default) :: a
real(default) :: c0
real(default) :: c1
real(default) :: dc
integer :: error = NONE
logical :: recoil = .false.
logical :: keep_energy = .true.
contains
<<SF epa: epa data: TBP>>
end type epa_data_t
@ %def epa_data_t
@ Error codes
<<SF epa: parameters>>=
integer, parameter :: NONE = 0
integer, parameter :: ZERO_QMIN = 1
integer, parameter :: Q_MAX_TOO_SMALL = 2
integer, parameter :: ZERO_XMIN = 3
integer, parameter :: MASS_MIX = 4
integer, parameter :: NO_EPA = 5
<<SF epa: epa data: TBP>>=
procedure :: init => epa_data_init
<<SF epa: procedures>>=
subroutine epa_data_init (data, model, pdg_in, alpha, &
x_min, q_min, E_max, mass, recoil, keep_energy)
class(epa_data_t), intent(inout) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
real(default), intent(in) :: alpha, x_min, q_min, E_max
real(default), intent(in), optional :: mass
logical, intent(in), optional :: recoil
logical, intent(in), optional :: keep_energy
integer :: n_flv, i
data%model => model
n_flv = pdg_array_get_length (pdg_in)
allocate (data%flv_in (n_flv))
do i = 1, n_flv
call data%flv_in(i)%init (pdg_array_get (pdg_in, i), model)
end do
data%alpha = alpha
data%E_max = E_max
data%x_min = x_min
data%x_max = 1
if (vanishes (data%x_min)) then
data%error = ZERO_XMIN; return
end if
data%q_min = q_min
data%q_max = 2 * data%E_max
select case (char (data%model%get_name ()))
case ("QCD","Test")
data%error = NO_EPA; return
end select
if (present (recoil)) then
data%recoil = recoil
end if
if (present (keep_energy)) then
data%keep_energy = keep_energy
end if
if (present (mass)) then
data%mass = mass
else
data%mass = data%flv_in(1)%get_mass ()
if (any (data%flv_in%get_mass () /= data%mass)) then
data%error = MASS_MIX; return
end if
end if
if (max (data%mass, data%q_min) == 0) then
data%error = ZERO_QMIN; return
else if (max (data%mass, data%q_min) >= data%E_max) then
data%error = Q_MAX_TOO_SMALL; return
end if
data%log = log (4 * (data%E_max / max (data%mass, data%q_min)) ** 2 )
data%a = data%alpha / pi
data%c0 = log (data%x_min) * (data%log - log (data%x_min))
data%c1 = log (data%x_max) * (data%log - log (data%x_max))
data%dc = data%c1 - data%c0
end subroutine epa_data_init
@ %def epa_data_init
@ Handle error conditions. Should always be done after
initialization, unless we are sure everything is ok.
<<SF epa: epa data: TBP>>=
procedure :: check => epa_data_check
<<SF epa: procedures>>=
subroutine epa_data_check (data)
class(epa_data_t), intent(in) :: data
select case (data%error)
case (NO_EPA)
call msg_fatal ("EPA structure function not available for model " &
// char (data%model%get_name ()) // ".")
case (ZERO_QMIN)
call msg_fatal ("EPA: Particle mass is zero")
case (Q_MAX_TOO_SMALL)
call msg_fatal ("EPA: Particle mass exceeds Qmax")
case (ZERO_XMIN)
call msg_fatal ("EPA: x_min must be larger than zero")
case (MASS_MIX)
call msg_fatal ("EPA: incoming particle masses must be uniform")
end select
end subroutine epa_data_check
@ %def epa_data_check
@ Output
<<SF epa: epa data: TBP>>=
procedure :: write => epa_data_write
<<SF epa: procedures>>=
subroutine epa_data_write (data, unit, verbose)
class(epa_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u, i
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "EPA data:"
if (allocated (data%flv_in)) then
write (u, "(3x,A)", advance="no") " flavor = "
do i = 1, size (data%flv_in)
if (i > 1) write (u, "(',',1x)", advance="no")
call data%flv_in(i)%write (u)
end do
write (u, *)
write (u, "(3x,A," // FMT_19 // ")") " alpha = ", data%alpha
write (u, "(3x,A," // FMT_19 // ")") " x_min = ", data%x_min
write (u, "(3x,A," // FMT_19 // ")") " x_max = ", data%x_max
write (u, "(3x,A," // FMT_19 // ")") " q_min = ", data%q_min
write (u, "(3x,A," // FMT_19 // ")") " q_max = ", data%q_max
write (u, "(3x,A," // FMT_19 // ")") " E_max = ", data%e_max
write (u, "(3x,A," // FMT_19 // ")") " mass = ", data%mass
write (u, "(3x,A," // FMT_19 // ")") " a = ", data%a
write (u, "(3x,A," // FMT_19 // ")") " c0 = ", data%c0
write (u, "(3x,A," // FMT_19 // ")") " c1 = ", data%c1
write (u, "(3x,A," // FMT_19 // ")") " log = ", data%log
write (u, "(3x,A,L2)") " recoil = ", data%recoil
write (u, "(3x,A,L2)") " keep en. = ", data%keep_energy
else
write (u, "(3x,A)") "[undefined]"
end if
end subroutine epa_data_write
@ %def epa_data_write
@ The number of kinematic parameters.
<<SF epa: epa data: TBP>>=
procedure :: get_n_par => epa_data_get_n_par
<<SF epa: procedures>>=
function epa_data_get_n_par (data) result (n)
class(epa_data_t), intent(in) :: data
integer :: n
if (data%recoil) then
n = 3
else
n = 1
end if
end function epa_data_get_n_par
@ %def epa_data_get_n_par
@ Return the outgoing particles PDG codes. The outgoing particle is always
the photon while the radiated particle is identical to the incoming one.
<<SF epa: epa data: TBP>>=
procedure :: get_pdg_out => epa_data_get_pdg_out
<<SF epa: procedures>>=
subroutine epa_data_get_pdg_out (data, pdg_out)
class(epa_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
pdg_out(1) = PHOTON
end subroutine epa_data_get_pdg_out
@ %def epa_data_get_pdg_out
@ Allocate the interaction record.
<<SF epa: epa data: TBP>>=
procedure :: allocate_sf_int => epa_data_allocate_sf_int
<<SF epa: procedures>>=
subroutine epa_data_allocate_sf_int (data, sf_int)
class(epa_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (epa_t :: sf_int)
end subroutine epa_data_allocate_sf_int
@ %def epa_data_allocate_sf_int
@
\subsection{The EPA object}
The [[epa_t]] data type is a $1\to 2$ interaction. We should be able
to handle several flavors in parallel, since EPA is not necessarily
applied immediately after beam collision: Photons may be radiated
from quarks. In that case, the partons are massless and $q_{\rm min}$
applies instead, so we do not need to generate several kinematical
configurations in parallel.
The squared charge values multiply the matrix elements, depending on the
flavour. We scan the interaction after building it, so we have the correct
assignments.
The particles are ordered as (incoming, radiated, photon), where the
photon initiates the hard interaction.
We generate an unpolarized photon and transfer initial polarization to
the radiated parton. Color is transferred in the same way.
<<SF epa: types>>=
type, extends (sf_int_t) :: epa_t
type(epa_data_t), pointer :: data => null ()
real(default) :: x = 0
real(default) :: xb = 0
real(default) :: E = 0
real(default), dimension(:), allocatable :: charge2
contains
<<SF epa: epa: TBP>>
end type epa_t
@ %def epa_t
@ Type string: has to be here, but there is no string variable on which EPA
depends. Hence, a dummy routine.
<<SF epa: epa: TBP>>=
procedure :: type_string => epa_type_string
<<SF epa: procedures>>=
function epa_type_string (object) result (string)
class(epa_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "EPA: equivalent photon approx."
else
string = "EPA: [undefined]"
end if
end function epa_type_string
@ %def epa_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF epa: epa: TBP>>=
procedure :: write => epa_write
<<SF epa: procedures>>=
subroutine epa_write (object, unit, testflag)
class(epa_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
if (object%status >= SF_DONE_KINEMATICS) then
write (u, "(1x,A)") "SF parameters:"
write (u, "(3x,A," // FMT_17 // ")") "x =", object%x
if (object%status >= SF_FAILED_EVALUATION) then
write (u, "(3x,A," // FMT_17 // ")") "E =", object%E
end if
end if
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "EPA data: [undefined]"
end if
end subroutine epa_write
@ %def epa_write
@ Prepare the interaction object. We have to construct transition matrix
elements for all flavor and helicity combinations.
<<SF epa: epa: TBP>>=
procedure :: init => epa_init
<<SF epa: procedures>>=
subroutine epa_init (sf_int, data)
class(epa_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(3) :: mask
integer, dimension(3) :: hel_lock
type(polarization_t), target :: pol
type(quantum_numbers_t), dimension(1) :: qn_fc
type(flavor_t) :: flv_photon
type(color_t) :: col_photon
type(quantum_numbers_t) :: qn_hel, qn_photon, qn, qn_rad
type(polarization_iterator_t) :: it_hel
integer :: i
mask = quantum_numbers_mask (.false., .false., &
mask_h = [.false., .false., .true.])
hel_lock = [2, 1, 0]
select type (data)
type is (epa_data_t)
call sf_int%base_init (mask, [data%mass**2], &
[data%mass**2], [0._default], hel_lock = hel_lock)
sf_int%data => data
call flv_photon%init (PHOTON, data%model)
call col_photon%init ()
call qn_photon%init (flv_photon, col_photon)
do i = 1, size (data%flv_in)
call pol%init_generic (data%flv_in(i))
call qn_fc(1)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i), 1))
call it_hel%init (pol)
do while (it_hel%is_valid ())
qn_hel = it_hel%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc(1)
qn_rad = qn
call qn_rad%tag_radiated ()
call sf_int%add_state ([qn, qn_rad, qn_photon])
call it_hel%advance ()
end do
! call pol%final ()
end do
call sf_int%freeze ()
if (data%keep_energy) then
sf_int%on_shell_mode = KEEP_ENERGY
else
sf_int%on_shell_mode = KEEP_MOMENTUM
end if
call sf_int%set_incoming ([1])
call sf_int%set_radiated ([2])
call sf_int%set_outgoing ([3])
end select
end subroutine epa_init
@ %def epa_init
@ Prepare the charge array. This is separate from the previous routine since
the state matrix may be helicity-contracted.
<<SF epa: epa: TBP>>=
procedure :: setup_constants => epa_setup_constants
<<SF epa: procedures>>=
subroutine epa_setup_constants (sf_int)
class(epa_t), intent(inout), target :: sf_int
type(state_iterator_t) :: it
type(flavor_t) :: flv
integer :: i, n_me
n_me = sf_int%get_n_matrix_elements ()
allocate (sf_int%charge2 (n_me))
call it%init (sf_int%interaction_t%get_state_matrix_ptr ())
do while (it%is_valid ())
i = it%get_me_index ()
flv = it%get_flavor (1)
sf_int%charge2(i) = flv%get_charge () ** 2
call it%advance ()
end do
sf_int%status = SF_INITIAL
end subroutine epa_setup_constants
@ %def epa_setup_constants
@
\subsection{Kinematics}
Set kinematics. If [[map]] is unset, the $r$ and $x$ values
coincide, and the Jacobian $f(r)$ is trivial.
The EPA structure function allows for a straightforward mapping of the
unit interval. The $x$ value is transformed, and the mapped structure
function becomes unity at its upper boundary.
The structure function implementation applies the above mapping to the
input (random) number [[r]] to generate the momentum fraction [[x]]
and the function value [[f]]. For numerical stability reasons, we
also output [[xb]], which is $\bar x=1-x$.
<<SF epa: epa: TBP>>=
procedure :: complete_kinematics => epa_complete_kinematics
<<SF epa: procedures>>=
subroutine epa_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(epa_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
real(default) :: delta, sqrt_delta, lx
if (map) then
associate (data => sf_int%data)
delta = data%log ** 2 - 4 * (r(1) * data%c1 + rb(1) * data%c0)
if (delta > 0) then
sqrt_delta = sqrt (delta)
lx = (data%log - sqrt_delta) / 2
else
sf_int%status = SF_FAILED_KINEMATICS
f = 0
return
end if
x(1) = exp (lx)
f = x(1) * data%dc / sqrt_delta
end associate
else
x(1) = r(1)
if (sf_int%data%x_min < x(1) .and. x(1) < sf_int%data%x_max) then
f = 1
else
sf_int%status = SF_FAILED_KINEMATICS
f = 0
return
end if
end if
xb(1) = 1 - x(1)
if (size(x) == 3) then
x(2:3) = r(2:3)
xb(2:3) = rb(2:3)
end if
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_DONE_KINEMATICS)
sf_int%x = x(1)
sf_int%xb= xb(1)
sf_int%E = energy (sf_int%get_momentum (1))
case (SF_FAILED_KINEMATICS)
sf_int%x = 0
sf_int%xb= 0
f = 0
end select
end subroutine epa_complete_kinematics
@ %def epa_complete_kinematics
+@ Overriding the default method: we compute the [[x]] array from the
+momentum configuration. In the specific case of EPA, we also set the
+internally stored $x$ and $\bar x$ values, so they can be used in the
+following routine.
+
+Note: the extraction of $\bar x$ is not numerically safe, but it cannot
+be as long as the base [[recover_x]] is not.
+<<SF epa: epa: TBP>>=
+ procedure :: recover_x => sf_epa_recover_x
+<<SF epa: procedures>>=
+ subroutine sf_epa_recover_x (sf_int, x, xb, x_free)
+ class(epa_t), intent(inout) :: sf_int
+ real(default), dimension(:), intent(out) :: x
+ real(default), dimension(:), intent(out) :: xb
+ real(default), intent(inout), optional :: x_free
+ call sf_int%base_recover_x (x, xb, x_free)
+ sf_int%x = x(1)
+ sf_int%xb = xb(1)
+ end subroutine sf_epa_recover_x
+
+@ %def sf_epa_recover_x
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF epa: epa: TBP>>=
procedure :: inverse_kinematics => epa_inverse_kinematics
<<SF epa: procedures>>=
subroutine epa_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(epa_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
real(default) :: lx, delta, sqrt_delta, c
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
associate (data => sf_int%data)
lx = log (x(1))
sqrt_delta = data%log - 2 * lx
delta = sqrt_delta ** 2
c = (data%log ** 2 - delta) / 4
r (1) = (c - data%c0) / data%dc
rb(1) = (data%c1 - c) / data%dc
f = x(1) * data%dc / sqrt_delta
end associate
else
r (1) = x(1)
rb(1) = xb(1)
if (sf_int%data%x_min < x(1) .and. x(1) < sf_int%data%x_max) then
f = 1
else
f = 0
end if
end if
if (size(r) == 3) then
r (2:3) = x(2:3)
rb(2:3) = xb(2:3)
end if
if (set_mom) then
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
- case (SF_DONE_KINEMATICS)
- sf_int%x = x(1)
- sf_int%xb = xb(1)
- sf_int%E = energy (sf_int%get_momentum (1))
- case (SF_FAILED_KINEMATICS)
- sf_int%x = 0
- f = 0
+ case (SF_FAILED_KINEMATICS); f = 0
end select
end if
+ sf_int%E = energy (sf_int%get_momentum (1))
end subroutine epa_inverse_kinematics
@ %def epa_inverse_kinematics
-@ Overriding the default method: we compute the [[x]] array from the
-momentum configuration. In the specific case of EPA, we also set the
-internally stored $x$ and $\bar x$ values, so they can be used in the
-following routine.
-
-Note: the extraction of $\bar x$ is not numerically safe, but it can't
-be as long as the base [[recover_x]] isn't.
-<<SF epa: epa: TBP>>=
- procedure :: recover_x => sf_epa_recover_x
-<<SF epa: procedures>>=
- subroutine sf_epa_recover_x (sf_int, x, xb, x_free)
- class(epa_t), intent(inout) :: sf_int
- real(default), dimension(:), intent(out) :: x
- real(default), dimension(:), intent(out) :: xb
- real(default), intent(inout), optional :: x_free
- call sf_int%base_recover_x (x, xb, x_free)
- sf_int%x = x(1)
- sf_int%xb = xb(1)
- end subroutine sf_epa_recover_x
-
-@ %def sf_epa_recover_x
@
\subsection{EPA application}
For EPA, we can in principle compute kinematics and function value in
a single step. In order to be able to reweight events, kinematics and
structure function application are separated. This function works on a
single beam, assuming that the input momentum has been set. We need
three random numbers as input: one for $x$, and two for the polar and
azimuthal angles. Alternatively, for the no-recoil case, we can skip
$p_T$ generation; in this case, we only need one.
For obtaining splitting kinematics, we rely on the assumption that all
in-particles are mass-degenerate (or there is only one), so the
generated $x$ values are identical.
<<SF epa: epa: TBP>>=
procedure :: apply => epa_apply
<<SF epa: procedures>>=
subroutine epa_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(epa_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: x, xb, qminsq, qmaxsq, f, E
associate (data => sf_int%data)
x = sf_int%x
xb= sf_int%xb
E = sf_int%E
qminsq = max (x ** 2 / xb * data%mass ** 2, data%q_min ** 2)
qmaxsq = min (4 * xb * E ** 2, data%q_max ** 2)
if (qminsq < qmaxsq) then
f = data%a / x &
* ((xb + x ** 2 / 2) * log (qmaxsq / qminsq) &
- (1 - x / 2) ** 2 &
* log ((x**2 + qmaxsq / E ** 2) / (x**2 + qminsq / E ** 2)) &
- x ** 2 * data%mass ** 2 / qminsq * (1 - qminsq / qmaxsq))
else
f = 0
end if
call sf_int%set_matrix_element &
(cmplx (f, kind=default) * sf_int%charge2)
end associate
sf_int%status = SF_EVALUATED
end subroutine epa_apply
@ %def epa_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_epa_ut.f90]]>>=
<<File header>>
module sf_epa_ut
use unit_tests
use sf_epa_uti
<<Standard module head>>
<<SF epa: public test>>
contains
<<SF epa: test driver>>
end module sf_epa_ut
@ %def sf_epa_ut
@
<<[[sf_epa_uti.f90]]>>=
<<File header>>
module sf_epa_uti
<<Use kinds>>
use physics_defs, only: ELECTRON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use interactions, only: interaction_pacify_momenta
use model_data
use sf_aux
use sf_base
use sf_epa
<<Standard module head>>
<<SF epa: test declarations>>
contains
<<SF epa: tests>>
end module sf_epa_uti
@ %def sf_epa_ut
@ API: driver for the unit tests below.
<<SF epa: public test>>=
public :: sf_epa_test
<<SF epa: test driver>>=
subroutine sf_epa_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF epa: execute tests>>
end subroutine sf_epa_test
@ %def sf_epa_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF epa: execute tests>>=
call test (sf_epa_1, "sf_epa_1", &
"structure function configuration", &
u, results)
<<SF epa: test declarations>>=
public :: sf_epa_1
<<SF epa: tests>>=
subroutine sf_epa_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(1) :: pdg_out
integer, dimension(:), allocatable :: pdg1
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_epa_1"
write (u, "(A)") "* Purpose: initialize and display &
&test structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call model%init_qed_test ()
pdg_in = ELECTRON
allocate (epa_data_t :: data)
call data%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize"
write (u, "(A)")
select type (data)
type is (epa_data_t)
call data%init (model, pdg_in, 1./137._default, 0.01_default, &
10._default, 50._default, 0.000511_default, recoil = .false.)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_epa_1"
end subroutine sf_epa_1
@ %def sf_epa_1
@
\subsubsection{Test and probe structure function}
Construct and display a structure function object based on the EPA
structure function.
<<SF epa: execute tests>>=
call test (sf_epa_2, "sf_epa_2", &
"structure function instance", &
u, results)
<<SF epa: test declarations>>=
public :: sf_epa_2
<<SF epa: tests>>=
subroutine sf_epa_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_epa_2"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv%init (ELECTRON, model)
pdg_in = ELECTRON
call reset_interaction_counter ()
allocate (epa_data_t :: data)
select type (data)
type is (epa_data_t)
call data%init (model, pdg_in, 1./137._default, 0.01_default, &
10._default, 50._default, 0.000511_default, recoil = .false.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.4, no EPA mapping, collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.4_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false., &
set_momenta=.true.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EPA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_epa_2"
end subroutine sf_epa_2
@ %def sf_epa_2
@
\subsubsection{Standard mapping}
Construct and display a structure function object based on the EPA
structure function, applying the standard single-particle mapping.
<<SF epa: execute tests>>=
call test (sf_epa_3, "sf_epa_3", &
"apply mapping", &
u, results)
<<SF epa: test declarations>>=
public :: sf_epa_3
<<SF epa: tests>>=
subroutine sf_epa_3 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_epa_3"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv%init (ELECTRON, model)
pdg_in = ELECTRON
call reset_interaction_counter ()
allocate (epa_data_t :: data)
select type (data)
type is (epa_data_t)
call data%init (model, pdg_in, 1./137._default, 0.01_default, &
10._default, 50._default, 0.000511_default, recoil = .false.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.4, with EPA mapping, collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.4_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true., &
set_momenta=.true.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EPA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_epa_3"
end subroutine sf_epa_3
@ %def sf_epa_3
@
\subsubsection{Non-collinear case}
Construct and display a structure function object based on the EPA
structure function.
<<SF epa: execute tests>>=
call test (sf_epa_4, "sf_epa_4", &
"non-collinear", &
u, results)
<<SF epa: test declarations>>=
public :: sf_epa_4
<<SF epa: tests>>=
subroutine sf_epa_4 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E, m
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_epa_4"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv%init (ELECTRON, model)
pdg_in = ELECTRON
call reset_interaction_counter ()
allocate (epa_data_t :: data)
select type (data)
type is (epa_data_t)
call data%init (model, pdg_in, 1./137._default, 0.01_default, &
10._default, 50._default, 5.0_default, recoil = .true.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
write (u, "(A)") "* Initialize incoming momentum with E=500, me = 5 GeV"
write (u, "(A)")
E = 500
m = 5
k = vector4_moving (E, sqrt (E**2 - m**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.5/0.5/0.25, with EPA mapping, "
write (u, "(A)") " non-coll., keeping energy, me = 5 GeV"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = [0.5_default, 0.5_default, 0.25_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
call interaction_pacify_momenta (sf_int%interaction_t, 1e-10_default)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x and r from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true., &
set_momenta=.true.)
call interaction_pacify_momenta (sf_int%interaction_t, 1e-10_default)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EPA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u, testflag = .true.)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_epa_4"
end subroutine sf_epa_4
@ %def sf_epa_4
@
\subsubsection{Structure function for multiple flavors}
Construct and display a structure function object based on the EPA
structure function. The incoming state has multiple particles with
non-uniform charge.
<<SF epa: execute tests>>=
call test (sf_epa_5, "sf_epa_5", &
"multiple flavors", &
u, results)
<<SF epa: test declarations>>=
public :: sf_epa_5
<<SF epa: tests>>=
subroutine sf_epa_5 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_epa_5"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_sm_test ()
call flv%init (1, model)
pdg_in = [1, 2, -1, -2]
call reset_interaction_counter ()
allocate (epa_data_t :: data)
select type (data)
type is (epa_data_t)
call data%init (model, pdg_in, 1./137._default, 0.01_default, &
10._default, 50._default, 0.000511_default, recoil = .false.)
call data%check ()
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.4, no EPA mapping, collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.4_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EPA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_epa_5"
end subroutine sf_epa_5
@ %def sf_epa_5
@
\clearpage
%------------------------------------------------------------------------
\section{EWA}
<<[[sf_ewa.f90]]>>=
<<File header>>
module sf_ewa
<<Use kinds>>
<<Use strings>>
use io_units
use constants, only: pi
use format_defs, only: FMT_17, FMT_19
use numeric_utils
use diagnostics
use physics_defs, only: W_BOSON, Z_BOSON
use lorentz
use pdg_arrays
use model_data
use flavors
use colors
use quantum_numbers
use state_matrices
use polarizations
use interactions
use sf_aux
use sf_base
<<Standard module head>>
<<SF ewa: public>>
<<SF ewa: parameters>>
<<SF ewa: types>>
contains
<<SF ewa: procedures>>
end module sf_ewa
@ %def sf_ewa
@
\subsection{Physics}
The EWA structure function for a $Z$ or $W$ inside a fermion (lepton
or quark) depends on the vector-boson polarization. We distinguish
transversal ($\pm$) and longitudinal ($0$) polarization.
\begin{align}
F_{+}(x) &= \frac{1}{16\pi^2}\,\frac{(v-a)^2 + (v+a)^2\bar x^2}{x}
\left[
\ln\left(\frac{p_{\perp,\textrm{max}}^2 + \bar x M^2}{\bar x M^2}\right)
-
\frac{p_{\perp,\textrm{max}}^2}{p_{\perp,\textrm{max}}^2 + \bar x M^2}
\right]
\\
F_{-}(x) &= \frac{1}{16\pi^2}\,\frac{(v+a)^2 + (v-a)^2\bar x^2}{x}
\left[
\ln\left(\frac{p_{\perp,\textrm{max}}^2 + \bar x M^2}{\bar x M^2}\right)
-
\frac{p_{\perp,\textrm{max}}^2}{p_{\perp,\textrm{max}}^2 + \bar x M^2}
\right]
\\
F_0(x) &= \frac{v^2+a^2}{8\pi^2}\,\frac{2\bar x}{x}\,
\frac{p_{\perp,\textrm{max}}^2}{p_{\perp,\textrm{max}}^2 + \bar x M^2}
\end{align}
where $p_{\perp,\textrm{max}}$ is the cutoff in transversal momentum, $M$ is
the vector-boson mass, $v$ and $a$ are the vector and axial-vector
couplings, and $\bar x\equiv 1-x$. Note that the longitudinal
structure function is finite for large cutoff, while the transversal
structure function is logarithmically divergent.
The maximal transverse momentum is given by the kinematical limit, it is
\begin{equation}
p_{\perp,\textrm{max}} = \bar x \sqrt{s}/2.
\end{equation}
The vector and axial couplings for a fermion branching into a $W$ are
\begin{align}
v_W &= \frac{g}{2\sqrt 2},
& a_W &= \frac{g}{2\sqrt 2}.
\end{align}
For $Z$ emission, this is replaced by
\begin{align}
v_Z &= \frac{g}{2\cos\theta_w}\left(t_3 - 2q\sin^2\theta_w\right),
& a_Z &= \frac{g}{2\cos\theta_w}t_3,
\end{align}
where $t_3=\pm\frac12$ is the fermion isospin, and $q$ its charge.
For an initial antifermion, the signs of the axial couplings are
inverted. Note that a common sign change of $v$ and $a$ is
irrelevant.
%% Differentiating with respect to the cutoff, we get structure functions
%% \begin{align}
%% f_{W,\pm}(x,p_T) &= \frac{g^2}{16\pi^2}\,
%% \frac{1+\bar x^2}{x}
%% \frac{p_\perp}{p_\perp^2 + \bar x M^2}
%% \\
%% f_{W,0}(x,p_T) &= \frac{g^2}{16\pi^2}\,
%% \frac{2\bar x}{x}\,
%% \frac{p_\perp \bar xM^2}{(p_\perp^2 + \bar x M^2)^2}
%% \\
%% F_{Z,\pm}(x,p_T) &= \frac{g^2}{16\pi^2\cos\theta_w^2}
%% \left[(t_3^f-2q^2\sin\theta_w^2)^2 + (t_3^f)^2\right]\,
%% \frac{1+\bar x^2}{x}
%% \frac{p_\perp}{p_\perp^2 + \bar x M^2}
%% \\
%% F_{Z,0}(x,p_T) &= \frac{g^2}{16\pi^2\cos\theta_w^2}\,
%% \left[(t_3^f-2q^2\sin\theta_w^2)^2 + (t_3^f)^2\right]\,
%% \frac{2\bar x}{x}\,
%% \frac{p_\perp \bar xM^2}{(p_\perp^2 + \bar x M^2)^2}
%% \end{align}
%% Here, $t_3^f$ is the $SU(2)_L$ quantum number of the fermion
%% $(\pm\frac12)$, and $q^f$ is the fermion charge in units of the
%% positron charge.
The EWA depends on the parameters $g$, $\sin^2\theta_w$, $M_W$, and
$M_Z$. These can all be taken from the SM input, and the prefactors
are calculated from those and the incoming particle type.
Since these structure functions have a $1/x$ singularity (which is not
really relevant in practice, however, since the vector boson mass is
finite), we map this singularity allowing for nontrivial $x$ bounds:
\begin{equation}
x = \exp(\bar r\ln x_0 + r\ln x_1)
\end{equation}
such that
\begin{equation}
\int_{x_0}^{x_1}\frac{dx}{x} = (\ln x_1 - \ln x_0)\int_0^1 dr.
\end{equation}
As a user parameter, we have the cutoff $p_{\perp,\textrm{max}}$.
The divergence $1/x$ also requires a $x_0$ cutoff; and for
completeness we introduce a corresponding $x_1$. Physically, the
minimal sensible value of $x$ is $M^2/s$, although the approximation
loses its value already at higher $x$ values.
\subsection{The EWA data block}
The EWA parameters are: $p_{T,\rm max}$, $c_V$, $c_A$, and
$m$. Instead of $m$ we can use the incoming particle PDG code as
input; from this we can deduce the mass and charges. In the
initialization phase it is not yet determined whether a $W$ or a $Z$
is radiated, hence we set the vector and axial-vector couplings equal
to the common prefactors $g/2 = e/2/\sin\theta_W$.
In principle, for EWA it would make sense to allow the user to also
set the upper bound for $x$, $x_{\rm max}$, but we fix it to one here.
<<SF ewa: public>>=
public :: ewa_data_t
<<SF ewa: types>>=
type, extends(sf_data_t) :: ewa_data_t
private
class(model_data_t), pointer :: model => null ()
type(flavor_t), dimension(:), allocatable :: flv_in
type(flavor_t), dimension(:), allocatable :: flv_out
real(default) :: pt_max
real(default) :: sqrts
real(default) :: x_min
real(default) :: x_max
real(default) :: mass
real(default) :: m_out
real(default) :: q_min
real(default) :: cv
real(default) :: ca
real(default) :: costhw
real(default) :: sinthw
real(default) :: mW
real(default) :: mZ
real(default) :: coeff
logical :: mass_set = .false.
logical :: recoil = .false.
logical :: keep_energy = .false.
integer :: id = 0
integer :: error = NONE
contains
<<SF ewa: ewa data: TBP>>
end type ewa_data_t
@ %def ewa_data_t
@ Error codes
<<SF ewa: parameters>>=
integer, parameter :: NONE = 0
integer, parameter :: ZERO_QMIN = 1
integer, parameter :: Q_MAX_TOO_SMALL = 2
integer, parameter :: ZERO_XMIN = 3
integer, parameter :: MASS_MIX = 4
integer, parameter :: ZERO_SW = 5
integer, parameter :: ISOSPIN_MIX = 6
integer, parameter :: WRONG_PRT = 7
integer, parameter :: MASS_MIX_OUT = 8
integer, parameter :: NO_EWA = 9
<<SF ewa: ewa data: TBP>>=
procedure :: init => ewa_data_init
<<SF ewa: procedures>>=
subroutine ewa_data_init (data, model, pdg_in, x_min, pt_max, &
sqrts, recoil, keep_energy, mass)
class(ewa_data_t), intent(inout) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
real(default), intent(in) :: x_min, pt_max, sqrts
logical, intent(in) :: recoil, keep_energy
real(default), intent(in), optional :: mass
real(default) :: g, ee
integer :: n_flv, i
data%model => model
if (.not. any (pdg_in .match. &
[1,2,3,4,5,6,11,13,15,-1,-2,-3,-4,-5,-6,-11,-13,-15])) then
data%error = WRONG_PRT; return
end if
n_flv = pdg_array_get_length (pdg_in)
allocate (data%flv_in (n_flv))
allocate (data%flv_out(n_flv))
do i = 1, n_flv
call data%flv_in(i)%init (pdg_array_get (pdg_in, i), model)
end do
data%pt_max = pt_max
data%sqrts = sqrts
data%x_min = x_min
data%x_max = 1
if (vanishes (data%x_min)) then
data%error = ZERO_XMIN; return
end if
select case (char (data%model%get_name ()))
case ("QCD","QED","Test")
data%error = NO_EWA; return
end select
ee = data%model%get_real (var_str ("ee"))
data%sinthw = data%model%get_real (var_str ("sw"))
data%costhw = data%model%get_real (var_str ("cw"))
data%mZ = data%model%get_real (var_str ("mZ"))
data%mW = data%model%get_real (var_str ("mW"))
if (data%sinthw /= 0) then
g = ee / data%sinthw
else
data%error = ZERO_SW; return
end if
data%cv = g / 2._default
data%ca = g / 2._default
data%coeff = 1._default / (8._default * PI**2)
data%recoil = recoil
data%keep_energy = keep_energy
if (present (mass)) then
data%mass = mass
data%m_out = mass
data%mass_set = .true.
else
data%mass = data%flv_in(1)%get_mass ()
if (any (data%flv_in%get_mass () /= data%mass)) then
data%error = MASS_MIX; return
end if
end if
end subroutine ewa_data_init
@ %def ewa_data_init
@ Set the vector boson ID for distinguishing $W$ and $Z$ bosons.
<<SF ewa: ewa data: TBP>>=
procedure :: set_id => ewa_set_id
<<SF ewa: procedures>>=
subroutine ewa_set_id (data, id)
class(ewa_data_t), intent(inout) :: data
integer, intent(in) :: id
integer :: i, isospin, pdg
if (.not. allocated (data%flv_in)) &
call msg_bug ("EWA: incoming particles not set")
data%id = id
select case (data%id)
case (23)
data%m_out = data%mass
data%flv_out = data%flv_in
case (24)
do i = 1, size (data%flv_in)
pdg = data%flv_in(i)%get_pdg ()
isospin = data%flv_in(i)%get_isospin_type ()
if (isospin > 0) then
!!! up-type quark or neutrinos
if (data%flv_in(i)%is_antiparticle ()) then
call data%flv_out(i)%init (pdg + 1, data%model)
else
call data%flv_out(i)%init (pdg - 1, data%model)
end if
else
!!! down-type quark or lepton
if (data%flv_in(i)%is_antiparticle ()) then
call data%flv_out(i)%init (pdg - 1, data%model)
else
call data%flv_out(i)%init (pdg + 1, data%model)
end if
end if
end do
if (.not. data%mass_set) then
data%m_out = data%flv_out(1)%get_mass ()
if (any (data%flv_out%get_mass () /= data%m_out)) then
data%error = MASS_MIX_OUT; return
end if
end if
end select
end subroutine ewa_set_id
@ %def ewa_set_id
@ Handle error conditions. Should always be done after
initialization, unless we are sure everything is ok.
<<SF ewa: ewa data: TBP>>=
procedure :: check => ewa_data_check
<<SF ewa: procedures>>=
subroutine ewa_data_check (data)
class(ewa_data_t), intent(in) :: data
select case (data%error)
case (WRONG_PRT)
call msg_fatal ("EWA structure function only accessible for " &
// "SM quarks and leptons.")
case (NO_EWA)
call msg_fatal ("EWA structure function not available for model " &
// char (data%model%get_name ()))
case (ZERO_SW)
call msg_fatal ("EWA: Vanishing value of sin(theta_w)")
case (ZERO_QMIN)
call msg_fatal ("EWA: Particle mass is zero")
case (Q_MAX_TOO_SMALL)
call msg_fatal ("EWA: Particle mass exceeds Qmax")
case (ZERO_XMIN)
call msg_fatal ("EWA: x_min must be larger than zero")
case (MASS_MIX)
call msg_fatal ("EWA: incoming particle masses must be uniform")
case (MASS_MIX_OUT)
call msg_fatal ("EWA: outgoing particle masses must be uniform")
case (ISOSPIN_MIX)
call msg_fatal ("EWA: incoming particle isospins must be uniform")
end select
end subroutine ewa_data_check
@ %def ewa_data_check
@ Output
<<SF ewa: ewa data: TBP>>=
procedure :: write => ewa_data_write
<<SF ewa: procedures>>=
subroutine ewa_data_write (data, unit, verbose)
class(ewa_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u, i
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "EWA data:"
if (allocated (data%flv_in) .and. allocated (data%flv_out)) then
write (u, "(3x,A)", advance="no") " flavor(in) = "
do i = 1, size (data%flv_in)
if (i > 1) write (u, "(',',1x)", advance="no")
call data%flv_in(i)%write (u)
end do
write (u, *)
write (u, "(3x,A)", advance="no") " flavor(out) = "
do i = 1, size (data%flv_out)
if (i > 1) write (u, "(',',1x)", advance="no")
call data%flv_out(i)%write (u)
end do
write (u, *)
write (u, "(3x,A," // FMT_19 // ")") " x_min = ", data%x_min
write (u, "(3x,A," // FMT_19 // ")") " x_max = ", data%x_max
write (u, "(3x,A," // FMT_19 // ")") " pt_max = ", data%pt_max
write (u, "(3x,A," // FMT_19 // ")") " sqrts = ", data%sqrts
write (u, "(3x,A," // FMT_19 // ")") " mass = ", data%mass
write (u, "(3x,A," // FMT_19 // ")") " cv = ", data%cv
write (u, "(3x,A," // FMT_19 // ")") " ca = ", data%ca
write (u, "(3x,A," // FMT_19 // ")") " coeff = ", data%coeff
write (u, "(3x,A," // FMT_19 // ")") " costhw = ", data%costhw
write (u, "(3x,A," // FMT_19 // ")") " sinthw = ", data%sinthw
write (u, "(3x,A," // FMT_19 // ")") " mZ = ", data%mZ
write (u, "(3x,A," // FMT_19 // ")") " mW = ", data%mW
write (u, "(3x,A,L2)") " recoil = ", data%recoil
write (u, "(3x,A,L2)") " keep en. = ", data%keep_energy
write (u, "(3x,A,I2)") " PDG (VB) = ", data%id
else
write (u, "(3x,A)") "[undefined]"
end if
end subroutine ewa_data_write
@ %def ewa_data_write
@ The number of parameters is one for collinear splitting, in case the
[[recoil]] option is set, we take the recoil into account.
<<SF ewa: ewa data: TBP>>=
procedure :: get_n_par => ewa_data_get_n_par
<<SF ewa: procedures>>=
function ewa_data_get_n_par (data) result (n)
class(ewa_data_t), intent(in) :: data
integer :: n
if (data%recoil) then
n = 3
else
n = 1
end if
end function ewa_data_get_n_par
@ %def ewa_data_get_n_par
@ Return the outgoing particles PDG codes. This depends, whether this
is a charged-current or neutral-current interaction.
<<SF ewa: ewa data: TBP>>=
procedure :: get_pdg_out => ewa_data_get_pdg_out
<<SF ewa: procedures>>=
subroutine ewa_data_get_pdg_out (data, pdg_out)
class(ewa_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer, dimension(:), allocatable :: pdg1
integer :: i, n_flv
if (allocated (data%flv_out)) then
n_flv = size (data%flv_out)
else
n_flv = 0
end if
allocate (pdg1 (n_flv))
do i = 1, n_flv
pdg1(i) = data%flv_out(i)%get_pdg ()
end do
pdg_out(1) = pdg1
end subroutine ewa_data_get_pdg_out
@ %def ewa_data_get_pdg_out
@ Allocate the interaction record.
<<SF ewa: ewa data: TBP>>=
procedure :: allocate_sf_int => ewa_data_allocate_sf_int
<<SF ewa: procedures>>=
subroutine ewa_data_allocate_sf_int (data, sf_int)
class(ewa_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (ewa_t :: sf_int)
end subroutine ewa_data_allocate_sf_int
@ %def ewa_data_allocate_sf_int
@
\subsection{The EWA object}
The [[ewa_t]] data type is a $1\to 2$ interaction. We should be able
to handle several flavors in parallel, since EWA is not necessarily
applied immediately after beam collision: $W/Z$ bosons may be radiated
from quarks. In that case, the partons are massless and $q_{\rm min}$
applies instead, so we do not need to generate several kinematical
configurations in parallel.
The particles are ordered as (incoming, radiated, W/Z), where the
W/Z initiates the hard interaction.
In the case of EPA, we generated an unpolarized photon and transferred
initial polarization to the radiated parton. Color is transferred in
the same way. I do not know whether the same can/should be done for
EWA, as the structure functions depend on the W/Z polarization. If we
are having $Z$ bosons, both up- and down-type fermions can
participate. Otherwise, with a $W^+$ an up-type fermion is transferred
to a down-type fermion, and the other way round.
<<SF ewa: types>>=
type, extends (sf_int_t) :: ewa_t
type(ewa_data_t), pointer :: data => null ()
real(default) :: x = 0
real(default) :: xb = 0
integer :: n_me = 0
real(default), dimension(:), allocatable :: cv
real(default), dimension(:), allocatable :: ca
contains
<<SF ewa: ewa: TBP>>
end type ewa_t
@ %def ewa_t
@ Type string: has to be here, but there is no string variable on which EWA
depends. Hence, a dummy routine.
<<SF ewa: ewa: TBP>>=
procedure :: type_string => ewa_type_string
<<SF ewa: procedures>>=
function ewa_type_string (object) result (string)
class(ewa_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "EWA: equivalent W/Z approx."
else
string = "EWA: [undefined]"
end if
end function ewa_type_string
@ %def ewa_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF ewa: ewa: TBP>>=
procedure :: write => ewa_write
<<SF ewa: procedures>>=
subroutine ewa_write (object, unit, testflag)
class(ewa_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
if (object%status >= SF_DONE_KINEMATICS) then
write (u, "(1x,A)") "SF parameters:"
write (u, "(3x,A," // FMT_17 // ")") "x =", object%x
write (u, "(3x,A," // FMT_17 // ")") "xb=", object%xb
end if
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "EWA data: [undefined]"
end if
end subroutine ewa_write
@ %def ewa_write
@ The current implementation requires uniform isospin for all incoming
particles, therefore we need to probe only the first one.
<<SF ewa: ewa: TBP>>=
procedure :: init => ewa_init
<<SF ewa: procedures>>=
subroutine ewa_init (sf_int, data)
class(ewa_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(3) :: mask
integer, dimension(3) :: hel_lock
type(polarization_t), target :: pol
type(quantum_numbers_t), dimension(1) :: qn_fc, qn_fc_fin
type(flavor_t) :: flv_z, flv_wp, flv_wm
type(color_t) :: col0
type(quantum_numbers_t) :: qn_hel, qn_z, qn_wp, qn_wm, qn, qn_rad, qn_w
type(polarization_iterator_t) :: it_hel
integer :: i, isospin
select type (data)
type is (ewa_data_t)
mask = quantum_numbers_mask (.false., .false., &
mask_h = [.false., .false., .true.])
hel_lock = [2, 1, 0]
call col0%init ()
select case (data%id)
case (23)
!!! Z boson, flavor is not changing
call sf_int%base_init (mask, [data%mass**2], [data%mass**2], &
[data%mZ**2], hel_lock = hel_lock)
sf_int%data => data
call flv_z%init (Z_BOSON, data%model)
call qn_z%init (flv_z, col0)
do i = 1, size (data%flv_in)
call pol%init_generic (data%flv_in(i))
call qn_fc(1)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i), 1))
call it_hel%init (pol)
do while (it_hel%is_valid ())
qn_hel = it_hel%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc(1)
qn_rad = qn
call qn_rad%tag_radiated ()
call sf_int%add_state ([qn, qn_rad, qn_z])
call it_hel%advance ()
end do
! call pol%final ()
end do
case (24)
call sf_int%base_init (mask, [data%mass**2], [data%m_out**2], &
[data%mW**2], hel_lock = hel_lock)
sf_int%data => data
call flv_wp%init (W_BOSON, data%model)
call flv_wm%init (- W_BOSON, data%model)
call qn_wp%init (flv_wp, col0)
call qn_wm%init (flv_wm, col0)
do i = 1, size (data%flv_in)
isospin = data%flv_in(i)%get_isospin_type ()
if (isospin > 0) then
!!! up-type quark or neutrinos
if (data%flv_in(i)%is_antiparticle ()) then
qn_w = qn_wm
else
qn_w = qn_wp
end if
else
!!! down-type quark or lepton
if (data%flv_in(i)%is_antiparticle ()) then
qn_w = qn_wp
else
qn_w = qn_wm
end if
end if
call pol%init_generic (data%flv_in(i))
call qn_fc(1)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i), 1))
call qn_fc_fin(1)%init ( &
flv = data%flv_out(i), &
col = color_from_flavor (data%flv_out(i), 1))
call it_hel%init (pol)
do while (it_hel%is_valid ())
qn_hel = it_hel%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc(1)
qn_rad = qn_hel .merge. qn_fc_fin(1)
call qn_rad%tag_radiated ()
call sf_int%add_state ([qn, qn_rad, qn_w])
call it_hel%advance ()
end do
! call pol%final ()
end do
case default
call msg_fatal ("EWA initialization failed: wrong particle type.")
end select
call sf_int%freeze ()
if (data%keep_energy) then
sf_int%on_shell_mode = KEEP_ENERGY
else
sf_int%on_shell_mode = KEEP_MOMENTUM
end if
call sf_int%set_incoming ([1])
call sf_int%set_radiated ([2])
call sf_int%set_outgoing ([3])
end select
end subroutine ewa_init
@ %def ewa_init
@ Prepare the coupling arrays. This is separate from the previous routine since
the state matrix may be helicity-contracted.
<<SF ewa: ewa: TBP>>=
procedure :: setup_constants => ewa_setup_constants
<<SF ewa: procedures>>=
subroutine ewa_setup_constants (sf_int)
class(ewa_t), intent(inout), target :: sf_int
type(state_iterator_t) :: it
type(flavor_t) :: flv
real(default) :: q, t3
integer :: i
sf_int%n_me = sf_int%get_n_matrix_elements ()
allocate (sf_int%cv (sf_int%n_me))
allocate (sf_int%ca (sf_int%n_me))
associate (data => sf_int%data)
select case (data%id)
case (23)
call it%init (sf_int%interaction_t%get_state_matrix_ptr ())
do while (it%is_valid ())
i = it%get_me_index ()
flv = it%get_flavor (1)
q = flv%get_charge ()
t3 = flv%get_isospin ()
if (flv%is_antiparticle ()) then
sf_int%cv(i) = - data%cv &
* (t3 - 2._default * q * data%sinthw**2) / data%costhw
sf_int%ca(i) = data%ca * t3 / data%costhw
else
sf_int%cv(i) = data%cv &
* (t3 - 2._default * q * data%sinthw**2) / data%costhw
sf_int%ca(i) = data%ca * t3 / data%costhw
end if
call it%advance ()
end do
case (24)
call it%init (sf_int%interaction_t%get_state_matrix_ptr ())
do while (it%is_valid ())
i = it%get_me_index ()
flv = it%get_flavor (1)
if (flv%is_antiparticle ()) then
sf_int%cv(i) = data%cv / sqrt(2._default)
sf_int%ca(i) = - data%ca / sqrt(2._default)
else
sf_int%cv(i) = data%cv / sqrt(2._default)
sf_int%ca(i) = data%ca / sqrt(2._default)
end if
call it%advance ()
end do
end select
end associate
sf_int%status = SF_INITIAL
end subroutine ewa_setup_constants
@ %def ewa_setup_constants
@
\subsection{Kinematics}
Set kinematics. The EWA structure function allows for a
straightforward mapping of the unit interval. So, to leading order,
the structure function value is unity, but the $x$ value is
transformed. Higher orders affect the function value.
If [[map]] is unset, the $r$ and $x$ values coincide, and the Jacobian
$f(r)$ is trivial.
If [[map]] is set, the exponential mapping for the $1/x$ singularity
discussed above is applied.
<<SF ewa: ewa: TBP>>=
procedure :: complete_kinematics => ewa_complete_kinematics
<<SF ewa: procedures>>=
subroutine ewa_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(ewa_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
real(default) :: e_1
real(default) :: x0, x1, lx0, lx1, lx
e_1 = energy (sf_int%get_momentum (1))
if (sf_int%data%recoil) then
select case (sf_int%data%id)
case (23)
x0 = max (sf_int%data%x_min, sf_int%data%mz / e_1)
case (24)
x0 = max (sf_int%data%x_min, sf_int%data%mw / e_1)
end select
else
x0 = sf_int%data%x_min
end if
x1 = sf_int%data%x_max
if ( x0 >= x1) then
f = 0
sf_int%status = SF_FAILED_KINEMATICS
return
end if
if (map) then
lx0 = log (x0)
lx1 = log (x1)
lx = lx1 * r(1) + lx0 * rb(1)
x(1) = exp(lx)
f = x(1) * (lx1 - lx0)
else
x(1) = r(1)
if (x0 < x(1) .and. x(1) < x1) then
f = 1
else
sf_int%status = SF_FAILED_KINEMATICS
f = 0
return
end if
end if
xb(1) = 1 - x(1)
if (size(x) == 3) then
x(2:3) = r(2:3)
xb(2:3) = rb(2:3)
end if
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_DONE_KINEMATICS)
sf_int%x = x(1)
sf_int%xb = xb(1)
case (SF_FAILED_KINEMATICS)
sf_int%x = 0
sf_int%xb = 0
f = 0
end select
end subroutine ewa_complete_kinematics
@ %def ewa_complete_kinematics
+@ Overriding the default method: we compute the [[x]] array from the
+momentum configuration. In the specific case of EWA, we also set the
+internally stored $x$ and $\bar x$ values, so they can be used in the
+following routine.
+<<SF ewa: ewa: TBP>>=
+ procedure :: recover_x => sf_ewa_recover_x
+<<SF ewa: procedures>>=
+ subroutine sf_ewa_recover_x (sf_int, x, xb, x_free)
+ class(ewa_t), intent(inout) :: sf_int
+ real(default), dimension(:), intent(out) :: x
+ real(default), dimension(:), intent(out) :: xb
+ real(default), intent(inout), optional :: x_free
+ call sf_int%base_recover_x (x, xb, x_free)
+ sf_int%x = x(1)
+ sf_int%xb = xb(1)
+ end subroutine sf_ewa_recover_x
+
+@ %def sf_ewa_recover_x
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF ewa: ewa: TBP>>=
procedure :: inverse_kinematics => ewa_inverse_kinematics
<<SF ewa: procedures>>=
subroutine ewa_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(ewa_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
real(default) :: x0, x1, lx0, lx1, lx, e_1
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
e_1 = energy (sf_int%get_momentum (1))
if (sf_int%data%recoil) then
select case (sf_int%data%id)
case (23)
x0 = max (sf_int%data%x_min, sf_int%data%mz / e_1)
case (24)
x0 = max (sf_int%data%x_min, sf_int%data%mw / e_1)
end select
else
x0 = sf_int%data%x_min
end if
x1 = sf_int%data%x_max
if (map) then
lx0 = log (x0)
lx1 = log (x1)
lx = log (x(1))
r(1) = (lx - lx0) / (lx1 - lx0)
rb(1) = (lx1 - lx) / (lx1 - lx0)
f = x(1) * (lx1 - lx0)
else
r (1) = x(1)
rb(1) = 1 - x(1)
if (x0 < x(1) .and. x(1) < x1) then
f = 1
else
f = 0
end if
end if
if (size(r) == 3) then
r (2:3) = x(2:3)
rb(2:3) = xb(2:3)
end if
if (set_mom) then
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
- case (SF_DONE_KINEMATICS)
- sf_int%x = x(1)
- sf_int%xb= xb(1)
- case (SF_FAILED_KINEMATICS)
- sf_int%x = 0
- sf_int%xb= 0
- f = 0
+ case (SF_FAILED_KINEMATICS); f = 0
end select
end if
end subroutine ewa_inverse_kinematics
@ %def ewa_inverse_kinematics
@
\subsection{EWA application}
For EWA, we can compute kinematics and function value in a single
step. This function works on a single beam, assuming that the input
momentum has been set. We need four random numbers as input: one for
$x$, one for $Q^2$, and two for the polar and azimuthal angles.
Alternatively, we can skip $p_T$ generation; in this case, we only
need one.
For obtaining splitting kinematics, we rely on the assumption that all
in-particles are mass-degenerate (or there is only one), so the
generated $x$ values are identical.
<<SF ewa: ewa: TBP>>=
procedure :: apply => ewa_apply
<<SF ewa: procedures>>=
subroutine ewa_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(ewa_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: x, xb, pt2, c1, c2
real(default) :: cv, ca
real(default) :: f, fm, fp, fL
integer :: i
associate (data => sf_int%data)
x = sf_int%x
xb = sf_int%xb
pt2 = min ((data%pt_max)**2, (xb * data%sqrts / 2)**2)
select case (data%id)
case (23)
!!! Z boson structure function
c1 = log (1 + pt2 / (xb * (data%mZ)**2))
c2 = 1 / (1 + (xb * (data%mZ)**2) / pt2)
case (24)
!!! W boson structure function
c1 = log (1 + pt2 / (xb * (data%mW)**2))
c2 = 1 / (1 + (xb * (data%mW)**2) / pt2)
end select
do i = 1, sf_int%n_me
cv = sf_int%cv(i)
ca = sf_int%ca(i)
fm = data%coeff * &
((cv + ca)**2 + ((cv - ca) * xb)**2) * (c1 - c2) / (2 * x)
fp = data%coeff * &
((cv - ca)**2 + ((cv + ca) * xb)**2) * (c1 - c2) / (2 * x)
fL = data%coeff * &
(cv**2 + ca**2) * (2 * xb / x) * c2
f = fp + fm + fL
if (.not. vanishes (f)) then
fp = fp / f
fm = fm / f
fL = fL / f
end if
call sf_int%set_matrix_element (i, cmplx (f, kind=default))
end do
end associate
sf_int%status = SF_EVALUATED
end subroutine ewa_apply
@ %def ewa_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_ewa_ut.f90]]>>=
<<File header>>
module sf_ewa_ut
use unit_tests
use sf_ewa_uti
<<Standard module head>>
<<SF ewa: public test>>
contains
<<SF ewa: test driver>>
end module sf_ewa_ut
@ %def sf_ewa_ut
@
<<[[sf_ewa_uti.f90]]>>=
<<File header>>
module sf_ewa_uti
<<Use kinds>>
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use interactions, only: interaction_pacify_momenta
use model_data
use sf_aux
use sf_base
use sf_ewa
<<Standard module head>>
<<SF ewa: test declarations>>
contains
<<SF ewa: tests>>
end module sf_ewa_uti
@ %def sf_ewa_ut
@ API: driver for the unit tests below.
<<SF ewa: public test>>=
public :: sf_ewa_test
<<SF ewa: test driver>>=
subroutine sf_ewa_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF ewa: execute tests>>
end subroutine sf_ewa_test
@ %def sf_ewa_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF ewa: execute tests>>=
call test (sf_ewa_1, "sf_ewa_1", &
"structure function configuration", &
u, results)
<<SF ewa: test declarations>>=
public :: sf_ewa_1
<<SF ewa: tests>>=
subroutine sf_ewa_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(1) :: pdg_out
integer, dimension(:), allocatable :: pdg1
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_ewa_1"
write (u, "(A)") "* Purpose: initialize and display &
&test structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call model%init_sm_test ()
pdg_in = 2
allocate (ewa_data_t :: data)
call data%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize for Z boson"
write (u, "(A)")
select type (data)
type is (ewa_data_t)
call data%init (model, pdg_in, 0.01_default, &
500._default, 5000._default, .false., .false.)
call data%set_id (23)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
write (u, "(A)")
write (u, "(A)") "* Initialize for W boson"
write (u, "(A)")
deallocate (data)
allocate (ewa_data_t :: data)
select type (data)
type is (ewa_data_t)
call data%init (model, pdg_in, 0.01_default, &
500._default, 5000._default, .false., .false.)
call data%set_id (24)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_ewa_1"
end subroutine sf_ewa_1
@ %def sf_ewa_1
@
\subsubsection{Test and probe structure function}
Construct and display a structure function object based on the EWA
structure function.
<<SF ewa: execute tests>>=
call test (sf_ewa_2, "sf_ewa_2", &
"structure function instance", &
u, results)
<<SF ewa: test declarations>>=
public :: sf_ewa_2
<<SF ewa: tests>>=
subroutine sf_ewa_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_ewa_2"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_sm_test ()
call flv%init (2, model)
pdg_in = 2
call reset_interaction_counter ()
allocate (ewa_data_t :: data)
select type (data)
type is (ewa_data_t)
call data%init (model, pdg_in, 0.01_default, &
500._default, 3000._default, .false., .true.)
call data%set_id (24)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=1500"
write (u, "(A)")
E = 1500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.4, no EWA mapping, collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.4_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false., &
set_momenta=.true.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EWA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_ewa_2"
end subroutine sf_ewa_2
@ %def sf_ewa_2
@
\subsubsection{Standard mapping}
Construct and display a structure function object based on the EWA
structure function, applying the standard single-particle mapping.
<<SF ewa: execute tests>>=
call test (sf_ewa_3, "sf_ewa_3", &
"apply mapping", &
u, results)
<<SF ewa: test declarations>>=
public :: sf_ewa_3
<<SF ewa: tests>>=
subroutine sf_ewa_3 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_ewa_3"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_sm_test ()
call flv%init (2, model)
pdg_in = 2
call reset_interaction_counter ()
allocate (ewa_data_t :: data)
select type (data)
type is (ewa_data_t)
call data%init (model, pdg_in, 0.01_default, &
500._default, 3000._default, .false., .true.)
call data%set_id (24)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=1500"
write (u, "(A)")
E = 1500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.4, with EWA mapping, collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.4_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true., &
set_momenta=.true.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EWA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_ewa_3"
end subroutine sf_ewa_3
@ %def sf_ewa_3
@
\subsubsection{Non-collinear case}
Construct and display a structure function object based on the EPA
structure function.
<<SF ewa: execute tests>>=
call test (sf_ewa_4, "sf_ewa_4", &
"non-collinear", &
u, results)
<<SF ewa: test declarations>>=
public :: sf_ewa_4
<<SF ewa: tests>>=
subroutine sf_ewa_4 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_ewa_4"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call modeL%init_sm_test ()
call flv%init (2, model)
pdg_in = 2
call reset_interaction_counter ()
allocate (ewa_data_t :: data)
select type (data)
type is (ewa_data_t)
call data%init (model, pdg_in, 0.01_default, &
500._default, 3000.0_default, .true., .true.)
call data%set_id (24)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
write (u, "(A)") "* Initialize incoming momentum with E=1500"
write (u, "(A)")
E = 1500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.5/0.5/0.25, with EWA mapping, "
write (u, "(A)") " non-coll., keeping energy"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = [0.5_default, 0.5_default, 0.25_default]
rb = 1 - r
sf_int%on_shell_mode = KEEP_ENERGY
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.true.)
call interaction_pacify_momenta (sf_int%interaction_t, 1e-10_default)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x and r from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.true., &
set_momenta=.true.)
call interaction_pacify_momenta (sf_int%interaction_t, 1e-10_default)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EWA structure function"
write (u, "(A)")
call sf_int%apply (scale = 1500._default)
call sf_int%write (u, testflag = .true.)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_ewa_4"
end subroutine sf_ewa_4
@ %def sf_ewa_4
@
\subsubsection{Structure function for multiple flavors}
Construct and display a structure function object based on the EWA
structure function. The incoming state has multiple particles with
non-uniform quantum numbers.
<<SF ewa: execute tests>>=
call test (sf_ewa_5, "sf_ewa_5", &
"structure function instance", &
u, results)
<<SF ewa: test declarations>>=
public :: sf_ewa_5
<<SF ewa: tests>>=
subroutine sf_ewa_5 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_ewa_5"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_sm_test ()
call flv%init (2, model)
pdg_in = [1, 2, -1, -2]
call reset_interaction_counter ()
allocate (ewa_data_t :: data)
select type (data)
type is (ewa_data_t)
call data%init (model, pdg_in, 0.01_default, &
500._default, 3000._default, .false., .true.)
call data%set_id (24)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%setup_constants ()
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=1500"
write (u, "(A)")
E = 1500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call pacify (k, 1e-10_default)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for r=0.4, no EWA mapping, collinear"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.4_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Evaluate EWA structure function"
write (u, "(A)")
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_ewa_5"
end subroutine sf_ewa_5
@ %def sf_ewa_5
@
\clearpage
%------------------------------------------------------------------------
\section{Energy-scan spectrum}
This spectrum is actually a trick that allows us to plot the c.m.\ energy
dependence of a cross section without scanning the input energy. We
start with the observation that a spectrum $f(x)$, applied to one of
the incoming beams only, results in a cross section
\begin{equation}
\sigma = \int dx\,f(x)\,\hat\sigma(xs).
\end{equation}
We want to compute the distribution of $E=\sqrt{\hat s}=\sqrt{xs}$, i.e.,
\begin{equation}
\frac{d\sigma}{dE} = \frac{2\sqrt{x}}{\sqrt{s}}\,\frac{d\sigma}{dx}
= \frac{2\sqrt{x}}{\sqrt{s}}\,f(x)\,\hat\sigma(xs),
\end{equation}
so if we set
\begin{equation}
f(x) = \frac{\sqrt{s}}{2\sqrt{x}},
\end{equation}
we get the distribution
\begin{equation}
\frac{d\sigma}{dE} = \hat\sigma(\hat s=E^2).
\end{equation}
We implement this as a spectrum with a single parameter $x$. The
parameters for the individual beams are computed as $x_i=\sqrt{x}$, so
they are equal and the kinematics is always symmetric.
<<[[sf_escan.f90]]>>=
<<File header>>
module sf_escan
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_12
use numeric_utils
use diagnostics
use lorentz
use pdg_arrays
use model_data
use flavors
use quantum_numbers
use state_matrices
use polarizations
use sf_base
<<Standard module head>>
<<SF escan: public>>
<<SF escan: types>>
contains
<<SF escan: procedures>>
end module sf_escan
@ %def sf_escan
@
\subsection{Data type}
The [[norm]] is unity if the total cross section should be normalized
to one, and $\sqrt{s}$ if it should be normalized to the total
energy. In the latter case, the differential distribution
$d\sigma/d\sqrt{\hat s}$ coincides with the partonic cross section
$\hat\sigma$ as a function of $\sqrt{\hat s}$.
<<SF escan: public>>=
public :: escan_data_t
<<SF escan: types>>=
type, extends(sf_data_t) :: escan_data_t
private
type(flavor_t), dimension(:,:), allocatable :: flv_in
integer, dimension(2) :: n_flv = 0
real(default) :: norm = 1
contains
<<SF escan: escan data: TBP>>
end type escan_data_t
@ %def escan_data_t
<<SF escan: escan data: TBP>>=
procedure :: init => escan_data_init
<<SF escan: procedures>>=
subroutine escan_data_init (data, model, pdg_in, norm)
class(escan_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), dimension(2), intent(in) :: pdg_in
real(default), intent(in), optional :: norm
real(default), dimension(2) :: m2
integer :: i, j
data%n_flv = pdg_array_get_length (pdg_in)
allocate (data%flv_in (maxval (data%n_flv), 2))
do i = 1, 2
do j = 1, data%n_flv(i)
call data%flv_in(j, i)%init (pdg_array_get (pdg_in(i), j), model)
end do
end do
m2 = data%flv_in(1,:)%get_mass ()
do i = 1, 2
if (.not. any (nearly_equal (data%flv_in(1:data%n_flv(i),i)%get_mass (), m2(i)))) then
call msg_fatal ("Energy scan: incoming particle mass must be uniform")
end if
end do
if (present (norm)) data%norm = norm
end subroutine escan_data_init
@ %def escan_data_init
@ Output
<<SF escan: escan data: TBP>>=
procedure :: write => escan_data_write
<<SF escan: procedures>>=
subroutine escan_data_write (data, unit, verbose)
class(escan_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u, i, j
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "Energy-scan data:"
write (u, "(3x,A)", advance="no") "prt_in = "
do i = 1, 2
if (i > 1) write (u, "(',',1x)", advance="no")
do j = 1, data%n_flv(i)
if (j > 1) write (u, "(':')", advance="no")
write (u, "(A)", advance="no") char (data%flv_in(j,i)%get_name ())
end do
end do
write (u, *)
write (u, "(3x,A," // FMT_12 // ")") "norm =", data%norm
end subroutine escan_data_write
@ %def escan_data_write
@ Kinematics is completely collinear, hence there is only one
parameter for a pair spectrum.
<<SF escan: escan data: TBP>>=
procedure :: get_n_par => escan_data_get_n_par
<<SF escan: procedures>>=
function escan_data_get_n_par (data) result (n)
class(escan_data_t), intent(in) :: data
integer :: n
n = 1
end function escan_data_get_n_par
@ %def escan_data_get_n_par
@ Return the outgoing particles PDG codes. This is always the same as
the incoming particle, where we use two indices for the two beams.
<<SF escan: escan data: TBP>>=
procedure :: get_pdg_out => escan_data_get_pdg_out
<<SF escan: procedures>>=
subroutine escan_data_get_pdg_out (data, pdg_out)
class(escan_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer :: i, n
n = 2
do i = 1, n
pdg_out(i) = data%flv_in(1:data%n_flv(i),i)%get_pdg ()
end do
end subroutine escan_data_get_pdg_out
@ %def escan_data_get_pdg_out
@ Allocate the interaction record.
<<SF escan: escan data: TBP>>=
procedure :: allocate_sf_int => escan_data_allocate_sf_int
<<SF escan: procedures>>=
subroutine escan_data_allocate_sf_int (data, sf_int)
class(escan_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (escan_t :: sf_int)
end subroutine escan_data_allocate_sf_int
@ %def escan_data_allocate_sf_int
@
\subsection{The Energy-scan object}
This is a spectrum, not a radiation. We create an interaction with
two incoming and two outgoing particles, flavor, color, and helicity
being carried through. $x$ nevertheless is only one-dimensional, as we
are always using only one beam parameter.
<<SF escan: types>>=
type, extends (sf_int_t) :: escan_t
type(escan_data_t), pointer :: data => null ()
contains
<<SF escan: escan: TBP>>
end type escan_t
@ %def escan_t
@ Type string: for the energy scan this is just a dummy function.
<<SF escan: escan: TBP>>=
procedure :: type_string => escan_type_string
<<SF escan: procedures>>=
function escan_type_string (object) result (string)
class(escan_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "Escan: energy scan"
else
string = "Escan: [undefined]"
end if
end function escan_type_string
@ %def escan_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF escan: escan: TBP>>=
procedure :: write => escan_write
<<SF escan: procedures>>=
subroutine escan_write (object, unit, testflag)
class(escan_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "Energy scan data: [undefined]"
end if
end subroutine escan_write
@ %def escan_write
@
<<SF escan: escan: TBP>>=
procedure :: init => escan_init
<<SF escan: procedures>>=
subroutine escan_init (sf_int, data)
class(escan_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(4) :: mask
integer, dimension(4) :: hel_lock
real(default), dimension(2) :: m2
real(default), dimension(0) :: mr2
type(quantum_numbers_t), dimension(4) :: qn_fc, qn_hel, qn
type(polarization_t), target :: pol1, pol2
type(polarization_iterator_t) :: it_hel1, it_hel2
integer :: j1, j2
select type (data)
type is (escan_data_t)
hel_lock = [3, 4, 1, 2]
m2 = data%flv_in(1,:)%get_mass ()
call sf_int%base_init (mask, m2, mr2, m2, hel_lock = hel_lock)
sf_int%data => data
do j1 = 1, data%n_flv(1)
call qn_fc(1)%init ( &
flv = data%flv_in(j1,1), &
col = color_from_flavor (data%flv_in(j1,1)))
call qn_fc(3)%init ( &
flv = data%flv_in(j1,1), &
col = color_from_flavor (data%flv_in(j1,1)))
call pol1%init_generic (data%flv_in(j1,1))
do j2 = 1, data%n_flv(2)
call qn_fc(2)%init ( &
flv = data%flv_in(j2,2), &
col = color_from_flavor (data%flv_in(j2,2)))
call qn_fc(4)%init ( &
flv = data%flv_in(j2,2), &
col = color_from_flavor (data%flv_in(j2,2)))
call pol2%init_generic (data%flv_in(j2,2))
call it_hel1%init (pol1)
do while (it_hel1%is_valid ())
qn_hel(1) = it_hel1%get_quantum_numbers ()
qn_hel(3) = it_hel1%get_quantum_numbers ()
call it_hel2%init (pol2)
do while (it_hel2%is_valid ())
qn_hel(2) = it_hel2%get_quantum_numbers ()
qn_hel(4) = it_hel2%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc
call sf_int%add_state (qn)
call it_hel2%advance ()
end do
call it_hel1%advance ()
end do
! call pol2%final ()
end do
! call pol1%final ()
end do
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
call sf_int%freeze ()
sf_int%status = SF_INITIAL
end select
end subroutine escan_init
@ %def escan_init
@
\subsection{Kinematics}
Set kinematics. We have a single parameter, but reduce both beams.
The [[map]] flag is ignored.
<<SF escan: escan: TBP>>=
procedure :: complete_kinematics => escan_complete_kinematics
<<SF escan: procedures>>=
subroutine escan_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(escan_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default) :: sqrt_x
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
x = r
xb= rb
sqrt_x = sqrt (x(1))
if (sqrt_x > 0) then
f = 1 / (2 * sqrt_x)
else
f = 0
sf_int%status = SF_FAILED_KINEMATICS
return
end if
call sf_int%reduce_momenta ([sqrt_x, sqrt_x])
end subroutine escan_complete_kinematics
@ %def escan_complete_kinematics
@ Recover $x$. The base procedure should return two momentum
fractions for the two beams, while we have only one parameter. This
is the product of the extracted momentum fractions.
<<SF escan: escan: TBP>>=
procedure :: recover_x => escan_recover_x
<<SF escan: procedures>>=
subroutine escan_recover_x (sf_int, x, xb, x_free)
class(escan_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(inout), optional :: x_free
real(default), dimension(2) :: xi, xib
call sf_int%base_recover_x (xi, xib, x_free)
x = product (xi)
xb= 1 - x
end subroutine escan_recover_x
@ %def escan_recover_x
@ Compute inverse kinematics.
<<SF escan: escan: TBP>>=
procedure :: inverse_kinematics => escan_inverse_kinematics
<<SF escan: procedures>>=
subroutine escan_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(escan_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
real(default) :: sqrt_x
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
sqrt_x = sqrt (x(1))
if (sqrt_x > 0) then
f = 1 / (2 * sqrt_x)
else
f = 0
sf_int%status = SF_FAILED_KINEMATICS
return
end if
r = x
rb = xb
if (set_mom) then
call sf_int%reduce_momenta ([sqrt_x, sqrt_x])
end if
end subroutine escan_inverse_kinematics
@ %def escan_inverse_kinematics
@
\subsection{Energy scan application}
Here, we insert the predefined norm.
<<SF escan: escan: TBP>>=
procedure :: apply => escan_apply
<<SF escan: procedures>>=
subroutine escan_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(escan_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: f
associate (data => sf_int%data)
f = data%norm
end associate
call sf_int%set_matrix_element (cmplx (f, kind=default))
sf_int%status = SF_EVALUATED
end subroutine escan_apply
@ %def escan_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_escan_ut.f90]]>>=
<<File header>>
module sf_escan_ut
use unit_tests
use sf_escan_uti
<<Standard module head>>
<<SF escan: public test>>
contains
<<SF escan: test driver>>
end module sf_escan_ut
@ %def sf_escan_ut
@
<<[[sf_escan_uti.f90]]>>=
<<File header>>
module sf_escan_uti
<<Use kinds>>
use physics_defs, only: ELECTRON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use sf_aux
use sf_base
use sf_escan
<<Standard module head>>
<<SF escan: test declarations>>
contains
<<SF escan: tests>>
end module sf_escan_uti
@ %def sf_escan_ut
@ API: driver for the unit tests below.
<<SF escan: public test>>=
public :: sf_escan_test
<<SF escan: test driver>>=
subroutine sf_escan_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF escan: execute tests>>
end subroutine sf_escan_test
@ %def sf_escan_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF escan: execute tests>>=
call test (sf_escan_1, "sf_escan_1", &
"structure function configuration", &
u, results)
<<SF escan: test declarations>>=
public :: sf_escan_1
<<SF escan: tests>>=
subroutine sf_escan_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t), dimension(2) :: pdg_in
type(pdg_array_t), dimension(2) :: pdg_out
integer, dimension(:), allocatable :: pdg1, pdg2
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_escan_1"
write (u, "(A)") "* Purpose: initialize and display &
&energy-scan structure function data"
write (u, "(A)")
call model%init_qed_test ()
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
allocate (escan_data_t :: data)
select type (data)
type is (escan_data_t)
call data%init (model, pdg_in, norm = 2._default)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
pdg2 = pdg_out(2)
write (u, "(2x,99(1x,I0))") pdg1, pdg2
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_escan_1"
end subroutine sf_escan_1
@ %def sf_escan_1
g@
\subsubsection{Probe the structure-function object}
Active the beam event reader, generate an event.
<<SF escan: execute tests>>=
call test (sf_escan_2, "sf_escan_2", &
"generate event", &
u, results)
<<SF escan: test declarations>>=
public :: sf_escan_2
<<SF escan: tests>>=
subroutine sf_escan_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: x_free, f
write (u, "(A)") "* Test output: sf_escan_2"
write (u, "(A)") "* Purpose: initialize and display &
&beam-events structure function data"
write (u, "(A)")
call model%init_qed_test ()
call flv(1)%init (ELECTRON, model)
call flv(2)%init (-ELECTRON, model)
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
call reset_interaction_counter ()
allocate (escan_data_t :: data)
select type (data)
type is (escan_data_t)
call data%init (model, pdg_in)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Set dummy parameters and generate x"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.8
rb = 1 - r
x_free = 1
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Inverse kinematics"
write (u, "(A)")
call sf_int%recover_x (x, xb, x_free)
call sf_int%inverse_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_escan_2"
end subroutine sf_escan_2
@ %def sf_escan_2
@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Gaussian beam spread}
Instead of an analytic beam description, beam data may be provided in
form of an event file. In its most simple form, the event file
contains pairs of $x$ values, relative to nominal beam energies. More
advanced formats may include polarization, etc. The current
implementation carries beam polarization through, if specified.
The code is very similar to the energy scan described above.
However, we must include a file-handle manager for the beam-event
files. Two different processes may access a given beam-event file at
the same time (i.e., serially but alternating). Accessing an open
file from two different units is non-standard and not supported by all
compilers. Therefore, we keep a global registry of open files,
associated units, and reference counts. The [[gaussian_t]] objects
act as proxies to this registry.
<<[[sf_gaussian.f90]]>>=
<<File header>>
module sf_gaussian
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_12
use file_registries
use diagnostics
use lorentz
use rng_base
use pdg_arrays
use model_data
use flavors
use quantum_numbers
use state_matrices
use polarizations
use sf_base
<<Standard module head>>
<<SF gaussian: public>>
<<SF gaussian: types>>
contains
<<SF gaussian: procedures>>
end module sf_gaussian
@ %def sf_gaussian
@
\subsection{The beam-data file registry}
We manage data files via the [[file_registries]] module. To this end,
we keep the registry as a private module variable here.
<<CCC SF gaussian: variables>>=
type(file_registry_t), save :: beam_file_registry
@ %def beam_file_registry
@
\subsection{Data type}
We store the spread for each beam, as a relative number related to the beam
energy. For the actual generation, we include an (abstract) random-number
generator factory.
<<SF gaussian: public>>=
public :: gaussian_data_t
<<SF gaussian: types>>=
type, extends(sf_data_t) :: gaussian_data_t
private
type(flavor_t), dimension(2) :: flv_in
real(default), dimension(2) :: spread
class(rng_factory_t), allocatable :: rng_factory
contains
<<SF gaussian: gaussian data: TBP>>
end type gaussian_data_t
@ %def gaussian_data_t
<<SF gaussian: gaussian data: TBP>>=
procedure :: init => gaussian_data_init
<<SF gaussian: procedures>>=
subroutine gaussian_data_init (data, model, pdg_in, spread, rng_factory)
class(gaussian_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), dimension(2), intent(in) :: pdg_in
real(default), dimension(2), intent(in) :: spread
class(rng_factory_t), intent(inout), allocatable :: rng_factory
if (any (spread < 0)) then
call msg_fatal ("Gaussian beam spread: must not be negative")
end if
call data%flv_in(1)%init (pdg_array_get (pdg_in(1), 1), model)
call data%flv_in(2)%init (pdg_array_get (pdg_in(2), 1), model)
data%spread = spread
call move_alloc (from = rng_factory, to = data%rng_factory)
end subroutine gaussian_data_init
@ %def gaussian_data_init
@ Return true since this spectrum is always in generator mode.
<<SF gaussian: gaussian data: TBP>>=
procedure :: is_generator => gaussian_data_is_generator
<<SF gaussian: procedures>>=
function gaussian_data_is_generator (data) result (flag)
class(gaussian_data_t), intent(in) :: data
logical :: flag
flag = .true.
end function gaussian_data_is_generator
@ %def gaussian_data_is_generator
@ The number of parameters is two. They are free parameters.
<<SF gaussian: gaussian data: TBP>>=
procedure :: get_n_par => gaussian_data_get_n_par
<<SF gaussian: procedures>>=
function gaussian_data_get_n_par (data) result (n)
class(gaussian_data_t), intent(in) :: data
integer :: n
n = 2
end function gaussian_data_get_n_par
@ %def gaussian_data_get_n_par
<<SF gaussian: gaussian data: TBP>>=
procedure :: get_pdg_out => gaussian_data_get_pdg_out
<<SF gaussian: procedures>>=
subroutine gaussian_data_get_pdg_out (data, pdg_out)
class(gaussian_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer :: i, n
n = 2
do i = 1, n
pdg_out(i) = data%flv_in(i)%get_pdg ()
end do
end subroutine gaussian_data_get_pdg_out
@ %def gaussian_data_get_pdg_out
@ Allocate the interaction record.
<<SF gaussian: gaussian data: TBP>>=
procedure :: allocate_sf_int => gaussian_data_allocate_sf_int
<<SF gaussian: procedures>>=
subroutine gaussian_data_allocate_sf_int (data, sf_int)
class(gaussian_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (gaussian_t :: sf_int)
end subroutine gaussian_data_allocate_sf_int
@ %def gaussian_data_allocate_sf_int
@ Output
<<SF gaussian: gaussian data: TBP>>=
procedure :: write => gaussian_data_write
<<SF gaussian: procedures>>=
subroutine gaussian_data_write (data, unit, verbose)
class(gaussian_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "Gaussian beam spread data:"
write (u, "(3x,A,A,A,A)") "prt_in = ", &
char (data%flv_in(1)%get_name ()), &
", ", char (data%flv_in(2)%get_name ())
write (u, "(3x,A,2(1x," // FMT_12 // "))") "spread =", data%spread
call data%rng_factory%write (u)
end subroutine gaussian_data_write
@ %def gaussian_data_write
@
\subsection{The gaussian object}
Flavor and polarization carried through, no radiated particles. The generator
needs a random-number generator, obviously.
<<SF gaussian: public>>=
public :: gaussian_t
<<SF gaussian: types>>=
type, extends (sf_int_t) :: gaussian_t
type(gaussian_data_t), pointer :: data => null ()
class(rng_t), allocatable :: rng
contains
<<SF gaussian: gaussian: TBP>>
end type gaussian_t
@ %def gaussian_t
@ Type string: show gaussian file.
<<SF gaussian: gaussian: TBP>>=
procedure :: type_string => gaussian_type_string
<<SF gaussian: procedures>>=
function gaussian_type_string (object) result (string)
class(gaussian_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "Gaussian: gaussian beam-energy spread"
else
string = "Gaussian: [undefined]"
end if
end function gaussian_type_string
@ %def gaussian_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF gaussian: gaussian: TBP>>=
procedure :: write => gaussian_write
<<SF gaussian: procedures>>=
subroutine gaussian_write (object, unit, testflag)
class(gaussian_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%rng%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "gaussian data: [undefined]"
end if
end subroutine gaussian_write
@ %def gaussian_write
@
<<SF gaussian: gaussian: TBP>>=
procedure :: init => gaussian_init
<<SF gaussian: procedures>>=
subroutine gaussian_init (sf_int, data)
class(gaussian_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
real(default), dimension(2) :: m2
real(default), dimension(0) :: mr2
type(quantum_numbers_mask_t), dimension(4) :: mask
integer, dimension(4) :: hel_lock
type(quantum_numbers_t), dimension(4) :: qn_fc, qn_hel, qn
type(polarization_t), target :: pol1, pol2
type(polarization_iterator_t) :: it_hel1, it_hel2
integer :: i
select type (data)
type is (gaussian_data_t)
m2 = data%flv_in%get_mass () ** 2
hel_lock = [3, 4, 1, 2]
mask = quantum_numbers_mask (.false., .false., .false.)
call sf_int%base_init (mask, m2, mr2, m2, hel_lock = hel_lock)
sf_int%data => data
do i = 1, 2
call qn_fc(i)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i)))
call qn_fc(i+2)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i)))
end do
call pol1%init_generic (data%flv_in(1))
call it_hel1%init (pol1)
do while (it_hel1%is_valid ())
qn_hel(1) = it_hel1%get_quantum_numbers ()
qn_hel(3) = it_hel1%get_quantum_numbers ()
call pol2%init_generic (data%flv_in(2))
call it_hel2%init (pol2)
do while (it_hel2%is_valid ())
qn_hel(2) = it_hel2%get_quantum_numbers ()
qn_hel(4) = it_hel2%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc
call sf_int%add_state (qn)
call it_hel2%advance ()
end do
! call pol2%final ()
call it_hel1%advance ()
end do
! call pol1%final ()
call sf_int%freeze ()
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
sf_int%status = SF_INITIAL
end select
call sf_int%data%rng_factory%make (sf_int%rng)
end subroutine gaussian_init
@ %def gaussian_init
@ This spectrum type needs a finalizer, which closes the data file.
<<SF gaussian: gaussian: TBP>>=
procedure :: final => sf_gaussian_final
<<SF gaussian: procedures>>=
subroutine sf_gaussian_final (object)
class(gaussian_t), intent(inout) :: object
call object%interaction_t%final ()
end subroutine sf_gaussian_final
@ %def sf_gaussian_final
@
\subsection{Kinematics}
Refer to the [[data]] component.
<<SF gaussian: gaussian: TBP>>=
procedure :: is_generator => gaussian_is_generator
<<SF gaussian: procedures>>=
function gaussian_is_generator (sf_int) result (flag)
class(gaussian_t), intent(in) :: sf_int
logical :: flag
flag = sf_int%data%is_generator ()
end function gaussian_is_generator
@ %def gaussian_is_generator
@ Generate free parameters. The $x$ value should be distributed with mean $1$
and $\sigma$ given by the spread. We reject negative $x$ values. (This
cut slightly biases the distribution, but for reasonable (small)
spreads negative $r$ should not occur.
<<SF gaussian: gaussian: TBP>>=
procedure :: generate_free => gaussian_generate_free
<<SF gaussian: procedures>>=
subroutine gaussian_generate_free (sf_int, r, rb, x_free)
class(gaussian_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(inout) :: x_free
real(default), dimension(size(r)) :: z
associate (data => sf_int%data)
do
call sf_int%rng%generate_gaussian (z)
rb = z * data%spread
r = 1 - rb
x_free = x_free * product (r)
if (all (r > 0)) exit
end do
end associate
end subroutine gaussian_generate_free
@ %def gaussian_generate_free
@ Set kinematics. Trivial transfer since this is a pure generator.
The [[map]] flag doesn't apply.
<<SF gaussian: gaussian: TBP>>=
procedure :: complete_kinematics => gaussian_complete_kinematics
<<SF gaussian: procedures>>=
subroutine gaussian_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(gaussian_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
if (map) then
call msg_fatal ("gaussian: map flag not supported")
else
x = r
xb= rb
f = 1
end if
call sf_int%reduce_momenta (x)
end subroutine gaussian_complete_kinematics
@ %def gaussian_complete_kinematics
@ Compute inverse kinematics. Trivial in this case.
<<SF gaussian: gaussian: TBP>>=
procedure :: inverse_kinematics => gaussian_inverse_kinematics
<<SF gaussian: procedures>>=
subroutine gaussian_inverse_kinematics &
(sf_int, x, xb, f, r, rb, map, set_momenta)
class(gaussian_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
call msg_fatal ("gaussian: map flag not supported")
else
r = x
rb= xb
f = 1
end if
if (set_mom) then
call sf_int%reduce_momenta (x)
end if
end subroutine gaussian_inverse_kinematics
@ %def gaussian_inverse_kinematics
@
\subsection{gaussian application}
Trivial, just set the unit weight.
<<SF gaussian: gaussian: TBP>>=
procedure :: apply => gaussian_apply
<<SF gaussian: procedures>>=
subroutine gaussian_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(gaussian_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: f
f = 1
call sf_int%set_matrix_element (cmplx (f, kind=default))
sf_int%status = SF_EVALUATED
end subroutine gaussian_apply
@ %def gaussian_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_gaussian_ut.f90]]>>=
<<File header>>
module sf_gaussian_ut
use unit_tests
use sf_gaussian_uti
<<Standard module head>>
<<SF gaussian: public test>>
contains
<<SF gaussian: test driver>>
end module sf_gaussian_ut
@ %def sf_gaussian_ut
@
<<[[sf_gaussian_uti.f90]]>>=
<<File header>>
module sf_gaussian_uti
<<Use kinds>>
use physics_defs, only: ELECTRON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use rng_base
use sf_aux
use sf_base
use sf_gaussian
use rng_base_ut, only: rng_test_factory_t
<<Standard module head>>
<<SF gaussian: test declarations>>
contains
<<SF gaussian: tests>>
end module sf_gaussian_uti
@ %def sf_gaussian_ut
@ API: driver for the unit tests below.
<<SF gaussian: public test>>=
public :: sf_gaussian_test
<<SF gaussian: test driver>>=
subroutine sf_gaussian_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF gaussian: execute tests>>
end subroutine sf_gaussian_test
@ %def sf_gaussian_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF gaussian: execute tests>>=
call test (sf_gaussian_1, "sf_gaussian_1", &
"structure function configuration", &
u, results)
<<SF gaussian: test declarations>>=
public :: sf_gaussian_1
<<SF gaussian: tests>>=
subroutine sf_gaussian_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t), dimension(2) :: pdg_in
type(pdg_array_t), dimension(2) :: pdg_out
integer, dimension(:), allocatable :: pdg1, pdg2
class(sf_data_t), allocatable :: data
class(rng_factory_t), allocatable :: rng_factory
write (u, "(A)") "* Test output: sf_gaussian_1"
write (u, "(A)") "* Purpose: initialize and display &
&gaussian-spread structure function data"
write (u, "(A)")
call model%init_qed_test ()
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
allocate (gaussian_data_t :: data)
allocate (rng_test_factory_t :: rng_factory)
select type (data)
type is (gaussian_data_t)
call data%init (model, pdg_in, [1e-2_default, 2e-2_default], rng_factory)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
pdg2 = pdg_out(2)
write (u, "(2x,99(1x,I0))") pdg1, pdg2
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_gaussian_1"
end subroutine sf_gaussian_1
@ %def sf_gaussian_1
@
\subsubsection{Probe the structure-function object}
Active the beam event reader, generate an event.
<<SF gaussian: execute tests>>=
call test (sf_gaussian_2, "sf_gaussian_2", &
"generate event", &
u, results)
<<SF gaussian: test declarations>>=
public :: sf_gaussian_2
<<SF gaussian: tests>>=
subroutine sf_gaussian_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(rng_factory_t), allocatable :: rng_factory
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: x_free, f
integer :: i
write (u, "(A)") "* Test output: sf_gaussian_2"
write (u, "(A)") "* Purpose: initialize and display &
&gaussian-spread structure function data"
write (u, "(A)")
call model%init_qed_test ()
call flv(1)%init (ELECTRON, model)
call flv(2)%init (-ELECTRON, model)
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
call reset_interaction_counter ()
allocate (gaussian_data_t :: data)
allocate (rng_test_factory_t :: rng_factory)
select type (data)
type is (gaussian_data_t)
call data%init (model, pdg_in, [1e-2_default, 2e-2_default], rng_factory)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Set dummy parameters and generate x."
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0
rb = 0
x_free = 1
call sf_int%generate_free (r, rb, x_free)
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call pacify (rb, 1.e-8_default)
call pacify (xb, 1.e-8_default)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Generate more events"
write (u, "(A)")
select type (sf_int)
type is (gaussian_t)
do i = 1, 3
call sf_int%generate_free (r, rb, x_free)
write (u, "(A,9(1x,F10.7))") "r =", r
end do
end select
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_gaussian_2"
end subroutine sf_gaussian_2
@ %def sf_gaussian_2
@
\clearpage
@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Using beam event data}
Instead of an analytic beam description, beam data may be provided in
form of an event file. In its most simple form, the event file
contains pairs of $x$ values, relative to nominal beam energies. More
advanced formats may include polarization, etc. The current
implementation carries beam polarization through, if specified.
The code is very similar to the energy scan described above.
However, we must include a file-handle manager for the beam-event
files. Two different processes may access a given beam-event file at
the same time (i.e., serially but alternating). Accessing an open
file from two different units is non-standard and not supported by all
compilers. Therefore, we keep a global registry of open files,
associated units, and reference counts. The [[beam_events_t]] objects
act as proxies to this registry.
<<[[sf_beam_events.f90]]>>=
<<File header>>
module sf_beam_events
<<Use kinds>>
<<Use strings>>
use io_units
use file_registries
use diagnostics
use lorentz
use pdg_arrays
use model_data
use flavors
use quantum_numbers
use state_matrices
use polarizations
use sf_base
<<Standard module head>>
<<SF beam events: public>>
<<SF beam events: types>>
<<SF beam events: variables>>
contains
<<SF beam events: procedures>>
end module sf_beam_events
@ %def sf_beam_events
@
\subsection{The beam-data file registry}
We manage data files via the [[file_registries]] module. To this end,
we keep the registry as a private module variable here.
This is public only for the unit tests.
<<SF beam events: public>>=
public :: beam_file_registry
<<SF beam events: variables>>=
type(file_registry_t), save :: beam_file_registry
@ %def beam_file_registry
@
\subsection{Data type}
<<SF beam events: public>>=
public :: beam_events_data_t
<<SF beam events: types>>=
type, extends(sf_data_t) :: beam_events_data_t
private
type(flavor_t), dimension(2) :: flv_in
type(string_t) :: dir
type(string_t) :: file
type(string_t) :: fqn
integer :: unit = 0
logical :: warn_eof = .true.
contains
<<SF beam events: beam events data: TBP>>
end type beam_events_data_t
@ %def beam_events_data_t
<<SF beam events: beam events data: TBP>>=
procedure :: init => beam_events_data_init
<<SF beam events: procedures>>=
subroutine beam_events_data_init (data, model, pdg_in, dir, file, warn_eof)
class(beam_events_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), dimension(2), intent(in) :: pdg_in
type(string_t), intent(in) :: dir
type(string_t), intent(in) :: file
logical, intent(in), optional :: warn_eof
if (any (pdg_array_get_length (pdg_in) /= 1)) then
call msg_fatal ("Beam events: incoming beam particles must be unique")
end if
call data%flv_in(1)%init (pdg_array_get (pdg_in(1), 1), model)
call data%flv_in(2)%init (pdg_array_get (pdg_in(2), 1), model)
data%dir = dir
data%file = file
if (present (warn_eof)) data%warn_eof = warn_eof
end subroutine beam_events_data_init
@ %def beam_events_data_init
@ Return true since this spectrum is always in generator mode.
<<SF beam events: beam events data: TBP>>=
procedure :: is_generator => beam_events_data_is_generator
<<SF beam events: procedures>>=
function beam_events_data_is_generator (data) result (flag)
class(beam_events_data_t), intent(in) :: data
logical :: flag
flag = .true.
end function beam_events_data_is_generator
@ %def beam_events_data_is_generator
@ The number of parameters is two. They are free parameters.
<<SF beam events: beam events data: TBP>>=
procedure :: get_n_par => beam_events_data_get_n_par
<<SF beam events: procedures>>=
function beam_events_data_get_n_par (data) result (n)
class(beam_events_data_t), intent(in) :: data
integer :: n
n = 2
end function beam_events_data_get_n_par
@ %def beam_events_data_get_n_par
<<SF beam events: beam events data: TBP>>=
procedure :: get_pdg_out => beam_events_data_get_pdg_out
<<SF beam events: procedures>>=
subroutine beam_events_data_get_pdg_out (data, pdg_out)
class(beam_events_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer :: i, n
n = 2
do i = 1, n
pdg_out(i) = data%flv_in(i)%get_pdg ()
end do
end subroutine beam_events_data_get_pdg_out
@ %def beam_events_data_get_pdg_out
@ Allocate the interaction record.
<<SF beam events: beam events data: TBP>>=
procedure :: allocate_sf_int => beam_events_data_allocate_sf_int
<<SF beam events: procedures>>=
subroutine beam_events_data_allocate_sf_int (data, sf_int)
class(beam_events_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (beam_events_t :: sf_int)
end subroutine beam_events_data_allocate_sf_int
@ %def beam_events_data_allocate_sf_int
@ Output
<<SF beam events: beam events data: TBP>>=
procedure :: write => beam_events_data_write
<<SF beam events: procedures>>=
subroutine beam_events_data_write (data, unit, verbose)
class(beam_events_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "Beam-event file data:"
write (u, "(3x,A,A,A,A)") "prt_in = ", &
char (data%flv_in(1)%get_name ()), &
", ", char (data%flv_in(2)%get_name ())
write (u, "(3x,A,A,A)") "file = '", char (data%file), "'"
write (u, "(3x,A,I0)") "unit = ", data%unit
write (u, "(3x,A,L1)") "warn = ", data%warn_eof
end subroutine beam_events_data_write
@ %def beam_events_data_write
@ The data file needs to be opened and closed explicitly. The
open/close message is communicated to the file handle registry, which
does the actual work.
We determine first whether to look in the local directory or in the
given system directory.
<<SF beam events: beam events data: TBP>>=
procedure :: open => beam_events_data_open
procedure :: close => beam_events_data_close
<<SF beam events: procedures>>=
subroutine beam_events_data_open (data)
class(beam_events_data_t), intent(inout) :: data
logical :: exist
if (data%unit == 0) then
data%fqn = data%file
if (data%fqn == "") &
call msg_fatal ("Beam events: $beam_events_file is not set")
inquire (file = char (data%fqn), exist = exist)
if (.not. exist) then
data%fqn = data%dir // "/" // data%file
inquire (file = char (data%fqn), exist = exist)
if (.not. exist) then
data%fqn = ""
call msg_fatal ("Beam events: file '" &
// char (data%file) // "' not found")
return
end if
end if
call msg_message ("Beam events: reading from file '" &
// char (data%file) // "'")
call beam_file_registry%open (data%fqn, data%unit)
else
call msg_bug ("Beam events: file '" &
// char (data%file) // "' is already open")
end if
end subroutine beam_events_data_open
subroutine beam_events_data_close (data)
class(beam_events_data_t), intent(inout) :: data
if (data%unit /= 0) then
call beam_file_registry%close (data%fqn)
call msg_message ("Beam events: closed file '" &
// char (data%file) // "'")
data%unit = 0
end if
end subroutine beam_events_data_close
@ %def beam_events_data_close
@ Return the beam event file.
<<SF beam events: beam events data: TBP>>=
procedure :: get_beam_file => beam_events_data_get_beam_file
<<SF beam events: procedures>>=
function beam_events_data_get_beam_file (data) result (file)
class(beam_events_data_t), intent(in) :: data
type(string_t) :: file
file = "Beam events: " // data%file
end function beam_events_data_get_beam_file
@ %def beam_events_data_get_beam_file
@
\subsection{The beam events object}
Flavor and polarization carried through, no radiated particles.
<<SF beam events: public>>=
public :: beam_events_t
<<SF beam events: types>>=
type, extends (sf_int_t) :: beam_events_t
type(beam_events_data_t), pointer :: data => null ()
integer :: count = 0
contains
<<SF beam events: beam events: TBP>>
end type beam_events_t
@ %def beam_events_t
@ Type string: show beam events file.
<<SF beam events: beam events: TBP>>=
procedure :: type_string => beam_events_type_string
<<SF beam events: procedures>>=
function beam_events_type_string (object) result (string)
class(beam_events_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "Beam events: " // object%data%file
else
string = "Beam events: [undefined]"
end if
end function beam_events_type_string
@ %def beam_events_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF beam events: beam events: TBP>>=
procedure :: write => beam_events_write
<<SF beam events: procedures>>=
subroutine beam_events_write (object, unit, testflag)
class(beam_events_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "Beam events data: [undefined]"
end if
end subroutine beam_events_write
@ %def beam_events_write
@
<<SF beam events: beam events: TBP>>=
procedure :: init => beam_events_init
<<SF beam events: procedures>>=
subroutine beam_events_init (sf_int, data)
class(beam_events_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
real(default), dimension(2) :: m2
real(default), dimension(0) :: mr2
type(quantum_numbers_mask_t), dimension(4) :: mask
integer, dimension(4) :: hel_lock
type(quantum_numbers_t), dimension(4) :: qn_fc, qn_hel, qn
type(polarization_t), target :: pol1, pol2
type(polarization_iterator_t) :: it_hel1, it_hel2
integer :: i
select type (data)
type is (beam_events_data_t)
m2 = data%flv_in%get_mass () ** 2
hel_lock = [3, 4, 1, 2]
mask = quantum_numbers_mask (.false., .false., .false.)
call sf_int%base_init (mask, m2, mr2, m2, hel_lock = hel_lock)
sf_int%data => data
do i = 1, 2
call qn_fc(i)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i)))
call qn_fc(i+2)%init ( &
flv = data%flv_in(i), &
col = color_from_flavor (data%flv_in(i)))
end do
call pol1%init_generic (data%flv_in(1))
call it_hel1%init (pol1)
do while (it_hel1%is_valid ())
qn_hel(1) = it_hel1%get_quantum_numbers ()
qn_hel(3) = it_hel1%get_quantum_numbers ()
call pol2%init_generic (data%flv_in(2))
call it_hel2%init (pol2)
do while (it_hel2%is_valid ())
qn_hel(2) = it_hel2%get_quantum_numbers ()
qn_hel(4) = it_hel2%get_quantum_numbers ()
qn = qn_hel .merge. qn_fc
call sf_int%add_state (qn)
call it_hel2%advance ()
end do
! call pol2%final ()
call it_hel1%advance ()
end do
! call pol1%final ()
call sf_int%freeze ()
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
call sf_int%data%open ()
sf_int%status = SF_INITIAL
end select
end subroutine beam_events_init
@ %def beam_events_init
@ This spectrum type needs a finalizer, which closes the data file.
<<SF beam events: beam events: TBP>>=
procedure :: final => sf_beam_events_final
<<SF beam events: procedures>>=
subroutine sf_beam_events_final (object)
class(beam_events_t), intent(inout) :: object
call object%data%close ()
call object%interaction_t%final ()
end subroutine sf_beam_events_final
@ %def sf_beam_events_final
@
\subsection{Kinematics}
Refer to the [[data]] component.
<<SF beam events: beam events: TBP>>=
procedure :: is_generator => beam_events_is_generator
<<SF beam events: procedures>>=
function beam_events_is_generator (sf_int) result (flag)
class(beam_events_t), intent(in) :: sf_int
logical :: flag
flag = sf_int%data%is_generator ()
end function beam_events_is_generator
@ %def beam_events_is_generator
@ Generate free parameters. We read them from file.
<<SF beam events: beam events: TBP>>=
procedure :: generate_free => beam_events_generate_free
<<SF beam events: procedures>>=
recursive subroutine beam_events_generate_free (sf_int, r, rb, x_free)
class(beam_events_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(inout) :: x_free
integer :: iostat
associate (data => sf_int%data)
if (data%unit /= 0) then
read (data%unit, fmt=*, iostat=iostat) r
if (iostat > 0) then
write (msg_buffer, "(A,I0,A)") &
"Beam events: I/O error after reading ", sf_int%count, &
" events"
call msg_fatal ()
else if (iostat < 0) then
if (sf_int%count == 0) then
call msg_fatal ("Beam events: file is empty")
else if (sf_int%data%warn_eof) then
write (msg_buffer, "(A,I0,A)") &
"Beam events: End of file after reading ", sf_int%count, &
" events, rewinding"
call msg_warning ()
end if
rewind (data%unit)
sf_int%count = 0
call sf_int%generate_free (r, rb, x_free)
else
sf_int%count = sf_int%count + 1
rb = 1 - r
x_free = x_free * product (r)
end if
else
call msg_bug ("Beam events: file is not open for reading")
end if
end associate
end subroutine beam_events_generate_free
@ %def beam_events_generate_free
@ Set kinematics. Trivial transfer since this is a pure generator.
The [[map]] flag doesn't apply.
<<SF beam events: beam events: TBP>>=
procedure :: complete_kinematics => beam_events_complete_kinematics
<<SF beam events: procedures>>=
subroutine beam_events_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(beam_events_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
if (map) then
call msg_fatal ("Beam events: map flag not supported")
else
x = r
xb= rb
f = 1
end if
call sf_int%reduce_momenta (x)
end subroutine beam_events_complete_kinematics
@ %def beam_events_complete_kinematics
@ Compute inverse kinematics. Trivial in this case.
<<SF beam events: beam events: TBP>>=
procedure :: inverse_kinematics => beam_events_inverse_kinematics
<<SF beam events: procedures>>=
subroutine beam_events_inverse_kinematics &
(sf_int, x, xb, f, r, rb, map, set_momenta)
class(beam_events_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
call msg_fatal ("Beam events: map flag not supported")
else
r = x
rb= xb
f = 1
end if
if (set_mom) then
call sf_int%reduce_momenta (x)
end if
end subroutine beam_events_inverse_kinematics
@ %def beam_events_inverse_kinematics
@
\subsection{Beam events application}
Trivial, just set the unit weight.
<<SF beam events: beam events: TBP>>=
procedure :: apply => beam_events_apply
<<SF beam events: procedures>>=
subroutine beam_events_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(beam_events_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: f
f = 1
call sf_int%set_matrix_element (cmplx (f, kind=default))
sf_int%status = SF_EVALUATED
end subroutine beam_events_apply
@ %def beam_events_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_beam_events_ut.f90]]>>=
<<File header>>
module sf_beam_events_ut
use unit_tests
use sf_beam_events_uti
<<Standard module head>>
<<SF beam events: public test>>
contains
<<SF beam events: test driver>>
end module sf_beam_events_ut
@ %def sf_beam_events_ut
@
<<[[sf_beam_events_uti.f90]]>>=
<<File header>>
module sf_beam_events_uti
<<Use kinds>>
<<Use strings>>
use io_units
use physics_defs, only: ELECTRON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use sf_aux
use sf_base
use sf_beam_events
<<Standard module head>>
<<SF beam events: test declarations>>
contains
<<SF beam events: tests>>
end module sf_beam_events_uti
@ %def sf_beam_events_ut
@ API: driver for the unit tests below.
<<SF beam events: public test>>=
public :: sf_beam_events_test
<<SF beam events: test driver>>=
subroutine sf_beam_events_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF beam events: execute tests>>
end subroutine sf_beam_events_test
@ %def sf_beam_events_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF beam events: execute tests>>=
call test (sf_beam_events_1, "sf_beam_events_1", &
"structure function configuration", &
u, results)
<<SF beam events: test declarations>>=
public :: sf_beam_events_1
<<SF beam events: tests>>=
subroutine sf_beam_events_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t), dimension(2) :: pdg_in
type(pdg_array_t), dimension(2) :: pdg_out
integer, dimension(:), allocatable :: pdg1, pdg2
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_beam_events_1"
write (u, "(A)") "* Purpose: initialize and display &
&beam-events structure function data"
write (u, "(A)")
call model%init_qed_test ()
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
allocate (beam_events_data_t :: data)
select type (data)
type is (beam_events_data_t)
call data%init (model, pdg_in, var_str (""), var_str ("beam_events.dat"))
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
pdg2 = pdg_out(2)
write (u, "(2x,99(1x,I0))") pdg1, pdg2
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_beam_events_1"
end subroutine sf_beam_events_1
@ %def sf_beam_events_1
@
\subsubsection{Probe the structure-function object}
Active the beam event reader, generate an event.
<<SF beam events: execute tests>>=
call test (sf_beam_events_2, "sf_beam_events_2", &
"generate event", &
u, results)
<<SF beam events: test declarations>>=
public :: sf_beam_events_2
<<SF beam events: tests>>=
subroutine sf_beam_events_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: x_free, f
integer :: i
write (u, "(A)") "* Test output: sf_beam_events_2"
write (u, "(A)") "* Purpose: initialize and display &
&beam-events structure function data"
write (u, "(A)")
call model%init_qed_test ()
call flv(1)%init (ELECTRON, model)
call flv(2)%init (-ELECTRON, model)
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
call reset_interaction_counter ()
allocate (beam_events_data_t :: data)
select type (data)
type is (beam_events_data_t)
call data%init (model, pdg_in, &
var_str (""), var_str ("test_beam_events.dat"))
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Set dummy parameters and generate x."
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0
rb = 0
x_free = 1
call sf_int%generate_free (r, rb, x_free)
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,9(1x,F10.7))") "rb=", rb
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
select type (sf_int)
type is (beam_events_t)
write (u, "(A,1x,I0)") "count =", sf_int%count
end select
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Generate more events, rewind"
write (u, "(A)")
select type (sf_int)
type is (beam_events_t)
do i = 1, 3
call sf_int%generate_free (r, rb, x_free)
write (u, "(A,9(1x,F10.7))") "r =", r
write (u, "(A,1x,I0)") "count =", sf_int%count
end do
end select
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_beam_events_2"
end subroutine sf_beam_events_2
@ %def sf_beam_events_2
@
\subsubsection{Check the file handle registry}
Open and close some files, checking the registry contents.
<<SF beam events: execute tests>>=
call test (sf_beam_events_3, "sf_beam_events_3", &
"check registry", &
u, results)
<<SF beam events: test declarations>>=
public :: sf_beam_events_3
<<SF beam events: tests>>=
subroutine sf_beam_events_3 (u)
integer, intent(in) :: u
integer :: u1
write (u, "(A)") "* Test output: sf_beam_events_2"
write (u, "(A)") "* Purpose: check file handle registry"
write (u, "(A)")
write (u, "(A)") "* Create some empty files"
write (u, "(A)")
u1 = free_unit ()
open (u1, file = "sf_beam_events_f1.tmp", action="write", status="new")
close (u1)
open (u1, file = "sf_beam_events_f2.tmp", action="write", status="new")
close (u1)
open (u1, file = "sf_beam_events_f3.tmp", action="write", status="new")
close (u1)
write (u, "(A)") "* Empty registry"
write (u, "(A)")
call beam_file_registry%write (u)
write (u, "(A)")
write (u, "(A)") "* Insert three entries"
write (u, "(A)")
call beam_file_registry%open (var_str ("sf_beam_events_f3.tmp"))
call beam_file_registry%open (var_str ("sf_beam_events_f2.tmp"))
call beam_file_registry%open (var_str ("sf_beam_events_f1.tmp"))
call beam_file_registry%write (u)
write (u, "(A)")
write (u, "(A)") "* Open a second channel"
write (u, "(A)")
call beam_file_registry%open (var_str ("sf_beam_events_f2.tmp"))
call beam_file_registry%write (u)
write (u, "(A)")
write (u, "(A)") "* Close second entry twice"
write (u, "(A)")
call beam_file_registry%close (var_str ("sf_beam_events_f2.tmp"))
call beam_file_registry%close (var_str ("sf_beam_events_f2.tmp"))
call beam_file_registry%write (u)
write (u, "(A)")
write (u, "(A)") "* Close last entry"
write (u, "(A)")
call beam_file_registry%close (var_str ("sf_beam_events_f3.tmp"))
call beam_file_registry%write (u)
write (u, "(A)")
write (u, "(A)") "* Close remaining entry"
write (u, "(A)")
call beam_file_registry%close (var_str ("sf_beam_events_f1.tmp"))
call beam_file_registry%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
open (u1, file = "sf_beam_events_f1.tmp", action="write")
close (u1, status = "delete")
open (u1, file = "sf_beam_events_f2.tmp", action="write")
close (u1, status = "delete")
open (u1, file = "sf_beam_events_f3.tmp", action="write")
close (u1, status = "delete")
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_beam_events_3"
end subroutine sf_beam_events_3
@ %def sf_beam_events_3
@
\clearpage
%------------------------------------------------------------------------
\section{Lepton collider beamstrahlung: CIRCE1}
<<[[sf_circe1.f90]]>>=
<<File header>>
module sf_circe1
<<Use kinds>>
use kinds, only: double
<<Use strings>>
use io_units
use format_defs, only: FMT_17, FMT_19
use diagnostics
use physics_defs, only: ELECTRON, PHOTON
use lorentz
use rng_base
use pdg_arrays
use model_data
use flavors
use colors
use quantum_numbers
use state_matrices
use polarizations
use sf_mappings
use sf_base
use circe1, circe1_rng_t => rng_type !NODEP!
<<Standard module head>>
<<SF circe1: public>>
<<SF circe1: types>>
contains
<<SF circe1: procedures>>
end module sf_circe1
@ %def sf_circe1
@
\subsection{Physics}
Beamstrahlung is applied before ISR. The [[CIRCE1]] implementation has
a single structure function for both beams (which makes sense since it
has to be switched on or off for both beams simultaneously).
Nevertheless it is factorized:
The functional form in the [[CIRCE1]] parameterization is defined for
electrons or photons
\begin{equation}
f(x) = \alpha\,x^\beta\,(1-x)^\gamma
\end{equation}
for $x<1-\epsilon$ (resp.\ $x>\epsilon$ in the photon case). In the
remaining interval, the standard form is zero, with a delta
singularity at $x=1$ (resp.\ $x=0$). Equivalently, the delta part may be
distributed uniformly among this interval. This latter form is
implemented in the [[kirke]] version of the [[CIRCE1]] subroutines, and
is used here.
The parameter [[circe1\_eps]] sets the peak mapping of the [[CIRCE1]]
structure function. Its default value is $10^{-5}$.
The other parameters are the parameterization version and revision
number, the accelerator type, and the $\sqrt{s}$ value used by
[[CIRCE1]]. The chattiness can also be set.
Since the energy is distributed in a narrow region around unity (for
electrons) or zero (for photons), it is advantageous to map the
interval first. The mapping is controlled by the parameter
[[circe1\_epsilon]] which is taken from the [[CIRCE1]]
internal data structure.
The $\sqrt{s}$ value, if not explicitly set, is taken from the
process data. Note that interpolating $\sqrt{s}$ is not recommended;
one should rather choose one of the distinct values known to [[CIRCE1]].
\subsection{The CIRCE1 data block}
The CIRCE1 parameters are: The incoming flavors, the flags whether the photon
or the lepton is the parton in the hard interaction, the flags for the
generation mode (generator/mapping/no mapping), the mapping parameter
$\epsilon$, $\sqrt{s}$ and several steering parameters: [[ver]],
[[rev]], [[acc]], [[chat]].
In generator mode, the $x$ values are actually discarded and a random number
generator is used instead.
<<SF circe1: public>>=
public :: circe1_data_t
<<SF circe1: types>>=
type, extends (sf_data_t) :: circe1_data_t
private
class(model_data_t), pointer :: model => null ()
type(flavor_t), dimension(2) :: flv_in
integer, dimension(2) :: pdg_in
real(default), dimension(2) :: m_in = 0
logical, dimension(2) :: photon = .false.
logical :: generate = .false.
class(rng_factory_t), allocatable :: rng_factory
real(default) :: sqrts = 0
real(default) :: eps = 0
integer :: ver = 0
integer :: rev = 0
character(6) :: acc = "?"
integer :: chat = 0
logical :: with_radiation = .false.
contains
<<SF circe1: circe1 data: TBP>>
end type circe1_data_t
@ %def circe1_data_t
@
<<SF circe1: circe1 data: TBP>>=
procedure :: init => circe1_data_init
<<SF circe1: procedures>>=
subroutine circe1_data_init &
(data, model, pdg_in, sqrts, eps, out_photon, &
ver, rev, acc, chat, with_radiation)
class(circe1_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), dimension(2), intent(in) :: pdg_in
real(default), intent(in) :: sqrts
real(default), intent(in) :: eps
logical, dimension(2), intent(in) :: out_photon
character(*), intent(in) :: acc
integer, intent(in) :: ver, rev, chat
logical, intent(in) :: with_radiation
data%model => model
if (any (pdg_array_get_length (pdg_in) /= 1)) then
call msg_fatal ("CIRCE1: incoming beam particles must be unique")
end if
call data%flv_in(1)%init (pdg_array_get (pdg_in(1), 1), model)
call data%flv_in(2)%init (pdg_array_get (pdg_in(2), 1), model)
data%pdg_in = data%flv_in%get_pdg ()
data%m_in = data%flv_in%get_mass ()
data%sqrts = sqrts
data%eps = eps
data%photon = out_photon
data%ver = ver
data%rev = rev
data%acc = acc
data%chat = chat
data%with_radiation = with_radiation
call data%check ()
call circex (0.d0, 0.d0, dble (data%sqrts), &
data%acc, data%ver, data%rev, data%chat)
end subroutine circe1_data_init
@ %def circe1_data_init
@ Activate the generator mode. We import a RNG factory into the data
type, which can then spawn RNG generator objects.
<<SF circe1: circe1 data: TBP>>=
procedure :: set_generator_mode => circe1_data_set_generator_mode
<<SF circe1: procedures>>=
subroutine circe1_data_set_generator_mode (data, rng_factory)
class(circe1_data_t), intent(inout) :: data
class(rng_factory_t), intent(inout), allocatable :: rng_factory
data%generate = .true.
call move_alloc (from = rng_factory, to = data%rng_factory)
end subroutine circe1_data_set_generator_mode
@ %def circe1_data_set_generator_mode
@ Handle error conditions.
<<SF circe1: circe1 data: TBP>>=
procedure :: check => circe1_data_check
<<SF circe1: procedures>>=
subroutine circe1_data_check (data)
class(circe1_data_t), intent(in) :: data
type(flavor_t) :: flv_electron, flv_photon
call flv_electron%init (ELECTRON, data%model)
call flv_photon%init (PHOTON, data%model)
if (.not. flv_electron%is_defined () &
.or. .not. flv_photon%is_defined ()) then
call msg_fatal ("CIRCE1: model must contain photon and electron")
end if
if (any (abs (data%pdg_in) /= ELECTRON) &
.or. (data%pdg_in(1) /= - data%pdg_in(2))) then
call msg_fatal ("CIRCE1: applicable only for e+e- or e-e+ collisions")
end if
if (data%eps <= 0) then
call msg_error ("CIRCE1: circe1_eps = 0: integration will &
&miss x=1 peak")
end if
end subroutine circe1_data_check
@ %def circe1_data_check
@ Output
<<SF circe1: circe1 data: TBP>>=
procedure :: write => circe1_data_write
<<SF circe1: procedures>>=
subroutine circe1_data_write (data, unit, verbose)
class(circe1_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "CIRCE1 data:"
write (u, "(3x,A,2(1x,A))") "prt_in =", &
char (data%flv_in(1)%get_name ()), &
char (data%flv_in(2)%get_name ())
write (u, "(3x,A,2(1x,L1))") "photon =", data%photon
write (u, "(3x,A,L1)") "generate = ", data%generate
write (u, "(3x,A,2(1x," // FMT_19 // "))") "m_in =", data%m_in
write (u, "(3x,A," // FMT_19 // ")") "sqrts = ", data%sqrts
write (u, "(3x,A," // FMT_19 // ")") "eps = ", data%eps
write (u, "(3x,A,I0)") "ver = ", data%ver
write (u, "(3x,A,I0)") "rev = ", data%rev
write (u, "(3x,A,A)") "acc = ", data%acc
write (u, "(3x,A,I0)") "chat = ", data%chat
write (u, "(3x,A,L1)") "with rad.= ", data%with_radiation
if (data%generate) call data%rng_factory%write (u)
end subroutine circe1_data_write
@ %def circe1_data_write
@ Return true if this structure function is in generator mode. In
that case, all parameters are free, otherwise bound. (We do not
support mixed cases.) Default is: no generator.
<<SF circe1: circe1 data: TBP>>=
procedure :: is_generator => circe1_data_is_generator
<<SF circe1: procedures>>=
function circe1_data_is_generator (data) result (flag)
class(circe1_data_t), intent(in) :: data
logical :: flag
flag = data%generate
end function circe1_data_is_generator
@ %def circe1_data_is_generator
@ The number of parameters is two, collinear splitting for the two beams.
<<SF circe1: circe1 data: TBP>>=
procedure :: get_n_par => circe1_data_get_n_par
<<SF circe1: procedures>>=
function circe1_data_get_n_par (data) result (n)
class(circe1_data_t), intent(in) :: data
integer :: n
n = 2
end function circe1_data_get_n_par
@ %def circe1_data_get_n_par
@ Return the outgoing particles PDG codes. This is either the incoming
particle (if a photon is radiated), or the photon if that is the particle
of the hard interaction. The latter is determined via the [[photon]]
flag. There are two entries for the two beams.
<<SF circe1: circe1 data: TBP>>=
procedure :: get_pdg_out => circe1_data_get_pdg_out
<<SF circe1: procedures>>=
subroutine circe1_data_get_pdg_out (data, pdg_out)
class(circe1_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer :: i, n
n = 2
do i = 1, n
if (data%photon(i)) then
pdg_out(i) = PHOTON
else
pdg_out(i) = data%pdg_in(i)
end if
end do
end subroutine circe1_data_get_pdg_out
@ %def circe1_data_get_pdg_out
@ This variant is not inherited, it returns integers.
<<SF circe1: circe1 data: TBP>>=
procedure :: get_pdg_int => circe1_data_get_pdg_int
<<SF circe1: procedures>>=
function circe1_data_get_pdg_int (data) result (pdg)
class(circe1_data_t), intent(in) :: data
integer, dimension(2) :: pdg
integer :: i
do i = 1, 2
if (data%photon(i)) then
pdg(i) = PHOTON
else
pdg(i) = data%pdg_in(i)
end if
end do
end function circe1_data_get_pdg_int
@ %def circe1_data_get_pdg_int
@ Allocate the interaction record.
<<SF circe1: circe1 data: TBP>>=
procedure :: allocate_sf_int => circe1_data_allocate_sf_int
<<SF circe1: procedures>>=
subroutine circe1_data_allocate_sf_int (data, sf_int)
class(circe1_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (circe1_t :: sf_int)
end subroutine circe1_data_allocate_sf_int
@ %def circe1_data_allocate_sf_int
@ Return the accelerator type.
<<SF circe1: circe1 data: TBP>>=
procedure :: get_beam_file => circe1_data_get_beam_file
<<SF circe1: procedures>>=
function circe1_data_get_beam_file (data) result (file)
class(circe1_data_t), intent(in) :: data
type(string_t) :: file
file = "CIRCE1: " // data%acc
end function circe1_data_get_beam_file
@ %def circe1_data_get_beam_file
@
\subsection{Random Number Generator for CIRCE}
The CIRCE implementation now supports a generic random-number
generator object that allows for a local state as a component. To
support this, we must extend the abstract type provided by CIRCE and
delegate the generator call to the (also abstract) RNG used by WHIZARD.
<<SF circe1: types>>=
type, extends (circe1_rng_t) :: rng_obj_t
class(rng_t), allocatable :: rng
contains
procedure :: generate => rng_obj_generate
end type rng_obj_t
@ %def rng_obj_t
<<SF circe1: procedures>>=
subroutine rng_obj_generate (rng_obj, u)
class(rng_obj_t), intent(inout) :: rng_obj
real(double), intent(out) :: u
real(default) :: x
call rng_obj%rng%generate (x)
u = x
end subroutine rng_obj_generate
@ %def rng_obj_generate
@
\subsection{The CIRCE1 object}
This is a $2\to 4$ interaction, where, depending on the parameters, any two of
the four outgoing particles are connected to the hard interactions, the others
are radiated. Knowing that all particles are colorless, we do not have to
deal with color.
The flavors are sorted such that the first two particles are the incoming
leptons, the next two are the radiated particles, and the last two are the
partons initiating the hard interaction.
CIRCE1 does not support polarized beams explicitly. For simplicity, we
nevertheless carry beam polarization through to the outgoing electrons and
make the photons unpolarized.
In the case that no radiated particle is kept (which actually is the
default), polarization is always transferred to the electrons, too. If
there is a recoil photon in the event, the radiated particles are 3
and 4, respectively, and 5 and 6 are the outgoing ones (triggering the
hard scattering process), while in the case of no radiation, the
outgoing particles are 3 and 4, respectively. In the case of the
electron being the radiated particle, helicity is not kept.
<<SF circe1: public>>=
public :: circe1_t
<<SF circe1: types>>=
type, extends (sf_int_t) :: circe1_t
type(circe1_data_t), pointer :: data => null ()
real(default), dimension(2) :: x = 0
real(default), dimension(2) :: xb= 0
real(default) :: f = 0
logical, dimension(2) :: continuum = .true.
logical, dimension(2) :: peak = .true.
type(rng_obj_t) :: rng_obj
contains
<<SF circe1: circe1: TBP>>
end type circe1_t
@ %def circe1_t
@ Type string: has to be here, but there is no string variable on which CIRCE1
depends. Hence, a dummy routine.
<<SF circe1: circe1: TBP>>=
procedure :: type_string => circe1_type_string
<<SF circe1: procedures>>=
function circe1_type_string (object) result (string)
class(circe1_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "CIRCE1: beamstrahlung"
else
string = "CIRCE1: [undefined]"
end if
end function circe1_type_string
@ %def circe1_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF circe1: circe1: TBP>>=
procedure :: write => circe1_write
<<SF circe1: procedures>>=
subroutine circe1_write (object, unit, testflag)
class(circe1_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
if (object%data%generate) call object%rng_obj%rng%write (u)
if (object%status >= SF_DONE_KINEMATICS) then
write (u, "(3x,A,2(1x," // FMT_17 // "))") "x =", object%x
write (u, "(3x,A,2(1x," // FMT_17 // "))") "xb=", object%xb
if (object%status >= SF_FAILED_EVALUATION) then
write (u, "(3x,A,1x," // FMT_17 // ")") "f =", object%f
end if
end if
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "CIRCE1 data: [undefined]"
end if
end subroutine circe1_write
@ %def circe1_write
@
<<SF circe1: circe1: TBP>>=
procedure :: init => circe1_init
<<SF circe1: procedures>>=
subroutine circe1_init (sf_int, data)
class(circe1_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
logical, dimension(6) :: mask_h
type(quantum_numbers_mask_t), dimension(6) :: mask
integer, dimension(6) :: hel_lock
type(polarization_t), target :: pol1, pol2
type(quantum_numbers_t), dimension(1) :: qn_fc1, qn_fc2
type(flavor_t) :: flv_photon
type(color_t) :: col0
real(default), dimension(2) :: mi2, mr2, mo2
type(quantum_numbers_t) :: qn_hel1, qn_hel2, qn_photon, qn1, qn2
type(quantum_numbers_t), dimension(6) :: qn
type(polarization_iterator_t) :: it_hel1, it_hel2
hel_lock = 0
mask_h = .false.
select type (data)
type is (circe1_data_t)
mi2 = data%m_in**2
if (data%with_radiation) then
if (data%photon(1)) then
hel_lock(1) = 3; hel_lock(3) = 1; mask_h(5) = .true.
mr2(1) = mi2(1)
mo2(1) = 0._default
else
hel_lock(1) = 5; hel_lock(5) = 1; mask_h(3) = .true.
mr2(1) = 0._default
mo2(1) = mi2(1)
end if
if (data%photon(2)) then
hel_lock(2) = 4; hel_lock(4) = 2; mask_h(6) = .true.
mr2(2) = mi2(2)
mo2(2) = 0._default
else
hel_lock(2) = 6; hel_lock(6) = 2; mask_h(4) = .true.
mr2(2) = 0._default
mo2(2) = mi2(2)
end if
mask = quantum_numbers_mask (.false., .false., mask_h)
call sf_int%base_init (mask, mi2, mr2, mo2, &
hel_lock = hel_lock)
sf_int%data => data
call flv_photon%init (PHOTON, data%model)
call col0%init ()
call qn_photon%init (flv_photon, col0)
call pol1%init_generic (data%flv_in(1))
call qn_fc1(1)%init (flv = data%flv_in(1), col = col0)
call pol2%init_generic (data%flv_in(2))
call qn_fc2(1)%init (flv = data%flv_in(2), col = col0)
call it_hel1%init (pol1)
do while (it_hel1%is_valid ())
qn_hel1 = it_hel1%get_quantum_numbers ()
qn1 = qn_hel1 .merge. qn_fc1(1)
qn(1) = qn1
if (data%photon(1)) then
qn(3) = qn1; qn(5) = qn_photon
else
qn(3) = qn_photon; qn(5) = qn1
end if
call it_hel2%init (pol2)
do while (it_hel2%is_valid ())
qn_hel2 = it_hel2%get_quantum_numbers ()
qn2 = qn_hel2 .merge. qn_fc2(1)
qn(2) = qn2
if (data%photon(2)) then
qn(4) = qn2; qn(6) = qn_photon
else
qn(4) = qn_photon; qn(6) = qn2
end if
call qn(3:4)%tag_radiated ()
call sf_int%add_state (qn)
call it_hel2%advance ()
end do
call it_hel1%advance ()
end do
! call pol1%final ()
! call pol2%final ()
call sf_int%freeze ()
call sf_int%set_incoming ([1,2])
call sf_int%set_radiated ([3,4])
call sf_int%set_outgoing ([5,6])
else
if (data%photon(1)) then
mask_h(3) = .true.
mo2(1) = 0._default
else
hel_lock(1) = 3; hel_lock(3) = 1
mo2(1) = mi2(1)
end if
if (data%photon(2)) then
mask_h(4) = .true.
mo2(2) = 0._default
else
hel_lock(2) = 4; hel_lock(4) = 2
mo2(2) = mi2(2)
end if
mask = quantum_numbers_mask (.false., .false., mask_h)
call sf_int%base_init (mask(1:4), mi2, [real(default) :: ], mo2, &
hel_lock = hel_lock(1:4))
sf_int%data => data
call flv_photon%init (PHOTON, data%model)
call col0%init ()
call qn_photon%init (flv_photon, col0)
call pol1%init_generic (data%flv_in(1))
call qn_fc1(1)%init (flv = data%flv_in(1), col = col0)
call pol2%init_generic (data%flv_in(2))
call qn_fc2(1)%init (flv = data%flv_in(2), col = col0)
call it_hel1%init (pol1)
do while (it_hel1%is_valid ())
qn_hel1 = it_hel1%get_quantum_numbers ()
qn1 = qn_hel1 .merge. qn_fc1(1)
qn(1) = qn1
if (data%photon(1)) then
qn(3) = qn_photon
else
qn(3) = qn1
end if
call it_hel2%init (pol2)
do while (it_hel2%is_valid ())
qn_hel2 = it_hel2%get_quantum_numbers ()
qn2 = qn_hel2 .merge. qn_fc2(1)
qn(2) = qn2
if (data%photon(2)) then
qn(4) = qn_photon
else
qn(4) = qn2
end if
call sf_int%add_state (qn(1:4))
call it_hel2%advance ()
end do
call it_hel1%advance ()
end do
! call pol1%final ()
! call pol2%final ()
call sf_int%freeze ()
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
end if
sf_int%status = SF_INITIAL
end select
if (sf_int%data%generate) then
call sf_int%data%rng_factory%make (sf_int%rng_obj%rng)
end if
end subroutine circe1_init
@ %def circe1_init
@
\subsection{Kinematics}
Refer to the [[data]] component.
<<SF circe1: circe1: TBP>>=
procedure :: is_generator => circe1_is_generator
<<SF circe1: procedures>>=
function circe1_is_generator (sf_int) result (flag)
class(circe1_t), intent(in) :: sf_int
logical :: flag
flag = sf_int%data%is_generator ()
end function circe1_is_generator
@ %def circe1_is_generator
@ Generate free parameters, if generator mode is on. Otherwise, the
parameters will be discarded.
<<SF circe1: circe1: TBP>>=
procedure :: generate_free => circe1_generate_free
<<SF circe1: procedures>>=
subroutine circe1_generate_free (sf_int, r, rb, x_free)
class(circe1_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(inout) :: x_free
if (sf_int%data%generate) then
call circe_generate (r, sf_int%data%get_pdg_int (), sf_int%rng_obj)
rb = 1 - r
x_free = x_free * product (r)
else
r = 0
rb= 1
end if
end subroutine circe1_generate_free
@ %def circe1_generate_free
@ Generator mode: depending on the particle codes, call one of the
available [[girce]] generators. Illegal particle code combinations
should have been caught during data initialization.
<<SF circe1: procedures>>=
subroutine circe_generate (x, pdg, rng_obj)
real(default), dimension(2), intent(out) :: x
integer, dimension(2), intent(in) :: pdg
class(rng_obj_t), intent(inout) :: rng_obj
real(double) :: xc1, xc2
select case (abs (pdg(1)))
case (ELECTRON)
select case (abs (pdg(2)))
case (ELECTRON)
call gircee (xc1, xc2, rng_obj = rng_obj)
case (PHOTON)
call girceg (xc1, xc2, rng_obj = rng_obj)
end select
case (PHOTON)
select case (abs (pdg(2)))
case (ELECTRON)
call girceg (xc2, xc1, rng_obj = rng_obj)
case (PHOTON)
call gircgg (xc1, xc2, rng_obj = rng_obj)
end select
end select
x = [xc1, xc2]
end subroutine circe_generate
@ %def circe_generate
@ Set kinematics. The $r$ values (either from integration or from the
generator call above) are copied to $x$ unchanged, and $f$ is unity.
We store the $x$ values, so we can use them for the evaluation later.
<<SF circe1: circe1: TBP>>=
procedure :: complete_kinematics => circe1_complete_kinematics
<<SF circe1: procedures>>=
subroutine circe1_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(circe1_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
x = r
xb = rb
sf_int%x = x
sf_int%xb= xb
f = 1
if (sf_int%data%with_radiation) then
call sf_int%split_momenta (x, xb)
else
call sf_int%reduce_momenta (x)
end if
select case (sf_int%status)
case (SF_FAILED_KINEMATICS); f = 0
end select
end subroutine circe1_complete_kinematics
@ %def circe1_complete_kinematics
@ Compute inverse kinematics. In generator mode, the $r$ values are
meaningless, but we copy them anyway.
<<SF circe1: circe1: TBP>>=
procedure :: inverse_kinematics => circe1_inverse_kinematics
<<SF circe1: procedures>>=
subroutine circe1_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(circe1_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
r = x
rb = xb
sf_int%x = x
sf_int%xb= xb
f = 1
if (set_mom) then
call sf_int%split_momenta (x, xb)
select case (sf_int%status)
case (SF_FAILED_KINEMATICS); f = 0
end select
end if
end subroutine circe1_inverse_kinematics
@ %def circe1_inverse_kinematics
@
\subsection{CIRCE1 application}
CIRCE is applied for the two beams at once. We can safely assume that no
structure functions are applied before this, so the incoming particles are
on-shell electrons/positrons.
The scale is ignored.
<<SF circe1: circe1: TBP>>=
procedure :: apply => circe1_apply
<<SF circe1: procedures>>=
subroutine circe1_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(circe1_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default), dimension(2) :: xb
real(double), dimension(2) :: xc
real(double), parameter :: one = 1
associate (data => sf_int%data)
xc = sf_int%x
xb = sf_int%xb
if (data%generate) then
sf_int%f = 1
else
sf_int%f = 0
if (all (sf_int%continuum)) then
sf_int%f = circe (xc(1), xc(2), data%pdg_in(1), data%pdg_in(2))
end if
if (sf_int%continuum(2) .and. sf_int%peak(1)) then
sf_int%f = sf_int%f &
+ circe (one, xc(2), data%pdg_in(1), data%pdg_in(2)) &
* peak (xb(1), data%eps)
end if
if (sf_int%continuum(1) .and. sf_int%peak(2)) then
sf_int%f = sf_int%f &
+ circe (xc(1), one, data%pdg_in(1), data%pdg_in(2)) &
* peak (xb(2), data%eps)
end if
if (all (sf_int%peak)) then
sf_int%f = sf_int%f &
+ circe (one, one, data%pdg_in(1), data%pdg_in(2)) &
* peak (xb(1), data%eps) * peak (xb(2), data%eps)
end if
end if
end associate
call sf_int%set_matrix_element (cmplx (sf_int%f, kind=default))
sf_int%status = SF_EVALUATED
end subroutine circe1_apply
@ %def circe1_apply
@ This is a smeared delta peak at zero, as an endpoint singularity.
We choose an exponentially decreasing function, starting at zero, with
integral (from $0$ to $1$) $1-e^{-1/\epsilon}$. For small $\epsilon$,
this reduces to one.
<<SF circe1: procedures>>=
function peak (x, eps) result (f)
real(default), intent(in) :: x, eps
real(default) :: f
f = exp (-x / eps) / eps
end function peak
@ %def peak
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_circe1_ut.f90]]>>=
<<File header>>
module sf_circe1_ut
use unit_tests
use sf_circe1_uti
<<Standard module head>>
<<SF circe1: public test>>
contains
<<SF circe1: test driver>>
end module sf_circe1_ut
@ %def sf_circe1_ut
@
<<[[sf_circe1_uti.f90]]>>=
<<File header>>
module sf_circe1_uti
<<Use kinds>>
use physics_defs, only: ELECTRON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use rng_base
use sf_aux
use sf_base
use sf_circe1
use rng_base_ut, only: rng_test_factory_t
<<Standard module head>>
<<SF circe1: test declarations>>
contains
<<SF circe1: tests>>
end module sf_circe1_uti
@ %def sf_circe1_ut
@ API: driver for the unit tests below.
<<SF circe1: public test>>=
public :: sf_circe1_test
<<SF circe1: test driver>>=
subroutine sf_circe1_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF circe1: execute tests>>
end subroutine sf_circe1_test
@ %def sf_circe1_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF circe1: execute tests>>=
call test (sf_circe1_1, "sf_circe1_1", &
"structure function configuration", &
u, results)
<<SF circe1: test declarations>>=
public :: sf_circe1_1
<<SF circe1: tests>>=
subroutine sf_circe1_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t), dimension(2) :: pdg_in
type(pdg_array_t), dimension(2) :: pdg_out
integer, dimension(:), allocatable :: pdg1, pdg2
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_circe1_1"
write (u, "(A)") "* Purpose: initialize and display &
&CIRCE structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call model%init_qed_test ()
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
allocate (circe1_data_t :: data)
call data%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize"
write (u, "(A)")
select type (data)
type is (circe1_data_t)
call data%init (model, pdg_in, &
sqrts = 500._default, &
eps = 1e-6_default, &
out_photon = [.false., .false.], &
ver = 0, &
rev = 0, &
acc = "SBAND", &
chat = 0, &
with_radiation = .true.)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
pdg2 = pdg_out(2)
write (u, "(2x,99(1x,I0))") pdg1, pdg2
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_circe1_1"
end subroutine sf_circe1_1
@ %def sf_circe1_1
@
\subsubsection{Test and probe structure function}
Construct and display a structure function object based on the PDF builtin
structure function.
<<SF circe1: execute tests>>=
call test (sf_circe1_2, "sf_circe1_2", &
"structure function instance", &
u, results)
<<SF circe1: test declarations>>=
public :: sf_circe1_2
<<SF circe1: tests>>=
subroutine sf_circe1_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
type(vector4_t), dimension(4) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_circe1_2"
write (u, "(A)") "* Purpose: initialize and fill &
&circe1 structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv(1)%init (ELECTRON, model)
call flv(2)%init (-ELECTRON, model)
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
call reset_interaction_counter ()
allocate (circe1_data_t :: data)
select type (data)
type is (circe1_data_t)
call data%init (model, pdg_in, &
sqrts = 500._default, &
eps = 1e-6_default, &
out_photon = [.false., .false.], &
ver = 0, &
rev = 0, &
acc = "SBAND", &
chat = 0, &
with_radiation = .true.)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.95,0.85."
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = [0.9_default, 0.8_default]
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1, 2])
call sf_int%seed_kinematics ([k1, k2])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_circe1_2"
end subroutine sf_circe1_2
@ %def sf_circe1_2
@
\subsubsection{Generator mode}
Construct and evaluate a structure function object in generator mode.
<<SF circe1: execute tests>>=
call test (sf_circe1_3, "sf_circe1_3", &
"generator mode", &
u, results)
<<SF circe1: test declarations>>=
public :: sf_circe1_3
<<SF circe1: tests>>=
subroutine sf_circe1_3 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(rng_factory_t), allocatable :: rng_factory
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, x_free
write (u, "(A)") "* Test output: sf_circe1_3"
write (u, "(A)") "* Purpose: initialize and fill &
&circe1 structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_qed_test ()
call flv(1)%init (ELECTRON, model)
call flv(2)%init (-ELECTRON, model)
pdg_in(1) = ELECTRON
pdg_in(2) = -ELECTRON
call reset_interaction_counter ()
allocate (circe1_data_t :: data)
allocate (rng_test_factory_t :: rng_factory)
select type (data)
type is (circe1_data_t)
call data%init (model, pdg_in, &
sqrts = 500._default, &
eps = 1e-6_default, &
out_photon = [.false., .false.], &
ver = 0, &
rev = 0, &
acc = "SBAND", &
chat = 0, &
with_radiation = .true.)
call data%set_generator_mode (rng_factory)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
select type (sf_int)
type is (circe1_t)
call sf_int%rng_obj%rng%init (3)
end select
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Generate x"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0
rb = 0
x_free = 1
call sf_int%generate_free (r, rb, x_free)
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_circe1_3"
end subroutine sf_circe1_3
@ %def sf_circe1_3
@
\clearpage
%------------------------------------------------------------------------
\section{Lepton Collider Beamstrahlung and Photon collider: CIRCE2}
<<[[sf_circe2.f90]]>>=
<<File header>>
module sf_circe2
<<Use kinds>>
<<Use strings>>
use io_units
use format_defs, only: FMT_19
use numeric_utils
use diagnostics
use os_interface
use physics_defs, only: PHOTON, ELECTRON
use lorentz
use rng_base
use selectors
use pdg_arrays
use model_data
use flavors
use colors
use helicities
use quantum_numbers
use state_matrices
use polarizations
use sf_base
use circe2, circe2_rng_t => rng_type !NODEP!
<<Standard module head>>
<<SF circe2: public>>
<<SF circe2: types>>
contains
<<SF circe2: procedures>>
end module sf_circe2
@ %def sf_circe2
@
\subsection{Physics}
[[CIRCE2]] describes photon spectra
Beamstrahlung is applied before ISR. The [[CIRCE2]] implementation has
a single structure function for both beams (which makes sense since it
has to be switched on or off for both beams simultaneously).
\subsection{The CIRCE2 data block}
The CIRCE2 parameters are: file and collider specification, incoming
(= outgoing) particles. The luminosity is returned by [[circe2_luminosity]].
<<SF circe2: public>>=
public :: circe2_data_t
<<SF circe2: types>>=
type, extends (sf_data_t) :: circe2_data_t
private
class(model_data_t), pointer :: model => null ()
type(flavor_t), dimension(2) :: flv_in
integer, dimension(2) :: pdg_in
real(default) :: sqrts = 0
logical :: polarized = .false.
logical :: beams_polarized = .false.
class(rng_factory_t), allocatable :: rng_factory
type(string_t) :: filename
type(string_t) :: file
type(string_t) :: design
real(default) :: lumi = 0
real(default), dimension(4) :: lumi_hel_frac = 0
integer, dimension(0:4) :: h1 = [0, -1, -1, 1, 1]
integer, dimension(0:4) :: h2 = [0, -1, 1,-1, 1]
integer :: error = 1
contains
<<SF circe2: circe2 data: TBP>>
end type circe2_data_t
@ %def circe2_data_t
<<SF circe2: types>>=
type(circe2_state) :: circe2_global_state
@
<<SF circe2: circe2 data: TBP>>=
procedure :: init => circe2_data_init
<<SF circe2: procedures>>=
subroutine circe2_data_init (data, os_data, model, pdg_in, &
sqrts, polarized, beam_pol, file, design)
class(circe2_data_t), intent(out) :: data
type(os_data_t), intent(in) :: os_data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), dimension(2), intent(in) :: pdg_in
real(default), intent(in) :: sqrts
logical, intent(in) :: polarized, beam_pol
type(string_t), intent(in) :: file, design
integer :: h
data%model => model
if (any (pdg_array_get_length (pdg_in) /= 1)) then
call msg_fatal ("CIRCE2: incoming beam particles must be unique")
end if
call data%flv_in(1)%init (pdg_array_get (pdg_in(1), 1), model)
call data%flv_in(2)%init (pdg_array_get (pdg_in(2), 1), model)
data%pdg_in = data%flv_in%get_pdg ()
data%sqrts = sqrts
data%polarized = polarized
data%beams_polarized = beam_pol
data%filename = file
data%design = design
call data%check_file (os_data)
call circe2_load (circe2_global_state, trim (char(data%file)), &
trim (char(data%design)), data%sqrts, data%error)
call data%check ()
data%lumi = circe2_luminosity (circe2_global_state, data%pdg_in, [0, 0])
if (vanishes (data%lumi)) then
call msg_fatal ("CIRCE2: luminosity vanishes for specified beams.")
end if
if (data%polarized) then
do h = 1, 4
data%lumi_hel_frac(h) = &
circe2_luminosity (circe2_global_state, data%pdg_in, &
[data%h1(h), data%h2(h)]) &
/ data%lumi
end do
end if
end subroutine circe2_data_init
@ %def circe2_data_init
@ Activate the generator mode. We import a RNG factory into the data
type, which can then spawn RNG generator objects.
<<SF circe2: circe2 data: TBP>>=
procedure :: set_generator_mode => circe2_data_set_generator_mode
<<SF circe2: procedures>>=
subroutine circe2_data_set_generator_mode (data, rng_factory)
class(circe2_data_t), intent(inout) :: data
class(rng_factory_t), intent(inout), allocatable :: rng_factory
call move_alloc (from = rng_factory, to = data%rng_factory)
end subroutine circe2_data_set_generator_mode
@ %def circe2_data_set_generator_mode
@ Check whether the requested data file is in the system directory or
in the current directory.
<<SF circe2: circe2 data: TBP>>=
procedure :: check_file => circe2_check_file
<<SF circe2: procedures>>=
subroutine circe2_check_file (data, os_data)
class(circe2_data_t), intent(inout) :: data
type(os_data_t), intent(in) :: os_data
logical :: exist
type(string_t) :: file
file = data%filename
if (file == "") &
call msg_fatal ("CIRCE2: $circe2_file is not set")
inquire (file = char (file), exist = exist)
if (exist) then
data%file = file
else
file = os_data%whizard_circe2path // "/" // data%filename
inquire (file = char (file), exist = exist)
if (exist) then
data%file = file
else
call msg_fatal ("CIRCE2: data file '" // char (data%filename) &
// "' not found")
end if
end if
end subroutine circe2_check_file
@ %def circe2_check_file
@ Handle error conditions.
<<SF circe2: circe2 data: TBP>>=
procedure :: check => circe2_data_check
<<SF circe2: procedures>>=
subroutine circe2_data_check (data)
class(circe2_data_t), intent(in) :: data
type(flavor_t) :: flv_photon, flv_electron
call flv_photon%init (PHOTON, data%model)
if (.not. flv_photon%is_defined ()) then
call msg_fatal ("CIRCE2: model must contain photon")
end if
call flv_electron%init (ELECTRON, data%model)
if (.not. flv_electron%is_defined ()) then
call msg_fatal ("CIRCE2: model must contain electron")
end if
if (any (abs (data%pdg_in) /= PHOTON .and. abs (data%pdg_in) /= ELECTRON)) &
then
call msg_fatal ("CIRCE2: applicable only for e+e- or photon collisions")
end if
select case (data%error)
case (-1)
call msg_fatal ("CIRCE2: data file not found.")
case (-2)
call msg_fatal ("CIRCE2: beam setup does not match data file.")
case (-3)
call msg_fatal ("CIRCE2: invalid format of data file.")
case (-4)
call msg_fatal ("CIRCE2: data file too large.")
end select
end subroutine circe2_data_check
@ %def circe2_data_check
@ Output
<<SF circe2: circe2 data: TBP>>=
procedure :: write => circe2_data_write
<<SF circe2: procedures>>=
subroutine circe2_data_write (data, unit, verbose)
class(circe2_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u, h
u = given_output_unit (unit)
write (u, "(1x,A)") "CIRCE2 data:"
write (u, "(3x,A,A)") "file = ", char(data%filename)
write (u, "(3x,A,A)") "design = ", char(data%design)
write (u, "(3x,A," // FMT_19 // ")") "sqrts = ", data%sqrts
write (u, "(3x,A,A,A,A)") "prt_in = ", &
char (data%flv_in(1)%get_name ()), &
", ", char (data%flv_in(2)%get_name ())
write (u, "(3x,A,L1)") "polarized = ", data%polarized
write (u, "(3x,A,L1)") "beams pol. = ", data%beams_polarized
write (u, "(3x,A," // FMT_19 // ")") "luminosity = ", data%lumi
if (data%polarized) then
do h = 1, 4
write (u, "(6x,'(',I2,1x,I2,')',1x,'=',1x)", advance="no") &
data%h1(h), data%h2(h)
write (u, "(6x, " // FMT_19 // ")") data%lumi_hel_frac(h)
end do
end if
call data%rng_factory%write (u)
end subroutine circe2_data_write
@ %def circe2_data_write
@ This is always in generator mode.
<<SF circe2: circe2 data: TBP>>=
procedure :: is_generator => circe2_data_is_generator
<<SF circe2: procedures>>=
function circe2_data_is_generator (data) result (flag)
class(circe2_data_t), intent(in) :: data
logical :: flag
flag = .true.
end function circe2_data_is_generator
@ %def circe2_data_is_generator
@ The number of parameters is two, collinear splitting for
the two beams.
<<SF circe2: circe2 data: TBP>>=
procedure :: get_n_par => circe2_data_get_n_par
<<SF circe2: procedures>>=
function circe2_data_get_n_par (data) result (n)
class(circe2_data_t), intent(in) :: data
integer :: n
n = 2
end function circe2_data_get_n_par
@ %def circe2_data_get_n_par
@ Return the outgoing particles PDG codes. They are equal to the
incoming ones.
<<SF circe2: circe2 data: TBP>>=
procedure :: get_pdg_out => circe2_data_get_pdg_out
<<SF circe2: procedures>>=
subroutine circe2_data_get_pdg_out (data, pdg_out)
class(circe2_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer :: i, n
n = 2
do i = 1, n
pdg_out(i) = data%pdg_in(i)
end do
end subroutine circe2_data_get_pdg_out
@ %def circe2_data_get_pdg_out
@ Allocate the interaction record.
<<SF circe2: circe2 data: TBP>>=
procedure :: allocate_sf_int => circe2_data_allocate_sf_int
<<SF circe2: procedures>>=
subroutine circe2_data_allocate_sf_int (data, sf_int)
class(circe2_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (circe2_t :: sf_int)
end subroutine circe2_data_allocate_sf_int
@ %def circe2_data_allocate_sf_int
@ Return the beam file.
<<SF circe2: circe2 data: TBP>>=
procedure :: get_beam_file => circe2_data_get_beam_file
<<SF circe2: procedures>>=
function circe2_data_get_beam_file (data) result (file)
class(circe2_data_t), intent(in) :: data
type(string_t) :: file
file = "CIRCE2: " // data%filename
end function circe2_data_get_beam_file
@ %def circe2_data_get_beam_file
@
\subsection{Random Number Generator for CIRCE}
The CIRCE implementation now supports a generic random-number
generator object that allows for a local state as a component. To
support this, we must extend the abstract type provided by CIRCE and
delegate the generator call to the (also abstract) RNG used by WHIZARD.
<<SF circe2: types>>=
type, extends (circe2_rng_t) :: rng_obj_t
class(rng_t), allocatable :: rng
contains
procedure :: generate => rng_obj_generate
end type rng_obj_t
@ %def rng_obj_t
<<SF circe2: procedures>>=
subroutine rng_obj_generate (rng_obj, u)
class(rng_obj_t), intent(inout) :: rng_obj
real(default), intent(out) :: u
real(default) :: x
call rng_obj%rng%generate (x)
u = x
end subroutine rng_obj_generate
@ %def rng_obj_generate
@
\subsection{The CIRCE2 object}
For CIRCE2 spectra it does not make sense to describe the state matrix
as a radiation interaction, even if photons originate from laser
backscattering. Instead, it is a $2\to 2$ interaction where the
incoming particles are identical to the outgoing ones.
The current implementation of CIRCE2 does support polarization and
classical correlations, but no entanglement, so the density matrix of
the outgoing particles is diagonal. The incoming particles are
unpolarized (user-defined polarization for beams is meaningless, since
polarization is described by the data file). The outgoing particles
are polarized or polarization-averaged, depending on user request.
When assigning matrix elements, we scan the previously initialized
state matrix. For each entry, we extract helicity and call the
structure function. In the unpolarized case, the helicity is
undefined and replaced by value zero. In the polarized case, there
are four entries. If the generator is used, only one entry is nonzero
in each call. Which one, is determined by comparing with a previously
(randomly, distributed by relative luminosity) selected pair of
helicities.
<<SF circe2: public>>=
public :: circe2_t
<<SF circe2: types>>=
type, extends (sf_int_t) :: circe2_t
type(circe2_data_t), pointer :: data => null ()
type(rng_obj_t) :: rng_obj
type(selector_t) :: selector
integer :: h_sel = 0
contains
<<SF circe2: circe2: TBP>>
end type circe2_t
@ %def circe2_t
@ Type string: show file and design of [[CIRCE2]] structure function.
<<SF circe2: circe2: TBP>>=
procedure :: type_string => circe2_type_string
<<SF circe2: procedures>>=
function circe2_type_string (object) result (string)
class(circe2_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "CIRCE2: " // object%data%design
else
string = "CIRCE2: [undefined]"
end if
end function circe2_type_string
@ %def circe2_type_string
@
@ Output. Call the interaction routine after displaying the configuration.
<<SF circe2: circe2: TBP>>=
procedure :: write => circe2_write
<<SF circe2: procedures>>=
subroutine circe2_write (object, unit, testflag)
class(circe2_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "CIRCE2 data: [undefined]"
end if
end subroutine circe2_write
@ %def circe2_write
@
<<SF circe2: circe2: TBP>>=
procedure :: init => circe2_init
<<SF circe2: procedures>>=
subroutine circe2_init (sf_int, data)
class(circe2_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
logical, dimension(4) :: mask_h
real(default), dimension(0) :: null_array
type(quantum_numbers_mask_t), dimension(4) :: mask
type(quantum_numbers_t), dimension(4) :: qn
type(helicity_t) :: hel
type(color_t) :: col0
integer :: h
select type (data)
type is (circe2_data_t)
if (data%polarized .and. data%beams_polarized) then
call msg_fatal ("CIRCE2: Beam polarization can't be set &
&for polarized data file")
else if (data%beams_polarized) then
call msg_warning ("CIRCE2: User-defined beam polarization set &
&for unpolarized CIRCE2 data file")
end if
mask_h(1:2) = .not. data%beams_polarized
mask_h(3:4) = .not. (data%polarized .or. data%beams_polarized)
mask = quantum_numbers_mask (.false., .false., mask_h)
call sf_int%base_init (mask, [0._default, 0._default], &
null_array, [0._default, 0._default])
sf_int%data => data
if (data%polarized) then
if (vanishes (sum (data%lumi_hel_frac)) .or. &
any (data%lumi_hel_frac < 0)) then
call msg_fatal ("CIRCE2: Helicity-dependent lumi " &
// "fractions all vanish or", &
[var_str ("are negative: Please inspect the " &
// "CIRCE2 file or "), &
var_str ("switch off the polarized" // &
" option for CIRCE2.")])
else
call sf_int%selector%init (data%lumi_hel_frac)
end if
end if
call col0%init ()
if (data%beams_polarized) then
do h = 1, 4
call hel%init (data%h1(h))
call qn(1)%init &
(flv = data%flv_in(1), col = col0, hel = hel)
call qn(3)%init &
(flv = data%flv_in(1), col = col0, hel = hel)
call hel%init (data%h2(h))
call qn(2)%init &
(flv = data%flv_in(2), col = col0, hel = hel)
call qn(4)%init &
(flv = data%flv_in(2), col = col0, hel = hel)
call sf_int%add_state (qn)
end do
else if (data%polarized) then
call qn(1)%init (flv = data%flv_in(1), col = col0)
call qn(2)%init (flv = data%flv_in(2), col = col0)
do h = 1, 4
call hel%init (data%h1(h))
call qn(3)%init &
(flv = data%flv_in(1), col = col0, hel = hel)
call hel%init (data%h2(h))
call qn(4)%init &
(flv = data%flv_in(2), col = col0, hel = hel)
call sf_int%add_state (qn)
end do
else
call qn(1)%init (flv = data%flv_in(1), col = col0)
call qn(2)%init (flv = data%flv_in(2), col = col0)
call qn(3)%init (flv = data%flv_in(1), col = col0)
call qn(4)%init (flv = data%flv_in(2), col = col0)
call sf_int%add_state (qn)
end if
call sf_int%freeze ()
call sf_int%set_incoming ([1,2])
call sf_int%set_outgoing ([3,4])
call sf_int%data%rng_factory%make (sf_int%rng_obj%rng)
sf_int%status = SF_INITIAL
end select
end subroutine circe2_init
@ %def circe2_init
@
\subsection{Kinematics}
Refer to the [[data]] component.
<<SF circe2: circe2: TBP>>=
procedure :: is_generator => circe2_is_generator
<<SF circe2: procedures>>=
function circe2_is_generator (sf_int) result (flag)
class(circe2_t), intent(in) :: sf_int
logical :: flag
flag = sf_int%data%is_generator ()
end function circe2_is_generator
@ %def circe2_is_generator
@ Generate free parameters. We first select a helicity, which we have
to store, then generate $x$ values for that helicity.
<<SF circe2: circe2: TBP>>=
procedure :: generate_free => circe2_generate_whizard_free
<<SF circe2: procedures>>=
subroutine circe2_generate_whizard_free (sf_int, r, rb, x_free)
class(circe2_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: r, rb
real(default), intent(inout) :: x_free
integer :: h_sel
if (sf_int%data%polarized) then
call sf_int%selector%generate (sf_int%rng_obj%rng, h_sel)
else
h_sel = 0
end if
sf_int%h_sel = h_sel
call circe2_generate_whizard (r, sf_int%data%pdg_in, &
[sf_int%data%h1(h_sel), sf_int%data%h2(h_sel)], &
sf_int%rng_obj)
rb = 1 - r
x_free = x_free * product (r)
end subroutine circe2_generate_whizard_free
@ %def circe2_generate_whizard_free
@ Generator mode: call the CIRCE2 generator for the given particles
and helicities. (For unpolarized generation, helicities are zero.)
<<SF circe2: procedures>>=
subroutine circe2_generate_whizard (x, pdg, hel, rng_obj)
real(default), dimension(2), intent(out) :: x
integer, dimension(2), intent(in) :: pdg
integer, dimension(2), intent(in) :: hel
class(rng_obj_t), intent(inout) :: rng_obj
call circe2_generate (circe2_global_state, rng_obj, x, pdg, hel)
end subroutine circe2_generate_whizard
@ %def circe2_generate_whizard
@ Set kinematics. Trivial here.
<<SF circe2: circe2: TBP>>=
procedure :: complete_kinematics => circe2_complete_kinematics
<<SF circe2: procedures>>=
subroutine circe2_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(circe2_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
if (map) then
call msg_fatal ("CIRCE2: map flag not supported")
else
x = r
xb= rb
f = 1
end if
call sf_int%reduce_momenta (x)
end subroutine circe2_complete_kinematics
@ %def circe2_complete_kinematics
@ Compute inverse kinematics.
<<SF circe2: circe2: TBP>>=
procedure :: inverse_kinematics => circe2_inverse_kinematics
<<SF circe2: procedures>>=
subroutine circe2_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(circe2_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
call msg_fatal ("CIRCE2: map flag not supported")
else
r = x
rb= xb
f = 1
end if
if (set_mom) then
call sf_int%reduce_momenta (x)
end if
end subroutine circe2_inverse_kinematics
@ %def circe2_inverse_kinematics
@
\subsection{CIRCE2 application}
This function works on both beams. In polarized mode, we set only the
selected helicity. In unpolarized mode,
the interaction has only one entry, and the factor is unity.
<<SF circe2: circe2: TBP>>=
procedure :: apply => circe2_apply
<<SF circe2: procedures>>=
subroutine circe2_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(circe2_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
complex(default) :: f
associate (data => sf_int%data)
f = 1
if (data%beams_polarized) then
call sf_int%set_matrix_element (f)
else if (data%polarized) then
call sf_int%set_matrix_element (sf_int%h_sel, f)
else
call sf_int%set_matrix_element (1, f)
end if
end associate
sf_int%status = SF_EVALUATED
end subroutine circe2_apply
@ %def circe2_apply
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_circe2_ut.f90]]>>=
<<File header>>
module sf_circe2_ut
use unit_tests
use sf_circe2_uti
<<Standard module head>>
<<SF circe2: public test>>
contains
<<SF circe2: test driver>>
end module sf_circe2_ut
@ %def sf_circe2_ut
@
<<[[sf_circe2_uti.f90]]>>=
<<File header>>
module sf_circe2_uti
<<Use kinds>>
<<Use strings>>
use os_interface
use physics_defs, only: PHOTON
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use rng_base
use sf_aux
use sf_base
use sf_circe2
use rng_base_ut, only: rng_test_factory_t
<<Standard module head>>
<<SF circe2: test declarations>>
contains
<<SF circe2: tests>>
end module sf_circe2_uti
@ %def sf_circe2_ut
@ API: driver for the unit tests below.
<<SF circe2: public test>>=
public :: sf_circe2_test
<<SF circe2: test driver>>=
subroutine sf_circe2_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF circe2: execute tests>>
end subroutine sf_circe2_test
@ %def sf_circe2_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF circe2: execute tests>>=
call test (sf_circe2_1, "sf_circe2_1", &
"structure function configuration", &
u, results)
<<SF circe2: test declarations>>=
public :: sf_circe2_1
<<SF circe2: tests>>=
subroutine sf_circe2_1 (u)
integer, intent(in) :: u
type(os_data_t) :: os_data
type(model_data_t), target :: model
type(pdg_array_t), dimension(2) :: pdg_in
type(pdg_array_t), dimension(2) :: pdg_out
integer, dimension(:), allocatable :: pdg1, pdg2
class(sf_data_t), allocatable :: data
class(rng_factory_t), allocatable :: rng_factory
write (u, "(A)") "* Test output: sf_circe2_1"
write (u, "(A)") "* Purpose: initialize and display &
&CIRCE structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call os_data%init ()
call model%init_qed_test ()
pdg_in(1) = PHOTON
pdg_in(2) = PHOTON
allocate (circe2_data_t :: data)
allocate (rng_test_factory_t :: rng_factory)
write (u, "(A)")
write (u, "(A)") "* Initialize (unpolarized)"
write (u, "(A)")
select type (data)
type is (circe2_data_t)
call data%init (os_data, model, pdg_in, &
sqrts = 500._default, &
polarized = .false., &
beam_pol = .false., &
file = var_str ("teslagg_500_polavg.circe"), &
design = var_str ("TESLA/GG"))
call data%set_generator_mode (rng_factory)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
pdg2 = pdg_out(2)
write (u, "(2x,99(1x,I0))") pdg1, pdg2
write (u, "(A)")
write (u, "(A)") "* Initialize (polarized)"
write (u, "(A)")
allocate (rng_test_factory_t :: rng_factory)
select type (data)
type is (circe2_data_t)
call data%init (os_data, model, pdg_in, &
sqrts = 500._default, &
polarized = .true., &
beam_pol = .false., &
file = var_str ("teslagg_500.circe"), &
design = var_str ("TESLA/GG"))
call data%set_generator_mode (rng_factory)
end select
call data%write (u)
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_circe2_1"
end subroutine sf_circe2_1
@ %def sf_circe2_1
@
\subsubsection{Generator mode, unpolarized}
Construct and evaluate a structure function object in generator mode.
<<SF circe2: execute tests>>=
call test (sf_circe2_2, "sf_circe2_2", &
"generator, unpolarized", &
u, results)
<<SF circe2: test declarations>>=
public :: sf_circe2_2
<<SF circe2: tests>>=
subroutine sf_circe2_2 (u)
integer, intent(in) :: u
type(os_data_t) :: os_data
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(rng_factory_t), allocatable :: rng_factory
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, x_free
write (u, "(A)") "* Test output: sf_circe2_2"
write (u, "(A)") "* Purpose: initialize and fill &
&circe2 structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call os_data%init ()
call model%init_qed_test ()
call flv(1)%init (PHOTON, model)
call flv(2)%init (PHOTON, model)
pdg_in(1) = PHOTON
pdg_in(2) = PHOTON
call reset_interaction_counter ()
allocate (circe2_data_t :: data)
allocate (rng_test_factory_t :: rng_factory)
select type (data)
type is (circe2_data_t)
call data%init (os_data, model, pdg_in, &
sqrts = 500._default, &
polarized = .false., &
beam_pol = .false., &
file = var_str ("teslagg_500_polavg.circe"), &
design = var_str ("TESLA/GG"))
call data%set_generator_mode (rng_factory)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
select type (sf_int)
type is (circe2_t)
call sf_int%rng_obj%rng%init (3)
end select
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Generate x"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0
rb = 0
x_free = 1
call sf_int%generate_free (r, rb, x_free)
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_circe2_2"
end subroutine sf_circe2_2
@ %def sf_circe2_2
@
\subsubsection{Generator mode, polarized}
Construct and evaluate a structure function object in generator mode.
<<SF circe2: execute tests>>=
call test (sf_circe2_3, "sf_circe2_3", &
"generator, polarized", &
u, results)
<<SF circe2: test declarations>>=
public :: sf_circe2_3
<<SF circe2: tests>>=
subroutine sf_circe2_3 (u)
integer, intent(in) :: u
type(os_data_t) :: os_data
type(model_data_t), target :: model
type(flavor_t), dimension(2) :: flv
type(pdg_array_t), dimension(2) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(rng_factory_t), allocatable :: rng_factory
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k1, k2
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f, x_free
write (u, "(A)") "* Test output: sf_circe2_3"
write (u, "(A)") "* Purpose: initialize and fill &
&circe2 structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call os_data%init ()
call model%init_qed_test ()
call flv(1)%init (PHOTON, model)
call flv(2)%init (PHOTON, model)
pdg_in(1) = PHOTON
pdg_in(2) = PHOTON
call reset_interaction_counter ()
allocate (circe2_data_t :: data)
allocate (rng_test_factory_t :: rng_factory)
select type (data)
type is (circe2_data_t)
call data%init (os_data, model, pdg_in, &
sqrts = 500._default, &
polarized = .true., &
beam_pol = .false., &
file = var_str ("teslagg_500.circe"), &
design = var_str ("TESLA/GG"))
call data%set_generator_mode (rng_factory)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1,2])
select type (sf_int)
type is (circe2_t)
call sf_int%rng_obj%rng%init (3)
end select
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 250
k1 = vector4_moving (E, sqrt (E**2 - flv(1)%get_mass ()**2), 3)
k2 = vector4_moving (E,-sqrt (E**2 - flv(2)%get_mass ()**2), 3)
call vector4_write (k1, u)
call vector4_write (k2, u)
call sf_int%seed_kinematics ([k1, k2])
write (u, "(A)")
write (u, "(A)") "* Generate x"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0
rb = 0
x_free = 1
call sf_int%generate_free (r, rb, x_free)
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A,9(1x,F10.7))") "xf=", x_free
write (u, "(A)")
write (u, "(A)") "* Evaluate"
write (u, "(A)")
call sf_int%apply (scale = 0._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_circe2_3"
end subroutine sf_circe2_3
@ %def sf_circe2_3
@
\clearpage
%------------------------------------------------------------------------
\section{HOPPET interface}
Interface to the HOPPET wrapper necessary to perform
the LO vs. NLO matching of processes containing an initial
b quark.
<<[[hoppet_interface.f90]]>>=
<<File header>>
module hoppet_interface
use lhapdf !NODEP!
<<Standard module head>>
public :: hoppet_init, hoppet_eval
contains
subroutine hoppet_init (pdf_builtin, pdf, pdf_id)
logical, intent(in) :: pdf_builtin
type(lhapdf_pdf_t), intent(inout), optional :: pdf
integer, intent(in), optional :: pdf_id
external InitForWhizard
call InitForWhizard (pdf_builtin, pdf, pdf_id)
end subroutine hoppet_init
subroutine hoppet_eval (x, q, f)
double precision, intent(in) :: x, q
double precision, intent(out) :: f(-6:6)
external EvalForWhizard
call EvalForWhizard (x, q, f)
end subroutine hoppet_eval
end module hoppet_interface
@ %def hoppet_interface
@
\clearpage
%------------------------------------------------------------------------
\section{Builtin PDF sets}
For convenience in order not to depend on the external package LHAPDF,
we ship some PDFs with WHIZARD.
@
\subsection{The module}
<<[[sf_pdf_builtin.f90]]>>=
<<File header>>
module sf_pdf_builtin
<<Use kinds>>
use kinds, only: double
<<Use strings>>
use io_units
use format_defs, only: FMT_17
use diagnostics
use os_interface
use physics_defs, only: n_beam_gluon_offset
use physics_defs, only: PROTON, PHOTON, GLUON
use physics_defs, only: HADRON_REMNANT_SINGLET
use physics_defs, only: HADRON_REMNANT_TRIPLET
use physics_defs, only: HADRON_REMNANT_OCTET
use sm_qcd
use lorentz
use pdg_arrays
use model_data
use flavors
use colors
use quantum_numbers
use state_matrices
use polarizations
use sf_base
use pdf_builtin !NODEP!
use hoppet_interface
<<Standard module head>>
<<SF pdf builtin: public>>
<<SF pdf builtin: types>>
<<SF pdf builtin: parameters>>
contains
<<SF pdf builtin: procedures>>
end module sf_pdf_builtin
@ %def sf_pdf_builtin
@
\subsection{Codes for default PDF sets}
<<SF pdf builtin: parameters>>=
character(*), parameter :: PDF_BUILTIN_DEFAULT_PROTON = "CTEQ6L"
! character(*), parameter :: PDF_BUILTIN_DEFAULT_PION = "NONE"
! character(*), parameter :: PDF_BUILTIN_DEFAULT_PHOTON = "MRST2004QEDp"
@ %def PDF_BUILTIN_DEFAULT_SET
@
\subsection{The PDF builtin data block}
The data block holds the incoming flavor (which has to be proton,
pion, or photon), the corresponding pointer to the global access data
(1, 2, or 3), the flag [[invert]] which is set for an antiproton, the
bounds as returned by LHAPDF for the specified set, and a mask that
determines which partons will be actually in use.
<<SF pdf builtin: public>>=
public :: pdf_builtin_data_t
<<SF pdf builtin: types>>=
type, extends (sf_data_t) :: pdf_builtin_data_t
private
integer :: id = -1
type (string_t) :: name
class(model_data_t), pointer :: model => null ()
type(flavor_t) :: flv_in
logical :: invert
logical :: has_photon
logical :: photon
logical, dimension(-6:6) :: mask
logical :: mask_photon
logical :: hoppet_b_matching = .false.
contains
<<SF pdf builtin: pdf builtin data: TBP>>
end type pdf_builtin_data_t
@ %def pdf_builtin_data_t
@ Generate PDF data and initialize the requested set. Pion and photon PDFs
are disabled at the moment until we ship appropiate structure functions.
needed.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: init => pdf_builtin_data_init
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_data_init (data, &
model, pdg_in, name, path, hoppet_b_matching)
class(pdf_builtin_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
type(string_t), intent(in) :: name
type(string_t), intent(in) :: path
logical, intent(in), optional :: hoppet_b_matching
data%model => model
if (pdg_array_get_length (pdg_in) /= 1) &
call msg_fatal ("PDF: incoming particle must be unique")
call data%flv_in%init (pdg_array_get (pdg_in, 1), model)
data%mask = .true.
data%mask_photon = .true.
select case (pdg_array_get (pdg_in, 1))
case (PROTON)
data%name = var_str (PDF_BUILTIN_DEFAULT_PROTON)
data%invert = .false.
data%photon = .false.
case (-PROTON)
data%name = var_str (PDF_BUILTIN_DEFAULT_PROTON)
data%invert = .true.
data%photon = .false.
! case (PIPLUS)
! data%name = var_str (PDF_BUILTIN_DEFAULT_PION)
! data%invert = .false.
! data%photon = .false.
! case (-PIPLUS)
! data%name = var_str (PDF_BUILTIN_DEFAULT_PION)
! data%invert = .true.
! data%photon = .false.
! case (PHOTON)
! data%name = var_str (PDF_BUILTIN_DEFAULT_PHOTON)
! data%invert = .false.
! data%photon = .true.
case default
call msg_fatal ("PDF: " &
// "incoming particle must either proton or antiproton.")
return
end select
data%name = name
data%id = pdf_get_id (data%name)
if (data%id < 0) call msg_fatal ("unknown PDF set " // char (data%name))
data%has_photon = pdf_provides_photon (data%id)
if (present (hoppet_b_matching)) data%hoppet_b_matching = hoppet_b_matching
call pdf_init (data%id, path)
if (data%hoppet_b_matching) call hoppet_init (.true., pdf_id = data%id)
end subroutine pdf_builtin_data_init
@ %def pdf_builtin_data_init
@ Enable/disable partons explicitly. If a mask entry is true,
applying the PDF will generate the corresponding flavor on output.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: set_mask => pdf_builtin_data_set_mask
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_data_set_mask (data, mask)
class(pdf_builtin_data_t), intent(inout) :: data
logical, dimension(-6:6), intent(in) :: mask
data%mask = mask
end subroutine pdf_builtin_data_set_mask
@ %def pdf_builtin_data_set_mask
@ Output.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: write => pdf_builtin_data_write
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_data_write (data, unit, verbose)
class(pdf_builtin_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
integer :: u
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "PDF builtin data:"
if (data%id < 0) then
write (u, "(3x,A)") "[undefined]"
return
end if
write (u, "(3x,A)", advance="no") "flavor = "
call data%flv_in%write (u); write (u, *)
write (u, "(3x,A,A)") "name = ", char (data%name)
write (u, "(3x,A,L1)") "invert = ", data%invert
write (u, "(3x,A,L1)") "has photon = ", data%has_photon
write (u, "(3x,A,6(1x,L1),1x,A,1x,L1,1x,A,6(1x,L1))") &
"mask =", &
data%mask(-6:-1), "*", data%mask(0), "*", data%mask(1:6)
write (u, "(3x,A,L1)") "photon mask = ", data%mask_photon
write (u, "(3x,A,L1)") "hoppet_b = ", data%hoppet_b_matching
end subroutine pdf_builtin_data_write
@ %def pdf_builtin_data_write
@ The number of parameters is one. We do not generate transverse momentum.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: get_n_par => pdf_builtin_data_get_n_par
<<SF pdf builtin: procedures>>=
function pdf_builtin_data_get_n_par (data) result (n)
class(pdf_builtin_data_t), intent(in) :: data
integer :: n
n = 1
end function pdf_builtin_data_get_n_par
@ %def pdf_builtin_data_get_n_par
@ Return the outgoing particle PDG codes. This is based on the mask.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: get_pdg_out => pdf_builtin_data_get_pdg_out
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_data_get_pdg_out (data, pdg_out)
class(pdf_builtin_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer, dimension(:), allocatable :: pdg1
integer :: n, np, i
n = count (data%mask)
np = 0; if (data%has_photon .and. data%mask_photon) np = 1
allocate (pdg1 (n + np))
pdg1(1:n) = pack ([(i, i = -6, 6)], data%mask)
if (np == 1) pdg1(n+np) = PHOTON
pdg_out(1) = pdg1
end subroutine pdf_builtin_data_get_pdg_out
@ %def pdf_builtin_data_get_pdg_out
@ Allocate the interaction record.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: allocate_sf_int => pdf_builtin_data_allocate_sf_int
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_data_allocate_sf_int (data, sf_int)
class(pdf_builtin_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (pdf_builtin_t :: sf_int)
end subroutine pdf_builtin_data_allocate_sf_int
@ %def pdf_builtin_data_allocate_sf_int
@ Return the numerical PDF set index.
<<SF pdf builtin: pdf builtin data: TBP>>=
procedure :: get_pdf_set => pdf_builtin_data_get_pdf_set
<<SF pdf builtin: procedures>>=
elemental function pdf_builtin_data_get_pdf_set (data) result (pdf_set)
class(pdf_builtin_data_t), intent(in) :: data
integer :: pdf_set
pdf_set = data%id
end function pdf_builtin_data_get_pdf_set
@ %def pdf_builtin_data_get_pdf_set
@
\subsection{The PDF object}
The PDF $1\to 2$ interaction which describes
the splitting of an (anti)proton into a parton and a beam remnant. We
stay in the strict forward-splitting limit, but allow some invariant
mass for the beam remnant such that the outgoing parton is exactly
massless. For a real event, we would replace this by a parton
cascade, where the outgoing partons have virtuality as dictated by
parton-shower kinematics, and transverse momentum is generated.
The PDF application is a $1\to 2$ splitting process, where the
particles are ordered as (hadron, remnant, parton).
Polarization is ignored completely. The beam particle is colorless,
while partons and beam remnant carry color. The remnant gets a
special flavor code.
<<SF pdf builtin: public>>=
public :: pdf_builtin_t
<<SF pdf builtin: types>>=
type, extends (sf_int_t) :: pdf_builtin_t
type(pdf_builtin_data_t), pointer :: data => null ()
real(default) :: x = 0
real(default) :: q = 0
contains
<<SF pdf builtin: pdf builtin: TBP>>
end type pdf_builtin_t
@ %def pdf_builtin_t
@ Type string: display the chosen PDF set.
<<SF pdf builtin: pdf builtin: TBP>>=
procedure :: type_string => pdf_builtin_type_string
<<SF pdf builtin: procedures>>=
function pdf_builtin_type_string (object) result (string)
class(pdf_builtin_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "PDF builtin: " // object%data%name
else
string = "PDF builtin: [undefined]"
end if
end function pdf_builtin_type_string
@ %def pdf_builtin_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF pdf builtin: pdf builtin: TBP>>=
procedure :: write => pdf_builtin_write
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_write (object, unit, testflag)
class(pdf_builtin_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
if (object%status >= SF_DONE_KINEMATICS) then
write (u, "(1x,A)") "SF parameters:"
write (u, "(3x,A," // FMT_17 // ")") "x =", object%x
if (object%status >= SF_FAILED_EVALUATION) then
write (u, "(3x,A," // FMT_17 // ")") "Q =", object%q
end if
end if
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "PDF builtin data: [undefined]"
end if
end subroutine pdf_builtin_write
@ %def pdf_builtin_write
@ Initialize. We know that [[data]] will be of concrete type
[[sf_test_data_t]], but we have to cast this explicitly.
For this implementation, we set the incoming and outgoing masses equal
to the physical particle mass, but keep the radiated mass zero.
Optionally, we can provide minimum and maximum values for the momentum
transfer.
<<SF pdf builtin: pdf builtin: TBP>>=
procedure :: init => pdf_builtin_init
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_init (sf_int, data)
class(pdf_builtin_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(3) :: mask
type(flavor_t) :: flv, flv_remnant
type(color_t) :: col0
type(quantum_numbers_t), dimension(3) :: qn
integer :: i
select type (data)
type is (pdf_builtin_data_t)
mask = quantum_numbers_mask (.false., .false., .true.)
call col0%init ()
call sf_int%base_init (mask, [0._default], [0._default], [0._default])
sf_int%data => data
do i = -6, 6
if (data%mask(i)) then
call qn(1)%init (data%flv_in, col = col0)
if (i == 0) then
call flv%init (GLUON, data%model)
call flv_remnant%init (HADRON_REMNANT_OCTET, data%model)
else
call flv%init (i, data%model)
call flv_remnant%init &
(sign (HADRON_REMNANT_TRIPLET, -i), data%model)
end if
call qn(2)%init ( &
flv = flv_remnant, col = color_from_flavor (flv_remnant, 1))
call qn(2)%tag_radiated ()
call qn(3)%init ( &
flv = flv, col = color_from_flavor (flv, 1, reverse=.true.))
call sf_int%add_state (qn)
end if
end do
if (data%has_photon .and. data%mask_photon) then
call flv%init (PHOTON, data%model)
call flv_remnant%init (HADRON_REMNANT_SINGLET, data%model)
call qn(2)%init (flv = flv_remnant, &
col = color_from_flavor (flv_remnant, 1))
call qn(2)%tag_radiated ()
call qn(3)%init (flv = flv, &
col = color_from_flavor (flv, 1, reverse = .true.))
call sf_int%add_state (qn)
end if
call sf_int%freeze ()
call sf_int%set_incoming ([1])
call sf_int%set_radiated ([2])
call sf_int%set_outgoing ([3])
sf_int%status = SF_INITIAL
end select
end subroutine pdf_builtin_init
@ %def pdf_builtin_init
@
\subsection{Kinematics}
Set kinematics. If [[map]] is unset, the $r$ and $x$ values
coincide, and the Jacobian $f(r)$ is trivial.
If [[map]] is set, we are asked to provide an efficient mapping.
For the test case, we set $x=r^2$ and consequently $f(r)=2r$.
<<SF pdf builtin: pdf builtin: TBP>>=
procedure :: complete_kinematics => pdf_builtin_complete_kinematics
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(pdf_builtin_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
if (map) then
call msg_fatal ("PDF builtin: map flag not supported")
else
x(1) = r(1)
xb(1)= rb(1)
f = 1
end if
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_DONE_KINEMATICS)
sf_int%x = x(1)
case (SF_FAILED_KINEMATICS)
sf_int%x = 0
f = 0
end select
end subroutine pdf_builtin_complete_kinematics
@ %def pdf_builtin_complete_kinematics
+@ Overriding the default method: we compute the [[x]] value from the
+momentum configuration. In this specific case, we also set the
+internally stored $x$ value, so it can be used in the
+following routine.
+<<SF pdf builtin: pdf builtin: TBP>>=
+ procedure :: recover_x => pdf_builtin_recover_x
+<<SF pdf builtin: procedures>>=
+ subroutine pdf_builtin_recover_x (sf_int, x, xb, x_free)
+ class(pdf_builtin_t), intent(inout) :: sf_int
+ real(default), dimension(:), intent(out) :: x
+ real(default), dimension(:), intent(out) :: xb
+ real(default), intent(inout), optional :: x_free
+ call sf_int%base_recover_x (x, xb, x_free)
+ sf_int%x = x(1)
+ end subroutine pdf_builtin_recover_x
+
+@ %def sf_pdf_builtin_recover_x
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF pdf builtin: pdf builtin: TBP>>=
procedure :: inverse_kinematics => pdf_builtin_inverse_kinematics
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(pdf_builtin_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
call msg_fatal ("PDF builtin: map flag not supported")
else
r(1) = x(1)
rb(1)= xb(1)
f = 1
end if
if (set_mom) then
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
- case (SF_DONE_KINEMATICS)
- sf_int%x = x(1)
- case (SF_FAILED_KINEMATICS)
- sf_int%x = 0
- f = 0
+ case (SF_FAILED_KINEMATICS); f = 0
end select
end if
end subroutine pdf_builtin_inverse_kinematics
@ %def pdf_builtin_inverse_kinematics
@
\subsection{Structure function}
Once the scale is also known, we can actually call the PDF and
set the values. Contrary to LHAPDF, the wrapper already takes care of
adjusting to the $x$ and $Q$ bounds. Account for the Jacobian.
[[fill_sub]] allows us to the fill all matrix-elements with [[sub > 0]].
Whereas [[rescale]] gives rescaling prescription for NLO convolution of the
structure function in combination with [[i_sub]].
[[fill_sub]] and [[rescale]] with [[i_sub]] are mutually exclusive.
<<SF pdf builtin: pdf builtin: TBP>>=
procedure :: apply => pdf_builtin_apply
<<SF pdf builtin: procedures>>=
subroutine pdf_builtin_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(pdf_builtin_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default), dimension(-6:6) :: ff
real(double), dimension(-6:6) :: ff_dbl
real(default) :: x, fph
real(double) :: xx, qq
complex(default), dimension(:), allocatable :: fc
integer :: i, j_sub, i_sub_opt
logical :: fill_sub_opt
i_sub_opt = 0; if (present (i_sub)) i_sub_opt = i_sub
fill_sub_opt = .false.; if (present (fill_sub)) fill_sub_opt = fill_sub
if (present (rescale) .and. fill_sub_opt) then
call msg_bug ("[pdf_builtin_apply] &
& sf_rescale and fill_sub option are mutually exclusive.")
end if
if (i_sub_opt > 0 .and. fill_sub_opt) then
call msg_bug ("[pdf_builtin_apply] &
& i_sub and fill_sub options are mutually exclusive.")
end if
associate (data => sf_int%data)
sf_int%q = scale
x = sf_int%x
if (present (rescale)) call rescale%apply (x)
if (debug2_active (D_BEAMS)) then
call msg_debug2 (D_BEAMS, "pdf_builtin_apply")
call msg_debug2 (D_BEAMS, "rescale: ", present(rescale))
call msg_debug2 (D_BEAMS, "i_sub: ", i_sub_opt)
call msg_debug2 (D_BEAMS, "fill_sub: ", fill_sub_opt)
call msg_debug2 (D_BEAMS, "x: ", x)
end if
xx = x
qq = scale
if (data%invert) then
if (data%has_photon) then
call pdf_evolve (data%id, x, scale, ff(6:-6:-1), fph)
else
if (data%hoppet_b_matching) then
call hoppet_eval (xx, qq, ff_dbl(6:-6:-1))
ff = ff_dbl
else
call pdf_evolve (data%id, x, scale, ff(6:-6:-1))
end if
end if
else
if (data%has_photon) then
call pdf_evolve (data%id, x, scale, ff, fph)
else
if (data%hoppet_b_matching) then
call hoppet_eval (xx, qq, ff_dbl)
ff = ff_dbl
else
call pdf_evolve (data%id, x, scale, ff)
end if
end if
end if
if (data%has_photon) then
allocate (fc (count ([data%mask, data%mask_photon])))
fc = max (pack ([ff, fph], &
[data%mask, data%mask_photon]), 0._default)
else
allocate (fc (count (data%mask)))
fc = max (pack (ff, data%mask), 0._default)
end if
end associate
if (debug_active (D_BEAMS)) print *, 'Set pdfs: ', real (fc)
if (present (rescale) .and. i_sub_opt > 0) then
call sf_int%set_matrix_element (fc, [(i_sub_opt * size(fc) + i, i = 1, size(fc))])
if (rescale%has_gluons ()) then
j_sub = i_sub_opt + n_beam_gluon_offset
call sf_int%set_matrix_element (&
spread (fc(7), 1, size(fc)), [(j_sub * size(fc) + i, i = 1, size(fc))])
end if
else
call sf_int%set_matrix_element (fc, [(i, i = 1, size(fc))])
end if
if(fill_sub_opt) then
do j_sub = 1, sf_int%get_n_sub ()
call sf_int%set_matrix_element (fc, [(j_sub * size(fc) + i, i = 1, size(fc))])
end do
end if
sf_int%status = SF_EVALUATED
end subroutine pdf_builtin_apply
@ %def pdf_builtin_apply
@
\subsection{Strong Coupling}
Since the PDF codes provide a function for computing the running
$\alpha_s$ value, we make this available as an implementation of the
abstract [[alpha_qcd_t]] type, which is used for matrix element evaluation.
<<SF pdf builtin: public>>=
public :: alpha_qcd_pdf_builtin_t
<<SF pdf builtin: types>>=
type, extends (alpha_qcd_t) :: alpha_qcd_pdf_builtin_t
type(string_t) :: pdfset_name
integer :: pdfset_id = -1
contains
<<SF pdf builtin: alpha qcd: TBP>>
end type alpha_qcd_pdf_builtin_t
@ %def alpha_qcd_pdf_builtin_t
@ Output.
<<SF pdf builtin: alpha qcd: TBP>>=
procedure :: write => alpha_qcd_pdf_builtin_write
<<SF pdf builtin: procedures>>=
subroutine alpha_qcd_pdf_builtin_write (object, unit)
class(alpha_qcd_pdf_builtin_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(3x,A)") "QCD parameters (pdf_builtin):"
write (u, "(5x,A,A)") "PDF set = ", char (object%pdfset_name)
write (u, "(5x,A,I0)") "PDF ID = ", object%pdfset_id
end subroutine alpha_qcd_pdf_builtin_write
@ %def alpha_qcd_pdf_builtin_write
@ Calculation: the numeric ID selects the correct PDF set, which must
be properly initialized.
<<SF pdf builtin: alpha qcd: TBP>>=
procedure :: get => alpha_qcd_pdf_builtin_get
<<SF pdf builtin: procedures>>=
function alpha_qcd_pdf_builtin_get (alpha_qcd, scale) result (alpha)
class(alpha_qcd_pdf_builtin_t), intent(in) :: alpha_qcd
real(default), intent(in) :: scale
real(default) :: alpha
alpha = pdf_alphas (alpha_qcd%pdfset_id, scale)
end function alpha_qcd_pdf_builtin_get
@ %def alpha_qcd_pdf_builtin_get
@
Initialization. We need to access the global initialization status.
<<SF pdf builtin: alpha qcd: TBP>>=
procedure :: init => alpha_qcd_pdf_builtin_init
<<SF pdf builtin: procedures>>=
subroutine alpha_qcd_pdf_builtin_init (alpha_qcd, name, path)
class(alpha_qcd_pdf_builtin_t), intent(out) :: alpha_qcd
type(string_t), intent(in) :: name
type(string_t), intent(in) :: path
alpha_qcd%pdfset_name = name
alpha_qcd%pdfset_id = pdf_get_id (name)
if (alpha_qcd%pdfset_id < 0) &
call msg_fatal ("QCD parameter initialization: PDF set " &
// char (name) // " is unknown")
call pdf_init (alpha_qcd%pdfset_id, path)
end subroutine alpha_qcd_pdf_builtin_init
@ %def alpha_qcd_pdf_builtin_init
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_pdf_builtin_ut.f90]]>>=
<<File header>>
module sf_pdf_builtin_ut
use unit_tests
use sf_pdf_builtin_uti
<<Standard module head>>
<<SF pdf builtin: public test>>
contains
<<SF pdf builtin: test driver>>
end module sf_pdf_builtin_ut
@ %def sf_pdf_builtin_ut
@
<<[[sf_pdf_builtin_uti.f90]]>>=
<<File header>>
module sf_pdf_builtin_uti
<<Use kinds>>
<<Use strings>>
use os_interface
use physics_defs, only: PROTON
use sm_qcd
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use sf_base
use sf_pdf_builtin
<<Standard module head>>
<<SF pdf builtin: test declarations>>
contains
<<SF pdf builtin: tests>>
end module sf_pdf_builtin_uti
@ %def sf_pdf_builtin_ut
@ API: driver for the unit tests below.
<<SF pdf builtin: public test>>=
public :: sf_pdf_builtin_test
<<SF pdf builtin: test driver>>=
subroutine sf_pdf_builtin_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF pdf builtin: execute tests>>
end subroutine sf_pdf_builtin_test
@ %def sf_pdf_builtin_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF pdf builtin: execute tests>>=
call test (sf_pdf_builtin_1, "sf_pdf_builtin_1", &
"structure function configuration", &
u, results)
<<SF pdf builtin: test declarations>>=
public :: sf_pdf_builtin_1
<<SF pdf builtin: tests>>=
subroutine sf_pdf_builtin_1 (u)
integer, intent(in) :: u
type(os_data_t) :: os_data
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(1) :: pdg_out
integer, dimension(:), allocatable :: pdg1
class(sf_data_t), allocatable :: data
type(string_t) :: name
write (u, "(A)") "* Test output: sf_pdf_builtin_1"
write (u, "(A)") "* Purpose: initialize and display &
&test structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call os_data%init ()
call model%init_sm_test ()
pdg_in = PROTON
allocate (pdf_builtin_data_t :: data)
call data%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize"
write (u, "(A)")
name = "CTEQ6L"
select type (data)
type is (pdf_builtin_data_t)
call data%init (model, pdg_in, name, &
os_data%pdf_builtin_datapath)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_pdf_builtin_1"
end subroutine sf_pdf_builtin_1
@ %def sf_pdf_builtin_1
@
\subsubsection{Test and probe structure function}
Construct and display a structure function object based on the PDF builtin
structure function.
<<SF pdf builtin: execute tests>>=
call test (sf_pdf_builtin_2, "sf_pdf_builtin_2", &
"structure function instance", &
u, results)
<<SF pdf builtin: test declarations>>=
public :: sf_pdf_builtin_2
<<SF pdf builtin: tests>>=
subroutine sf_pdf_builtin_2 (u)
integer, intent(in) :: u
type(os_data_t) :: os_data
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(string_t) :: name
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_pdf_builtin_2"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call os_data%init ()
call model%init_sm_test ()
call flv%init (PROTON, model)
pdg_in = PROTON
call reset_interaction_counter ()
name = "CTEQ6L"
allocate (pdf_builtin_data_t :: data)
select type (data)
type is (pdf_builtin_data_t)
call data%init (model, pdg_in, name, &
os_data%pdf_builtin_datapath)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.5_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A)")
write (u, "(A)") "* Evaluate for Q = 100 GeV"
write (u, "(A)")
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%apply (scale = 100._default)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_pdf_builtin_2"
end subroutine sf_pdf_builtin_2
@ %def sf_pdf_builtin_2
@
\subsubsection{Strong Coupling}
Test $\alpha_s$ as an implementation of the [[alpha_qcd_t]] abstract
type.
<<SF pdf builtin: execute tests>>=
call test (sf_pdf_builtin_3, "sf_pdf_builtin_3", &
"running alpha_s", &
u, results)
<<SF pdf builtin: test declarations>>=
public :: sf_pdf_builtin_3
<<SF pdf builtin: tests>>=
subroutine sf_pdf_builtin_3 (u)
integer, intent(in) :: u
type(os_data_t) :: os_data
type(qcd_t) :: qcd
type(string_t) :: name
write (u, "(A)") "* Test output: sf_pdf_builtin_3"
write (u, "(A)") "* Purpose: initialize and evaluate alpha_s"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call os_data%init ()
name = "CTEQ6L"
write (u, "(A)") "* Initialize qcd object"
write (u, "(A)")
allocate (alpha_qcd_pdf_builtin_t :: qcd%alpha)
select type (alpha => qcd%alpha)
type is (alpha_qcd_pdf_builtin_t)
call alpha%init (name, os_data%pdf_builtin_datapath)
end select
call qcd%write (u)
write (u, "(A)")
write (u, "(A)") "* Evaluate for Q = 100"
write (u, "(A)")
write (u, "(1x,A,F8.5)") "alpha = ", qcd%alpha%get (100._default)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_pdf_builtin_3"
end subroutine sf_pdf_builtin_3
@ %def sf_pdf_builtin_3
@
\clearpage
%------------------------------------------------------------------------
\section{LHAPDF}
Parton distribution functions (PDFs) are available via an interface to
the LHAPDF standard library.
@
\subsection{The module}
<<[[sf_lhapdf.f90]]>>=
<<File header>>
module sf_lhapdf
<<Use kinds>>
<<Use strings>>
use format_defs, only: FMT_17, FMT_19
use io_units
use system_dependencies, only: LHAPDF_PDFSETS_PATH
use system_dependencies, only: LHAPDF5_AVAILABLE
use system_dependencies, only: LHAPDF6_AVAILABLE
use diagnostics
use physics_defs, only: n_beam_gluon_offset
use physics_defs, only: PROTON, PHOTON, PIPLUS, GLUON
use physics_defs, only: HADRON_REMNANT_SINGLET
use physics_defs, only: HADRON_REMNANT_TRIPLET
use physics_defs, only: HADRON_REMNANT_OCTET
use lorentz
use sm_qcd
use pdg_arrays
use model_data
use flavors
use colors
use quantum_numbers
use state_matrices
use polarizations
use sf_base
use lhapdf !NODEP!
use hoppet_interface
<<Standard module head>>
<<SF lhapdf: public>>
<<SF lhapdf: types>>
<<SF lhapdf: parameters>>
<<SF lhapdf: variables>>
<<SF lhapdf: interfaces>>
contains
<<SF lhapdf: procedures>>
end module sf_lhapdf
@ %def sf_lhapdf
@
\subsection{Codes for default PDF sets}
The default PDF for protons set is chosen to be CTEQ6ll (LO fit with
LO $\alpha_s$).
<<SF lhapdf: parameters>>=
character(*), parameter :: LHAPDF5_DEFAULT_PROTON = "cteq6ll.LHpdf"
character(*), parameter :: LHAPDF5_DEFAULT_PION = "ABFKWPI.LHgrid"
character(*), parameter :: LHAPDF5_DEFAULT_PHOTON = "GSG960.LHgrid"
character(*), parameter :: LHAPDF6_DEFAULT_PROTON = "CT10"
@ %def LHAPDF5_DEFAULT_PROTON LHAPDF5_DEFAULT_PION
@ %def LHAPDF5_DEFAULT_PHOTON LHAPDF6_DEFAULT_PROTON
@
\subsection{LHAPDF library interface}
Here we specify explicit interfaces for all LHAPDF routines that we
use below.
<<SF lhapdf: interfaces>>=
interface
subroutine InitPDFsetM (set, file)
integer, intent(in) :: set
character(*), intent(in) :: file
end subroutine InitPDFsetM
end interface
@ %def InitPDFsetM
<<SF lhapdf: interfaces>>=
interface
subroutine InitPDFM (set, mem)
integer, intent(in) :: set, mem
end subroutine InitPDFM
end interface
@ %def InitPDFM
<<SF lhapdf: interfaces>>=
interface
subroutine numberPDFM (set, n_members)
integer, intent(in) :: set
integer, intent(out) :: n_members
end subroutine numberPDFM
end interface
@ %def numberPDFM
<<SF lhapdf: interfaces>>=
interface
subroutine evolvePDFM (set, x, q, ff)
integer, intent(in) :: set
double precision, intent(in) :: x, q
double precision, dimension(-6:6), intent(out) :: ff
end subroutine evolvePDFM
end interface
@ %def evolvePDFM
<<SF lhapdf: interfaces>>=
interface
subroutine evolvePDFphotonM (set, x, q, ff, fphot)
integer, intent(in) :: set
double precision, intent(in) :: x, q
double precision, dimension(-6:6), intent(out) :: ff
double precision, intent(out) :: fphot
end subroutine evolvePDFphotonM
end interface
@ %def evolvePDFphotonM
<<SF lhapdf: interfaces>>=
interface
subroutine evolvePDFpM (set, x, q, s, scheme, ff)
integer, intent(in) :: set
double precision, intent(in) :: x, q, s
integer, intent(in) :: scheme
double precision, dimension(-6:6), intent(out) :: ff
end subroutine evolvePDFpM
end interface
@ %def evolvePDFpM
<<SF lhapdf: interfaces>>=
interface
subroutine GetXminM (set, mem, xmin)
integer, intent(in) :: set, mem
double precision, intent(out) :: xmin
end subroutine GetXminM
end interface
@ %def GetXminM
<<SF lhapdf: interfaces>>=
interface
subroutine GetXmaxM (set, mem, xmax)
integer, intent(in) :: set, mem
double precision, intent(out) :: xmax
end subroutine GetXmaxM
end interface
@ %def GetXmaxM
<<SF lhapdf: interfaces>>=
interface
subroutine GetQ2minM (set, mem, q2min)
integer, intent(in) :: set, mem
double precision, intent(out) :: q2min
end subroutine GetQ2minM
end interface
@ %def GetQ2minM
<<SF lhapdf: interfaces>>=
interface
subroutine GetQ2maxM (set, mem, q2max)
integer, intent(in) :: set, mem
double precision, intent(out) :: q2max
end subroutine GetQ2maxM
end interface
@ %def GetQ2maxM
<<SF lhapdf: interfaces>>=
interface
function has_photon () result(flag)
logical :: flag
end function has_photon
end interface
@ %def has_photon
@
\subsection{The LHAPDF status}
This type holds the initialization status of the LHAPDF system. Entry
1 is for proton PDFs, entry 2 for pion PDFs, entry 3 for photon PDFs.
Since it is connected to the external LHAPDF library, this is a truly
global object. We implement it as a a private module variable. To
access it from elsewhere, the caller has to create and initialize an
object of type [[lhapdf_status_t]], which acts as a proxy.
<<SF lhapdf: types>>=
type :: lhapdf_global_status_t
private
logical, dimension(3) :: initialized = .false.
end type lhapdf_global_status_t
@ %def lhapdf_global_status_t
<<SF lhapdf: variables>>=
type(lhapdf_global_status_t), save :: lhapdf_global_status
@ %def lhapdf_global_status
<<SF lhapdf: procedures>>=
function lhapdf_global_status_is_initialized (set) result (flag)
logical :: flag
integer, intent(in), optional :: set
if (present (set)) then
select case (set)
case (1:3); flag = lhapdf_global_status%initialized(set)
case default; flag = .false.
end select
else
flag = any (lhapdf_global_status%initialized)
end if
end function lhapdf_global_status_is_initialized
@ %def lhapdf_global_status_is_initialized
<<SF lhapdf: procedures>>=
subroutine lhapdf_global_status_set_initialized (set)
integer, intent(in) :: set
lhapdf_global_status%initialized(set) = .true.
end subroutine lhapdf_global_status_set_initialized
@ %def lhapdf_global_status_set_initialized
@ This is the only public procedure, it tells the system to forget
about previous initialization, allowing for changing the chosen PDF
set. Note that such a feature works only if the global program flow
is serial, so no two distinct sets are accessed simultaneously. But
this applies to LHAPDF anyway.
<<SF lhapdf: public>>=
public :: lhapdf_global_reset
<<SF lhapdf: procedures>>=
subroutine lhapdf_global_reset ()
lhapdf_global_status%initialized = .false.
end subroutine lhapdf_global_reset
@ %def lhapdf_global_status_reset
@
\subsection{LHAPDF initialization}
Before using LHAPDF, we have to initialize it with a particular data
set and member. This applies not just if we use structure functions,
but also if we just use an $\alpha_s$ formula. The integer [[set]]
should be $1$ for proton, $2$ for pion, and $3$ for photon, but this
is just convention.
It appears as if LHAPDF does not allow for multiple data sets being
used concurrently (?), so multi-threaded usage with different sets
(e.g., a scan) is excluded. The current setup with a global flag that
indicates initialization is fine as long as Whizard itself is run in
serial mode at the Sindarin level. If we introduce multithreading in
any form from Sindarin, we have to rethink the implementation of the
LHAPDF interface. (The same considerations apply to builtin PDFs.)
If the particular set has already been initialized, do nothing. This
implies that whenever we want to change the setup for a particular
set, we have to reset the LHAPDF status.
[[lhapdf_initialize]] has an obvious name clash with [[lhapdf_init]],
the reason it works for [[pdf_builtin]] is that there things are
outsourced to a separate module (inc. [[lhapdf_status]] etc.).
<<SF lhapdf: public>>=
public :: lhapdf_initialize
<<SF lhapdf: procedures>>=
subroutine lhapdf_initialize (set, prefix, file, member, pdf, b_match)
integer, intent(in) :: set
type(string_t), intent(inout) :: prefix
type(string_t), intent(inout) :: file
type(lhapdf_pdf_t), intent(inout), optional :: pdf
integer, intent(inout) :: member
logical, intent(in), optional :: b_match
if (prefix == "") prefix = LHAPDF_PDFSETS_PATH
if (LHAPDF5_AVAILABLE) then
if (lhapdf_global_status_is_initialized (set)) return
if (file == "") then
select case (set)
case (1); file = LHAPDF5_DEFAULT_PROTON
case (2); file = LHAPDF5_DEFAULT_PION
case (3); file = LHAPDF5_DEFAULT_PHOTON
end select
end if
if (data_file_exists (prefix // "/" // file)) then
call InitPDFsetM (set, char (prefix // "/" // file))
else
call msg_fatal ("LHAPDF: Data file '" &
// char (file) // "' not found in '" // char (prefix) // "'.")
return
end if
if (.not. dataset_member_exists (set, member)) then
call msg_error (" LHAPDF: Chosen member does not exist for set '" &
// char (file) // "', using default.")
member = 0
end if
call InitPDFM (set, member)
else if (LHAPDF6_AVAILABLE) then
! TODO: (bcn 2015-07-07) we should have a closer look why this global
! check must not be executed
! if (lhapdf_global_status_is_initialized (set) .and. &
! pdf%is_associated ()) return
if (file == "") then
select case (set)
case (1); file = LHAPDF6_DEFAULT_PROTON
case (2);
call msg_fatal ("LHAPDF6: no pion PDFs supported")
case (3);
call msg_fatal ("LHAPDF6: no photon PDFs supported")
end select
end if
if (data_file_exists (prefix // "/" // file // "/" // file // ".info")) then
call pdf%init (char (file), member)
else
call msg_fatal ("LHAPDF: Data file '" &
// char (file) // "' not found in '" // char (prefix) // "'.")
return
end if
end if
if (present (b_match)) then
if (b_match) then
if (LHAPDF5_AVAILABLE) then
call hoppet_init (.false.)
else if (LHAPDF6_AVAILABLE) then
call hoppet_init (.false., pdf)
end if
end if
end if
call lhapdf_global_status_set_initialized (set)
contains
function data_file_exists (fq_name) result (exist)
type(string_t), intent(in) :: fq_name
logical :: exist
inquire (file = char(fq_name), exist = exist)
end function data_file_exists
function dataset_member_exists (set, member) result (exist)
integer, intent(in) :: set, member
logical :: exist
integer :: n_members
call numberPDFM (set, n_members)
exist = member >= 0 .and. member <= n_members
end function dataset_member_exists
end subroutine lhapdf_initialize
@ %def lhapdf_initialize
@
\subsection{Kinematics}
Set kinematics. If [[map]] is unset, the $r$ and $x$ values
coincide, and the Jacobian $f(r)$ is trivial.
If [[map]] is set, we are asked to provide an efficient mapping.
For the test case, we set $x=r^2$ and consequently $f(r)=2r$.
<<SF lhapdf: lhapdf: TBP>>=
procedure :: complete_kinematics => lhapdf_complete_kinematics
<<SF lhapdf: procedures>>=
subroutine lhapdf_complete_kinematics (sf_int, x, xb, f, r, rb, map)
class(lhapdf_t), intent(inout) :: sf_int
real(default), dimension(:), intent(out) :: x
real(default), dimension(:), intent(out) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(in) :: r
real(default), dimension(:), intent(in) :: rb
logical, intent(in) :: map
if (map) then
call msg_fatal ("LHAPDF: map flag not supported")
else
x(1) = r(1)
xb(1)= rb(1)
f = 1
end if
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
case (SF_DONE_KINEMATICS)
sf_int%x = x(1)
case (SF_FAILED_KINEMATICS)
sf_int%x = 0
f = 0
end select
end subroutine lhapdf_complete_kinematics
@ %def lhapdf_complete_kinematics
-@
+@ Overriding the default method: we compute the [[x]] value from the
+momentum configuration. In this specific case, we also set the
+internally stored $x$ value, so it can be used in the
+following routine.
+<<SF lhapdf: lhapdf: TBP>>=
+ procedure :: recover_x => lhapdf_recover_x
+<<SF lhapdf: procedures>>=
+ subroutine lhapdf_recover_x (sf_int, x, xb, x_free)
+ class(lhapdf_t), intent(inout) :: sf_int
+ real(default), dimension(:), intent(out) :: x
+ real(default), dimension(:), intent(out) :: xb
+ real(default), intent(inout), optional :: x_free
+ call sf_int%base_recover_x (x, xb, x_free)
+ sf_int%x = x(1)
+ end subroutine lhapdf_recover_x
+
+@ %def lhapdf_recover_x
@ Compute inverse kinematics. Here, we start with the $x$ array and
compute the ``input'' $r$ values and the Jacobian $f$. After this, we
can set momenta by the same formula as for normal kinematics.
<<SF lhapdf: lhapdf: TBP>>=
procedure :: inverse_kinematics => lhapdf_inverse_kinematics
<<SF lhapdf: procedures>>=
subroutine lhapdf_inverse_kinematics (sf_int, x, xb, f, r, rb, map, set_momenta)
class(lhapdf_t), intent(inout) :: sf_int
real(default), dimension(:), intent(in) :: x
real(default), dimension(:), intent(in) :: xb
real(default), intent(out) :: f
real(default), dimension(:), intent(out) :: r
real(default), dimension(:), intent(out) :: rb
logical, intent(in) :: map
logical, intent(in), optional :: set_momenta
logical :: set_mom
set_mom = .false.; if (present (set_momenta)) set_mom = set_momenta
if (map) then
call msg_fatal ("LHAPDF: map flag not supported")
else
r(1) = x(1)
rb(1)= xb(1)
f = 1
end if
if (set_mom) then
call sf_int%split_momentum (x, xb)
select case (sf_int%status)
- case (SF_DONE_KINEMATICS)
- sf_int%x = x(1)
- case (SF_FAILED_KINEMATICS)
- sf_int%x = 0
- f = 0
+ case (SF_FAILED_KINEMATICS); f = 0
end select
end if
end subroutine lhapdf_inverse_kinematics
@ %def lhapdf_inverse_kinematics
@
\subsection{The LHAPDF data block}
The data block holds the incoming flavor (which has to be proton,
pion, or photon), the corresponding pointer to the global access data
(1, 2, or 3), the flag [[invert]] which is set for an antiproton, the
bounds as returned by LHAPDF for the specified set, and a mask that
determines which partons will be actually in use.
<<SF lhapdf: public>>=
public :: lhapdf_data_t
<<SF lhapdf: types>>=
type, extends (sf_data_t) :: lhapdf_data_t
private
type(string_t) :: prefix
type(string_t) :: file
type(lhapdf_pdf_t) :: pdf
integer :: member = 0
class(model_data_t), pointer :: model => null ()
type(flavor_t) :: flv_in
integer :: set = 0
logical :: invert = .false.
logical :: photon = .false.
logical :: has_photon = .false.
integer :: photon_scheme = 0
real(default) :: xmin = 0, xmax = 0
real(default) :: qmin = 0, qmax = 0
logical, dimension(-6:6) :: mask = .true.
logical :: mask_photon = .true.
logical :: hoppet_b_matching = .false.
contains
<<SF lhapdf: lhapdf data: TBP>>
end type lhapdf_data_t
@ %def lhapdf_data_t
@ Generate PDF data. This is provided as a function, but it has the
side-effect of initializing the requested PDF set. A finalizer is not
needed.
The library uses double precision, so since the default precision may be
extended or quadruple, we use auxiliary variables for type casting.
<<SF lhapdf: lhapdf data: TBP>>=
procedure :: init => lhapdf_data_init
<<SF lhapdf: procedures>>=
subroutine lhapdf_data_init &
(data, model, pdg_in, prefix, file, member, photon_scheme, &
hoppet_b_matching)
class(lhapdf_data_t), intent(out) :: data
class(model_data_t), intent(in), target :: model
type(pdg_array_t), intent(in) :: pdg_in
type(string_t), intent(in), optional :: prefix, file
integer, intent(in), optional :: member
integer, intent(in), optional :: photon_scheme
logical, intent(in), optional :: hoppet_b_matching
double precision :: xmin, xmax, q2min, q2max
external :: InitPDFsetM, InitPDFM, numberPDFM
external :: GetXminM, GetXmaxM, GetQ2minM, GetQ2maxM
if (.not. LHAPDF5_AVAILABLE .and. .not. LHAPDF6_AVAILABLE) then
call msg_fatal ("LHAPDF requested but library is not linked")
return
end if
data%model => model
if (pdg_array_get_length (pdg_in) /= 1) &
call msg_fatal ("PDF: incoming particle must be unique")
call data%flv_in%init (pdg_array_get (pdg_in, 1), model)
select case (pdg_array_get (pdg_in, 1))
case (PROTON)
data%set = 1
case (-PROTON)
data%set = 1
data%invert = .true.
case (PIPLUS)
data%set = 2
case (-PIPLUS)
data%set = 2
data%invert = .true.
case (PHOTON)
data%set = 3
data%photon = .true.
if (present (photon_scheme)) data%photon_scheme = photon_scheme
case default
call msg_fatal (" LHAPDF: " &
// "incoming particle must be (anti)proton, pion, or photon.")
return
end select
if (present (prefix)) then
data%prefix = prefix
else
data%prefix = ""
end if
if (present (file)) then
data%file = file
else
data%file = ""
end if
if (present (hoppet_b_matching)) data%hoppet_b_matching = hoppet_b_matching
if (LHAPDF5_AVAILABLE) then
call lhapdf_initialize &
(data%set, data%prefix, data%file, data%member, &
b_match = data%hoppet_b_matching)
call GetXminM (data%set, data%member, xmin)
call GetXmaxM (data%set, data%member, xmax)
call GetQ2minM (data%set, data%member, q2min)
call GetQ2maxM (data%set, data%member, q2max)
data%xmin = xmin
data%xmax = xmax
data%qmin = sqrt (q2min)
data%qmax = sqrt (q2max)
data%has_photon = has_photon ()
else if (LHAPDF6_AVAILABLE) then
call lhapdf_initialize &
(data%set, data%prefix, data%file, data%member, &
data%pdf, data%hoppet_b_matching)
data%xmin = data%pdf%getxmin ()
data%xmax = data%pdf%getxmax ()
data%qmin = sqrt(data%pdf%getq2min ())
data%qmax = sqrt(data%pdf%getq2max ())
data%has_photon = data%pdf%has_photon ()
end if
end subroutine lhapdf_data_init
@ %def lhapdf_data_init
@ Enable/disable partons explicitly. If a mask entry is true,
applying the PDF will generate the corresponding flavor on output.
<<LHAPDF: lhapdf data: TBP>>=
procedure :: set_mask => lhapdf_data_set_mask
<<LHAPDF: procedures>>=
subroutine lhapdf_data_set_mask (data, mask)
class(lhapdf_data_t), intent(inout) :: data
logical, dimension(-6:6), intent(in) :: mask
data%mask = mask
end subroutine lhapdf_data_set_mask
@ %def lhapdf_data_set_mask
@ Return the public part of the data set.
<<LHAPDF: public>>=
public :: lhapdf_data_get_public_info
<<LHAPDF: procedures>>=
subroutine lhapdf_data_get_public_info &
(data, lhapdf_dir, lhapdf_file, lhapdf_member)
type(lhapdf_data_t), intent(in) :: data
type(string_t), intent(out) :: lhapdf_dir, lhapdf_file
integer, intent(out) :: lhapdf_member
lhapdf_dir = data%prefix
lhapdf_file = data%file
lhapdf_member = data%member
end subroutine lhapdf_data_get_public_info
@ %def lhapdf_data_get_public_info
@ Return the number of the member of the data set.
<<LHAPDF: public>>=
public :: lhapdf_data_get_set
<<LHAPDF: procedures>>=
function lhapdf_data_get_set(data) result(set)
type(lhapdf_data_t), intent(in) :: data
integer :: set
set = data%set
end function lhapdf_data_get_set
@ %def lhapdf_data_get_set
@ Output
<<SF lhapdf: lhapdf data: TBP>>=
procedure :: write => lhapdf_data_write
<<SF lhapdf: procedures>>=
subroutine lhapdf_data_write (data, unit, verbose)
class(lhapdf_data_t), intent(in) :: data
integer, intent(in), optional :: unit
logical, intent(in), optional :: verbose
logical :: verb
integer :: u
if (present (verbose)) then
verb = verbose
else
verb = .false.
end if
u = given_output_unit (unit); if (u < 0) return
write (u, "(1x,A)") "LHAPDF data:"
if (data%set /= 0) then
write (u, "(3x,A)", advance="no") "flavor = "
call data%flv_in%write (u); write (u, *)
if (verb) then
write (u, "(3x,A,A)") " prefix = ", char (data%prefix)
else
write (u, "(3x,A,A)") " prefix = ", &
" <empty (non-verbose version)>"
end if
write (u, "(3x,A,A)") " file = ", char (data%file)
write (u, "(3x,A,I3)") " member = ", data%member
write (u, "(3x,A," // FMT_19 // ")") " x(min) = ", data%xmin
write (u, "(3x,A," // FMT_19 // ")") " x(max) = ", data%xmax
write (u, "(3x,A," // FMT_19 // ")") " Q(min) = ", data%qmin
write (u, "(3x,A," // FMT_19 // ")") " Q(max) = ", data%qmax
write (u, "(3x,A,L1)") " invert = ", data%invert
if (data%photon) write (u, "(3x,A,I3)") &
" IP2 (scheme) = ", data%photon_scheme
write (u, "(3x,A,6(1x,L1),1x,A,1x,L1,1x,A,6(1x,L1))") &
" mask = ", &
data%mask(-6:-1), "*", data%mask(0), "*", data%mask(1:6)
write (u, "(3x,A,L1)") " photon mask = ", data%mask_photon
if (data%set == 1) write (u, "(3x,A,L1)") &
" hoppet_b = ", data%hoppet_b_matching
else
write (u, "(3x,A)") "[undefined]"
end if
end subroutine lhapdf_data_write
@ %def lhapdf_data_write
@ The number of parameters is one. We do not generate transverse momentum.
<<SF lhapdf: lhapdf data: TBP>>=
procedure :: get_n_par => lhapdf_data_get_n_par
<<SF lhapdf: procedures>>=
function lhapdf_data_get_n_par (data) result (n)
class(lhapdf_data_t), intent(in) :: data
integer :: n
n = 1
end function lhapdf_data_get_n_par
@ %def lhapdf_data_get_n_par
@ Return the outgoing particle PDG codes. This is based on the mask.
<<SF lhapdf: lhapdf data: TBP>>=
procedure :: get_pdg_out => lhapdf_data_get_pdg_out
<<SF lhapdf: procedures>>=
subroutine lhapdf_data_get_pdg_out (data, pdg_out)
class(lhapdf_data_t), intent(in) :: data
type(pdg_array_t), dimension(:), intent(inout) :: pdg_out
integer, dimension(:), allocatable :: pdg1
integer :: n, np, i
n = count (data%mask)
np = 0; if (data%has_photon .and. data%mask_photon) np = 1
allocate (pdg1 (n + np))
pdg1(1:n) = pack ([(i, i = -6, 6)], data%mask)
if (np == 1) pdg1(n+np) = PHOTON
pdg_out(1) = pdg1
end subroutine lhapdf_data_get_pdg_out
@ %def lhapdf_data_get_pdg_out
@ Allocate the interaction record.
<<SF lhapdf: lhapdf data: TBP>>=
procedure :: allocate_sf_int => lhapdf_data_allocate_sf_int
<<SF lhapdf: procedures>>=
subroutine lhapdf_data_allocate_sf_int (data, sf_int)
class(lhapdf_data_t), intent(in) :: data
class(sf_int_t), intent(inout), allocatable :: sf_int
allocate (lhapdf_t :: sf_int)
end subroutine lhapdf_data_allocate_sf_int
@ %def lhapdf_data_allocate_sf_int
@ Return the numerical PDF set index.
<<SF lhapdf: lhapdf data: TBP>>=
procedure :: get_pdf_set => lhapdf_data_get_pdf_set
<<SF lhapdf: procedures>>=
elemental function lhapdf_data_get_pdf_set (data) result (pdf_set)
class(lhapdf_data_t), intent(in) :: data
integer :: pdf_set
pdf_set = data%set
end function lhapdf_data_get_pdf_set
@ %def lhapdf_data_get_pdf_set
@
\subsection{The LHAPDF object}
The [[lhapdf_t]] data type is a $1\to 2$ interaction which describes
the splitting of an (anti)proton into a parton and a beam remnant. We
stay in the strict forward-splitting limit, but allow some invariant
mass for the beam remnant such that the outgoing parton is exactly
massless. For a real event, we would replace this by a parton
cascade, where the outgoing partons have virtuality as dictated by
parton-shower kinematics, and transverse momentum is generated.
This is the LHAPDF object which holds input data together with the
interaction. We also store the $x$ momentum fraction and the scale,
since kinematics and function value are requested at different times.
The PDF application is a $1\to 2$ splitting process, where the
particles are ordered as (hadron, remnant, parton).
Polarization is ignored completely. The beam particle is colorless,
while partons and beam remnant carry color. The remnant gets a
special flavor code.
<<SF lhapdf: public>>=
public :: lhapdf_t
<<SF lhapdf: types>>=
type, extends (sf_int_t) :: lhapdf_t
type(lhapdf_data_t), pointer :: data => null ()
real(default) :: x = 0
real(default) :: q = 0
real(default) :: s = 0
contains
<<SF lhapdf: lhapdf: TBP>>
end type lhapdf_t
@ %def lhapdf_t
@ Type string: display the chosen PDF set.
<<SF lhapdf: lhapdf: TBP>>=
procedure :: type_string => lhapdf_type_string
<<SF lhapdf: procedures>>=
function lhapdf_type_string (object) result (string)
class(lhapdf_t), intent(in) :: object
type(string_t) :: string
if (associated (object%data)) then
string = "LHAPDF: " // object%data%file
else
string = "LHAPDF: [undefined]"
end if
end function lhapdf_type_string
@ %def lhapdf_type_string
@ Output. Call the interaction routine after displaying the configuration.
<<SF lhapdf: lhapdf: TBP>>=
procedure :: write => lhapdf_write
<<SF lhapdf: procedures>>=
subroutine lhapdf_write (object, unit, testflag)
class(lhapdf_t), intent(in) :: object
integer, intent(in), optional :: unit
logical, intent(in), optional :: testflag
integer :: u
u = given_output_unit (unit)
if (associated (object%data)) then
call object%data%write (u)
if (object%status >= SF_DONE_KINEMATICS) then
write (u, "(1x,A)") "SF parameters:"
write (u, "(3x,A," // FMT_17 // ")") "x =", object%x
if (object%status >= SF_FAILED_EVALUATION) then
write (u, "(3x,A," // FMT_17 // ")") "Q =", object%q
end if
end if
call object%base_write (u, testflag)
else
write (u, "(1x,A)") "LHAPDF data: [undefined]"
end if
end subroutine lhapdf_write
@ %def lhapdf_write
@ Initialize. We know that [[data]] will be of concrete type
[[sf_lhapdf_data_t]], but we have to cast this explicitly.
For this implementation, we set the incoming and outgoing masses equal
to the physical particle mass, but keep the radiated mass zero.
<<SF lhapdf: lhapdf: TBP>>=
procedure :: init => lhapdf_init
<<SF lhapdf: procedures>>=
subroutine lhapdf_init (sf_int, data)
class(lhapdf_t), intent(out) :: sf_int
class(sf_data_t), intent(in), target :: data
type(quantum_numbers_mask_t), dimension(3) :: mask
type(flavor_t) :: flv, flv_remnant
type(color_t) :: col0
type(quantum_numbers_t), dimension(3) :: qn
integer :: i
select type (data)
type is (lhapdf_data_t)
mask = quantum_numbers_mask (.false., .false., .true.)
call col0%init ()
call sf_int%base_init (mask, [0._default], [0._default], [0._default])
sf_int%data => data
do i = -6, 6
if (data%mask(i)) then
call qn(1)%init (data%flv_in, col = col0)
if (i == 0) then
call flv%init (GLUON, data%model)
call flv_remnant%init (HADRON_REMNANT_OCTET, data%model)
else
call flv%init (i, data%model)
call flv_remnant%init &
(sign (HADRON_REMNANT_TRIPLET, -i), data%model)
end if
call qn(2)%init ( &
flv = flv_remnant, col = color_from_flavor (flv_remnant, 1))
call qn(2)%tag_radiated ()
call qn(3)%init ( &
flv = flv, col = color_from_flavor (flv, 1, reverse=.true.))
call sf_int%add_state (qn)
end if
end do
if (data%has_photon .and. data%mask_photon) then
call flv%init (PHOTON, data%model)
call flv_remnant%init (HADRON_REMNANT_SINGLET, data%model)
call qn(2)%init (flv = flv_remnant, &
col = color_from_flavor (flv_remnant, 1))
call qn(2)%tag_radiated ()
call qn(3)%init (flv = flv, &
col = color_from_flavor (flv, 1, reverse=.true.))
call sf_int%add_state (qn)
end if
call sf_int%freeze ()
call sf_int%set_incoming ([1])
call sf_int%set_radiated ([2])
call sf_int%set_outgoing ([3])
sf_int%status = SF_INITIAL
end select
end subroutine lhapdf_init
@ %def lhapdf_init
@
\subsection{Structure function}
We have to cast the LHAPDF arguments to/from double precision (possibly
from/to extended/quadruple precision), if necessary. Furthermore,
some structure functions can yield negative results (sea quarks close
to $x=1$). We set these unphysical values to zero.
<<SF lhapdf: lhapdf: TBP>>=
procedure :: apply => lhapdf_apply
<<SF lhapdf: procedures>>=
subroutine lhapdf_apply (sf_int, scale, rescale, i_sub, fill_sub)
class(lhapdf_t), intent(inout) :: sf_int
real(default), intent(in) :: scale
class(sf_rescale_t), intent(in), optional :: rescale
integer, intent(in), optional :: i_sub
logical, intent(in), optional :: fill_sub
real(default) :: x, s
double precision :: xx, qq, ss
double precision, dimension(-6:6) :: ff
double precision :: fphot
complex(default), dimension(:), allocatable :: fc
integer :: i, i_sub_opt, j_sub
logical :: fill_sub_opt
external :: evolvePDFM, evolvePDFpM
i_sub_opt = 0; if (present (i_sub)) i_sub_opt = i_sub
fill_sub_opt = .false.; if (present (fill_sub)) fill_sub_opt = fill_sub
if (present (rescale) .and. fill_sub_opt) then
call msg_bug ("[lhapdf_apply] &
& sf_rescale and fill_sub option are mutually exclusive.")
end if
if (i_sub_opt > 0 .and. fill_sub_opt) then
call msg_bug ("[lhapdf_apply] &
& i_sub and fill_sub options are mutually exclusive.")
end if
associate (data => sf_int%data)
sf_int%q = scale
x = sf_int%x
if (present (rescale)) call rescale%apply (x)
s = sf_int%s
xx = x
if (debug2_active (D_BEAMS)) then
call msg_debug2 (D_BEAMS, "lhapdf_apply")
call msg_debug2 (D_BEAMS, "rescale: ", present(rescale))
call msg_debug2 (D_BEAMS, "i_sub: ", i_sub_opt)
call msg_debug2 (D_BEAMS, "fill_sub: ", fill_sub_opt)
call msg_debug2 (D_BEAMS, "x: ", x)
end if
qq = min (data%qmax, scale)
qq = max (data%qmin, qq)
if (.not. data% photon) then
if (data%invert) then
if (data%has_photon) then
if (LHAPDF5_AVAILABLE) then
call evolvePDFphotonM &
(data% set, xx, qq, ff(6:-6:-1), fphot)
else if (LHAPDF6_AVAILABLE) then
call data%pdf%evolve_pdfphotonm &
(xx, qq, ff(6:-6:-1), fphot)
end if
else
if (data%hoppet_b_matching) then
call hoppet_eval (xx, qq, ff(6:-6:-1))
else
if (LHAPDF5_AVAILABLE) then
call evolvePDFM (data% set, xx, qq, ff(6:-6:-1))
else if (LHAPDF6_AVAILABLE) then
call data%pdf%evolve_pdfm (xx, qq, ff(6:-6:-1))
end if
end if
end if
else
if (data%has_photon) then
if (LHAPDF5_AVAILABLE) then
call evolvePDFphotonM (data% set, xx, qq, ff, fphot)
else if (LHAPDF6_AVAILABLE) then
call data%pdf%evolve_pdfphotonm (xx, qq, ff, fphot)
end if
else
if (data%hoppet_b_matching) then
call hoppet_eval (xx, qq, ff)
else
if (LHAPDF5_AVAILABLE) then
call evolvePDFM (data% set, xx, qq, ff)
else if (LHAPDF6_AVAILABLE) then
call data%pdf%evolve_pdfm (xx, qq, ff)
end if
end if
end if
end if
else
ss = s
if (LHAPDF5_AVAILABLE) then
call evolvePDFpM (data% set, xx, qq, &
ss, data% photon_scheme, ff)
else if (LHAPDF6_AVAILABLE) then
call data%pdf%evolve_pdfpm (xx, qq, ss, &
data%photon_scheme, ff)
end if
end if
if (data%has_photon) then
allocate (fc (count ([data%mask, data%mask_photon])))
fc = max (pack ([ff, fphot] / x, &
[data% mask, data%mask_photon]), 0._default)
else
allocate (fc (count (data%mask)))
fc = max (pack (ff / x, data%mask), 0._default)
end if
end associate
if (debug_active (D_BEAMS)) print *, 'Set pdfs: ', real (fc)
if (present (rescale) .and. i_sub_opt > 0) then
call sf_int%set_matrix_element (fc, [(i_sub_opt * size(fc) + i, i = 1, size(fc))])
if (rescale%has_gluons ()) then
j_sub = i_sub_opt + n_beam_gluon_offset
call sf_int%set_matrix_element (&
spread (fc(7), 1, size(fc)), [(j_sub * size(fc) + i, i = 1, size(fc))])
end if
else
call sf_int%set_matrix_element (fc, [(i, i = 1, size(fc))])
end if
if(fill_sub_opt) then
do j_sub = 1, sf_int%get_n_sub ()
call sf_int%set_matrix_element (fc, [(j_sub * size(fc) + i, i = 1, size(fc))])
end do
end if
sf_int%status = SF_EVALUATED
end subroutine lhapdf_apply
@ %def apply_lhapdf
@
\subsection{Strong Coupling}
Since the PDF codes provide a function for computing the running
$\alpha_s$ value, we make this available as an implementation of the
abstract [[alpha_qcd_t]] type, which is used for matrix element evaluation.
<<SF lhapdf: public>>=
public :: alpha_qcd_lhapdf_t
<<SF lhapdf: types>>=
type, extends (alpha_qcd_t) :: alpha_qcd_lhapdf_t
type(string_t) :: pdfset_dir
type(string_t) :: pdfset_file
integer :: pdfset_member = -1
type(lhapdf_pdf_t) :: pdf
contains
<<SF lhapdf: alpha qcd: TBP>>
end type alpha_qcd_lhapdf_t
@ %def alpha_qcd_lhapdf_t
@ Output. As in earlier versions we leave the LHAPDF path out.
<<SF lhapdf: alpha qcd: TBP>>=
procedure :: write => alpha_qcd_lhapdf_write
<<SF lhapdf: procedures>>=
subroutine alpha_qcd_lhapdf_write (object, unit)
class(alpha_qcd_lhapdf_t), intent(in) :: object
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit)
write (u, "(3x,A)") "QCD parameters (lhapdf):"
write (u, "(5x,A,A)") "PDF set = ", char (object%pdfset_file)
write (u, "(5x,A,I0)") "PDF member = ", object%pdfset_member
end subroutine alpha_qcd_lhapdf_write
@ %def alpha_qcd_lhapdf_write
@ Calculation: the numeric member ID selects the correct PDF set, which must
be properly initialized.
<<SF lhapdf: interfaces>>=
interface
double precision function alphasPDF (Q)
double precision, intent(in) :: Q
end function alphasPDF
end interface
@ %def alphasPDF
@
<<SF lhapdf: alpha qcd: TBP>>=
procedure :: get => alpha_qcd_lhapdf_get
<<SF lhapdf: procedures>>=
function alpha_qcd_lhapdf_get (alpha_qcd, scale) result (alpha)
class(alpha_qcd_lhapdf_t), intent(in) :: alpha_qcd
real(default), intent(in) :: scale
real(default) :: alpha
if (LHAPDF5_AVAILABLE) then
alpha = alphasPDF (dble (scale))
else if (LHAPDF6_AVAILABLE) then
alpha = alpha_qcd%pdf%alphas_pdf (dble (scale))
end if
end function alpha_qcd_lhapdf_get
@ %def alpha_qcd_lhapdf_get
@
Initialization. We need to access the (quasi-global) initialization status.
<<SF lhapdf: alpha qcd: TBP>>=
procedure :: init => alpha_qcd_lhapdf_init
<<SF lhapdf: procedures>>=
subroutine alpha_qcd_lhapdf_init (alpha_qcd, file, member, path)
class(alpha_qcd_lhapdf_t), intent(out) :: alpha_qcd
type(string_t), intent(inout) :: file
integer, intent(inout) :: member
type(string_t), intent(inout) :: path
alpha_qcd%pdfset_file = file
alpha_qcd%pdfset_member = member
if (alpha_qcd%pdfset_member < 0) &
call msg_fatal ("QCD parameter initialization: PDF set " &
// char (file) // " is unknown")
if (LHAPDF5_AVAILABLE) then
call lhapdf_initialize (1, path, file, member)
else if (LHAPDF6_AVAILABLE) then
call lhapdf_initialize &
(1, path, file, member, alpha_qcd%pdf)
end if
end subroutine alpha_qcd_lhapdf_init
@ %def alpha_qcd_lhapdf_init
@
\subsection{Unit tests}
Test module, followed by the corresponding implementation module.
<<[[sf_lhapdf_ut.f90]]>>=
<<File header>>
module sf_lhapdf_ut
use unit_tests
use system_dependencies, only: LHAPDF5_AVAILABLE
use system_dependencies, only: LHAPDF6_AVAILABLE
use sf_lhapdf_uti
<<Standard module head>>
<<SF lhapdf: public test>>
contains
<<SF lhapdf: test driver>>
end module sf_lhapdf_ut
@ %def sf_lhapdf_ut
@
<<[[sf_lhapdf_uti.f90]]>>=
<<File header>>
module sf_lhapdf_uti
<<Use kinds>>
<<Use strings>>
use system_dependencies, only: LHAPDF5_AVAILABLE
use system_dependencies, only: LHAPDF6_AVAILABLE
use os_interface
use physics_defs, only: PROTON
use sm_qcd
use lorentz
use pdg_arrays
use flavors
use interactions, only: reset_interaction_counter
use model_data
use sf_base
use sf_lhapdf
<<Standard module head>>
<<SF lhapdf: test declarations>>
contains
<<SF lhapdf: tests>>
end module sf_lhapdf_uti
@ %def sf_lhapdf_ut
@ API: driver for the unit tests below.
<<SF lhapdf: public test>>=
public :: sf_lhapdf_test
<<SF lhapdf: test driver>>=
subroutine sf_lhapdf_test (u, results)
integer, intent(in) :: u
type(test_results_t), intent(inout) :: results
<<SF lhapdf: execute tests>>
end subroutine sf_lhapdf_test
@ %def sf_lhapdf_test
@
\subsubsection{Test structure function data}
Construct and display a test structure function data object.
<<SF lhapdf: execute tests>>=
if (LHAPDF5_AVAILABLE) then
call test (sf_lhapdf_1, "sf_lhapdf5_1", &
"structure function configuration", &
u, results)
else if (LHAPDF6_AVAILABLE) then
call test (sf_lhapdf_1, "sf_lhapdf6_1", &
"structure function configuration", &
u, results)
end if
<<SF lhapdf: test declarations>>=
public :: sf_lhapdf_1
<<SF lhapdf: tests>>=
subroutine sf_lhapdf_1 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(pdg_array_t) :: pdg_in
type(pdg_array_t), dimension(1) :: pdg_out
integer, dimension(:), allocatable :: pdg1
class(sf_data_t), allocatable :: data
write (u, "(A)") "* Test output: sf_lhapdf_1"
write (u, "(A)") "* Purpose: initialize and display &
&test structure function data"
write (u, "(A)")
write (u, "(A)") "* Create empty data object"
write (u, "(A)")
call model%init_sm_test ()
pdg_in = PROTON
allocate (lhapdf_data_t :: data)
call data%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize"
write (u, "(A)")
select type (data)
type is (lhapdf_data_t)
call data%init (model, pdg_in)
end select
call data%write (u)
write (u, "(A)")
write (u, "(1x,A)") "Outgoing particle codes:"
call data%get_pdg_out (pdg_out)
pdg1 = pdg_out(1)
write (u, "(2x,99(1x,I0))") pdg1
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_lhapdf_1"
end subroutine sf_lhapdf_1
@ %def sf_lhapdf_1
@
\subsubsection{Test and probe structure function}
Construct and display a structure function object based on the PDF builtin
structure function.
<<SF lhapdf: execute tests>>=
if (LHAPDF5_AVAILABLE) then
call test (sf_lhapdf_2, "sf_lhapdf5_2", &
"structure function instance", &
u, results)
else if (LHAPDF6_AVAILABLE) then
call test (sf_lhapdf_2, "sf_lhapdf6_2", &
"structure function instance", &
u, results)
end if
<<SF lhapdf: test declarations>>=
public :: sf_lhapdf_2
<<SF lhapdf: tests>>=
subroutine sf_lhapdf_2 (u)
integer, intent(in) :: u
type(model_data_t), target :: model
type(flavor_t) :: flv
type(pdg_array_t) :: pdg_in
class(sf_data_t), allocatable, target :: data
class(sf_int_t), allocatable :: sf_int
type(vector4_t) :: k
type(vector4_t), dimension(2) :: q
real(default) :: E
real(default), dimension(:), allocatable :: r, rb, x, xb
real(default) :: f
write (u, "(A)") "* Test output: sf_lhapdf_2"
write (u, "(A)") "* Purpose: initialize and fill &
&test structure function object"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call model%init_sm_test ()
call flv%init (PROTON, model)
pdg_in = PROTON
call lhapdf_global_reset ()
call reset_interaction_counter ()
allocate (lhapdf_data_t :: data)
select type (data)
type is (lhapdf_data_t)
call data%init (model, pdg_in)
end select
write (u, "(A)") "* Initialize structure-function object"
write (u, "(A)")
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%write (u)
write (u, "(A)")
write (u, "(A)") "* Initialize incoming momentum with E=500"
write (u, "(A)")
E = 500
k = vector4_moving (E, sqrt (E**2 - flv%get_mass ()**2), 3)
call vector4_write (k, u)
call sf_int%seed_kinematics ([k])
write (u, "(A)")
write (u, "(A)") "* Set kinematics for x=0.5"
write (u, "(A)")
allocate (r (data%get_n_par ()))
allocate (rb(size (r)))
allocate (x (size (r)))
allocate (xb(size (r)))
r = 0.5_default
rb = 1 - r
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%write (u)
write (u, "(A)")
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A,9(1x,F10.7))") "f =", f
write (u, "(A)")
write (u, "(A)") "* Recover x from momenta"
write (u, "(A)")
q = sf_int%get_momenta (outgoing=.true.)
call sf_int%final ()
deallocate (sf_int)
call data%allocate_sf_int (sf_int)
call sf_int%init (data)
call sf_int%set_beam_index ([1])
call sf_int%seed_kinematics ([k])
call sf_int%set_momenta (q, outgoing=.true.)
call sf_int%recover_x (x, xb)
write (u, "(A,9(1x,F10.7))") "x =", x
write (u, "(A,9(1x,F10.7))") "xb=", xb
write (u, "(A)")
write (u, "(A)") "* Evaluate for Q = 100 GeV"
write (u, "(A)")
call sf_int%complete_kinematics (x, xb, f, r, rb, map=.false.)
call sf_int%apply (scale = 100._default)
call sf_int%write (u, testflag = .true.)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
call sf_int%final ()
call model%final ()
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_lhapdf_2"
end subroutine sf_lhapdf_2
@ %def sf_lhapdf_2
@
\subsubsection{Strong Coupling}
Test $\alpha_s$ as an implementation of the [[alpha_qcd_t]] abstract
type.
<<SF lhapdf: execute tests>>=
if (LHAPDF5_AVAILABLE) then
call test (sf_lhapdf_3, "sf_lhapdf5_3", &
"running alpha_s", &
u, results)
else if (LHAPDF6_AVAILABLE) then
call test (sf_lhapdf_3, "sf_lhapdf6_3", &
"running alpha_s", &
u, results)
end if
<<SF lhapdf: test declarations>>=
public :: sf_lhapdf_3
<<SF lhapdf: tests>>=
subroutine sf_lhapdf_3 (u)
integer, intent(in) :: u
type(qcd_t) :: qcd
type(string_t) :: name, path
integer :: member
write (u, "(A)") "* Test output: sf_lhapdf_3"
write (u, "(A)") "* Purpose: initialize and evaluate alpha_s"
write (u, "(A)")
write (u, "(A)") "* Initialize configuration data"
write (u, "(A)")
call lhapdf_global_reset ()
if (LHAPDF5_AVAILABLE) then
name = "cteq6ll.LHpdf"
member = 1
path = ""
else if (LHAPDF6_AVAILABLE) then
name = "CT10"
member = 1
path = ""
end if
write (u, "(A)") "* Initialize qcd object"
write (u, "(A)")
allocate (alpha_qcd_lhapdf_t :: qcd%alpha)
select type (alpha => qcd%alpha)
type is (alpha_qcd_lhapdf_t)
call alpha%init (name, member, path)
end select
call qcd%write (u)
write (u, "(A)")
write (u, "(A)") "* Evaluate for Q = 100"
write (u, "(A)")
write (u, "(1x,A,F8.5)") "alpha = ", qcd%alpha%get (100._default)
write (u, "(A)")
write (u, "(A)") "* Cleanup"
write (u, "(A)")
write (u, "(A)") "* Test output end: sf_lhapdf_3"
end subroutine sf_lhapdf_3
@ %def sf_lhapdf_3
@
\section{Easy PDF Access}
For the shower, subtraction and matching, it is very useful to have
direct access to $f(x,Q)$ independently of the used library.
<<[[pdf.f90]]>>=
<<File header>>
module pdf
<<Use kinds with double>>
use io_units
use system_dependencies, only: LHAPDF5_AVAILABLE, LHAPDF6_AVAILABLE
use diagnostics
use beam_structures
use lhapdf !NODEP!
use pdf_builtin !NODEP!
<<Standard module head>>
<<PDF: public>>
<<PDF: parameters>>
<<PDF: types>>
contains
<<PDF: procedures>>
end module pdf
@ %def pdf
We support the following implementations:
<<PDF: parameters>>=
integer, parameter, public :: STRF_NONE = 0
integer, parameter, public :: STRF_LHAPDF6 = 1
integer, parameter, public :: STRF_LHAPDF5 = 2
integer, parameter, public :: STRF_PDF_BUILTIN = 3
@ %def STRF_NONE STRF_LHAPDF6 STRF_LHAPDF5 STRF_PDF_BUILTIN
@ A container to bundle all necessary PDF data. Could be moved to a more
central location.
<<PDF: public>>=
public :: pdf_data_t
<<PDF: types>>=
type :: pdf_data_t
type(lhapdf_pdf_t) :: pdf
real(default) :: xmin, xmax, qmin, qmax
integer :: type = STRF_NONE
integer :: set = 0
contains
<<PDF: pdf data: TBP>>
end type pdf_data_t
@ %def pdf_data
@
<<PDF: pdf data: TBP>>=
procedure :: init => pdf_data_init
<<PDF: procedures>>=
subroutine pdf_data_init (pdf_data, pdf_data_in)
class(pdf_data_t), intent(out) :: pdf_data
type(pdf_data_t), target, intent(in) :: pdf_data_in
pdf_data%xmin = pdf_data_in%xmin
pdf_data%xmax = pdf_data_in%xmax
pdf_data%qmin = pdf_data_in%qmin
pdf_data%qmax = pdf_data_in%qmax
pdf_data%set = pdf_data_in%set
pdf_data%type = pdf_data_in%type
if (pdf_data%type == STRF_LHAPDF6) then
if (pdf_data_in%pdf%is_associated ()) then
call lhapdf_copy_pointer (pdf_data_in%pdf, pdf_data%pdf)
else
call msg_bug ('pdf_data_init: pdf_data%pdf was not associated!')
end if
end if
end subroutine pdf_data_init
@ %def pdf_data_init
@
<<PDF: pdf data: TBP>>=
procedure :: write => pdf_data_write
<<PDF: procedures>>=
subroutine pdf_data_write (pdf_data, unit)
class(pdf_data_t), intent(in) :: pdf_data
integer, intent(in), optional :: unit
integer :: u
u = given_output_unit (unit); if (u < 0) return
write (u, "(3x,A,I0)") "PDF set = ", pdf_data%set
write (u, "(3x,A,I0)") "PDF type = ", pdf_data%type
end subroutine pdf_data_write
@ %def pdf_data_write
@
<<PDF: pdf data: TBP>>=
procedure :: setup => pdf_data_setup
<<PDF: procedures>>=
subroutine pdf_data_setup (pdf_data, caller, beam_structure, lhapdf_member, set)
class(pdf_data_t), intent(inout) :: pdf_data
character(len=*), intent(in) :: caller
type(beam_structure_t), intent(in) :: beam_structure
integer, intent(in) :: lhapdf_member, set
real(default) :: xmin, xmax, q2min, q2max
pdf_data%set = set
if (beam_structure%contains ("lhapdf")) then
if (LHAPDF6_AVAILABLE) then
pdf_data%type = STRF_LHAPDF6
else if (LHAPDF5_AVAILABLE) then
pdf_data%type = STRF_LHAPDF5
end if
write (msg_buffer, "(A,I0)") caller &
// ": interfacing LHAPDF set #", pdf_data%set
call msg_message ()
else if (beam_structure%contains ("pdf_builtin")) then
pdf_data%type = STRF_PDF_BUILTIN
write (msg_buffer, "(A,I0)") caller &
// ": interfacing PDF builtin set #", pdf_data%set
call msg_message ()
end if
select case (pdf_data%type)
case (STRF_LHAPDF6)
pdf_data%xmin = pdf_data%pdf%getxmin ()
pdf_data%xmax = pdf_data%pdf%getxmax ()
pdf_data%qmin = sqrt(pdf_data%pdf%getq2min ())
pdf_data%qmax = sqrt(pdf_data%pdf%getq2max ())
case (STRF_LHAPDF5)
call GetXminM (1, lhapdf_member, xmin)
call GetXmaxM (1, lhapdf_member, xmax)
call GetQ2minM (1, lhapdf_member, q2min)
call GetQ2maxM (1, lhapdf_member, q2max)
pdf_data%xmin = xmin
pdf_data%xmax = xmax
pdf_data%qmin = sqrt(q2min)
pdf_data%qmax = sqrt(q2max)
end select
end subroutine pdf_data_setup
@ %def pdf_data_setup
@ This could be overloaded with a version that only asks for a specific
flavor as it is supported by LHAPDF6.
<<PDF: pdf data: TBP>>=
procedure :: evolve => pdf_data_evolve
<<PDF: procedures>>=
subroutine pdf_data_evolve (pdf_data, x, q_in, f)
class(pdf_data_t), intent(inout) :: pdf_data
real(double), intent(in) :: x, q_in
real(double), dimension(-6:6), intent(out) :: f
real(double) :: q
select case (pdf_data%type)
case (STRF_PDF_BUILTIN)
call pdf_evolve_LHAPDF (pdf_data%set, x, q_in, f)
case (STRF_LHAPDF6)
q = min (pdf_data%qmax, q_in)
q = max (pdf_data%qmin, q)
call pdf_data%pdf%evolve_pdfm (x, q, f)
case (STRF_LHAPDF5)
q = min (pdf_data%qmax, q_in)
q = max (pdf_data%qmin, q)
call evolvePDFM (pdf_data%set, x, q, f)
case default
call msg_fatal ("PDF function: unknown PDF method.")
end select
end subroutine pdf_data_evolve
@ %def pdf_data_evolve
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Dispatch}
@
<<[[dispatch_beams.f90]]>>=
<<File header>>
module dispatch_beams
<<Use kinds>>
<<Use strings>>
use diagnostics
use os_interface, only: os_data_t
use variables, only: var_list_t
use constants, only: PI
use numeric_utils, only: vanishes
use physics_defs, only: PHOTON
use rng_base, only: rng_factory_t
use pdg_arrays
use model_data, only: model_data_t
use dispatch_rng, only: dispatch_rng_factory
use dispatch_rng, only: update_rng_seed_in_var_list
use flavors, only: flavor_t
use sm_qcd, only: qcd_t, alpha_qcd_fixed_t, alpha_qcd_from_scale_t
use sm_qcd, only: alpha_qcd_from_lambda_t
use physics_defs, only: MZ_REF, ALPHA_QCD_MZ_REF
use beam_structures
use sf_base
use sf_mappings
use sf_isr
use sf_epa
use sf_ewa
use sf_escan
use sf_gaussian
use sf_beam_events
use sf_circe1
use sf_circe2
use sf_pdf_builtin
use sf_lhapdf
<<Standard module head>>
<<Dispatch beams: public>>
<<Dispatch beams: types>>
<<Dispatch beams: variables>>
contains
<<Dispatch beams: procedures>>
end module dispatch_beams
@ %def dispatch_beams
@ This data type is a container for transferring structure-function
specific data from the [[dispatch_sf_data]] to the
[[dispatch_sf_channels]] subroutine.
<<Dispatch beams: public>>=
public :: sf_prop_t
<<Dispatch beams: types>>=
type :: sf_prop_t
real(default), dimension(2) :: isr_eps = 1
end type sf_prop_t
@ %def sf_prop_t
@
Allocate a structure-function configuration object according to the
[[sf_method]] string.
The [[sf_prop]] object can be used to transfer structure-function
specific data up and to the [[dispatch_sf_channels]] subroutine below,
so they can be used for particular mappings.
The [[var_list_global]] object is used for the RNG generator seed.
It is intent(inout) because the RNG generator seed
may change during initialization.
The [[pdg_in]] array is the array of incoming flavors, corresponding
to the upstream structure function or the beam array. This will be
checked for the structure function in question and replaced by the
outgoing flavors. The [[pdg_prc]] array is the array of incoming
flavors (beam index, component index) for the hard process.
<<Dispatch beams: public>>=
public :: dispatch_sf_data
<<Dispatch beams: procedures>>=
subroutine dispatch_sf_data (data, sf_method, i_beam, sf_prop, &
var_list, var_list_global, model, &
os_data, sqrts, pdg_in, pdg_prc, polarized)
class(sf_data_t), allocatable, intent(inout) :: data
type(string_t), intent(in) :: sf_method
integer, dimension(:), intent(in) :: i_beam
type(pdg_array_t), dimension(:), intent(inout) :: pdg_in
type(pdg_array_t), dimension(:,:), intent(in) :: pdg_prc
type(sf_prop_t), intent(inout) :: sf_prop
type(var_list_t), intent(in) :: var_list
type(var_list_t), intent(inout) :: var_list_global
integer :: next_rng_seed
class(model_data_t), target, intent(in) :: model
type(os_data_t), intent(in) :: os_data
real(default), intent(in) :: sqrts
logical, intent(in) :: polarized
type(pdg_array_t), dimension(:), allocatable :: pdg_out
real(default) :: isr_alpha, isr_q_max, isr_mass
integer :: isr_order
logical :: isr_recoil, isr_keep_energy
real(default) :: epa_alpha, epa_x_min, epa_q_min, epa_e_max, epa_mass
logical :: epa_recoil, epa_keep_energy
real(default) :: ewa_x_min, ewa_pt_max, ewa_mass
logical :: ewa_recoil, ewa_keep_energy
type(pdg_array_t), dimension(:), allocatable :: pdg_prc1
integer :: ewa_id
type(string_t) :: pdf_name
type(string_t) :: lhapdf_dir, lhapdf_file
type(string_t), dimension(13) :: lhapdf_photon_sets
integer :: lhapdf_member, lhapdf_photon_scheme
logical :: hoppet_b_matching
class(rng_factory_t), allocatable :: rng_factory
logical :: circe1_photon1, circe1_photon2, circe1_generate, &
circe1_with_radiation
real(default) :: circe1_sqrts, circe1_eps
integer :: circe1_version, circe1_chattiness, &
circe1_revision
character(6) :: circe1_accelerator
logical :: circe2_polarized
type(string_t) :: circe2_design, circe2_file
real(default), dimension(2) :: gaussian_spread
logical :: beam_events_warn_eof
type(string_t) :: beam_events_dir, beam_events_file
logical :: escan_normalize
integer :: i
lhapdf_photon_sets = [var_str ("DOG0.LHgrid"), var_str ("DOG1.LHgrid"), &
var_str ("DGG.LHgrid"), var_str ("LACG.LHgrid"), &
var_str ("GSG0.LHgrid"), var_str ("GSG1.LHgrid"), &
var_str ("GSG960.LHgrid"), var_str ("GSG961.LHgrid"), &
var_str ("GRVG0.LHgrid"), var_str ("GRVG1.LHgrid"), &
var_str ("ACFGPG.LHgrid"), var_str ("WHITG.LHgrid"), &
var_str ("SASG.LHgrid")]
select case (char (sf_method))
case ("pdf_builtin")
allocate (pdf_builtin_data_t :: data)
select type (data)
type is (pdf_builtin_data_t)
pdf_name = &
var_list%get_sval (var_str ("$pdf_builtin_set"))
hoppet_b_matching = &
var_list%get_lval (var_str ("?hoppet_b_matching"))
call data%init ( &
model, pdg_in(i_beam(1)), &
name = pdf_name, &
path = os_data%pdf_builtin_datapath, &
hoppet_b_matching = hoppet_b_matching)
end select
case ("pdf_builtin_photon")
call msg_fatal ("Currently, there are no photon PDFs built into WHIZARD,", &
[var_str ("for the photon content inside a proton or neutron use"), &
var_str ("the 'lhapdf_photon' structure function.")])
case ("lhapdf")
allocate (lhapdf_data_t :: data)
if (pdg_array_get (pdg_in(i_beam(1)), 1) == PHOTON) then
call msg_fatal ("The 'lhapdf' structure is intended only for protons and", &
[var_str ("pions, please use 'lhapdf_photon' for photon beams.")])
end if
lhapdf_dir = &
var_list%get_sval (var_str ("$lhapdf_dir"))
lhapdf_file = &
var_list%get_sval (var_str ("$lhapdf_file"))
lhapdf_member = &
var_list%get_ival (var_str ("lhapdf_member"))
lhapdf_photon_scheme = &
var_list%get_ival (var_str ("lhapdf_photon_scheme"))
hoppet_b_matching = &
var_list%get_lval (var_str ("?hoppet_b_matching"))
select type (data)
type is (lhapdf_data_t)
call data%init &
(model, pdg_in(i_beam(1)), &
lhapdf_dir, lhapdf_file, lhapdf_member, &
lhapdf_photon_scheme, hoppet_b_matching)
end select
case ("lhapdf_photon")
allocate (lhapdf_data_t :: data)
if (pdg_array_get_length (pdg_in(i_beam(1))) /= 1 .or. &
pdg_array_get (pdg_in(i_beam(1)), 1) /= PHOTON) then
call msg_fatal ("The 'lhapdf_photon' structure function is exclusively for", &
[var_str ("photon PDFs, i.e. for photons as beam particles")])
end if
lhapdf_dir = &
var_list%get_sval (var_str ("$lhapdf_dir"))
lhapdf_file = &
var_list%get_sval (var_str ("$lhapdf_photon_file"))
lhapdf_member = &
var_list%get_ival (var_str ("lhapdf_member"))
lhapdf_photon_scheme = &
var_list%get_ival (var_str ("lhapdf_photon_scheme"))
if (.not. any (lhapdf_photon_sets == lhapdf_file)) then
call msg_fatal ("This PDF set is not supported or not " // &
"intended for photon beams.")
end if
select type (data)
type is (lhapdf_data_t)
call data%init &
(model, pdg_in(i_beam(1)), &
lhapdf_dir, lhapdf_file, lhapdf_member, &
lhapdf_photon_scheme)
end select
case ("isr")
allocate (isr_data_t :: data)
isr_alpha = &
var_list%get_rval (var_str ("isr_alpha"))
if (vanishes (isr_alpha)) then
isr_alpha = (var_list%get_rval (var_str ("ee"))) &
** 2 / (4 * PI)
end if
isr_q_max = &
var_list%get_rval (var_str ("isr_q_max"))
if (vanishes (isr_q_max)) then
isr_q_max = sqrts
end if
isr_mass = var_list%get_rval (var_str ("isr_mass"))
isr_order = var_list%get_ival (var_str ("isr_order"))
isr_recoil = var_list%get_lval (var_str ("?isr_recoil"))
isr_keep_energy = var_list%get_lval (var_str ("?isr_keep_energy"))
select type (data)
type is (isr_data_t)
call data%init &
(model, pdg_in (i_beam(1)), isr_alpha, isr_q_max, &
isr_mass, isr_order, recoil = isr_recoil, keep_energy = &
isr_keep_energy)
call data%check ()
sf_prop%isr_eps(i_beam(1)) = data%get_eps ()
end select
case ("epa")
allocate (epa_data_t :: data)
epa_alpha = var_list%get_rval (var_str ("epa_alpha"))
if (vanishes (epa_alpha)) then
epa_alpha = (var_list%get_rval (var_str ("ee"))) &
** 2 / (4 * PI)
end if
epa_x_min = var_list%get_rval (var_str ("epa_x_min"))
epa_q_min = var_list%get_rval (var_str ("epa_q_min"))
epa_e_max = var_list%get_rval (var_str ("epa_e_max"))
if (vanishes (epa_e_max)) then
epa_e_max = sqrts
end if
epa_mass = var_list%get_rval (var_str ("epa_mass"))
epa_recoil = var_list%get_lval (var_str ("?epa_recoil"))
epa_keep_energy = var_list%get_lval (var_str ("?epa_keep_energy"))
select type (data)
type is (epa_data_t)
call data%init &
(model, pdg_in (i_beam(1)), epa_alpha, epa_x_min, &
epa_q_min, epa_e_max, epa_mass, recoil = epa_recoil, &
keep_energy = epa_keep_energy)
call data%check ()
end select
case ("ewa")
allocate (ewa_data_t :: data)
allocate (pdg_prc1 (size (pdg_prc, 2)))
pdg_prc1 = pdg_prc(i_beam(1),:)
if (any (pdg_array_get_length (pdg_prc1) /= 1) &
.or. any (pdg_prc1 /= pdg_prc1(1))) then
call msg_fatal &
("EWA: process incoming particle (W/Z) must be unique")
end if
ewa_id = abs (pdg_array_get (pdg_prc1(1), 1))
ewa_x_min = var_list%get_rval (var_str ("ewa_x_min"))
ewa_pt_max = var_list%get_rval (var_str ("ewa_pt_max"))
if (vanishes (ewa_pt_max)) then
ewa_pt_max = sqrts
end if
ewa_mass = var_list%get_rval (var_str ("ewa_mass"))
ewa_recoil = var_list%get_lval (&
var_str ("?ewa_recoil"))
ewa_keep_energy = var_list%get_lval (&
var_str ("?ewa_keep_energy"))
select type (data)
type is (ewa_data_t)
call data%init &
(model, pdg_in (i_beam(1)), ewa_x_min, &
ewa_pt_max, sqrts, ewa_recoil, &
ewa_keep_energy, ewa_mass)
call data%set_id (ewa_id)
call data%check ()
end select
case ("circe1")
allocate (circe1_data_t :: data)
select type (data)
type is (circe1_data_t)
circe1_photon1 = &
var_list%get_lval (var_str ("?circe1_photon1"))
circe1_photon2 = &
var_list%get_lval (var_str ("?circe1_photon2"))
circe1_sqrts = &
var_list%get_rval (var_str ("circe1_sqrts"))
circe1_eps = &
var_list%get_rval (var_str ("circe1_eps"))
if (circe1_sqrts <= 0) circe1_sqrts = sqrts
circe1_generate = &
var_list%get_lval (var_str ("?circe1_generate"))
circe1_version = &
var_list%get_ival (var_str ("circe1_ver"))
circe1_revision = &
var_list%get_ival (var_str ("circe1_rev"))
circe1_accelerator = &
char (var_list%get_sval (var_str ("$circe1_acc")))
circe1_chattiness = &
var_list%get_ival (var_str ("circe1_chat"))
circe1_with_radiation = &
var_list%get_lval (var_str ("?circe1_with_radiation"))
call data%init (model, pdg_in, circe1_sqrts, circe1_eps, &
[circe1_photon1, circe1_photon2], &
circe1_version, circe1_revision, circe1_accelerator, &
circe1_chattiness, circe1_with_radiation)
if (circe1_generate) then
call msg_message ("CIRCE1: activating generator mode")
call dispatch_rng_factory &
(rng_factory, var_list_global, next_rng_seed)
call update_rng_seed_in_var_list (var_list_global, next_rng_seed)
call data%set_generator_mode (rng_factory)
end if
end select
case ("circe2")
allocate (circe2_data_t :: data)
select type (data)
type is (circe2_data_t)
circe2_polarized = &
var_list%get_lval (var_str ("?circe2_polarized"))
circe2_file = &
var_list%get_sval (var_str ("$circe2_file"))
circe2_design = &
var_list%get_sval (var_str ("$circe2_design"))
call data%init (os_data, model, pdg_in, sqrts, &
circe2_polarized, polarized, circe2_file, circe2_design)
call msg_message ("CIRCE2: activating generator mode")
call dispatch_rng_factory &
(rng_factory, var_list_global, next_rng_seed)
call update_rng_seed_in_var_list (var_list_global, next_rng_seed)
call data%set_generator_mode (rng_factory)
end select
case ("gaussian")
allocate (gaussian_data_t :: data)
select type (data)
type is (gaussian_data_t)
gaussian_spread = &
[var_list%get_rval (var_str ("gaussian_spread1")), &
var_list%get_rval (var_str ("gaussian_spread2"))]
call dispatch_rng_factory &
(rng_factory, var_list_global, next_rng_seed)
call update_rng_seed_in_var_list (var_list_global, next_rng_seed)
call data%init (model, pdg_in, gaussian_spread, rng_factory)
end select
case ("beam_events")
allocate (beam_events_data_t :: data)
select type (data)
type is (beam_events_data_t)
beam_events_dir = os_data%whizard_beamsimpath
beam_events_file = var_list%get_sval (&
var_str ("$beam_events_file"))
beam_events_warn_eof = var_list%get_lval (&
var_str ("?beam_events_warn_eof"))
call data%init (model, pdg_in, &
beam_events_dir, beam_events_file, beam_events_warn_eof)
end select
case ("energy_scan")
escan_normalize = &
var_list%get_lval (var_str ("?energy_scan_normalize"))
allocate (escan_data_t :: data)
select type (data)
type is (escan_data_t)
if (escan_normalize) then
call data%init (model, pdg_in)
else
call data%init (model, pdg_in, sqrts)
end if
end select
case default
if (associated (dispatch_sf_data_extra)) then
call dispatch_sf_data_extra (data, sf_method, i_beam, &
sf_prop, var_list, var_list_global, model, os_data, sqrts, pdg_in, &
pdg_prc, polarized)
end if
if (.not. allocated (data)) then
call msg_fatal ("Structure function '" &
// char (sf_method) // "' not implemented")
end if
end select
if (allocated (data)) then
allocate (pdg_out (size (pdg_prc, 1)))
call data%get_pdg_out (pdg_out)
do i = 1, size (i_beam)
pdg_in(i_beam(i)) = pdg_out(i)
end do
end if
end subroutine dispatch_sf_data
@ %def dispatch_sf_data
@ This is a hook that allows us to inject further handlers for
structure-function objects, in particular a test structure function.
<<Dispatch beams: public>>=
public :: dispatch_sf_data_extra
<<Dispatch beams: variables>>=
procedure (dispatch_sf_data), pointer :: &
dispatch_sf_data_extra => null ()
@ %def dispatch_sf_data_extra
@ This is an auxiliary procedure, used by the beam-structure
expansion: tell for a given structure function name, whether it
corresponds to a pair spectrum ($n=2$), a single-particle structure
function ($n=1$), or nothing ($n=0$). Though [[energy_scan]] can
in principle also be a pair spectrum, it always has only one
parameter.
<<Dispatch beams: public>>=
public :: strfun_mode
<<Dispatch beams: procedures>>=
function strfun_mode (name) result (n)
type(string_t), intent(in) :: name
integer :: n
select case (char (name))
case ("none")
n = 0
case ("sf_test_0", "sf_test_1")
n = 1
case ("pdf_builtin","pdf_builtin_photon", &
"lhapdf","lhapdf_photon")
n = 1
case ("isr","epa","ewa")
n = 1
case ("circe1", "circe2")
n = 2
case ("gaussian")
n = 2
case ("beam_events")
n = 2
case ("energy_scan")
n = 2
case default
n = -1
call msg_bug ("Structure function '" // char (name) &
// "' not supported yet")
end select
end function strfun_mode
@ %def strfun_mode
@ Dispatch a whole structure-function chain, given beam data and beam
structure data.
This could be done generically, but we should look at the specific
combination of structure functions in order to select appropriate mappings.
The [[beam_structure]] argument gets copied because
we want to expand it to canonical form (one valid structure-function
entry per record) before proceeding further.
The [[pdg_prc]] argument is the array of incoming flavors. The first
index is the beam index, the second one the process component index.
Each element is itself a PDG array, notrivial if there is a flavor sum
for the incoming state of this component.
The dispatcher is divided in two parts. The first part configures the
structure function data themselves. After this, we can configure the
phase space for the elementary process.
<<Dispatch beams: public>>=
public :: dispatch_sf_config
<<Dispatch beams: procedures>>=
subroutine dispatch_sf_config (sf_config, sf_prop, beam_structure, &
var_list, var_list_global, model, os_data, sqrts, pdg_prc)
type(sf_config_t), dimension(:), allocatable, intent(out) :: sf_config
type(sf_prop_t), intent(out) :: sf_prop
type(beam_structure_t), intent(inout) :: beam_structure
type(var_list_t), intent(in) :: var_list
type(var_list_t), intent(inout) :: var_list_global
class(model_data_t), target, intent(in) :: model
type(os_data_t), intent(in) :: os_data
real(default), intent(in) :: sqrts
class(sf_data_t), allocatable :: sf_data
type(beam_structure_t) :: beam_structure_tmp
type(pdg_array_t), dimension(:,:), intent(in) :: pdg_prc
type(string_t), dimension(:), allocatable :: prt_in
type(pdg_array_t), dimension(:), allocatable :: pdg_in
type(flavor_t) :: flv_in
integer :: n_beam, n_record, i
beam_structure_tmp = beam_structure
call beam_structure_tmp%expand (strfun_mode)
n_record = beam_structure_tmp%get_n_record ()
allocate (sf_config (n_record))
n_beam = beam_structure_tmp%get_n_beam ()
if (n_beam > 0) then
allocate (prt_in (n_beam), pdg_in (n_beam))
prt_in = beam_structure_tmp%get_prt ()
do i = 1, n_beam
call flv_in%init (prt_in(i), model)
pdg_in(i) = flv_in%get_pdg ()
end do
else
n_beam = size (pdg_prc, 1)
allocate (pdg_in (n_beam))
pdg_in = pdg_prc(:,1)
end if
do i = 1, n_record
call dispatch_sf_data (sf_data, &
beam_structure_tmp%get_name (i), &
beam_structure_tmp%get_i_entry (i), &
sf_prop, var_list, var_list_global, model, os_data, sqrts, &
pdg_in, pdg_prc, &
beam_structure_tmp%polarized ())
call sf_config(i)%init (beam_structure_tmp%get_i_entry (i), sf_data)
deallocate (sf_data)
end do
end subroutine dispatch_sf_config
@ %def dispatch_sf_config
@
\subsection{QCD coupling}
Allocate the [[alpha]] (running coupling) component of the [[qcd]] block with
a concrete implementation, depending on the variable settings in the
[[global]] record.
If a fixed $\alpha_s$ is requested, we do not allocate the
[[qcd%alpha]] object. In this case, the matrix element code will just take
the model parameter as-is, which implies fixed $\alpha_s$. If the
object is allocated, the $\alpha_s$ value is computed and updated for
each matrix-element call.
Also fetch the [[alphas_nf]] variable from the list and store it in
the QCD record. This is not used in the $\alpha_s$ calculation, but
the QCD record thus becomes a messenger for this user parameter.
<<Dispatch beams: public>>=
public :: dispatch_qcd
<<Dispatch beams: procedures>>=
subroutine dispatch_qcd (qcd, var_list, os_data)
type(qcd_t), intent(inout) :: qcd
type(var_list_t), intent(in) :: var_list
type(os_data_t), intent(in) :: os_data
logical :: fixed, from_mz, from_pdf_builtin, from_lhapdf, from_lambda_qcd
real(default) :: mz, alpha_val, lambda
integer :: nf, order, lhapdf_member
type(string_t) :: pdfset, lhapdf_dir, lhapdf_file
call unpack_variables ()
if (allocated (qcd%alpha)) deallocate (qcd%alpha)
if (from_lhapdf .and. from_pdf_builtin) then
call msg_fatal (" Mixing alphas evolution", &
[var_str (" from LHAPDF and builtin PDF is not permitted")])
end if
select case (count ([from_mz, from_pdf_builtin, from_lhapdf, from_lambda_qcd]))
case (0)
if (fixed) then
allocate (alpha_qcd_fixed_t :: qcd%alpha)
else
call msg_fatal ("QCD alpha: no calculation mode set")
end if
case (2:)
call msg_fatal ("QCD alpha: calculation mode is ambiguous")
case (1)
if (fixed) then
call msg_fatal ("QCD alpha: use '?alphas_is_fixed = false' for " // &
"running alphas")
else if (from_mz) then
allocate (alpha_qcd_from_scale_t :: qcd%alpha)
else if (from_pdf_builtin) then
allocate (alpha_qcd_pdf_builtin_t :: qcd%alpha)
else if (from_lhapdf) then
allocate (alpha_qcd_lhapdf_t :: qcd%alpha)
else if (from_lambda_qcd) then
allocate (alpha_qcd_from_lambda_t :: qcd%alpha)
end if
call msg_message ("QCD alpha: using a running strong coupling")
end select
call init_alpha ()
qcd%n_f = var_list%get_ival (var_str ("alphas_nf"))
contains
<<Dispatch qcd: dispatch qcd: procedures>>
end subroutine dispatch_qcd
@ %def dispatch_qcd
@
<<Dispatch qcd: dispatch qcd: procedures>>=
subroutine unpack_variables ()
fixed = var_list%get_lval (var_str ("?alphas_is_fixed"))
from_mz = var_list%get_lval (var_str ("?alphas_from_mz"))
from_pdf_builtin = &
var_list%get_lval (var_str ("?alphas_from_pdf_builtin"))
from_lhapdf = &
var_list%get_lval (var_str ("?alphas_from_lhapdf"))
from_lambda_qcd = &
var_list%get_lval (var_str ("?alphas_from_lambda_qcd"))
pdfset = var_list%get_sval (var_str ("$pdf_builtin_set"))
lambda = var_list%get_rval (var_str ("lambda_qcd"))
nf = var_list%get_ival (var_str ("alphas_nf"))
order = var_list%get_ival (var_str ("alphas_order"))
lhapdf_dir = var_list%get_sval (var_str ("$lhapdf_dir"))
lhapdf_file = var_list%get_sval (var_str ("$lhapdf_file"))
lhapdf_member = var_list%get_ival (var_str ("lhapdf_member"))
if (var_list%contains (var_str ("mZ"))) then
mz = var_list%get_rval (var_str ("mZ"))
else
mz = MZ_REF
end if
if (var_list%contains (var_str ("alphas"))) then
alpha_val = var_list%get_rval (var_str ("alphas"))
else
alpha_val = ALPHA_QCD_MZ_REF
end if
end subroutine unpack_variables
@
<<Dispatch qcd: dispatch qcd: procedures>>=
subroutine init_alpha ()
select type (alpha => qcd%alpha)
type is (alpha_qcd_fixed_t)
alpha%val = alpha_val
type is (alpha_qcd_from_scale_t)
alpha%mu_ref = mz
alpha%ref = alpha_val
alpha%order = order
alpha%nf = nf
type is (alpha_qcd_from_lambda_t)
alpha%lambda = lambda
alpha%order = order
alpha%nf = nf
type is (alpha_qcd_pdf_builtin_t)
call alpha%init (pdfset, &
os_data%pdf_builtin_datapath)
type is (alpha_qcd_lhapdf_t)
call alpha%init (lhapdf_file, lhapdf_member, lhapdf_dir)
end select
end subroutine init_alpha
@

File Metadata

Mime Type
text/x-diff
Expires
Tue, Sep 30, 5:44 AM (8 h, 41 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
6566326
Default Alt Text
(892 KB)

Event Timeline