Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F19244913
ThreeBodyIntegrator.cc
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Award Token
Flag For Later
Size
5 KB
Referenced Files
None
Subscribers
None
ThreeBodyIntegrator.cc
View Options
// -*- C++ -*-
//
// This is the implementation of the non-inlined, non-templated member
// functions of the ThreeBodyIntegrator class.
//
// Author: Peter Richardson
//
#include
"ThreeBodyIntegrator.h"
#include
"ThePEG/Interface/ClassDocumentation.h"
namespace
Herwig
{
using
namespace
ThePEG
;
using
namespace
Genfun
;
ThreeBodyIntegrator
::~
ThreeBodyIntegrator
()
{
if
(
_theInnerIntegrand
){
delete
_theInnerIntegrand
;}
if
(
_theOuterIntegrand
){
delete
_theOuterIntegrand
;}
//if(_theME){delete _theME;}
}
void
ThreeBodyIntegrator
::
Init
()
{
static
ClassDocumentation
<
ThreeBodyIntegrator
>
documentation
(
"There is no documentation for the
\\
classname{ThreeBodyIntegrator} class"
);
}
// shift the variables for the outer integrand and give limits for the inner one
void
ThreeBodyIntegrator
::
outerVariables
(
const
double
&
x
,
double
&
low
,
double
&
upp
)
{
// first convert the value of x into the value of souter
if
(
_channelmass
[
_thechannel
]
>
0
)
{
_souter
=
_channelmass
[
_thechannel
]
*
(
_channelmass
[
_thechannel
]
+
_channelwidth
[
_thechannel
]
*
tan
(
x
));}
else
{
_souter
=
pow
(
x
,
1.
/
(
_channelwidth
[
_thechannel
]
+
1.
));}
// now the limits of the inner integral
Energy
ea
(
0.
),
eb
(
0.
),
eam
(
0.
),
ebm
(
0.
);
Energy
rs
=
sqrt
(
_souter
);
switch
(
_channeltype
[
_thechannel
])
{
case
1
:
ea
=
0.5
*
(
_souter
-
_m2
[
1
]
+
_m2
[
2
])
/
rs
;
eam
=
sqrt
(
ea
*
ea
-
_m2
[
2
]);
eb
=
0.5
*
(
_m2
[
0
]
-
_souter
-
_m2
[
3
])
/
rs
;
ebm
=
sqrt
(
eb
*
eb
-
_m2
[
3
]);
break
;
case
2
:
ea
=
0.5
*
(
_souter
-
_m2
[
1
]
+
_m2
[
3
])
/
rs
;
eam
=
sqrt
(
ea
*
ea
-
_m2
[
3
]);
eb
=
0.5
*
(
_m2
[
0
]
-
_souter
-
_m2
[
2
])
/
rs
;
ebm
=
sqrt
(
eb
*
eb
-
_m2
[
2
]);
break
;
case
3
:
ea
=
0.5
*
(
_souter
-
_m2
[
2
]
+
_m2
[
3
])
/
rs
;
eam
=
sqrt
(
ea
*
ea
-
_m2
[
3
]);
eb
=
0.5
*
(
_m2
[
0
]
-
_souter
-
_m2
[
1
])
/
rs
;
ebm
=
sqrt
(
eb
*
eb
-
_m2
[
1
]);
break
;
}
Energy2
sum
=
(
ea
+
eb
)
*
(
ea
+
eb
);
// calculate the limits
low
=
sum
-
(
eam
+
ebm
)
*
(
eam
+
ebm
);
upp
=
sum
-
(
eam
-
ebm
)
*
(
eam
-
ebm
);
}
// the integrand for the inner integral
double
ThreeBodyIntegrator
::
innerIntegrand
(
const
double
&
y
)
{
// set up the values of the s variables
Energy2
s12
(
0.
),
s23
(
0.
),
s13
(
0.
),
m2sum
=
_m2
[
0
]
+
_m2
[
1
]
+
_m2
[
2
]
+
_m2
[
3
];
switch
(
_channeltype
[
_thechannel
])
{
case
1
:
s12
=
_souter
;
s23
=
y
;
s13
=
m2sum
-
s12
-
s23
;
break
;
case
2
:
s23
=
y
;
s13
=
_souter
;
s12
=
m2sum
-
s23
-
s13
;
break
;
case
3
:
s23
=
_souter
;
s13
=
y
;
s12
=
m2sum
-
s23
-
s13
;
break
;
}
// compute the jacobian
// computer the denominator for the jacobian
double
jacdem
=
0.
,
term
;
Energy
sjac
(
0.
);
Energy
rm2
,
rw2
;
for
(
unsigned
int
ix
=
0
,
N
=
_channeltype
.
size
();
ix
<
N
;
++
ix
)
{
switch
(
_channeltype
[
ix
])
{
case
1
:
sjac
=
s12
;
break
;
case
2
:
sjac
=
s13
;
break
;
case
3
:
sjac
=
s23
;
break
;
}
if
(
_channelmass
[
ix
]
>
0
)
{
rm2
=
_channelmass
[
ix
]
*
_channelmass
[
ix
];
rw2
=
_channelwidth
[
ix
]
*
_channelwidth
[
ix
];
term
=
(
sjac
-
rm2
)
*
(
sjac
-
rm2
)
+
rw2
*
rm2
;
term
=
_channelweights
[
ix
]
*
_channelmass
[
ix
]
*
_channelwidth
[
ix
]
/
term
;
}
else
{
term
=
_channelweights
[
ix
]
*
(
_channelwidth
[
ix
]
+
1.
)
*
pow
(
sjac
,
_channelwidth
[
ix
]);
}
jacdem
+=
term
;
}
// now computer the matrix element
Genfun
::
Argument
a
(
7
);
a
[
0
]
=
_m2
[
0
];
a
[
1
]
=
s12
;
a
[
2
]
=
s13
;
a
[
3
]
=
s23
;
a
[
4
]
=
_m
[
1
];
a
[
5
]
=
_m
[
2
];
a
[
6
]
=
_m
[
3
];
return
(
*
_theME
)(
a
)
/
jacdem
;
}
// calculate the width for a given mass
Energy
ThreeBodyIntegrator
::
width
(
Energy2
q2
)
const
{
_m
[
0
]
=
sqrt
(
q2
);
_m2
[
0
]
=
q2
;
// check the decay is kinematically allowed
if
(
_m
[
0
]
<
_m
[
1
]
+
_m
[
2
]
+
_m
[
3
]){
return
0.
;}
// perform the integrals for all the different channels
double
upp
(
0.
),
low
(
0.
),
sum
(
0.
),
value
;
for
(
unsigned
int
ix
=
0
,
N
=
_channeltype
.
size
();
ix
<
N
;
++
ix
)
{
// work out the kinematic limits
switch
(
_channeltype
[
ix
])
{
case
1
:
upp
=
(
_m
[
0
]
-
_m
[
3
])
*
(
_m
[
0
]
-
_m
[
3
]);
low
=
(
_m
[
1
]
+
_m
[
2
])
*
(
_m
[
1
]
+
_m
[
2
]);
break
;
case
2
:
upp
=
(
_m
[
0
]
-
_m
[
2
])
*
(
_m
[
0
]
-
_m
[
2
]);
low
=
(
_m
[
1
]
+
_m
[
3
])
*
(
_m
[
1
]
+
_m
[
3
]);
break
;
case
3
:
upp
=
(
_m
[
0
]
-
_m
[
1
])
*
(
_m
[
0
]
-
_m
[
1
]);
low
=
(
_m
[
2
]
+
_m
[
3
])
*
(
_m
[
2
]
+
_m
[
3
]);
break
;
}
// transform them
if
(
_channelmass
[
ix
]
>
0
)
{
upp
=
atan
((
upp
-
_channelmass
[
ix
]
*
_channelmass
[
ix
])
/
_channelmass
[
ix
]
/
_channelwidth
[
ix
]);
low
=
atan
((
low
-
_channelmass
[
ix
]
*
_channelmass
[
ix
])
/
_channelmass
[
ix
]
/
_channelwidth
[
ix
]);
}
else
{
upp
=
pow
(
upp
,
_channelwidth
[
ix
]
+
1.
);
low
=
pow
(
low
,
_channelwidth
[
ix
]
+
1.
);
}
// perform the integral using my Gaussian quadature class
_thechannel
=
ix
;
GaussianIntegral
*
intb
=
new
GaussianIntegral
(
low
,
upp
);
value
=
_channelweights
[
ix
]
*
(
*
intb
)[
*
_theOuterIntegrand
];
delete
intb
;
value
=
value
;
sum
+=
value
;
}
// final factors
double
fact
=
2.
*
acos
(
-
1.0
)
*
_m
[
0
];
fact
*=
fact
*
fact
;
sum
=
sum
/
fact
/
32.
;
return
sum
;
}
}
namespace
Herwig
{
using
namespace
Genfun
;
// outer integral
FUNCTION_OBJECT_IMP
(
ThreeBodyOuterIntegrand
)
ThreeBodyOuterIntegrand
::
ThreeBodyOuterIntegrand
(
ThreeBodyIntegrator
*
in
)
{
_theIntegrator
=
in
;}
ThreeBodyOuterIntegrand
::~
ThreeBodyOuterIntegrand
()
{}
ThreeBodyOuterIntegrand
::
ThreeBodyOuterIntegrand
(
const
ThreeBodyOuterIntegrand
&
right
)
{
}
double
ThreeBodyOuterIntegrand
::
operator
()
(
double
x
)
const
{
// calculate the limits of the inner integral
double
low
,
upp
;
_theIntegrator
->
outerVariables
(
x
,
low
,
upp
);
// setup the inner integral
GaussianIntegral
*
inte
=
new
GaussianIntegral
(
low
,
upp
);
double
output
=
(
*
inte
)[
*
(
_theIntegrator
->
InnerIntegrand
())];
delete
inte
;
return
output
;
}
// inner integral
FUNCTION_OBJECT_IMP
(
ThreeBodyInnerIntegrand
)
ThreeBodyInnerIntegrand
::
ThreeBodyInnerIntegrand
(
ThreeBodyIntegrator
*
in
)
{
_theIntegrator
=
in
;}
ThreeBodyInnerIntegrand
::~
ThreeBodyInnerIntegrand
()
{}
ThreeBodyInnerIntegrand
::
ThreeBodyInnerIntegrand
(
const
ThreeBodyInnerIntegrand
&
right
)
{
}
double
ThreeBodyInnerIntegrand
::
operator
()
(
double
x
)
const
{
// calculate the integrand
return
_theIntegrator
->
innerIntegrand
(
x
);
}
}
File Metadata
Details
Attached
Mime Type
text/x-c
Expires
Tue, Sep 30, 4:46 AM (10 h, 11 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
6454922
Default Alt Text
ThreeBodyIntegrator.cc (5 KB)
Attached To
Mode
rHERWIGHG herwighg
Attached
Detach File
Event Timeline
Log In to Comment