Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F11222412
formf.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
20 KB
Subscribers
None
formf.f
View Options
FUNCTION
FORMOM
(
XMAA
,
XMOM
)
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
C
==================================================================
C
formfactorfor
pi
-
pi0
gamma
final
state
C
R
.
Decker
,
Z
.
Phys
C36
(
1987
)
48
7.
C
==================================================================
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
COMMON
/
DECPAR
/
GFERMI
,
GV
,
GA
,
CCABIB
,
SCABIB
,
GAMEL
double precision
GFERMI
,
GV
,
GA
,
CCABIB
,
SCABIB
,
GAMEL
COMMON
/
TESTA1
/
KEYA1
double complex
BWIGN
,
FORMOM
DATA
ICONT
/
1
/
*
THIS
INLINE
FUNCT
.
CALCULATES
THE
SCALAR
PART
OF
THE
PROPAGATOR
BWIGN
(
XM
,
AM
,
GAMMA
)
=
1.
/
CMPLX
(
XM
**
2
-
AM
**
2
,
GAMMA
*
AM
)
*
HADRON
CURRENT
FRO
=
0.266
*
AMRO
**
2
ELPHA
=-
0.1
AMROP
=
1.7
GAMROP
=
0.26
AMOM
=
0.782
GAMOM
=
0.0085
AROMEG
=
1.0
GCOUP
=
1
2.924
GCOUP
=
GCOUP
*
AROMEG
FQED
=
SQRT
(
4.0
*
3.1415926535
/
13
7.03604
)
FORMOM
=
FQED
*
FRO
**
2
/
SQRT
(
2.0
)
*
GCOUP
**
2
*
BWIGN
(
XMOM
,
AMOM
,
GAMOM
)
$
*
(
BWIGN
(
XMAA
,
AMRO
,
GAMRO
)
+
ELPHA
*
BWIGN
(
XMAA
,
AMROP
,
GAMROP
))
$
*
(
BWIGN
(
0.0D0
,
AMRO
,
GAMRO
)
+
ELPHA
*
BWIGN
(
0.0D0
,
AMROP
,
GAMROP
))
END
FUNCTION
FORM1
(
MNUM
,
QQ
,
S1
,
SDWA
)
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
C
==================================================================
C
formfactorfor
F1
for
3
scalar
final
state
C
R
.
Fisher
,
J
.
Wess
and
F
.
Wagner
Z
.
Phys
C3
(
1980
)
313
C
H
.
Georgi
,
Weak
interactions
and
modern
particle
theory
,
C
The
Benjamin
/
Cummings
Pub
.
Co
.,
Inc
.
198
4.
C
R
.
Decker
,
E
.
Mirkes
,
R
.
Sauer
,
Z
.
Was
Karlsruhe
preprint
TTP92
-
25
C
and
erratum
!!!!!!
C
==================================================================
C
double complex
FORM1
,
WIGNER
,
WIGFOR
,
FPIKM
,
BWIGM
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
WIGNER
(
A
,
B
,
C
)
=
CMPLX
(
1.0
,
0.0D0
)
/
CMPLX
(
A
-
B
**
2
,
B
*
C
)
IF
(
MNUM
.
EQ
.
0
)
THEN
C
------------
3
pi
hadronic
state
(
a1
)
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM1
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ELSEIF
(
MNUM
.
EQ
.
1
)
THEN
C
------------
K
-
pi
-
K
+
FORM1
=
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMPI
,
AMKZ
)
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM1
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FORM1
ELSEIF
(
MNUM
.
EQ
.
2
)
THEN
C
------------
K0
pi
-
K0B
FORM1
=
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMPI
,
AMKZ
)
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM1
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FORM1
ELSEIF
(
MNUM
.
EQ
.
3
)
THEN
C
------------
K
-
K0
pi0
FORM1
=
0.0D0
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM1
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FORM1
ELSEIF
(
MNUM
.
EQ
.
4
)
THEN
C
------------
pi0
pi0
K
-
XM2
=
1.402
GAM2
=
0.174
FORM1
=
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMK
,
AMPIZ
)
FORM1
=
WIGFOR
(
QQ
,
XM2
,
GAM2
)
*
FORM1
ELSEIF
(
MNUM
.
EQ
.
5
)
THEN
C
------------
K
-
pi
-
pi
+
XM2
=
1.402
GAM2
=
0.174
FORM1
=
WIGFOR
(
QQ
,
XM2
,
GAM2
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ELSEIF
(
MNUM
.
EQ
.
6
)
THEN
FORM1
=
0.0D0
ELSEIF
(
MNUM
.
EQ
.
7
)
THEN
C
--------------
eta
pi
-
pi0
final
state
FORM1
=
0.0D0
ENDIF
END
FUNCTION
FORM2
(
MNUM
,
QQ
,
S1
,
SDWA
)
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
C
==================================================================
C
formfactorfor
F2
for
3
scalar
final
state
C
R
.
Fisher
,
J
.
Wess
and
F
.
Wagner
Z
.
Phys
C3
(
1980
)
313
C
H
.
Georgi
,
Weak
interactions
and
modern
particle
theory
,
C
The
Benjamin
/
Cummings
Pub
.
Co
.,
Inc
.
198
4.
C
R
.
Decker
,
E
.
Mirkes
,
R
.
Sauer
,
Z
.
Was
Karlsruhe
preprint
TTP92
-
25
C
and
erratum
!!!!!!
C
==================================================================
C
double complex
FORM2
,
WIGNER
,
WIGFOR
,
FPIKM
,
BWIGM
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
WIGNER
(
A
,
B
,
C
)
=
CMPLX
(
1.0
,
0.0D0
)
/
CMPLX
(
A
-
B
**
2
,
B
*
C
)
IF
(
MNUM
.
EQ
.
0
)
THEN
C
------------
3
pi
hadronic
state
(
a1
)
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM2
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ELSEIF
(
MNUM
.
EQ
.
1
)
THEN
C
------------
K
-
pi
-
K
+
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM2
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ELSEIF
(
MNUM
.
EQ
.
2
)
THEN
C
------------
K0
pi
-
K0B
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM2
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ELSEIF
(
MNUM
.
EQ
.
3
)
THEN
C
------------
K
-
K0
pi0
GAMAX
=
GAMA1
*
GFUN
(
QQ
)
/
GFUN
(
AMA1
**
2
)
FORM2
=
AMA1
**
2
*
WIGNER
(
QQ
,
AMA1
,
GAMAX
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ELSEIF
(
MNUM
.
EQ
.
4
)
THEN
C
------------
pi0
pi0
K
-
XM2
=
1.402
GAM2
=
0.174
FORM2
=
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMK
,
AMPIZ
)
FORM2
=
WIGFOR
(
QQ
,
XM2
,
GAM2
)
*
FORM2
ELSEIF
(
MNUM
.
EQ
.
5
)
THEN
C
------------
K
-
pi
-
pi
+
XM2
=
1.402
GAM2
=
0.174
FORM2
=
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMK
,
AMPIZ
)
FORM2
=
WIGFOR
(
QQ
,
XM2
,
GAM2
)
*
FORM2
C
ELSEIF
(
MNUM
.
EQ
.
6
)
THEN
XM2
=
1.402
GAM2
=
0.174
FORM2
=
WIGFOR
(
QQ
,
XM2
,
GAM2
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
C
ELSEIF
(
MNUM
.
EQ
.
7
)
THEN
C
--------------
eta
pi
-
pi0
final
state
FORM2
=
0.0D0
ENDIF
C
END
double complex
FUNCTION
BWIGM
(
S
,
M
,
G
,
XM1
,
XM2
)
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
C
**********************************************************
C
P
-
WAVE
BREIT
-
WIGNER
FOR
RHO
C
**********************************************************
double precision
S
,
M
,
G
,
XM1
,
XM2
double precision
PI
,
QS
,
QM
,
W
,
GS
SAVE
PI
DATA
INIT
/
0
/
C
------------
PARAMETERS
--------------------
IF
(
INIT
.
EQ
.
0
)
THEN
INIT
=
1
PI
=
3.141592654
C
-------
BREIT
-
WIGNER
-----------------------
ENDIF
IF
(
S
.
GT
.(
XM1
+
XM2
)
**
2
)
THEN
QS
=
SQRT
(
ABS
((
S
-
(
XM1
+
XM2
)
**
2
)
*
(
S
-
(
XM1
-
XM2
)
**
2
)))
/
SQRT
(
S
)
QM
=
SQRT
(
ABS
((
M
**
2
-
(
XM1
+
XM2
)
**
2
)
*
(
M
**
2
-
(
XM1
-
XM2
)
**
2
)))
/
M
W
=
SQRT
(
S
)
GS
=
G
*
(
M
/
W
)
**
2
*
(
QS
/
QM
)
**
3
ELSE
GS
=
0.0D0
ENDIF
BWIGM
=
M
**
2
/
CMPLX
(
M
**
2
-
S
,
-
SQRT
(
S
)
*
GS
)
RETURN
END
double complex
FUNCTION
FPIKM
(
W
,
XM1
,
XM2
)
C
**********************************************************
C
PION
FORM
FACTOR
C
**********************************************************
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
double complex
BWIGM
double precision
ROM
,
ROG
,
ROM1
,
ROG1
,
BETA1
,
PI
,
PIM
,
S
,
W
SAVE
PI
,
PIM
,
ROM
,
ROG
,
ROM1
,
ROG1
,
BETA1
EXTERNAL
BWIG
DATA
INIT
/
0
/
C
C
------------
PARAMETERS
--------------------
IF
(
INIT
.
EQ
.
0
)
THEN
INIT
=
1
PI
=
3.141592654
PIM
=
.
140
ROM
=
0.773
ROG
=
0.145
ROM1
=
1.370
ROG1
=
0.510
BETA1
=-
0.145
ENDIF
C
-----------------------------------------------
S
=
W
**
2
FPIKM
=
(
BWIGM
(
S
,
ROM
,
ROG
,
XM1
,
XM2
)
+
BETA1
*
BWIGM
(
S
,
ROM1
,
ROG1
,
XM1
,
XM2
))
&
/
(
1
+
BETA1
)
RETURN
END
double complex
FUNCTION
FPIKMD
(
W
,
XM1
,
XM2
)
C
**********************************************************
C
PION
FORM
FACTOR
C
**********************************************************
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
double complex
BWIGM
double precision
ROM
,
ROG
,
ROM1
,
ROG1
,
PI
,
PIM
,
S
,
W
SAVE
PI
,
PIM
,
ROM
,
ROG
,
ROM1
,
ROG1
,
ROG2
,
ROM2
,
BETA
,
DELTA
EXTERNAL
BWIG
DATA
INIT
/
0
/
C
C
------------
PARAMETERS
--------------------
IF
(
INIT
.
EQ
.
0
)
THEN
INIT
=
1
PI
=
3.141592654
PIM
=
.
140
ROM
=
0.773
ROG
=
0.145
ROM1
=
1.500
ROG1
=
0.220
ROM2
=
1.750
ROG2
=
0.120
BETA
=
6.5
DELTA
=-
2
6.0
ENDIF
C
-----------------------------------------------
S
=
W
**
2
FPIKMD
=
(
DELTA
*
BWIGM
(
S
,
ROM
,
ROG
,
XM1
,
XM2
)
$
+
BETA
*
BWIGM
(
S
,
ROM1
,
ROG1
,
XM1
,
XM2
)
$
+
BWIGM
(
S
,
ROM2
,
ROG2
,
XM1
,
XM2
))
&
/
(
1
+
BETA
+
DELTA
)
RETURN
END
FUNCTION
FORM3
(
MNUM
,
QQ
,
S1
,
SDWA
)
C
==================================================================
C
formfactorfor
F3
for
3
scalar
final
state
C
R
.
Fisher
,
J
.
Wess
and
F
.
Wagner
Z
.
Phys
C3
(
1980
)
313
C
H
.
Georgi
,
Weak
interactions
and
modern
particle
theory
,
C
The
Benjamin
/
Cummings
Pub
.
Co
.,
Inc
.
198
4.
C
R
.
Decker
,
E
.
Mirkes
,
R
.
Sauer
,
Z
.
Was
Karlsruhe
preprint
TTP92
-
25
C
and
erratum
!!!!!!
C
==================================================================
C
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
double complex
FORM3
IF
(
MNUM
.
EQ
.
6
)
THEN
FORM3
=
CMPLX
(
0.0D0
)
ELSE
FORM3
=
CMPLX
(
0.0D0
)
ENDIF
FORM3
=
0
END
FUNCTION
FORM4
(
MNUM
,
QQ
,
S1
,
S2
,
S3
)
C
==================================================================
C
formfactorfor
F4
for
3
scalar
final
state
C
R
.
Decker
,
in
preparation
C
R
.
Decker
,
E
.
Mirkes
,
R
.
Sauer
,
Z
.
Was
Karlsruhe
preprint
TTP92
-
25
C
and
erratum
!!!!!!
C
==================================================================
C
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
double complex
FORM4
,
WIGNER
,
FPIKM
double precision
M
WIGNER
(
A
,
B
,
C
)
=
CMPLX
(
1.0
,
0.0D0
)
/
CMPLX
(
A
-
B
**
2
,
B
*
C
)
IF
(
MNUM
.
EQ
.
0
)
THEN
C
------------
3
pi
hadronic
state
(
a1
)
G1
=
5.8
G2
=
6.08
FPIP
=
0.02
AMPIP
=
1.3
GAMPIP
=
0.3
S
=
QQ
G
=
GAMPIP
XM1
=
AMPIZ
XM2
=
AMRO
M
=
AMPIP
W
=
SQRT
(
S
)
IF
(
S
.
GT
.(
XM1
+
XM2
)
**
2
)
THEN
QS
=
SQRT
(
ABS
((
S
-
(
XM1
+
XM2
)
**
2
)
*
(
S
-
(
XM1
-
XM2
)
**
2
)))
/
SQRT
(
S
)
QM
=
SQRT
(
ABS
((
M
**
2
-
(
XM1
+
XM2
)
**
2
)
*
(
M
**
2
-
(
XM1
-
XM2
)
**
2
)))
/
M
GS
=
G
*
(
M
/
W
)
**
2
*
(
QS
/
QM
)
**
5
ELSE
GS
=
0.0D0
ENDIF
GAMX
=
GS
*
W
/
M
FORM4
=
G1
*
G2
*
FPIP
/
AMRO
**
4
/
AMPIP
**
2
$
*
AMPIP
**
2
*
WIGNER
(
QQ
,
AMPIP
,
GAMX
)
$
*
(
S1
*
(
S2
-
S3
)
*
FPIKM
(
SQRT
(
S1
),
AMPIZ
,
AMPIZ
)
$
+
S2
*
(
S1
-
S3
)
*
FPIKM
(
SQRT
(
S2
),
AMPIZ
,
AMPIZ
)
)
ELSEIF
(
MNUM
.
EQ
.
1
)
THEN
C
------------
K
-
pi
-
K
+
G1
=
5.8
G2
=
6.08
FPIP
=
0.02
AMPIP
=
1.3
GAMPIP
=
0.3
S
=
QQ
G
=
GAMPIP
XM1
=
AMPIZ
XM2
=
AMRO
M
=
AMPIP
IF
(
S
.
GT
.(
XM1
+
XM2
)
**
2
)
THEN
QS
=
SQRT
(
ABS
((
S
-
(
XM1
+
XM2
)
**
2
)
*
(
S
-
(
XM1
-
XM2
)
**
2
)))
/
SQRT
(
S
)
QM
=
SQRT
(
ABS
((
M
**
2
-
(
XM1
+
XM2
)
**
2
)
*
(
M
**
2
-
(
XM1
-
XM2
)
**
2
)))
/
M
W
=
SQRT
(
S
)
GS
=
G
*
(
M
/
W
)
**
2
*
(
QS
/
QM
)
**
5
ELSE
GS
=
0.0D0
ENDIF
GAMX
=
GS
*
W
/
M
FORM4
=
G1
*
G2
*
FPIP
/
AMRO
**
4
/
AMPIP
**
2
$
*
AMPIP
**
2
*
WIGNER
(
QQ
,
AMPIP
,
GAMX
)
$
*
(
S1
*
(
S2
-
S3
)
*
FPIKM
(
SQRT
(
S1
),
AMPIZ
,
AMPIZ
)
$
+
S2
*
(
S1
-
S3
)
*
FPIKM
(
SQRT
(
S2
),
AMPIZ
,
AMPIZ
)
)
ELSE
FORM4
=
CMPLX
(
0.0D0
,
0.0D0
)
ENDIF
C
----
this
formfactor
is
switched
off
..
.
cam
FORM4
=
CMPLX
(
0.0D0
,
0.0D0
)
END
FUNCTION
FORM5
(
MNUM
,
QQ
,
S1
,
S2
)
C
==================================================================
C
formfactorfor
F5
for
3
scalar
final
state
C
G
.
Kramer
,
W
.
Palmer
,
S
.
Pinsky
,
Phys
.
Rev
.
D30
(
1984
)
8
9.
C
G
.
Kramer
,
W
.
Palmer
Z
.
Phys
.
C25
(
1984
)
19
5.
C
R
.
Decker
,
E
.
Mirkes
,
R
.
Sauer
,
Z
.
Was
Karlsruhe
preprint
TTP92
-
25
C
and
erratum
!!!!!!
C
==================================================================
C
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
double complex
FORM5
,
WIGNER
,
FPIKM
,
FPIKMD
,
BWIGM
WIGNER
(
A
,
B
,
C
)
=
CMPLX
(
1.0
,
0.0D0
)
/
CMPLX
(
A
-
B
**
2
,
B
*
C
)
IF
(
MNUM
.
EQ
.
0
)
THEN
C
------------
3
pi
hadronic
state
(
a1
)
FORM5
=
0.0D0
ELSEIF
(
MNUM
.
EQ
.
1
)
THEN
C
------------
K
-
pi
-
K
+
ELPHA
=-
0.2
FORM5
=
FPIKMD
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
/
(
1
+
ELPHA
)
$
*
(
FPIKM
(
SQRT
(
S2
),
AMPI
,
AMPI
)
$
+
ELPHA
*
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMPI
,
AMK
))
ELSEIF
(
MNUM
.
EQ
.
2
)
THEN
C
------------
K0
pi
-
K0B
ELPHA
=-
0.2
FORM5
=
FPIKMD
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
/
(
1
+
ELPHA
)
$
*
(
FPIKM
(
SQRT
(
S2
),
AMPI
,
AMPI
)
$
+
ELPHA
*
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMPI
,
AMK
))
ELSEIF
(
MNUM
.
EQ
.
3
)
THEN
C
------------
K
-
K0
pi0
FORM5
=
0.0D0
ELSEIF
(
MNUM
.
EQ
.
4
)
THEN
C
------------
pi0
pi0
K
-
FORM5
=
0.0D0
ELSEIF
(
MNUM
.
EQ
.
5
)
THEN
C
------------
K
-
pi
-
pi
+
ELPHA
=-
0.2
FORM5
=
BWIGM
(
QQ
,
AMKST
,
GAMKST
,
AMPI
,
AMK
)
/
(
1
+
ELPHA
)
$
*
(
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
$
+
ELPHA
*
BWIGM
(
S2
,
AMKST
,
GAMKST
,
AMPI
,
AMK
))
ELSEIF
(
MNUM
.
EQ
.
6
)
THEN
C
------------
pi
-
K0B
pi0
ELPHA
=-
0.2
FORM5
=
BWIGM
(
QQ
,
AMKST
,
GAMKST
,
AMPI
,
AMKZ
)
/
(
1
+
ELPHA
)
$
*
(
FPIKM
(
SQRT
(
S2
),
AMPI
,
AMPI
)
$
+
ELPHA
*
BWIGM
(
S1
,
AMKST
,
GAMKST
,
AMPI
,
AMK
))
ELSEIF
(
MNUM
.
EQ
.
7
)
THEN
C
--------------
eta
pi
-
pi0
final
state
FORM5
=
FPIKMD
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
*
FPIKM
(
SQRT
(
S1
),
AMPI
,
AMPI
)
ENDIF
C
END
SUBROUTINE
CURR
(
MNUM
,
PIM1
,
PIM2
,
PIM3
,
PIM4
,
HADCUR
)
C
==================================================================
C
hadronic
current
for
4
pi
final
state
C
R
.
Fisher
,
J
.
Wess
and
F
.
Wagner
Z
.
Phys
C3
(
1980
)
313
C
R
.
Decker
Z
.
Phys
C36
(
1987
)
48
7.
C
M
.
Gell
-
Mann
,
D
.
Sharp
,
W
.
Wagner
Phys
.
Rev
.
Lett
8
(
1962
)
26
1.
C
==================================================================
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
COMMON
/
PARMAS
/
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
C
double precision
AMTAU
,
AMNUTA
,
AMEL
,
AMNUE
,
AMMU
,
AMNUMU
*
,
AMPIZ
,
AMPI
,
AMRO
,
GAMRO
,
AMA1
,
GAMA1
*
,
AMK
,
AMKZ
,
AMKST
,
GAMKST
COMMON
/
DECPAR
/
GFERMI
,
GV
,
GA
,
CCABIB
,
SCABIB
,
GAMEL
double precision
GFERMI
,
GV
,
GA
,
CCABIB
,
SCABIB
,
GAMEL
double precision
PIM1
(
4
),
PIM2
(
4
),
PIM3
(
4
),
PIM4
(
4
),
PAA
(
4
)
cam
double complex
HADCUR
(
4
),
FORM1
,
FORM2
,
FORM3
,
FPIKM
double complex
HADCUR
(
4
),
FORM1
,
FORM2
,
FORM3
,
WIGFOR
double complex
BWIGN
double precision
PA
(
4
),
PB
(
4
)
double precision
AA
(
4
,
4
),
PP
(
4
,
4
)
DATA
PI
/
3.141592653589793238462643
/
DATA
FPI
/
9
3.3E-3
/
BWIGN
(
A
,
XM
,
XG
)
=
1.0
/
CMPLX
(
A
-
XM
**
2
,
XM
*
XG
)
C
C
---
masses
and
constants
cam
rho
-
prim
taken
as
in
Dolinsky
et
al
(
PhysLett
B174
(
1986
)
453
)
cam
(
best
fit
to
Argus
data
)
G1
=
1
2.924
G2
=
147
5.98
G
=
G1
*
G2
cam
ELPHA
=-
.
1
cam
AMROP
=
1.7
cam
GAMROP
=
0.26
ELPHA
=
.
02
AMROP
=
1.250
GAMROP
=
0.125
AMOM
=
.
782
GAMOM
=
0.0085
cam
ARFLAT
=
1.0
cam
AROMEG
=
1.0
ARFLAT
=
1.3
AROMEG
=
2.0
C
FRO
=
0.266
*
AMRO
**
2
COEF1
=
2.0
*
SQRT
(
3.0
)
/
FPI
**
2
*
ARFLAT
COEF2
=
FRO
*
G
*
AROMEG
C
---
initialization
of
four
vectors
DO
7
K
=
1
,
4
DO
8
L
=
1
,
4
8
AA
(
K
,
L
)
=
0.0D0
HADCUR
(
K
)
=
CMPLX
(
0.0D0
)
PAA
(
K
)
=
PIM1
(
K
)
+
PIM2
(
K
)
+
PIM3
(
K
)
+
PIM4
(
K
)
PP
(
1
,
K
)
=
PIM1
(
K
)
PP
(
2
,
K
)
=
PIM2
(
K
)
PP
(
3
,
K
)
=
PIM3
(
K
)
7
PP
(
4
,
K
)
=
PIM4
(
K
)
C
IF
(
MNUM
.
EQ
.
1
)
THEN
C
===================================================================
C
pi
-
pi
-
p0
pi
+
case
====
C
===================================================================
QQ
=
PAA
(
4
)
**
2
-
PAA
(
3
)
**
2
-
PAA
(
2
)
**
2
-
PAA
(
1
)
**
2
C
---
loop
over
thre
contribution
of
the
non
-
omega
current
DO
201
K
=
1
,
3
SK
=
(
PP
(
K
,
4
)
+
PIM4
(
4
))
**
2
-
(
PP
(
K
,
3
)
+
PIM4
(
3
))
**
2
$
-
(
PP
(
K
,
2
)
+
PIM4
(
2
))
**
2
-
(
PP
(
K
,
1
)
+
PIM4
(
1
))
**
2
C
--
definition
of
AA
matrix
C
--
cronecker
delta
DO
202
I
=
1
,
4
DO
203
J
=
1
,
4
203
AA
(
I
,
J
)
=
0.0D0
202
AA
(
I
,
I
)
=
1.0
C
...
and
the
rest
...
DO
204
L
=
1
,
3
IF
(
L
.
NE
.
K
)
THEN
DENOM
=
(
PAA
(
4
)
-
PP
(
L
,
4
))
**
2
-
(
PAA
(
3
)
-
PP
(
L
,
3
))
**
2
$
-
(
PAA
(
2
)
-
PP
(
L
,
2
))
**
2
-
(
PAA
(
1
)
-
PP
(
L
,
1
))
**
2
DO
205
I
=
1
,
4
DO
205
J
=
1
,
4
SIG
=
1.0
IF
(
J
.
NE
.
4
)
SIG
=-
SIG
AA
(
I
,
J
)
=
AA
(
I
,
J
)
$
-
SIG
*
(
PAA
(
I
)
-
2.0
*
PP
(
L
,
I
))
*
(
PAA
(
J
)
-
PP
(
L
,
J
))
/
DENOM
205
CONTINUE
ENDIF
204
CONTINUE
C
---
lets
add
something
to
HADCURR
cam
FORM1
=
FPIKM
(
SQRT
(
SK
),
AMPI
,
AMPI
)
*
FPIKM
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
C
FORM1
=
FPIKM
(
SQRT
(
SK
),
AMPI
,
AMPI
)
*
FPIKMD
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
FORM1
=
WIGFOR
(
SK
,
AMRO
,
GAMRO
)
C
FIX
=
1.0
IF
(
K
.
EQ
.
3
)
FIX
=-
2.0
DO
206
I
=
1
,
4
DO
206
J
=
1
,
4
HADCUR
(
I
)
=
$
HADCUR
(
I
)
+
CMPLX
(
FIX
*
COEF1
)
*
FORM1
*
AA
(
I
,
J
)
*
(
PP
(
K
,
J
)
-
PP
(
4
,
J
))
206
CONTINUE
C
---
end
of
the
non
omega
current
(
3
possibilities
)
201
CONTINUE
C
C
C
---
there
are
two
possibilities
for
omega
current
C
---
PA
PB
are
corresponding
first
and second
pi
-
s
DO
301
KK
=
1
,
2
DO
302
I
=
1
,
4
PA
(
I
)
=
PP
(
KK
,
I
)
PB
(
I
)
=
PP
(
3
-
KK
,
I
)
302
CONTINUE
C
---
lorentz
invariants
QQA
=
0.0D0
SS23
=
0.0D0
SS24
=
0.0D0
SS34
=
0.0D0
QP1P2
=
0.0D0
QP1P3
=
0.0D0
QP1P4
=
0.0D0
P1P2
=
0.0D0
P1P3
=
0.0D0
P1P4
=
0.0D0
DO
303
K
=
1
,
4
SIGN
=-
1.0
IF
(
K
.
EQ
.
4
)
SIGN
=
1.0
QQA
=
QQA
+
SIGN
*
(
PAA
(
K
)
-
PA
(
K
))
**
2
SS23
=
SS23
+
SIGN
*
(
PB
(
K
)
+
PIM3
(
K
))
**
2
SS24
=
SS24
+
SIGN
*
(
PB
(
K
)
+
PIM4
(
K
))
**
2
SS34
=
SS34
+
SIGN
*
(
PIM3
(
K
)
+
PIM4
(
K
))
**
2
QP1P2
=
QP1P2
+
SIGN
*
(
PAA
(
K
)
-
PA
(
K
))
*
PB
(
K
)
QP1P3
=
QP1P3
+
SIGN
*
(
PAA
(
K
)
-
PA
(
K
))
*
PIM3
(
K
)
QP1P4
=
QP1P4
+
SIGN
*
(
PAA
(
K
)
-
PA
(
K
))
*
PIM4
(
K
)
P1P2
=
P1P2
+
SIGN
*
PA
(
K
)
*
PB
(
K
)
P1P3
=
P1P3
+
SIGN
*
PA
(
K
)
*
PIM3
(
K
)
P1P4
=
P1P4
+
SIGN
*
PA
(
K
)
*
PIM4
(
K
)
303
CONTINUE
C
FORM2
=
COEF2
*
(
BWIGN
(
QQ
,
AMRO
,
GAMRO
)
+
ELPHA
*
BWIGN
(
QQ
,
AMROP
,
GAMROP
))
C
FORM3
=
BWIGN
(
QQA
,
AMOM
,
GAMOM
)
*
(
BWIGN
(
SS23
,
AMRO
,
GAMRO
)
+
C
$
BWIGN
(
SS24
,
AMRO
,
GAMRO
)
+
BWIGN
(
SS34
,
AMRO
,
GAMRO
))
FORM3
=
BWIGN
(
QQA
,
AMOM
,
GAMOM
)
C
DO
304
K
=
1
,
4
HADCUR
(
K
)
=
HADCUR
(
K
)
+
FORM2
*
FORM3
*
(
$
PB
(
K
)
*
(
QP1P3
*
P1P4
-
QP1P4
*
P1P3
)
$
+
PIM3
(
K
)
*
(
QP1P4
*
P1P2
-
QP1P2
*
P1P4
)
$
+
PIM4
(
K
)
*
(
QP1P2
*
P1P3
-
QP1P3
*
P1P2
)
)
304
CONTINUE
301
CONTINUE
C
ELSE
C
===================================================================
C
pi0
pi0
p0
pi
-
case
====
C
===================================================================
QQ
=
PAA
(
4
)
**
2
-
PAA
(
3
)
**
2
-
PAA
(
2
)
**
2
-
PAA
(
1
)
**
2
DO
101
K
=
1
,
3
C
---
loop
over
thre
contribution
of
the
non
-
omega
current
SK
=
(
PP
(
K
,
4
)
+
PIM4
(
4
))
**
2
-
(
PP
(
K
,
3
)
+
PIM4
(
3
))
**
2
$
-
(
PP
(
K
,
2
)
+
PIM4
(
2
))
**
2
-
(
PP
(
K
,
1
)
+
PIM4
(
1
))
**
2
C
--
definition
of
AA
matrix
C
--
cronecker
delta
DO
102
I
=
1
,
4
DO
103
J
=
1
,
4
103
AA
(
I
,
J
)
=
0.0D0
102
AA
(
I
,
I
)
=
1.0
C
C
...
and
the
rest
...
DO
104
L
=
1
,
3
IF
(
L
.
NE
.
K
)
THEN
DENOM
=
(
PAA
(
4
)
-
PP
(
L
,
4
))
**
2
-
(
PAA
(
3
)
-
PP
(
L
,
3
))
**
2
$
-
(
PAA
(
2
)
-
PP
(
L
,
2
))
**
2
-
(
PAA
(
1
)
-
PP
(
L
,
1
))
**
2
DO
105
I
=
1
,
4
DO
105
J
=
1
,
4
SIG
=
1.0
IF
(
J
.
NE
.
4
)
SIG
=-
SIG
AA
(
I
,
J
)
=
AA
(
I
,
J
)
$
-
SIG
*
(
PAA
(
I
)
-
2.0
*
PP
(
L
,
I
))
*
(
PAA
(
J
)
-
PP
(
L
,
J
))
/
DENOM
105
CONTINUE
ENDIF
104
CONTINUE
C
---
lets
add
something
to
HADCURR
cam
FORM1
=
FPIKM
(
SQRT
(
SK
),
AMPI
,
AMPI
)
*
FPIKM
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
C
FORM1
=
FPIKM
(
SQRT
(
SK
),
AMPI
,
AMPI
)
*
FPIKMD
(
SQRT
(
QQ
),
AMPI
,
AMPI
)
FORM1
=
WIGFOR
(
SK
,
AMRO
,
GAMRO
)
DO
106
I
=
1
,
4
DO
106
J
=
1
,
4
HADCUR
(
I
)
=
$
HADCUR
(
I
)
+
CMPLX
(
COEF1
)
*
FORM1
*
AA
(
I
,
J
)
*
(
PP
(
K
,
J
)
-
PP
(
4
,
J
))
106
CONTINUE
C
---
end
of
the
non
omega
current
(
3
possibilities
)
101
CONTINUE
ENDIF
END
FUNCTION
WIGFOR
(
S
,
XM
,
XGAM
)
IMPLICIT
double precision
(
A
-
H
,
O
-
Z
)
double complex
WIGFOR
,
WIGNOR
WIGNOR
=
CMPLX
(
-
XM
**
2
,
XM
*
XGAM
)
WIGFOR
=
WIGNOR
/
CMPLX
(
S
-
XM
**
2
,
XM
*
XGAM
)
END
File Metadata
Details
Attached
Mime Type
text/x-fortran
Expires
Wed, May 14, 11:51 AM (2 h, 9 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5096528
Default Alt Text
formf.f (20 KB)
Attached To
rWHIZARDSVN whizardsvn
Event Timeline
Log In to Comment