Page MenuHomeHEPForge

No OneTemporary

diff --git a/app/PrepareGENIE.cxx b/app/PrepareGENIE.cxx
index 0820104..3839119 100644
--- a/app/PrepareGENIE.cxx
+++ b/app/PrepareGENIE.cxx
@@ -1,611 +1,614 @@
#include <stdio.h>
#include <stdlib.h>
#include "FitLogger.h"
#include "PlotUtils.h"
#include "TFile.h"
#include "TH1D.h"
#include "TTree.h"
#ifdef __GENIE_ENABLED__
#include "Conventions/Units.h"
#include "GHEP/GHepParticle.h"
#include "PDG/PDGUtils.h"
#endif
std::string gInputFiles = "";
std::string gOutputFile = "";
std::string gFluxFile = "";
std::string gTarget = "";
double MonoEnergy;
bool IsMonoE = false;
void PrintOptions();
void ParseOptions(int argc, char* argv[]);
void RunGENIEPrepareMono(std::string input, std::string target,
std::string output);
void RunGENIEPrepare(std::string input, std::string flux, std::string target,
std::string output);
int main(int argc, char* argv[]) {
ParseOptions(argc, argv);
if (IsMonoE) {
RunGENIEPrepareMono(gInputFiles, gTarget, gOutputFile);
} else {
RunGENIEPrepare(gInputFiles, gFluxFile, gTarget, gOutputFile);
}
}
void RunGENIEPrepareMono(std::string input, std::string target,
std::string output) {
+
+ std::cout << "Running in mono" << std::endl;
// Setup TTree
TChain* tn = new TChain("gtree");
tn->AddFile(input.c_str());
int nevt = tn->GetEntries();
NtpMCEventRecord* genientpl = NULL;
tn->SetBranchAddress("gmcrec", &genientpl);
TH1D* fluxhist = new TH1D("flux", "flux", 1000, 0, 10);
fluxhist->Fill(MonoEnergy);
fluxhist->Scale(1, "width");
// Make Event Hist
TH1D* eventhist = (TH1D*)fluxhist->Clone();
eventhist->Reset();
TH1D* xsechist = (TH1D*)eventhist->Clone();
// Create maps
std::map<std::string, TH1D*> modexsec;
std::map<std::string, TH1D*> modecount;
std::vector<std::string> genieids;
std::vector<std::string> targetids;
std::vector<std::string> interids;
// Loop over all events
for (int i = 0; i < nevt; i++) {
tn->GetEntry(i);
StopTalking();
EventRecord& event = *(genientpl->event);
GHepParticle* neu = event.Probe();
StartTalking();
// Get XSec From Spline
GHepRecord genie_record = static_cast<GHepRecord>(event);
double xsec = (genie_record.XSec() / (1E-38 * genie::units::cm2));
// Parse Interaction String
std::string mode = genie_record.Summary()->AsString();
std::vector<std::string> modevec = GeneralUtils::ParseToStr(mode, ";");
std::string targ = (modevec[0] + ";" + modevec[1]);
std::string inter = mode;
// Fill lists of Unique IDS
if (std::find(targetids.begin(), targetids.end(), targ) ==
targetids.end()) {
targetids.push_back(targ);
}
if (std::find(interids.begin(), interids.end(), inter) == interids.end()) {
interids.push_back(inter);
}
// Create entries Mode Maps
if (modexsec.find(mode) == modexsec.end()) {
genieids.push_back(mode);
modexsec[mode] = (TH1D*)xsechist->Clone();
modecount[mode] = (TH1D*)xsechist->Clone();
}
// Fill XSec Histograms
modexsec[mode]->Fill(neu->E(), xsec);
modecount[mode]->Fill(neu->E());
// Fill total event hist
eventhist->Fill(neu->E());
// Clear Event
genientpl->Clear();
if (i % (nevt / 20) == 0) {
LOG(FIT) << "Processed " << i << "/" << nevt << " GENIE events."
<< std::endl;
}
}
LOG(FIT) << "Processed all events" << std::endl;
TFile* outputfile = new TFile(input.c_str(), "UPDATE");
outputfile->cd();
- LOG(FIT) << "Getting splines " << std::endl;
+ LOG(FIT) << "Getting splines in mono" << std::endl;
// Save each of the reconstructed splines to file
std::map<std::string, TH1D*> modeavg;
TDirectory* inddir = (TDirectory*)outputfile->Get("IndividualGENIESplines");
if (!inddir)
inddir = (TDirectory*)outputfile->mkdir("IndividualGENIESplines");
inddir->cd();
// Loop over GENIE ID's and get MEC count
int MECcount = 0;
bool MECcorrect = FitPar::Config().GetParB("CorrectGENIEMECNorm");
for (UInt_t i = 0; i < genieids.size(); i++) {
if (genieids[i].find("MEC") != std::string::npos) {
MECcount++;
}
}
LOG(FIT) << "Found " << MECcount << " repeated MEC instances." << std::endl;
for (UInt_t i = 0; i < genieids.size(); i++) {
std::string mode = genieids[i];
modexsec[mode]->Write((mode + "_summed_xsec").c_str(), TObject::kOverwrite);
modecount[mode]->Write((mode + "_summed_evt").c_str(), TObject::kOverwrite);
// Form extra avg xsec map -> Reconstructed spline
modeavg[mode] = (TH1D*)modexsec[mode]->Clone();
modeavg[mode]->Divide(modecount[mode]);
if (MECcorrect && (mode.find("MEC") != std::string::npos)) {
modeavg[mode]->Scale(1.0 / double(MECcount));
}
modeavg[mode]->Write((mode + "_rec_spline").c_str(), TObject::kOverwrite);
}
TDirectory* targdir = (TDirectory*)outputfile->Get("TargetGENIESplines");
if (!targdir) targdir = (TDirectory*)outputfile->mkdir("TargetGENIESplines");
targdir->cd();
LOG(FIT) << "Getting Target Splines" << std::endl;
// For each target save a total spline
std::map<std::string, TH1D*> targetsplines;
for (uint i = 0; i < targetids.size(); i++) {
LOG(FIT) << "Getting target " << i << std::endl;
std::string targ = targetids[i];
targetsplines[targ] = (TH1D*)xsechist->Clone();
LOG(FIT) << "Created target spline for " << targ << std::endl;
for (uint j = 0; j < genieids.size(); j++) {
std::string mode = genieids[j];
if (mode.find(targ) != std::string::npos) {
LOG(FIT) << "Mode " << mode << " contains " << targ << " target!"
<< std::endl;
targetsplines[targ]->Add(modeavg[mode]);
LOG(FIT) << "Finished with Mode " << mode << " "
<< modeavg[mode]->Integral() << std::endl;
}
}
LOG(FIT) << "Saving target spline:" << targ << std::endl;
targetsplines[targ]->Write(("Total" + targ).c_str(), TObject::kOverwrite);
}
LOG(FIT) << "Getting total splines" << std::endl;
// Now we have each of the targets we need to create a total cross-section.
int totalnucl = 0;
std::vector<std::string> targprs = GeneralUtils::ParseToStr(target, ",");
TH1D* totalxsec = (TH1D*)xsechist->Clone();
for (uint i = 0; i < targprs.size(); i++) {
std::string targpdg = targprs[i];
for (std::map<std::string, TH1D*>::iterator iter = targetsplines.begin();
iter != targetsplines.end(); iter++) {
std::string targstr = iter->first;
TH1D* xsec = iter->second;
if (targstr.find(targpdg) != std::string::npos) {
LOG(FIT) << "Adding target spline " << targstr
<< " Integral = " << xsec->Integral("width") << std::endl;
totalxsec->Add(xsec);
int nucl = atoi(targpdg.c_str());
totalnucl += int((nucl % 10000) / 10);
}
}
}
outputfile->cd();
totalxsec->Write("nuisance_Xsec", TObject::kOverwrite);
eventhist = (TH1D*)totalxsec->Clone();
eventhist->Multiply(fluxhist);
eventhist->Write("nuisance_events", TObject::kOverwrite);
fluxhist->Write("nuisance_flux", TObject::kOverwrite);
LOG(FIT) << "Inclusive XSec Per Nucleon = "
<< eventhist->Integral("width") * 1E-38 / fluxhist->Integral("width")
<< std::endl;
std::cout << "XSec Hist Integral = " << xsechist->Integral("width")
<< std::endl;
return;
}
void RunGENIEPrepare(std::string input, std::string flux, std::string target,
std::string output) {
LOG(FIT) << "Running GENIE Prepare" << std::endl;
+ std::cout << "Running in prepare" << std::endl;
// Get Flux Hist
std::vector<std::string> fluxvect = GeneralUtils::ParseToStr(flux, ",");
TH1* fluxhist = NULL;
if (fluxvect.size() == 3) {
double from = GeneralUtils::StrToDbl(fluxvect[0]);
double to = GeneralUtils::StrToDbl(fluxvect[1]);
double step = GeneralUtils::StrToDbl(fluxvect[2]);
int nstep = ceil((to - from) / step);
to = from + step * nstep;
QLOG(FIT, "Generating flat flux histogram from "
<< from << " to " << to << " with bins " << step
<< " wide (NBins = " << nstep << ").");
fluxhist =
new TH1D("spectrum", ";E_{#nu} (GeV);Count (A.U.)", nstep, from, to);
for (Int_t bi_it = 1; bi_it < fluxhist->GetXaxis()->GetNbins(); ++bi_it) {
fluxhist->SetBinContent(bi_it, 1.0 / double(step * nstep));
}
fluxhist->SetDirectory(0);
} else if (fluxvect.size() == 2) {
TFile* fluxfile = new TFile(fluxvect[0].c_str(), "READ");
if (!fluxfile->IsZombie()) {
fluxhist = dynamic_cast<TH1*>(fluxfile->Get(fluxvect[1].c_str()));
if (!fluxhist) {
ERR(FTL) << "Couldn't find histogram named: \"" << fluxvect[1]
<< "\" in file: \"" << fluxvect[0] << std::endl;
throw;
}
fluxhist->SetDirectory(0);
}
} else if (fluxvect.size() == 1) {
MonoEnergy = GeneralUtils::StrToDbl(fluxvect[0]);
RunGENIEPrepareMono(input, target, output);
return;
} else {
LOG(FTL) << "Bad flux specification: \"" << flux << "\"." << std::endl;
throw;
}
// Setup TTree
TChain* tn = new TChain("gtree");
if (input.find_first_of(',') != std::string::npos) {
std::vector<std::string> inputvect = GeneralUtils::ParseToStr(input, ",");
for (size_t iv_it = 0; iv_it < inputvect.size(); ++iv_it) {
tn->AddFile(inputvect[iv_it].c_str());
QLOG(FIT, "Added input file: " << inputvect[iv_it]);
}
} else { // The Add form can accept wildcards.
tn->Add(input.c_str());
}
int nevt = tn->GetEntries();
if (!nevt) {
THROW("Couldn't load any events from input specification: \""
<< input.c_str() << "\"");
} else {
QLOG(FIT, "Found " << nevt << " input entries.");
}
NtpMCEventRecord* genientpl = NULL;
tn->SetBranchAddress("gmcrec", &genientpl);
// Make Event Hist
TH1D* eventhist = (TH1D*)fluxhist->Clone();
eventhist->Reset();
TH1D* xsechist = (TH1D*)eventhist->Clone();
// Create maps
std::map<std::string, TH1D*> modexsec;
std::map<std::string, TH1D*> modecount;
std::vector<std::string> genieids;
std::vector<std::string> targetids;
std::vector<std::string> interids;
// Loop over all events
for (int i = 0; i < nevt; i++) {
tn->GetEntry(i);
StopTalking();
EventRecord& event = *(genientpl->event);
GHepParticle* neu = event.Probe();
StartTalking();
// Get XSec From Spline
GHepRecord genie_record = static_cast<GHepRecord>(event);
double xsec = (genie_record.XSec() / (1E-38 * genie::units::cm2));
// Parse Interaction String
std::string mode = genie_record.Summary()->AsString();
std::vector<std::string> modevec = GeneralUtils::ParseToStr(mode, ";");
std::string targ = (modevec[0] + ";" + modevec[1]);
std::string inter = mode;
// Fill lists of Unique IDS
if (std::find(targetids.begin(), targetids.end(), targ) ==
targetids.end()) {
targetids.push_back(targ);
}
if (std::find(interids.begin(), interids.end(), inter) == interids.end()) {
interids.push_back(inter);
}
// Create entries Mode Maps
if (modexsec.find(mode) == modexsec.end()) {
genieids.push_back(mode);
modexsec[mode] = (TH1D*)xsechist->Clone();
modecount[mode] = (TH1D*)xsechist->Clone();
}
// Fill XSec Histograms
modexsec[mode]->Fill(neu->E(), xsec);
modecount[mode]->Fill(neu->E());
// Fill total event hist
eventhist->Fill(neu->E());
if (i % (nevt / 20) == 0) {
LOG(FIT) << "Processed " << i << "/" << nevt
<< " GENIE events (Last event: { E: " << neu->E()
<< ", xsec: " << xsec << " }." << std::endl;
}
// Clear Event
genientpl->Clear();
}
LOG(FIT) << "Processed all events" << std::endl;
// Once event loop is done we can start saving stuff into the file
TFile* outputfile;
if (!gOutputFile.length()) {
tn->GetEntry(0);
outputfile = tn->GetFile();
outputfile->cd();
} else {
outputfile = new TFile(gOutputFile.c_str(), "RECREATE");
outputfile->cd();
QLOG(FIT, "Cloning input vector to output file: " << gOutputFile);
TTree* cloneTree = tn->CloneTree();
cloneTree->SetDirectory(outputfile);
cloneTree->Write();
QLOG(FIT, "Done.");
}
LOG(FIT) << "Getting splines " << std::endl;
// Save each of the reconstructed splines to file
std::map<std::string, TH1D*> modeavg;
TDirectory* inddir = (TDirectory*)outputfile->Get("IndividualGENIESplines");
if (!inddir)
inddir = (TDirectory*)outputfile->mkdir("IndividualGENIESplines");
inddir->cd();
// Loop over GENIE ID's and get MEC count
int MECcount = 0;
bool MECcorrect = FitPar::Config().GetParB("CorrectGENIEMECNorm");
for (UInt_t i = 0; i < genieids.size(); i++) {
if (genieids[i].find("MEC") != std::string::npos) {
MECcount++;
}
}
LOG(FIT) << "Found " << MECcount << " repeated MEC instances." << std::endl;
for (UInt_t i = 0; i < genieids.size(); i++) {
std::string mode = genieids[i];
modexsec[mode]->Write((mode + "_summed_xsec").c_str(), TObject::kOverwrite);
modecount[mode]->Write((mode + "_summed_evt").c_str(), TObject::kOverwrite);
// Form extra avg xsec map -> Reconstructed spline
modeavg[mode] = (TH1D*)modexsec[mode]->Clone();
modeavg[mode]->Divide(modecount[mode]);
if (MECcorrect && (mode.find("MEC") != std::string::npos)) {
modeavg[mode]->Scale(1.0 / double(MECcount));
}
modeavg[mode]->Write((mode + "_rec_spline").c_str(), TObject::kOverwrite);
}
TDirectory* targdir = (TDirectory*)outputfile->Get("TargetGENIESplines");
if (!targdir) targdir = (TDirectory*)outputfile->mkdir("TargetGENIESplines");
targdir->cd();
LOG(FIT) << "Getting Target Splines" << std::endl;
// For each target save a total spline
std::map<std::string, TH1D*> targetsplines;
for (uint i = 0; i < targetids.size(); i++) {
LOG(FIT) << "Getting target " << i << std::endl;
std::string targ = targetids[i];
targetsplines[targ] = (TH1D*)xsechist->Clone();
LOG(FIT) << "Created target spline for " << targ << std::endl;
for (uint j = 0; j < genieids.size(); j++) {
std::string mode = genieids[j];
// Look at all matching modes/targets
if (mode.find(targ) != std::string::npos) {
LOG(FIT) << "Mode " << mode << " contains " << targ << " target!"
<< std::endl;
// modeavg[mode]->Write( (mode + "_cont_" + targ).c_str() ,
// TObject::kOverwrite);
targetsplines[targ]->Add(modeavg[mode]);
LOG(FIT) << "Finished with Mode " << mode << " "
<< modeavg[mode]->Integral() << std::endl;
}
}
LOG(FIT) << "Saving target spline:" << targ << std::endl;
targetsplines[targ]->Write(("Total" + targ).c_str(), TObject::kOverwrite);
}
LOG(FIT) << "Getting total splines" << std::endl;
// Now we have each of the targets we need to create a total cross-section.
int totalnucl = 0;
std::vector<std::string> targprs = GeneralUtils::ParseToStr(target, ",");
TH1D* totalxsec = (TH1D*)xsechist->Clone();
for (uint i = 0; i < targprs.size(); i++) {
std::string targpdg = targprs[i];
for (std::map<std::string, TH1D*>::iterator iter = targetsplines.begin();
iter != targetsplines.end(); iter++) {
std::string targstr = iter->first;
TH1D* xsec = iter->second;
if (targstr.find(targpdg) != std::string::npos) {
LOG(FIT) << "Adding target spline " << targstr
<< " Integral = " << xsec->Integral("width") << std::endl;
totalxsec->Add(xsec);
int nucl = atoi(targpdg.c_str());
totalnucl += int((nucl % 10000) / 10);
}
}
}
LOG(FIT) << "Total XSec Integral = " << totalxsec->Integral("width")
<< std::endl;
outputfile->cd();
totalxsec->Write("nuisance_xsec", TObject::kOverwrite);
eventhist = (TH1D*)fluxhist->Clone();
eventhist->Multiply(totalxsec);
LOG(FIT) << "Dividing by Total Nucl = " << totalnucl << std::endl;
eventhist->Scale(1.0 / double(totalnucl));
eventhist->Write("nuisance_events", TObject::kOverwrite);
fluxhist->Write("nuisance_flux", TObject::kOverwrite);
LOG(FIT) << "Inclusive XSec Per Nucleon = "
<< eventhist->Integral("width") * 1E-38 / fluxhist->Integral("width")
<< std::endl;
std::cout << "XSec Hist Integral = " << xsechist->Integral("width")
<< std::endl;
outputfile->Write();
outputfile->Close();
delete outputfile;
return;
};
void PrintOptions() {
std::cout << "PrepareGENIEEvents NUISANCE app. " << std::endl
<< "Takes GHep Outputs and prepares events for NUISANCE."
<< std::endl
<< std::endl
<< "PrepareGENIEEvents [-h,-help,--h,--help] [-i "
"inputfile1.root,inputfile2.root,inputfile3.root,...] "
<< "[-f flux_root_file.root,flux_hist_name] [-t "
"target1[frac1],target2[frac2],...]"
<< std::endl
<< std::endl;
std::cout << "Prepare Mode [Default] : Takes a single GHep file, "
"reconstructs the original GENIE splines, "
<< " and creates a duplicate file that also contains the flux, "
"event rate, and xsec predictions that NUISANCE needs. "
<< std::endl;
std::cout << "Following options are required for Prepare Mode:" << std::endl;
std::cout << " [ -i inputfile.root ] : Reads in a single GHep input file "
"that needs the xsec calculation ran on it. "
<< std::endl;
std::cout << " [ -f flux_file.root,hist_name ] : Path to root file "
"containing the flux histogram the GHep records were generated "
"with."
<< " A simple method is to point this to the flux histogram genie "
"generatrs '-f /path/to/events/input-flux.root,spectrum'. "
<< std::endl;
std::cout << " [ -f elow,ehigh,estep ] : Energy range specification when no "
"flux file was used."
<< std::endl;
std::cout << " [ -t target ] : Target that GHepRecords were generated with. "
"Comma seperated list. E.g. for CH2 "
"target=1000060120,1000010010,1000010010"
<< std::endl;
std::cout << " [ -o outputfile.root ] : File to write prepared input file to."
<< std::endl;
std::cout << " [ -m Mono_E_nu_GeV ] : Run in mono-energetic mode."
<< std::endl;
}
void ParseOptions(int argc, char* argv[]) {
bool flagopt = false;
// If No Arguments print commands
for (int i = 1; i < argc; ++i) {
if (!std::strcmp(argv[i], "-h")) {
flagopt = true;
break;
}
if (i + 1 != argc) {
// Cardfile
if (!std::strcmp(argv[i], "-h")) {
flagopt = true;
break;
} else if (!std::strcmp(argv[i], "-i")) {
gInputFiles = argv[i + 1];
++i;
} else if (!std::strcmp(argv[i], "-o")) {
gOutputFile = argv[i + 1];
++i;
} else if (!std::strcmp(argv[i], "-f")) {
gFluxFile = argv[i + 1];
++i;
} else if (!std::strcmp(argv[i], "-t")) {
gTarget = argv[i + 1];
++i;
} else if (!std::strcmp(argv[i], "-m")) {
MonoEnergy = GeneralUtils::StrToDbl(argv[i + 1]);
IsMonoE = true;
++i;
} else {
ERR(FTL) << "ERROR: unknown command line option given! - '" << argv[i]
<< " " << argv[i + 1] << "'" << std::endl;
PrintOptions();
break;
}
}
}
if (gInputFiles == "" && !flagopt) {
ERR(FTL) << "No input file(s) specified!" << std::endl;
flagopt = true;
}
- if (gFluxFile == "" && !flagopt) {
+ if (gFluxFile == "" && !flagopt && !IsMonoE) {
ERR(FTL) << "No flux input specified for Prepare Mode" << std::endl;
flagopt = true;
}
if (gTarget == "" && !flagopt) {
ERR(FTL) << "No target specified for Prepare Mode" << std::endl;
flagopt = true;
}
if (argc < 1 || flagopt) {
PrintOptions();
exit(-1);
}
return;
}
diff --git a/src/MCStudies/GenericFlux_Vectors.cxx b/src/MCStudies/GenericFlux_Vectors.cxx
index eb75ee7..94d6d42 100644
--- a/src/MCStudies/GenericFlux_Vectors.cxx
+++ b/src/MCStudies/GenericFlux_Vectors.cxx
@@ -1,237 +1,239 @@
// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "GenericFlux_Vectors.h"
GenericFlux_Vectors::GenericFlux_Vectors(std::string name, std::string inputfile,
FitWeight *rw, std::string type,
std::string fakeDataFile) {
// Measurement Details
fName = name;
eventVariables = NULL;
// Define our energy range for flux calcs
EnuMin = 0.;
EnuMax = 100.; // Arbritrarily high energy limit
// Set default fitter flags
fIsDiag = true;
fIsShape = false;
fIsRawEvents = false;
// This function will sort out the input files automatically and parse all the
// inputs,flags,etc.
// There may be complex cases where you have to do this by hand, but usually
// this will do.
Measurement1D::SetupMeasurement(inputfile, type, rw, fakeDataFile);
eventVariables = NULL;
// Setup fDataHist as a placeholder
this->fDataHist = new TH1D(("empty_data"), ("empty-data"), 1, 0, 1);
this->SetupDefaultHist();
fFullCovar = StatUtils::MakeDiagonalCovarMatrix(fDataHist);
covar = StatUtils::GetInvert(fFullCovar);
// 1. The generator is organised in SetupMeasurement so it gives the
// cross-section in "per nucleon" units.
// So some extra scaling for a specific measurement may be required. For
// Example to get a "per neutron" measurement on carbon
// which we do here, we have to multiple by the number of nucleons 12 and
// divide by the number of neutrons 6.
- this->fScaleFactor =
+ fScaleFactor =
(GetEventHistogram()->Integral("width") * 1E-38 / (fNEvents + 0.)) /
this->TotalIntegratedFlux();
LOG(SAM) << " Generic Flux Scaling Factor = " << fScaleFactor << std::endl;
if (fScaleFactor <= 0.0) {
ERR(WRN) << "SCALE FACTOR TOO LOW " << std::endl;
}
// Setup our TTrees
this->AddEventVariablesToTree();
}
void GenericFlux_Vectors::AddEventVariablesToTree() {
// Setup the TTree to save everything
if (!eventVariables) {
Config::Get().out->cd();
eventVariables = new TTree((this->fName + "_VARS").c_str(),
(this->fName + "_VARS").c_str());
}
LOG(SAM) << "Adding Event Variables" << std::endl;
eventVariables->Branch("Mode", &Mode, "Mode/I" );
eventVariables->Branch("cc", &cc, "cc/B" );
eventVariables->Branch("PDGnu", &PDGnu, "PDGnu/I" );
+ eventVariables->Branch("Enu_true", &Enu_true, "Enu_true/F" );
eventVariables->Branch("tgt", &tgt, "tgt/I" );
eventVariables->Branch("PDGLep", &PDGLep, "PDGLep/I");
eventVariables->Branch("ELep", &ELep, "ELep/F" );
eventVariables->Branch("CosLep", &CosLep, "CosLep/F");
// Basic interaction kinematics
eventVariables->Branch("Q2", &Q2, "Q2/F");
eventVariables->Branch("q0", &q0, "q0/F");
eventVariables->Branch("q3", &q3, "q3/F");
eventVariables->Branch("Enu_QE", &Enu_QE, "Enu_QE/F");
eventVariables->Branch("Q2_QE", &Q2_QE, "Q2_QE/F");
eventVariables->Branch("W_nuc_rest", &W_nuc_rest, "W_nuc_rest/F");
eventVariables->Branch("W", &W, "W/F");
eventVariables->Branch("x", &x, "x/F");
eventVariables->Branch("y", &y, "y/F");
// Save outgoing particle vectors
eventVariables->Branch("nfsp", &nfsp, "nfsp/I");
eventVariables->Branch("px", px, "px[nfsp]/F");
eventVariables->Branch("py", py, "py[nfsp]/F");
eventVariables->Branch("pz", pz, "pz[nfsp]/F");
eventVariables->Branch("E", E, "E[nfsp]/F");
eventVariables->Branch("pdg", pdg, "pdg[nfsp]/I");
// Event Scaling Information
eventVariables->Branch("Weight", &Weight, "Weight/F");
eventVariables->Branch("InputWeight", &InputWeight, "InputWeight/F");
eventVariables->Branch("RWWeight", &RWWeight, "RWWeight/F");
eventVariables->Branch("fScaleFactor", &fScaleFactor, "fScaleFactor/F");
return;
}
void GenericFlux_Vectors::FillEventVariables(FitEvent *event) {
// Reset all Function used to extract any variables of interest to the event
- PDGnu = tgt = PDGLep = 0;
+ Mode = PDGnu = tgt = PDGLep = 0;
- Enu = ELep = CosLep = Q2 = q0 = q3 = Enu_QE = Q2_QE = W_nuc_rest = W = x = y =
- -999.9;
+ Enu_true = ELep = CosLep = Q2 = q0 = q3 = Enu_QE = Q2_QE = W_nuc_rest = W = x = y = -999.9;
nfsp = 0;
for (int i = 0; i < kMAX; ++i){
px[i] = py[i] = pz[i] = E[i] = -999;
pdg[i] = 0;
}
Weight = InputWeight = RWWeight = 0;
partList.clear();
// Now fill the information
Mode = event->Mode;
cc = (abs(event->Mode) < 30);
// Get the incoming neutrino and outgoing lepton
FitParticle *nu = event->GetNeutrinoIn();
FitParticle *lep = event->GetHMFSAnyLepton();
PDGnu = nu->fPID;
- Enu = nu->fP.E()/1E3;
+ Enu_true = nu->fP.E()/1E3;
tgt = event->fTargetPDG;
- PDGLep = lep->fPID;
- ELep = lep->fP.E()/1E3;
- CosLep = cos(nu->fP.Vect().Angle(lep->fP.Vect()));
-
- // Basic interaction kinematics
- Q2 = -1*(nu->fP - lep->fP).Mag2()/1E6;
- q0 = (nu->fP - lep->fP).E()/1E3;
- q3 = (nu->fP - lep->fP).Vect().Mag()/1E3;
-
- // Get W_true with assumption of initial state nucleon at rest
- float m_n = (float)PhysConst::mass_proton;
- W_nuc_rest = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n);
- W = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n);
- x = Q2/(2 * m_n * q0);
- y = 1 - ELep/Enu;
-
- // These assume C12 binding from MINERvA... not ideal
- Q2_QE = FitUtils::Q2QErec(lep->fP, CosLep, 34., true);
- Enu_QE = FitUtils::EnuQErec(lep->fP, CosLep, 34., true);
+ if (lep != NULL) {
+ PDGLep = lep->fPID;
+ ELep = lep->fP.E()/1E3;
+ CosLep = cos(nu->fP.Vect().Angle(lep->fP.Vect()));
+
+ // Basic interaction kinematics
+ Q2 = -1*(nu->fP - lep->fP).Mag2()/1E6;
+ q0 = (nu->fP - lep->fP).E()/1E3;
+ q3 = (nu->fP - lep->fP).Vect().Mag()/1E3;
+
+ // These assume C12 binding from MINERvA... not ideal
+ Enu_QE = FitUtils::EnuQErec(lep->fP, CosLep, 34., true);
+ Q2_QE = FitUtils::Q2QErec(lep->fP, CosLep, 34., true);
+
+ // Get W_true with assumption of initial state nucleon at rest
+ float m_n = (float)PhysConst::mass_proton;
+ W_nuc_rest = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n);
+ W = sqrt(-Q2 + 2 * m_n * q0 + m_n * m_n);
+ x = Q2/(2 * m_n * q0);
+ y = 1 - ELep/Enu_true;
+ }
// Loop over the particles and store all the final state particles in a vector
for (UInt_t i = 0; i < event->Npart(); ++i) {
bool part_alive = event->PartInfo(i)->fIsAlive and event->PartInfo(i)->Status() == kFinalState;
if (!part_alive) continue;
partList .push_back(event->PartInfo(i));
}
// Save outgoing particle vectors
nfsp = (int)partList.size();
for (int i = 0; i < nfsp; ++i){
px[i] = partList[i]->fP.X()/1E3;
py[i] = partList[i]->fP.Y()/1E3;
pz[i] = partList[i]->fP.Z()/1E3;
E[i] = partList[i]->fP.E()/1E3;
pdg[i] = partList[i]->fPID;
}
// Fill event weights
Weight = event->RWWeight * event->InputWeight;
RWWeight = event->RWWeight;
InputWeight = event->InputWeight;
// Fill the eventVariables Tree
eventVariables->Fill();
return;
};
void GenericFlux_Vectors::Write(std::string drawOpt) {
// First save the TTree
eventVariables->Write();
// Save Flux and Event Histograms too
GetInput()->GetFluxHistogram()->Write();
GetInput()->GetEventHistogram()->Write();
return;
}
// Override functions which aren't really necessary
bool GenericFlux_Vectors::isSignal(FitEvent *event) {
(void)event;
return true;
};
void GenericFlux_Vectors::ScaleEvents() {
return;
}
void GenericFlux_Vectors::ApplyNormScale(float norm) {
this->fCurrentNorm = norm;
return;
}
void GenericFlux_Vectors::FillHistograms() {
return;
}
void GenericFlux_Vectors::ResetAll() {
eventVariables->Reset();
return;
}
float GenericFlux_Vectors::GetChi2() {
return 0.0;
}
diff --git a/src/MCStudies/GenericFlux_Vectors.h b/src/MCStudies/GenericFlux_Vectors.h
index f09e7e9..8b9b7a0 100644
--- a/src/MCStudies/GenericFlux_Vectors.h
+++ b/src/MCStudies/GenericFlux_Vectors.h
@@ -1,98 +1,98 @@
// Copyright 2016 L. Pickering, P Stowell, R. Terri, C. Wilkinson, C. Wret
/*******************************************************************************
* This file is part of NUISANCE.
*
* NUISANCE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* NUISANCE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with NUISANCE. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#ifndef GenericFlux_Vectors_H_SEEN
#define GenericFlux_Vectors_H_SEEN
#include "Measurement1D.h"
class GenericFlux_Vectors : public Measurement1D {
public:
GenericFlux_Vectors(std::string name, std::string inputfile, FitWeight *rw, std::string type, std::string fakeDataFile);
virtual ~GenericFlux_Vectors() {};
//! Grab info from event
void FillEventVariables(FitEvent *event);
//! Fill Custom Histograms
void FillHistograms();
//! ResetAll
void ResetAll();
//! Scale
void ScaleEvents();
//! Norm
void ApplyNormScale(float norm);
//! Define this samples signal
bool isSignal(FitEvent *nvect);
//! Write Files
void Write(std::string drawOpt);
//! Get Chi2
float GetChi2();
void AddEventVariablesToTree();
private:
TTree* eventVariables;
std::vector<FitParticle*> partList;
int Mode;
bool cc;
int PDGnu;
- float Enu;
int tgt;
int PDGLep;
float ELep;
float CosLep;
// Basic interaction kinematics
float Q2;
float q0;
float q3;
float Enu_QE;
+ float Enu_true;
float Q2_QE;
float W_nuc_rest;
float W;
float x;
float y;
// Save outgoing particle vectors
int nfsp;
static const int kMAX = 200;
float px[kMAX];
float py[kMAX];
float pz[kMAX];
float E[kMAX];
int pdg[kMAX];
// Basic event info
float Weight;
float InputWeight;
float RWWeight;
float fScaleFactor;
};
#endif

File Metadata

Mime Type
text/x-diff
Expires
Wed, May 14, 11:07 AM (21 h, 4 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5088632
Default Alt Text
(31 KB)

Event Timeline