Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F10664353
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
31 KB
Subscribers
None
View Options
diff --git a/Shower/Base/ShowerTree.cc b/Shower/Base/ShowerTree.cc
--- a/Shower/Base/ShowerTree.cc
+++ b/Shower/Base/ShowerTree.cc
@@ -1,852 +1,852 @@
// -*- C++ -*-
//
// ShowerTree.cc is a part of Herwig++ - A multi-purpose Monte Carlo event generator
// Copyright (C) 2002-2007 The Herwig Collaboration
//
// Herwig++ is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#include "ShowerProgenitor.h"
#include "ThePEG/Repository/EventGenerator.h"
#include "ShowerTree.h"
#include "Herwig++/Shower/Base/ShowerParticle.h"
#include "ThePEG/PDT/DecayMode.h"
#include "ThePEG/Handlers/EventHandler.h"
#include "ThePEG/Handlers/XComb.h"
#include "KinematicsReconstructor.h"
#include <cassert>
#include "ThePEG/Repository/CurrentGenerator.h"
using namespace Herwig;
using namespace ThePEG;
set<long> ShowerTree::_decayInShower = set<long>();
namespace {
void findBeam(tPPtr & beam, PPtr incoming) {
while(!beam->children().empty()) {
bool found=false;
for(unsigned int ix=0;ix<beam->children().size();++ix) {
if(beam->children()[ix]==incoming) {
found = true;
break;
}
}
if(found) break;
beam = beam->children()[0];
}
- assert(beam->children()[0]==incoming);
+ assert(!beam->children().empty());
}
}
// constructor from hard process
ShowerTree::ShowerTree(const PPair incoming, const ParticleVector & out,
ShowerDecayMap& decay)
: _hardMECorrection(false), _wasHard(true),
_parent(), _hasShowered(false) {
tPPair beam = CurrentGenerator::current().currentEvent()->incoming();
findBeam(beam.first ,incoming.first );
findBeam(beam.second,incoming.second);
_incoming = incoming;
double x1(_incoming.first ->momentum().rho()/beam.first ->momentum().rho());
double x2(_incoming.second->momentum().rho()/beam.second->momentum().rho());
// must have two incoming particles
assert(_incoming.first && _incoming.second);
// set the parent tree
_parent=ShowerTreePtr();
// temporary vectors to contain all the particles before insertion into
// the data structure
vector<PPtr> original,copy;
vector<ShowerParticlePtr> shower;
// create copies of ThePEG particles for the incoming particles
original.push_back(_incoming.first);
copy.push_back(new_ptr(Particle(*_incoming.first)));
original.push_back(_incoming.second);
copy.push_back(new_ptr(Particle(*_incoming.second)));
// and same for outgoing
map<PPtr,ShowerTreePtr> trees;
for (ParticleVector::const_iterator it = out.begin();
it != out.end(); ++it) {
// if decayed or should be decayed in shower make the tree
PPtr orig = *it;
if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
newtree->setParents();
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
}
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
// colour isolate the hard process
colourIsolate(original,copy);
// now create the Shower particles
// create ShowerParticles for the incoming particles
assert(original.size() == copy.size());
for(unsigned int ix=0;ix<original.size();++ix) {
ShowerParticlePtr temp=new_ptr(ShowerParticle(*copy[ix],1,ix>=2));
fixColour(temp);
// incoming
if(ix<2) {
temp->x(ix==0 ? x1 : x2);
_incomingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],
copy[ix],temp)),
temp));
_backward.insert(temp);
}
// outgoing
else {
_outgoingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],
copy[ix],temp)),
temp));
_forward.insert(temp);
}
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end())
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,mit->first->progenitor())));
}
}
ShowerTree::ShowerTree(PPtr in,
ShowerDecayMap& decay)
: _hardMECorrection(false), _wasHard(false), _hasShowered(false) {
// there must be an incoming particle
assert(in);
// temporary vectors to contain all the particles before insertion into
// the data structure
vector<PPtr> original,copy;
// insert place holder for incoming particle
original.push_back(in);
copy.push_back(PPtr());
// we need to deal with the decay products if decayed
map<PPtr,ShowerTreePtr> trees;
if(!in->children().empty()) {
ParticleVector children=in->children();
for(unsigned int ix=0;ix<children.size();++ix) {
// if decayed or should be decayed in shower make the tree
PPtr orig=children[ix];
in->abandonChild(orig);
if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
newtree->setParents();
newtree->_parent=this;
}
original.push_back(orig);
copy.push_back(new_ptr(Particle(*orig)));
}
}
// create the incoming particle
copy[0] = new_ptr(Particle(*in));
// isolate the colour
colourIsolate(original,copy);
// create the parent
ShowerParticlePtr sparent(new_ptr(ShowerParticle(*copy[0],2,false)));
fixColour(sparent);
_incomingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[0],copy[0],sparent))
,sparent));
// return if not decayed
if(original.size()==1) return;
// create the children
assert(copy.size() == original.size());
for (unsigned int ix=1;ix<original.size();++ix) {
ShowerParticlePtr stemp= new_ptr(ShowerParticle(*copy[ix],2,true));
fixColour(stemp);
_outgoingLines.insert(make_pair(new_ptr(ShowerProgenitor(original[ix],copy[ix],
stemp)),
stemp));
_forward.insert(stemp);
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end())
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,mit->first->progenitor())));
}
}
void ShowerTree::updateFinalStateShowerProduct(ShowerProgenitorPtr progenitor,
ShowerParticlePtr parent,
const ShowerParticleVector & children) {
assert(children.size()==2);
bool matches[2];
for(unsigned int ix=0;ix<2;++ix) {
matches[ix] = children[ix]->id()==progenitor->id();
}
ShowerParticlePtr newpart;
if(matches[0]&&matches[1]) {
if(parent->showerKinematics()->z()>0.5) newpart=children[0];
else newpart=children[1];
}
else if(matches[0]) newpart=children[0];
else if(matches[1]) newpart=children[1];
_outgoingLines[progenitor]=newpart;
}
void ShowerTree::updateInitialStateShowerProduct(ShowerProgenitorPtr progenitor,
ShowerParticlePtr newParent) {
_incomingLines[progenitor]=newParent;
}
void ShowerTree::colourIsolate(const vector<PPtr> & original,
const vector<PPtr> & copy) {
// vectors must have same size
assert(original.size()==copy.size());
// create a temporary map with all the particles to make looping easier
vector<PPair> particles;
particles.reserve(original.size());
for(unsigned int ix=0;ix<original.size();++ix)
particles.push_back(make_pair(copy[ix],original[ix]));
// reset the colour of the copies
vector<PPair>::const_iterator cit,cjt;
for(cit=particles.begin();cit!=particles.end();++cit)
if((*cit).first->colourInfo()) (*cit).first->colourInfo(new_ptr(ColourBase()));
map<tColinePtr,tColinePtr> cmap;
// make the colour connections of the copies
for(cit=particles.begin();cit!=particles.end();++cit) {
ColinePtr c1,newline;
// if particle has a colour line
if((*cit).second->colourLine()&&!(*cit).first->colourLine()) {
c1=(*cit).second->colourLine();
newline=ColourLine::create((*cit).first);
cmap[c1]=newline;
for(cjt=particles.begin();cjt!=particles.end();++cjt) {
if(cjt==cit) continue;
if((*cjt).second->colourLine()==c1)
newline->addColoured((*cjt).first);
else if((*cjt).second->antiColourLine()==c1)
newline->addColoured((*cjt).first,true);
}
}
// if anticolour line
if((*cit).second->antiColourLine()&&!(*cit).first->antiColourLine()) {
c1=(*cit).second->antiColourLine();
newline=ColourLine::create((*cit).first,true);
cmap[c1]=newline;
for(cjt=particles.begin();cjt!=particles.end();++cjt) {
if(cjt==cit) continue;
if((*cjt).second->colourLine()==c1)
newline->addColoured((*cjt).first);
else if((*cjt).second->antiColourLine()==c1)
newline->addColoured((*cjt).first,true);
}
}
}
// sort out sinks and sources
for(cit=particles.begin();cit!=particles.end();++cit) {
tColinePtr cline[2];
tColinePair cpair;
for(unsigned int ix=0;ix<4;++ix) {
cline[0] = ix<2 ? cit->second->colourLine() : cit->second->antiColourLine();
cline[1] = ix<2 ? cit->first ->colourLine() : cit->first ->antiColourLine();
if(cline[0]) {
switch (ix) {
case 0: case 2:
cpair = cline[0]->sinkNeighbours();
break;
case 1: case 3:
cpair = cline[0]->sourceNeighbours();
break;
};
}
else {
cpair = make_pair(tColinePtr(),tColinePtr());
}
if(cline[0]&&cpair.first) {
map<tColinePtr,tColinePtr>::const_iterator
mit[2] = {cmap.find(cpair.first),cmap.find(cpair.second)};
if(mit[0]!=cmap.end()&&mit[1]!=cmap.end()) {
if(ix==0||ix==2) {
cline[1]->setSinkNeighbours(mit[0]->second,mit[1]->second);
}
else {
cline[1]->setSourceNeighbours(mit[0]->second,mit[1]->second);
}
}
}
}
}
}
void ShowerTree::insertHard(StepPtr pstep, bool ISR, bool) {
assert(_incomingLines.size()==2);
_colour.clear();
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// construct the map of colour lines for hard process
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
if(!cit->first->perturbative()) continue;
if((*cit).first->copy()->colourLine())
_colour.insert(make_pair((*cit).first->copy()->colourLine(),
(*cit).first->original()->colourLine()));
if((*cit).first->copy()->antiColourLine())
_colour.insert(make_pair((*cit).first->copy()->antiColourLine(),
(*cit).first->original()->antiColourLine()));
}
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
if(!cjt->first->perturbative()) continue;
if((*cjt).first->copy()->colourLine())
_colour.insert(make_pair((*cjt).first->copy()->colourLine(),
(*cjt).first->original()->colourLine()));
if((*cjt).first->copy()->antiColourLine())
_colour.insert(make_pair((*cjt).first->copy()->antiColourLine(),
(*cjt).first->original()->antiColourLine()));
}
// initial-state radiation
if(ISR) {
for(cit=incomingLines().begin();cit!=incomingLines().end();++cit) {
ShowerParticlePtr init=(*cit).first->progenitor();
assert(init->getThePEGBase());
PPtr original = (*cit).first->original();
if(original->parents().empty()) continue;
PPtr hadron= original->parents()[0];
assert(!original->children().empty());
PPtr copy=cit->first->copy();
ParticleVector intermediates=original->children();
for(unsigned int ix=0;ix<intermediates.size();++ix) {
init->abandonChild(intermediates[ix]);
copy->abandonChild(intermediates[ix]);
}
// if not from a matrix element correction
if(cit->first->perturbative()) {
// break mother/daugther relations
init->addChild(original);
hadron->abandonChild(original);
// if particle showers add shower
if(cit->first->hasEmitted()) {
addInitialStateShower(init,hadron,pstep,false);
}
// no showering for this particle
else {
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
}
}
// from matrix element correction
else {
// break mother/daugther relations
hadron->abandonChild(original);
copy->addChild(original);
updateColour(copy);
init->addChild(copy);
pstep->addIntermediate(copy);
// if particle showers add shower
if(cit->first->hasEmitted()) {
addInitialStateShower(init,hadron,pstep,false);
}
// no showering for this particle
else {
updateColour(init);
hadron->addChild(init);
pstep->addIntermediate(init);
}
}
}
}
// final-state radiation
for(cjt=outgoingLines().begin();cjt!=outgoingLines().end();++cjt) {
ShowerParticlePtr init=(*cjt).first->progenitor();
assert(init->getThePEGBase());
// if not from a matrix element correction
if(cjt->first->perturbative()) {
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
parents[ix]->abandonChild(init);
(*cjt).first->original()->addChild(init);
pstep->addDecayProduct(init);
}
// from a matrix element correction
else {
if(cjt->first->original()==_incoming.first||
cjt->first->original()==_incoming.second) {
updateColour((*cjt).first->copy());
(*cjt).first->original()->parents()[0]->
addChild((*cjt).first->copy());
pstep->addDecayProduct((*cjt).first->copy());
(*cjt).first->copy()->addChild(init);
pstep->addDecayProduct(init);
}
else {
updateColour((*cjt).first->copy());
(*cjt).first->original()->addChild((*cjt).first->copy());
pstep->addDecayProduct((*cjt).first->copy());
(*cjt).first->copy()->addChild(init);
pstep->addDecayProduct(init);
}
}
updateColour(init);
// insert shower products
addFinalStateShower(init,pstep);
}
_colour.clear();
}
void ShowerTree::addFinalStateShower(PPtr p, StepPtr s) {
if(p->children().empty()) return;
ParticleVector::const_iterator child;
for(child=p->children().begin(); child != p->children().end(); ++child) {
updateColour(*child);
s->addDecayProduct(*child);
addFinalStateShower(*child,s);
}
}
void ShowerTree::updateColour(PPtr particle) {
// if attached to a colour line
if(particle->colourLine()) {
bool reset=false;
// if colour line from hard process reconnect
if(_colour.find(particle->colourLine())!=_colour.end()) {
ColinePtr c1=particle->colourLine();
c1->removeColoured(particle);
_colour[c1]->addColoured(particle);
reset=true;
}
// ensure properly connected to the line
if(!reset) {
ColinePtr c1=particle->colourLine();
c1->removeColoured(particle);
c1->addColoured(particle);
}
}
// if attached to an anticolour line
if(particle->antiColourLine()) {
bool reset=false;
// if anti colour line from hard process reconnect
if(_colour.find(particle->antiColourLine())!=_colour.end()) {
ColinePtr c1=particle->antiColourLine();
c1->removeColoured(particle,true);
_colour[c1]->addColoured(particle,true);
reset=true;
}
if(!reset) {
ColinePtr c1=particle->antiColourLine();
c1->removeColoured(particle,true);
c1->addColoured(particle,true);
}
}
}
void ShowerTree::addInitialStateShower(PPtr p, PPtr hadron,
StepPtr s, bool addchildren) {
// Each parton here should only have one parent
if(!p->parents().empty()) {
if(p->parents().size()!=1)
throw Exception() << "Particle must only have one parent in ShowerTree"
<< "::addInitialStateShower" << Exception::runerror;
addInitialStateShower(p->parents()[0],hadron,s);
}
else {
hadron->addChild(p);
s->addIntermediate(p);
}
updateColour(p);
ParticleVector::const_iterator child;
// if not adding children return
if(!addchildren) return;
// add children
for(child = p->children().begin(); child != p->children().end(); ++child) {
// if a final-state particle update the colour
ShowerParticlePtr schild =
dynamic_ptr_cast<ShowerParticlePtr>(*child);
if(schild && schild->isFinalState()) updateColour(*child);
// if there are grandchildren of p
if(!(*child)->children().empty()) {
// Add child as intermediate
s->addIntermediate(*child);
// If child is shower particle and final-state, add children
if(schild && schild->isFinalState()) addFinalStateShower(schild,s);
}
else
s->addDecayProduct(*child);
}
}
void ShowerTree::decay(ShowerDecayMap & decay) {
// must be one incoming particle
assert(_incomingLines.size()==1);
// if already decayed return
if(!_outgoingLines.empty()) return;
// otherwise decay it
// now we need to replace the particle with a new copy after the shower
// find particle after the shower
ShowerParticlePtr newparent=_parent->_treelinks[this].second;
// now make the new progenitor
vector<PPtr> original,copy;
original.push_back(newparent);
copy.push_back(new_ptr(Particle(*newparent)));
// reisolate the colour
colourIsolate(original,copy);
// make the new progenitor
ShowerParticlePtr stemp=new_ptr(ShowerParticle(*copy[0],2,false));
fixColour(stemp);
ShowerProgenitorPtr newprog=new_ptr(ShowerProgenitor(original[0],copy[0],stemp));
_incomingLines.clear();
_incomingLines.insert(make_pair(newprog,stemp));
// now we need to decay the copy
PPtr parent=copy[0];
unsigned int ntry = 0;
while (true) {
// exit if fails
if (++ntry>=200)
throw Exception() << "Failed to perform decay in ShowerTree::decay()"
<< " after " << 200
<< " attempts for " << parent->PDGName()
<< Exception::eventerror;
// select decay mode
tDMPtr dm(parent->data().selectMode(*parent));
if(!dm)
throw Exception() << "Failed to select decay mode in ShowerTree::decay()"
<< "for " << newparent->PDGName()
<< Exception::eventerror;
if(!dm->decayer())
throw Exception() << "No Decayer for selected decay mode "
<< " in ShowerTree::decay()"
<< Exception::runerror;
// start of try block
try {
ParticleVector children = dm->decayer()->decay(*dm, *parent);
// if no children have another go
if(children.empty()) continue;
// set up parent
parent->decayMode(dm);
// add children
for (unsigned int i = 0, N = children.size(); i < N; ++i ) {
children[i]->setLabVertex(parent->labDecayVertex());
parent->addChild(children[i]);
parent->scale(ZERO);
}
// if succeeded break out of loop
break;
}
catch(KinematicsReconstructionVeto) {}
}
// insert the trees from the children
ParticleVector children=parent->children();
map<PPtr,ShowerTreePtr> trees;
for(unsigned int ix=0;ix<children.size();++ix) {
PPtr orig=children[ix];
parent->abandonChild(orig);
// if particle has children or decays in shower
if(!orig->children().empty()||
(decaysInShower(orig->id())&&!orig->dataPtr()->stable())) {
ShowerTreePtr newtree=new_ptr(ShowerTree(orig,decay));
trees.insert(make_pair(orig,newtree));
Energy width=orig->dataPtr()->generateWidth(orig->mass());
decay.insert(make_pair(width,newtree));
}
// now create the shower progenitors
PPtr ncopy=new_ptr(Particle(*orig));
//copy[0]->addChild(ncopy);
ShowerParticlePtr nshow=new_ptr(ShowerParticle(*ncopy,2,true));
fixColour(nshow);
ShowerProgenitorPtr prog=new_ptr(ShowerProgenitor(children[ix],
ncopy,nshow));
_outgoingLines.insert(make_pair(prog,nshow));
}
// set up the map of daughter trees
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit) {
map<PPtr,ShowerTreePtr>::const_iterator tit=trees.find(mit->first->original());
if(tit!=trees.end()) {
_treelinks.insert(make_pair(tit->second,
make_pair(mit->first,
mit->first->progenitor())));
tit->second->_parent=this;
}
}
}
void ShowerTree::insertDecay(StepPtr pstep,bool ISR, bool) {
assert(_incomingLines.size()==1);
_colour.clear();
// find final particle from previous tree
PPtr final;
if(_parent&&!_parent->_treelinks.empty())
final = _parent->_treelinks[this].second;
else
final=_incomingLines.begin()->first->original();
// construct the map of colour lines
PPtr copy=_incomingLines.begin()->first->copy();
if(copy->colourLine())
_colour.insert(make_pair(copy->colourLine(),final->colourLine()));
if(copy->antiColourLine())
_colour.insert(make_pair(copy->antiColourLine(),final->antiColourLine()));
// initial-state radiation
if(ISR&&!_incomingLines.begin()->first->progenitor()->children().empty()) {
ShowerParticlePtr init=_incomingLines.begin()->first->progenitor();
updateColour(init);
final->addChild(init);
pstep->addDecayProduct(init);
// insert shower products
addFinalStateShower(init,pstep);
// sort out colour
final=_incomingLines.begin()->second;
_colour.clear();
if(copy->colourLine())
_colour.insert(make_pair(copy->colourLine(),final->colourLine()));
if(copy->antiColourLine())
_colour.insert(make_pair(copy->antiColourLine(),final->antiColourLine()));
}
// get the decaying particles
// make the copy
tColinePair cline=make_pair(copy->colourLine(),copy->antiColourLine());
updateColour(copy);
// sort out sinks and sources if needed
if(cline.first) {
if(cline.first->sourceNeighbours().first) {
copy->colourLine()->setSourceNeighbours(cline.first->sourceNeighbours().first,
cline.first->sourceNeighbours().second);
}
else if (cline.first->sinkNeighbours().first) {
copy->colourLine()->setSinkNeighbours(cline.first->sinkNeighbours().first,
cline.first->sinkNeighbours().second);
}
}
if(cline.second) {
if(cline.second->sourceNeighbours().first) {
copy->antiColourLine()->setSourceNeighbours(cline.second->sourceNeighbours().first,
cline.second->sourceNeighbours().second);
}
else if (cline.second->sinkNeighbours().first) {
copy->antiColourLine()->setSinkNeighbours(cline.second->sinkNeighbours().first,
cline.second->sinkNeighbours().second);
}
}
// copy of the one from the hard process
tParticleVector dpar=copy->parents();
for(unsigned int ix=0;ix<dpar.size();++ix) dpar[ix]->abandonChild(copy);
final->addChild(copy);
pstep->addDecayProduct(copy);
// final-state radiation
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cit;
for(cit=outgoingLines().begin();cit!=outgoingLines().end();++cit) {
ShowerParticlePtr init=cit->first->progenitor();
if(!init->getThePEGBase())
throw Exception() << "Final-state particle must have a ThePEGBase"
<< " in ShowerTree::fillEventRecord()"
<< Exception::runerror;
// if not from matrix element correction
if(cit->first->perturbative()) {
// add the child
updateColour(cit->first->copy());
PPtr orig=cit->first->original();
copy->addChild(orig);
pstep->addDecayProduct(orig);
orig->addChild(cit->first->copy());
pstep->addDecayProduct(cit->first->copy());
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
{parents[ix]->abandonChild(init);}
(*cit).first->copy()->addChild(init);
pstep->addDecayProduct(init);
updateColour(init);
}
// from a matrix element correction
else {
if(copy->children().end()==
find(copy->children().begin(),copy->children().end(),
cit->first->original())) {
updateColour(cit->first->original());
copy->addChild(cit->first->original());
pstep->addDecayProduct(cit->first->original());
}
updateColour(cit->first->copy());
cit->first->original()->addChild(cit->first->copy());
pstep->addDecayProduct(cit->first->copy());
// register the shower particle as a
// copy of the one from the hard process
tParticleVector parents=init->parents();
for(unsigned int ix=0;ix<parents.size();++ix)
{parents[ix]->abandonChild(init);}
(*cit).first->copy()->addChild(init);
pstep->addDecayProduct(init);
updateColour(init);
}
// insert shower products
addFinalStateShower(init,pstep);
}
_colour.clear();
}
void ShowerTree::clear() {
// reset the has showered flag
_hasShowered=false;
// clear the colour map
_colour.clear();
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cjt;
// abandon the children of the outgoing particles
for(cit=_outgoingLines.begin();cit!=_outgoingLines.end();++cit) {
ShowerParticlePtr orig=cit->first->progenitor();
orig->set5Momentum(cit->first->copy()->momentum());
ParticleVector children=orig->children();
for(unsigned int ix=0;ix<children.size();++ix) orig->abandonChild(children[ix]);
_outgoingLines[cit->first]=orig;
cit->first->hasEmitted(false);
}
// forward products
_forward.clear();
for(cit=_outgoingLines.begin();cit!=_outgoingLines.end();++cit)
_forward.insert(cit->first->progenitor());
// if a decay
if(!_wasHard) {
ShowerParticlePtr orig=_incomingLines.begin()->first->progenitor();
orig->set5Momentum(_incomingLines.begin()->first->copy()->momentum());
ParticleVector children=orig->children();
for(unsigned int ix=0;ix<children.size();++ix) orig->abandonChild(children[ix]);
}
// if a hard process
else {
for(cjt=_incomingLines.begin();cjt!=_incomingLines.end();++cjt) {
tPPtr parent = cjt->first->original()->parents().empty() ?
tPPtr() : cjt->first->original()->parents()[0];
ShowerParticlePtr temp=
new_ptr(ShowerParticle(*cjt->first->copy(),
cjt->first->progenitor()->perturbative(),
cjt->first->progenitor()->isFinalState()));
fixColour(temp);
temp->x(cjt->first->progenitor()->x());
cjt->first->hasEmitted(false);
if(!(cjt->first->progenitor()==cjt->second)&&cjt->second&&parent)
parent->abandonChild(cjt->second);
cjt->first->progenitor(temp);
_incomingLines[cjt->first]=temp;
}
}
// reset the particles at the end of the shower
_backward.clear();
// if hard process backward products
if(_wasHard)
for(cjt=_incomingLines.begin();cjt!=_incomingLines.end();++cjt)
_backward.insert(cjt->first->progenitor());
}
void ShowerTree::resetShowerProducts() {
map<ShowerProgenitorPtr, ShowerParticlePtr>::const_iterator cit;
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
_backward.clear();
_forward.clear();
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit)
_backward.insert(cit->second);
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt)
_forward.insert(cjt->second);
}
void ShowerTree::updateAfterShower(ShowerDecayMap & decay) {
// update the links
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mit;
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::iterator tit;
for(tit=_treelinks.begin();tit!=_treelinks.end();++tit) {
if(tit->second.first) {
mit=_outgoingLines.find(tit->second.first);
if(mit!=_outgoingLines.end()) tit->second.second=mit->second;
}
}
// get the particles coming from those in the hard process
set<tShowerParticlePtr> hard;
for(mit=_outgoingLines.begin();mit!=_outgoingLines.end();++mit)
hard.insert(mit->second);
// find the shower particles which should be decayed in the
// shower but didn't come from the hard process
set<tShowerParticlePtr>::const_iterator cit;
for(cit=_forward.begin();cit!=_forward.end();++cit) {
if(decaysInShower((**cit).id())&&
hard.find(*cit)==hard.end()) {
ShowerTreePtr newtree=new_ptr(ShowerTree(*cit,decay));
newtree->setParents();
newtree->_parent=this;
Energy width=(**cit).dataPtr()->generateWidth((**cit).mass());
decay.insert(make_pair(width,newtree));
_treelinks.insert(make_pair(newtree,
make_pair(tShowerProgenitorPtr(),*cit)));
}
}
}
void ShowerTree::addFinalStateBranching(ShowerParticlePtr parent,
const ShowerParticleVector & children) {
assert(children.size()==2);
_forward.erase(parent);
for(unsigned int ix=0; ix<children.size(); ++ix) {
_forward.insert(children[ix]);
}
}
void ShowerTree::addInitialStateBranching(ShowerParticlePtr oldParent,
ShowerParticlePtr newParent,
ShowerParticlePtr otherChild) {
_backward.erase(oldParent);
_backward.insert(newParent);
_forward.insert(otherChild);
}
void ShowerTree::setParents() {
// set the parent tree of the children
map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator tit;
for(tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->_parent=this;
}
void ShowerTree::fixColour(tShowerParticlePtr part) {
ColinePtr line=part->colourLine();
if(line) {
line->removeColoured(part);
line->addColoured(part);
}
line=part->antiColourLine();
if(line) {
line->removeAntiColoured(part);
line->addAntiColoured(part);
}
}
vector<ShowerProgenitorPtr> ShowerTree::extractProgenitors() {
// extract the particles from the ShowerTree
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator mit;
vector<ShowerProgenitorPtr> ShowerHardJets;
for(mit=incomingLines().begin();mit!=incomingLines().end();++mit)
ShowerHardJets.push_back((*mit).first);
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator mjt;
for(mjt=outgoingLines().begin();mjt!=outgoingLines().end();++mjt)
ShowerHardJets.push_back((*mjt).first);
return ShowerHardJets;
}
void ShowerTree::transform(const LorentzRotation & boost) {
// now boost all the particles
map<ShowerProgenitorPtr,ShowerParticlePtr>::const_iterator cit;
// incoming
for(cit=_incomingLines.begin();cit!=_incomingLines.end();++cit) {
cit->first->progenitor()->deepTransform(boost);
cit->first->copy()->deepTransform(boost);
}
// outgoing
map<ShowerProgenitorPtr,tShowerParticlePtr>::const_iterator cjt;
for(cjt=_outgoingLines.begin();cjt!=_outgoingLines.end();++cjt) {
cjt->first->progenitor()->deepTransform(boost);
cjt->first->copy()->deepTransform(boost);
}
// child trees
for(map<tShowerTreePtr,pair<tShowerProgenitorPtr,tShowerParticlePtr> >::const_iterator
tit=_treelinks.begin();tit!=_treelinks.end();++tit)
tit->first->transform(boost);
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Apr 24, 6:37 AM (1 d, 15 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4887783
Default Alt Text
(31 KB)
Attached To
rHERWIGHG herwighg
Event Timeline
Log In to Comment