Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F10664337
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
8 KB
Subscribers
None
View Options
diff --git a/include/HEJ/Tensor.hh b/include/HEJ/Tensor.hh
index 8ee8b4e..3472bd3 100644
--- a/include/HEJ/Tensor.hh
+++ b/include/HEJ/Tensor.hh
@@ -1,264 +1,269 @@
/** \file
* \brief Tensor Template Class declaration.
*
* This file contains the declaration of the Tensor Template class. This
* is used to calculate some of the more complex currents within the
* W+Jets implementation particularly.
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <complex>
#include <valarray>
namespace CLHEP {
class HepLorentzVector;
}
namespace HEJ {
typedef std::complex<double> COM;
///@TODO put in some namespace
namespace detail {
static constexpr std::size_t d = 4;
//! \internal Compute integer powers at compile time
inline
constexpr std::size_t power(unsigned base, unsigned exp) {
if(exp == 0) return 1;
// use exponentiation by squaring
// there are potentially faster implementations using bit shifts
// but we don't really care because everything's done at compile time
// and this is easier to understand
const std::size_t sqrt = power(base, exp/2);
return (exp % 2)?base*sqrt*sqrt:sqrt*sqrt;
}
}
template <unsigned int N>
class Tensor{
public:
static constexpr std::size_t d = detail::d;
//! Constructor
Tensor() = default;
explicit Tensor(COM x);
//! Rank of Tensor
constexpr unsigned rank() const{
return N;
};
//! total number of entries
std::size_t size() const {
return components.size();
};
//! Tensor element with given indices
template<typename... Indices>
COM const & operator()(Indices... i) const;
//! Tensor element with given indices
template<typename... Indices>
COM & operator()(Indices... rest);
//! implicit conversion to complex number for rank 0 tensors (scalars)
operator COM() const;
Tensor<N> & operator*=(COM const & x);
Tensor<N> & operator/=(COM const & x);
Tensor<N> & operator+=(Tensor<N> const & T2);
Tensor<N> & operator-=(Tensor<N> const & T2);
template<unsigned M>
friend bool operator==(Tensor<M> const & T1, Tensor<M> const & T2);
//! Outer product of two tensors
template<unsigned M>
Tensor<N+M> outer(Tensor<M> const & T2) const;
//! Outer product of two tensors
template<unsigned K, unsigned M>
friend Tensor<K+M> outer(Tensor<K> const & T1, Tensor<M> const & T2);
//! Outer product of tensor with HLV
template<unsigned K>
friend Tensor<K+1> outer(Tensor<K> const & T1, CLHEP::HepLorentzVector const & p2);
//! Outer product of HLV with tensor
template<unsigned K>
friend Tensor<K+1> outer(CLHEP::HepLorentzVector const & p1, Tensor<K> const & T2);
/**
* \brief T^(mu1...mk..mN)T2_(muk) contract kth index, where k member of [1,N]
* @param T2 Tensor of Rank 1 to contract with.
* @param k int to contract Tensor T2 with from original Tensor.
* @returns T1.contract(T2,1) -> T1^(mu,nu,rho...)T2_mu
*/
Tensor<N-1> contract(Tensor<1> const & T2, int k) const;
/**
* \brief T^(mu1...mk..mN)p2_(muk) contract kth index, where k member of [1,N]
* @param p2 HepLorentzVector to contract with.
* @param k int to contract HLV p2 with from original Tensor.
* @returns T1.contract(p2,1) -> T1^(mu,nu,rho...)p2_mu
*/
Tensor<N-1> contract(CLHEP::HepLorentzVector const & p2, int k) const;
/**
* \brief "Dot" product, contracting the last open index
* @param p2 Vector (e.g. Rank 1 Tensor) to contract with
* @returns Same as T1.contract(T2, N)
*/
template<typename T>
Tensor<N-1> dot(T const & T2) const {
return contract(T2, N);
}
//! Complex conjugate tensor
Tensor<N> & complex_conj();
std::array<COM, detail::power(d, N)> components;
private:
};
template<unsigned N>
Tensor<N> operator*(COM const & x, Tensor<N> t);
template<unsigned N>
Tensor<N> operator*(Tensor<N> t, COM const & x);
template<unsigned N>
Tensor<N> operator/(Tensor<N> t, COM const & x);
template<unsigned N>
Tensor<N> operator+(Tensor<N> T1, Tensor<N> const & T2);
template<unsigned N>
Tensor<N> operator-(Tensor<N> T1, Tensor<N> const & T2);
template<unsigned N>
bool operator==(Tensor<N> const & T1, Tensor<N> const & T2);
template<unsigned N>
bool operator!=(Tensor<N> const & T1, Tensor<N> const & T2);
namespace helicity {
enum Helicity {
minus, plus
};
}
using helicity::Helicity;
+ /**
+ * \brief Flip helicity
+ * @param h Helicity to flip
+ * @returns plus iff the input helicity was minus and vice versa
+ */
inline
constexpr Helicity flip(Helicity h) {
return (h == helicity::plus)?helicity::minus:helicity::plus;
}
//! Absolute square of a vector
inline
double abs2(Tensor<1> const & v) {
double res = std::norm(v(0));
for(size_t i = 1; i < detail::d; ++i) {
res -= std::norm(v(i));
}
return res;
}
//! Real part of a.dot(b.complex_conj())
// @TODO needs better name
inline
double vre(const Tensor<1> & a, const Tensor<1> & b) {
COM res = a(0)*conj(b(0));
for(size_t i = 1; i < detail::d; ++i) {
res -= a(i)*conj(b(i));
}
return real(res);
}
/**
* \brief Returns diag(+---) metric
* @returns metric {(1,0,0,0),(0,-1,0,0),(0,0,-1,0),(0,0,0,-1)}
*/
Tensor<2> metric();
/**
* \brief Calculates current <p1|mu|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu = <p1|mu|p2>
*
* The vector current is helicity conserving, so we only need to state
* one helicity.
*
* @note in/out configuration considered in calculation
*/
Tensor<1> current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
//! "angle" product angle(pi, pj) = <i j>
COM angle(CLHEP::HepLorentzVector const & pi, CLHEP::HepLorentzVector const & pj);
//! "square" product square(pi, pj) = [i j]
COM square(CLHEP::HepLorentzVector const & pi, CLHEP::HepLorentzVector const & pj);
/**
* \brief Calculates current <p1|mu nu rho|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu^nu^rho = <p1|mu nu rho|p2>
*
* @note in/out configuration considered in calculation
*/
Tensor<3> rank3_current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
/**
* \brief Calculates current <p1|mu nu rho tau sigma|p2>
* @param p1 Momentum of Particle 1
* @param p2 Momentum of Particle 2
* @param h Helicity of the Spinors
* @returns Tensor T^mu^nu^rho = <p1|mu nu rho tau sigma|p2>
*
* @note in/out configuration considered in calculation
*/
Tensor<5> rank5_current(
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
Helicity h
);
/**
* \brief Convert from HLV class
* @param p Current in HLV format
* @returns Current in Tensor Format
*/
Tensor<1> to_tensor(CLHEP::HepLorentzVector const & p);
/**
* \brief Construct Epsilon (Polarisation) Tensor
* @param k Momentum of incoming/outgoing boson
* @param ref Reference momentum for calculation
* @param pol Polarisation of boson
* @returns Polarisation Tensor E^mu
*/
Tensor<1> eps(
CLHEP::HepLorentzVector const & k,
CLHEP::HepLorentzVector const & ref,
Helicity pol
);
//! Initialises Tensor values by iterating over permutations of gamma matrices.
void init_sigma_index();
}
// implementation of template functions
#include "HEJ/detail/Tensor_impl.hh"
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Apr 24, 6:36 AM (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4887776
Default Alt Text
(8 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment