Page Menu
Home
HEPForge
Search
Configure Global Search
Log In
Files
F10664206
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
230 KB
Subscribers
None
View Options
diff --git a/.clang-tidy b/.clang-tidy
index 02674ff..0f06cf4 100644
--- a/.clang-tidy
+++ b/.clang-tidy
@@ -1,39 +1,40 @@
Checks: '
abseil*,
android*,
boost*,
bugprone*,
cert*,
+ cppcoreguidelines*,
linuxkernel*,
llvm*,
-clang-analyzer-optin.cplusplus.VirtualCall,
-cppcoreguidelines-avoid-magic-numbers,
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
-cppcoreguidelines-pro-bounds-constant-array-index,
-fuchsia*,
-google-build-using-namespace,
-google-readability*,
-google-runtime-int,
-google-runtime-references,
-hicpp*,
-llvm-header-guard,
-modernize-use-trailing-return-type,
-readability-braces-around-statements,
'
CheckOptions:
- key: readability-identifier-naming.PrivateMemberSuffix
value: '_'
- key: readability-identifier-naming.GlobalConstantCase
value: UPPER_CASE
- key: readability-identifier-naming.GlobalVariableCase
value: UPPER_CASE
- key: misc-non-private-member-variables-in-classes.IgnoreClassesWithAllMemberVariablesBeingPublic
value: '1'
- key: llvm-namespace-comment.ShortNamespaceLines
value: '10'
- key: readability-magic-numbers.IgnoreAllFloatingPointValues
value: '1'
- key: cppcoreguidelines-special-member-functions.AllowSoleDefaultDtor
value: '1'
- key: performance-move-const-arg.CheckTriviallyCopyableMove
value: '0'
diff --git a/include/HEJ/Config.hh b/include/HEJ/Config.hh
index 33f151e..b08f39d 100644
--- a/include/HEJ/Config.hh
+++ b/include/HEJ/Config.hh
@@ -1,234 +1,234 @@
/** \file
* \brief HEJ 2 configuration parameters
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#pragma once
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "fastjet/JetDefinition.hh"
#include "yaml-cpp/yaml.h"
#include "HEJ/Constants.hh"
#include "HEJ/EWConstants.hh"
#include "HEJ/Fraction.hh"
#include "HEJ/HiggsCouplingSettings.hh"
#include "HEJ/ScaleFunction.hh"
#include "HEJ/event_types.hh"
#include "HEJ/optional.hh"
#include "HEJ/output_formats.hh"
namespace HEJ{
//! Jet parameters
struct JetParameters{
fastjet::JetDefinition def; /**< Jet Definition */
- double min_pt; /**< Minimum Jet Transverse Momentum */
+ double min_pt{}; /**< Minimum Jet Transverse Momentum */
};
//! Settings for scale variation
struct ScaleConfig{
//! Base scale choices
std::vector<ScaleFunction> base;
//! Factors for multiplicative scale variation
std::vector<double> factors;
//! Maximum ratio between renormalisation and factorisation scale
- double max_ratio;
+ double max_ratio{};
};
//! Settings for random number generator
struct RNGConfig {
//! Random number generator name
std::string name;
//! Optional initial seed
optional<std::string> seed;
};
//! Settings for partial unweighting
struct PartialUnweightConfig {
//! Number of trials for training
size_t trials;
//! Maximum distance in standard deviations from mean logarithmic weight
double max_dev;
};
/**! Possible treatments for fixed-order input events.
*
* The program will decide on how to treat an event based on
* the value of this enumeration.
*/
enum class EventTreatment{
reweight, /**< Perform resummation */
keep, /**< Keep the event */
discard, /**< Discard the event */
};
//! Container to store the treatments for various event types
using EventTreatMap = std::map<event_type::EventType, EventTreatment>;
//! Possible setting for the event weight
enum class WeightType{
weighted, //!< weighted events
unweighted_resum, //!< unweighted only resummation part
partially_unweighted //!< mixed weighted and unweighted
};
/**! Input parameters.
*
* This struct handles stores all configuration parameters
* needed in a HEJ 2 run.
*
* \internal To add a new option:
* 1. Add a member to the Config struct.
* 2. Inside "src/YAMLreader.cc":
* - Add the option name to the "supported" Node in
* get_supported_options.
* - Initialise the new Config member in to_Config.
* The functions set_from_yaml (for mandatory options) and
* set_from_yaml_if_defined (non-mandatory) may be helpful.
* 3. Add a new entry (with short description) to config.yaml
* 4. Update the user documentation in "doc/Sphinx/"
*/
struct Config {
//! %Parameters for scale variation
ScaleConfig scales;
//! Resummation jet properties
JetParameters resummation_jets;
//! Fixed-order jet properties
JetParameters fixed_order_jets;
//! Minimum transverse momentum for extremal partons
//! \deprecated This will be removed in future versions.
//! Use \ref max_ext_soft_pt_fraction instead.
double min_extparton_pt = 0;
//! Maximum transverse momentum fraction from soft radiation in extremal jets
- Fraction<double> max_ext_soft_pt_fraction;
+ Fraction<double> max_ext_soft_pt_fraction{};
//! The regulator lambda for the subtraction terms
double regulator_lambda = CLAMBDA;
//! Number of resummation configurations to generate per fixed-order event
- size_t trials;
+ size_t trials{};
//! Maximal number of events
optional<size_t> max_events;
//! Whether to include the logarithmic correction from \f$\alpha_s\f$ running
- bool log_correction;
+ bool log_correction{};
//! Event output files names and formats
std::vector<OutputFile> output;
//! Parameters for random number generation
RNGConfig rng;
//! Map to decide what to do for different event types
EventTreatMap treat;
//! %Parameters for custom analysis
//! @deprecated use analyses_parameters instead
YAML::Node analysis_parameters;
//! %Parameters for custom analyses
std::vector<YAML::Node> analyses_parameters;
//! Settings for effective Higgs-gluon coupling
HiggsCouplingSettings Higgs_coupling;
//! elector weak parameters
EWConstants ew_parameters;
//! Type of event weight e.g. (un)weighted
WeightType weight_type;
//! Settings for partial unweighting
optional<PartialUnweightConfig> unweight_config;
};
//! Configuration options for the PhaseSpacePoint class
struct PhaseSpacePointConfig {
//! Properties of resummation jets
JetParameters jet_param;
//! Minimum transverse momentum for extremal partons
//! \deprecated This will be removed in future versions.
//! Use \ref max_ext_soft_pt_fraction instead.
double min_extparton_pt = 0;
//! Maximum transverse momentum fraction from soft radiation in extremal jets
Fraction<double> max_ext_soft_pt_fraction;
};
//! Configuration options for the MatrixElement class
struct MatrixElementConfig {
MatrixElementConfig() = default;
MatrixElementConfig(
bool log_correction,
HiggsCouplingSettings Higgs_coupling,
EWConstants ew_parameters,
double regulator_lambda = CLAMBDA
):
log_correction{log_correction},
Higgs_coupling{std::move(Higgs_coupling)},
ew_parameters{std::move(ew_parameters)},
regulator_lambda{regulator_lambda}
{}
//! Whether to include the logarithmic correction from \f$\alpha_s\f$ running
- bool log_correction;
+ bool log_correction{};
//! Settings for effective Higgs-gluon coupling
HiggsCouplingSettings Higgs_coupling;
//! elector weak parameters
EWConstants ew_parameters;
//! The regulator lambda for the subtraction terms
double regulator_lambda = CLAMBDA;
};
//! Configuration options for the EventReweighter class
struct EventReweighterConfig {
//! Settings for phase space point generation
PhaseSpacePointConfig psp_config;
//! Settings for matrix element calculation
MatrixElementConfig ME_config;
//! Access properties of resummation jets
JetParameters & jet_param() {
return psp_config.jet_param;}
//! Access properties of resummation jets (const version)
JetParameters const & jet_param() const {
return psp_config.jet_param;}
//! Treatment of the various event types
EventTreatMap treat;
};
/**! Extract PhaseSpacePointConfig from Config
*
* \internal We do not provide a PhaseSpacePointConfig constructor from Config
* so that PhaseSpacePointConfig remains an aggregate.
* This faciliates writing client code (e.g. the HEJ fixed-order generator)
* that creates a PhaseSpacePointConfig *without* a Config object.
*
* @see to_MatrixElementConfig, to_EventReweighterConfig
*/
inline
PhaseSpacePointConfig to_PhaseSpacePointConfig(Config const & conf) {
return {
conf.resummation_jets,
conf.min_extparton_pt,
conf.max_ext_soft_pt_fraction
};
}
/**! Extract MatrixElementConfig from Config
*
* @see to_PhaseSpacePointConfig, to_EventReweighterConfig
*/
inline
MatrixElementConfig to_MatrixElementConfig(Config const & conf) {
return {conf.log_correction, conf.Higgs_coupling,
conf.ew_parameters, conf.regulator_lambda};
}
/**! Extract EventReweighterConfig from Config
*
* @see to_PhaseSpacePointConfig, to_MatrixElementConfig
*/
inline
EventReweighterConfig to_EventReweighterConfig(Config const & conf) {
return {
to_PhaseSpacePointConfig(conf),
to_MatrixElementConfig(conf),
conf.treat
};
}
} // namespace HEJ
diff --git a/include/HEJ/EWConstants.hh b/include/HEJ/EWConstants.hh
index ff27185..0a6cb08 100644
--- a/include/HEJ/EWConstants.hh
+++ b/include/HEJ/EWConstants.hh
@@ -1,90 +1,90 @@
/** \file
* \brief Defines the electro weak parameters
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#pragma once
#include <cmath>
#include "HEJ/PDG_codes.hh"
#include "HEJ/exceptions.hh"
namespace HEJ {
//! collection of basic particle properties
struct ParticleProperties {
double mass; //!< Mass
double width; //!< Decay width
};
//! Collection of electro-weak constants
class EWConstants {
public:
EWConstants() = default;
//! initialise by Vacuum expectation value & boson properties
EWConstants(
double vev, //!< vacuum expectation value
ParticleProperties const & Wprop, //!< W boson mass & width
ParticleProperties const & Zprop, //!< Z boson mass & width
ParticleProperties const & Hprop //!< Higgs boson mass & width
): set{true}, vev_{vev}, Wprop_{Wprop}, Zprop_{Zprop}, Hprop_{Hprop} {}
//! set constants by Vacuum expectation value & boson properties
void set_vevWZH(
double vev, //!< vacuum expectation value
ParticleProperties const & Wprop, //!< W boson mass & width
ParticleProperties const & Zprop, //!< Z boson mass & width
ParticleProperties const & Hprop //!< Higgs boson mass & width
){
set = true; vev_= vev; Wprop_= Wprop; Zprop_= Zprop; Hprop_= Hprop;
}
//! vacuum expectation value
double vev() const {check_set(); return vev_;}
//! Properties of the W boson
ParticleProperties const & Wprop() const {check_set(); return Wprop_;}
//! Properties of the Z boson
ParticleProperties const & Zprop() const {check_set(); return Zprop_;}
//! Properties of the Higgs boson
ParticleProperties const & Hprop() const {check_set(); return Hprop_;}
//! access Properties by boson id
ParticleProperties const & prop(ParticleID const id) const {
using namespace pid;
switch(id){
case Wp:
case Wm:
return Wprop();
case Z:
return Zprop();
case h:
return Hprop();
default:
throw std::invalid_argument("No properties available for particle "+name(id));
}
}
//! cosine of Weinberg angle
double cos_tw() const {return Wprop().mass/Zprop().mass;}
//! cosine square of Weinberg angle
double cos2_tw() const {return cos_tw()*cos_tw();}
//! sinus Weinberg angle
double sin_tw() const {return std::sqrt(sin2_tw());}
//! sinus square of Weinberg angle
double sin2_tw() const {return 1. - cos2_tw();}
//! elector magnetic coupling
double alpha_em() const {return e2()/4./M_PI;}
//! weak coupling
double alpha_w() const {return gw2()/2.;}
private:
double gw2() const {return 4*Wprop().mass/vev()*Wprop().mass/vev();}
double e2() const {return gw2()*sin2_tw();}
void check_set() const {
if(!set) throw std::invalid_argument("EW constants not specified");
}
bool set{false};
- double vev_;
- ParticleProperties Wprop_;
- ParticleProperties Zprop_;
- ParticleProperties Hprop_;
+ double vev_{};
+ ParticleProperties Wprop_{};
+ ParticleProperties Zprop_{};
+ ParticleProperties Hprop_{};
};
} // namespace HEJ
diff --git a/include/HEJ/HepMC2Interface.hh b/include/HEJ/HepMC2Interface.hh
index e678c40..c89e91f 100644
--- a/include/HEJ/HepMC2Interface.hh
+++ b/include/HEJ/HepMC2Interface.hh
@@ -1,78 +1,78 @@
/** \file
* \brief Header file for the HepMC2Interface
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <cstddef>
#include "HEJ/PDG_codes.hh"
namespace HepMC {
class GenCrossSection;
class GenEvent;
}
namespace LHEF {
class HEPRUP;
}
namespace HEJ {
class Event;
//! This class converts the Events into HepMC::GenEvents
/**
* \details The output is depended on the HepMC version HEJ is compiled with,
* both HepMC 2 and HepMC 3 are supported. If HEJ 2 is compiled
* without HepMC calling this interface will throw an error.
*
* This interface will also keep track of the cross section of all the events that
* being fed into it.
*/
class HepMC2Interface{
public:
HepMC2Interface(LHEF::HEPRUP const &);
~HepMC2Interface();
/**
* \brief main function to convert an event into HepMC::GenEvent
*
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives central weight)
*/
HepMC::GenEvent operator()(Event const & event,
int weight_index = -1);
/**
* \brief Sets the central value from \p event to \p out_ev
*
* \param out_ev HepMC::GenEvent to write to
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives "central")
*
* This overwrites the central value of \p out_ev.
*/
void set_central(HepMC::GenEvent & out_ev, Event const & event,
int weight_index = -1);
protected:
/**
* \brief initialise generic event infomrations (not central weights)
*
* \param event Event to convert
*/
HepMC::GenEvent init_event(Event const & event) const;
private:
- std::array<ParticleID,2> beam_particle_;
- std::array<double,2> beam_energy_;
+ std::array<ParticleID,2> beam_particle_{};
+ std::array<double,2> beam_energy_{};
std::size_t event_count_;
double tot_weight_;
double tot_weight2_;
HepMC::GenCrossSection cross_section() const;
};
} // namespace HEJ
diff --git a/include/HEJ/HepMC3Interface.hh b/include/HEJ/HepMC3Interface.hh
index 9ecdca5..fad936a 100644
--- a/include/HEJ/HepMC3Interface.hh
+++ b/include/HEJ/HepMC3Interface.hh
@@ -1,82 +1,82 @@
/** \file
* \brief Header file for the HepMC3Interface
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#pragma once
#include <array>
#include <cstddef>
#include <memory>
#include "HEJ/PDG_codes.hh"
namespace HepMC3 {
class GenCrossSection;
class GenEvent;
class GenRunInfo;
}
namespace LHEF {
class HEPRUP;
}
namespace HEJ {
class Event;
//! This class converts the Events into HepMC3::GenEvents
/**
* \details The output is depended on the HepMC3 version HEJ is compiled with,
* both HepMC3 2 and HepMC3 3 are supported. If HEJ 2 is compiled
* without HepMC3 calling this interface will throw an error.
*
* This interface will also keep track of the cross section of all the events that
* being fed into it.
*/
class HepMC3Interface{
public:
HepMC3Interface(LHEF::HEPRUP const &);
~HepMC3Interface();
/**
* \brief main function to convert an event into HepMC3::GenEvent
*
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives central weight)
*/
HepMC3::GenEvent operator()(Event const & event, int weight_index = -1);
/**
* \brief Sets the central value from \p event to \p out_ev
*
* \param out_ev HepMC3::GenEvent to write to
* \param event Event to convert
* \param weight_index optional selection of specific weight
* (negative value gives "central")
*
* This overwrites the central value of \p out_ev.
*/
void set_central(HepMC3::GenEvent & out_ev, Event const & event,
int weight_index = -1);
//! Pointer to generic run informations
std::shared_ptr<HepMC3::GenRunInfo> run_info;
protected:
/**
* \brief initialise generic event infomrations (not central weights)
*
* \param event Event to convert
*/
HepMC3::GenEvent init_event(Event const & event) const;
private:
- std::array<ParticleID,2> beam_particle_;
- std::array<double,2> beam_energy_;
+ std::array<ParticleID,2> beam_particle_{};
+ std::array<double,2> beam_energy_{};
std::size_t event_count_;
double tot_weight_;
double tot_weight2_;
std::shared_ptr<HepMC3::GenCrossSection> xs_;
};
} // namespace HEJ
diff --git a/include/HEJ/Parameters.hh b/include/HEJ/Parameters.hh
index f9a91f1..a2febdc 100644
--- a/include/HEJ/Parameters.hh
+++ b/include/HEJ/Parameters.hh
@@ -1,216 +1,216 @@
/** \file
* \brief Containers for Parameter variations, e.g. different Weights
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "HEJ/exceptions.hh"
namespace HEJ{
//! Collection of parameters, e.g. Weights, assigned to a single event
/**
* A number of member functions of the MatrixElement class return Parameters
* objects containing the squares of the matrix elements for the various
* scale choices.
*/
template<class T>
struct Parameters {
- T central;
+ T central{};
std::vector<T> variations;
template<class T_ext>
Parameters<T>& operator*=(Parameters<T_ext> const & other);
Parameters<T>& operator*=(double factor);
template<class T_ext>
Parameters<T>& operator/=(Parameters<T_ext> const & other);
Parameters<T>& operator/=(double factor);
template<class T_ext>
Parameters<T>& operator+=(Parameters<T_ext> const & other);
template<class T_ext>
Parameters<T>& operator-=(Parameters<T_ext> const & other);
};
template<class T1, class T2> inline
Parameters<T1> operator*(Parameters<T1> a, Parameters<T2> const & b) {
a*=b;
return a;
}
template<class T> inline
Parameters<T> operator*(Parameters<T> a, double b) {
a*=b;
return a;
}
template<class T> inline
Parameters<T> operator*(double b, Parameters<T> a) {
a*=b;
return a;
}
template<class T1, class T2> inline
Parameters<T1> operator/(Parameters<T1> a, Parameters<T2> const & b) {
a/=b;
return a;
}
template<class T> inline
Parameters<T> operator/(Parameters<T> a, double b) {
a/=b;
return a;
}
template<class T1, class T2> inline
Parameters<T1> operator+(Parameters<T1> a, Parameters<T2> const & b) {
a+=b;
return a;
}
template<class T1, class T2> inline
Parameters<T1> operator-(Parameters<T1> a, Parameters<T2> const & b) {
a-=b;
return a;
}
//! Alias for weight container, e.g. used by the MatrixElement
using Weights = Parameters<double>;
//! Description of event parameters, see also EventParameters
struct ParameterDescription {
//! Name of central scale choice (e.g. "H_T/2")
std::string scale_name;
//! Actual renormalisation scale divided by central scale
- double mur_factor;
+ double mur_factor{};
//! Actual factorisation scale divided by central scale
- double muf_factor;
+ double muf_factor{};
ParameterDescription() = default;
ParameterDescription(
std::string scale_name, double mur_factor, double muf_factor
):
scale_name{std::move(scale_name)},
mur_factor{mur_factor}, muf_factor{muf_factor}
{}
};
//! generate human readable string name
std::string to_string(ParameterDescription const & p);
//! generate simplified string, intended for easy parsing
//! Format: Scale_SCALENAME_MuRxx_MuFyy
std::string to_simple_string(ParameterDescription const & p);
//! Event parameters
struct EventParameters{
- double mur; /**< Value of the Renormalisation Scale */
- double muf; /**< Value of the Factorisation Scale */
- double weight; /**< Event Weight */
+ double mur{}; /**< Value of the Renormalisation Scale */
+ double muf{}; /**< Value of the Factorisation Scale */
+ double weight{}; /**< Event Weight */
//! Optional description
std::shared_ptr<ParameterDescription> description = nullptr;
//! multiply weight by factor
EventParameters& operator*=(double factor){
weight*=factor;
return *this;
}
//! divide weight by factor
EventParameters& operator/=(double factor){
weight/=factor;
return *this;
}
//! add number to weight
EventParameters& operator+=(double factor){
weight+=factor;
return *this;
}
//! add number to weight
EventParameters& operator-=(double factor){
weight-=factor;
return *this;
}
};
inline EventParameters operator*(EventParameters a, double b){
a*=b;
return a;
}
inline EventParameters operator*(double b, EventParameters a){
a*=b;
return a;
}
inline EventParameters operator/(EventParameters a, double b){
a/=b;
return a;
}
//! @{
//! @internal Implementation of template functions
template<class T>
template<class T_ext>
Parameters<T>& Parameters<T>::operator*=(Parameters<T_ext> const & other) {
if(other.variations.size() != variations.size()) {
throw std::invalid_argument{"Wrong number of Parameters"};
}
central *= other.central;
for(std::size_t i = 0; i < variations.size(); ++i) {
variations[i] *= other.variations[i];
}
return *this;
}
template<class T>
Parameters<T>& Parameters<T>::operator*=(double factor) {
central *= factor;
for(auto & wt: variations) wt *= factor;
return *this;
}
template<class T>
template<class T_ext>
Parameters<T>& Parameters<T>::operator/=(Parameters<T_ext> const & other) {
if(other.variations.size() != variations.size()) {
throw std::invalid_argument{"Wrong number of Parameters"};
}
central /= other.central;
for(std::size_t i = 0; i < variations.size(); ++i) {
variations[i] /= other.variations[i];
}
return *this;
}
template<class T>
Parameters<T>& Parameters<T>::operator/=(double factor) {
central /= factor;
for(auto & wt: variations) wt /= factor;
return *this;
}
template<class T>
template<class T_ext>
Parameters<T>& Parameters<T>::operator+=(Parameters<T_ext> const & other) {
if(other.variations.size() != variations.size()) {
throw std::invalid_argument{"Wrong number of Parameters"};
}
central += other.central;
for(std::size_t i = 0; i < variations.size(); ++i) {
variations[i] += other.variations[i];
}
return *this;
}
template<class T>
template<class T_ext>
Parameters<T>& Parameters<T>::operator-=(Parameters<T_ext> const & other) {
if(other.variations.size() != variations.size()) {
throw std::invalid_argument{"Wrong number of Parameters"};
}
central -= other.central;
for(std::size_t i = 0; i < variations.size(); ++i) {
variations[i] -= other.variations[i];
}
return *this;
}
//! @}
} // namespace HEJ
diff --git a/include/HEJ/ScaleFunction.hh b/include/HEJ/ScaleFunction.hh
index db49349..29aa9d9 100644
--- a/include/HEJ/ScaleFunction.hh
+++ b/include/HEJ/ScaleFunction.hh
@@ -1,174 +1,174 @@
/** \file
* \brief Functions to calculate the (renormalisation and factorisation) scales for an event
*
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019
* \copyright GPLv2 or later
*/
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace HEJ{
class Event;
//! Class to calculate the scale associated with an event
class ScaleFunction {
public:
//! Constructor
/**
* @param name Name of the scale choice (e.g. H_T)
* @param fun Function used to calculate the scale
*/
ScaleFunction(std::string name, std::function<double(Event const &)> fun):
name_{std::move(name)},
fun_{std::move(fun)}
{}
//! Name of the scale choice
std::string const & name() const {
return name_;
}
//! Calculate the scale associated with an event
double operator()(Event const & ev) const {
return fun_(ev);
}
private:
friend ScaleFunction operator*(double factor, ScaleFunction base_scale);
friend ScaleFunction operator/(ScaleFunction base_scale, double denom);
friend ScaleFunction operator*(ScaleFunction func1, ScaleFunction func2);
friend ScaleFunction operator/(ScaleFunction func1, ScaleFunction func2);
std::string name_;
std::function<double(Event const &)> fun_;
};
//! Multiply a scale choice by a constant factor
/**
* For example, multiplying 0.5 and a scale function for H_T
* will result in a scale function for H_T/2.
*/
ScaleFunction operator*(double factor, ScaleFunction base_scale);
//! Multiply a scale choice by a second one
/**
* For example, multiplying H_T and m_j1j2
* will result in a scale function for H_T*m_j1j2.
*/
ScaleFunction operator*(ScaleFunction factor, ScaleFunction base_scale);
//! Divide a scale choice by a constant factor
/**
* For example, dividing a scale function for H_T by 2
* will result in a scale function for H_T/2.
*/
ScaleFunction operator/(ScaleFunction base_scale, double denom);
//! Divide a scale choice by a second one
/**
* For example, dividing a scale function for H_T by m_j1j2
* will result in a scale function for H_T/m_j1j2.
*/
ScaleFunction operator/(ScaleFunction base_scale, ScaleFunction denom);
//! Calculate \f$H_T\f$ for the input event
/**
* \f$H_T\f$ is the sum of the (scalar) transverse momenta of all
* final-state particles
*/
double H_T(Event const &);
//! The maximum of all (scalar) jet transverse momentum
double max_jet_pt(Event const &);
//! The invariant mass of the sum of all jet momenta
double jet_invariant_mass(Event const &);
//! Invariant mass of the two hardest jets
double m_j1j2(Event const &);
//! Functor that returns a fixed scale regardless of the input event
class FixedScale {
public:
explicit FixedScale(double mu): mu_{mu} {}
double operator()(Event const &) const {
return mu_;
}
private:
double mu_;
};
struct ParameterDescription;
//! Generate combinations of renormalisation and factorisation scales
class ScaleGenerator{
public:
ScaleGenerator() = default;
/** \brief Constructor
* @param scale_functions_begin Iterator to first base scale
* @param scale_functions_end Iterator past last base scale
* @param scale_factors_begin Iterator to first scale factor
* @param scale_factors_end Iterator past last scale factor
* @param max_scale_ratio Maximum ratio between renormalisation
* and factorisation scale
*/
template<class ScaleFunIterator, class FactorIterator>
ScaleGenerator(
ScaleFunIterator scale_functions_begin,
ScaleFunIterator scale_functions_end,
FactorIterator scale_factors_begin,
FactorIterator scale_factors_end,
double max_scale_ratio
):
scales_(scale_functions_begin, scale_functions_end),
scale_factors_(scale_factors_begin, scale_factors_end),
max_scale_ratio_{max_scale_ratio}
{
gen_descriptions();
}
/** \brief Constructor
* @param scales Base scales
* @param scale_factors Factors to multiply the base scales
* @param max_scale_ratio Maximum ratio between renormalisation
* and factorisation scale
*/
ScaleGenerator(
std::vector<ScaleFunction> scales,
std::vector<double> scale_factors,
double max_scale_ratio
):
scales_(std::move(scales)),
scale_factors_(std::move(scale_factors)),
max_scale_ratio_{max_scale_ratio}
{
gen_descriptions();
}
/** \brief Adjust event parameters, adding scale variation
*
* The central renormalisation and factorisation scale of the returned
* event is given be the first base scale passed to the constructor.
* The scale variation (stored in event.variation()) is constructed as
* follows: For each base scale according to the arguments of the
* constructor we add one variation where both renormalisation and
* factorisation scale are set according to the current base scale.
* Then, all combinations where the base renormalisation and factorisation
* scales are multiplied by one of the scale factors are added.
* The case were both scales are multiplied by one is skipped.
* Scale combinations where the ratio is larger than the maximum scale ratio
* set in the constructor are likewise discarded.
*/
Event operator()(Event event) const;
private:
void gen_descriptions();
std::vector<ScaleFunction> scales_;
std::vector<double> scale_factors_;
std::vector<std::shared_ptr<ParameterDescription>> descriptions_;
- double max_scale_ratio_;
+ double max_scale_ratio_{};
};
} // namespace HEJ
diff --git a/src/HDF5Writer.cc b/src/HDF5Writer.cc
index 59251c7..d776808 100644
--- a/src/HDF5Writer.cc
+++ b/src/HDF5Writer.cc
@@ -1,426 +1,424 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/HDF5Writer.hh"
#include <cassert>
#include "LHEF/LHEF.h"
#include "HEJ/ConfigFlags.hh"
#ifdef HEJ_BUILD_WITH_HDF5
#include <cmath>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
#include <vector>
#include "highfive/H5File.hpp"
#include "HEJ/Event.hh"
#include "HEJ/event_types.hh"
#else
#include "HEJ/exceptions.hh"
#endif
#ifdef HEJ_BUILD_WITH_HDF5
namespace HEJ{
using HighFive::File;
using HighFive::DataSpace;
namespace {
using std::size_t;
constexpr size_t chunk_size = 1000;
constexpr unsigned compression_level = 3;
size_t to_index(event_type::EventType const type){
return type==0?0:std::floor(std::log2(static_cast<size_t>(type)))+1;
}
template<typename T>
void write_dataset(HighFive::Group & group, std::string const & name, T val) {
using data_t = std::decay_t<T>;
group.createDataSet<data_t>(name, DataSpace::From(val)).write(val);
}
template<typename T>
void write_dataset(
HighFive::Group & group, std::string const & name,
std::vector<T> const & val
) {
using data_t = std::decay_t<T>;
group.createDataSet<data_t>(name, DataSpace::From(val)).write(val);
}
struct Cache {
explicit Cache(size_t capacity):
capacity{capacity}
{
nparticles.reserve(capacity);
start.reserve(capacity);
pid.reserve(capacity);
weight.reserve(capacity);
scale.reserve(capacity);
fscale.reserve(capacity);
rscale.reserve(capacity);
aqed.reserve(capacity);
aqcd.reserve(capacity);
trials.reserve(capacity);
npLO.reserve(capacity);
npNLO.reserve(capacity);
}
void fill(Event const & ev) {
const auto hepeup = to_HEPEUP(ev, nullptr);
// HEJ event to get nice wrapper
const auto num_partons = std::distance(ev.cbegin_partons(),
ev.cend_partons());
assert(num_partons>0);
// Number of partons for LO matching, HEJ requires at least 2 partons
npLO.emplace_back(num_partons>1?num_partons-2:num_partons);
// Number of real emissions in NLO, HEJ is LO -> -1
npNLO.emplace_back(-1);
fill_event_params(hepeup);
fill_event_particles(hepeup);
}
void fill_event_params(LHEF::HEPEUP const & ev) {
nparticles.emplace_back(ev.NUP);
start.emplace_back(particle_pos);
pid.emplace_back(ev.IDPRUP);
weight.emplace_back(ev.XWGTUP);
scale.emplace_back(ev.SCALUP);
fscale.emplace_back(ev.scales.muf);
rscale.emplace_back(ev.scales.mur);
aqed.emplace_back(ev.AQEDUP);
aqcd.emplace_back(ev.AQCDUP);
// set first trial=1 for first event
// -> sum(trials) = 1 -> xs=sum(weights)/sum(trials) as in Sherpa
if(particle_pos == 0){
trials.emplace_back(1.);
} else {
trials.emplace_back(0.);
}
particle_pos += ev.NUP;
}
void fill_event_particles(LHEF::HEPEUP const & ev) {
id.insert(end(id), begin(ev.IDUP), end(ev.IDUP));
status.insert(end(status), begin(ev.ISTUP), end(ev.ISTUP));
lifetime.insert(end(lifetime), begin(ev.VTIMUP), end(ev.VTIMUP));
spin.insert(end(spin), begin(ev.SPINUP), end(ev.SPINUP));
for(int i = 0; i < ev.NUP; ++i) {
mother1.emplace_back(ev.MOTHUP[i].first);
mother2.emplace_back(ev.MOTHUP[i].second);
color1.emplace_back(ev.ICOLUP[i].first);
color2.emplace_back(ev.ICOLUP[i].second);
px.emplace_back(ev.PUP[i][0]);
py.emplace_back(ev.PUP[i][1]);
pz.emplace_back(ev.PUP[i][2]);
e.emplace_back(ev.PUP[i][3]);
m.emplace_back(ev.PUP[i][4]);
}
}
bool is_full() const {
return nparticles.size() >= capacity;
}
void clear() {
nparticles.clear();
start.clear();
pid.clear();
id.clear();
status.clear();
mother1.clear();
mother2.clear();
color1.clear();
color2.clear();
weight.clear();
scale.clear();
fscale.clear();
rscale.clear();
aqed.clear();
aqcd.clear();
trials.clear();
npLO.clear();
npNLO.clear();
px.clear();
py.clear();
pz.clear();
e.clear();
m.clear();
lifetime.clear();
spin.clear();
}
size_t capacity;
std::vector<int> nparticles, start, pid, id, status,
mother1, mother2, color1, color2, npLO, npNLO;
std::vector<double> weight, scale, fscale, rscale, aqed,
aqcd, trials, px, py, pz, e, m, lifetime, spin;
-
- private:
size_t particle_pos = 0;
};
} // namespace
struct HDF5Writer::HDF5WriterImpl{
File file;
LHEF::HEPRUP heprup;
Cache cache{chunk_size};
size_t event_idx = 0;
size_t particle_idx = 0;
HDF5WriterImpl(std::string const & filename, LHEF::HEPRUP && hepr):
file{filename, File::ReadWrite | File::Create | File::Truncate},
heprup{std::move(hepr)}
{
// TODO: code duplication with Les Houches Writer
const size_t max_number_types = to_index(event_type::last_type)+1;
heprup.NPRUP = max_number_types;
// ids of event types
heprup.LPRUP.clear();
heprup.LPRUP.reserve(max_number_types);
heprup.LPRUP.emplace_back(0);
for(size_t i=event_type::first_type+1; i<=event_type::last_type; i*=2) {
heprup.LPRUP.emplace_back(i);
}
heprup.XSECUP = std::vector<double>(max_number_types, 0.);
heprup.XERRUP = std::vector<double>(max_number_types, 0.);
heprup.XMAXUP = std::vector<double>(max_number_types, 0.);
write_init();
create_event_group();
create_particle_group();
}
void write_init() {
auto init = file.createGroup("init");
write_dataset(init, "PDFgroupA" , heprup.PDFGUP.first);
write_dataset(init, "PDFgroupB" , heprup.PDFGUP.second);
write_dataset(init, "PDFsetA" , heprup.PDFSUP.first);
write_dataset(init, "PDFsetB" , heprup.PDFSUP.second);
write_dataset(init, "beamA" , heprup.IDBMUP.first);
write_dataset(init, "beamB" , heprup.IDBMUP.second);
write_dataset(init, "energyA" , heprup.EBMUP.first);
write_dataset(init, "energyB" , heprup.EBMUP.second);
write_dataset(init, "numProcesses" , heprup.NPRUP);
write_dataset(init, "weightingStrategy", heprup.IDWTUP);
auto proc_info = file.createGroup("procInfo");
write_dataset(proc_info, "procId", heprup.LPRUP);
}
static HighFive::DataSetCreateProps const & hdf5_chunk() {
static const auto props = [](){
HighFive::DataSetCreateProps props;
props.add(HighFive::Chunking({chunk_size}));
props.add(HighFive::Deflate(compression_level));
return props;
}();
return props;
}
void create_event_group() {
static const auto dim = DataSpace({0}, {DataSpace::UNLIMITED});
auto events = file.createGroup("event");
events.createDataSet<int>("nparticles", dim, hdf5_chunk());
events.createDataSet<int>("start", dim, hdf5_chunk());
events.createDataSet<int>("pid", dim, hdf5_chunk());
events.createDataSet<double>("weight", dim, hdf5_chunk());
events.createDataSet<double>("scale", dim, hdf5_chunk());
events.createDataSet<double>("fscale", dim, hdf5_chunk());
events.createDataSet<double>("rscale", dim, hdf5_chunk());
events.createDataSet<double>("aqed", dim, hdf5_chunk());
events.createDataSet<double>("aqcd", dim, hdf5_chunk());
events.createDataSet<double>("trials", dim, hdf5_chunk());
events.createDataSet<int>("npLO", dim, hdf5_chunk());
events.createDataSet<int>("npNLO", dim, hdf5_chunk());
}
void resize_event_group(size_t new_size) {
auto events = file.getGroup("event");
events.getDataSet("nparticles").resize({new_size});
events.getDataSet("start").resize({new_size});
events.getDataSet("pid").resize({new_size});
events.getDataSet("weight").resize({new_size});
events.getDataSet("scale").resize({new_size});
events.getDataSet("fscale").resize({new_size});
events.getDataSet("rscale").resize({new_size});
events.getDataSet("aqed").resize({new_size});
events.getDataSet("aqcd").resize({new_size});
events.getDataSet("trials").resize({new_size});
events.getDataSet("npLO").resize({new_size});
events.getDataSet("npNLO").resize({new_size});
}
void create_particle_group() {
static const auto dim = DataSpace({0}, {DataSpace::UNLIMITED});
auto particles = file.createGroup("particle");
particles.createDataSet<int>("id", dim, hdf5_chunk());
particles.createDataSet<int>("status", dim, hdf5_chunk());
particles.createDataSet<int>("mother1", dim, hdf5_chunk());
particles.createDataSet<int>("mother2", dim, hdf5_chunk());
particles.createDataSet<int>("color1", dim, hdf5_chunk());
particles.createDataSet<int>("color2", dim, hdf5_chunk());
particles.createDataSet<double>("px", dim, hdf5_chunk());
particles.createDataSet<double>("py", dim, hdf5_chunk());
particles.createDataSet<double>("pz", dim, hdf5_chunk());
particles.createDataSet<double>("e", dim, hdf5_chunk());
particles.createDataSet<double>("m", dim, hdf5_chunk());
particles.createDataSet<double>("lifetime", dim, hdf5_chunk());
particles.createDataSet<double>("spin", dim, hdf5_chunk());
}
void resize_particle_group(size_t new_size) {
auto particles = file.getGroup("particle");
particles.getDataSet("id").resize({new_size});
particles.getDataSet("status").resize({new_size});
particles.getDataSet("mother1").resize({new_size});
particles.getDataSet("mother2").resize({new_size});
particles.getDataSet("color1").resize({new_size});
particles.getDataSet("color2").resize({new_size});
particles.getDataSet("px").resize({new_size});
particles.getDataSet("py").resize({new_size});
particles.getDataSet("pz").resize({new_size});
particles.getDataSet("e").resize({new_size});
particles.getDataSet("m").resize({new_size});
particles.getDataSet("lifetime").resize({new_size});
particles.getDataSet("spin").resize({new_size});
}
void write(Event const & ev){
cache.fill(ev);
if(cache.is_full()) {
dump_cache();
}
const double wt = ev.central().weight;
const size_t idx = to_index(ev.type());
heprup.XSECUP[idx] += wt;
heprup.XERRUP[idx] += wt*wt;
if(wt > heprup.XMAXUP[idx]){
heprup.XMAXUP[idx] = wt;
}
}
void dump_cache() {
write_event_params();
write_event_particles();
cache.clear();
}
void write_event_params() {
auto events = file.getGroup("event");
// choose arbitrary dataset to find size
const auto dataset = events.getDataSet("nparticles");
const size_t size = dataset.getSpace().getDimensions().front();
resize_event_group(size + cache.nparticles.size());
#define WRITE_FROM_CACHE(GROUP, PROPERTY) \
GROUP.getDataSet(#PROPERTY).select({size}, {cache.PROPERTY.size()}).write(cache.PROPERTY)
WRITE_FROM_CACHE(events, nparticles);
WRITE_FROM_CACHE(events, start);
WRITE_FROM_CACHE(events, pid);
WRITE_FROM_CACHE(events, weight);
WRITE_FROM_CACHE(events, scale);
WRITE_FROM_CACHE(events, fscale);
WRITE_FROM_CACHE(events, rscale);
WRITE_FROM_CACHE(events, aqed);
WRITE_FROM_CACHE(events, aqcd);
WRITE_FROM_CACHE(events, trials);
WRITE_FROM_CACHE(events, npLO);
WRITE_FROM_CACHE(events, npNLO);
}
void write_event_particles() {
auto particles = file.getGroup("particle");
// choose arbitrary dataset to find size
const auto dataset = particles.getDataSet("id");
const size_t size = dataset.getSpace().getDimensions().front();
resize_particle_group(size + cache.id.size());
WRITE_FROM_CACHE(particles, id);
WRITE_FROM_CACHE(particles, status);
WRITE_FROM_CACHE(particles, lifetime);
WRITE_FROM_CACHE(particles, spin);
WRITE_FROM_CACHE(particles, mother1);
WRITE_FROM_CACHE(particles, mother2);
WRITE_FROM_CACHE(particles, color1);
WRITE_FROM_CACHE(particles, color2);
WRITE_FROM_CACHE(particles, px);
WRITE_FROM_CACHE(particles, py);
WRITE_FROM_CACHE(particles, pz);
WRITE_FROM_CACHE(particles, e);
WRITE_FROM_CACHE(particles, m);
}
#undef WRITE_FROM_CACHE
void finish(){
dump_cache();
auto proc_info = file.getGroup("procInfo");
write_dataset(proc_info, "xSection", heprup.XSECUP);
write_dataset(proc_info, "error", heprup.XERRUP);
write_dataset(proc_info, "unitWeight", heprup.XMAXUP);
file.flush();
}
};
HDF5Writer::HDF5Writer(std::string const & filename, LHEF::HEPRUP heprup):
impl_{std::make_unique<HDF5Writer::HDF5WriterImpl>(
filename, std::move(heprup))}
{}
void HDF5Writer::write(Event const & ev){
impl_->write(ev);
}
void HDF5Writer::finish(){
impl_->finish();
}
} // namespace HEJ
#else // no HDF5 support
namespace HEJ{
class HDF5Writer::HDF5WriterImpl{};
HDF5Writer::HDF5Writer(std::string const &, LHEF::HEPRUP){
throw std::invalid_argument{
"Failed to create HDF5 writer: "
"HEJ 2 was built without HDF5 support"
};
}
void HDF5Writer::write(Event const &){
assert(false);
}
void HDF5Writer::finish(){
assert(false);
}
}
#endif
namespace HEJ {
HDF5Writer::~HDF5Writer() = default;
}
diff --git a/src/Hjets.cc b/src/Hjets.cc
index 83d794a..a324cb0 100644
--- a/src/Hjets.cc
+++ b/src/Hjets.cc
@@ -1,1133 +1,1133 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/jets.hh"
#include "HEJ/Hjets.hh"
#include <cmath>
#include <complex>
#include <limits>
#include "CLHEP/Vector/LorentzVector.h"
#include "HEJ/ConfigFlags.hh"
#include "HEJ/Constants.hh"
#ifdef HEJ_BUILD_WITH_QCDLOOP
#include <cassert>
#include "qcdloop/qcdloop.h"
#else
#include "HEJ/exceptions.hh"
#endif
namespace HEJ {
namespace currents {
namespace {
// short hand for math functions
using std::abs;
using std::conj;
using std::pow;
using std::sqrt;
const COM looprwfactor = (COM(0.,1.)*M_PI*M_PI)/pow((2.*M_PI),4);
constexpr double infinity = std::numeric_limits<double>::infinity();
// Loop integrals
#ifdef HEJ_BUILD_WITH_QCDLOOP
COM B0DD(HLV const & q, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_B0 = [](){
ql::Bubble<std::complex<double>,double,double> ql_B0;
ql_B0.setCacheSize(100);
return ql_B0;
}();
static std::vector<double> masses(2);
static std::vector<double> momenta(1);
for(auto & m: masses) m = mq*mq;
momenta.front() = q.m2();
ql_B0.integral(result, 1, masses, momenta);
return result[0];
}
COM C0DD(HLV const & q1, HLV const & q2, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_C0 = [](){
ql::Triangle<std::complex<double>,double,double> ql_C0;
ql_C0.setCacheSize(100);
return ql_C0;
}();
static std::vector<double> masses(3);
static std::vector<double> momenta(3);
for(auto & m: masses) m = mq*mq;
momenta[0] = q1.m2();
momenta[1] = q2.m2();
momenta[2] = (q1+q2).m2();
ql_C0.integral(result, 1, masses, momenta);
return result[0];
}
COM D0DD(HLV const & q1, HLV const & q2, HLV q3, double mq)
{
static std::vector<std::complex<double>> result(3);
static auto ql_D0 = [](){
ql::Box<std::complex<double>,double,double> ql_D0;
ql_D0.setCacheSize(100);
return ql_D0;
}();
static std::vector<double> masses(4);
static std::vector<double> momenta(6);
for(auto & m: masses) m = mq*mq;
momenta[0] = q1.m2();
momenta[1] = q2.m2();
momenta[2] = q3.m2();
momenta[3] = (q1+q2+q3).m2();
momenta[4] = (q1+q2).m2();
momenta[5] = (q2+q3).m2();
ql_D0.integral(result, 1, masses, momenta);
return result[0];
}
COM A1(HLV const & q1, HLV const & q2, double mt)
// As given in Eq. (B.2) of VDD
{
double q12,q22,Q2;
HLV Q;
double Delta3,mt2;
COM ans(COM(0.,0.));
q12=q1.m2();
q22=q2.m2();
Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
Q2=Q.m2();
Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
assert(mt > 0.);
mt2=mt*mt;
ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*( 4.*mt2/Delta3*(Q2-q12-q22)
-1.-4.*q12*q22/Delta3-12.*q12*q22*Q2/Delta3/Delta3*(q12+q22-Q2) )
- looprwfactor*COM(0,-1)*( B0DD(q2,mt)-B0DD(Q,mt) )
* ( 2.*q22/Delta3+12.*q12*q22/Delta3/Delta3*(q22-q12+Q2) )
- looprwfactor*COM(0,-1)*( B0DD(q1,mt)-B0DD(Q,mt) )
* ( 2.*q12/Delta3+12.*q12*q22/Delta3/Delta3*(q12-q22+Q2) )
- 2./Delta3/16/M_PI/M_PI*(q12+q22-Q2);
return ans;
}
COM A2(HLV const & q1, HLV const & q2, double mt)
// As given in Eq. (B.2) of VDD, but with high energy limit
// of invariants taken.
{
double q12,q22,Q2;
HLV Q;
double Delta3,mt2;
COM ans(COM(0.,0.));
assert(mt > 0.);
mt2=mt*mt;
q12=q1.m2();
q22=q2.m2();
Q=-q1-q2; // Define all momenta ingoing as in appendix of VDD
Q2=Q.m2();
Delta3=q12*q12+q22*q22+Q2*Q2-2*q12*q22-2*q12*Q2-2*q22*Q2;
ans=looprwfactor*COM(0,-1)*C0DD(q1,q2,mt)*( 2.*mt2+1./2.*(q12+q22-Q2)
+2.*q12*q22*Q2/Delta3 )
+looprwfactor*COM(0,-1)*(B0DD(q2,mt)-B0DD(Q,mt))
*q22*(q22-q12-Q2)/Delta3
+looprwfactor*COM(0,-1)*(B0DD(q1,mt)-B0DD(Q,mt))
*q12*(q12-q22-Q2)/Delta3+1./16/M_PI/M_PI;
return ans;
}
#else // no QCDloop
COM A1(HLV const &, HLV const &, double) {
throw std::logic_error{"A1 called without QCDloop support"};
}
COM A2(HLV const & , HLV const & , double) {
throw std::logic_error{"A2 called without QCDloop support"};
}
#endif
void to_current(const HLV & q, current & ret){
ret[0]=q.e();
ret[1]=q.x();
ret[2]=q.y();
ret[3]=q.z();
}
/**
* @brief Higgs vertex contracted with current @param C1 and @param C2
*/
COM cHdot(const current & C1, const current & C2, const current & q1,
const current & q2, double mt, bool incBot, double mb, double vev)
{
if (mt == infinity) {
return (cdot(C1,C2)*cdot(q1,q2)-cdot(C1,q2)*cdot(C2,q1))/(3*M_PI*vev);
}
else {
HLV vq1,vq2;
vq1.set(q1[1].real(),q1[2].real(),q1[3].real(),q1[0].real());
vq2.set(q2[1].real(),q2[2].real(),q2[3].real(),q2[0].real());
// first minus sign obtained because of q1-difference to VDD
// Factor is because 4 mt^2 g^2/vev A1 -> 16 pi mt^2/vev alphas,
if(!(incBot))
return 16.*M_PI*mt*mt/vev*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)
-cdot(C1,C2)*A2(-vq1,vq2,mt));
else
return 16.*M_PI*mt*mt/vev*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mt)
-cdot(C1,C2)*A2(-vq1,vq2,mt))
+ 16.*M_PI*mb*mb/vev*(-cdot(C1,q2)*cdot(C2,q1)*A1(-vq1,vq2,mb)
-cdot(C1,C2)*A2(-vq1,vq2,mb));
}
}
//@{
/**
* @brief Higgs+Jets FKL Contributions, function to handle all incoming types.
* @param p1out Outgoing Particle 1. (W emission)
* @param p1in Incoming Particle 1. (W emission)
* @param p2out Outgoing Particle 2 (Quark, unordered emission this side.)
* @param p2in Incoming Particle 2 (Quark, unordered emission this side.)
* @param q1 t-channel momenta into higgs vertex
* @param q2 t-channel momenta out of higgs vertex
* @param mt top mass (inf or value)
* @param incBot Bool, to include bottom mass (true) or not (false)?
* @param mb bottom mass (value)
* @param pg Unordered Gluon momenta
*
* Calculates j^\mu H j_\mu. FKL with higgs vertex somewhere in the FKL chain.
* Handles all possible incoming states.
*/
double j_h_j(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
current j1p,j1m,j2p,j2m, q1v, q2v;
// Note need to flip helicities in anti-quark case.
joi(p1out, false, p1in, false, j1p);
joi(p1out, true, p1in, true, j1m);
joi(p2out, false, p2in, false, j2p);
joi(p2out, true, p2in, true, j2m);
to_current(q1, q1v);
to_current(q2, q2v);
COM Mmp=cHdot(j1m,j2p,q1v,q2v,mt, incBot, mb, vev);
COM Mmm=cHdot(j1m,j2m,q1v,q2v,mt, incBot, mb, vev);
COM Mpp=cHdot(j1p,j2p,q1v,q2v,mt, incBot, mb, vev);
COM Mpm=cHdot(j1p,j2m,q1v,q2v,mt, incBot, mb, vev);
// average over helicities
const double sst=(abs2(Mmp)+abs2(Mmm)+abs2(Mpp)+abs2(Mpm))/4.;
return sst/((p1in-p1out).m2()*(p2in-p2out).m2()*q1.m2()*q2.m2());
}
} // namespace
double ME_H_qQ(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2, double mt,
bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev);
}
double ME_H_qQbar(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev);
}
double ME_H_qbarQ(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev);
}
double ME_H_qbarQbar(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev);
}
double ME_H_qg(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev)
* K_g(p2out,p2in)/C_A;
}
double ME_H_qbarg(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev)
* K_g(p2out,p2in)/C_A;
}
double ME_H_gg(HLV const & p1out, HLV const & p1in, HLV const & p2out,
HLV const & p2in, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
return j_h_j(p1out, p1in, p2out, p2in, q1, q2, mt, incBot, mb, vev)
* K_g(p2out,p2in)/C_A * K_g(p1out,p1in)/C_A;
}
//@}
namespace {
//@{
/// @brief Higgs vertex contracted with one current
CCurrent jH(HLV const & pout, bool helout, HLV const & pin,
bool helin, HLV const & q1, HLV const & q2,
double mt, bool incBot, double mb, double vev
){
CCurrent j2 = joi(pout,helout,pin,helin);
CCurrent jq2(q2.e(),q2.px(),q2.py(),q2.pz());
if(mt == infinity)
return ((q1.dot(q2))*j2 - j2.dot(q1)*jq2)/(3*M_PI*vev);
else
{
if(incBot)
return (-16.*M_PI*mb*mb/vev*j2.dot(q1)*jq2*A1(-q1,q2,mb)
-16.*M_PI*mb*mb/vev*j2*A2(-q1,q2,mb))
+ (-16.*M_PI*mt*mt/vev*j2.dot(q1)*jq2*A1(-q1,q2,mt)
-16.*M_PI*mt*mt/vev*j2*A2(-q1,q2,mt));
else
return (-16.*M_PI*mt*mt/vev*j2.dot(q1)*jq2*A1(-q1,q2,mt)
-16.*M_PI*mt*mt/vev*j2*A2(-q1,q2,mt));
}
}
//@}
//@{
/**
* @brief Higgs+Jets Unordered Contributions, function to handle all incoming types.
* @param pg Unordered Gluon momenta
* @param p1out Outgoing Particle 1. (W emission)
* @param p1in Incoming Particle 1. (W emission)
* @param p2out Outgoing Particle 2 (Quark, unordered emission this side.)
* @param p2in Incoming Particle 2 (Quark, unordered emission this side.)
* @param q1 t-channel momenta into higgs vertex
* @param q2 t-channel momenta out of higgs vertex
* @param mt top mass (inf or value)
* @param incBot Bool, to include bottom mass (true) or not (false)?
* @param mb bottom mass (value)
*
* Calculates j_{uno}^\mu H j_\mu. Unordered with higgs vertex
* somewhere in the FKL chain. Handles all possible incoming states.
*/
double juno_h_j(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in,
HLV const & qH1, HLV const & qH2,
double mt, bool incBot, double mb, double vev
){
// This construction is taking rapidity order: pg > p1out >> p2out
HLV q1=p1in-p1out; // Top End
HLV q2=-(p2in-p2out); // Bottom End
HLV qg=p1in-p1out-pg; // Extra bit post-gluon
// Note <p1|eps|pa> current split into two by gauge choice.
// See James C's Thesis (p72). <p1|eps|pa> -> <p1|pg><pg|pa>
CCurrent mj1p=joi(p1out,false, p1in,false);
CCurrent mj1m=joi(p1out, true, p1in, true);
CCurrent jgap=joi(pg, false, p1in,false);
CCurrent jgam=joi(pg, true, p1in, true);
// Note for function joo(): <p1+|pg+> = <pg-|p1->.
CCurrent j2gp=joo(p1out, false, pg, false);
CCurrent j2gm=joo(p1out, true, pg, true);
CCurrent mjH2p=jH(p2out, true,p2in, true,qH1,qH2,mt,incBot,mb, vev);
CCurrent mjH2m=jH(p2out,false,p2in,false,qH1,qH2,mt,incBot,mb, vev);
// Dot products of these which occur again and again
COM MHmp=mj1m.dot(mjH2p);
COM MHmm=mj1m.dot(mjH2m);
COM MHpp=mj1p.dot(mjH2p);
COM MHpm=mj1p.dot(mjH2m);
CCurrent p2o(p2out), p2i(p2in), p1o(p1out), p1i(p1in), qsum(q1+qg);
CCurrent Lmm=(qsum*(MHmm) + (-2.*mjH2m.dot(pg))*mj1m + 2.*mj1m.dot(pg)*mjH2m
+ ( p2o/pg.dot(p2out) + p2i/pg.dot(p2in) )*( qg.m2()*MHmm/2.) )/q1.m2();
CCurrent Lmp=(qsum*(MHmp) + (-2.*mjH2p.dot(pg))*mj1m + 2.*mj1m.dot(pg)*mjH2p
+ ( p2o/pg.dot(p2out) + p2i/pg.dot(p2in) )*( qg.m2()*MHmp/2.) )/q1.m2();
CCurrent Lpm=(qsum*(MHpm) + (-2.*mjH2m.dot(pg))*mj1p + 2.*mj1p.dot(pg)*mjH2m
+ ( p2o/pg.dot(p2out) + p2i/pg.dot(p2in) )*( qg.m2()*MHpm/2.) )/q1.m2();
CCurrent Lpp=(qsum*(MHpp) + (-2.*mjH2p.dot(pg))*mj1p + 2.*mj1p.dot(pg)*mjH2p
+ ( p2o/pg.dot(p2out) + p2i/pg.dot(p2in) )*( qg.m2()*MHpp/2.) )/q1.m2();
CCurrent U1mm=(jgam.dot(mjH2m)*j2gm+2.*p1o*MHmm)/(p1out+pg).m2();
CCurrent U1mp=(jgam.dot(mjH2p)*j2gm+2.*p1o*MHmp)/(p1out+pg).m2();
CCurrent U1pm=(jgap.dot(mjH2m)*j2gp+2.*p1o*MHpm)/(p1out+pg).m2();
CCurrent U1pp=(jgap.dot(mjH2p)*j2gp+2.*p1o*MHpp)/(p1out+pg).m2();
CCurrent U2mm=((-1.)*j2gm.dot(mjH2m)*jgam+2.*p1i*MHmm)/(p1in-pg).m2();
CCurrent U2mp=((-1.)*j2gm.dot(mjH2p)*jgam+2.*p1i*MHmp)/(p1in-pg).m2();
CCurrent U2pm=((-1.)*j2gp.dot(mjH2m)*jgap+2.*p1i*MHpm)/(p1in-pg).m2();
CCurrent U2pp=((-1.)*j2gp.dot(mjH2p)*jgap+2.*p1i*MHpp)/(p1in-pg).m2();
constexpr double cf=C_F;
double amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
double amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
double apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
double app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app)/(q2.m2()*qH2.m2());
// Now add the t-channels for the Higgs
ampsq/=qH1.m2()*qg.m2();
ampsq/=16.;
// Factor of (Cf/Ca) for each quark to match ME_H_qQ.
ampsq*=C_F*C_F/C_A/C_A;
return ampsq;
}
} // namespace
double ME_H_unob_qQ(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & qH1,
HLV const & qH2, double mt, bool incBot, double mb,
double vev
){
return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, incBot, mb, vev);
}
double ME_H_unob_qbarQ(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & qH1,
HLV const & qH2, double mt, bool incBot, double mb,
double vev
){
return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, incBot, mb, vev);
}
double ME_H_unob_qQbar(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & qH1,
HLV const & qH2, double mt, bool incBot, double mb,
double vev
){
return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, incBot, mb, vev);
}
double ME_H_unob_qbarQbar(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & qH1,
HLV const & qH2, double mt, bool incBot, double mb,
double vev
){
return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, incBot, mb, vev);
}
double ME_H_unob_gQ(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & qH1,
HLV const & qH2, double mt, bool incBot, double mb,
double vev
){
return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, incBot, mb, vev)
*K_g(p2out,p2in)/C_F;
}
double ME_H_unob_gQbar(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & qH1,
HLV const & qH2, double mt, bool incBot, double mb,
double vev
){
return juno_h_j(pg, p1out, p1in, p2out, p2in, qH1, qH2, mt, incBot, mb, vev)
*K_g(p2out,p2in)/C_F;
}
//@}
// Begin finite mass stuff
#ifdef HEJ_BUILD_WITH_QCDLOOP
namespace {
// All the stuff needed for the box functions in qg->qgH now...
COM E1(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2=-(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*(1 - 8.*mq*mq/s12 + S2/(2.*s12) +
S2*(s12 - 8.*mq*mq)*(s34 + S1)/(2.*s12*Delta) +
2.*(s34 + S1)*(s34 + S1)/Delta +
S2*pow((s34 + S1),3)/Delta/Delta) - ((s12 + S2)*C0DD(k2,
k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2,
mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
2.*(s34 + S1)/Delta +
S2*pow((s34 + S1),2)/Delta/Delta) + (C0DD(k1, q2, mq) -
C0DD(k1 + k2, q2, mq))*(1. - 4.*mq*mq/s12) -
C0DD(k1 + k2, q2, mq)*2.*s34/
S1 - (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*s34*(s34 +
S1)/(S1*Delta) + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*(2.*s34*(s34 +
S1)*(S1 - S2)/(Delta*Sigma) +
2.*s34*(s34 + S1)/(S1*Delta)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2,
mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
S1)*(2.*s12*s34 -
S2*(S1 + S2))/(Delta*Sigma));
}
COM F1(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-S2*D0DD(k1, k2, q2,
mq)*(0.5 - (s12 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) -
s12*pow((s34 + S2),3)/Delta/Delta) + ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2,
mq))*(S2*(s12 - 4.*mq*mq)/(2.*s12*Delta) +
S2*pow((s34 + S2),2)/Delta/Delta)
- (C0DD(k1 + k2, q2, mq) - C0DD(k1, k2 + q2, mq))*(1. - 4.*mq*mq/s12)
- C0DD(k1, k2 + q2, mq) + (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2,
mq))*2.*pow((s34 + S2),2)/((s12 + S1)*Delta) - (B0DD(
q2, mq) - B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*2.*s34*(s34 +
S2)*(S2 - S1)/(Delta*Sigma) + (B0DD(
k1 + k2, mq) -
B0DD(k1 + k2 + q2,
mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*2.*(s34 +
S2)*(2.*s12*s34 -
S2*(S1 + S2))/(Delta*Sigma));
}
COM G1(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor*(S2*D0DD(k1, q2, k2,
mq)*(Delta/s12/s12 - 4.*mq*mq/s12) -
S2*((s12 + S1)*C0DD(k1, k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./
s12/s12 - (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
S2*((s12 + S2)*C0DD(k1 + q2, k2, mq) -
S2*C0DD(k2, q2, mq))*(1./
s12/s12 + (s12 - 4.*mq*mq)/(2.*s12*Delta)) -
C0DD(k1, q2, mq) - (C0DD(k1, k2 + q2, mq) -
C0DD(k1, q2, mq))*4.*mq*mq/
s12 + (B0DD(k1 + q2, mq) - B0DD(k1 + k2 + q2, mq))*2./
s12 + (B0DD(k1 + q2, mq) -
B0DD(q2, mq))*2.*s34/(s12*S1) + (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*(s34 + S2)/(s12*(s12 + S1)));
}
COM E4(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (-s12*D0DD(k2, k1, q2,
mq)*(0.5 - (S1 - 8.*mq*mq)*(s34 + S1)/(2.*Delta) -
s12*pow((s34 + S1),3)/Delta/Delta) + ((s12 + S2)*C0DD(k2,
k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
s12*pow((s34 + S1),2)/Delta/Delta) -
C0DD(k1 + k2, q2, mq) + (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(2.*s34/Delta +
2.*s12*(s34 + S1)/((s12 + S2)*Delta)) - (B0DD(
q2, mq) - B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*((2.*s34*(2.*s12*s34 - S2*(S1 + S2) +
s12*(S1 - S2)))/(Delta*Sigma)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))
*((2.*s12*(2.*s12*s34 - S1*(S1 + S2) + s34*(S2 - S1)))/(Delta*Sigma)));
}
COM F4(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (-s12*D0DD(k1, k2, q2,
mq)*(0.5 + (S1 - 8.*mq*mq)*(s34 + S2)/(2.*Delta) +
s12*pow((s34 + S2),3)/Delta/Delta) - ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2, mq))*((S1 - 4.*mq*mq)/(2.*Delta) +
s12*pow((s34 + S2),2)/Delta/Delta) -
C0DD(k1 + k2, q2, mq) - (B0DD(k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*2.*(s34 +
S2)/Delta + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*2.*s34*(2.*s12*s34 -
S1*(S1 + S2) +
s12*(S2 - S1))/(Delta*Sigma) - (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))
*(2.*s12*(2.*s12*s34 - S2*(S1 + S2) + s34*(S1 - S2))/(Delta*Sigma)));
}
COM G4(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor* (-D0DD(k1, q2, k2,
mq)*(Delta/s12 + (s12 + S1)/2. -
4.*mq*mq) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./
s12 - (S1 - 4.*mq*mq)/(2.*Delta)) + ((s12 + S2)*C0DD(
k1 + q2, k2, mq) -
S2*C0DD(k2, q2, mq))*(1./
s12 + (S1 - 4.*mq*mq)/(2.*Delta)) + (B0DD(
k1 + k2 + q2, mq) -
B0DD(k1 + q2, mq))*2./(s12 + S2));
}
COM E10(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor*(-s12*D0DD(k2, k1, q2, mq)*((s34 + S1)/Delta +
12.*mq*mq*S1*(s34 + S1)/Delta/Delta -
4.*s12*S1*pow((s34 + S1),3)/Delta/Delta/Delta) - ((s12 + S2)*C0DD(k2, k1 + q2, mq) -
s12*C0DD(k1, k2, mq) + (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S1*C0DD(k1, q2, mq))*(1./Delta +
4.*mq*mq*S1/Delta/Delta -
4.*s12*S1*pow((s34 + S1),2)/Delta/Delta/Delta) +
C0DD(k1 + k2, q2, mq)*(4.*s12*s34*(S1 - S2)/(Delta*Sigma) -
4.*(s12 -
2.*mq*mq)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma)) + (B0DD(k1 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(4.*(s34 + S1)/((s12 + S2)*Delta) +
8.*S1*(s34 + S1)/Delta/Delta) + (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2, mq))*(12.*s34*(2.*s12 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) -
4.*s34*(4.*s12 + 3.*S1 +
S2)/(Delta*Sigma) +
8.*s12*s34*(s34*(s12 + S2) -
S1*(s34 +
S1))/(Delta*Delta*Sigma)) + (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2,
mq))*(12.*s12*(2.*s34 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) +
8.*s12*S1*(s34*(s12 + S2) -
S1*(s34 +
S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma));
}
COM F10(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, Sigma, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
Sigma = 4.*s12*s34 - pow(S1+S2,2);
return looprwfactor* (s12*D0DD(k1, k2, q2,
mq)*((s34 + S2)/Delta - 4.*mq*mq/Delta +
12.*mq*mq*s34*(s12 + S1)/Delta/Delta -
4.*s12*pow((s34 + S2),2)/Delta/Delta -
4.*s12*S1*pow((s34 + S2),3)/Delta/Delta/Delta) + ((s12 + S1)*C0DD(k1, k2 + q2, mq) -
s12*C0DD(k1, k2, mq) - (S1 - S2)*C0DD(k1 + k2, q2, mq) -
S2*C0DD(k2, q2, mq))*(1./Delta +
4.*mq*mq*S1/Delta/Delta -
4.*s12*(s34 + S2)/Delta/Delta -
4.*s12*S1*pow((s34 + S2),2)/Delta/Delta/Delta) -
C0DD(k1 + k2, q2, mq)*(4.*s12*s34/(S2*Delta) +
4.*s12*s34*(S2 - S1)/(Delta*Sigma) +
4.*(s12 -
2.*mq*mq)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma)) - (B0DD(
k2 + q2, mq) -
B0DD(k1 + k2 + q2, mq))*(4.*s34/(S2*Delta) +
8.*s34*(s12 + S1)/Delta/Delta) - (B0DD(q2, mq) -
B0DD(k1 + k2 + q2, mq) +
s12*C0DD(k1 + k2, q2,
mq))*(-12*s34*(2*s12 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) -
4.*s12*s34*s34/(S2*Delta*Delta) +
4.*s34*S1/(Delta*Sigma) -
4.*s34*(s12*s34*(2.*s12 + S2) -
S1*S1*(2.*s12 +
S1))/(Delta*Delta*Sigma)) - (B0DD(k1 + k2, mq) -
B0DD(k1 + k2 + q2, mq) - (s34 + S1 + S2)*C0DD(k1 + k2, q2, mq))*(-12.*s12*(2.*s34 + S1 +
S2)*(2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma*Sigma) +
8.*s12*(2.*s34 + S1)/(Delta*Sigma) -
8.*s12*s34*(2.*s12*s34 - S1*(S1 + S2) +
s12*(S2 -
S1))/(Delta*Delta*Sigma))) + (COM(0.,1.)/(4.*M_PI*M_PI))*((2.*s12*s34 -
S1*(S1 + S2))/(Delta*Sigma));
}
COM G10(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
HLV q2 = -(k1+k2+kh);
double Delta, S1, S2, s12, s34;
S1 = 2.*k1.dot(q2);
S2 = 2.*k2.dot(q2);
s12 = 2.*k1.dot(k2);
s34 = q2.m2();
Delta = s12*s34 - S1*S2;
return looprwfactor* (-D0DD(k1, q2, k2, mq)*(1. +
4.*S1*mq*mq/Delta) + ((s12 + S1)*C0DD(k1,
k2 + q2, mq) -
S1*C0DD(k1, q2, mq))*(1./Delta +
4.*S1*mq*mq/Delta/Delta) - ((s12 + S2)*C0DD(k1 + q2,
k2, mq) - S2*C0DD(k2, q2, mq))*(1./Delta +
4.*S1*mq*mq/Delta/Delta) + (B0DD(k1 + k2 + q2, mq) -
B0DD(k1 + q2, mq))*4.*(s34 +
S1)/(Delta*(s12 + S2)) + (B0DD(q2, mq) -
B0DD(k2 + q2, mq))*4.*s34/(Delta*S2));
}
COM H1(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
return E1(k1,k2,kh,mq)+F1(k1,k2,kh,mq)+G1(k1,k2,kh,mq);
}
COM H4(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
return E4(k1,k2,kh,mq)+F4(k1,k2,kh,mq)+G4(k1,k2,kh,mq);
}
COM H10(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
return E10(k1,k2,kh,mq)+F10(k1,k2,kh,mq)+G10(k1,k2,kh,mq);
}
COM H2(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
return -1.*H1(k2,k1,kh,mq);
}
COM H5(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
return -1.*H4(k2,k1,kh,mq);
}
COM H12(HLV const & k1, HLV const & k2, HLV const & kh, double mq){
return -1.*H10(k2,k1,kh,mq);
}
// FL and FT functions
COM FL(HLV const & q1, HLV const & q2, double mq){
HLV Q = q1 + q2;
double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
return -1./(2.*detQ2)*((2.-
3.*q1.m2()*q2.dot(Q)/detQ2)*(B0DD(q1, mq) -
B0DD(Q, mq)) + (2. -
3.*q2.m2()*q1.dot(Q)/detQ2)*(B0DD(q2, mq) -
B0DD(Q, mq)) - (4.*mq*mq + q1.m2() + q2.m2() +
Q.m2() - 3.*q1.m2()*q2.m2()*Q.m2()/detQ2)*C0DD(
q1, q2, mq) - 2.);
}
COM FT(HLV const & q1, HLV const & q2, double mq){
HLV Q = q1 + q2;
double detQ2 = q1.m2()*q2.m2() - q1.dot(q2)*q1.dot(q2);
return -1./(2.*detQ2)*(Q.m2()*(B0DD(q1, mq) + B0DD(q2, mq) - 2.*B0DD(Q, mq) -
2.*q1.dot(q2)*C0DD(q1, q2, mq)) + (q1.m2() -
q2.m2()) *(B0DD(q1, mq) - B0DD(q2, mq))) -
q1.dot(q2)*FL(q1, q2, mq);
}
HLV ParityFlip(HLV const & p){
HLV flippedVector;
flippedVector.setE(p.e());
flippedVector.setX(-p.x());
flippedVector.setY(-p.y());
flippedVector.setZ(-p.z());
return flippedVector;
}
/// @brief HC amp for qg->qgH with finite top (i.e. j^{++}_H)
void g_gH_HC(HLV const & pa, HLV const & p1,
HLV pH, double mq, double vev, current &retAns)
{
current cura1,pacur,p1cur,pHcur,conjeps1,conjepsH1,epsa,epsHa,epsHapart1,
epsHapart2,conjepsH1part1,conjepsH1part2;
COM ang1a,sqa1;
const double F = 4.*mq*mq/vev;
// Easier to have the whole thing as current object so I can use cdot functionality.
// Means I need to write pa,p1 as current objects
to_current(pa, pacur);
to_current(p1,p1cur);
to_current(pH,pHcur);
bool gluonforward = true;
if(pa.z() < 0)
gluonforward = false;
//HEJ gauge
jio(pa,false,p1,false,cura1);
if(gluonforward){
// sqrt(2pa_-/p1_-)*p1_perp/abs(p1_perp)
ang1a = sqrt(pa.plus()*p1.minus())*(p1.x()+COM(0.,1.)*p1.y())/p1.perp();
// sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
sqa1 = sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp();
} else {
ang1a = sqrt(pa.minus()*p1.plus());
sqa1 = sqrt(pa.minus()*p1.plus());
}
const double prop = (pa-p1-pH).m2();
cmult(-1./sqrt(2.)/ang1a,cura1,conjeps1);
cmult(1./sqrt(2.)/sqa1,cura1,epsa);
const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
const COM h4 = H4(p1,-pa,pH,mq);
const COM h5 = H5(p1,-pa,pH,mq);
const COM h10 = H10(p1,-pa,pH,mq);
const COM h12 = H12(p1,-pa,pH,mq);
cmult(Fta*pa.dot(pH), epsa, epsHapart1);
cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
cadd(epsHapart1, epsHapart2, epsHa);
cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
const COM aH1 = cdot(pHcur, cura1);
current T1,T2,T3,T4,T5,T6,T7,T8,T9,T10;
if(gluonforward){
cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/ang1a, epsHa, T2);
}
else{
cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())
*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/sqa1, conjepsH1, T1);
cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())
*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())*prop/ang1a, epsHa, T2);
}
cmult(sqrt(2.)/ang1a*aH1, epsHa, T3);
cmult(sqrt(2.)/sqa1*aH1, conjepsH1, T4);
cmult(-sqrt(2.)*Fta*pa.dot(p1)*aH1/sqa1, conjeps1, T5);
cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/ang1a, epsa, T6);
cmult(-aH1/sqrt(2.)/sqa1*h4*8.*COM(0.,1.)*M_PI*M_PI, conjeps1, T7);
cmult(aH1/sqrt(2.)/ang1a*h5*8.*COM(0.,1.)*M_PI*M_PI, epsa, T8);
cmult(aH1*aH1/2./ang1a/sqa1*h10*8.*COM(0.,1.)*M_PI*M_PI, pacur, T9);
cmult(-aH1*aH1/2./ang1a/sqa1*h12*8.*COM(0.,1.)*M_PI*M_PI, p1cur, T10);
current ans;
for(int i=0;i<4;++i)
{
ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5[i]+T6[i]+T7[i]+T8[i]+T9[i]+T10[i];
}
retAns[0] = F/prop*ans[0];
retAns[1] = F/prop*ans[1];
retAns[2] = F/prop*ans[2];
retAns[3] = F/prop*ans[3];
}
/// @brief HNC amp for qg->qgH with finite top (i.e. j^{+-}_H)
void g_gH_HNC(HLV const & pa, HLV const & p1, HLV const & pH,
double mq, double vev, current &retAns
){
const double F = 4.*mq*mq/vev;
current conjepsH1,epsHa,p1cur,pacur,pHcur,conjeps1,epsa,paplusp1cur,
p1minuspacur,cur1a,cura1,epsHapart1,epsHapart2,conjepsH1part1,
conjepsH1part2;
// Find here if pa, meaning the gluon, is forward or backward
bool gluonforward = true;
if(pa.z() < 0)
gluonforward = false;
jio(pa,true,p1,true,cura1);
joi(p1,true,pa,true,cur1a);
to_current(pa,pacur);
to_current(p1,p1cur);
to_current(pH,pHcur);
to_current(pa+p1,paplusp1cur);
to_current(p1-pa,p1minuspacur);
const COM aH1 = cdot(pHcur,cura1);
const COM oneHa = conj(aH1); // = cdot(pHcur,cur1a)
COM const sqa1 = gluonforward
// sqrt(2pa_-/p1_-)*p1_perp*/abs(p1_perp)
?sqrt(pa.plus()*p1.minus())*(p1.x()-COM(0.,1.)*p1.y())/p1.perp()
:sqrt(pa.minus()*p1.plus());
const double prop = (pa-p1-pH).m2();
cmult(1./sqrt(2.)/sqa1, cur1a, epsa);
cmult(-1./sqrt(2.)/sqa1, cura1, conjeps1);
const COM phase = cdot(conjeps1, epsa);
const COM Fta = FT(-pa,pa-pH,mq)/(pa-pH).m2();
const COM Ft1 = FT(-p1-pH,p1,mq)/(p1+pH).m2();
const COM Falpha = FT(p1-pa,pa-p1-pH,mq);
const COM Fbeta = FL(p1-pa,pa-p1-pH,mq);
const COM h1 = H1(p1,-pa, pH, mq);
const COM h2 = H2(p1,-pa, pH, mq);
const COM h4 = H4(p1,-pa, pH, mq);
const COM h5 = H5(p1,-pa, pH, mq);
const COM h10 = H10(p1,-pa, pH, mq);
const COM h12 = H12(p1,-pa, pH, mq);
cmult(Fta*pa.dot(pH), epsa, epsHapart1);
cmult(-1.*Fta*cdot(pHcur,epsa), pacur, epsHapart2);
cmult(Ft1*cdot(pHcur,conjeps1), p1cur, conjepsH1part1);
cmult(-Ft1*p1.dot(pH), conjeps1, conjepsH1part2);
cadd(epsHapart1, epsHapart2, epsHa);
cadd(conjepsH1part1, conjepsH1part2, conjepsH1);
current T1,T2,T3,T4,T5a,T5b,T6,T7,T8a,T8b,T9,T10,T11a,
T11b,T12a,T12b,T13;
if(gluonforward){
cmult(sqrt(2.)*sqrt(p1.plus()/pa.plus())*prop/sqa1, conjepsH1, T1);
cmult(-sqrt(2.)*sqrt(pa.plus()/p1.plus())*prop/sqa1, epsHa, T2);
}
else{
cmult(-sqrt(2.)*sqrt(p1.minus()/pa.minus())*((p1.x()-COM(0.,1.)*p1.y())/p1.perp())
*prop/sqa1, conjepsH1, T1);
cmult(sqrt(2.)*sqrt(pa.minus()/p1.minus())*((p1.x()+COM(0.,1.)*p1.y())/p1.perp())
*prop/sqa1, epsHa, T2);
}
const COM boxdiagFact = 8.*COM(0.,1.)*M_PI*M_PI;
cmult(aH1*sqrt(2.)/sqa1, epsHa, T3);
cmult(oneHa*sqrt(2.)/sqa1, conjepsH1, T4);
cmult(-2.*phase*Fta*pa.dot(pH), p1cur, T5a);
cmult(2.*phase*Ft1*p1.dot(pH), pacur, T5b);
cmult(-sqrt(2.)*Fta*p1.dot(pa)*oneHa/sqa1, conjeps1, T6);
cmult(-sqrt(2.)*Ft1*pa.dot(p1)*aH1/sqa1, epsa, T7);
cmult(-boxdiagFact*phase*h2, pacur, T8a);
cmult(boxdiagFact*phase*h1, p1cur, T8b);
cmult(boxdiagFact*aH1/sqrt(2.)/sqa1*h5, epsa, T9);
cmult(-boxdiagFact*oneHa/sqrt(2.)/sqa1*h4, conjeps1, T10);
cmult(boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h10, pacur, T11a);
cmult(-boxdiagFact*aH1*oneHa/2./sqa1/sqa1*h12, p1cur, T11b);
cmult(-phase/(pa-p1).m2()*Falpha*(p1-pa).dot(pa-p1-pH), paplusp1cur, T12a);
cmult(phase/(pa-p1).m2()*Falpha*(pa+p1).dot(pa-p1-pH), p1minuspacur, T12b);
cmult(-phase*Fbeta*(pa-p1-pH).m2(), paplusp1cur, T13);
current ans;
for(int i=0;i<4;++i)
{
ans[i] = T1[i]+T2[i]+T3[i]+T4[i]+T5a[i]+T5b[i]+T6[i]+T7[i]+T8a[i]+T8b[i]
+T9[i]+T10[i]+T11a[i]+T11b[i]+T12a[i]+T12b[i]+T13[i];
}
retAns[0] = F/prop*ans[0];
retAns[1] = F/prop*ans[1];
retAns[2] = F/prop*ans[2];
retAns[3] = F/prop*ans[3];
}
} // namespace anonymous
// JDC - new amplitude with Higgs emitted close to gluon with full mt effects.
// Keep usual HEJ-style function call
double ME_Houtside_gq(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in, HLV const & pH,
double mq, bool includeBottom, double mq2, double vev
){
current cur2bplus,cur2bminus, cur2bplusFlip, cur2bminusFlip;
current retAns,retAnsb;
joi(p2out,true,p2in,true,cur2bplus);
joi(p2out,false,p2in,false,cur2bminus);
joi(ParityFlip(p2out),true,ParityFlip(p2in),true,cur2bplusFlip);
joi(ParityFlip(p2out),false,ParityFlip(p2in),false,cur2bminusFlip);
COM app1,app2,apm1,apm2;
COM app3, app4, apm3, apm4;
if(!includeBottom)
{
g_gH_HC(p1in,p1out,pH,mq,vev,retAns);
app1=cdot(retAns,cur2bplus);
app2=cdot(retAns,cur2bminus);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,vev,retAns);
app3=cdot(retAns,cur2bplusFlip);
app4=cdot(retAns,cur2bminusFlip);
// And non-conserving bits
g_gH_HNC(p1in,p1out,pH,mq,vev,retAns);
apm1=cdot(retAns,cur2bplus);
apm2=cdot(retAns,cur2bminus);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,vev,retAns);
apm3=cdot(retAns,cur2bplusFlip);
apm4=cdot(retAns,cur2bminusFlip);
} else {
g_gH_HC(p1in,p1out,pH,mq,vev,retAns);
g_gH_HC(p1in,p1out,pH,mq2,vev,retAnsb);
app1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
app2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,vev,retAns);
g_gH_HC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,vev,retAnsb);
app3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
app4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
// And non-conserving bits
g_gH_HNC(p1in,p1out,pH,mq,vev,retAns);
g_gH_HNC(p1in,p1out,pH,mq2,vev,retAnsb);
apm1=cdot(retAns,cur2bplus) + cdot(retAnsb,cur2bplus);
apm2=cdot(retAns,cur2bminus) + cdot(retAnsb,cur2bminus);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq,vev,retAns);
g_gH_HNC(ParityFlip(p1in),ParityFlip(p1out),ParityFlip(pH),mq2,vev,retAnsb);
apm3=cdot(retAns,cur2bplusFlip) + cdot(retAnsb,cur2bplusFlip);
apm4=cdot(retAns,cur2bminusFlip) + cdot(retAnsb,cur2bminusFlip);
}
return abs2(app1) + abs2(app2) + abs2(app3) + abs2(app4) + abs2(apm1)
+ abs2(apm2) + abs2(apm3) + abs2(apm4);
}
#endif // HEJ_BUILD_WITH_QCDLOOP
double C2gHgm(HLV const & p2, HLV const & p1, HLV const & pH, double vev){
const double A=1./(3.*M_PI*vev);
// Implements Eq. (4.22) in hep-ph/0301013 with modifications to incoming plus momenta
- double s12,p1p,p2p;
+ double s12 = NAN,p1p = NAN,p2p = NAN;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
p1p=p1.plus();
p2p=p2.plus();
} else { // opposite case
p1p=p1.minus();
p2p=p2.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=COM(0,1)*A/(2.*s12)*(p2p/p1p*conj(p1perp)*p3perp
+p1p/p2p*p1perp*conj(p3perp));
temp=temp*conj(temp);
return temp.real();
}
double C2gHgp(HLV const & p2, HLV const & p1, HLV const & pH, double vev){
const double A=1./(3.*M_PI*vev);
// Implements Eq. (4.23) in hep-ph/0301013
- double s12,php,p1p,phm;
+ double s12 = NAN,php = NAN,p1p = NAN,phm = NAN;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
php=pH.plus();
phm=pH.minus();
p1p=p1.plus();
} else { // opposite case
php=pH.minus();
phm=pH.plus();
p1p=p1.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=-COM(0,1)*A/(2.*s12)*( conj(p1perp*p3perp)*pow(php/p1p,2)/(1.+php/p1p)
+s12*(pow(conj(phperp),2)/(pow(abs(phperp),2)+p1p*phm)
-pow(conj(p3perp)+(1.+php/p1p)*conj(p1perp),2)
/((1.+php/p1p)*(pH.m2()+2.*p1.dot(pH)))) );
temp=temp*conj(temp);
return temp.real();
}
double C2qHqm(HLV const & p2, HLV const & p1, HLV const & pH, double vev){
const double A=1./(3.*M_PI*vev);
// Implements Eq. (4.21) in hep-ph/0301013
- double s12,p2p,p1p;
+ double s12 = NAN,p2p = NAN,p1p = NAN;
COM p1perp,p3perp,phperp;
// Determine first whether this is the case p1p\sim php>>p3p or the opposite
s12=p1.invariantMass2(-p2);
if (p2.pz()>0.) { // case considered in hep-ph/0301013
p2p=p2.plus();
p1p=p1.plus();
} else { // opposite case
p2p=p2.minus();
p1p=p1.minus();
}
p1perp=p1.px()+COM(0,1)*p1.py();
phperp=pH.px()+COM(0,1)*pH.py();
p3perp=-(p1perp+phperp);
COM temp=A/(2.*s12)*( sqrt(p2p/p1p)*p3perp*conj(p1perp)
+sqrt(p1p/p2p)*p1perp*conj(p3perp) );
temp=temp*conj(temp);
return temp.real();
}
} // namespace currents
} // namespace HEJ
diff --git a/src/JetSplitter.cc b/src/JetSplitter.cc
index c2ab802..4a1d034 100644
--- a/src/JetSplitter.cc
+++ b/src/JetSplitter.cc
@@ -1,191 +1,191 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/JetSplitter.hh"
#include <array>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <numeric>
#include <utility>
#include "fastjet/ClusterSequence.hh"
#include "fastjet/JetDefinition.hh"
#include "fastjet/PseudoJet.hh"
#include "HEJ/Constants.hh"
#include "HEJ/RNG.hh"
#include "HEJ/exceptions.hh"
namespace HEJ {
namespace {
template<class Iterator>
bool same_pt_and_rapidity(
Iterator begin, Iterator end,
fastjet::PseudoJet const & jet
){
constexpr double ep = 1e-2;
const fastjet::PseudoJet reconstructed_jet = std::accumulate(
begin, end, fastjet::PseudoJet{}
);
return
(std::abs(reconstructed_jet.pt() - jet.pt()) < ep)
&& (std::abs(reconstructed_jet.rapidity() - jet.rapidity()) < ep)
;
}
bool all_in_one_jet(
std::vector<fastjet::PseudoJet> const & partons,
fastjet::JetDefinition jet_def, double min_jet_pt
){
fastjet::ClusterSequence ev(partons, jet_def);
const std::vector<fastjet::PseudoJet> testjet = ev.inclusive_jets(min_jet_pt);
return testjet.size() == 1u
&& testjet[0].constituents().size() == partons.size();
}
} // namespace
JetSplitter::JetSplitter(
fastjet::JetDefinition jet_def, double min_pt
):
min_jet_pt_{min_pt},
jet_def_{std::move(jet_def)}
{}
using SplitResult = JetSplitter::SplitResult;
SplitResult JetSplitter::split(
fastjet::PseudoJet const & j2split, int ncons, RNG & ran
) const{
if(ncons <= 0) {
throw std::invalid_argument{
"number of requested jet constituents less than 1"
};
}
double swt = 1.;
std::vector<fastjet::PseudoJet> jcons;
if(ncons == 1){
jcons.emplace_back(j2split);
jcons.back().set_user_index(0);
return {jcons, swt};
}
if(ncons == 2){
return Split2(j2split, ran);
}
const double R_max = R_factor*jet_def_.R();
assert(R_max < M_PI);
double pt_remaining = j2split.pt();
const double phi_jet = j2split.phi();
const double y_jet = j2split.rapidity();
for(int i = 0; i < ncons - 1; ++i){
/**
* Generate rapidity and azimuthal angle with a distance
* R = sqrt(delta_y^2 + delta_phi^2) < R_max
* from the jet centre
*/
const double R = R_max*ran.flat();
const double theta = 2*M_PI*ran.flat();
const double delta_phi = R*std::cos(theta);
const double delta_y = R*std::sin(theta);
/**
* Generate pt such that the total contribution of all partons
* along the jet pt axis does not exceed the jet pt
*/
const double pt_max = pt_remaining/std::cos(delta_phi);
assert(pt_max > 0);
if(pt_max < CMINPT) return {}; // no pt remaining for this parton
const double pt = (pt_max - CMINPT)*ran.flat() + CMINPT;
pt_remaining -= pt*std::cos(delta_phi);
jcons.emplace_back(
pt*std::cos(phi_jet + delta_phi), pt*std::sin(phi_jet + delta_phi),
pt*std::sinh(y_jet + delta_y), pt*std::cosh(y_jet + delta_y)
);
jcons.back().set_user_index(i);
swt *= 2*M_PI*R*R_max*pt*(pt_max - CMINPT);
}
const fastjet::PseudoJet p_total = std::accumulate(
jcons.cbegin(), jcons.cend(), fastjet::PseudoJet{}
);
// Calculate the pt of the last parton
const double last_px = j2split.px() - p_total.px();
const double last_py = j2split.py() - p_total.py();
const double last_pt = std::sqrt(last_px*last_px + last_py*last_py);
if(last_pt < CMINPT) return {};
// Calculate the rapidity of the last parton using the requirement that the
// new jet must have the same rapidity as the LO jet.
const double exp_2y_jet = (j2split.e() + j2split.pz())/(j2split.e() - j2split.pz());
const double bb = (p_total.e()+p_total.pz()) - exp_2y_jet*(p_total.e()-p_total.pz());
const double lasty = std::log(
( -bb+std::sqrt(bb*bb+4.*exp_2y_jet*last_pt*last_pt) ) / ( 2.*last_pt ));
jcons.emplace_back(
last_px, last_py, last_pt*std::sinh(lasty), last_pt*std::cosh(lasty)
);
jcons.back().set_user_index(ncons-1);
assert(same_pt_and_rapidity(jcons.cbegin(), jcons.cend(), j2split));
// Test that the last parton is not too far away from the jet centre.
if (jcons.back().delta_R(j2split) > R_max) return {};
if(! all_in_one_jet(jcons, jet_def_, min_jet_pt_)) return {};
return {jcons, swt};
}
double JetSplitter::sample_distance_2p(double & wt, RNG & ran) const{
static constexpr double x_small = 0.1;
static constexpr double p_small = 0.4;
const double pR = ran.flat();
if(pR < p_small){
wt *= x_small/p_small;
return x_small/p_small*pR;
}
wt *= (1-x_small)/(1-p_small);
return (1-x_small)/(1-p_small)*(pR-p_small) + x_small;
}
SplitResult JetSplitter::Split2(
fastjet::PseudoJet const & j2split, RNG & ran
) const {
static constexpr std::size_t ncons = 2;
std::vector<fastjet::PseudoJet> jcons(ncons);
- std::array<double, ncons> R, phi, y, pt;
+ std::array<double, ncons> R{}, phi{}, y{}, pt{};
double wt = 1;
const double theta = 2*M_PI*ran.flat(); // angle in y-phi plane
// empiric observation: we are always within the jet radius
R[0] = sample_distance_2p(wt, ran)*jet_def_.R();
R[1] = -sample_distance_2p(wt, ran)*jet_def_.R();
for(std::size_t i = 0; i <= 1; ++i){
phi[i] = j2split.phi() + R[i]*std::cos(theta);
y[i] = j2split.rapidity() + R[i]*std::sin(theta);
}
for(std::size_t i = 0; i <= 1; ++i){
pt[i] = (j2split.py() - std::tan(phi[1-i])*j2split.px())/
(std::sin(phi[i]) - std::tan(phi[1-i])*std::cos(phi[i]));
if(pt[i] < CMINPT) return {};
jcons[i].reset_PtYPhiM(pt[i], y[i], phi[i]);
jcons[i].set_user_index(i);
}
assert(same_pt_and_rapidity(jcons.cbegin(), jcons.cend(), j2split));
if(! all_in_one_jet(jcons, jet_def_, min_jet_pt_)) return {};
wt *= 2*M_PI*pt[0]*R[0]*jet_def_.R()*jet_def_.R();
// from transformation of delta(R[1] - ...) to delta(pt[0] - ...)
const double dphi0 = phi[0] - j2split.phi();
const double ptJ = j2split.pt();
const double jacobian = std::cos(theta)*pt[1]*pt[1]/(ptJ*std::sin(dphi0));
return {jcons, jacobian*wt};
}
} // namespace HEJ
diff --git a/src/LorentzVector.cc b/src/LorentzVector.cc
index a4d9bd0..4b9727c 100644
--- a/src/LorentzVector.cc
+++ b/src/LorentzVector.cc
@@ -1,87 +1,87 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2020
* \copyright GPLv2 or later
*/
#include "HEJ/LorentzVector.hh"
#include <cmath>
#include <utility>
namespace HEJ {
namespace {
using COM = std::complex<double>;
COM perp(CLHEP::HepLorentzVector const & p) {
return COM{p.x(), p.y()};
}
void angle_aux(CLHEP::HepLorentzVector const & p, COM & perp_hat, double & p_plus, double & p_minus) {
const COM p_perp = perp(p);
if(p_perp == COM{0., 0.}){
perp_hat = -1.;
if(std::abs(std::abs(p.z())/p.t() - 1.) > 1e-9){
throw std::invalid_argument("zero pT particle with |pz| != E");
}
if(p.z() > 0){
p_plus = p.plus();
p_minus = 0.;
}else{
p_plus = 0.;
p_minus = p.minus();
}
}else{
perp_hat = p_perp/std::abs(p_perp);
p_plus = p.plus();
p_minus = p.minus();
}
}
} // anonymous namespace
// "angle" product angle(pi, pj) = <i j>
// see eq. (53) (\eqref{eq:angle_product}) in developer manual
COM angle(
CLHEP::HepLorentzVector const & pi,
CLHEP::HepLorentzVector const & pj
) {
COM pi_perp_hat, pj_perp_hat;
- double pi_plus, pi_minus, pj_plus, pj_minus;
+ double pi_plus = NAN, pi_minus = NAN, pj_plus = NAN, pj_minus = NAN;
angle_aux(pi, pi_perp_hat, pi_plus, pi_minus);
angle_aux(pj, pj_perp_hat, pj_plus, pj_minus);
return
+ std::sqrt(pi_minus*pj_plus)*pi_perp_hat
- std::sqrt(pi_plus*pj_minus)*pj_perp_hat;
}
// "square" product square(pi, pj) = [i j]
// see eq. (54) (\eqref{eq:square_product}) in developer manual
COM square(
CLHEP::HepLorentzVector const & pi,
CLHEP::HepLorentzVector const & pj
) {
return -std::conj(angle(pi, pj));
}
// see eq:P_massive, eq:P_massive_p, eq:P_massive_q, , eq:P_massive_plus,
// eq:P_massive_minus in the developer manual
std::pair<CLHEP::HepLorentzVector, CLHEP::HepLorentzVector>
split_into_lightlike(CLHEP::HepLorentzVector const & P) {
const double pt = P.perp();
if(P.plus() > 0){
const double y = std::log(P.plus()/pt);
const double E = P.m2()/(2.*P.plus());
return std::make_pair(
CLHEP::HepLorentzVector{P.x(), P.y(), pt*std::sinh(y), pt*std::cosh(y)},
CLHEP::HepLorentzVector{0., 0., -E, E}
);
} else {
const double y = std::log(pt/P.minus());
const double E = P.m2()/(2.*P.minus());
return std::make_pair(
CLHEP::HepLorentzVector{P.x(), P.y(), pt*std::sinh(y), pt*std::cosh(y)},
CLHEP::HepLorentzVector{0., 0., +E, E}
);
}
}
} // namespace HEJ
diff --git a/src/MatrixElement.cc b/src/MatrixElement.cc
index 739bcbb..6717179 100644
--- a/src/MatrixElement.cc
+++ b/src/MatrixElement.cc
@@ -1,2216 +1,2216 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/MatrixElement.hh"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <unordered_map>
#include <utility>
#include "CLHEP/Vector/LorentzVector.h"
#include "fastjet/PseudoJet.hh"
#include "HEJ/ConfigFlags.hh"
#include "HEJ/Constants.hh"
#include "HEJ/EWConstants.hh"
#include "HEJ/Event.hh"
#include "HEJ/HiggsCouplingSettings.hh"
#include "HEJ/Hjets.hh"
#include "HEJ/PDG_codes.hh"
#include "HEJ/Particle.hh"
#include "HEJ/Wjets.hh"
#include "HEJ/Zjets.hh"
#include "HEJ/event_types.hh"
#include "HEJ/exceptions.hh"
#include "HEJ/jets.hh"
#include "HEJ/utility.hh"
namespace HEJ {
double MatrixElement::omega0(
double alpha_s, double mur,
fastjet::PseudoJet const & q_j
) const {
const double lambda = param_.regulator_lambda;
const double result = - alpha_s*N_C/M_PI*std::log(q_j.perp2()/(lambda*lambda));
if(! param_.log_correction) return result;
return (
1. + alpha_s/(4.*M_PI)*beta0*std::log(mur*mur/(q_j.perp()*lambda))
)*result;
}
Weights MatrixElement::operator()(Event const & event) const {
std::vector <double> tree_kin_part=tree_kin(event);
std::vector <Weights> virtual_part=virtual_corrections(event);
if(tree_kin_part.size() != virtual_part.size()) {
throw std::logic_error("tree and virtuals have different sizes");
}
Weights sum = Weights{0., std::vector<double>(event.variations().size(), 0.)};
for(size_t i=0; i<tree_kin_part.size(); ++i) {
sum += tree_kin_part.at(i)*virtual_part.at(i);
}
return tree_param(event)*sum;
}
Weights MatrixElement::tree(Event const & event) const {
std::vector <double> tree_kin_part=tree_kin(event);
double sum = 0.;
for(size_t i=0; i<tree_kin_part.size(); ++i) {
sum += tree_kin_part.at(i);
}
return tree_param(event)*sum;
}
Weights MatrixElement::tree_param(Event const & event) const {
if(! is_resummable(event.type())) {
return Weights{0., std::vector<double>(event.variations().size(), 0.)};
}
Weights result;
// only compute once for each renormalisation scale
std::unordered_map<double, double> known;
result.central = tree_param(event, event.central().mur);
known.emplace(event.central().mur, result.central);
for(auto const & var: event.variations()) {
const auto ME_it = known.find(var.mur);
if(ME_it == end(known)) {
const double wt = tree_param(event, var.mur);
result.variations.emplace_back(wt);
known.emplace(var.mur, wt);
}
else {
result.variations.emplace_back(ME_it->second);
}
}
return result;
}
std::vector<Weights> MatrixElement::virtual_corrections(Event const & event) const {
if(! is_resummable(event.type())) {
return {Weights{0., std::vector<double>(event.variations().size(), 0.)}};
}
// only compute once for each renormalisation scale
std::unordered_map<double, std::vector<double> > known_vec;
std::vector<double> central_vec=virtual_corrections(event, event.central().mur);
known_vec.emplace(event.central().mur, central_vec);
for(auto const & var: event.variations()) {
const auto ME_it = known_vec.find(var.mur);
if(ME_it == end(known_vec)) {
known_vec.emplace(var.mur, virtual_corrections(event, var.mur));
}
}
// At this stage known_vec contains one vector of virtual corrections for each mur value
// Now put this into a vector of Weights
std::vector<Weights> result_vec;
for(size_t i=0; i<central_vec.size(); ++i) {
Weights result;
result.central = central_vec.at(i);
for(auto const & var: event.variations()) {
const auto ME_it = known_vec.find(var.mur);
result.variations.emplace_back(ME_it->second.at(i));
}
result_vec.emplace_back(result);
}
return result_vec;
}
double MatrixElement::virtual_corrections_W(
Event const & event,
const double mur,
Particle const & WBoson
) const{
auto const & in = event.incoming();
const auto partons = filter_partons(event.outgoing());
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
assert(partons.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - partons[0].p;
std::size_t first_idx = 0;
std::size_t last_idx = partons.size() - 1;
#ifndef NDEBUG
bool wc = true;
#endif
bool wqq = false;
// With extremal qqx or unordered gluon outside the extremal
// partons then it is not part of the FKL ladder and does not
// contribute to the virtual corrections. W emitted from the
// most backward leg must be taken into account in t-channel
if (event.type() == event_type::unob) {
q -= partons[1].p;
++first_idx;
if (in[0].type != partons[1].type ){
q -= WBoson.p;
#ifndef NDEBUG
wc=false;
#endif
}
}
else if (event.type() == event_type::qqxexb) {
q -= partons[1].p;
++first_idx;
if (std::abs(partons[0].type) != std::abs(partons[1].type)){
q -= WBoson.p;
#ifndef NDEBUG
wc=false;
#endif
}
}
else {
if(event.type() == event_type::unof
|| event.type() == event_type::qqxexf){
--last_idx;
}
if (in[0].type != partons[0].type ){
q -= WBoson.p;
#ifndef NDEBUG
wc=false;
#endif
}
}
std::size_t first_idx_qqx = last_idx;
std::size_t last_idx_qqx = last_idx;
//if qqxMid event, virtual correction do not occur between
//qqx pair.
if(event.type() == event_type::qqxmid){
const auto backquark = std::find_if(
begin(partons) + 1, end(partons) - 1 ,
[](Particle const & s){ return (s.type != pid::gluon); }
);
if(backquark == end(partons) || (backquark+1)->type==pid::gluon) return 0;
if(std::abs(backquark->type) != std::abs((backquark+1)->type)) {
wqq=true;
#ifndef NDEBUG
wc=false;
#endif
}
last_idx = std::distance(begin(partons), backquark);
first_idx_qqx = last_idx+1;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(std::size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q)*(
partons[j+1].rapidity() - partons[j].rapidity()
);
q -=partons[j+1].p;
} // End Loop one
if (last_idx != first_idx_qqx) q -= partons[last_idx+1].p;
if (wqq) q -= WBoson.p;
for(std::size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
exponent += omega0(alpha_s, mur, q)*(
partons[j+1].rapidity() - partons[j].rapidity()
);
q -= partons[j+1].p;
}
#ifndef NDEBUG
if (wc) q -= WBoson.p;
assert(
nearby(q, -1*pb, norm)
|| is_AWZH_boson(partons.back().type)
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf
);
#endif
return std::exp(exponent);
}
std::vector <double> MatrixElement::virtual_corrections_Z_qq(
Event const & event,
const double mur,
Particle const & ZBoson
) const{
auto const & in = event.incoming();
const auto partons = filter_partons(event.outgoing());
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
#endif
assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
assert(partons.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q_t = pa - partons[0].p - ZBoson.p;
fastjet::PseudoJet q_b = pa - partons[0].p;
size_t first_idx = 0;
size_t last_idx = partons.size() - 1;
// Unordered gluon does not contribute to the virtual corrections
if (event.type() == event_type::unob) {
// Gluon is partons[0] and is already subtracted
// partons[1] is the backward quark
q_t -= partons[1].p;
q_b -= partons[1].p;
++first_idx;
} else if (event.type() == event_type::unof) {
// End sum at forward quark
--last_idx;
}
double sum_top=0., sum_bot=0., sum_mix=0.;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
const double dy = partons[j+1].rapidity() - partons[j].rapidity();
const double tmp_top = omega0(alpha_s, mur, q_t)*dy;
const double tmp_bot = omega0(alpha_s, mur, q_b)*dy;
sum_top += tmp_top;
sum_bot += tmp_bot;
sum_mix += (tmp_top + tmp_bot) / 2.;
q_t -= partons[j+1].p;
q_b -= partons[j+1].p;
}
return {exp(sum_top), exp(sum_bot), exp(sum_mix)};
}
double MatrixElement::virtual_corrections_Z_qg(
Event const & event,
const double mur,
Particle const & ZBoson,
const bool is_gq_event
) const{
auto const & in = event.incoming();
const auto partons = filter_partons(event.outgoing());
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
#endif
assert(std::is_sorted(partons.begin(), partons.end(), rapidity_less{}));
assert(partons.size() >= 2);
assert(pa.pz() < pb.pz());
// If this is a gq event, don't subtract the Z momentum from first q
fastjet::PseudoJet q = (is_gq_event ? pa - partons[0].p : pa - partons[0].p - ZBoson.p);
size_t first_idx = 0;
size_t last_idx = partons.size() - 1;
// Unordered gluon does not contribute to the virtual corrections
if (event.type() == event_type::unob) {
// Gluon is partons[0] and is already subtracted
// partons[1] is the backward quark
q -= partons[1].p;
++first_idx;
} else if (event.type() == event_type::unof) {
// End sum at forward quark
--last_idx;
}
double sum=0.;
const double alpha_s = alpha_s_(mur);
for(size_t j = first_idx; j < last_idx; ++j){
sum += omega0(alpha_s, mur, q)*(partons[j+1].rapidity()
- partons[j].rapidity());
q -= partons[j+1].p;
}
return exp(sum);
}
std::vector<double> MatrixElement::virtual_corrections(
Event const & event,
const double mur
) const{
auto const & in = event.incoming();
auto const & out = event.outgoing();
fastjet::PseudoJet const & pa = in.front().p;
#ifndef NDEBUG
fastjet::PseudoJet const & pb = in.back().p;
double const norm = (in.front().p + in.back().p).E();
#endif
const auto AWZH_boson = std::find_if(
begin(out), end(out),
[](Particle const & p){ return is_AWZH_boson(p); }
);
if(AWZH_boson != end(out) && std::abs(AWZH_boson->type) == pid::Wp){
return {virtual_corrections_W(event, mur, *AWZH_boson)};
}
if(AWZH_boson != end(out) && AWZH_boson->type == pid::Z_photon_mix){
if(is_gluon(in.back().type)){
// This is a qg event
return {virtual_corrections_Z_qg(event, mur, *AWZH_boson, false)};
}else if(is_gluon(in.front().type)){
// This is a gq event
return {virtual_corrections_Z_qg(event, mur, *AWZH_boson, true)};
}else{
// This is a qq event
return virtual_corrections_Z_qq(event, mur, *AWZH_boson);
}
}
assert(std::is_sorted(out.begin(), out.end(), rapidity_less{}));
assert(out.size() >= 2);
assert(pa.pz() < pb.pz());
fastjet::PseudoJet q = pa - out[0].p;
std::size_t first_idx = 0;
std::size_t last_idx = out.size() - 1;
// if there is a Higgs boson, extremal qqx or unordered gluon
// outside the extremal partons then it is not part of the FKL
// ladder and does not contribute to the virtual corrections
if((out.front().type == pid::Higgs)
|| event.type() == event_type::unob
|| event.type() == event_type::qqxexb){
q -= out[1].p;
++first_idx;
}
if((out.back().type == pid::Higgs)
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf){
--last_idx;
}
std::size_t first_idx_qqx = last_idx;
std::size_t last_idx_qqx = last_idx;
//if qqxMid event, virtual correction do not occur between
//qqx pair.
if(event.type() == event_type::qqxmid){
const auto backquark = std::find_if(
begin(out) + 1, end(out) - 1 ,
[](Particle const & s){ return (s.type != pid::gluon && is_parton(s.type)); }
);
if(backquark == end(out) || (backquark+1)->type==pid::gluon) return {0.};
last_idx = std::distance(begin(out), backquark);
first_idx_qqx = last_idx+1;
}
double exponent = 0;
const double alpha_s = alpha_s_(mur);
for(std::size_t j = first_idx; j < last_idx; ++j){
exponent += omega0(alpha_s, mur, q)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
if (last_idx != first_idx_qqx) q -= out[last_idx+1].p;
for(std::size_t j = first_idx_qqx; j < last_idx_qqx; ++j){
exponent += omega0(alpha_s, mur, q)*(
out[j+1].rapidity() - out[j].rapidity()
);
q -= out[j+1].p;
}
assert(
nearby(q, -1*pb, norm)
|| out.back().type == pid::Higgs
|| event.type() == event_type::unof
|| event.type() == event_type::qqxexf
);
return {std::exp(exponent)};
}
namespace {
//! Lipatov vertex for partons emitted into extremal jets
CLHEP::HepLorentzVector CLipatov(
CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2
) {
const CLHEP::HepLorentzVector p5 = qav-qbv;
const CLHEP::HepLorentzVector CL = -(qav+qbv)
+ p1*(qav.m2()/p5.dot(p1) + 2.*p5.dot(p2)/p1.dot(p2))
- p2*(qbv.m2()/p5.dot(p2) + 2.*p5.dot(p1)/p1.dot(p2));
return CL;
}
double C2Lipatov(
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2
){
const CLHEP::HepLorentzVector CL = CLipatov(qav, qbv, p1, p2);
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction for partons emitted into extremal jets
double C2Lipatovots(
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
const double lambda
) {
const double Cls=(C2Lipatov(qav, qbv, p1, p2)/(qav.m2()*qbv.m2()));
const double kperp=(qav-qbv).perp();
if (kperp>lambda)
return Cls;
return Cls-4./(kperp*kperp);
}
double C2Lipatov_Mix(
CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2
) {
const CLHEP::HepLorentzVector CL_t = CLipatov(qav_t, qbv_t, p1, p2);
const CLHEP::HepLorentzVector CL_b = CLipatov(qav_b, qbv_b, p1, p2);
return -CL_t.dot(CL_b);
}
double C2Lipatovots_Mix(
CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2,
const double lambda
) {
const double Cls = C2Lipatov_Mix(qav_t, qbv_t, qav_b, qbv_b, p1, p2)
/ sqrt(qav_t.m2() * qbv_t.m2() * qav_b.m2() * qbv_b.m2());
const double kperp = (qav_t - qbv_t).perp();
if (kperp > lambda) {
return Cls;
} else {
return Cls - 4.0 / (kperp * kperp);
}
}
CLHEP::HepLorentzVector CLipatov(
CLHEP::HepLorentzVector const & qav, CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip,
CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop
){
const CLHEP::HepLorentzVector p5 = qav-qbv;
const CLHEP::HepLorentzVector CL = -(qav+qbv)
+ qav.m2()*(1./p5.dot(pip)*pip + 1./p5.dot(pop)*pop)/2.
- qbv.m2()*(1./p5.dot(pim)*pim + 1./p5.dot(pom)*pom)/2.
+ ( pip*(p5.dot(pim)/pip.dot(pim) + p5.dot(pom)/pip.dot(pom))
+ pop*(p5.dot(pim)/pop.dot(pim) + p5.dot(pom)/pop.dot(pom))
- pim*(p5.dot(pip)/pip.dot(pim) + p5.dot(pop)/pop.dot(pim))
- pom*(p5.dot(pip)/pip.dot(pom) + p5.dot(pop)/pop.dot(pom)) )/2.;
return CL;
}
//! Lipatov vertex
double C2Lipatov( // B
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & pim,
CLHEP::HepLorentzVector const & pip,
CLHEP::HepLorentzVector const & pom,
CLHEP::HepLorentzVector const & pop
){
const CLHEP::HepLorentzVector CL = CLipatov(qav, qbv, pim, pip, pom, pop);
return -CL.dot(CL);
}
//! Lipatov vertex with soft subtraction
double C2Lipatovots(
CLHEP::HepLorentzVector const & qav,
CLHEP::HepLorentzVector const & qbv,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & p2,
const double lambda
) {
const double Cls=(C2Lipatov(qav, qbv, pa, pb, p1, p2)/(qav.m2()*qbv.m2()));
const double kperp=(qav-qbv).perp();
if (kperp>lambda)
return Cls;
return Cls-4./(kperp*kperp);
}
double C2Lipatov_Mix(
CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
CLHEP::HepLorentzVector const & pim, CLHEP::HepLorentzVector const & pip,
CLHEP::HepLorentzVector const & pom, CLHEP::HepLorentzVector const & pop
) {
const CLHEP::HepLorentzVector CL_t = CLipatov(qav_t, qbv_t, pim, pip, pom, pop);
const CLHEP::HepLorentzVector CL_b = CLipatov(qav_b, qbv_b, pim, pip, pom, pop);
return -CL_t.dot(CL_b);
}
double C2Lipatovots_Mix(
CLHEP::HepLorentzVector const & qav_t, CLHEP::HepLorentzVector const & qbv_t,
CLHEP::HepLorentzVector const & qav_b, CLHEP::HepLorentzVector const & qbv_b,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & p2,
const double lambda
) {
const double Cls = C2Lipatov_Mix(qav_t, qbv_t, qav_b, qbv_b, pa, pb, p1, p2)
/ sqrt(qav_t.m2() * qbv_t.m2() * qav_b.m2() * qbv_b.m2());
const double kperp = (qav_t - qbv_t).perp();
if (kperp > lambda) {
return Cls;
} else {
return Cls - 4.0 / (kperp * kperp);
}
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pg Unordered gluon momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*
* @note The unof contribution can be calculated by reversing the argument ordering.
*/
double ME_uno_current(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
using namespace currents;
assert(aptype!=pid::gluon); // aptype cannot be gluon
if (bptype==pid::gluon) {
if (is_quark(aptype))
return ME_unob_qg(pg,p1,pa,pn,pb);
else
return ME_unob_qbarg(pg,p1,pa,pn,pb);
}
else if (is_antiquark(bptype)) {
if (is_quark(aptype))
return ME_unob_qQbar(pg,p1,pa,pn,pb);
else
return ME_unob_qbarQbar(pg,p1,pa,pn,pb);
}
else { //bptype == quark
if (is_quark(aptype))
return ME_unob_qQ(pg,p1,pa,pn,pb);
else
return ME_unob_qbarQ(pg,p1,pa,pn,pb);
}
throw std::logic_error("unreachable");
}
/** Matrix element squared for tree-level current-current scattering
* @param bptype Particle b PDG ID
* @param pgin Incoming gluon momentum
* @param pq Quark from splitting Momentum
* @param pqbar Anti-quark from splitting Momentum
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param swap_q_qx Boolean. Ordering of qqbar pair. False: pqbar extremal.
* @returns ME Squared for Tree-Level Current-Current Scattering
*
* @note The qqxf contribution can be calculated by reversing the argument ordering.
*/
double ME_qqx_current(
ParticleID bptype,
CLHEP::HepLorentzVector const & pgin,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
bool const swap_q_qx
){
using namespace currents;
if (bptype==pid::gluon) {
if (swap_q_qx) // pq extremal
return ME_Exqqx_qqbarg(pgin,pq,pqbar,pn,pb);
else // pqbar extremal
return ME_Exqqx_qbarqg(pgin,pq,pqbar,pn,pb);
}
else { // b leg quark line
if (swap_q_qx) //extremal pq
return ME_Exqqx_qqbarQ(pgin,pq,pqbar,pn,pb);
else
return ME_Exqqx_qbarqQ(pgin,pq,pqbar,pn,pb);
}
throw std::logic_error("unreachable");
}
/* \brief Matrix element squared for central qqx tree-level current-current
* scattering
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param nabove Number of gluons emitted before central qqxpair
* @param nbelow Number of gluons emitted after central qqxpair
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum
* @param pq Final state qbar Momentum
* @param pqbar Final state q Momentum
* @param partons Vector of all outgoing partons
* @returns ME Squared for qqxmid Tree-Level Current-Current Scattering
*/
double ME_qqxmid_current(
ParticleID aptype, ParticleID bptype, int nabove,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
std::vector<CLHEP::HepLorentzVector> const & partons
){
using namespace currents;
// CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
const bool swap_q_qx=pqbar.rapidity() < pq.rapidity();
double wt=1.;
if (aptype==pid::gluon) wt*=K_g(partons.front(),pa)/C_F;
if (bptype==pid::gluon) wt*=K_g(partons.back(),pb)/C_F;
return wt*ME_Cenqqx_qq(pa, pb, partons, is_antiquark(bptype),
is_antiquark(aptype), swap_q_qx, nabove);
}
/** Matrix element squared for tree-level current-current scattering
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_current(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa
){
using namespace currents;
if (aptype==pid::gluon && bptype==pid::gluon) {
return ME_gg(pn,pb,p1,pa);
} else if (aptype==pid::gluon && bptype!=pid::gluon) {
if (is_quark(bptype))
return ME_qg(pn,pb,p1,pa);
else
return ME_qbarg(pn,pb,p1,pa);
}
else if (bptype==pid::gluon && aptype!=pid::gluon) {
if (is_quark(aptype))
return ME_qg(p1,pa,pn,pb);
else
return ME_qbarg(p1,pa,pn,pb);
}
else { // they are both quark
if (is_quark(bptype)) {
if (is_quark(aptype))
return ME_qQ(pn,pb,p1,pa);
else
return ME_qQbar(pn,pb,p1,pa);
}
else {
if (is_quark(aptype))
return ME_qQbar(p1,pa,pn,pb);
else
return ME_qbarQbar(pn,pb,p1,pa);
}
}
throw std::logic_error("unreachable");
}
/** Matrix element squared for tree-level current-current scattering With W+Jets
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
double ME_W_current(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc, ParticleProperties const & Wprop
){
using namespace currents;
// We know it cannot be gg incoming.
assert(!(aptype==pid::gluon && bptype==pid::gluon));
if (aptype==pid::gluon && bptype!=pid::gluon) {
if (is_quark(bptype))
return ME_W_qg(pn,plbar,pl,pb,p1,pa,Wprop);
else
return ME_W_qbarg(pn,plbar,pl,pb,p1,pa,Wprop);
}
else if (bptype==pid::gluon && aptype!=pid::gluon) {
if (is_quark(aptype))
return ME_W_qg(p1,plbar,pl,pa,pn,pb,Wprop);
else
return ME_W_qbarg(p1,plbar,pl,pa,pn,pb,Wprop);
}
else { // they are both quark
if (wc==true){ // emission off b, (first argument pbout)
if (is_quark(bptype)) {
if (is_quark(aptype))
return ME_W_qQ(pn,plbar,pl,pb,p1,pa,Wprop);
else
return ME_W_qQbar(pn,plbar,pl,pb,p1,pa,Wprop);
}
else {
if (is_quark(aptype))
return ME_W_qbarQ(pn,plbar,pl,pb,p1,pa,Wprop);
else
return ME_W_qbarQbar(pn,plbar,pl,pb,p1,pa,Wprop);
}
}
else{ // emission off a, (first argument paout)
if (is_quark(aptype)) {
if (is_quark(bptype))
return ME_W_qQ(p1,plbar,pl,pa,pn,pb,Wprop);
else
return ME_W_qQbar(p1,plbar,pl,pa,pn,pb,Wprop);
}
else { // a is anti-quark
if (is_quark(bptype))
return ME_W_qbarQ(p1,plbar,pl,pa,pn,pb,Wprop);
else
return ME_W_qbarQbar(p1,plbar,pl,pa,pn,pb,Wprop);
}
}
}
throw std::logic_error("unreachable");
}
/** Matrix element squared for backwards uno tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param pg Unordered gluon momentum
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for unob Tree-Level Current-Current Scattering
*
* @note The unof contribution can be calculated by reversing the argument ordering.
*/
double ME_W_uno_current(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wc, ParticleProperties const & Wprop
){
using namespace currents;
// we know they are not both gluons
assert(bptype != pid::gluon || aptype != pid::gluon);
if (bptype == pid::gluon && aptype != pid::gluon) {
// b gluon => W emission off a
if (is_quark(aptype))
return ME_Wuno_qg(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else
return ME_Wuno_qbarg(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
else { // they are both quark
if (wc) {// emission off b, i.e. b is first current
if (is_quark(bptype)){
if (is_quark(aptype))
return ME_W_unob_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else
return ME_W_unob_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
else{
if (is_quark(aptype))
return ME_W_unob_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else
return ME_W_unob_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
}
else {// wc == false, emission off a, i.e. a is first current
if (is_quark(aptype)) {
if (is_quark(bptype)) //qq
return ME_Wuno_qQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else //qqbar
return ME_Wuno_qQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
else { // a is anti-quark
if (is_quark(bptype)) //qbarq
return ME_Wuno_qbarQ(p1,pa,pn,pb,pg,plbar,pl,Wprop);
else //qbarqbar
return ME_Wuno_qbarQbar(p1,pa,pn,pb,pg,plbar,pl,Wprop);
}
}
}
throw std::logic_error("unreachable");
}
/** \brief Matrix element squared for backward qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum
* @param pq Final state q Momentum
* @param pqbar Final state qbar Momentum
* @param pn Final state n Momentum
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param swap_q_qx Boolean. Ordering of qqbar pair. False: pqbar extremal.
* @param wc Boolean. True->W Emitted from b. Else; emitted from leg a
* @returns ME Squared for qqxb Tree-Level Current-Current Scattering
*
* @note calculate forwards qqx contribution by reversing argument ordering.
*/
double ME_W_qqx_current(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const swap_q_qx, bool const wc,
ParticleProperties const & Wprop
){
using namespace currents;
// CAM factors for the qqx amps, and qqbar ordering (default, qbar extremal)
const double CFbackward = K_g( (swap_q_qx)?pq:pqbar ,pa)/C_F;
// With qqbar we could have 2 incoming gluons and W Emission
if (aptype==pid::gluon && bptype==pid::gluon) {
//a gluon, b gluon gg->qqbarWg
// This will be a wqqx emission as there is no other possible W Emission
// Site.
if (swap_q_qx)
return ME_WExqqx_qqbarg(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)
* CFbackward;
else
return ME_WExqqx_qbarqg(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)
* CFbackward;
}
else {
assert(aptype==pid::gluon && bptype!=pid::gluon );
//a gluon => W emission off b leg or qqx
if (!wc){ // W Emitted from backwards qqx
if (swap_q_qx)
return ME_WExqqx_qqbarQ(pa, pqbar, plbar, pl, pq, pn, pb, Wprop)
* CFbackward;
else
return ME_WExqqx_qbarqQ(pa, pq, plbar, pl, pqbar, pn, pb, Wprop)
* CFbackward;
}
else { // W Must be emitted from forwards leg.
if (swap_q_qx)
return ME_W_Exqqx_QQq(pb, pa, pn, pqbar, pq, plbar, pl, is_antiquark(bptype), Wprop)
* CFbackward;
else
return ME_W_Exqqx_QQq(pb, pa, pn, pq, pqbar, plbar, pl, is_antiquark(bptype), Wprop)
* CFbackward;
}
}
throw std::logic_error("unreachable");
}
/* \brief Matrix element squared for central qqx tree-level current-current
* scattering With W+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param nabove Number of gluons emitted before central qqxpair
* @param nbelow Number of gluons emitted after central qqxpair
* @param pa Initial state a Momentum
* @param pb Initial state b Momentum\
* @param pq Final state qbar Momentum
* @param pqbar Final state q Momentum
* @param partons Vector of all outgoing partons
* @param plbar Final state anti-lepton momentum
* @param pl Final state lepton momentum
* @param wqq Boolean. True siginfies W boson is emitted from Central qqx
* @param wc Boolean. wc=true signifies w boson emitted from leg b; if wqq=false.
* @returns ME Squared for qqxmid Tree-Level Current-Current Scattering
*/
double ME_W_qqxmid_current(
ParticleID aptype, ParticleID bptype,
int nabove, int nbelow,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & pq,
CLHEP::HepLorentzVector const & pqbar,
std::vector<CLHEP::HepLorentzVector> const & partons,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
bool const wqq, bool const wc,
ParticleProperties const & Wprop
){
using namespace currents;
// CAM factors for the qqx amps, and qqbar ordering (default, pq backwards)
const bool swap_q_qx=pqbar.rapidity() < pq.rapidity();
double wt=1.;
if (aptype==pid::gluon) wt*=K_g(partons.front(),pa)/C_F;
if (bptype==pid::gluon) wt*=K_g(partons.back(),pb)/C_F;
if(wqq)
return wt*ME_WCenqqx_qq(pa, pb, pl, plbar, partons,
is_antiquark(bptype),is_antiquark(aptype),
swap_q_qx, nabove, Wprop);
return wt*ME_W_Cenqqx_qq(pa, pb, pl, plbar, partons,
is_antiquark(bptype), is_antiquark(aptype),
swap_q_qx, nabove, nbelow, wc, Wprop);
}
/** Matrix element squared for tree-level current-current scattering With Z+Jets
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param plbar Final state positron momentum
* @param pl Final state electron momentum
* @param Zprop Z properties
* @param stw2 Value of sin(theta_w)^2
* @param ctw Value of cos(theta_w)
* @returns ME Squared for Tree-Level Current-Current Scattering
*/
std::vector<double> ME_Z_current(
const ParticleID aptype, const ParticleID bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
ParticleProperties const & Zprop,
const double stw2, const double ctw
){
using namespace currents;
// we know they are not both gluons
assert(!is_gluon(aptype) || !is_gluon(bptype));
if(is_anyquark(aptype) && is_gluon(bptype)){
// This is a qg event
const double current_factor=ME_Z_qg(pa,pb,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw);
return { current_factor };
}else if(is_gluon(aptype) && is_anyquark(bptype)){
// This is a gq event
const double current_factor=ME_Z_qg(pb,pa,pn,p1,plbar,pl,bptype,aptype,Zprop,stw2,ctw);
return { current_factor };
}else if(is_anyquark(aptype) && is_anyquark(bptype)){
// This is a qq event
return ME_Z_qQ(pa,pb,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw);
}else{
// It cannot be gg incoming
throw std::logic_error("Bad particle types");
}
}
/** Matrix element squared for backwards uno tree-level current-current
* scattering With Z+Jets
*
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param pg Unordered gluon momentum
* @param plbar Final state positron momentum
* @param pl Final state electron momentum
* @param Zprop Z properties
* @param stw2 Value of sin(theta_w)^2
* @param ctw Value of cos(theta_w)
* @returns ME Squared for unob Tree-Level Current-Current Scattering
*
* @note The unof contribution can be calculated by reversing the argument ordering.
*/
std::vector<double> ME_Z_uno_current(
const ParticleID aptype, const ParticleID bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & plbar,
CLHEP::HepLorentzVector const & pl,
ParticleProperties const & Zprop,
const double stw2, const double ctw
){
using namespace currents;
// we know they are not both gluons
assert(!is_gluon(aptype) || !is_gluon(bptype));
if (is_anyquark(aptype) && is_gluon(bptype)) {
// This is a qg event
const double current_factor=ME_Zuno_qg(pa,pb,pg,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw);
return { current_factor };
} else if (is_gluon(aptype) && is_anyquark(bptype)) {
// This is a gq event
const double current_factor=ME_Zuno_qg(pb,pa,pg,pn,p1,plbar,pl,bptype,aptype,Zprop,stw2,ctw);
return { current_factor };
} else if (is_anyquark(aptype) && is_anyquark(bptype)) {
// This is a qq event
return ME_Zuno_qQ(pa,pb,pg,p1,pn,plbar,pl,aptype,bptype,Zprop,stw2,ctw);
}
throw std::logic_error("unreachable");
}
/** \brief Matrix element squared for tree-level current-current scattering with Higgs
* @param aptype Particle a PDG ID
* @param bptype Particle b PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared for Tree-Level Current-Current Scattering with Higgs
*/
double ME_Higgs_current(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb, double vev
){
using namespace currents;
if (aptype==pid::gluon && bptype==pid::gluon)
// gg initial state
return ME_H_gg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev);
else if (aptype==pid::gluon&&bptype!=pid::gluon) {
if (is_quark(bptype))
return ME_H_qg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.;
else
return ME_H_qbarg(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4./9.;
}
else if (bptype==pid::gluon && aptype!=pid::gluon) {
if (is_quark(aptype))
return ME_H_qg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.;
else
return ME_H_qbarg(p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev)*4./9.;
}
else { // they are both quark
if (is_quark(bptype)) {
if (is_quark(aptype))
return ME_H_qQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
else
return ME_H_qQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
}
else {
if (is_quark(aptype))
return ME_H_qbarQ(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
else
return ME_H_qbarQbar(pn,pb,p1,pa,-qHp1,-qH,mt,include_bottom,mb,vev)*4.*4./(9.*9.);
}
}
throw std::logic_error("unreachable");
}
/** \brief Current matrix element squared with Higgs and unordered backward emission
* @param aptype Particle A PDG ID
* @param bptype Particle B PDG ID
* @param pn Particle n Momentum
* @param pb Particle b Momentum
* @param pg Unordered back Particle Momentum
* @param p1 Particle 1 Momentum
* @param pa Particle a Momentum
* @param qH t-channel momentum before Higgs
* @param qHp1 t-channel momentum after Higgs
* @returns ME Squared with Higgs and unordered backward emission
*
* @note This function assumes unordered gluon backwards from pa-p1 current.
* For unof, reverse call order
*/
double ME_Higgs_current_uno(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector const & pg,
CLHEP::HepLorentzVector const & pn,
CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1,
CLHEP::HepLorentzVector const & pa,
CLHEP::HepLorentzVector const & qH, // t-channel momentum before Higgs
CLHEP::HepLorentzVector const & qHp1, // t-channel momentum after Higgs
double mt, bool include_bottom, double mb, double vev
){
using namespace currents;
if (bptype==pid::gluon && aptype!=pid::gluon) {
if (is_quark(aptype))
return ME_H_unob_gQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
else
return ME_H_unob_gQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
}
else { // they are both quark
if (is_quark(aptype)) {
if (is_quark(bptype))
return ME_H_unob_qQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
else
return ME_H_unob_qbarQ(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
}
else {
if (is_quark(bptype))
return ME_H_unob_qQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
else
return ME_H_unob_qbarQbar(pg,p1,pa,pn,pb,-qH,-qHp1,mt,include_bottom,mb,vev);
}
}
throw std::logic_error("unreachable");
}
CLHEP::HepLorentzVector to_HepLorentzVector(Particle const & particle){
return {particle.p.px(), particle.p.py(), particle.p.pz(), particle.p.E()};
}
void validate(MatrixElementConfig const & config) {
#ifndef HEJ_BUILD_WITH_QCDLOOP
if(!config.Higgs_coupling.use_impact_factors) {
throw std::invalid_argument{
"Invalid Higgs coupling settings.\n"
"HEJ without QCDloop support can only use impact factors.\n"
"Set use_impact_factors to true or recompile HEJ.\n"
};
}
#endif
if(config.Higgs_coupling.use_impact_factors
&& config.Higgs_coupling.mt != std::numeric_limits<double>::infinity()) {
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
} // namespace
MatrixElement::MatrixElement(
std::function<double (double)> alpha_s,
MatrixElementConfig conf
):
alpha_s_{std::move(alpha_s)},
param_{std::move(conf)}
{
validate(param_);
}
std::vector<double> MatrixElement::tree_kin(
Event const & ev
) const {
if(! is_resummable(ev.type())) return {0.};
auto AWZH_boson = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](Particle const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(ev.outgoing()))
return {tree_kin_jets(ev)};
switch(AWZH_boson->type){
case pid::Higgs:
return {tree_kin_Higgs(ev)};
case pid::Wp:
case pid::Wm:
return {tree_kin_W(ev)};
case pid::Z_photon_mix:
return tree_kin_Z(ev);
// TODO
case pid::photon:
case pid::Z:
default:
throw not_implemented("Emission of boson of unsupported type");
}
}
namespace{
constexpr int extremal_jet_idx = 1;
constexpr int no_extremal_jet_idx = 0;
bool treat_as_extremal(Particle const & parton){
return parton.p.user_index() == extremal_jet_idx;
}
template<class InputIterator>
double FKL_ladder_weight(
InputIterator begin_gluon, InputIterator end_gluon,
CLHEP::HepLorentzVector const & q0,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
double lambda
){
double wt = 1;
auto qi = q0;
for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
assert(gluon_it->type == pid::gluon);
const auto g = to_HepLorentzVector(*gluon_it);
const auto qip1 = qi - g;
if(treat_as_extremal(*gluon_it)){
wt *= C2Lipatovots(qip1, qi, pa, pb, lambda)*C_A;
} else{
wt *= C2Lipatovots(qip1, qi, pa, pb, p1, pn, lambda)*C_A;
}
qi = qip1;
}
return wt;
}
template<class InputIterator>
std::vector <double> FKL_ladder_weight_mix(
InputIterator begin_gluon, InputIterator end_gluon,
CLHEP::HepLorentzVector const & q0_t, CLHEP::HepLorentzVector const & q0_b,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
CLHEP::HepLorentzVector const & p1, CLHEP::HepLorentzVector const & pn,
const double lambda
){
double wt_top = 1;
double wt_bot = 1;
double wt_mix = 1;
auto qi_t = q0_t;
auto qi_b = q0_b;
for(auto gluon_it = begin_gluon; gluon_it != end_gluon; ++gluon_it){
assert(gluon_it->type == pid::gluon);
const auto g = to_HepLorentzVector(*gluon_it);
const auto qip1_t = qi_t - g;
const auto qip1_b = qi_b - g;
if(treat_as_extremal(*gluon_it)){
wt_top *= C2Lipatovots(qip1_t, qi_t, pa, pb, lambda)*C_A;
wt_bot *= C2Lipatovots(qip1_b, qi_b, pa, pb, lambda)*C_A;
wt_mix *= C2Lipatovots_Mix(qip1_t, qi_t, qip1_b, qi_b, pa, pb, lambda)*C_A;
} else{
wt_top *= C2Lipatovots(qip1_t, qi_t, pa, pb, p1, pn, lambda)*C_A;
wt_bot *= C2Lipatovots(qip1_b, qi_b, pa, pb, p1, pn, lambda)*C_A;
wt_mix *= C2Lipatovots_Mix(qip1_t, qi_t, qip1_b, qi_b, pa, pb, p1, pn, lambda)*C_A;
}
qi_t = qip1_t;
qi_b = qip1_b;
}
return {wt_top, wt_bot, wt_mix};
}
} // namespace
std::vector<Particle> MatrixElement::tag_extremal_jet_partons(
Event const & ev
) const{
auto out_partons = filter_partons(ev.outgoing());
if(out_partons.size() == ev.jets().size()){
// no additional emissions in extremal jets, don't need to tag anything
for(auto & parton: out_partons){
parton.p.set_user_index(no_extremal_jet_idx);
}
return out_partons;
}
auto const & jets = ev.jets();
assert(jets.size() >= 2);
auto most_backward = begin(jets);
auto most_forward = end(jets) - 1;
// skip jets caused by unordered emission or qqx
if(ev.type() == event_type::unob || ev.type() == event_type::qqxexb){
assert(jets.size() >= 3);
++most_backward;
}
else if(ev.type() == event_type::unof || ev.type() == event_type::qqxexf){
assert(jets.size() >= 3);
--most_forward;
}
const auto extremal_jet_indices = ev.particle_jet_indices(
{*most_backward, *most_forward}
);
assert(extremal_jet_indices.size() == out_partons.size());
for(std::size_t i = 0; i < out_partons.size(); ++i){
assert(is_parton(out_partons[i]));
const int idx = (extremal_jet_indices[i]>=0)?
extremal_jet_idx:
no_extremal_jet_idx;
out_partons[i].p.set_user_index(idx);
}
return out_partons;
}
namespace {
double tree_kin_jets_qqxmid(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,
std::vector<Particle> const & partons,
double lambda
){
CLHEP::HepLorentzVector pq,pqbar;
const auto backmidquark = std::find_if(
begin(partons)+1, end(partons)-1,
[](Particle const & s){ return s.type != pid::gluon; }
);
assert(backmidquark!=end(partons)-1);
if (is_quark(backmidquark->type)){
pq = to_HepLorentzVector(*backmidquark);
pqbar = to_HepLorentzVector(*(backmidquark+1));
}
else {
pqbar = to_HepLorentzVector(*backmidquark);
pq = to_HepLorentzVector(*(backmidquark+1));
}
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
auto q0 = pa - p1;
// t-channel momentum after qqx
auto qqxt = q0;
const auto begin_ladder = cbegin(partons) + 1;
const auto end_ladder_1 = (backmidquark);
const auto begin_ladder_2 = (backmidquark+2);
const auto end_ladder = cend(partons) - 1;
for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
qqxt -= to_HepLorentzVector(*parton_it);
}
const int nabove = std::distance(begin_ladder, backmidquark);
std::vector<CLHEP::HepLorentzVector> partonsHLV;
partonsHLV.reserve(partons.size());
for (std::size_t i = 0; i != partons.size(); ++i) {
partonsHLV.push_back(to_HepLorentzVector(partons[i]));
}
const double current_factor = ME_qqxmid_current(
aptype, bptype, nabove, pa, pb,
pq, pqbar, partonsHLV
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder_1,
q0, pa, pb, p1, pn,
lambda
)*FKL_ladder_weight(
begin_ladder_2, end_ladder,
qqxt, pa, pb, p1, pn,
lambda
);
return current_factor*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_jets_qqx(InIter BeginIn, InIter EndIn, partIter BeginPart,
partIter EndPart, double lambda){
const bool swap_q_qx = is_quark(*BeginPart);
const auto pgin = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(EndIn-1));
const auto pq = to_HepLorentzVector(*(BeginPart+(swap_q_qx?0:1)));
const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_q_qx?1:0)));
const auto p1 = to_HepLorentzVector(*(BeginPart));
const auto pn = to_HepLorentzVector(*(EndPart-1));
assert((BeginIn)->type==pid::gluon); // Incoming a must be gluon.
const double current_factor = ME_qqx_current(
(EndIn-1)->type, pgin, pq, pqbar, pn, pb, swap_q_qx
)/(4.*(N_C*N_C - 1.));
const double ladder_factor = FKL_ladder_weight(
(BeginPart+2), (EndPart-1),
pgin-pq-pqbar, pgin, pb, p1, pn, lambda
);
return current_factor*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_jets_uno(InIter BeginIn, InIter EndIn, partIter BeginPart,
partIter EndPart, double lambda){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(EndIn-1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
const double current_factor = ME_uno_current(
(BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa
)/(4.*(N_C*N_C - 1.));
const double ladder_factor = FKL_ladder_weight(
(BeginPart+2), (EndPart-1),
pa-p1-pg, pa, pb, p1, pn, lambda
);
return current_factor*ladder_factor;
}
} // namespace
double MatrixElement::tree_kin_jets(Event const & ev) const {
auto const & incoming = ev.incoming();
const auto partons = tag_extremal_jet_partons(ev);
if (ev.type()==event_type::FKL){
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
return ME_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa
)/(4.*(N_C*N_C - 1.))*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
pa - p1, pa, pb, p1, pn,
param_.regulator_lambda
);
}
else if (ev.type()==event_type::unordered_backward){
return tree_kin_jets_uno(incoming.begin(), incoming.end(),
partons.begin(), partons.end(),
param_.regulator_lambda);
}
else if (ev.type()==event_type::unordered_forward){
return tree_kin_jets_uno(incoming.rbegin(), incoming.rend(),
partons.rbegin(), partons.rend(),
param_.regulator_lambda);
}
else if (ev.type()==event_type::extremal_qqxb){
return tree_kin_jets_qqx(incoming.begin(), incoming.end(),
partons.begin(), partons.end(),
param_.regulator_lambda);
}
else if (ev.type()==event_type::extremal_qqxf){
return tree_kin_jets_qqx(incoming.rbegin(), incoming.rend(),
partons.rbegin(), partons.rend(),
param_.regulator_lambda);
}
else if (ev.type()==event_type::central_qqx){
return tree_kin_jets_qqxmid(incoming[0].type, incoming[1].type,
to_HepLorentzVector(incoming[0]),
to_HepLorentzVector(incoming[1]),
partons, param_.regulator_lambda);
}
else {
throw std::logic_error("Cannot reweight non-resummable processes in Pure Jets");
}
}
namespace{
double tree_kin_W_FKL(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector pa, CLHEP::HepLorentzVector pb,
std::vector<Particle> const & partons,
CLHEP::HepLorentzVector plbar, CLHEP::HepLorentzVector pl,
double lambda, ParticleProperties const & Wprop
){
auto p1 = to_HepLorentzVector(partons[0]);
auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
const auto begin_ladder = cbegin(partons) + 1;
const auto end_ladder = cend(partons) - 1;
bool wc = aptype==partons[0].type; //leg b emits w
auto q0 = pa - p1;
if(!wc)
q0 -= pl + plbar;
const double current_factor = ME_W_current(
aptype, bptype, pn, pb,
p1, pa, plbar, pl, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_W_uno(InIter BeginIn, partIter BeginPart,
partIter EndPart,
const CLHEP::HepLorentzVector & plbar,
const CLHEP::HepLorentzVector & pl,
double lambda, ParticleProperties const & Wprop
){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(BeginIn+1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
bool wc = (BeginIn)->type==(BeginPart+1)->type; //leg b emits w
auto q0 = pa - p1 - pg;
if(!wc)
q0 -= pl + plbar;
const double current_factor = ME_W_uno_current(
(BeginIn)->type, (BeginIn+1)->type, pn, pb,
p1, pa, pg, plbar, pl, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
BeginPart+2, EndPart-1,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
template<class InIter, class partIter>
double tree_kin_W_qqx(InIter BeginIn, partIter BeginPart,
partIter EndPart,
const CLHEP::HepLorentzVector & plbar,
const CLHEP::HepLorentzVector & pl,
double lambda, ParticleProperties const & Wprop
){
const bool swap_q_qx=is_quark(*BeginPart);
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(BeginIn+1));
const auto pq = to_HepLorentzVector(*(BeginPart+(swap_q_qx?0:1)));
const auto pqbar = to_HepLorentzVector(*(BeginPart+(swap_q_qx?1:0)));
const auto p1 = to_HepLorentzVector(*(BeginPart));
const auto pn = to_HepLorentzVector(*(EndPart-1));
const bool wc = (BeginIn+1)->type!=(EndPart-1)->type; //leg b emits w
auto q0 = pa - pq - pqbar;
if(!wc)
q0 -= pl + plbar;
const double current_factor = ME_W_qqx_current(
(BeginIn)->type, (BeginIn+1)->type, pa, pb,
pq, pqbar, pn, plbar, pl, swap_q_qx, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
BeginPart+2, EndPart-1,
q0, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
double tree_kin_W_qqxmid(
ParticleID aptype, ParticleID bptype,
CLHEP::HepLorentzVector pa,
CLHEP::HepLorentzVector pb,
std::vector<Particle> const & partons,
CLHEP::HepLorentzVector plbar, CLHEP::HepLorentzVector pl,
double lambda, ParticleProperties const & Wprop
){
CLHEP::HepLorentzVector pq,pqbar;
const auto backmidquark = std::find_if(
begin(partons)+1, end(partons)-1,
[](Particle const & s){ return s.type != pid::gluon; }
);
assert(backmidquark!=end(partons)-1);
if (is_quark(backmidquark->type)){
pq = to_HepLorentzVector(*backmidquark);
pqbar = to_HepLorentzVector(*(backmidquark+1));
}
else {
pqbar = to_HepLorentzVector(*backmidquark);
pq = to_HepLorentzVector(*(backmidquark+1));
}
auto p1 = to_HepLorentzVector(partons.front());
auto pn = to_HepLorentzVector(partons.back());
auto q0 = pa - p1;
// t-channel momentum after qqx
auto qqxt = q0;
bool wqq = backmidquark->type != -(backmidquark+1)->type; // qqx emit W
bool wc = !wqq && (aptype==partons.front().type); //leg b emits w
assert(!wqq || !wc);
if(wqq){ // emission from qqx
qqxt -= pl + plbar;
} else if(!wc) { // emission from leg a
q0 -= pl + plbar;
qqxt -= pl + plbar;
}
const auto begin_ladder = cbegin(partons) + 1;
const auto end_ladder_1 = (backmidquark);
const auto begin_ladder_2 = (backmidquark+2);
const auto end_ladder = cend(partons) - 1;
for(auto parton_it = begin_ladder; parton_it < begin_ladder_2; ++parton_it){
qqxt -= to_HepLorentzVector(*parton_it);
}
const int nabove = std::distance(begin_ladder, backmidquark);
const int nbelow = std::distance(begin_ladder_2, end_ladder);
std::vector<CLHEP::HepLorentzVector> partonsHLV;
partonsHLV.reserve(partons.size());
for (std::size_t i = 0; i != partons.size(); ++i) {
partonsHLV.push_back(to_HepLorentzVector(partons[i]));
}
const double current_factor = ME_W_qqxmid_current(
aptype, bptype, nabove, nbelow, pa, pb,
pq, pqbar, partonsHLV, plbar, pl, wqq, wc, Wprop
);
const double ladder_factor = FKL_ladder_weight(
begin_ladder, end_ladder_1,
q0, pa, pb, p1, pn,
lambda
)*FKL_ladder_weight(
begin_ladder_2, end_ladder,
qqxt, pa, pb, p1, pn,
lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
} // namespace
double MatrixElement::tree_kin_W(Event const & ev) const {
using namespace event_type;
auto const & incoming(ev.incoming());
#ifndef NDEBUG
// assert that there is exactly one decay corresponding to the W
assert(ev.decays().size() == 1);
auto const & w_boson{
std::find_if(ev.outgoing().cbegin(), ev.outgoing().cend(),
[] (Particle const & p) -> bool {
return std::abs(p.type) == ParticleID::Wp;
}) };
assert(w_boson != ev.outgoing().cend());
assert( static_cast<long int>(ev.decays().cbegin()->first)
== std::distance(ev.outgoing().cbegin(), w_boson) );
#endif
// find decay products of W
auto const & decay{ ev.decays().cbegin()->second };
assert(decay.size() == 2);
assert( ( is_anylepton(decay.at(0)) && is_anyneutrino(decay.at(1)) )
|| ( is_anylepton(decay.at(1)) && is_anyneutrino(decay.at(0)) ) );
// get lepton & neutrino
CLHEP::HepLorentzVector plbar, pl;
if (decay.at(0).type < 0){
plbar = to_HepLorentzVector(decay.at(0));
pl = to_HepLorentzVector(decay.at(1));
}
else{
pl = to_HepLorentzVector(decay.at(0));
plbar = to_HepLorentzVector(decay.at(1));
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto partons = tag_extremal_jet_partons(ev);
if(ev.type() == FKL){
return tree_kin_W_FKL(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == unordered_backward){
return tree_kin_W_uno(cbegin(incoming), cbegin(partons),
cend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == unordered_forward){
return tree_kin_W_uno(crbegin(incoming), crbegin(partons),
crend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == extremal_qqxb){
return tree_kin_W_qqx(cbegin(incoming), cbegin(partons),
cend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
if(ev.type() == extremal_qqxf){
return tree_kin_W_qqx(crbegin(incoming), crbegin(partons),
crend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
assert(ev.type() == central_qqx);
return tree_kin_W_qqxmid(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Wprop());
}
namespace{
std::vector <double> tree_kin_Z_FKL(
const ParticleID aptype, const ParticleID bptype,
CLHEP::HepLorentzVector const & pa, CLHEP::HepLorentzVector const & pb,
std::vector<Particle> const & partons,
CLHEP::HepLorentzVector const & plbar, CLHEP::HepLorentzVector const & pl,
const double lambda, ParticleProperties const & Zprop,
const double stw2, const double ctw
){
const auto p1 = to_HepLorentzVector(partons[0]);
const auto pn = to_HepLorentzVector(partons[partons.size() - 1]);
const auto begin_ladder = cbegin(partons) + 1;
const auto end_ladder = cend(partons) - 1;
const std::vector <double> current_factor = ME_Z_current(
aptype, bptype, pn, pb, p1, pa,
plbar, pl, Zprop, stw2, ctw
);
std::vector <double> ladder_factor;
if(is_gluon(bptype)){
// This is a qg event
const auto q0 = pa-p1-plbar-pl;
ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder,
q0, pa, pb, p1, pn, lambda));
}else if(is_gluon(aptype)){
// This is a gq event
const auto q0 = pa-p1;
ladder_factor.push_back(FKL_ladder_weight(begin_ladder, end_ladder,
q0, pa, pb, p1, pn, lambda));
}else{
// This is a qq event
const auto q0 = pa-p1-plbar-pl;
const auto q1 = pa-p1;
ladder_factor=FKL_ladder_weight_mix(begin_ladder, end_ladder,
q0, q1, pa, pb, p1, pn, lambda);
}
std::vector <double> result;
for(size_t i=0; i<current_factor.size(); ++i){
result.push_back(current_factor.at(i)*ladder_factor.at(i));
}
return result;
}
template<class InIter, class partIter>
std::vector <double> tree_kin_Z_uno(InIter BeginIn, partIter BeginPart, partIter EndPart,
const CLHEP::HepLorentzVector & plbar,
const CLHEP::HepLorentzVector & pl,
const double lambda, ParticleProperties const & Zprop,
const double stw2, const double ctw){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(BeginIn+1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
const ParticleID aptype = (BeginIn)->type;
const ParticleID bptype = (BeginIn+1)->type;
const std::vector <double> current_factor = ME_Z_uno_current(
aptype, bptype, pn, pb, p1, pa, pg,
plbar, pl, Zprop, stw2, ctw
);
std::vector <double> ladder_factor;
if(is_gluon(bptype)){
// This is a qg event
const auto q0 = pa-pg-p1-plbar-pl;
ladder_factor.push_back(FKL_ladder_weight(BeginPart+2, EndPart-1,
q0, pa, pb, p1, pn, lambda));
}else if(is_gluon(aptype)){
// This is a gq event
const auto q0 = pa-pg-p1;
ladder_factor.push_back(FKL_ladder_weight(BeginPart+2, EndPart-1,
q0, pa, pb, p1, pn, lambda));
}else{
// This is a qq event
const auto q0 = pa-pg-p1-plbar-pl;
const auto q1 = pa-pg-p1;
ladder_factor=FKL_ladder_weight_mix(BeginPart+2, EndPart-1,
q0, q1, pa, pb, p1, pn, lambda);
}
std::vector <double> result;
for(size_t i=0; i<current_factor.size(); ++i){
result.push_back(current_factor.at(i)*ladder_factor.at(i));
}
return result;
}
} // namespace
std::vector<double> MatrixElement::tree_kin_Z(Event const & ev) const {
using namespace event_type;
auto const & incoming(ev.incoming());
// find decay products of Z
auto const & decay{ ev.decays().cbegin()->second };
assert(decay.size() == 2);
assert(is_anylepton(decay.at(0)) && !is_anyneutrino(decay.at(0))
&& decay.at(0).type==-decay.at(1).type);
// get leptons
CLHEP::HepLorentzVector plbar, pl;
if (decay.at(0).type < 0){
plbar = to_HepLorentzVector(decay.at(0));
pl = to_HepLorentzVector(decay.at(1));
}
else{
pl = to_HepLorentzVector(decay.at(0));
plbar = to_HepLorentzVector(decay.at(1));
}
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto partons = tag_extremal_jet_partons(ev);
const double stw2 = param_.ew_parameters.sin2_tw();
const double ctw = param_.ew_parameters.cos_tw();
if(ev.type() == FKL){
return tree_kin_Z_FKL(incoming[0].type, incoming[1].type,
pa, pb, partons, plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Zprop(),
stw2, ctw);
}
if(ev.type() == unordered_backward){
return tree_kin_Z_uno(cbegin(incoming), cbegin(partons),
cend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Zprop(),
stw2, ctw);
}
if(ev.type() == unordered_forward){
return tree_kin_Z_uno(crbegin(incoming), crbegin(partons),
crend(partons), plbar, pl,
param_.regulator_lambda,
param_.ew_parameters.Zprop(),
stw2, ctw);
}
throw std::logic_error("Can only reweight FKL or uno processes in Z+Jets");
}
double MatrixElement::tree_kin_Higgs(Event const & ev) const {
if(is_uno(ev.type())){
return tree_kin_Higgs_between(ev);
}
if(ev.outgoing().front().type == pid::Higgs){
return tree_kin_Higgs_first(ev);
}
if(ev.outgoing().back().type == pid::Higgs){
return tree_kin_Higgs_last(ev);
}
return tree_kin_Higgs_between(ev);
}
namespace {
// Colour acceleration multipliers, for gluons see eq. (7) in arXiv:0910.5113
#ifdef HEJ_BUILD_WITH_QCDLOOP
double K(
ParticleID type,
CLHEP::HepLorentzVector const & pout,
CLHEP::HepLorentzVector const & pin
) {
if(type == pid::gluon) return currents::K_g(pout, pin);
return C_F;
}
#endif
// Colour factor in strict MRK limit
double K_MRK(ParticleID type) {
return (type == pid::gluon)?C_A:C_F;
}
} // namespace
double MatrixElement::MH2_forwardH(
CLHEP::HepLorentzVector const & p1out,
CLHEP::HepLorentzVector const & p1in,
ParticleID type2,
CLHEP::HepLorentzVector const & p2out,
CLHEP::HepLorentzVector const & p2in,
CLHEP::HepLorentzVector const & pH,
double t1, double t2
) const{
using namespace currents;
ignore(p2out, p2in);
const double shat = p1in.invariantMass2(p2in);
const double vev = param_.ew_parameters.vev();
// gluon case
#ifdef HEJ_BUILD_WITH_QCDLOOP
if(!param_.Higgs_coupling.use_impact_factors){
return K(type2, p2out, p2in)*C_A*1./(16*M_PI*M_PI)*t1/t2*ME_Houtside_gq(
p1out, p1in, p2out, p2in, pH,
param_.Higgs_coupling.mt, param_.Higgs_coupling.include_bottom,
param_.Higgs_coupling.mb, vev
)/(4*(N_C*N_C - 1));
}
#endif
return K_MRK(type2)/C_A*9./2.*shat*shat*(
C2gHgp(p1in,p1out,pH,vev) + C2gHgm(p1in,p1out,pH,vev)
)/(t1*t2);
}
double MatrixElement::tree_kin_Higgs_first(Event const & ev) const {
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
assert(outgoing.front().type == pid::Higgs);
if(outgoing[1].type != pid::gluon) {
assert(incoming.front().type == outgoing[1].type);
return tree_kin_Higgs_between(ev);
}
const auto pH = to_HepLorentzVector(outgoing.front());
const auto partons = tag_extremal_jet_partons(
ev
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
const auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
const auto q0 = pa - p1 - pH;
const double t1 = q0.m2();
const double t2 = (pn - pb).m2();
return MH2_forwardH(
p1, pa, incoming[1].type, pn, pb, pH,
t1, t2
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn,
param_.regulator_lambda
);
}
double MatrixElement::tree_kin_Higgs_last(Event const & ev) const {
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
assert(outgoing.back().type == pid::Higgs);
if(outgoing[outgoing.size()-2].type != pid::gluon) {
assert(incoming.back().type == outgoing[outgoing.size()-2].type);
return tree_kin_Higgs_between(ev);
}
const auto pH = to_HepLorentzVector(outgoing.back());
const auto partons = tag_extremal_jet_partons(
ev
);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(partons.front());
const auto pn = to_HepLorentzVector(partons.back());
auto q0 = pa - p1;
const double t1 = q0.m2();
const double t2 = (pn + pH - pb).m2();
return MH2_forwardH(
pn, pb, incoming[0].type, p1, pa, pH,
t2, t1
)*FKL_ladder_weight(
begin(partons) + 1, end(partons) - 1,
q0, pa, pb, p1, pn,
param_.regulator_lambda
);
}
namespace {
template<class InIter, class partIter>
double tree_kin_Higgs_uno(InIter BeginIn, InIter EndIn, partIter BeginPart,
partIter EndPart,
CLHEP::HepLorentzVector const & qH,
CLHEP::HepLorentzVector const & qHp1,
double mt, bool inc_bot, double mb, double vev
){
const auto pa = to_HepLorentzVector(*BeginIn);
const auto pb = to_HepLorentzVector(*(EndIn-1));
const auto pg = to_HepLorentzVector(*BeginPart);
const auto p1 = to_HepLorentzVector(*(BeginPart+1));
const auto pn = to_HepLorentzVector(*(EndPart-1));
return ME_Higgs_current_uno(
(BeginIn)->type, (EndIn-1)->type, pg, pn, pb, p1, pa,
qH, qHp1, mt, inc_bot, mb, vev
);
}
} // namespace
double MatrixElement::tree_kin_Higgs_between(Event const & ev) const {
using namespace event_type;
auto const & incoming = ev.incoming();
auto const & outgoing = ev.outgoing();
const auto the_Higgs = std::find_if(
begin(outgoing), end(outgoing),
[](Particle const & s){ return s.type == pid::Higgs; }
);
assert(the_Higgs != end(outgoing));
const auto pH = to_HepLorentzVector(*the_Higgs);
const auto partons = tag_extremal_jet_partons(ev);
const auto pa = to_HepLorentzVector(incoming[0]);
const auto pb = to_HepLorentzVector(incoming[1]);
auto p1 = to_HepLorentzVector(
partons[(ev.type() == unob)?1:0]
);
auto pn = to_HepLorentzVector(
partons[partons.size() - ((ev.type() == unof)?2:1)]
);
auto first_after_Higgs = begin(partons) + (the_Higgs-begin(outgoing));
assert(
(first_after_Higgs == end(partons) && (
(ev.type() == unob)
|| partons.back().type != pid::gluon
))
|| first_after_Higgs->rapidity() >= the_Higgs->rapidity()
);
assert(
(first_after_Higgs == begin(partons) && (
(ev.type() == unof)
|| partons.front().type != pid::gluon
))
|| (first_after_Higgs-1)->rapidity() <= the_Higgs->rapidity()
);
// always treat the Higgs as if it were in between the extremal FKL partons
if(first_after_Higgs == begin(partons)) ++first_after_Higgs;
else if(first_after_Higgs == end(partons)) --first_after_Higgs;
// t-channel momentum before Higgs
auto qH = pa;
for(auto parton_it = begin(partons); parton_it != first_after_Higgs; ++parton_it){
qH -= to_HepLorentzVector(*parton_it);
}
auto q0 = pa - p1;
auto begin_ladder = begin(partons) + 1;
auto end_ladder = end(partons) - 1;
- double current_factor;
+ double current_factor = NAN;
if(ev.type() == FKL){
current_factor = ME_Higgs_current(
incoming[0].type, incoming[1].type,
pn, pb, p1, pa, qH, qH - pH,
param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
param_.ew_parameters.vev()
);
}
else if(ev.type() == unob){
current_factor = C_A*C_A/2*tree_kin_Higgs_uno(
begin(incoming), end(incoming), begin(partons),
end(partons), qH, qH-pH, param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
param_.ew_parameters.vev()
);
const auto p_unob = to_HepLorentzVector(partons.front());
q0 -= p_unob;
p1 += p_unob;
++begin_ladder;
}
else if(ev.type() == unof){
current_factor = C_A*C_A/2*tree_kin_Higgs_uno(
rbegin(incoming), rend(incoming), rbegin(partons),
rend(partons), qH-pH, qH, param_.Higgs_coupling.mt,
param_.Higgs_coupling.include_bottom, param_.Higgs_coupling.mb,
param_.ew_parameters.vev()
);
pn += to_HepLorentzVector(partons.back());
--end_ladder;
}
else{
throw std::logic_error("Can only reweight FKL or uno processes in H+Jets");
}
const double ladder_factor = FKL_ladder_weight(
begin_ladder, first_after_Higgs,
q0, pa, pb, p1, pn,
param_.regulator_lambda
)*FKL_ladder_weight(
first_after_Higgs, end_ladder,
qH - pH, pa, pb, p1, pn,
param_.regulator_lambda
);
return current_factor*C_A*C_A/(N_C*N_C-1.)*ladder_factor;
}
namespace {
double get_AWZH_coupling(Event const & ev, double alpha_s, double alpha_w) {
const auto AWZH_boson = std::find_if(
begin(ev.outgoing()), end(ev.outgoing()),
[](auto const & p){return is_AWZH_boson(p);}
);
if(AWZH_boson == end(ev.outgoing())) return 1.;
switch(AWZH_boson->type){
case pid::Higgs:
return alpha_s*alpha_s;
case pid::Wp:
case pid::Wm:
case pid::Z_photon_mix:
return alpha_w*alpha_w;
// TODO
case pid::photon:
case pid::Z:
default:
throw not_implemented("Emission of boson of unsupported type");
}
}
} // namespace
double MatrixElement::tree_param(Event const & ev, double mur) const {
assert(is_resummable(ev.type()));
const auto begin_partons = ev.begin_partons();
const auto end_partons = ev.end_partons();
const auto num_partons = std::distance(begin_partons, end_partons);
const double alpha_s = alpha_s_(mur);
const double gs2 = 4.*M_PI*alpha_s;
double res = std::pow(gs2, num_partons);
if(param_.log_correction){
// use alpha_s(q_perp), evolved to mur
assert(num_partons >= 2);
const auto first_emission = std::next(begin_partons);
const auto last_emission = std::prev(end_partons);
for(auto parton = first_emission; parton != last_emission; ++parton){
res *= 1. + alpha_s/(2.*M_PI)*beta0*std::log(mur/parton->perp());
}
}
return get_AWZH_coupling(ev, alpha_s, param_.ew_parameters.alpha_w())*res;
}
} // namespace HEJ
diff --git a/src/YAMLreader.cc b/src/YAMLreader.cc
index d2615b6..d6aba12 100644
--- a/src/YAMLreader.cc
+++ b/src/YAMLreader.cc
@@ -1,565 +1,565 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/YAMLreader.hh"
#include <algorithm>
#include <iostream>
#include <limits>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
#include <dlfcn.h>
#include "HEJ/ConfigFlags.hh"
#include "HEJ/Constants.hh"
#include "HEJ/ScaleFunction.hh"
#include "HEJ/event_types.hh"
#include "HEJ/output_formats.hh"
namespace HEJ{
class Event;
namespace{
//! Get YAML tree of supported options
/**
* The configuration file is checked against this tree of options
* in assert_all_options_known.
*/
YAML::Node const & get_supported_options(){
const static YAML::Node supported = [](){
YAML::Node supported;
static const auto opts = {
"trials", "min extparton pt", "max ext soft pt fraction",
"scales", "scale factors", "max scale ratio", "import scales",
"log correction", "event output", "analysis", "analyses", "vev",
"regulator parameter", "max events"
};
// add subnodes to "supported" - the assigned value is irrelevant
for(auto && opt: opts) supported[opt] = "";
for(auto && jet_opt: {"min pt", "algorithm", "R"}){
supported["resummation jets"][jet_opt] = "";
supported["fixed order jets"][jet_opt] = "";
}
for(auto && opt: {"mt", "use impact factors", "include bottom", "mb"}){
supported["Higgs coupling"][opt] = "";
}
for(auto && opt: {"name", "seed"}){
supported["random generator"][opt] = "";
}
for(auto && opt: {"FKL", "unordered", "extremal qqx", "central qqx", "non-resummable"}){
supported["event treatment"][opt] = "";
}
for(auto && particle_type: {"Higgs", "W", "Z"}){
for(auto && particle_opt: {"mass", "width"}){
supported["particle properties"][particle_type][particle_opt] = "";
}
}
for(auto && opt: {"type", "trials", "max deviation"}){
supported["unweight"][opt] = "";
}
return supported;
}();
return supported;
}
fastjet::JetAlgorithm to_JetAlgorithm(std::string const & algo){
using namespace fastjet;
static const std::map<std::string, fastjet::JetAlgorithm> known = {
{"kt", kt_algorithm},
{"cambridge", cambridge_algorithm},
{"antikt", antikt_algorithm},
{"cambridge for passive", cambridge_for_passive_algorithm},
{"plugin", plugin_algorithm}
};
const auto res = known.find(algo);
if(res == known.end()){
throw std::invalid_argument("Unknown jet algorithm \"" + algo + "\"");
}
return res->second;
}
EventTreatment to_EventTreatment(std::string const & name){
static const std::map<std::string, EventTreatment> known = {
{"reweight", EventTreatment::reweight},
{"keep", EventTreatment::keep},
{"discard", EventTreatment::discard}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown event treatment \"" + name + "\"");
}
return res->second;
}
WeightType to_weight_type(std::string const & setting){
if(setting == "weighted")
return WeightType::weighted;
if(setting =="resummation")
return WeightType::unweighted_resum;
if(setting =="partial")
return WeightType::partially_unweighted;
throw std::invalid_argument{"Unknown weight type \"" + setting + "\""};
}
} // namespace
namespace detail{
void set_from_yaml(fastjet::JetAlgorithm & setting, YAML::Node const & yaml){
setting = to_JetAlgorithm(yaml.as<std::string>());
}
void set_from_yaml(EventTreatment & setting, YAML::Node const & yaml){
setting = to_EventTreatment(yaml.as<std::string>());
}
void set_from_yaml(ParticleID & setting, YAML::Node const & yaml){
setting = to_ParticleID(yaml.as<std::string>());
}
void set_from_yaml(WeightType & setting, YAML::Node const & yaml){
setting = to_weight_type(yaml.as<std::string>());
}
} // namespace detail
JetParameters get_jet_parameters(
YAML::Node const & node,
std::string const & entry
){
assert(node);
JetParameters result;
fastjet::JetAlgorithm jet_algo = fastjet::antikt_algorithm;
- double R;
+ double R = NAN;
set_from_yaml_if_defined(jet_algo, node, entry, "algorithm");
set_from_yaml(R, node, entry, "R");
result.def = fastjet::JetDefinition{jet_algo, R};
set_from_yaml(result.min_pt, node, entry, "min pt");
return result;
}
RNGConfig to_RNGConfig(
YAML::Node const & node,
std::string const & entry
){
assert(node);
RNGConfig result;
set_from_yaml(result.name, node, entry, "name");
set_from_yaml_if_defined(result.seed, node, entry, "seed");
return result;
}
ParticleProperties get_particle_properties(
YAML::Node const & node, std::string const & entry,
std::string const & boson
){
- ParticleProperties result;
+ ParticleProperties result{};
set_from_yaml(result.mass, node, entry, boson, "mass");
set_from_yaml(result.width, node, entry, boson, "width");
return result;
}
EWConstants get_ew_parameters(YAML::Node const & node){
EWConstants result;
- double vev;
+ double vev = NAN;
set_from_yaml(vev, node, "vev");
result.set_vevWZH(vev,
get_particle_properties(node, "particle properties", "W"),
get_particle_properties(node, "particle properties", "Z"),
get_particle_properties(node, "particle properties", "Higgs")
);
return result;
}
HiggsCouplingSettings get_Higgs_coupling(
YAML::Node const & node,
std::string const & entry
){
assert(node);
static constexpr double mt_max = 2e4;
#ifndef HEJ_BUILD_WITH_QCDLOOP
if(node[entry]){
throw std::invalid_argument{
"Higgs coupling settings require building HEJ 2 "
"with QCDloop support"
};
}
#endif
HiggsCouplingSettings settings;
set_from_yaml_if_defined(settings.mt, node, entry, "mt");
set_from_yaml_if_defined(settings.mb, node, entry, "mb");
set_from_yaml_if_defined(settings.include_bottom, node, entry, "include bottom");
set_from_yaml_if_defined(settings.use_impact_factors, node, entry, "use impact factors");
if(settings.use_impact_factors){
if(settings.mt != std::numeric_limits<double>::infinity()){
throw std::invalid_argument{
"Conflicting settings: "
"impact factors may only be used in the infinite top mass limit"
};
}
}
else{
// huge values of the top mass are numerically unstable
settings.mt = std::min(settings.mt, mt_max);
}
return settings;
}
FileFormat to_FileFormat(std::string const & name){
static const std::map<std::string, FileFormat> known = {
{"Les Houches", FileFormat::Les_Houches},
{"HepMC", FileFormat::HepMC},
{"HepMC2", FileFormat::HepMC2},
{"HepMC3", FileFormat::HepMC3},
{"HDF5", FileFormat::HDF5}
};
const auto res = known.find(name);
if(res == known.end()){
throw std::invalid_argument("Unknown file format \"" + name + "\"");
}
return res->second;
}
std::string extract_suffix(std::string const & filename){
size_t separator = filename.rfind('.');
if(separator == filename.npos) return {};
return filename.substr(separator + 1);
}
FileFormat format_from_suffix(std::string const & filename){
const std::string suffix = extract_suffix(filename);
if(suffix == "lhe") return FileFormat::Les_Houches;
if(suffix == "hepmc") return FileFormat::HepMC;
if(suffix == "hepmc3") return FileFormat::HepMC3;
if(suffix == "hepmc2") return FileFormat::HepMC2;
if(suffix == "hdf5") return FileFormat::HDF5;
throw std::invalid_argument{
"Can't determine format for output file \"" + filename + "\""
};
}
void assert_all_options_known(
YAML::Node const & conf, YAML::Node const & supported
){
if(!conf.IsMap()) return;
if(!supported.IsMap()) throw invalid_type{"must not have sub-entries"};
for(auto const & entry: conf){
const auto name = entry.first.as<std::string>();
if(! supported[name]) throw unknown_option{name};
/* check sub-options, e.g. 'resummation jets: min pt'
* we don't check analyses sub-options
* those depend on the analysis being used and should be checked there
* similar for "import scales"
*/
if(name != "analyses" && name != "analysis" && name != "import scales"){
try{
assert_all_options_known(conf[name], supported[name]);
}
catch(unknown_option const & ex){
throw unknown_option{name + ": " + ex.what()};
}
catch(invalid_type const & ex){
throw invalid_type{name + ": " + ex.what()};
}
}
}
}
} // namespace HEJ
namespace YAML {
Node convert<HEJ::OutputFile>::encode(HEJ::OutputFile const & outfile) {
Node node;
node[to_string(outfile.format)] = outfile.name;
return node;
}
bool convert<HEJ::OutputFile>::decode(Node const & node, HEJ::OutputFile & out) {
switch(node.Type()){
case NodeType::Map: {
YAML::const_iterator it = node.begin();
out.format = HEJ::to_FileFormat(it->first.as<std::string>());
out.name = it->second.as<std::string>();
return true;
}
case NodeType::Scalar:
out.name = node.as<std::string>();
out.format = HEJ::format_from_suffix(out.name);
return true;
default:
return false;
}
}
} // namespace YAML
namespace HEJ{
namespace detail{
void set_from_yaml(OutputFile & setting, YAML::Node const & yaml){
setting = yaml.as<OutputFile>();
}
}
namespace{
void update_fixed_order_jet_parameters(
JetParameters & fixed_order_jets, YAML::Node const & yaml
){
if(!yaml["fixed order jets"]) return;
set_from_yaml_if_defined(
fixed_order_jets.min_pt, yaml, "fixed order jets", "min pt"
);
fastjet::JetAlgorithm algo = fixed_order_jets.def.jet_algorithm();
set_from_yaml_if_defined(algo, yaml, "fixed order jets", "algorithm");
double R = fixed_order_jets.def.R();
set_from_yaml_if_defined(R, yaml, "fixed order jets", "R");
fixed_order_jets.def = fastjet::JetDefinition{algo, R};
}
// like std::stod, but throw if not the whole string can be converted
double to_double(std::string const & str){
- std::size_t pos;
+ std::size_t pos = 0;
const double result = std::stod(str, &pos);
if(pos < str.size()){
throw std::invalid_argument(str + " is not a valid double value");
}
return result;
}
using EventScale = double (*)(Event const &);
void import_scale_functions(
std::string const & file,
std::vector<std::string> const & scale_names,
std::unordered_map<std::string, EventScale> & known
) {
void * handle = dlopen(file.c_str(), RTLD_NOW);
char * error = dlerror();
if(error != nullptr) throw std::runtime_error{error};
for(auto const & scale: scale_names) {
void * sym = dlsym(handle, scale.c_str());
error = dlerror();
if(error != nullptr) throw std::runtime_error{error};
- known.emplace(scale, reinterpret_cast<EventScale>(sym));
+ known.emplace(scale, reinterpret_cast<EventScale>(sym)); // NOLINT
}
}
auto get_scale_map(
YAML::Node const & yaml
) {
std::unordered_map<std::string, EventScale> scale_map;
scale_map.emplace("H_T", H_T);
scale_map.emplace("max jet pperp", max_jet_pt);
scale_map.emplace("jet invariant mass", jet_invariant_mass);
scale_map.emplace("m_j1j2", m_j1j2);
if(yaml["import scales"]) {
if(! yaml["import scales"].IsMap()) {
throw invalid_type{"Entry 'import scales' is not a map"};
}
for(auto const & import: yaml["import scales"]) {
const auto file = import.first.as<std::string>();
const auto scale_names =
import.second.IsSequence()
?import.second.as<std::vector<std::string>>()
:std::vector<std::string>{import.second.as<std::string>()};
import_scale_functions(file, scale_names, scale_map);
}
}
return scale_map;
}
// simple (as in non-composite) scale functions
/**
* An example for a simple scale function would be H_T,
* H_T/2 is then composite (take H_T and then divide by 2)
*/
ScaleFunction parse_simple_ScaleFunction(
std::string const & scale_fun,
std::unordered_map<std::string, EventScale> const & known
) {
assert(
scale_fun.empty() ||
(!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
);
const auto it = known.find(scale_fun);
if(it != end(known)) return {it->first, it->second};
try{
const double scale = to_double(scale_fun);
return {scale_fun, FixedScale{scale}};
} catch(std::invalid_argument const &){}
throw std::invalid_argument{"Unknown scale choice: \"" + scale_fun + "\""};
}
std::string trim_front(std::string const & str){
const auto new_begin = std::find_if(
begin(str), end(str), [](char c){ return ! std::isspace(c); }
);
return std::string(new_begin, end(str));
}
std::string trim_back(std::string str){
size_t pos = str.size() - 1;
// use guaranteed wrap-around behaviour to check whether we have
// traversed the whole string
for(; pos < str.size() && std::isspace(str[pos]); --pos) {}
str.resize(pos + 1); // note that pos + 1 can be 0
return str;
}
ScaleFunction parse_ScaleFunction(
std::string const & scale_fun,
std::unordered_map<std::string, EventScale> const & known
){
assert(
scale_fun.empty() ||
(!std::isspace(scale_fun.front()) && !std::isspace(scale_fun.back()))
);
// parse from right to left => a/b/c gives (a/b)/c
const size_t delim = scale_fun.find_last_of("*/");
if(delim == scale_fun.npos){
return parse_simple_ScaleFunction(scale_fun, known);
}
const std::string first = trim_back(std::string{scale_fun, 0, delim});
const std::string second = trim_front(std::string{scale_fun, delim+1});
if(scale_fun[delim] == '/'){
return parse_ScaleFunction(first, known)
/ parse_ScaleFunction(second, known);
}
else{
assert(scale_fun[delim] == '*');
return parse_ScaleFunction(first, known)
* parse_ScaleFunction(second, known);
}
}
EventTreatMap get_event_treatment(
YAML::Node const & node, std::string const & entry
){
using namespace event_type;
EventTreatMap treat {
{no_2_jets, EventTreatment::discard},
{bad_final_state, EventTreatment::discard},
{FKL, EventTreatment::discard},
{unob, EventTreatment::discard},
{unof, EventTreatment::discard},
{qqxexb, EventTreatment::discard},
{qqxexf, EventTreatment::discard},
{qqxmid, EventTreatment::discard},
{non_resummable, EventTreatment::discard}
};
set_from_yaml(treat.at(FKL), node, entry, "FKL");
set_from_yaml(treat.at(unob), node, entry, "unordered");
treat.at(unof) = treat.at(unob);
set_from_yaml(treat.at(qqxexb), node, entry, "extremal qqx");
treat.at(qqxexf) = treat.at(qqxexb);
set_from_yaml(treat.at(qqxmid), node, entry, "central qqx");
set_from_yaml(treat.at(non_resummable), node, entry, "non-resummable");
if(treat[non_resummable] == EventTreatment::reweight){
throw std::invalid_argument{"Cannot reweight non-resummable events"};
}
return treat;
}
Config to_Config(YAML::Node const & yaml){
try{
assert_all_options_known(yaml, get_supported_options());
}
catch(unknown_option const & ex){
throw unknown_option{std::string{"Unknown option '"} + ex.what() + "'"};
}
Config config;
config.resummation_jets = get_jet_parameters(yaml, "resummation jets");
config.fixed_order_jets = config.resummation_jets;
update_fixed_order_jet_parameters(config.fixed_order_jets, yaml);
set_from_yaml_if_defined(config.min_extparton_pt, yaml, "min extparton pt");
if(config.min_extparton_pt!=0)
std::cerr << "WARNING: \"min extparton pt\" is deprecated."
<< " Please use \"max ext soft pt fraction\" instead.\n";
set_from_yaml(
config.max_ext_soft_pt_fraction, yaml, "max ext soft pt fraction"
);
// Sets the standard value, then changes this if defined
config.regulator_lambda=CLAMBDA;
set_from_yaml_if_defined(config.regulator_lambda, yaml, "regulator parameter");
set_from_yaml_if_defined(config.max_events, yaml, "max events");
set_from_yaml(config.trials, yaml, "trials");
config.weight_type = WeightType::weighted;
set_from_yaml_if_defined(config.weight_type, yaml, "unweight", "type");
if(config.weight_type == WeightType::partially_unweighted) {
config.unweight_config = PartialUnweightConfig{};
set_from_yaml(
config.unweight_config->trials, yaml,
"unweight", "trials"
);
set_from_yaml(
config.unweight_config->max_dev, yaml,
"unweight", "max deviation"
);
}
else if(yaml["unweight"]) {
for(auto && opt: {"trials", "max deviation"}) {
if(yaml["unweight"][opt]) {
throw std::invalid_argument{
"'unweight: " + std::string{opt} + "' "
"is only supported if 'unweight: type' is set to 'partial'"
};
}
}
}
set_from_yaml(config.log_correction, yaml, "log correction");
config.treat = get_event_treatment(yaml, "event treatment");
set_from_yaml_if_defined(config.output, yaml, "event output");
config.rng = to_RNGConfig(yaml, "random generator");
set_from_yaml_if_defined(config.analyses_parameters, yaml, "analyses");
if(yaml["analysis"]){
std::cerr <<
"WARNING: Configuration entry 'analysis' is deprecated. "
" Use 'analyses' instead.\n";
set_from_yaml(config.analysis_parameters, yaml, "analysis");
if(!config.analysis_parameters.IsNull()){
config.analyses_parameters.push_back(config.analysis_parameters);
}
}
config.scales = to_ScaleConfig(yaml);
config.ew_parameters = get_ew_parameters(yaml);
config.Higgs_coupling = get_Higgs_coupling(yaml, "Higgs coupling");
return config;
}
} // namespace
ScaleConfig to_ScaleConfig(YAML::Node const & yaml){
ScaleConfig config;
auto scale_funs = get_scale_map(yaml);
std::vector<std::string> scales;
set_from_yaml(scales, yaml, "scales");
config.base.reserve(scales.size());
std::transform(
begin(scales), end(scales), std::back_inserter(config.base),
[scale_funs](auto const & entry){
return parse_ScaleFunction(entry, scale_funs);
}
);
set_from_yaml_if_defined(config.factors, yaml, "scale factors");
config.max_ratio = std::numeric_limits<double>::infinity();
set_from_yaml_if_defined(config.max_ratio, yaml, "max scale ratio");
return config;
}
Config load_config(std::string const & config_file){
try{
return to_Config(YAML::LoadFile(config_file));
}
catch(...){
std::cerr << "Error reading " << config_file << ":\n ";
throw;
}
}
} // namespace HEJ
diff --git a/src/get_analysis.cc b/src/get_analysis.cc
index 8020d39..7b34046 100644
--- a/src/get_analysis.cc
+++ b/src/get_analysis.cc
@@ -1,51 +1,51 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/get_analysis.hh"
#include <dlfcn.h>
#include <string>
#include "yaml-cpp/yaml.h"
#include "HEJ/EmptyAnalysis.hh"
#include "HEJ/RivetAnalysis.hh"
namespace HEJ{
std::unique_ptr<Analysis> get_analysis(
YAML::Node const & parameters, LHEF::HEPRUP const & heprup
){
if(!parameters["plugin"]){
if(parameters["rivet"])
return RivetAnalysis::create(parameters, heprup);
return EmptyAnalysis::create(parameters, heprup);
}
using AnalysisMaker = std::unique_ptr<Analysis> (*)(
YAML::Node const &, LHEF::HEPRUP const &);
const auto plugin_name = parameters["plugin"].as<std::string>();
void * handle = dlopen(plugin_name.c_str(), RTLD_NOW);
char * error = dlerror();
if(error != nullptr) throw std::runtime_error(error);
void * sym = dlsym(handle, "make_analysis");
error = dlerror();
if(error != nullptr) throw std::runtime_error(error);
- auto make_analysis = reinterpret_cast<AnalysisMaker>(sym);
+ auto make_analysis = reinterpret_cast<AnalysisMaker>(sym); // NOLINT
return make_analysis(parameters, heprup);
}
std::vector<std::unique_ptr<Analysis>> get_analyses(
std::vector<YAML::Node> const & parameters, LHEF::HEPRUP const & heprup
){
std::vector<std::unique_ptr<Analysis>> anas;
for(auto const & param: parameters){
anas.emplace_back(get_analysis(param, heprup));
}
return anas;
}
} // namespace HEJ
diff --git a/src/jets.cc b/src/jets.cc
index bc40e40..05b2670 100644
--- a/src/jets.cc
+++ b/src/jets.cc
@@ -1,855 +1,855 @@
/**
* \authors The HEJ collaboration (see AUTHORS for details)
* \date 2019-2020
* \copyright GPLv2 or later
*/
#include "HEJ/jets.hh"
#include <algorithm>
#include <cmath>
#include "HEJ/Constants.hh"
namespace {
// short hand for math functions
using std::abs;
using std::conj;
using std::pow;
using std::sqrt;
double metric(const size_t mu, const size_t nu) {
if(mu != nu) return 0.;
return (mu == 0)?1.:-1.;
}
} // Anonymous Namespace
namespace HEJ {
namespace currents {
// Colour acceleration multiplier for gluons see eq. (7) in arXiv:0910.5113
// @TODO: this is not a current and should be moved somewhere else
double K_g(double p1minus, double paminus) {
return 1./2.*(p1minus/paminus + paminus/p1minus)*(C_A - 1./C_A) + 1./C_A;
}
double K_g(
HLV const & pout,
HLV const & pin
) {
if(pin.z() > 0) return K_g(pout.plus(), pin.plus());
return K_g(pout.minus(), pin.minus());
}
CCurrent CCurrent::operator+(const CCurrent& other) const
{
COM result_c0=c0 + other.c0;
COM result_c1=c1 + other.c1;
COM result_c2=c2 + other.c2;
COM result_c3=c3 + other.c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator-(const CCurrent& other) const
{
COM result_c0=c0 - other.c0;
COM result_c1=c1 - other.c1;
COM result_c2=c2 - other.c2;
COM result_c3=c3 - other.c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator*(const double x) const
{
COM result_c0=x*CCurrent::c0;
COM result_c1=x*CCurrent::c1;
COM result_c2=x*CCurrent::c2;
COM result_c3=x*CCurrent::c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator/(const double x) const
{
COM result_c0=CCurrent::c0/x;
COM result_c1=CCurrent::c1/x;
COM result_c2=CCurrent::c2/x;
COM result_c3=CCurrent::c3/x;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator*(const COM x) const
{
COM result_c0=x*CCurrent::c0;
COM result_c1=x*CCurrent::c1;
COM result_c2=x*CCurrent::c2;
COM result_c3=x*CCurrent::c3;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
CCurrent CCurrent::operator/(const COM x) const
{
COM result_c0=(CCurrent::c0)/x;
COM result_c1=(CCurrent::c1)/x;
COM result_c2=(CCurrent::c2)/x;
COM result_c3=(CCurrent::c3)/x;
return CCurrent(result_c0,result_c1,result_c2,result_c3);
}
std::ostream& operator <<(std::ostream& os, const CCurrent& cur)
{
os << "("<<cur.c0<< " ; "<<cur.c1<<" , "<<cur.c2<<" , "<<cur.c3<<")";
return os;
}
CCurrent operator * ( double x, CCurrent const & m)
{
return m*x;
}
CCurrent operator * ( COM const & x, CCurrent const & m)
{
return m*x;
}
CCurrent operator / ( double x, CCurrent const & m)
{
return m/x;
}
CCurrent operator / ( COM const & x, CCurrent const & m)
{
return m/x;
}
COM CCurrent::dot(HLV const & p1) const
{
// Current goes (E,px,py,pz)
// Vector goes (px,py,pz,E)
return p1[3]*c0-p1[0]*c1-p1[1]*c2-p1[2]*c3;
}
COM CCurrent::dot(CCurrent const & p1) const
{
return p1.c0*c0-p1.c1*c1-p1.c2*c2-p1.c3*c3;
}
//Current Functions
void joi(HLV const & pout, bool helout,
HLV const & pin, bool helin, current &cur
){
cur[0]=0.;
cur[1]=0.;
cur[2]=0.;
cur[3]=0.;
const double sqpop = sqrt(abs(pout.plus()));
const double sqpom = sqrt(abs(pout.minus()));
// Allow for "jii" format
const COM poperp = (pout.x()==0 && pout.y() ==0) ? -1 : pout.x()+COM(0,1)*pout.y();
if (helout != helin) {
throw std::invalid_argument{"Non-matching helicities"};
} else if (helout == false) { // negative helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(abs(pin.plus()));
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * poperp / abs(poperp);
cur[2] = -COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
const double sqpim = sqrt(abs(pin.minus()));
cur[0] = -sqpom * sqpim * poperp / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = COM(0,1) * cur[1];
cur[3] = -cur[0];
}
} else { // positive helicity
if (pin.plus() > pin.minus()) { // if forward
const double sqpip = sqrt(abs(pin.plus()));
cur[0] = sqpop * sqpip;
cur[1] = sqpom * sqpip * conj(poperp) / abs(poperp);
cur[2] = COM(0,1) * cur[1];
cur[3] = cur[0];
} else { // if backward
double sqpim = sqrt(abs(pin.minus()));
cur[0] = -sqpom * sqpim * conj(poperp) / abs(poperp);
cur[1] = -sqpim * sqpop;
cur[2] = -COM(0,1) * cur[1];
cur[3] = -cur[0];
}
}
}
CCurrent joi(HLV const & pout, bool helout, HLV const & pin, bool helin)
{
current cur;
joi(pout, helout, pin, helin, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
void jio(HLV const & pin, bool helin,
HLV const & pout, bool helout, current &cur
) {
joi(pout, !helout, pin, !helin, cur);
}
CCurrent jio(HLV const & pin, bool helin, HLV const & pout, bool helout){
current cur;
jio(pin, helin, pout, helout, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
void joo(HLV pi, bool heli, HLV pj, bool helj, current &cur) {
// Zero our current
cur[0] = 0.0;
cur[1] = 0.0;
cur[2] = 0.0;
cur[3] = 0.0;
if (heli!=helj) {
throw std::invalid_argument{"Non-matching helicities"};
} else if ( heli == true ) { // If positive helicity swap momenta
std::swap(pi,pj);
}
const double sqpjp = sqrt(abs(pj.plus() ));
const double sqpjm = sqrt(abs(pj.minus()));
const double sqpip = sqrt(abs(pi.plus() ));
const double sqpim = sqrt(abs(pi.minus()));
// Allow for "jii" format
const COM piperp = (pi.x()==0 && pi.y() ==0) ? -1 : pi.x()+COM(0,1)*pi.y();
const COM pjperp = (pj.x()==0 && pj.y() ==0) ? -1 : pj.x()+COM(0,1)*pj.y();
const COM phasei = piperp / abs(piperp);
const COM phasej = pjperp / abs(pjperp);
cur[0] = sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
cur[1] = sqpim * sqpjp * phasei + sqpip * sqpjm * conj(phasej);
cur[2] = -COM(0, 1) * (sqpim * sqpjp * phasei - sqpip * sqpjm * conj(phasej));
cur[3] = -sqpim * sqpjm * phasei * conj(phasej) + sqpip * sqpjp;
}
CCurrent joo(HLV const & pi, bool heli, HLV const & pj, bool helj)
{
current cur;
joo(pi, heli, pj, helj, cur);
return CCurrent(cur[0],cur[1],cur[2],cur[3]);
}
namespace {
//@{
/**
* @brief Pure Jet FKL Contributions, function to handle all incoming types.
* @param p1out Outgoing Particle 1.
* @param p1in Incoming Particle 1.
* @param p2out Outgoing Particle 2
* @param p2in Incoming Particle 2
*
* Calculates j_\mu j^\mu.
* Handles all possible incoming states. Helicity doesn't matter since we sum
* over all of them.
*/
double j_j(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
HLV const q1=p1in-p1out;
HLV const q2=-(p2in-p2out);
current mj1m,mj1p,mj2m,mj2p;
// Note need to flip helicities in anti-quark case.
joi(p1out, false, p1in, false, mj1p);
joi(p1out, true, p1in, true, mj1m);
joi(p2out, false, p2in, false, mj2p);
joi(p2out, true, p2in, true, mj2m);
COM const Mmp=cdot(mj1m,mj2p);
COM const Mmm=cdot(mj1m,mj2m);
COM const Mpp=cdot(mj1p,mj2p);
COM const Mpm=cdot(mj1p,mj2m);
double const sst=abs2(Mmm)+abs2(Mmp)+abs2(Mpp)+abs2(Mpm);
// Multiply by Cf^2
return C_F*C_F*(sst)/(q1.m2()*q2.m2());
}
} // Anonymous Namespace
double ME_qQ(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return j_j(p1out, p1in, p2out, p2in);
}
double ME_qQbar(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return j_j(p1out, p1in, p2out, p2in);
}
double ME_qbarQbar(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return j_j(p1out, p1in, p2out, p2in);
}
double ME_qg(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return j_j(p1out, p1in, p2out, p2in)*K_g(p2out, p2in)/C_F;
}
double ME_qbarg(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return j_j(p1out, p1in, p2out, p2in)*K_g(p2out, p2in)/(C_F);
}
double ME_gg(HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return j_j(p1out, p1in, p2out, p2in)*K_g(p1out, p1in)*K_g(p2out, p2in)/(C_F*C_F);
}
//@}
namespace {
double juno_j(HLV const & pg, HLV const & p1out,
HLV const & p1in, HLV const & p2out, HLV const & p2in
){
// This construction is taking rapidity order: pg > p1out >> p2out
HLV q1=p1in-p1out; // Top End
HLV q2=-(p2in-p2out); // Bottom End
HLV qg=p1in-p1out-pg; // Extra bit post-gluon
// Note <p1|eps|pa> current split into two by gauge choice.
// See James C's Thesis (p72). <p1|eps|pa> -> <p1|pg><pg|pa>
CCurrent mj1p=joi(p1out, false, p1in, false);
CCurrent mj1m=joi(p1out, true, p1in, true);
CCurrent jgap=joi(pg, false, p1in, false);
CCurrent jgam=joi(pg, true, p1in, true);
// Note for function joo(): <p1+|pg+> = <pg-|p1->.
CCurrent j2gp=joo(p1out, false, pg, false);
CCurrent j2gm=joo(p1out, true, pg, true);
CCurrent mj2p=joi(p2out, false, p2in, false);
CCurrent mj2m=joi(p2out, true, p2in, true);
// Dot products of these which occur again and again
COM Mmp=mj1m.dot(mj2p);
COM Mmm=mj1m.dot(mj2m);
COM Mpp=mj1p.dot(mj2p);
COM Mpm=mj1p.dot(mj2m);
CCurrent p1o(p1out),p2o(p2out),p2i(p2in),qsum(q1+qg),p1i(p1in);
CCurrent Lmm=(qsum*(Mmm)+(-2.*mj2m.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2m
+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mmm/2.))/q1.m2();
CCurrent Lmp=(qsum*(Mmp) + (-2.*mj2p.dot(pg))*mj1m+2.*mj1m.dot(pg)*mj2p
+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mmp/2.))/q1.m2();
CCurrent Lpm=(qsum*(Mpm) + (-2.*mj2m.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2m
+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mpm/2.))/q1.m2();
CCurrent Lpp=(qsum*(Mpp) + (-2.*mj2p.dot(pg))*mj1p+2.*mj1p.dot(pg)*mj2p
+(p2o/pg.dot(p2out) + p2i/pg.dot(p2in))*(qg.m2()*Mpp/2.))/q1.m2();
CCurrent U1mm=(jgam.dot(mj2m)*j2gm+2.*p1o*Mmm)/(p1out+pg).m2();
CCurrent U1mp=(jgam.dot(mj2p)*j2gm+2.*p1o*Mmp)/(p1out+pg).m2();
CCurrent U1pm=(jgap.dot(mj2m)*j2gp+2.*p1o*Mpm)/(p1out+pg).m2();
CCurrent U1pp=(jgap.dot(mj2p)*j2gp+2.*p1o*Mpp)/(p1out+pg).m2();
CCurrent U2mm=((-1.)*j2gm.dot(mj2m)*jgam+2.*p1i*Mmm)/(p1in-pg).m2();
CCurrent U2mp=((-1.)*j2gm.dot(mj2p)*jgam+2.*p1i*Mmp)/(p1in-pg).m2();
CCurrent U2pm=((-1.)*j2gp.dot(mj2m)*jgap+2.*p1i*Mpm)/(p1in-pg).m2();
CCurrent U2pp=((-1.)*j2gp.dot(mj2p)*jgap+2.*p1i*Mpp)/(p1in-pg).m2();
constexpr double cf=C_F;
double amm=cf*(2.*vre(Lmm-U1mm,Lmm+U2mm))+2.*cf*cf/3.*vabs2(U1mm+U2mm);
double amp=cf*(2.*vre(Lmp-U1mp,Lmp+U2mp))+2.*cf*cf/3.*vabs2(U1mp+U2mp);
double apm=cf*(2.*vre(Lpm-U1pm,Lpm+U2pm))+2.*cf*cf/3.*vabs2(U1pm+U2pm);
double app=cf*(2.*vre(Lpp-U1pp,Lpp+U2pp))+2.*cf*cf/3.*vabs2(U1pp+U2pp);
double ampsq=-(amm+amp+apm+app);
//Divide by t-channels
ampsq/=q2.m2()*qg.m2();
ampsq/=16.;
// Factor of (Cf/Ca) for each quark to match j_j.
ampsq*=(C_F*C_F)/(C_A*C_A);
return ampsq;
}
} // Anonymous Namespace
//Unordered bits for pure jet
double ME_unob_qQ(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return juno_j(pg, p1out, p1in, p2out, p2in);
}
double ME_unob_qbarQ(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return juno_j(pg, p1out, p1in, p2out, p2in);
}
double ME_unob_qQbar(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return juno_j(pg, p1out, p1in, p2out, p2in);
}
double ME_unob_qbarQbar(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return juno_j(pg, p1out, p1in, p2out, p2in);
}
double ME_unob_qg( HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return juno_j(pg, p1out, p1in, p2out, p2in)*K_g(p2out,p2in)/C_F;
}
double ME_unob_qbarg(HLV const & pg, HLV const & p1out, HLV const & p1in,
HLV const & p2out, HLV const & p2in
){
return juno_j(pg, p1out, p1in, p2out, p2in)*K_g(p2out,p2in)/C_F;
}
namespace {
void eps(HLV const & refmom, HLV const & kb, bool hel, current &ep){
//Positive helicity eps has negative helicity choices for spinors and vice versa
joi(refmom,hel,kb,hel,ep);
- double norm;
+ double norm = NAN;
if(kb.z()<0.) norm = sqrt(2.*refmom.plus()*kb.minus());
else norm = sqrt(2.*refmom.minus()*kb.plus());
// Normalise
std::for_each(begin(ep), end(ep), [&,norm](auto & val){val/=norm;});
}
COM qggm1(HLV const & pa, HLV const & pb, HLV const & p1, HLV const & p2,
HLV const & p3, bool helchain, bool heltop, bool helb, HLV const & refmom
){
// Since everything is defined with currents, need to use compeleness relation
// to expand p slash. i.e. pslash = |p><p|. Only one helicity 'survives' as
// defined by the helicities of the spinors at the end of the chain.
current cur33, cur23, curb3, cur2b, cur1a, ep;
joo(p3, helchain, p3, helchain,cur33);
joo(p2,helchain,p3,helchain,cur23);
jio(pb,helchain,p3,helchain,curb3);
joi(p2,helchain,pb,helchain,cur2b);
joi(p1, heltop, pa, heltop,cur1a);
const double t2 = (p3-pb)*(p3-pb);
//Calculate Term 1 in Equation 3.23 in James Cockburn's Thesis.
COM v1[4][4];
for(int u=0; u<4;++u){
for(int v=0; v<4;++v){
v1[u][v]=(cur23[u]*cur33[v]-cur2b[u]*curb3[v])/t2*(-1.);
}
}
//Dot in current and eps
//eps
eps(refmom,pb,helb, ep);
COM M1=0.;
// Perform Contraction: g^{ik} j_{1a}_k * v1_i^j eps^l g_lj
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
M1+= metric(i,i) *cur1a[i]*(v1[i][j])*ep[j]*metric(j,j);
}
}
return M1;
}
COM qggm2(HLV const & pa, HLV const & pb, HLV const & p1, HLV const & p2,
HLV const & p3, bool helchain, bool heltop, bool helb, HLV const & refmom
){
// Since everything is defined with currents, need to use completeness relation
// to expand p slash. i.e. pslash = |p><p|. Only one helicity 'survives' as
// defined by the helicities of the spinors at the end of the chain.
current cur22, cur23, curb3, cur2b, cur1a, ep;
joo(p2, helchain, p2, helchain, cur22);
joo(p2, helchain, p3, helchain, cur23);
jio(pb, helchain, p3, helchain, curb3);
joi(p2, helchain, pb, helchain, cur2b);
joi(p1, heltop, pa, heltop, cur1a);
const double t2t = (p2-pb)*(p2-pb);
//Calculate Term 2 in Equation 3.23 in James Cockburn's Thesis.
COM v2[4][4]={};
for(int u=0; u<4;++u){
for(int v=0; v<4; ++v){
v2[u][v]=(cur22[v]*cur23[u]-cur2b[v]*curb3[u])/t2t;
}
}
//Dot in current and eps
//eps
eps(refmom,pb,helb, ep);
COM M2=0.;
// Perform Contraction: g^{ik} j_{1a}_k * v2_i^j eps^l g_lj
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
M2+= metric(i,i)*cur1a[i]*(v2[i][j])*ep[j]*metric(j,j);
}
}
return M2;
}
COM qggm3(HLV const & pa, HLV const & pb, HLV const & p1, HLV const & p2,
HLV const & p3, bool helchain, bool heltop, bool helb, HLV const & refmom
){
current qqcur,ep,cur1a;
const double s23 = (p2+p3)*(p2+p3);
joo(p2,helchain,p3,helchain,qqcur);
joi(p1, heltop, pa, heltop,cur1a);
//Redefine relevant momenta as currents - for ease of calling correct part of vector
const current kb{pb.e(), pb.x(), pb.y(), pb.z()};
const current k2{p2.e(), p2.x(), p2.y(), p2.z()};
const current k3{p3.e(), p3.x(), p3.y(), p3.z()};
//Calculate Term 3 in Equation 3.23 in James Cockburn's Thesis.
COM V3g[4][4]={};
const COM kbqq=kb[0]*qqcur[0] -kb[1]*qqcur[1] -kb[2]*qqcur[2] -kb[3]*qqcur[3];
for(int u=0;u<4;++u){
for(int v=0;v<4;++v){
V3g[u][v] += 2.*COM(0.,1.)*(((k2[v]+k3[v])*qqcur[u] - (kb[u])*qqcur[v])+
kbqq*metric(u,v))/s23;
}
}
eps(refmom,pb,helb, ep);
COM M3=0.;
// Perform Contraction: g^{ik} j_{1a}_k * (v2_i^j) eps^l g_lj
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
M3+= metric(i,i)*cur1a[i]*(V3g[i][j])*ep[j]*metric(j,j);
}
}
return M3;
}
//Now the function to give helicity/colour sum/average
double MqgtqQQ(HLV const & pa, HLV const & pb,
HLV const & p1, HLV const & p2, HLV const & p3
){
// 4 indepedent helicity choices (complex conjugation related).
//Need to evalute each independent hel configuration and store that result somewhere
const COM Mmmm1 = qggm1(pa,pb,p1,p2,p3,false,false,false, pa);
const COM Mmmm2 = qggm2(pa,pb,p1,p2,p3,false,false,false, pa);
const COM Mmmm3 = qggm3(pa,pb,p1,p2,p3,false,false,false, pa);
const COM Mmmp1 = qggm1(pa,pb,p1,p2,p3,false,true, false, pa);
const COM Mmmp2 = qggm2(pa,pb,p1,p2,p3,false,true, false, pa);
const COM Mmmp3 = qggm3(pa,pb,p1,p2,p3,false,true, false, pa);
const COM Mpmm1 = qggm1(pa,pb,p1,p2,p3,false,false,true, pa);
const COM Mpmm2 = qggm2(pa,pb,p1,p2,p3,false,false,true, pa);
const COM Mpmm3 = qggm3(pa,pb,p1,p2,p3,false,false,true, pa);
const COM Mpmp1 = qggm1(pa,pb,p1,p2,p3,false,true, true, pa);
const COM Mpmp2 = qggm2(pa,pb,p1,p2,p3,false,true, true, pa);
const COM Mpmp3 = qggm3(pa,pb,p1,p2,p3,false,true, true, pa);
//Colour factors:
const COM cm1m1 = 8./3.;
const COM cm2m2 = 8./3.;
const COM cm3m3 = 6.;
const COM cm1m2 = -1./3.;
const COM cm1m3 = -3.*COM(0.,1.);
const COM cm2m3 = 3.*COM(0.,1.);
//Sqaure and sum for each helicity config:
const double Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+
cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+
2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3)));
const double Mmmp = real(cm1m1*pow(abs(Mmmp1),2)+cm2m2*pow(abs(Mmmp2),2)+
cm3m3*pow(abs(Mmmp3),2)+2.*real(cm1m2*Mmmp1*conj(Mmmp2))+
2.*real(cm1m3*Mmmp1*conj(Mmmp3))+2.*real(cm2m3*Mmmp2*conj(Mmmp3)));
const double Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+
cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+
2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3)));
const double Mpmp = real(cm1m1*pow(abs(Mpmp1),2)+cm2m2*pow(abs(Mpmp2),2)+
cm3m3*pow(abs(Mpmp3),2)+2.*real(cm1m2*Mpmp1*conj(Mpmp2))+
2.*real(cm1m3*Mpmp1*conj(Mpmp3))+2.*real(cm2m3*Mpmp2*conj(Mpmp3)));
// Factor of 2 for the helicity for conjugate configurations
return (2.*(Mmmm+Mmmp+Mpmm+Mpmp)/3.)/(pa-p1).m2()/(p2+p3-pb).m2();
}
} // Anonymous Namespace
// Extremal qqx
double ME_Exqqx_qbarqQ(HLV const & pgin, HLV const & pqout,
HLV const & pqbarout, HLV const & p2out, HLV const & p2in
){
return MqgtqQQ(p2in, pgin, p2out, pqout, pqbarout);
}
double ME_Exqqx_qqbarQ(HLV const & pgin, HLV const & pqout,
HLV const & pqbarout, HLV const & p2out, HLV const & p2in
){
return MqgtqQQ(p2in, pgin, p2out, pqbarout, pqout);
}
double ME_Exqqx_qbarqg(HLV const & pgin, HLV const & pqout,
HLV const & pqbarout, HLV const & p2out, HLV const & p2in
){
return MqgtqQQ(p2in, pgin, p2out, pqout, pqbarout)*K_g(p2out,p2in)/C_F;
}
double ME_Exqqx_qqbarg(HLV const & pgin, HLV const & pqout,
HLV const & pqbarout, HLV const & p2out, HLV const & p2in
){
return MqgtqQQ(p2in, pgin, p2out, pqbarout, pqout)*K_g(p2out,p2in)/C_F;
}
namespace {
void CurrentMatrix(current const & j1, current const & j2,
COM array[4][4]
){
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
array[i][j]=j1[i]*j2[j];
}
}
}
//qqbar produced in the middle
COM m1(current const & jtop, current const & jbot, bool hel2,
HLV const & ka, HLV const & kb, HLV const & k2, HLV const & k3,
std::vector<HLV> const & partons, unsigned int nabove
){
const double s23 = 2.*(k2*k3);
const double sa2 = 2.*(ka*k2);
const double sa3 = 2.*(ka*k3);
const double s12 = 2.*(partons.front()*k2);
const double s13 = 2.*(partons.front()*k3);
const double sb2 = 2.*(kb*k2);
const double sb3 = 2.*(kb*k3);
const double s42 = 2.*(partons.back()*k2);
const double s43 = 2.*(partons.back()*k3);
HLV q1=ka-partons.front();
for(unsigned int i=1;i<nabove+1;++i)
q1-=partons.at(i);
const HLV q2=q1-partons.at(nabove+2)-partons.at(nabove+1);
const double t1 = q1.m2();
const double t3 = q2.m2();
current cur23;
joo(k2,hel2,k3,hel2,cur23);
const current curka{ka.e(),ka.px(),ka.py(),ka.pz()};
const current curkb{kb.e(),kb.px(),kb.py(),kb.pz()};
const current curk1{partons.front().e(),partons.front().px(),
partons.front().py(),partons.front().pz()};
const current curk2{k2.e(),k2.px(),k2.py(),k2.pz()};
const current curk3{k3.e(),k3.px(),k3.py(),k3.pz()};
const current curk4{partons.back().e(),partons.back().px(),
partons.back().py(),partons.back().pz()};
const current qc1{q1.e(),q1.px(),q1.py(),q1.pz()};
const current qc2{q2.e(),q2.px(),q2.py(),q2.pz()};
//Create the two bits of this vertex
COM veik[4][4],v3g[4][4];
for(int i=0;i<4;++i) {
for(int j=0;j<4;++j){
veik[i][j] = (cdot(cur23,curka)*(t1/(sa2+sa3))+cdot(cur23,curk1)*
(t1/(s12+s13))-cdot(cur23,curkb)*(t3/(sb2+sb3))-
cdot(cur23,curk4)*(t3/(s42+s43)))*metric(i,j);
}
}
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
v3g[i][j] = qc1[j]*cur23[i]+curk2[j]*cur23[i]+curk3[j]*cur23[i]+
qc2[i]*cur23[j]-curk2[i]*cur23[j]-curk3[i]*cur23[j]-
(cdot(qc1,cur23)+cdot(qc2,cur23))*metric(i,j);
}
}
//Now dot in the currents - potential problem here with Lorentz
//indicies, so check this
COM M1=0;
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
M1+= metric(i,i)*jtop[i]*(veik[i][j]+v3g[i][j])*jbot[j]*metric(j,j);
}
}
M1/=s23;
return M1;
}
COM m2(current const & jtop, current const & jbot, bool hel2,
HLV const & ka, HLV k2, HLV const & k3,
std::vector<HLV> const & partons, unsigned int nabove
){
//In order to get correct momentum dependence in the vertex, forst
//have to work with CCurrent objects and then convert to 'current'
current cur22,cur23,cur2q,curq3;
COM qarray[4][4]={};
COM temp[4][4]={};
joo(k2,hel2,k2,hel2,cur22);
joo(k2,hel2,k3,hel2,cur23);
joi(k2,hel2,ka,hel2,cur2q);
jio(ka,hel2,k3,hel2,curq3);
CurrentMatrix(cur2q, curq3, qarray);
for(unsigned int i =0; i<nabove+1; ++i){
joo(k2,hel2,partons.at(i),hel2,cur2q);
joo(partons.at(i),hel2,k3,hel2,curq3);
CurrentMatrix(cur2q, curq3, temp);
for(int ii=0;ii<4;++ii){
for(int jj=0;jj<4;++jj){
qarray[ii][jj]=qarray[ii][jj]-temp[ii][jj];
}
}
}
HLV qt=ka-k2;
for(unsigned int i=0; i<nabove+1;++i){
qt-=partons.at(i);
}
const double t2=qt*qt;
COM tempv[4][4];
for(int i=0; i<4;++i){
for(int j=0;j<4;++j){
tempv[i][j] = COM(0.,1.)*(qarray[i][j]-cur22[i]*cur23[j]);
}
}
COM M2=0.;
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
M2+= metric(i,i)*jtop[i]*(tempv[i][j])*jbot[j]*metric(j,j);
}
}
M2/=t2;
return M2;
}
COM m3(current const & jtop, current const & jbot, bool hel2,
HLV const & ka, HLV const & k2, HLV const & k3,
std::vector<HLV> const & partons, unsigned int nabove
){
COM M3=0.;
current cur23,cur33,cur2q,curq3;
COM qarray[4][4]={};
COM temp[4][4]={};
joo(k3,hel2,k3,hel2,cur33);
joo(k2,hel2,k3,hel2,cur23);
joi(k2,hel2,ka,hel2,cur2q);
jio(ka,hel2,k3,hel2,curq3);
CurrentMatrix(cur2q, curq3, qarray);
for(unsigned int i =0; i<nabove+1; ++i){
joo(k2,hel2,partons.at(i),hel2,cur2q);
joo(partons.at(i),hel2,k3,hel2,curq3);
CurrentMatrix(cur2q, curq3, temp);
for(int ii=0;ii<4;++ii){
for(int jj=0;jj<4;++jj){
qarray[ii][jj]=qarray[ii][jj]-temp[ii][jj];
}
}
}
HLV qt=ka-k3;
for(unsigned int i=0; i<nabove+1;++i){
qt-=partons.at(i);
}
const double t2t=qt*qt;
COM tempv[4][4];
for(int i=0; i<4;++i){
for(int j=0;j<4;++j){
tempv[i][j] = COM(0.,-1.)*(qarray[j][i]-cur23[j]*cur33[i]);
}
}
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
M3+= metric(i,i)*jtop[i]*(tempv[i][j])*jbot[j]*metric(j,j);
}
}
M3/= t2t;
return M3;
}
} // Anonymous Namespace
double ME_Cenqqx_qq(HLV const & ka, HLV const & kb,
std::vector<HLV> const & partons, bool aqlinepa,
bool aqlinepb, bool qqxmarker, int nabove
){
//Get all the possible outer currents
current j1p,j1m,j4p,j4m;
if(!(aqlinepa)){
joi(partons.front(),true,ka,true,j1p);
joi(partons.front(),false,ka,false,j1m);
}
if(aqlinepa){
jio(ka,true,partons.front(),true,j1p);
jio(ka,false,partons.front(),false,j1m);
}
if(!(aqlinepb)){
joi(partons.back(),true,kb,true,j4p);
joi(partons.back(),false,kb,false,j4m);
}
if(aqlinepb){
jio(kb,true,partons.back(),true,j4p);
jio(kb,false,partons.back(),false,j4m);
}
HLV k2,k3;
if(!(qqxmarker)){
k2=partons.at(nabove+1);
k3=partons.at(nabove+2);
}
else{
k2=partons.at(nabove+2);
k3=partons.at(nabove+1);
}
//8 helicity choices we can make, but only 4 indepedent ones
//(complex conjugation related).
const COM Mmmm1 = m1(j1m,j4m,false,ka,kb,k2,k3,partons,nabove);
const COM Mmmm2 = m2(j1m,j4m,false,ka, k2,k3,partons,nabove);
const COM Mmmm3 = m3(j1m,j4m,false,ka, k2,k3,partons,nabove);
const COM Mmmp1 = m1(j1m,j4m,true, ka,kb,k2,k3,partons,nabove);
const COM Mmmp2 = m2(j1m,j4m,true, ka, k2,k3,partons,nabove);
const COM Mmmp3 = m3(j1m,j4m,true, ka, k2,k3,partons,nabove);
const COM Mpmm1 = m1(j1p,j4m,false,ka,kb,k2,k3,partons,nabove);
const COM Mpmm2 = m2(j1p,j4m,false,ka, k2,k3,partons,nabove);
const COM Mpmm3 = m3(j1p,j4m,false,ka, k2,k3,partons,nabove);
const COM Mpmp1 = m1(j1p,j4m,true, ka,kb,k2,k3,partons,nabove);
const COM Mpmp2 = m2(j1p,j4m,true, ka, k2,k3,partons,nabove);
const COM Mpmp3 = m3(j1p,j4m,true, ka, k2,k3,partons,nabove);
//Colour factors:
const COM cm1m1=3.;
const COM cm2m2=4./3.;
const COM cm3m3=4./3.;
const COM cm1m2 =3./2.*COM(0.,1.);
const COM cm1m3 = -3./2.*COM(0.,1.);
const COM cm2m3 = -1./6.;
//Square and sum for each helicity config:
const double Mmmm = real(cm1m1*pow(abs(Mmmm1),2)+cm2m2*pow(abs(Mmmm2),2)+
cm3m3*pow(abs(Mmmm3),2)+2.*real(cm1m2*Mmmm1*conj(Mmmm2))+
2.*real(cm1m3*Mmmm1*conj(Mmmm3))+2.*real(cm2m3*Mmmm2*conj(Mmmm3)));
const double Mmmp = real(cm1m1*pow(abs(Mmmp1),2)+cm2m2*pow(abs(Mmmp2),2)+
cm3m3*pow(abs(Mmmp3),2)+2.*real(cm1m2*Mmmp1*conj(Mmmp2))+
2.*real(cm1m3*Mmmp1*conj(Mmmp3))+2.*real(cm2m3*Mmmp2*conj(Mmmp3)));
const double Mpmm = real(cm1m1*pow(abs(Mpmm1),2)+cm2m2*pow(abs(Mpmm2),2)+
cm3m3*pow(abs(Mpmm3),2)+2.*real(cm1m2*Mpmm1*conj(Mpmm2))+
2.*real(cm1m3*Mpmm1*conj(Mpmm3))+2.*real(cm2m3*Mpmm2*conj(Mpmm3)));
const double Mpmp = real(cm1m1*pow(abs(Mpmp1),2)+cm2m2*pow(abs(Mpmp2),2)+
cm3m3*pow(abs(Mpmp3),2)+2.*real(cm1m2*Mpmp1*conj(Mpmp2))+
2.*real(cm1m3*Mpmp1*conj(Mpmp3))+2.*real(cm2m3*Mpmp2*conj(Mpmp3)));
//Result (averaged, without coupling or t-channel props). Factor of
//2 for the 4 helicity configurations I didn't work out explicitly
HLV prop1 = ka;
for(int i=0; i<=nabove; ++i){
prop1 -= partons[i];
}
const HLV prop2 = prop1 - k2 - k3;
return (2.*(Mmmm+Mmmp+Mpmm+Mpmp)/9./4.) /
((ka-partons.front()).m2()*(kb-partons.back()).m2()*prop1.m2()*prop2.m2());
}
} // namespace currents
} // namespace HEJ
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Thu, Apr 24, 6:32 AM (1 d, 12 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4856825
Default Alt Text
(230 KB)
Attached To
rHEJ HEJ
Event Timeline
Log In to Comment