Index: trunk/tests/functional_tests/Makefile.am =================================================================== --- trunk/tests/functional_tests/Makefile.am (revision 8850) +++ trunk/tests/functional_tests/Makefile.am (revision 8851) @@ -1,846 +1,847 @@ ## Makefile.am -- Makefile for executable WHIZARD test scripts ## ## Process this file with automake to produce Makefile.in ## ######################################################################## # # Copyright (C) 1999-2022 by # Wolfgang Kilian # Thorsten Ohl # Juergen Reuter # with contributions from # cf. main AUTHORS file # # WHIZARD is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # WHIZARD is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # ######################################################################## WHIZARD_DRIVER = run_whizard.sh TESTS_DEFAULT = \ empty.run \ fatal.run \ cmdline_1.run \ structure_1.run \ structure_2.run \ structure_3.run \ structure_4.run \ structure_5.run \ structure_6.run \ structure_7.run \ structure_8.run \ vars.run \ extpar.run \ testproc_1.run \ testproc_2.run \ testproc_3.run \ testproc_4.run \ testproc_5.run \ testproc_6.run \ testproc_7.run \ testproc_8.run \ testproc_9.run \ testproc_10.run \ testproc_11.run \ testproc_12.run \ template_me_1.run \ template_me_2.run \ model_scheme_1.run \ rebuild_1.run \ rebuild_4.run \ susyhit.run \ helicity.run \ libraries_4.run \ job_id_1.run \ pack_1.run XFAIL_TESTS_DEFAULT = TESTS_REQ_FASTJET = \ analyze_4.run \ bjet_cluster.run \ nlo_7.run \ nlo_8.run \ openloops_12.run \ openloops_13.run \ openloops_14.run TESTS_REQ_OCAML = \ libraries_1.run \ libraries_2.run \ libraries_3.run \ rebuild_2.run \ rebuild_3.run \ rebuild_5.run \ defaultcuts.run \ cuts.run \ model_change_1.run \ model_change_2.run \ model_change_3.run \ model_test.run \ job_id_2.run \ job_id_3.run \ job_id_4.run \ qedtest_1.run \ qedtest_2.run \ qedtest_3.run \ qedtest_4.run \ qedtest_5.run \ qedtest_6.run \ qedtest_7.run \ qedtest_8.run \ qedtest_9.run \ qedtest_10.run \ rambo_vamp_1.run \ rambo_vamp_2.run \ beam_setup_1.run \ beam_setup_2.run \ beam_setup_3.run \ beam_setup_4.run \ beam_setup_5.run \ qcdtest_1.run \ qcdtest_2.run \ qcdtest_3.run \ qcdtest_4.run \ qcdtest_5.run \ qcdtest_6.run \ observables_1.run \ observables_2.run \ event_weights_1.run \ event_weights_2.run \ event_eff_1.run \ event_eff_2.run \ event_dump_1.run \ event_dump_2.run \ event_failed_1.run \ reweight_1.run \ reweight_2.run \ reweight_3.run \ reweight_4.run \ reweight_5.run \ reweight_6.run \ reweight_7.run \ reweight_8.run \ reweight_9.run \ reweight_10.run \ analyze_1.run \ analyze_2.run \ analyze_5.run \ analyze_6.run \ colors.run \ colors_2.run \ colors_hgg.run \ alphas.run \ jets_xsec.run \ lhef_1.run \ lhef_2.run \ lhef_3.run \ lhef_4.run \ lhef_5.run \ lhef_6.run \ lhef_7.run \ lhef_8.run \ lhef_9.run \ lhef_10.run \ lhef_11.run \ stdhep_1.run \ stdhep_2.run \ stdhep_3.run \ stdhep_4.run \ stdhep_5.run \ stdhep_6.run \ select_1.run \ select_2.run \ fatal_beam_decay.run \ smtest_1.run \ smtest_2.run \ smtest_3.run \ smtest_4.run \ smtest_5.run \ smtest_6.run \ smtest_7.run \ smtest_8.run \ smtest_9.run \ smtest_10.run \ smtest_11.run \ smtest_12.run \ smtest_13.run \ smtest_14.run \ smtest_15.run \ smtest_16.run \ smtest_17.run \ photon_isolation_1.run \ photon_isolation_2.run \ resonances_1.run \ resonances_2.run \ resonances_3.run \ resonances_4.run \ resonances_5.run \ resonances_6.run \ resonances_7.run \ resonances_8.run \ resonances_9.run \ resonances_10.run \ resonances_11.run \ resonances_12.run \ resonances_13.run \ mssmtest_1.run \ mssmtest_2.run \ mssmtest_3.run \ sm_cms_1.run \ ufo_1.run \ ufo_2.run \ ufo_3.run \ ufo_4.run \ ufo_5.run \ ufo_6.run \ nlo_1.run \ nlo_2.run \ nlo_3.run \ nlo_4.run \ nlo_5.run \ nlo_6.run \ nlo_9.run \ nlo_10.run \ nlo_decay_1.run \ real_partition_1.run \ fks_res_1.run \ fks_res_2.run \ fks_res_3.run \ openloops_1.run \ openloops_2.run \ openloops_3.run \ openloops_4.run \ openloops_5.run \ openloops_6.run \ openloops_7.run \ openloops_8.run \ openloops_9.run \ openloops_10.run \ openloops_11.run \ recola_1.run \ recola_2.run \ recola_3.run \ recola_4.run \ recola_5.run \ recola_6.run \ recola_7.run \ recola_8.run \ recola_9.run \ powheg_1.run \ powheg_2.run \ spincor_1.run \ show_1.run \ show_2.run \ show_3.run \ show_4.run \ show_5.run \ method_ovm_1.run \ multi_comp_1.run \ multi_comp_2.run \ multi_comp_3.run \ multi_comp_4.run \ flvsum_1.run \ br_redef_1.run \ decay_err_1.run \ decay_err_2.run \ decay_err_3.run \ polarized_1.run \ pdf_builtin.run \ ep_1.run \ ep_2.run \ ep_3.run \ circe1_1.run \ circe1_2.run \ circe1_3.run \ circe1_4.run \ circe1_5.run \ circe1_6.run \ circe1_7.run \ circe1_8.run \ circe1_9.run \ circe1_10.run \ circe1_photons_1.run \ circe1_photons_2.run \ circe1_photons_3.run \ circe1_photons_4.run \ circe1_photons_5.run \ circe1_errors_1.run \ circe2_1.run \ circe2_2.run \ circe2_3.run \ ewa_1.run \ ewa_2.run \ ewa_3.run \ ewa_4.run \ isr_1.run \ isr_2.run \ isr_3.run \ isr_4.run \ isr_5.run \ isr_6.run \ epa_1.run \ epa_2.run \ epa_3.run \ epa_4.run \ isr_epa_1.run \ ilc.run \ gaussian_1.run \ gaussian_2.run \ beam_events_1.run \ beam_events_2.run \ beam_events_3.run \ beam_events_4.run \ energy_scan_1.run \ restrictions.run \ process_log.run \ shower_err_1.run \ parton_shower_1.run \ parton_shower_2.run \ hadronize_1.run \ mlm_matching_fsr.run \ user_prc_threshold_1.run \ cascades2_phs_1.run \ cascades2_phs_2.run \ user_prc_threshold_2.run \ vamp2_1.run \ vamp2_2.run \ vamp2_3.run XFAIL_TESTS_REQ_OCAML = \ colors_hgg.run \ hadronize_1.run TESTS_REQ_HEPMC = \ hepmc_1.run \ hepmc_2.run \ hepmc_3.run \ hepmc_4.run \ hepmc_5.run \ hepmc_6.run \ hepmc_7.run \ hepmc_8.run \ hepmc_9.run \ hepmc_10.run XFAIL_TESTS_REQ_HEPMC = TESTS_REQ_LCIO = \ lcio_1.run \ lcio_2.run \ lcio_3.run \ lcio_4.run \ lcio_5.run \ lcio_6.run \ lcio_7.run \ lcio_8.run \ lcio_9.run \ lcio_10.run \ lcio_11.run \ lcio_12.run \ resonances_14.run \ resonances_15.run XFAIL_TESTS_REQ_LCIO = TESTS_REQ_LHAPDF5 = \ lhapdf5.run TESTS_REQ_LHAPDF6 = \ lhapdf6.run XFAIL_TESTS_REQ_LHAPDF5 = XFAIL_TESTS_REQ_LHAPDF6 = TESTS_STATIC = \ static_1.run \ static_2.run XFAIL_TESTS_STATIC = TESTS_REQ_PYTHIA6 = \ pythia6_1.run \ pythia6_2.run \ pythia6_3.run \ pythia6_4.run \ tauola_1.run \ tauola_2.run \ tauola_3.run \ isr_5.run \ mlm_pythia6_isr.run \ mlm_matching_isr.run XFAIL_TESTS_REQ_PYTHIA6 = -TESTS_REQ_PYTHIA8 = -# pythia8_1.run \ -# pythia8_2.run +TESTS_REQ_PYTHIA8 = \ + pythia8_1.run \ + pythia8_2.run XFAIL_TESTS_REQ_PYTHIA8 = TESTS_REQ_EV_ANA = \ analyze_3.run XFAIL_TESTS_REQ_EV_ANA = TESTS_REQ_GAMELAN = \ analyze_3.run TEST_DRIVERS_RUN = \ $(TESTS_DEFAULT) \ $(TESTS_REQ_OCAML) \ $(TESTS_REQ_LHAPDF5) \ $(TESTS_REQ_LHAPDF6) \ $(TESTS_REQ_HEPMC) \ $(TESTS_REQ_LCIO) \ $(TESTS_REQ_FASTJET) \ $(TESTS_REQ_PYTHIA6) \ + $(TESTS_REQ_PYTHIA8) \ $(TESTS_REQ_EV_ANA) \ $(TESTS_STATIC) TEST_DRIVERS_SH = $(TEST_DRIVERS_RUN:.run=.sh) ######################################################################## TESTS = XFAIL_TESTS = TESTS_SRC = TESTS += $(TESTS_DEFAULT) XFAIL_TESTS += $(XFAIL_TESTS_DEFAULT) TESTS += $(TESTS_REQ_OCAML) XFAIL_TESTS += $(XFAIL_TESTS_REQ_OCAML) TESTS += $(TESTS_REQ_HEPMC) XFAIL_TESTS += $(XFAIL_TESTS_REQ_HEPMC) TESTS += $(TESTS_REQ_LCIO) XFAIL_TESTS += $(XFAIL_TESTS_REQ_LCIO) TESTS += $(TESTS_REQ_FASTJET) XFAIL_TESTS += $(XFAIL_TESTS_REQ_FASTJET) TESTS += $(TESTS_REQ_LHAPDF5) XFAIL_TESTS += $(XFAIL_TESTS_REQ_LHAPDF5) TESTS += $(TESTS_REQ_LHAPDF6) XFAIL_TESTS += $(XFAIL_TESTS_REQ_LHAPDF6) TESTS += $(TESTS_REQ_PYTHIA6) XFAIL_TESTS += $(XFAIL_TESTS_REQ_PYTHIA6) TESTS += $(TESTS_REQ_PYTHIA8) XFAIL_TESTS += $(XFAIL_TESTS_REQ_PYTHIA8) TESTS += $(TESTS_REQ_EV_ANA) XFAIL_TESTS += $(XFAIL_TESTS_REQ_EV_ANA) TESTS += $(TESTS_STATIC) XFAIL_TESTS += $(XFAIL_TESTS_STATIC) EXTRA_DIST = $(TEST_DRIVERS_SH) \ $(TESTS_SRC) ######################################################################## VPATH = $(srcdir) SUFFIXES = .sh .run .sh.run: @rm -f $@ @if test -f $(top_builddir)/share/tests/functional_tests/$*.sin; then \ $(SED) 's|@script@|$(top_builddir)/share/tests/functional_tests/$*|g' $< > $@; \ elif test -f $(top_srcdir)/share/tests/functional_tests/$*.sin; then \ $(SED) 's|@script@|$(top_srcdir)/share/tests/functional_tests/$*|g' $< > $@; \ else \ echo "$*.sin not found!" 1>&2; \ exit 2; \ fi @chmod +x $@ cmdline_1.run: cmdline_1_a.sin cmdline_1_b.sin cmdline_1_a.sin: $(top_builddir)/share/tests/functional_tests/cmdline_1_a.sin cp $< $@ cmdline_1_b.sin: $(top_builddir)/share/tests/functional_tests/cmdline_1_b.sin cp $< $@ structure_2.run: structure_2_inc.sin structure_2_inc.sin: $(top_builddir)/share/tests/functional_tests/structure_2_inc.sin cp $< $@ testproc_3.run: testproc_3.phs testproc_3.phs: $(top_builddir)/share/tests/functional_tests/testproc_3.phs cp $< $@ static_1.run: static_1.exe.sin static_1.exe.sin: $(top_builddir)/share/tests/functional_tests/static_1.exe.sin cp $< $@ static_2.run: static_2.exe.sin static_2.exe.sin: $(top_builddir)/share/tests/functional_tests/static_2.exe.sin cp $< $@ susyhit.run: susyhit.in model_test.run: tdefs.$(FCMOD) tglue.$(FCMOD) \ threeshl.$(FCMOD) tscript.$(FCMOD) tdefs.mod: $(top_builddir)/src/models/threeshl_bundle/tdefs.$(FCMOD) cp $< $@ tglue.mod: $(top_builddir)/src/models/threeshl_bundle/tglue.$(FCMOD) cp $< $@ tscript.mod: $(top_builddir)/src/models/threeshl_bundle/tscript.$(FCMOD) cp $< $@ threeshl.mod: $(top_builddir)/src/models/threeshl_bundle/threeshl.$(FCMOD) cp $< $@ WT_OCAML_NATIVE_EXT=opt if OCAML_AVAILABLE OMEGA_QED = $(top_builddir)/omega/bin/omega_QED.$(WT_OCAML_NATIVE_EXT) OMEGA_QCD = $(top_builddir)/omega/bin/omega_QCD.$(WT_OCAML_NATIVE_EXT) OMEGA_MSSM = $(top_builddir)/omega/bin/omega_MSSM.$(WT_OCAML_NATIVE_EXT) omega_MSSM.$(WT_OMEGA_CACHE_SUFFIX): $(OMEGA_MSSM) $(OMEGA_MSSM) -initialize . UFO_TAG_FILE = __init__.py UFO_MODELPATH = ../models/UFO ufo_1.run: ufo_1_SM/$(UFO_TAG_FILE) ufo_2.run: ufo_2_SM/$(UFO_TAG_FILE) ufo_3.run: ufo_3_models/ufo_3_SM/$(UFO_TAG_FILE) ufo_4.run: ufo_4_models/ufo_4_SM/$(UFO_TAG_FILE) ufo_5.run: ufo_5_SM/$(UFO_TAG_FILE) ufo_6.run: ufo_6_MSSM/$(UFO_TAG_FILE) ufo_1_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_1_SM cp $(UFO_MODELPATH)/SM/*.py ufo_1_SM ufo_2_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_2_SM cp $(UFO_MODELPATH)/SM/*.py ufo_2_SM ufo_3_models/ufo_3_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_3_models/ufo_3_SM cp $(UFO_MODELPATH)/SM/*.py ufo_3_models/ufo_3_SM ufo_4_models/ufo_4_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_4_models/ufo_4_SM cp $(UFO_MODELPATH)/SM/*.py ufo_4_models/ufo_4_SM ufo_5_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_5_SM cp $(UFO_MODELPATH)/SM/*.py ufo_5_SM ufo_6_MSSM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/MSSM/$(UFO_TAG_FILE) mkdir -p ufo_6_MSSM cp $(UFO_MODELPATH)/MSSM/*.py ufo_6_MSSM ufo_5.run: ufo_5_test.slha ufo_5_test.slha: $(top_builddir)/share/tests/functional_tests/ufo_5_test.slha cp $< $@ $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE): $(top_srcdir)/omega/tests/UFO/SM/$(UFO_TAG_FILE) $(MAKE) -C $(UFO_MODELPATH)/SM all $(UFO_MODELPATH)/MSSM/$(UFO_TAG_FILE): $(top_srcdir)/omega/tests/UFO/MSSM/$(UFO_TAG_FILE) $(MAKE) -C $(UFO_MODELPATH)/MSSM all endif OCAML_AVAILABLE if MPOST_AVAILABLE $(TESTS_REQ_GAMELAN): gamelan.sty gamelan.sty: $(top_builddir)/src/gamelan/gamelan.sty cp $< $@ $(top_builddir)/src/gamelan/gamelan.sty: $(MAKE) -C $(top_builddir)/src/gamelan gamelan.sty endif noinst_PROGRAMS = if OCAML_AVAILABLE noinst_PROGRAMS += resonances_1_count resonances_1_count_SOURCES = resonances_1_count.f90 resonances_1.run: resonances_1_count noinst_PROGRAMS += resonances_2_count resonances_2_count_SOURCES = resonances_2_count.f90 resonances_2.run: resonances_2_count noinst_PROGRAMS += resonances_3_count resonances_3_count_SOURCES = resonances_3_count.f90 resonances_3.run: resonances_3_count noinst_PROGRAMS += resonances_4_count resonances_4_count_SOURCES = resonances_4_count.f90 resonances_4.run: resonances_4_count noinst_PROGRAMS += resonances_9_count resonances_9_count_SOURCES = resonances_9_count.f90 resonances_9.run: resonances_9_count noinst_PROGRAMS += resonances_10_count resonances_10_count_SOURCES = resonances_10_count.f90 resonances_10.run: resonances_10_count noinst_PROGRAMS += resonances_11_count resonances_11_count_SOURCES = resonances_11_count.f90 resonances_11.run: resonances_11_count noinst_PROGRAMS += resonances_14_check resonances_14_check_SOURCES = resonances_14_check.f90 resonances_14.run: resonances_14_check noinst_PROGRAMS += resonances_15_check resonances_15_check_SOURCES = resonances_15_check.f90 resonances_15.run: resonances_15_check noinst_PROGRAMS += epa_2_count epa_2_count_SOURCES = epa_2_count.f90 epa_2.run: epa_2_count noinst_PROGRAMS += isr_epa_1_count isr_epa_1_count_SOURCES = isr_epa_1_count.f90 isr_epa_1.run: isr_epa_1_count noinst_PROGRAMS += isr_6_digest isr_6_digest_SOURCES = isr_6_digest.f90 isr_6.run: isr_6_digest noinst_PROGRAMS += analyze_6_check analyze_6_check_SOURCES = analyze_6_check.f90 analyze_6.run: analyze_6_check endif if HEPMC_AVAILABLE TESTS_SRC += $(hepmc_6_rd_SOURCES) noinst_PROGRAMS += hepmc_6_rd if HEPMC_IS_VERSION3 hepmc_6_rd_SOURCES = hepmc3_6_rd.cpp else hepmc_6_rd_SOURCES = hepmc2_6_rd.cpp endif hepmc_6_rd_CXXFLAGS = $(HEPMC_INCLUDES) $(AM_CXXFLAGS) hepmc_6_rd_LDADD = $(LDFLAGS_HEPMC) hepmc_6.run: hepmc_6_rd endif if LCIO_AVAILABLE TESTS_SRC += $(lcio_rd_SOURCES) noinst_PROGRAMS += lcio_rd lcio_rd_SOURCES = lcio_rd.cpp lcio_rd_CXXFLAGS = $(LCIO_INCLUDES) $(AM_CXXFLAGS) lcio_rd_LDADD = $(LDFLAGS_LCIO) lcio_1.run: lcio_rd lcio_2.run: lcio_rd lcio_3.run: lcio_rd lcio_4.run: lcio_rd lcio_5.run: lcio_rd lcio_10.run: lcio_rd lcio_11.run: lcio_rd endif stdhep_4.run: stdhep_rd stdhep_5.run: stdhep_rd stdhep_6.run: stdhep_rd polarized_1.run: stdhep_rd tauola_1.run: stdhep_rd tauola_2.run: stdhep_rd tauola_3.run: stdhep_rd stdhep_rd: $(top_builddir)/src/xdr/stdhep_rd cp $< $@ susyhit.in: $(top_builddir)/share/tests/functional_tests/susyhit.in cp $< $@ BUILT_SOURCES = \ TESTFLAG \ HEPMC2_FLAG \ HEPMC3_FLAG \ LCIO_FLAG \ FASTJET_FLAG \ LHAPDF5_FLAG \ LHAPDF6_FLAG \ GAMELAN_FLAG \ MPI_FLAG \ EVENT_ANALYSIS_FLAG \ OCAML_FLAG \ PYTHIA6_FLAG \ PYTHIA8_FLAG \ OPENLOOPS_FLAG \ RECOLA_FLAG \ GZIP_FLAG \ STATIC_FLAG \ ref-output # If this file is found in the working directory, WHIZARD # will use the paths for the uninstalled version (source/build tree), # otherwise it uses the installed version TESTFLAG: touch $@ FASTJET_FLAG: if FASTJET_AVAILABLE touch $@ endif HEPMC2_FLAG: if HEPMC2_AVAILABLE touch $@ endif HEPMC3_FLAG: if HEPMC3_AVAILABLE touch $@ endif LCIO_FLAG: if LCIO_AVAILABLE touch $@ endif LHAPDF5_FLAG: if LHAPDF5_AVAILABLE touch $@ endif LHAPDF6_FLAG: if LHAPDF6_AVAILABLE touch $@ endif GAMELAN_FLAG: if MPOST_AVAILABLE touch $@ endif MPI_FLAG: if FC_USE_MPI touch $@ endif OCAML_FLAG: if OCAML_AVAILABLE touch $@ endif PYTHIA6_FLAG: if PYTHIA6_AVAILABLE touch $@ endif PYTHIA8_FLAG: if PYTHIA8_AVAILABLE touch $@ endif OPENLOOPS_FLAG: if OPENLOOPS_AVAILABLE touch $@ endif RECOLA_FLAG: if RECOLA_AVAILABLE touch $@ endif EVENT_ANALYSIS_FLAG: if EVENT_ANALYSIS_AVAILABLE touch $@ endif GZIP_FLAG: if GZIP_AVAILABLE touch $@ endif STATIC_FLAG: if STATIC_AVAILABLE touch $@ endif # The reference output files are in the source directory. Copy them here. if FC_QUAD ref-output: $(top_srcdir)/share/tests/functional_tests/ref-output mkdir -p ref-output for f in $> $script.log - cat ${script}a.debug >> $script.log - echo "Contents of ${script}b.debug:" >> $script.log - cat ${script}b.debug >> $script.log + ### Output too much dependent on the PYTHIA8 version + # echo "Contents of ${script}a.debug:" >> $script.log + # cat ${script}a.debug >> $script.log + # echo "Contents of ${script}b.debug:" >> $script.log + # cat ${script}b.debug >> $script.log diff ref-output/$script.ref $script.log else echo "|=============================================================================|" echo "No O'Mega matrix elements available and/or PYTHIA8 disabled, test skipped" exit 77 fi Index: trunk/tests/functional_tests/pythia8_2.sh =================================================================== --- trunk/tests/functional_tests/pythia8_2.sh (revision 8850) +++ trunk/tests/functional_tests/pythia8_2.sh (revision 8851) @@ -1,20 +1,21 @@ #!/bin/sh ### Check WHIZARD for a simple test process echo "Running script $0" if test -f OCAML_FLAG -a -f PYTHIA8_FLAG; then ./run_whizard.sh @script@ --no-logging script=`basename @script@` - echo "Contents of ${script}a.debug:" >> $script.log - cat ${script}a.debug >> $script.log - echo "Contents of ${script}b.debug:" >> $script.log - cat ${script}b.debug >> $script.log - echo "Contents of ${script}c.debug:" >> $script.log - cat ${script}c.debug >> $script.log - echo "Contents of ${script}d.debug:" >> $script.log - cat ${script}d.debug >> $script.log + ### Output too much dependent on the PYTHIA8 version + # echo "Contents of ${script}a.debug:" >> $script.log + # cat ${script}a.debug >> $script.log + # echo "Contents of ${script}b.debug:" >> $script.log + # cat ${script}b.debug >> $script.log + # echo "Contents of ${script}c.debug:" >> $script.log + # cat ${script}c.debug >> $script.log + # echo "Contents of ${script}d.debug:" >> $script.log + # cat ${script}d.debug >> $script.log diff ref-output/$script.ref $script.log else echo "|=============================================================================|" echo "No O'Mega matrix elements available and/or PYTHIA6 disabled, test skipped" exit 77 fi Index: trunk/share/tests/functional_tests/pythia8_2.sin =================================================================== --- trunk/share/tests/functional_tests/pythia8_2.sin (revision 8850) +++ trunk/share/tests/functional_tests/pythia8_2.sin (revision 8851) @@ -1,57 +1,59 @@ # SINDARIN input for WHIZARD self-test model = SM ?logging = true ?openmp_logging = false ?vis_history = false ?integration_timer = false ?pacify = true me = 0 $method = "omega" process pythia8_2_p1 = "e-", "e+" => "Z", "H" process pythia8_2_p2 = "Z" => "e-", "e+" process pythia8_2_p3 = "H" => "b", "bbar" compile () seed = 0 $phs_method = "wood" $integration_method = "vamp" sqrts = 1000 !!! Tests should be run single-threaded openmp_num_threads = 1 integrate (pythia8_2_p1) { iterations=1:1000 } error_threshold = 1e-8 n_events = 1 ?rebuild_events = true sample_format = debug ?debug_decay = false ?debug_process = false ?debug_verbose = false ?sample_pacify = true ?allow_shower = true ?ps_fsr_active = true $shower_method = "PYTHIA8" $hadronization_method = "PYTHIA8" +?unweighted = false + $sample = "pythia8_2a" simulate (pythia8_2_p1) $sample = "pythia8_2b" simulate (pythia8_2_p1) {?hadronization_active = true} unstable Z (pythia8_2_p2) unstable H (pythia8_2_p3) $sample = "pythia8_2c" simulate (pythia8_2_p1) $sample = "pythia8_2d" simulate (pythia8_2_p1) {?hadronization_active = true} Index: trunk/share/tests/functional_tests/ref-output/pythia8_2.ref =================================================================== --- trunk/share/tests/functional_tests/ref-output/pythia8_2.ref (revision 8850) +++ trunk/share/tests/functional_tests/ref-output/pythia8_2.ref (revision 8851) @@ -1,1593 +1,222 @@ ?openmp_logging = false ?vis_history = false ?integration_timer = false ?pacify = true SM.me => 0.00000E+00 $method = "omega" | Process library 'pythia8_2_lib': recorded process 'pythia8_2_p1' | Process library 'pythia8_2_lib': recorded process 'pythia8_2_p2' | Process library 'pythia8_2_lib': recorded process 'pythia8_2_p3' | Process library 'pythia8_2_lib': compiling ... | Process library 'pythia8_2_lib': writing makefile | Process library 'pythia8_2_lib': removing old files | Process library 'pythia8_2_lib': writing driver | Process library 'pythia8_2_lib': creating source code | Process library 'pythia8_2_lib': compiling sources | Process library 'pythia8_2_lib': linking | Process library 'pythia8_2_lib': loading | Process library 'pythia8_2_lib': ... success. seed = 0 $phs_method = "wood" $integration_method = "vamp" sqrts = 1.00000E+03 openmp_num_threads = 1 | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 0 | Initializing integration for process pythia8_2_p1: | Beam structure: [any particles] | Beam data (collision): | e- (mass = 0.0000000E+00 GeV) | e+ (mass = 0.0000000E+00 GeV) | sqrts = 1.000000000000E+03 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'pythia8_2_p1.i1.phs' | ------------------------------------------------------------------------ | Process [scattering]: 'pythia8_2_p1' | Library name = 'pythia8_2_lib' | Process index = 1 | Process components: | 1: 'pythia8_2_p1_i1': e-, e+ => Z, H [omega] | ------------------------------------------------------------------------ | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood Warning: No cuts have been defined. | Starting integration for process 'pythia8_2_p1' | Integrate: iterations = 1:1000 | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 1000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 800 1.286E+01 2.06E-02 0.16 0.05 69.0 |-----------------------------------------------------------------------------| 1 800 1.286E+01 2.06E-02 0.16 0.05 69.0 |=============================================================================| error_threshold = 1.00000E-08 n_events = 1 ?rebuild_events = true ?debug_decay = false ?debug_process = false ?debug_verbose = false ?sample_pacify = true ?allow_shower = true ?ps_fsr_active = true $shower_method = "PYTHIA8" $hadronization_method = "PYTHIA8" +?unweighted = false $sample = "pythia8_2a" | Starting simulation for process 'pythia8_2_p1' | Simulate: using integration grids from file 'pythia8_2_p1.m1.vg' | Simulate: activating parton shower | Shower: Using PYTHIA8 shower | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 1 -| Simulation: requested number of events = 1 -| corr. to luminosity [fb-1] = 7.7772E-02 | Events: writing to ASCII file 'pythia8_2a.debug' | Events: writing to raw file 'pythia8_2a.evx' -| Events: generating 1 unweighted, unpolarized events ... -| Events: event normalization mode '1' +| Events: generating 1 weighted, unpolarized events ... +| Events: event normalization mode 'sigma' | ... event sample complete. -| Events: actual unweighting efficiency = 100.00 % | Events: closing ASCII file 'pythia8_2a.debug' | Events: closing raw file 'pythia8_2a.evx' $sample = "pythia8_2b" ?hadronization_active = true | Starting simulation for process 'pythia8_2_p1' | Simulate: using integration grids from file 'pythia8_2_p1.m1.vg' | Simulate: activating parton shower | Shower: Using PYTHIA8 shower | Simulate: activating hadronization | Hadronization: Using PYTHIA8 interface for hadronization and decays. | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 2 -| Simulation: requested number of events = 1 -| corr. to luminosity [fb-1] = 7.7772E-02 | Events: writing to ASCII file 'pythia8_2b.debug' | Events: writing to raw file 'pythia8_2b.evx' -| Events: generating 1 unweighted, unpolarized events ... -| Events: event normalization mode '1' +| Events: generating 1 weighted, unpolarized events ... +| Events: event normalization mode 'sigma' | ... event sample complete. -| Events: actual unweighting efficiency = 33.33 % | Events: closing ASCII file 'pythia8_2b.debug' | Events: closing raw file 'pythia8_2b.evx' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 3 | Initializing integration for process pythia8_2_p2: | Beam structure: [any particles] | Beam data (decay): | Z (mass = 9.1188200E+01 GeV) | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'pythia8_2_p2.i1.phs' | ------------------------------------------------------------------------ | Process [decay]: 'pythia8_2_p2' | Library name = 'pythia8_2_lib' | Process index = 2 | Process components: | 1: 'pythia8_2_p2_i1': Z => e-, e+ [omega] | ------------------------------------------------------------------------ | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood Warning: No cuts have been defined. | Starting integration for process 'pythia8_2_p2' | Integrate: iterations not specified, using default | Integrate: iterations = 1:100:"" | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 100 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[GeV] Error[GeV] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 100 8.397E-02 0.00E+00 0.00 0.00 100.0 |-----------------------------------------------------------------------------| 1 100 8.397E-02 0.00E+00 0.00 0.00 100.0 |=============================================================================| | Unstable particle Z: computed branching ratios: | pythia8_2_p2: 1.0000000E+00 e-, e+ | Total width = 8.3965692E-02 GeV (computed) | = 2.4430000E+00 GeV (preset) | Decay options: helicity treated exactly | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 4 | Initializing integration for process pythia8_2_p3: | Beam structure: [any particles] | Beam data (decay): | H (mass = 1.2500000E+02 GeV) | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'pythia8_2_p3.i1.phs' | ------------------------------------------------------------------------ | Process [decay]: 'pythia8_2_p3' | Library name = 'pythia8_2_lib' | Process index = 3 | Process components: | 1: 'pythia8_2_p3_i1': H => b, bbar [omega] | ------------------------------------------------------------------------ | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood Warning: No cuts have been defined. | Starting integration for process 'pythia8_2_p3' | Integrate: iterations not specified, using default | Integrate: iterations = 1:100:"" | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 100 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[GeV] Error[GeV] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 100 4.312E-03 0.00E+00 0.00 0.00 100.0 |-----------------------------------------------------------------------------| 1 100 4.312E-03 0.00E+00 0.00 0.00 100.0 |=============================================================================| | Unstable particle H: computed branching ratios: | pythia8_2_p3: 1.0000000E+00 b, bbar | Total width = 4.3122140E-03 GeV (computed) | = 4.1430000E-03 GeV (preset) | Decay options: helicity treated exactly $sample = "pythia8_2c" | Starting simulation for process 'pythia8_2_p1' | Simulate: using integration grids from file 'pythia8_2_p1.m1.vg' | Simulate: activating decays | Simulate: activating parton shower | Shower: Using PYTHIA8 shower | Simulate: using integration grids from file 'pythia8_2_p2.m1.vg' | Simulate: using integration grids from file 'pythia8_2_p3.m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 5 -| Simulation: requested number of events = 1 -| corr. to luminosity [fb-1] = 7.7772E-02 | Events: writing to ASCII file 'pythia8_2c.debug' | Events: writing to raw file 'pythia8_2c.evx' -| Events: generating 1 unweighted, unpolarized events ... -| Events: event normalization mode '1' +| Events: generating 1 weighted, unpolarized events ... +| Events: event normalization mode 'sigma' | ... event sample complete. -| Events: actual unweighting efficiency = 100.00 % | Events: closing ASCII file 'pythia8_2c.debug' | Events: closing raw file 'pythia8_2c.evx' $sample = "pythia8_2d" ?hadronization_active = true | Starting simulation for process 'pythia8_2_p1' | Simulate: using integration grids from file 'pythia8_2_p1.m1.vg' | Simulate: activating decays | Simulate: activating parton shower | Shower: Using PYTHIA8 shower | Simulate: activating hadronization | Hadronization: Using PYTHIA8 interface for hadronization and decays. | Simulate: using integration grids from file 'pythia8_2_p2.m1.vg' | Simulate: using integration grids from file 'pythia8_2_p3.m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 6 -| Simulation: requested number of events = 1 -| corr. to luminosity [fb-1] = 7.7772E-02 | Events: writing to ASCII file 'pythia8_2d.debug' | Events: writing to raw file 'pythia8_2d.evx' -| Events: generating 1 unweighted, unpolarized events ... -| Events: event normalization mode '1' +| Events: generating 1 weighted, unpolarized events ... +| Events: event normalization mode 'sigma' | ... event sample complete. -| Events: actual unweighting efficiency = 50.00 % | Events: closing ASCII file 'pythia8_2d.debug' | Events: closing raw file 'pythia8_2d.evx' | There were no errors and 3 warning(s). | WHIZARD run finished. |=============================================================================| -Contents of pythia8_2a.debug: -======================================================================== - Event #1 ------------------------------------------------------------------------- - Unweighted = T - Normalization = '1' - Helicity handling = drop - Keep correlations = F ------------------------------------------------------------------------- - Squared matrix el. (ref) = 2.43417E-03 - Squared matrix el. (prc) = 2.43417E-03 - Event weight (ref) = 1.00000E+00 - Event weight (prc) = 1.00000E+00 ------------------------------------------------------------------------- - Selected MCI group = 1 - Selected term = 1 - Selected channel = 1 ------------------------------------------------------------------------- - Passed selection = T - Reweighting factor = 1.00000E+00 - Analysis flag = T -======================================================================== - Event transform: trivial (hard process) ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 2 - calls = 3 - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [o] f(23) - E = 4.963451E+02 - P = 4.672281E+02 1.282625E+02 -5.735730E+01 - T = 8.315287819E+03 - Parents: 1 2 - Particle 4 [o] f(25) - E = 5.036549E+02 - P = -4.672281E+02 -1.282625E+02 5.735730E+01 - T = 1.562500000E+04 - Parents: 1 2 -======================================================================== -======================================================================== - Event transform: shower ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 3 - calls = 1 - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [v] Z 0 0 1-2 5-6 496.345 467.228 128.263 -57.357 8315.288 - 4 [v] H 0 0 1-2 22-23 503.655 -467.228 -128.263 57.357 15625.000 - 5 [v] d 101 0 3 7-8 391.789 363.705 126.661 -71.930 0.109 - 6 [v] dbar 0 101 3 9 104.556 103.523 1.602 14.573 0.109 - 7 [v] d 104 0 5 10-11 356.913 332.027 114.434 -63.635 0.109 - 8 [v] gl 101 104 5 12 35.485 32.281 12.237 -8.210 0.000 - 9 [v] dbar 0 101 6 16-17 103.947 102.920 1.592 14.488 0.109 - 10 [o] d 105 0 7 [none] 325.115 302.338 104.106 -58.765 0.109 - 11 [v] gl 104 105 7 13-14 35.423 32.987 11.578 -5.709 0.000 - 12 [v] gl 101 104 8 15 31.860 28.983 10.987 -7.371 0.000 - 13 [o] gl 106 105 11 [none] 27.199 25.102 9.526 -4.349 0.000 - 14 [o] gl 104 106 11 [none] 18.509 17.241 5.598 -3.740 0.000 - 15 [v] gl 101 104 12 18 21.576 19.628 7.440 -4.992 0.000 - 16 [o] dbar 0 108 9 [none] 101.345 100.403 1.892 13.655 0.109 - 17 [v] gl 108 101 9 21 2.889 2.778 -0.201 0.767 0.000 - 18 [v] gl 101 104 15 19-20 21.289 19.367 7.341 -4.925 0.000 - 19 [o] gl 109 104 18 [none] 18.671 17.147 6.345 -3.783 0.000 - 20 [o] gl 101 109 18 [none] 2.834 2.427 0.981 -1.085 0.000 - 21 [o] gl 108 101 17 [none] 2.674 2.571 -0.186 0.710 0.000 - 22 [v] b 102 0 4 24-25 420.510 -387.710 -144.607 74.670 23.040 - 23 [v] bbar 0 102 4 26 83.145 -79.518 16.345 -17.312 23.040 - 24 [v] b 112 0 22 35 162.577 -146.069 -66.504 25.482 23.040 - 25 [v] gl 102 112 22 27-28 261.505 -245.059 -77.371 48.423 0.000 - 26 [v] bbar 0 102 23 29 79.573 -76.100 15.612 -16.547 23.040 - 27 [v] gl 114 112 25 30-31 252.080 -238.166 -71.184 41.877 0.000 - 28 [v] gl 102 114 25 32 13.039 -10.349 -5.444 5.767 0.000 - 29 [v] bbar 0 102 26 47 75.959 -72.643 14.870 -15.769 23.040 - 30 [v] gl 115 112 27 33-34 172.985 -164.561 -47.006 25.173 0.000 - 31 [v] gl 114 115 27 39-40 83.064 -76.755 -25.835 18.460 0.000 - 32 [v] gl 102 114 28 41 9.070 -7.199 -3.787 4.012 0.000 - 33 [v] gl 115 116 30 48-49 162.991 -154.253 -47.347 23.032 0.000 - 34 [v] gl 116 112 30 38 19.570 -18.869 -3.690 3.651 0.000 - 35 [v] b 112 0 24 36-37 153.001 -137.509 -62.473 23.972 23.040 - 36 [v] b 117 0 35 68 154.839 -139.275 -62.982 24.245 23.040 - 37 [v] gl 112 117 35 66-67 1.338 -1.296 -0.090 0.319 0.000 - 38 [v] gl 116 112 34 65 16.394 -15.807 -3.092 3.058 0.000 - 39 [v] gl 118 115 31 44 69.259 -63.542 -22.092 16.466 0.000 - 40 [v] gl 114 118 31 42-43 14.949 -14.121 -4.221 2.501 0.000 - 41 [v] gl 102 114 32 45-46 7.926 -6.291 -3.309 3.506 0.000 - 42 [v] gl 114 119 40 51-52 37.942 -35.223 -10.996 8.833 0.000 - 43 [o] gl 119 118 40 [none] 15.699 -14.397 -5.566 2.866 0.000 - 44 [v] gl 118 115 39 50 30.567 -28.044 -9.750 7.267 0.000 - 45 [v] gl 121 114 41 53 8.860 -7.362 -3.417 3.553 0.000 - 46 [v] gl 102 121 41 62 1.732 -1.483 0.646 -0.618 0.000 - 47 [o] bbar 0 102 29 [none] 73.293 -70.089 14.332 -15.198 23.040 - 48 [v] gl 122 116 33 63-64 157.248 -148.606 -46.074 22.811 0.000 - 49 [v] gl 115 122 33 54-55 8.482 -8.159 -2.147 0.872 0.000 - 50 [v] gl 118 115 44 56 27.828 -25.531 -8.876 6.616 0.000 - 51 [o] gl 123 119 42 [none] 12.170 -11.456 -3.423 2.274 0.000 - 52 [v] gl 114 123 42 59 26.923 -24.724 -8.017 7.021 0.000 - 53 [v] gl 121 114 45 57-58 7.708 -6.405 -2.973 3.091 0.000 - 54 [o] gl 124 122 49 [none] 3.346 -3.289 -0.457 0.414 0.000 - 55 [o] gl 115 124 49 [none] 15.720 -14.581 -5.066 2.974 0.000 - 56 [o] gl 118 115 50 [none] 17.244 -15.821 -5.500 4.100 0.000 - 57 [v] gl 121 125 53 60-61 11.639 -9.920 -4.479 4.122 0.000 - 58 [o] gl 125 114 53 [none] 4.073 -3.835 -0.878 1.057 0.000 - 59 [o] gl 114 123 52 [none] 18.920 -17.375 -5.634 4.934 0.000 - 60 [o] gl 126 125 57 [none] 10.471 -8.731 -4.198 3.976 0.000 - 61 [o] gl 121 126 57 [none] 1.418 -1.404 -0.187 0.056 0.000 - 62 [o] gl 102 121 46 [none] 1.481 -1.268 0.552 -0.529 0.000 - 63 [o] gl 122 127 48 [none] 130.438 -123.097 -38.664 19.143 0.000 - 64 [o] gl 127 116 48 [none] 28.071 -26.725 -7.648 3.903 0.000 - 65 [o] gl 116 112 38 [none] 15.133 -14.591 -2.854 2.823 0.000 - 66 [o] gl 112 128 37 [none] 9.479 -8.729 -3.259 1.741 0.000 - 67 [o] gl 128 117 37 [none] 0.674 -0.487 -0.463 -0.053 0.000 - 68 [o] b 117 0 36 [none] 146.024 -131.355 -59.349 22.876 23.040 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = F - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' -======================================================================== - Local variables: ------------------------------------------------------------------------- -sqrts* = 1.00000E+03 -sqrts_hat* => 1.00000E+03 -n_in* => 2 -n_out* => 24 -n_tot* => 26 -$process_id* => "pythia8_2_p1" -process_num_id* => [unknown integer] -sqme* => 2.43417E-03 -sqme_ref* => 2.43417E-03 -event_index* => 1 -event_weight* => 1.00000E+00 -event_weight_ref* => 1.00000E+00 -event_excess* => 0.00000E+00 ------------------------------------------------------------------------- - subevent: - 1 prt(i:11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.0000000E+00| 1) - 2 prt(i:-11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.0000000E+00| 2) - 3 prt(o:1| 3.2511496E+02; 3.0233812E+02, 1.0410578E+02,-5.8764570E+01| 1.0890000E-01| 3) - 4 prt(o:21| 2.7198684E+01; 2.5101832E+01, 9.5263391E+00,-4.3491745E+00| 0.0000000E+00| 4) - 5 prt(o:21| 1.8508703E+01; 1.7240976E+01, 5.5979254E+00,-3.7395255E+00| 0.0000000E+00| 5) - 6 prt(o:-1| 1.0134498E+02; 1.0040250E+02, 1.8917857E+00, 1.3654851E+01| 1.0890000E-01| 6) - 7 prt(o:21| 1.8670592E+01; 1.7146920E+01, 6.3451543E+00,-3.7832748E+00| 0.0000000E+00| 7) - 8 prt(o:21| 2.8335017E+00; 2.4265764E+00, 9.8125662E-01,-1.0851700E+00| 0.0000000E+00| 8) - 9 prt(o:21| 2.6737213E+00; 2.5711510E+00,-1.8571952E-01, 7.0956063E-01| 0.0000000E+00| 9) - 10 prt(o:21| 1.5699310E+01;-1.4396805E+01,-5.5663823E+00, 2.8663126E+00| 0.0000000E+00| 10) - 11 prt(o:-5| 7.3293015E+01;-7.0088861E+01, 1.4331540E+01,-1.5198177E+01| 2.3040000E+01| 11) - 12 prt(o:21| 1.2170449E+01;-1.1455646E+01,-3.4231127E+00, 2.2738273E+00| 0.0000000E+00| 12) - 13 prt(o:21| 3.3457828E+00;-3.2885102E+00,-4.5670888E-01, 4.1398091E-01| 0.0000000E+00| 13) - 14 prt(o:21| 1.5719716E+01;-1.4580793E+01,-5.0658957E+00, 2.9743331E+00| 0.0000000E+00| 14) - 15 prt(o:21| 1.7244025E+01;-1.5820730E+01,-5.5003997E+00, 4.0995713E+00| 0.0000000E+00| 15) - 16 prt(o:21| 4.0731914E+00;-3.8346563E+00,-8.7751823E-01, 1.0565326E+00| 0.0000000E+00| 16) - 17 prt(o:21| 1.8919830E+01;-1.7374619E+01,-5.6338590E+00, 4.9337850E+00| 0.0000000E+00| 17) - 18 prt(o:21| 1.0471480E+01;-8.7305518E+00,-4.1976147E+00, 3.9761020E+00| 0.0000000E+00| 18) - 19 prt(o:21| 1.4180385E+00;-1.4044800E+00,-1.8734496E-01, 5.6311949E-02| 0.0000000E+00| 19) - 20 prt(o:21| 1.4808258E+00;-1.2681101E+00, 5.5230534E-01,-5.2886723E-01| 0.0000000E+00| 20) - 21 prt(o:21| 1.3043831E+02;-1.2309670E+02,-3.8663723E+01, 1.9143486E+01| 0.0000000E+00| 21) - 22 prt(o:21| 2.8070605E+01;-2.6725136E+01,-7.6479764E+00, 3.9031252E+00| 0.0000000E+00| 22) - 23 prt(o:21| 1.5133471E+01;-1.4591370E+01,-2.8538511E+00, 2.8230106E+00| 0.0000000E+00| 23) - 24 prt(o:21| 9.4789017E+00;-8.7289175E+00,-3.2594947E+00, 1.7410546E+00| 0.0000000E+00| 24) - 25 prt(o:21| 6.7417818E-01;-4.8680781E-01,-4.6333363E-01,-5.3444677E-02| 0.0000000E+00| 25) - 26 prt(o:5| 1.4602372E+02;-1.3135539E+02,-5.9349154E+01, 2.2876359E+01| 2.3040000E+01| 26) -======================================================================== -Contents of pythia8_2b.debug: -======================================================================== - Event #1 ------------------------------------------------------------------------- - Unweighted = T - Normalization = '1' - Helicity handling = drop - Keep correlations = F ------------------------------------------------------------------------- - Squared matrix el. (ref) = 2.34324E-03 - Squared matrix el. (prc) = 2.34324E-03 - Event weight (ref) = 1.00000E+00 - Event weight (prc) = 1.00000E+00 ------------------------------------------------------------------------- - Selected MCI group = 1 - Selected term = 1 - Selected channel = 1 ------------------------------------------------------------------------- - Passed selection = T - Reweighting factor = 1.00000E+00 - Analysis flag = T -======================================================================== - Event transform: trivial (hard process) ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 6 - calls = 3 - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [o] f(23) - E = 4.963451E+02 - P = -4.340495E+02 -1.922594E+02 -1.126082E+02 - T = 8.315287819E+03 - Parents: 1 2 - Particle 4 [o] f(25) - E = 5.036549E+02 - P = 4.340495E+02 1.922594E+02 1.126082E+02 - T = 1.562500000E+04 - Parents: 1 2 -======================================================================== -======================================================================== - Event transform: shower ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 7 - calls = 1 - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [v] Z 0 0 1-2 5-6 496.345 -434.049 -192.259 -112.608 8315.288 - 4 [v] H 0 0 1-2 16-17 503.655 434.049 192.259 112.608 15625.000 - 5 [v] c 101 0 3 7-8 264.125 -244.503 -62.719 -77.746 2.250 - 6 [v] cbar 0 101 3 9 232.220 -189.547 -129.540 -34.863 2.250 - 7 [o] c 103 0 5 [none] 187.067 -175.046 -39.730 -52.652 2.250 - 8 [v] gl 101 103 5 10-11 82.953 -74.269 -26.279 -25.978 0.000 - 9 [v] cbar 0 101 6 12 226.325 -184.735 -126.250 -33.978 2.250 - 10 [o] gl 105 103 8 [none] 69.790 -63.077 -21.702 -20.518 0.000 - 11 [v] gl 101 105 8 13-14 15.253 -12.898 -5.743 -5.773 0.000 - 12 [v] cbar 0 101 9 15 224.235 -183.030 -125.084 -33.665 2.250 - 13 [o] ubar 0 105 11 [none] 9.883 -7.900 -4.785 -3.500 0.109 - 14 [o] u 101 0 11 [none] 8.166 -7.279 -2.518 -2.692 0.109 - 15 [o] cbar 0 101 12 [none] 221.440 -180.748 -123.524 -33.246 2.250 - 16 [v] b 102 0 4 20 221.648 194.291 106.239 -8.310 23.040 - 17 [v] bbar 0 102 4 18-19 282.007 239.759 86.020 120.918 23.040 - 18 [v] bbar 0 109 17 29 266.361 225.214 81.441 116.497 23.040 - 19 [v] gl 109 102 17 23 19.839 18.221 6.592 4.257 0.000 - 20 [v] b 102 0 16 21-22 217.454 190.615 104.226 -8.145 23.040 - 21 [o] b 110 0 20 [none] 198.471 174.289 94.638 -5.881 23.040 - 22 [v] gl 102 110 20 24-25 20.227 17.468 10.001 -1.997 0.000 - 23 [v] gl 109 102 19 26 18.596 17.080 6.179 3.990 0.000 - 24 [v] gl 111 110 22 38 20.099 17.784 9.362 -0.260 0.000 - 25 [v] gl 102 111 22 33-34 3.163 2.471 1.647 -1.087 0.000 - 26 [v] gl 109 102 23 27-28 15.561 14.292 5.171 3.339 0.000 - 27 [v] gl 112 102 26 30-31 17.076 15.758 5.295 3.904 0.000 - 28 [v] gl 109 112 26 32 10.741 8.886 3.619 4.828 0.000 - 29 [o] bbar 0 109 18 [none] 254.105 214.862 77.698 111.104 23.040 - 30 [v] gl 113 102 27 35 1.273 1.185 0.026 0.466 0.000 - 31 [o] gl 112 113 27 [none] 18.425 16.743 6.152 4.616 0.000 - 32 [o] gl 109 112 28 [none] 8.118 6.716 2.735 3.649 0.000 - 33 [v] gl 114 111 25 36-37 1.308 0.855 0.467 -0.874 0.000 - 34 [o] gl 102 114 25 [none] 2.615 2.325 1.197 0.066 0.000 - 35 [o] gl 113 102 30 [none] 0.512 0.476 0.011 0.188 0.000 - 36 [o] gl 114 115 33 [none] 2.131 1.440 1.241 -0.964 0.000 - 37 [o] gl 115 111 33 [none] 1.581 1.542 0.345 0.059 0.000 - 38 [o] gl 111 110 24 [none] 17.695 15.657 8.242 -0.229 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = T - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' -======================================================================== -======================================================================== - Event transform: hadronization ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 9 - calls = 1 - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [v] c 103 0 1-2 25-30 187.067 -175.046 -39.730 -52.652 2.250 - 4 [v] gl 105 103 1-2 25-30 69.790 -63.077 -21.702 -20.518 0.000 - 5 [v] ubar 0 105 1-2 25-30 9.883 -7.900 -4.785 -3.500 0.109 - 6 [v] u 101 0 1-2 19-24 8.166 -7.279 -2.518 -2.692 0.109 - 7 [v] cbar 0 101 1-2 19-24 221.440 -180.748 -123.524 -33.246 2.250 - 8 [v] b 110 0 1-2 17 198.471 174.289 94.638 -5.881 23.040 - 9 [v] bbar 0 109 1-2 18 254.105 214.862 77.698 111.104 23.040 - 10 [v] gl 112 113 1-2 36 18.425 16.743 6.152 4.616 0.000 - 11 [v] gl 109 112 1-2 18 8.118 6.716 2.735 3.649 0.000 - 12 [v] gl 102 114 1-2 34 2.615 2.325 1.197 0.066 0.000 - 13 [v] gl 113 102 1-2 35 0.512 0.476 0.011 0.188 0.000 - 14 [v] gl 114 115 1-2 33 2.131 1.440 1.241 -0.964 0.000 - 15 [v] gl 115 111 1-2 32 1.581 1.542 0.345 0.059 0.000 - 16 [v] gl 111 110 1-2 17 17.695 15.657 8.242 -0.229 0.000 - 17 [v] b 611 0 8,16 31 216.165 189.945 102.880 -6.110 26.661 - 18 [v] bbar 0 612 9,11 37 262.224 221.578 80.433 114.753 26.776 - 19 [r] pi0 0 0 6-7 65-66 4.159 -3.865 -1.038 -1.126 0.018 - 20 [o] pip 0 0 6-7 [none] 3.534 -3.008 -1.602 -0.924 0.019 - 21 [r] kstar0 0 0 6-7 49-50 26.194 -21.152 -14.799 -4.347 0.808 - 22 [r] kstarm 0 0 6-7 51-52 5.350 -4.453 -2.759 -0.627 0.789 - 23 [o] pip 0 0 6-7 [none] 15.706 -12.958 -8.521 -2.477 0.019 - 24 [r] dstarm 0 0 6-7 67-68 174.663 -142.592 -97.324 -26.437 4.041 - 25 [r] dstarp 0 0 3-5 69-70 165.716 -155.083 -35.230 -46.539 4.041 - 26 [r] Delta- 0 0 3-5 53-54 26.203 -24.298 -6.375 -7.356 1.443 - 27 [r] rhop 0 0 3-5 55-56 24.111 -21.694 -7.478 -7.350 0.739 - 28 [r] Deltaba 0 0 3-5 57-58 20.093 -18.183 -6.153 -5.816 1.395 - 29 [o] kp 0 0 3-5 [none] 21.288 -19.110 -6.522 -6.723 0.244 - 30 [o] km 0 0 3-5 [none] 9.329 -7.654 -4.459 -2.886 0.244 - 31 [v] b 611 0 17 38-48 216.165 189.945 102.880 -6.110 26.661 - 32 [v] gl 115 111 15 38-48 1.581 1.542 0.345 0.059 0.000 - 33 [v] gl 114 115 14 38-48 2.131 1.440 1.241 -0.964 0.000 - 34 [v] gl 102 114 12 38-48 2.615 2.325 1.197 0.066 0.000 - 35 [v] gl 113 102 13 38-48 0.512 0.476 0.011 0.188 0.000 - 36 [v] gl 112 113 10 38-48 18.425 16.743 6.152 4.616 0.000 - 37 [v] bbar 0 612 18 38-48 262.224 221.578 80.433 114.753 26.776 - 38 [r] bstarba 0 0 31-37 71-72 201.001 176.575 95.739 -5.334 28.358 - 39 [o] p 0 0 31-37 [none] 13.459 11.969 6.062 -0.528 0.880 - 40 [o] nbar 0 0 31-37 [none] 5.895 5.376 2.211 -0.273 0.883 - 41 [o] pim 0 0 31-37 [none] 0.536 0.106 0.491 0.127 0.019 - 42 [o] pip 0 0 31-37 [none] 3.550 3.043 1.816 0.155 0.019 - 43 [r] rhom 0 0 31-37 59-60 5.634 5.143 1.240 1.644 1.047 - 44 [o] pip 0 0 31-37 [none] 4.139 3.433 2.031 1.097 0.019 - 45 [r] rhom 0 0 31-37 61-62 9.472 8.731 2.883 2.134 0.620 - 46 [r] omega 0 0 31-37 73-75 14.432 12.106 4.041 6.693 0.622 - 47 [r] rhop 0 0 31-37 63-64 33.691 28.757 10.278 14.206 0.664 - 48 [r] b0 0 0 31-37 76-80 211.845 178.811 65.467 92.688 27.874 - 49 [o] kp 0 0 21 [none] 17.357 -14.063 -9.826 -2.593 0.244 - 50 [o] pim 0 0 21 [none] 8.837 -7.089 -4.973 -1.754 0.019 - 51 [o] km 0 0 22 [none] 2.297 -1.854 -1.171 -0.476 0.244 - 52 [r] pi0 0 0 22 81-82 3.053 -2.599 -1.588 -0.151 0.018 - 53 [o] n 0 0 26 [none] 19.212 -17.751 -4.714 -5.557 0.883 - 54 [o] pim 0 0 26 [none] 6.991 -6.547 -1.661 -1.799 0.019 - 55 [o] pip 0 0 27 [none] 21.151 -19.145 -6.459 -6.253 0.019 - 56 [r] pi0 0 0 27 83-84 2.960 -2.549 -1.019 -1.098 0.018 - 57 [o] pbar 0 0 28 [none] 12.933 -11.721 -3.946 -3.667 0.880 - 58 [o] A 0 0 28 [none] 7.159 -6.463 -2.207 -2.149 0.000 - 59 [o] pim 0 0 43 [none] 4.771 4.348 0.942 1.717 0.019 - 60 [r] pi0 0 0 43 85-86 0.863 0.795 0.298 -0.073 0.018 - 61 [o] pim 0 0 45 [none] 4.663 4.390 1.404 0.694 0.019 - 62 [r] pi0 0 0 45 87-88 4.808 4.340 1.479 1.441 0.018 - 63 [o] pip 0 0 47 [none] 5.233 4.584 1.389 2.102 0.019 - 64 [r] pi0 0 0 47 89-90 28.458 24.172 8.889 12.104 0.018 - 65 [o] A 0 0 19 [none] 3.598 -3.362 -0.865 -0.948 0.000 - 66 [o] A 0 0 19 [none] 0.561 -0.503 -0.173 -0.178 0.000 - 67 [r] dbar0 0 0 24 91-93 160.664 -131.183 -89.494 -24.319 3.478 - 68 [o] pim 0 0 24 [none] 13.999 -11.409 -7.830 -2.118 0.019 - 69 [r] dp 0 0 25 94-96 154.715 -144.782 -32.927 -43.440 3.495 - 70 [r] pi0 0 0 25 97-98 11.001 -10.301 -2.303 -3.099 0.018 - 71 [r] bbarM 0 0 38 99-101 199.029 174.831 94.818 -5.322 27.870 - 72 [o] A 0 0 38 [none] 1.972 1.743 0.921 -0.012 0.000 - 73 [o] pip 0 0 46 [none] 6.391 5.505 1.684 2.772 0.019 - 74 [o] pim 0 0 46 [none] 2.840 2.337 0.943 1.302 0.019 - 75 [r] pi0 0 0 46 102-103 5.202 4.265 1.413 2.619 0.018 - 76 [r] dp 0 0 48 104-106 48.428 40.906 14.322 21.525 3.495 - 77 [r] pi0 0 0 48 107-108 18.054 15.283 5.696 7.740 0.018 - 78 [o] pim 0 0 48 [none] 13.108 11.209 3.856 5.594 0.019 - 79 [r] rho0 0 0 48 109-110 65.524 55.099 21.072 28.503 1.069 - 80 [r] omega 0 0 48 111-113 66.731 56.314 20.521 29.326 0.640 - 81 [o] A 0 0 52 [none] 2.380 -1.998 -1.287 -0.115 0.000 - 82 [o] A 0 0 52 [none] 0.673 -0.601 -0.302 -0.036 0.000 - 83 [o] A 0 0 56 [none] 0.817 -0.676 -0.333 -0.316 0.000 - 84 [o] A 0 0 56 [none] 2.142 -1.873 -0.686 -0.782 0.000 - 85 [o] A 0 0 60 [none] 0.255 0.239 0.053 -0.072 0.000 - 86 [o] A 0 0 60 [none] 0.608 0.556 0.245 -0.001 0.000 - 87 [o] A 0 0 62 [none] 0.086 0.069 0.031 0.041 0.000 - 88 [o] A 0 0 62 [none] 4.722 4.271 1.448 1.400 0.000 - 89 [o] A 0 0 64 [none] 1.228 1.028 0.399 0.540 0.000 - 90 [o] A 0 0 64 [none] 27.230 23.144 8.491 11.565 0.000 - 91 [r] kS0 0 0 67 114-115 57.630 -47.114 -32.169 -8.150 0.248 - 92 [o] pim 0 0 67 [none] 90.203 -73.734 -50.048 -13.965 0.019 - 93 [o] pip 0 0 67 [none] 12.831 -10.335 -7.277 -2.204 0.019 - 94 [r] k0 0 0 69 116 84.657 -79.314 -17.642 -23.761 0.248 - 95 [o] pip 0 0 69 [none] 6.065 -5.721 -1.226 -1.590 0.019 - 96 [r] rho0 0 0 69 117-118 63.993 -59.747 -14.060 -18.089 0.510 - 97 [o] A 0 0 70 [none] 5.688 -5.302 -1.218 -1.659 0.000 - 98 [o] A 0 0 70 [none] 5.314 -4.998 -1.085 -1.439 0.000 - 99 [r] d0 0 0 71 119-121 70.641 61.844 33.924 -3.327 3.478 - 100 [o] pim 0 0 71 [none] 2.532 2.254 1.120 0.243 0.019 - 101 [r] pi0 0 0 71 122-123 125.856 110.733 59.774 -2.239 0.018 - 102 [o] A 0 0 75 [none] 4.673 3.855 1.247 2.328 0.000 - 103 [o] A 0 0 75 [none] 0.529 0.409 0.166 0.290 0.000 - 104 [o] km 0 0 76 [none] 12.748 10.786 3.615 5.733 0.244 - 105 [r] rhop 0 0 76 124-125 21.960 18.761 6.336 9.461 0.594 - 106 [o] pip 0 0 76 [none] 13.720 11.359 4.371 6.332 0.019 - 107 [o] A 0 0 77 [none] 14.950 12.682 4.681 6.384 0.000 - 108 [o] A 0 0 77 [none] 3.104 2.602 1.015 1.357 0.000 - 109 [o] pip 0 0 79 [none] 57.094 47.844 18.540 25.038 0.019 - 110 [o] pim 0 0 79 [none] 8.430 7.254 2.532 3.465 0.019 - 111 [o] pip 0 0 80 [none] 8.200 6.836 2.519 3.761 0.019 - 112 [o] pim 0 0 80 [none] 19.129 16.222 5.766 8.337 0.019 - 113 [r] pi0 0 0 80 126-127 39.402 33.257 12.236 17.228 0.018 - 114 [r] pi0 0 0 91 128-129 6.744 -5.496 -3.766 -1.038 0.018 - 115 [r] pi0 0 0 91 130-131 50.886 -41.618 -28.402 -7.112 0.018 - 116 [o] kL0 0 0 94 [none] 84.657 -79.314 -17.642 -23.761 0.248 - 117 [o] pip 0 0 96 [none] 57.009 -53.230 -12.662 -16.008 0.019 - 118 [o] pim 0 0 96 [none] 6.984 -6.517 -1.398 -2.081 0.019 - 119 [o] e+ 0 0 99 [none] 41.793 36.786 19.720 -2.152 0.000 - 120 [o] nue 0 0 99 [none] 6.043 5.087 3.259 -0.096 0.000 - 121 [o] km 0 0 99 [none] 22.805 19.971 10.945 -1.079 0.244 - 122 [o] A 0 0 101 [none] 107.392 94.484 51.013 -1.863 0.000 - 123 [o] A 0 0 101 [none] 18.464 16.249 8.761 -0.375 0.000 - 124 [o] pip 0 0 105 [none] 16.758 14.295 4.620 7.425 0.019 - 125 [r] pi0 0 0 105 132-133 5.201 4.466 1.716 2.036 0.018 - 126 [o] A 0 0 113 [none] 38.344 32.365 11.924 16.751 0.000 - 127 [o] A 0 0 113 [none] 1.058 0.891 0.313 0.478 0.000 - 128 [o] A 0 0 114 [none] 4.059 -3.270 -2.314 -0.652 0.000 - 129 [o] A 0 0 114 [none] 2.686 -2.226 -1.453 -0.386 0.000 - 130 [o] A 0 0 115 [none] 25.658 -20.981 -14.343 -3.522 0.000 - 131 [o] A 0 0 115 [none] 25.227 -20.637 -14.059 -3.589 0.000 - 132 [o] A 0 0 125 [none] 5.068 4.353 1.656 1.998 0.000 - 133 [o] A 0 0 125 [none] 0.133 0.113 0.060 0.038 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = T - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' ------------------------------------------------------------------------- - Hadronization settings: ------------------------------------------------------------------------- - Master switches: - active = T - General settings: - hadron_method = PYTHIA8 - pT generation parameters - enhanced_fraction = 1.000000000000E-02 - enhanced_width = 2.000000000000E+00 -======================================================================== - Local variables: ------------------------------------------------------------------------- -sqrts* = 1.00000E+03 -sqrts_hat* => 1.00000E+03 -n_in* => 2 -n_out* => 70 -n_tot* => 72 -$process_id* => "pythia8_2_p1" -process_num_id* => [unknown integer] -sqme* => 2.34324E-03 -sqme_ref* => 2.34324E-03 -event_index* => 1 -event_weight* => 1.00000E+00 -event_weight_ref* => 1.00000E+00 -event_excess* => 0.00000E+00 ------------------------------------------------------------------------- - subevent: - 1 prt(i:11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.0000000E+00| 1) - 2 prt(i:-11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.0000000E+00| 2) - 3 prt(o:211| 3.5336057E+00;-3.0078686E+00,-1.6016534E+00,-9.2429550E-01| 1.9479785E-02| 3) - 4 prt(o:211| 1.5705661E+01;-1.2958224E+01,-8.5205088E+00,-2.4766227E+00| 1.9479785E-02| 4) - 5 prt(o:321| 2.1287985E+01;-1.9110214E+01,-6.5219501E+00,-6.7229812E+00| 2.4371994E-01| 5) - 6 prt(o:-321| 9.3294203E+00;-7.6539118E+00,-4.4589728E+00,-2.8860974E+00| 2.4371994E-01| 6) - 7 prt(o:2212| 1.3459322E+01; 1.1968554E+01, 6.0619658E+00,-5.2848210E-01| 8.8035059E-01| 7) - 8 prt(o:-2112| 5.8949517E+00; 5.3760898E+00, 2.2114949E+00,-2.7315338E-01| 8.8279178E-01| 8) - 9 prt(o:-211| 5.3628286E-01; 1.0597674E-01, 4.9072002E-01, 1.2681603E-01| 1.9479785E-02| 9) - 10 prt(o:211| 3.5504648E+00; 3.0434731E+00, 1.8164783E+00, 1.5491634E-01| 1.9479785E-02| 10) - 11 prt(o:211| 4.1393968E+00; 3.4331971E+00, 2.0308200E+00, 1.0972938E+00| 1.9479785E-02| 11) - 12 prt(o:321| 1.7357332E+01;-1.4062575E+01,-9.8262819E+00,-2.5925684E+00| 2.4371994E-01| 12) - 13 prt(o:-211| 8.8368080E+00;-7.0894609E+00,-4.9730876E+00,-1.7543203E+00| 1.9479785E-02| 13) - 14 prt(o:-321| 2.2973266E+00;-1.8536630E+00,-1.1709635E+00,-4.7620126E-01| 2.4371994E-01| 14) - 15 prt(o:2112| 1.9211719E+01;-1.7751093E+01,-4.7139829E+00,-5.5573775E+00| 8.8279178E-01| 15) - 16 prt(o:-211| 6.9908656E+00;-6.5465812E+00,-1.6610121E+00,-1.7988984E+00| 1.9479785E-02| 16) - 17 prt(o:211| 2.1150838E+01;-1.9144738E+01,-6.4591970E+00,-6.2526984E+00| 1.9479785E-02| 17) - 18 prt(o:-2212| 1.2933433E+01;-1.1720632E+01,-3.9459145E+00,-3.6674080E+00| 8.8035059E-01| 18) - 19 prt(o:22| 7.1593017E+00;-6.4627986E+00,-2.2070811E+00,-2.1486338E+00| 0.0000000E+00| 19) - 20 prt(o:-211| 4.7711393E+00; 4.3483922E+00, 9.4216431E-01, 1.7170038E+00| 1.9479785E-02| 20) - 21 prt(o:-211| 4.6633926E+00; 4.3903201E+00, 1.4040730E+00, 6.9384368E-01| 1.9479785E-02| 21) - 22 prt(o:211| 5.2328440E+00; 4.5844092E+00, 1.3891448E+00, 2.1015816E+00| 1.9479785E-02| 22) - 23 prt(o:22| 3.5983845E+00;-3.3619499E+00,-8.6468513E-01,-9.4762002E-01| 0.0000000E+00| 23) - 24 prt(o:22| 5.6056378E-01;-5.0259024E-01,-1.7288977E-01,-1.7816827E-01| 0.0000000E+00| 24) - 25 prt(o:-211| 1.3999390E+01;-1.1408824E+01,-7.8303562E+00,-2.1184177E+00| 1.9479785E-02| 25) - 26 prt(o:22| 1.9715141E+00; 1.7431959E+00, 9.2085929E-01,-1.2407111E-02| 0.0000000E+00| 26) - 27 prt(o:211| 6.3906353E+00; 5.5045089E+00, 1.6838094E+00, 2.7723468E+00| 1.9479785E-02| 27) - 28 prt(o:-211| 2.8397683E+00; 2.3365975E+00, 9.4329228E-01, 1.3020430E+00| 1.9479785E-02| 28) - 29 prt(o:-211| 1.3107611E+01; 1.1208544E+01, 3.8555005E+00, 5.5940728E+00| 1.9479785E-02| 29) - 30 prt(o:22| 2.3795668E+00;-1.9983868E+00,-1.2867057E+00,-1.1479162E-01| 0.0000000E+00| 30) - 31 prt(o:22| 6.7309538E-01;-6.0066327E-01,-3.0160382E-01,-3.6002203E-02| 0.0000000E+00| 31) - 32 prt(o:22| 8.1731149E-01;-6.7604536E-01,-3.3318635E-01,-3.1614490E-01| 0.0000000E+00| 32) - 33 prt(o:22| 2.1424855E+00;-1.8733626E+00,-6.8554588E-01,-7.8152648E-01| 0.0000000E+00| 33) - 34 prt(o:22| 2.5492396E-01; 2.3856196E-01, 5.3346829E-02,-7.2308607E-02| 0.0000000E+00| 34) - 35 prt(o:22| 6.0763913E-01; 5.5609126E-01, 2.4492253E-01,-8.8391935E-04| 0.0000000E+00| 35) - 36 prt(o:22| 8.6230792E-02; 6.9265983E-02, 3.1088126E-02, 4.0884002E-02| 0.0000000E+00| 36) - 37 prt(o:22| 4.7221138E+00; 4.2712031E+00, 1.4478446E+00, 1.3996173E+00| 0.0000000E+00| 37) - 38 prt(o:22| 1.2278389E+00; 1.0282478E+00, 3.9872972E-01, 5.3973094E-01| 0.0000000E+00| 38) - 39 prt(o:22| 2.7230119E+01; 2.3144121E+01, 8.4906145E+00, 1.1564537E+01| 0.0000000E+00| 39) - 40 prt(o:-211| 9.0202807E+01;-7.3733598E+01,-5.0048483E+01,-1.3965415E+01| 1.9479785E-02| 40) - 41 prt(o:211| 1.2831443E+01;-1.0335492E+01,-7.2765323E+00,-2.2036636E+00| 1.9479785E-02| 41) - 42 prt(o:211| 6.0646251E+00;-5.7210926E+00,-1.2255919E+00,-1.5897238E+00| 1.9479785E-02| 42) - 43 prt(o:22| 5.6876331E+00;-5.3022242E+00,-1.2175342E+00,-1.6592769E+00| 0.0000000E+00| 43) - 44 prt(o:22| 5.3135842E+00;-4.9984664E+00,-1.0852306E+00,-1.4393696E+00| 0.0000000E+00| 44) - 45 prt(o:-211| 2.5324943E+00; 2.2538803E+00, 1.1202399E+00, 2.4317509E-01| 1.9479785E-02| 45) - 46 prt(o:22| 4.6734128E+00; 3.8553156E+00, 1.2473451E+00, 2.3284027E+00| 0.0000000E+00| 46) - 47 prt(o:22| 5.2855385E-01; 4.0934021E-01, 1.6609720E-01, 2.9020938E-01| 0.0000000E+00| 47) - 48 prt(o:-321| 1.2747900E+01; 1.0785939E+01, 3.6148123E+00, 5.7325283E+00| 2.4371994E-01| 48) - 49 prt(o:211| 1.3720493E+01; 1.1359159E+01, 4.3714342E+00, 6.3318669E+00| 1.9479785E-02| 49) - 50 prt(o:22| 1.4949917E+01; 1.2681938E+01, 4.6813761E+00, 6.3838222E+00| 0.0000000E+00| 50) - 51 prt(o:22| 3.1044572E+00; 2.6015255E+00, 1.0146025E+00, 1.3565771E+00| 0.0000000E+00| 51) - 52 prt(o:211| 5.7094031E+01; 4.7844238E+01, 1.8539933E+01, 2.5038145E+01| 1.9479785E-02| 52) - 53 prt(o:-211| 8.4297182E+00; 7.2542789E+00, 2.5317045E+00, 3.4650510E+00| 1.9479785E-02| 53) - 54 prt(o:211| 8.2001862E+00; 6.8360659E+00, 2.5193040E+00, 3.7609684E+00| 1.9479785E-02| 54) - 55 prt(o:-211| 1.9128554E+01; 1.6221636E+01, 5.7657077E+00, 8.3365002E+00| 1.9479785E-02| 55) - 56 prt(o:130| 8.4657031E+01;-7.9314085E+01,-1.7641802E+01,-2.3761484E+01| 2.4761571E-01| 56) - 57 prt(o:211| 5.7009189E+01;-5.3230130E+01,-1.2662241E+01,-1.6007781E+01| 1.9479785E-02| 57) - 58 prt(o:-211| 6.9839246E+00;-6.5169346E+00,-1.3977994E+00,-2.0812120E+00| 1.9479785E-02| 58) - 59 prt(o:-11| 4.1793218E+01; 3.6785662E+01, 1.9719508E+01,-2.1515545E+00| 0.0000000E+00| 59) - 60 prt(o:12| 6.0425359E+00; 5.0872434E+00, 3.2592998E+00,-9.5702190E-02| 0.0000000E+00| 60) - 61 prt(o:-321| 2.2804797E+01; 1.9971437E+01, 1.0944931E+01,-1.0794568E+00| 2.4371994E-01| 61) - 62 prt(o:22| 1.0739217E+02; 9.4484075E+01, 5.1013392E+01,-1.8632951E+00| 0.0000000E+00| 62) - 63 prt(o:22| 1.8463980E+01; 1.6249009E+01, 8.7605635E+00,-3.7522033E-01| 0.0000000E+00| 63) - 64 prt(o:211| 1.6758364E+01; 1.4295305E+01, 4.6196667E+00, 7.4247025E+00| 1.9479785E-02| 64) - 65 prt(o:22| 3.8344103E+01; 3.2365376E+01, 1.1923545E+01, 1.6750573E+01| 0.0000000E+00| 65) - 66 prt(o:22| 1.0583948E+00; 8.9119798E-01, 3.1282079E-01, 4.7760749E-01| 0.0000000E+00| 66) - 67 prt(o:22| 4.0586176E+00;-3.2701786E+00,-2.3137262E+00,-6.5190517E-01| 0.0000000E+00| 67) - 68 prt(o:22| 2.6856140E+00;-2.2257153E+00,-1.4525448E+00,-3.8578175E-01| 0.0000000E+00| 68) - 69 prt(o:22| 2.5658498E+01;-2.0981322E+01,-1.4343482E+01,-3.5223821E+00| 0.0000000E+00| 69) - 70 prt(o:22| 2.5227083E+01;-2.0636632E+01,-1.4058833E+01,-3.5894800E+00| 0.0000000E+00| 70) - 71 prt(o:22| 5.0681559E+00; 4.3534262E+00, 1.6562307E+00, 1.9976948E+00| 0.0000000E+00| 71) - 72 prt(o:22| 1.3322999E-01; 1.1265560E-01, 5.9996877E-02, 3.8201055E-02| 0.0000000E+00| 72) -======================================================================== -Contents of pythia8_2c.debug: -======================================================================== - Event #1 ------------------------------------------------------------------------- - Unweighted = T - Normalization = '1' - Helicity handling = drop - Keep correlations = F ------------------------------------------------------------------------- - Squared matrix el. (ref) = 2.22586E-03 - Squared matrix el. (prc) = 2.22586E-03 - Event weight (ref) = 1.00000E+00 - Event weight (prc) = 1.00000E+00 ------------------------------------------------------------------------- - Selected MCI group = 1 - Selected term = 1 - Selected channel = 1 ------------------------------------------------------------------------- - Passed selection = T - Reweighting factor = 1.00000E+00 - Analysis flag = T -======================================================================== - Event transform: trivial (hard process) ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 12 - calls = 3 - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [o] f(23) - E = 4.963451E+02 - P = -3.075785E+02 3.444355E+02 1.574893E+02 - T = 8.315287819E+03 - Parents: 1 2 - Particle 4 [o] f(25) - E = 5.036549E+02 - P = 3.075785E+02 -3.444355E+02 -1.574893E+02 - T = 1.562500000E+04 - Parents: 1 2 -======================================================================== -======================================================================== - Event transform: partonic decays -======================================================================== - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 13 - calls = 3 - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [r] f(23) - E = 4.963451E+02 - P = -3.075785E+02 3.444355E+02 1.574893E+02 - T = 8.315287819E+03 - Parents: 1 2 - Children: 5 6 - Particle 4 [r] f(25) - E = 5.036549E+02 - P = 3.075785E+02 -3.444355E+02 -1.574893E+02 - T = 1.562500000E+04 - Parents: 1 2 - Children: 7 8 - Particle 5 [o] f(11) - E = 2.266848E+02 - P = -1.117798E+02 1.663207E+02 1.059656E+02 - T = 0.000000000E+00 - Parents: 3 - Particle 6 [o] f(-11) - E = 2.696603E+02 - P = -1.957986E+02 1.781148E+02 5.152371E+01 - T = 0.000000000E+00 - Parents: 3 - Particle 7 [o] f(5)c(1 ) - E = 2.351212E+02 - P = 1.859474E+02 -1.400046E+02 -3.296392E+01 - T = 1.764000000E+01 - Parents: 4 - Particle 8 [o] f(-5)c(-1 ) - E = 2.685337E+02 - P = 1.216311E+02 -2.044309E+02 -1.245254E+02 - T = 1.764000000E+01 - Parents: 4 ------------------------------------------------------------------------- - Variable list for simulation: [associated, not shown] -======================================================================== -======================================================================== -======================================================================== - Event transform: shower ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 16 - calls = 1 - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [r] Z 0 0 1-2 5-6 496.345 -307.578 344.436 157.489 8315.288 - 4 [r] H 0 0 1-2 10-11 503.655 307.578 -344.436 -157.489 15625.000 - 5 [v] e- 0 0 3 9 226.685 -111.780 166.321 105.966 0.000 - 6 [v] e+ 0 0 3 7-8 269.660 -195.799 178.115 51.524 0.000 - 7 [o] e+ 0 0 6 [none] 269.659 -195.798 178.114 51.524 0.000 - 8 [o] A 0 0 6 [none] 0.001 -0.001 0.001 0.000 0.000 - 9 [o] e- 0 0 5 [none] 226.685 -111.780 166.321 105.966 0.000 - 10 [v] b 1 0 4 12-13 235.121 185.947 -140.005 -32.964 17.640 - 11 [v] bbar 0 1 4 14 268.534 121.631 -204.431 -124.525 17.640 - 12 [v] b 502 0 10 38 61.137 54.232 -20.501 -18.941 17.640 - 13 [v] gl 501 502 10 17 220.082 152.561 -154.614 -35.432 0.000 - 14 [v] bbar 0 501 11 15-16 222.436 100.785 -169.321 -103.116 17.640 - 15 [v] bbar 0 503 14 23 217.342 104.491 -168.498 -88.936 17.640 - 16 [v] gl 503 501 14 18-19 24.826 9.973 -14.685 -17.357 0.000 - 17 [v] gl 501 502 13 20 200.350 138.883 -140.752 -32.255 0.000 - 18 [v] gl 503 504 16 21-22 56.297 41.895 -35.680 -11.877 0.000 - 19 [v] gl 504 501 16 24-25 23.709 6.328 -17.770 -14.363 0.000 - 20 [v] gl 501 502 17 27-28 145.170 100.632 -101.986 -23.372 0.000 - 21 [v] gl 505 504 18 26 24.410 19.078 -13.035 -7.873 0.000 - 22 [v] gl 503 505 18 30-31 41.329 27.342 -29.974 -7.879 0.000 - 23 [v] bbar 0 503 15 32 207.900 99.967 -161.170 -85.061 17.640 - 24 [v] gl 506 501 19 29 15.570 2.492 -12.900 -8.355 0.000 - 25 [v] gl 504 506 19 45-46 15.012 9.207 -8.540 -8.225 0.000 - 26 [v] gl 505 504 21 48-49 17.538 13.707 -9.365 -5.656 0.000 - 27 [v] gl 507 502 20 36-37 77.329 55.757 -51.966 -13.056 0.000 - 28 [v] gl 501 507 20 41 68.566 44.991 -50.621 -10.705 0.000 - 29 [v] gl 506 501 24 39-40 14.845 2.376 -12.299 -7.966 0.000 - 30 [v] gl 508 505 22 50 18.813 13.647 -12.770 -2.144 0.000 - 31 [v] gl 503 508 22 35 41.544 22.808 -31.965 -13.563 0.000 - 32 [v] bbar 0 503 23 33-34 188.872 90.853 -146.409 -77.233 17.640 - 33 [v] bbar 0 509 32 71 176.957 84.613 -138.297 -70.785 17.640 - 34 [v] gl 509 503 32 69-70 27.168 14.615 -19.848 -11.427 0.000 - 35 [v] gl 503 508 31 53 26.291 14.434 -20.228 -8.584 0.000 - 36 [v] gl 507 510 27 57-58 66.417 47.653 -45.197 -9.885 0.000 - 37 [v] gl 510 502 27 59 13.434 10.367 -7.563 -3.975 0.000 - 38 [o] b 502 0 12 [none] 58.615 51.969 -19.708 -18.138 17.640 - 39 [v] gl 506 511 29 42-43 13.155 3.760 -10.036 -7.629 0.000 - 40 [v] gl 511 501 29 44 4.147 0.229 -4.077 -0.720 0.000 - 41 [v] gl 501 507 28 62 66.109 43.379 -48.807 -10.321 0.000 - 42 [v] gl 506 512 39 47 9.063 1.862 -8.183 -3.423 0.000 - 43 [v] gl 512 511 39 54-55 6.875 2.051 -4.589 -4.690 0.000 - 44 [v] gl 511 501 40 78-79 1.363 0.075 -1.341 -0.237 0.000 - 45 [v] gl 504 513 25 66-67 5.329 4.096 -2.484 -2.336 0.000 - 46 [v] gl 513 506 25 68 11.667 5.519 -7.848 -6.638 0.000 - 47 [v] gl 506 512 42 56 7.078 1.455 -6.391 -2.673 0.000 - 48 [v] gl 514 504 26 65 10.738 8.135 -5.668 -4.125 0.000 - 49 [v] gl 505 514 26 63-64 12.473 9.688 -7.548 -2.178 0.000 - 50 [v] gl 508 505 30 51-52 13.139 9.531 -8.919 -1.497 0.000 - 51 [o] gl 515 505 50 [none] 14.509 9.544 -10.763 -1.896 0.000 - 52 [v] gl 508 515 50 72-73 3.159 2.474 -1.641 -1.080 0.000 - 53 [v] gl 503 508 35 74 21.762 11.948 -16.744 -7.105 0.000 - 54 [o] gl 516 511 43 [none] 8.407 2.180 -5.950 -5.525 0.000 - 55 [o] gl 512 516 43 [none] 1.320 0.457 -1.215 -0.242 0.000 - 56 [o] gl 506 512 47 [none] 4.226 0.868 -3.815 -1.596 0.000 - 57 [v] gl 507 517 36 60-61 55.386 39.401 -38.088 -8.026 0.000 - 58 [o] gl 517 510 36 [none] 12.739 9.569 -8.070 -2.363 0.000 - 59 [o] gl 510 502 37 [none] 11.727 9.050 -6.602 -3.470 0.000 - 60 [o] dbar 0 517 57 [none] 18.372 13.138 -12.452 -3.127 0.109 - 61 [v] d 507 0 57 77 43.188 30.315 -30.194 -5.863 0.109 - 62 [v] gl 501 507 41 75-76 59.934 39.328 -44.248 -9.357 0.000 - 63 [o] gl 505 518 49 [none] 8.388 6.426 -5.259 -1.193 0.000 - 64 [o] gl 518 514 49 [none] 7.352 5.737 -4.014 -2.241 0.000 - 65 [o] gl 514 504 48 [none] 7.471 5.660 -3.943 -2.870 0.000 - 66 [o] gl 504 519 45 [none] 7.259 5.208 -3.771 -3.369 0.000 - 67 [o] gl 519 513 45 [none] 0.443 0.010 -0.309 -0.318 0.000 - 68 [o] gl 513 506 46 [none] 9.294 4.397 -6.252 -5.288 0.000 - 69 [o] gl 521 503 34 [none] 20.930 10.310 -16.054 -8.606 0.000 - 70 [o] gl 509 521 34 [none] 15.612 8.678 -11.213 -6.534 0.000 - 71 [o] bbar 0 509 33 [none] 167.583 80.239 -130.879 -67.073 17.640 - 72 [o] gl 522 515 52 [none] 3.257 2.345 -1.722 -1.465 0.000 - 73 [o] gl 508 522 52 [none] 4.199 2.488 -3.226 -1.018 0.000 - 74 [o] gl 503 508 53 [none] 17.464 9.588 -13.437 -5.702 0.000 - 75 [v] gl 501 523 62 80 60.832 40.037 -44.879 -9.135 0.000 - 76 [o] gl 523 507 62 [none] 5.526 3.809 -3.852 -1.090 0.000 - 77 [o] d 507 0 61 [none] 36.764 25.797 -25.711 -4.995 0.109 - 78 [o] gl 511 524 44 [none] 1.150 0.178 -0.947 -0.627 0.000 - 79 [o] gl 524 501 44 [none] 2.931 1.685 -2.398 -0.018 0.000 - 80 [o] gl 501 523 75 [none] 58.115 38.249 -42.874 -8.727 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = F - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' -======================================================================== - Local variables: ------------------------------------------------------------------------- -sqrts* = 1.00000E+03 -sqrts_hat* => 1.00000E+03 -n_in* => 2 -n_out* => 28 -n_tot* => 30 -$process_id* => "pythia8_2_p1" -process_num_id* => [unknown integer] -sqme* => 2.22586E-03 -sqme_ref* => 2.22586E-03 -event_index* => 1 -event_weight* => 1.00000E+00 -event_weight_ref* => 1.00000E+00 -event_excess* => 0.00000E+00 ------------------------------------------------------------------------- - subevent: - 1 prt(i:11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.0000000E+00| 1) - 2 prt(i:-11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.0000000E+00| 2) - 3 prt(o:-11| 2.6965932E+02;-1.9579790E+02, 1.7811417E+02, 5.1523514E+01| 0.0000000E+00| 3) - 4 prt(o:22| 1.0178157E-03;-7.3903699E-04, 6.7208558E-04, 1.9512579E-04| 0.0000000E+00| 4) - 5 prt(o:11| 2.2668481E+02;-1.1177982E+02, 1.6632067E+02, 1.0596560E+02| 0.0000000E+00| 5) - 6 prt(o:5| 5.8615295E+01; 5.1968712E+01,-1.9707530E+01,-1.8137781E+01| 1.7640000E+01| 6) - 7 prt(o:21| 1.4509208E+01; 9.5439705E+00,-1.0762595E+01,-1.8963880E+00| 0.0000000E+00| 7) - 8 prt(o:21| 8.4071540E+00; 2.1797881E+00,-5.9499924E+00,-5.5250658E+00| 0.0000000E+00| 8) - 9 prt(o:21| 1.3204769E+00; 4.5710914E-01,-1.2148910E+00,-2.4238472E-01| 0.0000000E+00| 9) - 10 prt(o:21| 4.2257477E+00; 8.6833515E-01,-3.8153010E+00,-1.5957495E+00| 0.0000000E+00| 10) - 11 prt(o:21| 1.2738603E+01; 9.5687748E+00,-8.0699834E+00,-2.3634564E+00| 0.0000000E+00| 11) - 12 prt(o:21| 1.1726965E+01; 9.0496893E+00,-6.6019083E+00,-3.4698180E+00| 0.0000000E+00| 12) - 13 prt(o:-1| 1.8372244E+01; 1.3138011E+01,-1.2451753E+01,-3.1268124E+00| 1.0890000E-01| 13) - 14 prt(o:21| 8.3884108E+00; 6.4255456E+00,-5.2588622E+00,-1.1925471E+00| 0.0000000E+00| 14) - 15 prt(o:21| 7.3519496E+00; 5.7374187E+00,-4.0140378E+00,-2.2406898E+00| 0.0000000E+00| 15) - 16 prt(o:21| 7.4708799E+00; 5.6595948E+00,-3.9431156E+00,-2.8696469E+00| 0.0000000E+00| 16) - 17 prt(o:21| 7.2593651E+00; 5.2084554E+00,-3.7710985E+00,-3.3688560E+00| 0.0000000E+00| 17) - 18 prt(o:21| 4.4323737E-01; 1.0052389E-02,-3.0902228E-01,-3.1759021E-01| 0.0000000E+00| 18) - 19 prt(o:21| 9.2943073E+00; 4.3967656E+00,-6.2520874E+00,-5.2881002E+00| 0.0000000E+00| 19) - 20 prt(o:21| 2.0930353E+01; 1.0310149E+01,-1.6053813E+01,-8.6055555E+00| 0.0000000E+00| 20) - 21 prt(o:21| 1.5611688E+01; 8.6775614E+00,-1.1213043E+01,-6.5339423E+00| 0.0000000E+00| 21) - 22 prt(o:-5| 1.6758283E+02; 8.0239481E+01,-1.3087850E+02,-6.7073151E+01| 1.7640000E+01| 22) - 23 prt(o:21| 3.2573917E+00; 2.3454285E+00,-1.7217318E+00,-1.4646520E+00| 0.0000000E+00| 23) - 24 prt(o:21| 4.1993055E+00; 2.4879266E+00,-3.2260819E+00,-1.0182256E+00| 0.0000000E+00| 24) - 25 prt(o:21| 1.7463964E+01; 9.5879762E+00,-1.3436948E+01,-5.7016814E+00| 0.0000000E+00| 25) - 26 prt(o:21| 5.5259685E+00; 3.8087983E+00,-3.8523989E+00,-1.0901404E+00| 0.0000000E+00| 26) - 27 prt(o:1| 3.6764203E+01; 2.5796599E+01,-2.5711456E+01,-4.9954224E+00| 1.0890000E-01| 27) - 28 prt(o:21| 1.1496589E+00; 1.7848118E-01,-9.4714852E-01,-6.2671339E-01| 0.0000000E+00| 28) - 29 prt(o:21| 2.9311221E+00; 1.6851857E+00,-2.3981862E+00,-1.8130400E-02| 0.0000000E+00| 29) - 30 prt(o:21| 5.8114528E+01; 3.8248650E+01,-4.2874025E+01,-8.7268077E+00| 0.0000000E+00| 30) -======================================================================== -Contents of pythia8_2d.debug: -======================================================================== - Event #1 ------------------------------------------------------------------------- - Unweighted = T - Normalization = '1' - Helicity handling = drop - Keep correlations = F ------------------------------------------------------------------------- - Squared matrix el. (ref) = 2.46579E-03 - Squared matrix el. (prc) = 2.46579E-03 - Event weight (ref) = 1.00000E+00 - Event weight (prc) = 1.00000E+00 ------------------------------------------------------------------------- - Selected MCI group = 1 - Selected term = 1 - Selected channel = 1 ------------------------------------------------------------------------- - Passed selection = T - Reweighting factor = 1.00000E+00 - Analysis flag = T -======================================================================== - Event transform: trivial (hard process) ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 19 - calls = 3 - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [o] f(23) - E = 4.963451E+02 - P = -4.984482E+01 -4.853193E+02 -4.889900E+00 - T = 8.315287819E+03 - Parents: 1 2 - Particle 4 [o] f(25) - E = 5.036549E+02 - P = 4.984482E+01 4.853193E+02 4.889900E+00 - T = 1.562500000E+04 - Parents: 1 2 -======================================================================== -======================================================================== - Event transform: partonic decays -======================================================================== - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 20 - calls = 3 - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [r] f(23) - E = 4.963451E+02 - P = -4.984482E+01 -4.853193E+02 -4.889900E+00 - T = 8.315287819E+03 - Parents: 1 2 - Children: 5 6 - Particle 4 [r] f(25) - E = 5.036549E+02 - P = 4.984482E+01 4.853193E+02 4.889900E+00 - T = 1.562500000E+04 - Parents: 1 2 - Children: 7 8 - Particle 5 [o] f(11) - E = 1.652463E+02 - P = -5.196004E+01 -1.548443E+02 -2.509479E+01 - T = 0.000000000E+00 - Parents: 3 - Particle 6 [o] f(-11) - E = 3.310988E+02 - P = 2.115219E+00 -3.304750E+02 2.020489E+01 - T = 0.000000000E+00 - Parents: 3 - Particle 7 [o] f(5)c(1 ) - E = 3.461467E+02 - P = 1.423050E+01 3.410903E+02 5.705109E+01 - T = 1.764000000E+01 - Parents: 4 - Particle 8 [o] f(-5)c(-1 ) - E = 1.575081E+02 - P = 3.561432E+01 1.442290E+02 -5.216119E+01 - T = 1.764000000E+01 - Parents: 4 ------------------------------------------------------------------------- - Variable list for simulation: [associated, not shown] -======================================================================== -======================================================================== -======================================================================== - Event transform: shower ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 23 - calls = 1 - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [r] Z 0 0 1-2 5-6 496.345 -49.845 -485.319 -4.890 8315.288 - 4 [r] H 0 0 1-2 13-14 503.655 49.845 485.319 4.890 15625.000 - 5 [v] e- 0 0 3 7-8 165.246 -51.960 -154.844 -25.095 0.000 - 6 [v] e+ 0 0 3 9 331.099 2.115 -330.475 20.205 0.000 - 7 [v] e- 0 0 5 12 165.241 -51.957 -154.840 -25.094 0.000 - 8 [o] A 0 0 5 [none] 0.006 -0.003 -0.005 -0.000 0.000 - 9 [v] e+ 0 0 6 10-11 331.098 2.115 -330.474 20.205 0.000 - 10 [o] e+ 0 0 9 [none] 331.098 2.115 -330.474 20.205 0.000 - 11 [o] A 0 0 9 [none] 0.000 0.000 -0.000 -0.000 0.000 - 12 [o] e- 0 0 7 [none] 165.241 -51.957 -154.840 -25.094 0.000 - 13 [v] b 1 0 4 17 346.147 14.231 341.090 57.051 17.640 - 14 [v] bbar 0 1 4 15-16 157.508 35.614 144.229 -52.161 17.640 - 15 [v] bbar 0 502 14 20 158.282 32.774 147.493 -46.981 17.640 - 16 [v] gl 502 501 14 18-19 6.290 3.130 3.697 -4.012 0.000 - 17 [v] b 501 0 13 23 339.083 13.941 334.129 55.883 17.640 - 18 [v] gl 503 501 16 21-22 5.174 3.293 2.901 -2.741 0.000 - 19 [v] gl 502 503 16 32 26.448 5.047 24.444 -8.748 0.000 - 20 [o] bbar 0 502 15 [none] 132.950 27.564 123.845 -39.504 17.640 - 21 [v] gl 503 506 18 30-31 6.578 4.287 4.682 -1.725 0.000 - 22 [v] gl 506 501 18 24-25 1.476 -0.876 1.058 -0.541 0.000 - 23 [v] b 501 0 17 26 336.203 13.824 331.291 55.408 17.640 - 24 [v] gl 506 507 22 36-37 4.768 1.244 4.601 -0.111 0.000 - 25 [v] gl 507 501 22 27-28 5.637 -1.751 5.255 1.044 0.000 - 26 [v] b 501 0 23 29 327.275 13.454 322.492 53.935 17.640 - 27 [v] gl 507 508 25 42-43 1.735 -0.294 1.632 -0.509 0.000 - 28 [v] gl 508 501 25 33-34 12.864 -1.080 12.456 3.029 0.000 - 29 [v] b 501 0 26 35 318.313 13.077 313.660 52.458 17.640 - 30 [v] gl 509 506 21 38 8.596 5.057 6.607 -2.160 0.000 - 31 [o] gl 503 509 21 [none] 1.983 -0.007 1.773 -0.889 0.000 - 32 [o] gl 502 503 19 [none] 22.447 4.283 20.746 -7.425 0.000 - 33 [v] gl 508 511 28 39-40 13.724 -1.150 13.328 3.065 0.000 - 34 [v] gl 511 501 28 41 21.256 1.026 20.927 3.582 0.000 - 35 [o] b 501 0 29 [none] 296.196 12.121 291.860 48.841 17.640 - 36 [o] gl 512 507 24 [none] 1.206 0.242 1.042 -0.557 0.000 - 37 [o] gl 506 512 24 [none] 5.263 2.004 4.867 0.018 0.000 - 38 [o] gl 509 506 30 [none] 6.894 4.056 5.299 -1.732 0.000 - 39 [v] gl 508 513 33 44 7.237 -0.926 7.048 1.361 0.000 - 40 [o] gl 513 511 33 [none] 12.283 0.056 11.986 2.681 0.000 - 41 [o] gl 511 501 34 [none] 15.461 0.746 15.221 2.605 0.000 - 42 [o] gl 507 514 27 [none] 4.304 -0.639 4.256 0.064 0.000 - 43 [o] gl 514 508 27 [none] 0.084 0.006 -0.040 -0.074 0.000 - 44 [o] gl 508 513 39 [none] 4.584 -0.586 4.464 0.862 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = T - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' -======================================================================== -======================================================================== - Event transform: hadronization ------------------------------------------------------------------------- - Associated process: 'pythia8_2_p1' - TAO random-number generator: - seed = 25 - calls = 1 - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [r] Z 0 0 1-2 5-8 496.345 -49.845 -485.319 -4.890 8315.288 - 4 [r] H 0 0 1-2 9-20 503.655 49.845 485.319 4.890 15625.000 - 5 [o] A 0 0 3 [none] 0.006 -0.003 -0.005 -0.000 0.000 - 6 [o] e+ 0 0 3 [none] 331.098 2.115 -330.474 20.205 0.000 - 7 [o] A 0 0 3 [none] 0.000 0.000 -0.000 -0.000 0.000 - 8 [o] e- 0 0 3 [none] 165.241 -51.957 -154.840 -25.094 0.000 - 9 [v] bbar 0 502 4 32 132.950 27.564 123.845 -39.504 17.640 - 10 [v] gl 503 509 4 30 1.983 -0.007 1.773 -0.889 0.000 - 11 [v] gl 502 503 4 31 22.447 4.283 20.746 -7.425 0.000 - 12 [v] b 501 0 4 21 296.196 12.121 291.860 48.841 17.640 - 13 [v] gl 512 507 4 27 1.206 0.242 1.042 -0.557 0.000 - 14 [v] gl 506 512 4 28 5.263 2.004 4.867 0.018 0.000 - 15 [v] gl 509 506 4 29 6.894 4.056 5.299 -1.732 0.000 - 16 [v] gl 513 511 4 23 12.283 0.056 11.986 2.681 0.000 - 17 [v] gl 511 501 4 21 15.461 0.746 15.221 2.605 0.000 - 18 [v] gl 507 514 4 26 4.304 -0.639 4.256 0.064 0.000 - 19 [v] gl 514 508 4 25 0.084 0.006 -0.040 -0.074 0.000 - 20 [v] gl 508 513 4 24 4.584 -0.586 4.464 0.862 0.000 - 21 [v] b 1011 0 12,17 22 311.657 12.867 307.081 51.446 18.872 - 22 [v] b 1011 0 21 33-47 311.657 12.867 307.081 51.446 18.872 - 23 [v] gl 513 511 16 33-47 12.283 0.056 11.986 2.681 0.000 - 24 [v] gl 508 513 20 33-47 4.584 -0.586 4.464 0.862 0.000 - 25 [v] gl 514 508 19 33-47 0.084 0.006 -0.040 -0.074 0.000 - 26 [v] gl 507 514 18 33-47 4.304 -0.639 4.256 0.064 0.000 - 27 [v] gl 512 507 13 33-47 1.206 0.242 1.042 -0.557 0.000 - 28 [v] gl 506 512 14 33-47 5.263 2.004 4.867 0.018 0.000 - 29 [v] gl 509 506 15 33-47 6.894 4.056 5.299 -1.732 0.000 - 30 [v] gl 503 509 10 33-47 1.983 -0.007 1.773 -0.889 0.000 - 31 [v] gl 502 503 11 33-47 22.447 4.283 20.746 -7.425 0.000 - 32 [v] bbar 0 502 9 33-47 132.950 27.564 123.845 -39.504 17.640 - 33 [r] bstarba 0 0 22-32 54-55 278.645 11.116 274.473 46.432 28.358 - 34 [r] pi0 0 0 22-32 56-57 25.051 0.643 24.664 4.334 0.018 - 35 [r] rhop 0 0 22-32 48-49 11.570 0.431 11.450 1.408 0.602 - 36 [o] pim 0 0 22-32 [none] 9.994 0.493 9.810 1.839 0.019 - 37 [o] pip 0 0 22-32 [none] 1.187 -0.156 1.030 0.552 0.019 - 38 [r] eta 0 0 22-32 58-60 2.846 -0.590 2.682 0.504 0.300 - 39 [r] rhom 0 0 22-32 50-51 4.868 0.800 4.705 -0.464 0.704 - 40 [r] pi0 0 0 22-32 61-62 1.496 0.724 1.301 0.032 0.018 - 41 [r] etaprim 0 0 22-32 63-65 2.227 0.116 1.995 -0.225 0.917 - 42 [r] rhop 0 0 22-32 52-53 6.654 3.239 5.583 -1.301 0.923 - 43 [r] omega 0 0 22-32 66-68 2.977 0.637 2.505 -1.257 0.602 - 44 [r] omega 0 0 22-32 69-71 5.217 1.096 4.826 -1.454 0.610 - 45 [o] pim 0 0 22-32 [none] 17.367 4.317 16.142 -4.735 0.019 - 46 [o] pip 0 0 22-32 [none] 4.837 0.849 4.427 -1.747 0.019 - 47 [r] bstar0 0 0 22-32 72-73 128.720 26.130 119.726 -39.029 28.358 - 48 [o] pip 0 0 35 [none] 2.088 0.246 2.068 0.050 0.019 - 49 [r] pi0 0 0 35 74-75 9.482 0.185 9.382 1.358 0.018 - 50 [o] pim 0 0 39 [none] 1.803 0.547 1.654 -0.444 0.019 - 51 [r] pi0 0 0 39 76-77 3.065 0.253 3.052 -0.020 0.018 - 52 [o] pip 0 0 42 [none] 3.460 1.537 3.084 -0.280 0.019 - 53 [r] pi0 0 0 42 78-79 3.194 1.702 2.499 -1.021 0.018 - 54 [r] bbarM 0 0 33 80-82 275.007 11.000 270.892 45.800 27.870 - 55 [o] A 0 0 33 [none] 3.638 0.116 3.581 0.632 0.000 - 56 [o] A 0 0 34 [none] 1.048 0.035 1.027 0.207 0.000 - 57 [o] A 0 0 34 [none] 24.003 0.609 23.637 4.127 0.000 - 58 [r] pi0 0 0 38 83-84 1.383 -0.225 1.355 0.099 0.018 - 59 [r] pi0 0 0 38 85-86 0.911 -0.225 0.837 0.247 0.018 - 60 [r] pi0 0 0 38 87-88 0.551 -0.140 0.491 0.158 0.018 - 61 [o] A 0 0 40 [none] 0.576 0.335 0.469 0.023 0.000 - 62 [o] A 0 0 40 [none] 0.919 0.389 0.833 0.009 0.000 - 63 [o] pip 0 0 41 [none] 0.275 0.043 0.233 -0.005 0.019 - 64 [o] pim 0 0 41 [none] 0.892 -0.065 0.870 -0.125 0.019 - 65 [r] eta 0 0 41 89-91 1.060 0.138 0.891 -0.095 0.300 - 66 [o] pip 0 0 43 [none] 1.228 0.131 1.162 -0.346 0.019 - 67 [o] pim 0 0 43 [none] 1.280 0.290 1.068 -0.628 0.019 - 68 [r] pi0 0 0 43 92-93 0.469 0.216 0.275 -0.282 0.018 - 69 [o] pip 0 0 44 [none] 3.810 0.655 3.590 -1.087 0.019 - 70 [o] pim 0 0 44 [none] 0.690 0.232 0.630 -0.076 0.019 - 71 [r] pi0 0 0 44 94-95 0.717 0.208 0.607 -0.291 0.018 - 72 [r] b0 0 0 47 96-98 127.393 25.835 118.486 -38.662 27.874 - 73 [o] A 0 0 47 [none] 1.326 0.295 1.240 -0.367 0.000 - 74 [o] A 0 0 49 [none] 7.459 0.186 7.375 1.106 0.000 - 75 [o] A 0 0 49 [none] 2.023 -0.001 2.007 0.252 0.000 - 76 [o] A 0 0 51 [none] 1.616 0.198 1.604 -0.029 0.000 - 77 [o] A 0 0 51 [none] 1.449 0.055 1.448 0.009 0.000 - 78 [o] A 0 0 53 [none] 0.347 0.154 0.279 -0.138 0.000 - 79 [o] A 0 0 53 [none] 2.847 1.548 2.220 -0.883 0.000 - 80 [r] dstar0 0 0 54 99-100 82.681 3.276 81.477 13.525 4.028 - 81 [r] d0 0 0 54 101-103 112.419 4.814 110.813 18.213 3.478 - 82 [r] kstarm 0 0 54 104-105 79.907 2.910 78.602 14.062 0.750 - 83 [o] A 0 0 58 [none] 1.100 -0.127 1.089 0.092 0.000 - 84 [o] A 0 0 58 [none] 0.283 -0.098 0.266 0.008 0.000 - 85 [o] A 0 0 59 [none] 0.731 -0.231 0.670 0.179 0.000 - 86 [o] A 0 0 59 [none] 0.180 0.006 0.167 0.068 0.000 - 87 [o] A 0 0 60 [none] 0.272 -0.126 0.218 0.104 0.000 - 88 [o] A 0 0 60 [none] 0.279 -0.014 0.273 0.053 0.000 - 89 [r] pi0 0 0 65 106-107 0.434 0.066 0.405 -0.048 0.018 - 90 [r] pi0 0 0 65 108-109 0.243 0.147 0.138 -0.012 0.018 - 91 [r] pi0 0 0 65 110-111 0.383 -0.074 0.348 -0.035 0.018 - 92 [o] A 0 0 68 [none] 0.376 0.166 0.198 -0.274 0.000 - 93 [o] A 0 0 68 [none] 0.093 0.051 0.077 -0.008 0.000 - 94 [o] A 0 0 71 [none] 0.505 0.199 0.404 -0.227 0.000 - 95 [o] A 0 0 71 [none] 0.212 0.009 0.202 -0.064 0.000 - 96 [r] dstarm 0 0 72 112-113 88.390 17.378 82.529 -26.375 4.041 - 97 [o] p 0 0 72 [none] 19.893 3.775 18.626 -5.803 0.880 - 98 [o] nbar 0 0 72 [none] 19.111 4.682 17.331 -6.485 0.883 - 99 [r] dbar0 0 0 80 114-115 76.212 3.033 75.094 12.503 3.478 - 100 [r] pi0 0 0 80 116-117 6.470 0.243 6.383 1.021 0.018 - 101 [o] e+ 0 0 81 [none] 4.378 0.318 4.338 0.493 0.000 - 102 [o] nue 0 0 81 [none] 36.434 1.855 35.850 6.223 0.000 - 103 [r] kstarm 0 0 81 118-119 71.607 2.641 70.624 11.497 0.586 - 104 [o] km 0 0 82 [none] 72.676 2.496 71.499 12.776 0.244 - 105 [r] pi0 0 0 82 120-121 7.231 0.414 7.102 1.286 0.018 - 106 [o] A 0 0 89 [none] 0.119 -0.029 0.104 -0.050 0.000 - 107 [o] A 0 0 89 [none] 0.316 0.095 0.301 0.002 0.000 - 108 [o] A 0 0 90 [none] 0.068 0.025 0.031 0.055 0.000 - 109 [o] A 0 0 90 [none] 0.175 0.121 0.107 -0.067 0.000 - 110 [o] A 0 0 91 [none] 0.032 0.019 0.015 0.021 0.000 - 111 [o] A 0 0 91 [none] 0.351 -0.093 0.334 -0.055 0.000 - 112 [r] dbar0 0 0 96 122-125 80.488 15.810 75.150 -24.028 3.478 - 113 [o] pim 0 0 96 [none] 7.902 1.568 7.379 -2.346 0.019 - 114 [r] a1m 0 0 99 126-127 23.916 0.952 23.591 3.693 0.902 - 115 [o] kp 0 0 99 [none] 52.296 2.081 51.504 8.810 0.244 - 116 [o] A 0 0 100 [none] 2.579 0.040 2.551 0.375 0.000 - 117 [o] A 0 0 100 [none] 3.891 0.203 3.832 0.647 0.000 - 118 [o] km 0 0 103 [none] 43.395 1.775 42.785 7.013 0.244 - 119 [r] pi0 0 0 103 128-129 28.212 0.866 27.839 4.484 0.018 - 120 [o] A 0 0 105 [none] 4.277 0.311 4.197 0.764 0.000 - 121 [o] A 0 0 105 [none] 2.954 0.103 2.906 0.523 0.000 - 122 [o] kp 0 0 112 [none] 29.175 5.837 27.078 -9.148 0.244 - 123 [o] pim 0 0 112 [none] 7.990 1.475 7.478 -2.394 0.019 - 124 [o] pim 0 0 112 [none] 31.717 5.877 29.758 -9.267 0.019 - 125 [o] pip 0 0 112 [none] 11.605 2.621 10.837 -3.219 0.019 - 126 [r] rho0 0 0 114 130-131 17.793 0.721 17.529 2.876 0.548 - 127 [o] pim 0 0 114 [none] 6.122 0.231 6.061 0.818 0.019 - 128 [o] A 0 0 119 [none] 24.158 0.721 23.833 3.882 0.000 - 129 [o] A 0 0 119 [none] 4.053 0.145 4.006 0.602 0.000 - 130 [o] pip 0 0 126 [none] 11.792 0.223 11.600 2.100 0.019 - 131 [o] pim 0 0 126 [none] 6.002 0.498 5.929 0.776 0.019 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = T - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' ------------------------------------------------------------------------- - Hadronization settings: ------------------------------------------------------------------------- - Master switches: - active = T - General settings: - hadron_method = PYTHIA8 - pT generation parameters - enhanced_fraction = 1.000000000000E-02 - enhanced_width = 2.000000000000E+00 -======================================================================== - Local variables: ------------------------------------------------------------------------- -sqrts* = 1.00000E+03 -sqrts_hat* => 1.00000E+03 -n_in* => 2 -n_out* => 66 -n_tot* => 68 -$process_id* => "pythia8_2_p1" -process_num_id* => [unknown integer] -sqme* => 2.46579E-03 -sqme_ref* => 2.46579E-03 -event_index* => 1 -event_weight* => 1.00000E+00 -event_weight_ref* => 1.00000E+00 -event_excess* => 0.00000E+00 ------------------------------------------------------------------------- - subevent: - 1 prt(i:11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.0000000E+00| 1) - 2 prt(i:-11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.0000000E+00| 2) - 3 prt(o:22| 5.9931651E-03;-2.5814729E-03,-5.3994777E-03,-3.1570007E-04| 0.0000000E+00| 3) - 4 prt(o:-11| 3.3109783E+02; 2.1151968E+00,-3.3047400E+02, 2.0204838E+01| 0.0000000E+00| 4) - 5 prt(o:22| 3.7226409E-05; 7.8771217E-06,-3.5715098E-05,-6.9417730E-06| 0.0000000E+00| 5) - 6 prt(o:11| 1.6524128E+02;-5.1957445E+01,-1.5483984E+02,-2.5094415E+01| 0.0000000E+00| 6) - 7 prt(o:-211| 9.9939202E+00; 4.9312785E-01, 9.8098639E+00, 1.8391182E+00| 1.9479785E-02| 7) - 8 prt(o:211| 1.1868807E+00;-1.5619381E-01, 1.0298587E+00, 5.5154382E-01| 1.9479785E-02| 8) - 9 prt(o:-211| 1.7367432E+01; 4.3170854E+00, 1.6141669E+01,-4.7347138E+00| 1.9479785E-02| 9) - 10 prt(o:211| 4.8367750E+00; 8.4885170E-01, 4.4274584E+00,-1.7469904E+00| 1.9479785E-02| 10) - 11 prt(o:211| 2.0876591E+00; 2.4586159E-01, 2.0678178E+00, 5.0223025E-02| 1.9479785E-02| 11) - 12 prt(o:-211| 1.8029647E+00; 5.4748047E-01, 1.6535606E+00,-4.4407716E-01| 1.9479785E-02| 12) - 13 prt(o:211| 3.4599259E+00; 1.5369622E+00, 3.0839644E+00,-2.8021074E-01| 1.9479785E-02| 13) - 14 prt(o:22| 3.6377768E+00; 1.1583169E-01, 3.5805949E+00, 6.3193597E-01| 0.0000000E+00| 14) - 15 prt(o:22| 1.0480697E+00; 3.4684926E-02, 1.0268956E+00, 2.0671803E-01| 0.0000000E+00| 15) - 16 prt(o:22| 2.4002571E+01; 6.0871542E-01, 2.3637248E+01, 4.1271525E+00| 0.0000000E+00| 16) - 17 prt(o:22| 5.7633459E-01; 3.3476011E-01, 4.6856332E-01, 2.3358999E-02| 0.0000000E+00| 17) - 18 prt(o:22| 9.1936202E-01; 3.8926383E-01, 8.3284220E-01, 8.6057171E-03| 0.0000000E+00| 18) - 19 prt(o:211| 2.7527126E-01; 4.2527060E-02, 2.3337220E-01,-4.8320541E-03| 1.9479785E-02| 19) - 20 prt(o:-211| 8.9234138E-01;-6.4525912E-02, 8.7007458E-01,-1.2489989E-01| 1.9479785E-02| 20) - 21 prt(o:211| 1.2277232E+00; 1.3076434E-01, 1.1622396E+00,-3.4630099E-01| 1.9479785E-02| 21) - 22 prt(o:-211| 1.2802573E+00; 2.9022390E-01, 1.0679181E+00,-6.2841070E-01| 1.9479785E-02| 22) - 23 prt(o:211| 3.8098049E+00; 6.5542997E-01, 3.5895044E+00,-1.0867396E+00| 1.9479785E-02| 23) - 24 prt(o:-211| 6.9021149E-01; 2.3228016E-01, 6.3020296E-01,-7.6172658E-02| 1.9479785E-02| 24) - 25 prt(o:22| 1.3261798E+00; 2.9507179E-01, 1.2398920E+00,-3.6654226E-01| 0.0000000E+00| 25) - 26 prt(o:22| 7.4592911E+00; 1.8564813E-01, 7.3745270E+00, 1.1058527E+00| 0.0000000E+00| 26) - 27 prt(o:22| 2.0231174E+00;-6.0552518E-04, 2.0073552E+00, 2.5204887E-01| 0.0000000E+00| 27) - 28 prt(o:22| 1.6163529E+00; 1.9774673E-01, 1.6039402E+00,-2.9476131E-02| 0.0000000E+00| 28) - 29 prt(o:22| 1.4487544E+00; 5.4982391E-02, 1.4476803E+00, 9.3832289E-03| 0.0000000E+00| 29) - 30 prt(o:22| 3.4703726E-01; 1.5384395E-01, 2.7862170E-01,-1.3833600E-01| 0.0000000E+00| 30) - 31 prt(o:22| 2.8467922E+00; 1.5477959E+00, 2.2201897E+00,-8.8278631E-01| 0.0000000E+00| 31) - 32 prt(o:22| 1.1000047E+00;-1.2700083E-01, 1.0888102E+00, 9.1506219E-02| 0.0000000E+00| 32) - 33 prt(o:22| 2.8321223E-01;-9.7743823E-02, 2.6569375E-01, 7.8832267E-03| 0.0000000E+00| 33) - 34 prt(o:22| 7.3120510E-01;-2.3092996E-01, 6.7020777E-01, 1.7931480E-01| 0.0000000E+00| 34) - 35 prt(o:22| 1.8018822E-01; 5.7016939E-03, 1.6676449E-01, 6.8006545E-02| 0.0000000E+00| 35) - 36 prt(o:22| 2.7217549E-01;-1.2617511E-01, 2.1756654E-01, 1.0403912E-01| 0.0000000E+00| 36) - 37 prt(o:22| 2.7886940E-01;-1.3934280E-02, 2.7333787E-01, 5.3482582E-02| 0.0000000E+00| 37) - 38 prt(o:22| 3.7643591E-01; 1.6565003E-01, 1.9774035E-01,-2.7415838E-01| 0.0000000E+00| 38) - 39 prt(o:22| 9.2608910E-02; 5.0566055E-02, 7.7202991E-02,-7.6930147E-03| 0.0000000E+00| 39) - 40 prt(o:22| 5.0492728E-01; 1.9943659E-01, 4.0448075E-01,-2.2709454E-01| 0.0000000E+00| 40) - 41 prt(o:22| 2.1225546E-01; 8.7008856E-03, 2.0214932E-01,-6.4127431E-02| 0.0000000E+00| 41) - 42 prt(o:2212| 1.9892885E+01; 3.7747326E+00, 1.8625911E+01,-5.8028729E+00| 8.8035059E-01| 42) - 43 prt(o:-2112| 1.9110943E+01; 4.6822364E+00, 1.7331193E+01,-6.4847340E+00| 8.8279178E-01| 43) - 44 prt(o:-11| 4.3778762E+00; 3.1832435E-01, 4.3383859E+00, 4.9282616E-01| 0.0000000E+00| 44) - 45 prt(o:12| 3.6433680E+01; 1.8553411E+00, 3.5850299E+01, 6.2230854E+00| 0.0000000E+00| 45) - 46 prt(o:-321| 7.2676388E+01; 2.4956363E+00, 7.1499341E+01, 1.2776138E+01| 2.4371994E-01| 46) - 47 prt(o:22| 1.1861858E-01;-2.9412262E-02, 1.0369996E-01,-4.9513686E-02| 0.0000000E+00| 47) - 48 prt(o:22| 3.1565927E-01; 9.5058546E-02, 3.0100120E-01, 1.7100521E-03| 0.0000000E+00| 48) - 49 prt(o:22| 6.7703794E-02; 2.5116333E-02, 3.1263396E-02, 5.4548818E-02| 0.0000000E+00| 49) - 50 prt(o:22| 1.7506684E-01; 1.2142511E-01, 1.0690719E-01,-6.6896890E-02| 0.0000000E+00| 50) - 51 prt(o:22| 3.1561995E-02; 1.8919975E-02, 1.4578815E-02, 2.0631341E-02| 0.0000000E+00| 51) - 52 prt(o:22| 3.5094649E-01;-9.2942772E-02, 3.3385795E-01,-5.5353007E-02| 0.0000000E+00| 52) - 53 prt(o:-211| 7.9018149E+00; 1.5678568E+00, 7.3794446E+00,-2.3462355E+00| 1.9479785E-02| 53) - 54 prt(o:321| 5.2295712E+01; 2.0811094E+00, 5.1503865E+01, 8.8101420E+00| 2.4371994E-01| 54) - 55 prt(o:22| 2.5785891E+00; 3.9519416E-02, 2.5509206E+00, 3.7465235E-01| 0.0000000E+00| 55) - 56 prt(o:22| 3.8912420E+00; 2.0299586E-01, 3.8317396E+00, 6.4678296E-01| 0.0000000E+00| 56) - 57 prt(o:-321| 4.3395234E+01; 1.7751121E+00, 4.2785156E+01, 7.0129882E+00| 2.4371994E-01| 57) - 58 prt(o:22| 4.2768372E+00; 3.1115114E-01, 4.1965760E+00, 7.6372201E-01| 0.0000000E+00| 58) - 59 prt(o:22| 2.9541726E+00; 1.0307018E-01, 2.9057550E+00, 5.2258967E-01| 0.0000000E+00| 59) - 60 prt(o:321| 2.9175346E+01; 5.8369847E+00, 2.7077643E+01,-9.1481109E+00| 2.4371994E-01| 60) - 61 prt(o:-211| 7.9902483E+00; 1.4753427E+00, 7.4777843E+00,-2.3938866E+00| 1.9479785E-02| 61) - 62 prt(o:-211| 3.1716699E+01; 5.8766981E+00, 2.9757642E+01,-9.2669669E+00| 1.9479785E-02| 62) - 63 prt(o:211| 1.1605430E+01; 2.6209090E+00, 1.0836618E+01,-3.2194844E+00| 1.9479785E-02| 63) - 64 prt(o:-211| 6.1223092E+00; 2.3111023E-01, 6.0614537E+00, 8.1765314E-01| 1.9479785E-02| 64) - 65 prt(o:22| 2.4158274E+01; 7.2095042E-01, 2.3833377E+01, 3.8823408E+00| 0.0000000E+00| 65) - 66 prt(o:22| 4.0534465E+00; 1.4471431E-01, 4.0058866E+00, 6.0196288E-01| 0.0000000E+00| 66) - 67 prt(o:211| 1.1791645E+01; 2.2294350E-01, 1.1600173E+01, 2.0999252E+00| 1.9479785E-02| 67) - 68 prt(o:-211| 6.0018385E+00; 4.9803292E-01, 5.9289902E+00, 7.7564415E-01| 1.9479785E-02| 68) -======================================================================== Index: trunk/share/tests/functional_tests/ref-output/pythia8_1.ref =================================================================== --- trunk/share/tests/functional_tests/ref-output/pythia8_1.ref (revision 8850) +++ trunk/share/tests/functional_tests/ref-output/pythia8_1.ref (revision 8851) @@ -1,868 +1,116 @@ ?openmp_logging = false ?vis_history = false ?integration_timer = false ?pacify = true SM.me => 0.00000E+00 $method = "omega" | Process library 'pythia8_1_lib': recorded process 'pythia8_1_p1' | Process library 'pythia8_1_lib': compiling ... | Process library 'pythia8_1_lib': writing makefile | Process library 'pythia8_1_lib': removing old files | Process library 'pythia8_1_lib': writing driver | Process library 'pythia8_1_lib': creating source code | Process library 'pythia8_1_lib': compiling sources | Process library 'pythia8_1_lib': linking | Process library 'pythia8_1_lib': loading | Process library 'pythia8_1_lib': ... success. seed = 1234 $phs_method = "wood" $integration_method = "vamp2" $rng_method = "rng_stream" sqrts = 1.00000E+03 openmp_num_threads = 1 | RNG: Initializing RNG Stream random-number generator | RNG: Setting seed for random-number generator to 1234 | Initializing integration for process pythia8_1_p1: | Beam structure: [any particles] | Beam data (collision): | e- (mass = 0.0000000E+00 GeV) | e+ (mass = 0.0000000E+00 GeV) | sqrts = 1.000000000000E+03 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'pythia8_1_p1.i1.phs' | ------------------------------------------------------------------------ | Process [scattering]: 'pythia8_1_p1' | Library name = 'pythia8_1_lib' | Process index = 1 | Process components: | 1: 'pythia8_1_p1_i1': e-, e+ => u, ubar [omega] | ------------------------------------------------------------------------ | Phase space: 2 channels, 2 dimensions | Phase space: found 2 channels, collected in 2 groves. | Phase space: Using 2 equivalences between channels. | Phase space: wood | Applying user-defined cuts. | Starting integration for process 'pythia8_1_p1' | Integrate: iterations = 3:1000:"g", 3:1000 | Integrator: 2 chains, 2 channels, 2 dimensions | Integrator: Using VAMP2 channel equivalences +| Integrator: Write grid header and grids to 'pythia8_1_p1.m1.vg2' +| Integrator: Grid checkpoint after each iteration | Integrator: 1000 initial calls, 20 max. bins, stratified = T | Integrator: VAMP2 |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| +| VAMP2: Initialize new grids and write to file 'pythia8_1_p1.m1.vg2'. | VAMP2: set chain: use chained weights. 1 900 1.680E+02 1.39E+00 0.83 0.25 36.5 - 2 900 1.694E+02 7.09E-01 0.42 0.13 35.1 - 3 900 1.682E+02 6.88E-01 0.41 0.12 59.3 + 2 900 1.694E+02 7.07E-01 0.42 0.13 35.5 + 3 900 1.683E+02 6.62E-01 0.39 0.12 60.8 |-----------------------------------------------------------------------------| - 3 2700 1.687E+02 4.65E-01 0.28 0.14 59.3 0.86 3 + 3 2700 1.687E+02 4.57E-01 0.27 0.14 60.8 0.73 3 |-----------------------------------------------------------------------------| - 4 900 1.681E+02 6.79E-01 0.40 0.12 34.0 - 5 900 1.692E+02 7.30E-01 0.43 0.13 34.3 - 6 900 1.689E+02 6.74E-01 0.40 0.12 34.1 + 4 900 1.687E+02 6.72E-01 0.40 0.12 36.6 + 5 900 1.690E+02 7.30E-01 0.43 0.13 36.7 + 6 900 1.687E+02 7.57E-01 0.45 0.13 36.5 |-----------------------------------------------------------------------------| - 6 2700 1.687E+02 4.00E-01 0.24 0.12 34.1 0.62 3 + 6 2700 1.688E+02 4.14E-01 0.25 0.13 36.5 0.05 3 |=============================================================================| n_events = 1 ?debug_decay = false ?debug_process = false ?debug_verbose = false ?sample_pacify = true ?allow_shower = true ?ps_fsr_active = true $shower_method = "PYTHIA8" $sample = "pythia8_1a" | Starting simulation for process 'pythia8_1_p1' | Simulate: activating parton shower | Shower: Using PYTHIA8 shower | RNG: Initializing RNG Stream random-number generator | RNG: Setting seed for random-number generator to 1235 | Simulation: requested number of events = 1 -| corr. to luminosity [fb-1] = 5.9271E-03 +| corr. to luminosity [fb-1] = 5.9239E-03 | Events: writing to ASCII file 'pythia8_1a.debug' | Events: writing to raw file 'pythia8_1a.evx' | Events: generating 1 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. | Events: actual unweighting efficiency = 50.00 % | Events: closing ASCII file 'pythia8_1a.debug' | Events: closing raw file 'pythia8_1a.evx' ?hadronization_active = true $hadronization_method = "PYTHIA8" $sample = "pythia8_1b" | Starting simulation for process 'pythia8_1_p1' | Simulate: activating parton shower | Shower: Using PYTHIA8 shower | Simulate: activating hadronization | Hadronization: Using PYTHIA8 interface for hadronization and decays. | RNG: Initializing RNG Stream random-number generator | RNG: Setting seed for random-number generator to 1236 | Simulation: requested number of events = 1 -| corr. to luminosity [fb-1] = 5.9271E-03 +| corr. to luminosity [fb-1] = 5.9239E-03 | Events: writing to ASCII file 'pythia8_1b.debug' | Events: writing to raw file 'pythia8_1b.evx' | Events: generating 1 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. | Events: actual unweighting efficiency = 100.00 % | Events: closing ASCII file 'pythia8_1b.debug' | Events: closing raw file 'pythia8_1b.evx' | WHIZARD run finished. |=============================================================================| -Contents of pythia8_1a.debug: -======================================================================== - Event #1 ------------------------------------------------------------------------- - Unweighted = T - Normalization = '1' - Helicity handling = drop - Keep correlations = F ------------------------------------------------------------------------- - Squared matrix el. (ref) = 5.20858E-02 - Squared matrix el. (prc) = 5.20858E-02 - Event weight (ref) = 1.00000E+00 - Event weight (prc) = 1.00000E+00 ------------------------------------------------------------------------- - Selected MCI group = 1 - Selected term = 1 - Selected channel = 2 ------------------------------------------------------------------------- - Passed selection = T - Reweighting factor = 1.00000E+00 - Analysis flag = T -======================================================================== - Event transform: trivial (hard process) ------------------------------------------------------------------------- - Associated process: 'pythia8_1_p1' - RNG Stream generator - Current position = [ - 1406751874.0, 353173304.0, 69075414.0, - 4120795872.0, 2940738971.0, 1076868956.0, - ] - Beginning substream = [ - 1645229399.0, 1877497944.0, 574158534.0, - 2268932622.0, 3511034181.0, 2508020503.0, - ] - Initial stream = [ - 1645229399.0, 1877497944.0, 574158534.0, - 2268932622.0, 3511034181.0, 2508020503.0, - ] - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [o] f(2)c(1 ) - E = 5.000000E+02 - P = -2.541053E+02 -8.350176E+01 4.224428E+02 - T = 0.000000000E+00 - Parents: 1 2 - Particle 4 [o] f(-2)c(-1 ) - E = 5.000000E+02 - P = 2.541053E+02 8.350176E+01 -4.224428E+02 - T = 0.000000000E+00 - Parents: 1 2 -======================================================================== -======================================================================== - Event transform: shower ------------------------------------------------------------------------- - Associated process: 'pythia8_1_p1' - RNG Stream generator - Current position = [ - 244426135.0, 2098806856.0, 1330552735.0, - 1957943094.0, 3060143382.0, 2035378285.0, - ] - Beginning substream = [ - 1172788459.0, 244426135.0, 2098806856.0, - 19170156.0, 1957943094.0, 3060143382.0, - ] - Initial stream = [ - 1172788459.0, 244426135.0, 2098806856.0, - 19170156.0, 1957943094.0, 3060143382.0, - ] - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [v] u 1 0 1-2 7 500.000 -254.105 -83.502 422.443 0.000 - 4 [v] ubar 0 1 1-2 5-6 500.000 254.105 83.502 -422.443 0.000 - 5 [v] ubar 0 502 4 17-18 454.822 239.242 59.577 -382.200 0.000 - 6 [v] gl 502 501 4 8-9 47.226 13.822 23.583 -38.512 0.000 - 7 [v] u 501 0 3 10 497.951 -253.064 -83.160 420.712 0.000 - 8 [v] gl 502 503 6 19 45.145 18.993 18.597 -36.490 0.000 - 9 [v] gl 503 501 6 11-12 14.961 -11.717 2.835 8.860 0.000 - 10 [v] u 501 0 7 13 485.072 -246.518 -81.009 409.830 0.000 - 11 [v] gl 503 505 9 22 4.473 -1.121 -2.695 3.390 0.000 - 12 [v] gl 505 501 9 14-15 32.841 -21.956 1.797 24.356 0.000 - 13 [v] u 501 0 10 16 462.718 -235.158 -77.276 390.944 0.000 - 14 [v] gl 505 506 12 23-24 50.460 -32.491 -0.950 38.596 0.000 - 15 [v] gl 506 501 12 26-27 6.590 -1.768 -1.296 6.215 0.000 - 16 [v] u 501 0 13 28 438.509 -222.855 -73.233 370.490 0.000 - 17 [o] ubar 0 507 5 [none] 396.090 208.344 54.528 -332.425 0.000 - 18 [v] gl 507 502 5 38-39 59.936 31.404 5.545 -50.748 0.000 - 19 [v] gl 502 503 8 20-21 43.942 18.487 18.101 -35.518 0.000 - 20 [v] gl 502 508 19 40 27.986 13.708 11.776 -21.369 0.000 - 21 [v] gl 508 503 19 34 16.089 4.746 6.244 -14.048 0.000 - 22 [v] gl 503 505 11 25 4.340 -1.088 -2.614 3.289 0.000 - 23 [v] gl 509 506 14 43 40.891 -26.969 -0.104 30.736 0.000 - 24 [o] gl 505 509 14 [none] 9.980 -5.625 -1.093 8.171 0.000 - 25 [v] gl 503 505 22 32-33 3.929 -0.985 -2.367 2.978 0.000 - 26 [v] gl 506 510 15 41-42 3.716 -1.149 0.198 3.528 0.000 - 27 [v] gl 510 501 15 29-30 22.461 -10.574 -4.766 19.235 0.000 - 28 [v] u 501 0 16 31 418.922 -212.901 -69.961 353.941 0.000 - 29 [v] gl 510 511 27 55 71.045 -35.242 -13.648 60.159 0.000 - 30 [v] gl 511 501 27 52 24.497 -12.472 -3.322 20.821 0.000 - 31 [v] u 501 0 28 50-51 345.841 -175.760 -57.757 292.197 0.000 - 32 [v] gl 512 505 25 62-63 3.108 -1.297 -1.205 2.555 0.000 - 33 [v] gl 503 512 25 37 1.129 0.403 -1.043 0.154 0.000 - 34 [v] gl 508 503 21 35-36 15.782 4.655 6.125 -13.780 0.000 - 35 [v] gl 508 513 34 44-45 4.718 2.170 1.434 -3.936 0.000 - 36 [v] gl 513 503 34 46 11.148 2.515 4.614 -9.832 0.000 - 37 [v] gl 503 512 33 59-60 1.044 0.373 -0.965 0.143 0.000 - 38 [o] gl 507 514 18 [none] 60.264 31.237 5.887 -51.200 0.000 - 39 [v] gl 514 502 18 47-48 1.208 0.920 0.304 -0.721 0.000 - 40 [v] gl 502 508 20 49 26.449 12.956 11.130 -20.195 0.000 - 41 [v] gl 515 510 26 53-54 1.334 -0.164 0.376 1.269 0.000 - 42 [o] gl 506 515 26 [none] 8.701 -5.152 -0.194 7.009 0.000 - 43 [o] gl 509 506 23 [none] 34.572 -22.802 -0.088 25.986 0.000 - 44 [o] gl 508 516 35 [none] 9.410 3.195 3.166 -8.265 0.000 - 45 [o] gl 516 513 35 [none] 0.550 0.157 0.437 -0.294 0.000 - 46 [v] gl 513 503 36 61 5.906 1.332 2.444 -5.209 0.000 - 47 [o] gl 514 517 39 [none] 0.420 0.013 0.295 -0.298 0.000 - 48 [o] gl 517 502 39 [none] 11.673 6.238 4.589 -8.734 0.000 - 49 [o] gl 502 508 40 [none] 15.565 7.624 6.550 -11.884 0.000 - 50 [o] u 518 0 31 [none] 267.737 -135.926 -45.155 226.203 0.000 - 51 [o] gl 501 518 31 [none] 83.645 -42.655 -13.353 70.702 0.000 - 52 [v] gl 511 501 30 58 18.957 -9.652 -2.571 16.112 0.000 - 53 [o] gl 515 519 41 [none] 1.758 -0.847 0.519 1.450 0.000 - 54 [o] gl 519 510 41 [none] 3.764 -1.395 -0.947 3.365 0.000 - 55 [v] gl 510 511 29 56-57 66.858 -33.164 -12.844 56.613 0.000 - 56 [o] gl 510 520 55 [none] 46.017 -22.577 -9.095 39.053 0.000 - 57 [o] gl 520 511 55 [none] 26.850 -13.647 -4.564 22.669 0.000 - 58 [o] gl 511 501 52 [none] 12.947 -6.592 -1.756 11.004 0.000 - 59 [v] gl 521 512 37 64 1.130 0.731 -0.769 -0.390 0.000 - 60 [o] gl 503 521 37 [none] 0.320 -0.267 -0.028 0.174 0.000 - 61 [o] gl 513 503 46 [none] 5.501 1.241 2.276 -4.851 0.000 - 62 [o] gl 522 505 32 [none] 3.158 -1.168 -1.282 2.639 0.000 - 63 [o] gl 512 522 32 [none] 0.187 0.024 -0.084 -0.166 0.000 - 64 [o] gl 521 512 59 [none] 0.894 0.578 -0.608 -0.308 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = F - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' -======================================================================== - Local variables: ------------------------------------------------------------------------- -sqrts* = 1.00000E+03 -sqrts_hat* => 1.00000E+03 -n_in* => 2 -n_out* => 22 -n_tot* => 24 -$process_id* => "pythia8_1_p1" -process_num_id* => [unknown integer] -sqme* => 5.20858E-02 -sqme_ref* => 5.20858E-02 -event_index* => 1 -event_weight* => 1.00000E+00 -event_weight_ref* => 1.00000E+00 -event_excess* => 0.00000E+00 ------------------------------------------------------------------------- - subevent: - 1 prt(i:11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.0000000E+00| 1) - 2 prt(i:-11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.0000000E+00| 2) - 3 prt(o:-2| 3.9608953E+02; 2.0834375E+02, 5.4527689E+01,-3.3242523E+02| 0.0000000E+00| 3) - 4 prt(o:21| 9.9802194E+00;-5.6251031E+00,-1.0932282E+00, 8.1711595E+00| 0.0000000E+00| 4) - 5 prt(o:21| 6.0264469E+01; 3.1236986E+01, 5.8874612E+00,-5.1199559E+01| 0.0000000E+00| 5) - 6 prt(o:21| 8.7008971E+00;-5.1521177E+00,-1.9407531E-01, 7.0088250E+00| 0.0000000E+00| 6) - 7 prt(o:21| 3.4571713E+01;-2.2801680E+01,-8.8023314E-02, 2.5986130E+01| 0.0000000E+00| 7) - 8 prt(o:21| 9.4100437E+00; 3.1952341E+00, 3.1659857E+00,-8.2653455E+00| 0.0000000E+00| 8) - 9 prt(o:21| 5.4951880E-01; 1.5738276E-01, 4.3698235E-01,-2.9368011E-01| 0.0000000E+00| 9) - 10 prt(o:21| 4.1957092E-01; 1.3414355E-02, 2.9469594E-01,-2.9835234E-01| 0.0000000E+00| 10) - 11 prt(o:21| 1.1672822E+01; 6.2381216E+00, 4.5893626E+00,-8.7337487E+00| 0.0000000E+00| 11) - 12 prt(o:21| 1.5564928E+01; 7.6241808E+00, 6.5496518E+00,-1.1884482E+01| 0.0000000E+00| 12) - 13 prt(o:2| 2.6773664E+02;-1.3592642E+02,-4.5154996E+01, 2.2620331E+02| 0.0000000E+00| 13) - 14 prt(o:21| 8.3645039E+01;-4.2654604E+01,-1.3353109E+01, 7.0701993E+01| 0.0000000E+00| 14) - 15 prt(o:21| 1.7575753E+00;-8.4663406E-01, 5.1930560E-01, 1.4500356E+00| 0.0000000E+00| 15) - 16 prt(o:21| 3.7636004E+00;-1.3945397E+00,-9.4745811E-01, 3.3648581E+00| 0.0000000E+00| 16) - 17 prt(o:21| 4.6017110E+01;-2.2577357E+01,-9.0950804E+00, 3.9052746E+01| 0.0000000E+00| 17) - 18 prt(o:21| 2.6850294E+01;-1.3647001E+01,-4.5635748E+00, 2.2668733E+01| 0.0000000E+00| 18) - 19 prt(o:21| 1.2946985E+01;-6.5918191E+00,-1.7558648E+00, 1.1004058E+01| 0.0000000E+00| 19) - 20 prt(o:21| 3.1986933E-01;-2.6670673E-01,-2.8027834E-02, 1.7435122E-01| 0.0000000E+00| 20) - 21 prt(o:21| 5.5005933E+00; 1.2407116E+00, 2.2763683E+00,-4.8513203E+00| 0.0000000E+00| 21) - 22 prt(o:21| 3.1579615E+00;-1.1676241E+00,-1.2824302E+00, 2.6390809E+00| 0.0000000E+00| 22) - 23 prt(o:21| 1.8700318E-01; 2.3996538E-02,-8.3517885E-02,-1.6558719E-01| 0.0000000E+00| 23) - 24 prt(o:21| 8.9361763E-01; 5.7783410E-01,-6.0811735E-01,-3.0798296E-01| 0.0000000E+00| 24) -======================================================================== -Contents of pythia8_1b.debug: -======================================================================== - Event #1 ------------------------------------------------------------------------- - Unweighted = T - Normalization = '1' - Helicity handling = drop - Keep correlations = F ------------------------------------------------------------------------- - Squared matrix el. (ref) = 5.04278E-02 - Squared matrix el. (prc) = 5.04278E-02 - Event weight (ref) = 1.00000E+00 - Event weight (prc) = 1.00000E+00 ------------------------------------------------------------------------- - Selected MCI group = 1 - Selected term = 1 - Selected channel = 1 ------------------------------------------------------------------------- - Passed selection = T - Reweighting factor = 1.00000E+00 - Analysis flag = T -======================================================================== - Event transform: trivial (hard process) ------------------------------------------------------------------------- - Associated process: 'pythia8_1_p1' - RNG Stream generator - Current position = [ - 1181672156.0, 918370603.0, 2351276331.0, - 709317015.0, 3565763956.0, 3526655229.0, - ] - Beginning substream = [ - 1257951883.0, 2124301545.0, 1723027666.0, - 2080453032.0, 1195684852.0, 1749773276.0, - ] - Initial stream = [ - 1257951883.0, 2124301545.0, 1723027666.0, - 2080453032.0, 1195684852.0, 1749773276.0, - ] - Number of tries = 1 ------------------------------------------------------------------------- - Particle set: ------------------------------------------------------------------------- - Particle 1 [i] f(11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 2 [i] f(-11) - E = 5.000000E+02 - P = 0.000000E+00 0.000000E+00 -5.000000E+02 - T = 0.000000000E+00 - Children: 3 4 - Particle 3 [o] f(2)c(1 ) - E = 5.000000E+02 - P = -2.459287E+02 -1.531956E+02 4.074926E+02 - T = 0.000000000E+00 - Parents: 1 2 - Particle 4 [o] f(-2)c(-1 ) - E = 5.000000E+02 - P = 2.459287E+02 1.531956E+02 -4.074926E+02 - T = 0.000000000E+00 - Parents: 1 2 -======================================================================== -======================================================================== - Event transform: shower ------------------------------------------------------------------------- - Associated process: 'pythia8_1_p1' - RNG Stream generator - Current position = [ - 1459724150.0, 1113883731.0, 3072361390.0, - 3768449865.0, 3588250432.0, 1148658053.0, - ] - Beginning substream = [ - 139826393.0, 1459724150.0, 1113883731.0, - 1552647665.0, 3768449865.0, 3588250432.0, - ] - Initial stream = [ - 139826393.0, 1459724150.0, 1113883731.0, - 1552647665.0, 3768449865.0, 3588250432.0, - ] - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [v] u 1 0 1-2 5-6 500.000 -245.929 -153.196 407.493 0.000 - 4 [v] ubar 0 1 1-2 7 500.000 245.929 153.196 -407.493 0.000 - 5 [v] u 502 0 3 11-12 344.576 -207.722 -77.184 263.868 0.000 - 6 [v] gl 501 502 3 8-9 161.319 -35.307 -74.206 138.820 0.000 - 7 [v] ubar 0 501 4 10 494.105 243.029 151.389 -402.688 0.000 - 8 [v] gl 503 502 6 13 158.228 -38.308 -70.448 136.403 0.000 - 9 [v] gl 501 503 6 16 5.140 4.009 -3.130 0.747 0.000 - 10 [v] ubar 0 501 7 14-15 492.056 242.021 150.762 -401.018 0.000 - 11 [v] u 504 0 5 26-27 237.408 -140.735 -50.037 184.533 0.000 - 12 [v] gl 502 504 5 20-21 108.763 -67.373 -27.857 80.710 0.000 - 13 [v] gl 503 502 8 17-18 156.634 -37.922 -69.738 135.028 0.000 - 14 [o] ubar 0 505 10 [none] 394.148 197.637 121.285 -318.720 0.000 - 15 [v] gl 505 501 10 35-36 98.047 44.493 29.392 -82.278 0.000 - 16 [v] gl 501 503 9 19 5.001 3.900 -3.045 0.727 0.000 - 17 [v] gl 506 502 13 22 37.981 -12.920 -15.262 32.291 0.000 - 18 [v] gl 503 506 13 32-33 119.037 -24.702 -54.710 102.793 0.000 - 19 [v] gl 501 503 16 34 4.616 3.600 -2.811 0.671 0.000 - 20 [v] gl 507 504 12 28 100.848 -61.585 -23.607 76.292 0.000 - 21 [v] gl 502 507 12 23-24 16.709 -8.780 -7.784 11.896 0.000 - 22 [v] gl 506 502 17 25 29.187 -9.929 -11.728 24.814 0.000 - 23 [v] gl 508 507 21 31 21.279 -9.233 -10.806 15.836 0.000 - 24 [v] gl 502 508 21 40 8.840 -4.109 -2.367 7.461 0.000 - 25 [o] gl 506 502 22 [none] 15.776 -5.367 -6.339 13.413 0.000 - 26 [v] u 509 0 11 59-60 190.135 -112.849 -41.917 147.171 0.000 - 27 [v] gl 504 509 11 61 77.331 -46.241 -15.156 60.101 0.000 - 28 [v] gl 507 504 20 29-30 70.790 -43.229 -16.571 53.553 0.000 - 29 [o] dbar 0 504 28 [none] 31.756 -20.332 -7.124 23.328 0.109 - 30 [v] d 507 0 28 49 40.002 -23.317 -9.939 30.945 0.109 - 31 [v] gl 508 507 23 38-39 20.311 -8.813 -10.314 15.116 0.000 - 32 [v] gl 510 506 18 67 110.925 -22.396 -51.834 95.478 0.000 - 33 [v] gl 503 510 18 46 8.203 -2.234 -2.932 7.328 0.000 - 34 [v] gl 501 503 19 37 4.525 3.529 -2.755 0.658 0.000 - 35 [v] gl 505 511 15 50-51 96.802 43.606 28.682 -81.526 0.000 - 36 [v] gl 511 501 15 43 1.384 0.996 0.624 -0.732 0.000 - 37 [v] gl 501 503 34 41-42 4.386 3.420 -2.670 0.637 0.000 - 38 [v] gl 512 507 31 47-48 16.278 -7.838 -7.566 12.096 0.000 - 39 [v] gl 508 512 31 55 6.340 -2.048 -3.366 4.967 0.000 - 40 [v] gl 502 508 24 53-54 6.532 -3.036 -1.749 5.513 0.000 - 41 [v] gl 513 503 37 44-45 1.729 1.689 -0.109 0.353 0.000 - 42 [v] gl 501 513 37 70 3.131 2.072 -2.347 0.034 0.000 - 43 [v] gl 511 501 36 52 0.910 0.655 0.410 -0.481 0.000 - 44 [v] gl 513 514 41 68-69 1.738 1.665 0.126 0.479 0.000 - 45 [o] gl 514 503 41 [none] 1.353 -0.347 -0.722 1.090 0.000 - 46 [v] gl 503 510 33 65-66 6.842 -1.863 -2.446 6.112 0.000 - 47 [o] d 512 0 38 [none] 10.129 -4.444 -4.425 7.948 0.109 - 48 [o] dbar 0 507 38 [none] 8.599 -4.823 -3.748 6.043 0.109 - 49 [o] d 507 0 30 [none] 37.553 -21.889 -9.332 29.050 0.109 - 50 [v] gl 505 515 35 73 93.008 42.259 27.433 -78.180 0.000 - 51 [v] gl 515 511 35 71-72 3.973 1.476 1.331 -3.441 0.000 - 52 [o] gl 511 501 43 [none] 0.731 0.526 0.329 -0.387 0.000 - 53 [v] gl 502 516 40 58 1.451 -0.104 -0.635 1.300 0.000 - 54 [v] gl 516 508 40 56-57 8.721 -4.108 -3.046 7.064 0.000 - 55 [o] gl 508 512 39 [none] 2.701 -0.872 -1.434 2.116 0.000 - 56 [o] gl 518 508 54 [none] 6.979 -3.177 -2.007 5.881 0.000 - 57 [o] gl 516 518 54 [none] 2.715 -1.000 -1.465 2.055 0.000 - 58 [o] gl 502 516 53 [none] 0.478 -0.034 -0.209 0.428 0.000 - 59 [o] u 519 0 26 [none] 116.385 -69.550 -25.558 89.750 0.000 - 60 [v] gl 509 519 26 64 85.007 -50.030 -18.565 66.170 0.000 - 61 [v] gl 504 509 27 62-63 66.074 -39.510 -12.950 51.352 0.000 - 62 [o] gl 504 520 61 [none] 20.320 -11.903 -3.780 16.029 0.000 - 63 [o] gl 520 509 61 [none] 79.097 -47.231 -16.452 61.277 0.000 - 64 [o] gl 509 519 60 [none] 51.664 -30.406 -11.283 40.216 0.000 - 65 [o] u 503 0 46 [none] 2.618 -0.825 -0.999 2.252 0.109 - 66 [o] ubar 0 510 46 [none] 16.051 -3.427 -6.974 14.041 0.109 - 67 [o] gl 510 506 32 [none] 99.097 -20.008 -46.307 85.297 0.000 - 68 [o] gl 523 514 44 [none] 1.384 1.292 0.247 0.429 0.000 - 69 [o] gl 513 523 44 [none] 1.343 1.028 -0.862 0.061 0.000 - 70 [o] gl 501 513 42 [none] 2.142 1.418 -1.605 0.023 0.000 - 71 [o] gl 524 511 51 [none] 7.731 3.180 2.673 -6.520 0.000 - 72 [o] gl 515 524 51 [none] 30.806 14.000 8.852 -25.974 0.000 - 73 [o] gl 505 515 50 [none] 58.444 26.555 17.238 -49.126 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = T - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' -======================================================================== -======================================================================== - Event transform: hadronization ------------------------------------------------------------------------- - Associated process: 'pythia8_1_p1' - RNG Stream generator - Current position = [ - 521427311.0, 2587893192.0, 1737772007.0, - 1186036700.0, 83139990.0, 4025248731.0, - ] - Beginning substream = [ - 1712487803.0, 521427311.0, 2587893192.0, - 2004959789.0, 1186036700.0, 83139990.0, - ] - Initial stream = [ - 1712487803.0, 521427311.0, 2587893192.0, - 2004959789.0, 1186036700.0, 83139990.0, - ] - Number of tries = 1 - Particle set: ------------------------------------------------------------------------- - Nr Status Flavor Col ACol Parents Children P(0) P(1) P(2) P(3) P^2 - 1 [i] e- 0 0 [none] 3-4 500.000 0.000 0.000 500.000 0.000 - 2 [i] e+ 0 0 [none] 3-4 500.000 0.000 0.000 -500.000 0.000 - 3 [v] ubar 0 505 1-2 73 394.148 197.637 121.285 -318.720 0.000 - 4 [v] gl 506 502 1-2 53 15.776 -5.367 -6.339 13.413 0.000 - 5 [v] dbar 0 504 1-2 41 31.756 -20.332 -7.124 23.328 0.109 - 6 [v] gl 514 503 1-2 28 1.353 -0.347 -0.722 1.090 0.000 - 7 [v] d 512 0 1-2 49 10.129 -4.444 -4.425 7.948 0.109 - 8 [v] dbar 0 507 1-2 33 8.599 -4.823 -3.748 6.043 0.109 - 9 [v] d 507 0 1-2 32 37.553 -21.889 -9.332 29.050 0.109 - 10 [v] gl 511 501 1-2 70 0.731 0.526 0.329 -0.387 0.000 - 11 [v] gl 508 512 1-2 50 2.701 -0.872 -1.434 2.116 0.000 - 12 [v] gl 518 508 1-2 51 6.979 -3.177 -2.007 5.881 0.000 - 13 [v] gl 516 518 1-2 31 2.715 -1.000 -1.465 2.055 0.000 - 14 [v] gl 502 516 1-2 31 0.478 -0.034 -0.209 0.428 0.000 - 15 [v] u 519 0 1-2 37 116.385 -69.550 -25.558 89.750 0.000 - 16 [v] gl 504 520 1-2 40 20.320 -11.903 -3.780 16.029 0.000 - 17 [v] gl 520 509 1-2 39 79.097 -47.231 -16.452 61.277 0.000 - 18 [v] gl 509 519 1-2 38 51.664 -30.406 -11.283 40.216 0.000 - 19 [v] u 503 0 1-2 28 2.618 -0.825 -0.999 2.252 0.109 - 20 [v] ubar 0 510 1-2 55 16.051 -3.427 -6.974 14.041 0.109 - 21 [v] gl 510 506 1-2 54 99.097 -20.008 -46.307 85.297 0.000 - 22 [v] gl 523 514 1-2 68 1.384 1.292 0.247 0.429 0.000 - 23 [v] gl 513 523 1-2 29 1.343 1.028 -0.862 0.061 0.000 - 24 [v] gl 501 513 1-2 29 2.142 1.418 -1.605 0.023 0.000 - 25 [v] gl 524 511 1-2 71 7.731 3.180 2.673 -6.520 0.000 - 26 [v] gl 515 524 1-2 30 30.806 14.000 8.852 -25.974 0.000 - 27 [v] gl 505 515 1-2 30 58.444 26.555 17.238 -49.126 0.000 - 28 [v] u 1014 0 6,19 67 3.971 -1.172 -1.721 3.341 0.270 - 29 [v] gl 1001 1023 23-24 69 3.485 2.446 -2.468 0.084 0.068 - 30 [v] gl 1005 1024 26-27 72 89.250 40.554 26.090 -75.101 0.116 - 31 [v] gl 1002 1018 13-14 52 3.193 -1.035 -1.674 2.484 0.153 - 32 [v] d 507 0 9 34-36 37.553 -21.889 -9.332 29.050 0.109 - 33 [v] dbar 0 507 8 34-36 8.599 -4.823 -3.748 6.043 0.109 - 34 [r] omega 0 0 32-33 121-123 28.478 -16.323 -7.136 22.194 1.027 - 35 [r] k0 0 0 32-33 95 13.354 -7.601 -4.246 10.114 0.248 - 36 [r] k0 0 0 32-33 96 4.319 -2.787 -1.698 2.785 0.248 - 37 [v] u 519 0 15 42-48 116.385 -69.550 -25.558 89.750 0.000 - 38 [v] gl 509 519 18 42-48 51.664 -30.406 -11.283 40.216 0.000 - 39 [v] gl 520 509 17 42-48 79.097 -47.231 -16.452 61.277 0.000 - 40 [v] gl 504 520 16 42-48 20.320 -11.903 -3.780 16.029 0.000 - 41 [v] dbar 0 504 5 42-48 31.756 -20.332 -7.124 23.328 0.109 - 42 [o] pip 0 0 37-41 [none] 10.114 -6.098 -2.307 7.730 0.019 - 43 [o] pim 0 0 37-41 [none] 84.040 -49.726 -18.274 65.239 0.019 - 44 [r] pi0 0 0 37-41 124-125 54.428 -32.908 -11.005 41.932 0.018 - 45 [r] omega 0 0 37-41 126-128 62.091 -37.451 -13.997 47.499 0.603 - 46 [r] pi0 0 0 37-41 129-130 47.461 -27.835 -9.653 37.210 0.018 - 47 [r] rhop 0 0 37-41 97-98 15.196 -9.373 -3.312 11.475 0.440 - 48 [r] omega 0 0 37-41 131-133 25.892 -16.031 -5.649 19.516 0.656 - 49 [v] d 512 0 7 56-66 10.129 -4.444 -4.425 7.948 0.109 - 50 [v] gl 508 512 11 56-66 2.701 -0.872 -1.434 2.116 0.000 - 51 [v] gl 518 508 12 56-66 6.979 -3.177 -2.007 5.881 0.000 - 52 [v] gl 1002 1018 31 56-66 3.193 -1.035 -1.674 2.484 0.153 - 53 [v] gl 506 502 4 56-66 15.776 -5.367 -6.339 13.413 0.000 - 54 [v] gl 510 506 21 56-66 99.097 -20.008 -46.307 85.297 0.000 - 55 [v] ubar 0 510 20 56-66 16.051 -3.427 -6.974 14.041 0.109 - 56 [r] pi0 0 0 49-55 134-135 1.139 -0.588 -0.440 0.860 0.018 - 57 [o] pim 0 0 49-55 [none] 4.390 -1.654 -2.057 3.505 0.019 - 58 [o] pip 0 0 49-55 [none] 2.736 -1.577 -0.951 2.019 0.019 - 59 [o] pim 0 0 49-55 [none] 14.824 -6.078 -5.688 12.266 0.019 - 60 [o] pip 0 0 49-55 [none] 6.539 -1.950 -2.561 5.690 0.019 - 61 [r] kstar0 0 0 49-55 99-100 7.767 -1.939 -3.916 6.350 0.901 - 62 [r] kstarm 0 0 49-55 101-102 42.549 -9.087 -19.341 36.785 0.650 - 63 [r] rhop 0 0 49-55 103-104 12.677 -2.806 -6.099 10.728 0.537 - 64 [o] pim 0 0 49-55 [none] 5.452 -1.177 -2.388 4.755 0.019 - 65 [o] pip 0 0 49-55 [none] 8.687 -1.865 -3.655 7.656 0.019 - 66 [o] pim 0 0 49-55 [none] 47.166 -9.607 -22.062 40.566 0.019 - 67 [v] u 1014 0 28 74-94 3.971 -1.172 -1.721 3.341 0.270 - 68 [v] gl 523 514 22 74-94 1.384 1.292 0.247 0.429 0.000 - 69 [v] gl 1001 1023 29 74-94 3.485 2.446 -2.468 0.084 0.068 - 70 [v] gl 511 501 10 74-94 0.731 0.526 0.329 -0.387 0.000 - 71 [v] gl 524 511 25 74-94 7.731 3.180 2.673 -6.520 0.000 - 72 [v] gl 1005 1024 30 74-94 89.250 40.554 26.090 -75.101 0.116 - 73 [v] ubar 0 505 3 74-94 394.148 197.637 121.285 -318.720 0.000 - 74 [o] pip 0 0 67-73 [none] 0.875 0.338 -0.184 0.774 0.019 - 75 [r] etaprim 0 0 67-73 136-137 3.199 -0.573 -1.325 2.689 0.917 - 76 [r] k0 0 0 67-73 105 0.686 0.305 -0.302 -0.198 0.248 - 77 [o] km 0 0 67-73 [none] 0.994 0.607 -0.244 0.562 0.244 - 78 [o] pip 0 0 67-73 [none] 0.728 0.163 -0.664 -0.209 0.019 - 79 [o] pim 0 0 67-73 [none] 0.470 0.434 -0.103 0.047 0.019 - 80 [o] pip 0 0 67-73 [none] 0.188 -0.041 0.090 0.077 0.019 - 81 [r] Delta0 0 0 67-73 106-107 1.676 1.002 -0.403 -0.446 1.442 - 82 [r] rhom 0 0 67-73 108-109 1.439 0.734 0.359 -0.898 0.596 - 83 [r] Deltaba 0 0 67-73 110-111 4.093 2.242 0.802 -3.069 1.666 - 84 [r] k0 0 0 67-73 112 1.491 0.402 0.442 -1.272 0.248 - 85 [r] k0 0 0 67-73 113 36.983 17.160 10.544 -31.013 0.248 - 86 [o] pim 0 0 67-73 [none] 3.332 1.412 1.278 -2.730 0.019 - 87 [r] rho0 0 0 67-73 114-115 6.985 3.317 2.167 -5.705 0.546 - 88 [o] pip 0 0 67-73 [none] 46.895 21.610 13.650 -39.317 0.019 - 89 [r] rho0 0 0 67-73 116-117 38.716 19.439 12.146 -31.192 0.557 - 90 [o] pim 0 0 67-73 [none] 13.276 6.215 4.271 -10.926 0.019 - 91 [r] eta 0 0 67-73 138-140 42.684 21.185 13.092 -34.661 0.300 - 92 [r] rho0 0 0 67-73 118-119 127.042 63.779 38.927 -102.742 0.756 - 93 [o] pip 0 0 67-73 [none] 118.442 59.490 36.421 -95.724 0.019 - 94 [o] pim 0 0 67-73 [none] 50.506 25.244 15.470 -40.918 0.019 - 95 [r] kS0 0 0 35 141-142 13.354 -7.601 -4.246 10.114 0.248 - 96 [o] kL0 0 0 36 [none] 4.319 -2.787 -1.698 2.785 0.248 - 97 [o] pip 0 0 47 [none] 8.168 -5.029 -1.494 6.259 0.019 - 98 [r] pi0 0 0 47 143-144 7.028 -4.344 -1.818 5.215 0.018 - 99 [o] kp 0 0 61 [none] 3.124 -0.574 -1.467 2.651 0.244 - 100 [o] pim 0 0 61 [none] 4.643 -1.365 -2.449 3.699 0.019 - 101 [r] k0 0 0 62 120 32.352 -6.705 -14.742 28.002 0.248 - 102 [o] pim 0 0 62 [none] 10.196 -2.382 -4.598 8.782 0.019 - 103 [o] pip 0 0 63 [none] 7.027 -1.620 -3.087 6.100 0.019 - 104 [r] pi0 0 0 63 145-146 5.650 -1.186 -3.012 4.628 0.018 - 105 [r] kS0 0 0 76 147-148 0.686 0.305 -0.302 -0.198 0.248 - 106 [o] n 0 0 81 [none] 1.183 0.668 -0.185 -0.191 0.883 - 107 [r] pi0 0 0 81 149-150 0.493 0.334 -0.219 -0.255 0.018 - 108 [o] pim 0 0 82 [none] 1.282 0.744 0.342 -0.976 0.019 - 109 [r] pi0 0 0 82 151-152 0.157 -0.010 0.018 0.078 0.018 - 110 [o] nbar 0 0 83 [none] 3.280 1.982 0.778 -2.312 0.883 - 111 [o] pip 0 0 83 [none] 0.813 0.261 0.024 -0.757 0.019 - 112 [o] kL0 0 0 84 [none] 1.491 0.402 0.442 -1.272 0.248 - 113 [r] kS0 0 0 85 153-154 36.983 17.160 10.544 -31.013 0.248 - 114 [o] pip 0 0 87 [none] 3.251 1.304 1.246 -2.701 0.019 - 115 [o] pim 0 0 87 [none] 3.734 2.013 0.920 -3.004 0.019 - 116 [o] pip 0 0 89 [none] 13.153 6.325 4.223 -10.731 0.019 - 117 [o] pim 0 0 89 [none] 25.562 13.114 7.923 -20.461 0.019 - 118 [o] pip 0 0 92 [none] 42.115 21.117 12.551 -34.208 0.019 - 119 [o] pim 0 0 92 [none] 84.927 42.662 26.376 -68.534 0.019 - 120 [o] kL0 0 0 101 [none] 32.352 -6.705 -14.742 28.002 0.248 - 121 [o] pip 0 0 34 [none] 3.767 -2.312 -0.721 2.882 0.019 - 122 [o] pim 0 0 34 [none] 15.519 -8.669 -4.031 12.223 0.019 - 123 [r] pi0 0 0 34 155-156 9.192 -5.342 -2.384 7.089 0.018 - 124 [o] A 0 0 44 [none] 34.597 -20.966 -6.962 26.625 0.000 - 125 [o] A 0 0 44 [none] 19.831 -11.943 -4.044 15.307 0.000 - 126 [o] pip 0 0 45 [none] 3.861 -2.288 -0.938 2.961 0.019 - 127 [o] pim 0 0 45 [none] 34.953 -21.060 -7.717 26.807 0.019 - 128 [r] pi0 0 0 45 157-158 23.277 -14.102 -5.342 17.731 0.018 - 129 [o] A 0 0 46 [none] 44.462 -26.068 -9.014 34.872 0.000 - 130 [o] A 0 0 46 [none] 2.999 -1.767 -0.639 2.337 0.000 - 131 [o] pip 0 0 48 [none] 12.538 -7.753 -2.536 9.521 0.019 - 132 [o] pim 0 0 48 [none] 10.215 -6.450 -2.339 7.567 0.019 - 133 [r] pi0 0 0 48 159-160 3.139 -1.828 -0.775 2.428 0.018 - 134 [o] A 0 0 56 [none] 0.731 -0.434 -0.265 0.525 0.000 - 135 [o] A 0 0 56 [none] 0.409 -0.155 -0.175 0.335 0.000 - 136 [r] rho0 0 0 75 161-162 2.601 -0.505 -1.279 2.097 0.478 - 137 [o] A 0 0 75 [none] 0.597 -0.069 -0.046 0.592 0.000 - 138 [r] pi0 0 0 91 163-164 13.515 6.685 4.240 -10.953 0.018 - 139 [r] pi0 0 0 91 165-166 18.068 9.081 5.441 -14.642 0.018 - 140 [r] pi0 0 0 91 167-168 11.101 5.420 3.411 -9.066 0.018 - 141 [r] pi0 0 0 95 169-170 12.120 -6.897 -3.903 9.169 0.018 - 142 [r] pi0 0 0 95 171-172 1.235 -0.704 -0.343 0.945 0.018 - 143 [o] A 0 0 98 [none] 0.642 -0.426 -0.166 0.451 0.000 - 144 [o] A 0 0 98 [none] 6.386 -3.918 -1.652 4.765 0.000 - 145 [o] A 0 0 104 [none] 4.772 -0.991 -2.506 3.938 0.000 - 146 [o] A 0 0 104 [none] 0.878 -0.195 -0.506 0.691 0.000 - 147 [r] pi0 0 0 105 173-174 0.317 0.183 -0.195 0.105 0.018 - 148 [r] pi0 0 0 105 175-176 0.369 0.122 -0.107 -0.303 0.018 - 149 [o] A 0 0 107 [none] 0.424 0.325 -0.160 -0.220 0.000 - 150 [o] A 0 0 107 [none] 0.068 0.009 -0.058 -0.035 0.000 - 151 [o] A 0 0 109 [none] 0.119 -0.014 0.025 0.115 0.000 - 152 [o] A 0 0 109 [none] 0.038 0.004 -0.007 -0.037 0.000 - 153 [r] pi0 0 0 113 177-178 27.645 12.950 7.954 -23.092 0.018 - 154 [r] pi0 0 0 113 179-180 9.338 4.210 2.590 -7.921 0.018 - 155 [o] A 0 0 123 [none] 7.718 -4.523 -2.009 5.922 0.000 - 156 [o] A 0 0 123 [none] 1.474 -0.818 -0.375 1.168 0.000 - 157 [o] A 0 0 128 [none] 22.187 -13.420 -5.103 16.915 0.000 - 158 [o] A 0 0 128 [none] 1.090 -0.682 -0.239 0.815 0.000 - 159 [o] A 0 0 133 [none] 1.252 -0.727 -0.372 0.949 0.000 - 160 [o] A 0 0 133 [none] 1.887 -1.101 -0.403 1.479 0.000 - 161 [o] pip 0 0 136 [none] 0.242 0.085 -0.115 0.136 0.019 - 162 [o] pim 0 0 136 [none] 2.360 -0.590 -1.164 1.961 0.019 - 163 [o] A 0 0 138 [none] 5.461 2.734 1.758 -4.389 0.000 - 164 [o] A 0 0 138 [none] 8.054 3.951 2.482 -6.564 0.000 - 165 [o] A 0 0 139 [none] 10.687 5.423 3.182 -8.641 0.000 - 166 [o] A 0 0 139 [none] 7.382 3.657 2.259 -6.001 0.000 - 167 [o] A 0 0 140 [none] 4.948 2.389 1.581 -4.034 0.000 - 168 [o] A 0 0 140 [none] 6.153 3.031 1.830 -5.032 0.000 - 169 [o] A 0 0 141 [none] 2.675 -1.560 -0.881 1.987 0.000 - 170 [o] A 0 0 141 [none] 9.445 -5.337 -3.022 7.182 0.000 - 171 [o] A 0 0 142 [none] 0.240 -0.106 -0.110 0.186 0.000 - 172 [o] A 0 0 142 [none] 0.994 -0.599 -0.233 0.759 0.000 - 173 [o] A 0 0 147 [none] 0.235 0.189 -0.125 0.062 0.000 - 174 [o] A 0 0 147 [none] 0.082 -0.006 -0.070 0.043 0.000 - 175 [o] A 0 0 148 [none] 0.191 0.076 0.008 -0.175 0.000 - 176 [o] A 0 0 148 [none] 0.178 0.046 -0.115 -0.127 0.000 - 177 [o] A 0 0 153 [none] 18.676 8.708 5.339 -15.635 0.000 - 178 [o] A 0 0 153 [none] 8.970 4.242 2.615 -7.458 0.000 - 179 [o] A 0 0 154 [none] 2.290 0.980 0.643 -1.967 0.000 - 180 [o] A 0 0 154 [none] 7.048 3.230 1.947 -5.954 0.000 ------------------------------------------------------------------------- -Sum of incoming momenta: p(0:3) = 1000.000 0.000 0.000 0.000 -Sum of beam remnant momenta: p(0:3) = 0.000 0.000 0.000 0.000 -Sum of outgoing momenta: p(0:3) = 1000.000 0.000 0.000 0.000 ------------------------------------------------------------------------- - Shower settings: ------------------------------------------------------------------------- - Master switches: - ps_isr_active = F - ps_fsr_active = T - ps_tau_dec = F - muli_active = F - hadronization_active = T - General settings: - method = PYTHIA8 - shower_verbose = F - ps_mass_cutoff = 1.000000000000E+00 - ps_max_n_flavors = 5 - [ISR off] - FSR settings: - ps_fsr_lambda = 2.900000000000E-01 - ps_fsr_alphas_running = T - Matching Settings: - mlm_matching = F - ckkw_matching = F - PYTHIA6 specific settings: - ps_PYTHIA_PYGIVE = '' - PYTHIA8 specific settings: - ps_PYTHIA8_config = '' - ps_PYTHIA8_config_file = '' ------------------------------------------------------------------------- - Hadronization settings: ------------------------------------------------------------------------- - Master switches: - active = T - General settings: - hadron_method = PYTHIA8 - pT generation parameters - enhanced_fraction = 1.000000000000E-02 - enhanced_width = 2.000000000000E+00 -======================================================================== - Local variables: ------------------------------------------------------------------------- -sqrts* = 1.00000E+03 -sqrts_hat* => 1.00000E+03 -n_in* => 2 -n_out* => 84 -n_tot* => 86 -$process_id* => "pythia8_1_p1" -process_num_id* => [unknown integer] -sqme* => 5.04278E-02 -sqme_ref* => 5.04278E-02 -event_index* => 1 -event_weight* => 1.00000E+00 -event_weight_ref* => 1.00000E+00 -event_excess* => 0.00000E+00 ------------------------------------------------------------------------- - subevent: - 1 prt(i:11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00,-5.0000000E+02| 0.0000000E+00| 1) - 2 prt(i:-11|-5.0000000E+02; 0.0000000E+00, 0.0000000E+00, 5.0000000E+02| 0.0000000E+00| 2) - 3 prt(o:211| 1.0113590E+01;-6.0979292E+00,-2.3068828E+00, 7.7303800E+00| 1.9479785E-02| 3) - 4 prt(o:-211| 8.4039902E+01;-4.9725991E+01,-1.8273756E+01, 6.5238649E+01| 1.9479785E-02| 4) - 5 prt(o:-211| 4.3899719E+00;-1.6539083E+00,-2.0572400E+00, 3.5049572E+00| 1.9479785E-02| 5) - 6 prt(o:211| 2.7363905E+00;-1.5772713E+00,-9.5147913E-01, 2.0187263E+00| 1.9479785E-02| 6) - 7 prt(o:-211| 1.4824310E+01;-6.0780011E+00,-5.6881380E+00, 1.2265548E+01| 1.9479785E-02| 7) - 8 prt(o:211| 6.5388047E+00;-1.9503909E+00,-2.5613464E+00, 5.6896368E+00| 1.9479785E-02| 8) - 9 prt(o:-211| 5.4515287E+00;-1.1773822E+00,-2.3883897E+00, 4.7548976E+00| 1.9479785E-02| 9) - 10 prt(o:211| 8.6870902E+00;-1.8646192E+00,-3.6554241E+00, 7.6555291E+00| 1.9479785E-02| 10) - 11 prt(o:-211| 4.7166238E+01;-9.6071061E+00,-2.2061559E+01, 4.0566311E+01| 1.9479785E-02| 11) - 12 prt(o:211| 8.7542410E-01; 3.3813017E-01,-1.8410890E-01, 7.7373088E-01| 1.9479785E-02| 12) - 13 prt(o:-321| 9.9362455E-01; 6.0668187E-01,-2.4436729E-01, 5.6195333E-01| 2.4371994E-01| 13) - 14 prt(o:211| 7.2799291E-01; 1.6254703E-01,-6.6369766E-01,-2.0875289E-01| 1.9479785E-02| 14) - 15 prt(o:-211| 4.6976377E-01; 4.3411628E-01,-1.0282743E-01, 4.6559518E-02| 1.9479785E-02| 15) - 16 prt(o:211| 1.8772946E-01;-4.0912859E-02, 9.0482963E-02, 7.6821471E-02| 1.9479785E-02| 16) - 17 prt(o:-211| 3.3321947E+00; 1.4123984E+00, 1.2784484E+00,-2.7303374E+00| 1.9479785E-02| 17) - 18 prt(o:211| 4.6895496E+01; 2.1609917E+01, 1.3650255E+01,-3.9317300E+01| 1.9479785E-02| 18) - 19 prt(o:-211| 1.3276496E+01; 6.2150233E+00, 4.2711561E+00,-1.0925959E+01| 1.9479785E-02| 19) - 20 prt(o:211| 1.1844215E+02; 5.9489636E+01, 3.6421176E+01,-9.5723580E+01| 1.9479785E-02| 20) - 21 prt(o:-211| 5.0506255E+01; 2.5243810E+01, 1.5470435E+01,-4.0917943E+01| 1.9479785E-02| 21) - 22 prt(o:130| 4.3191353E+00;-2.7871461E+00,-1.6980484E+00, 2.7849170E+00| 2.4761571E-01| 22) - 23 prt(o:211| 8.1681659E+00;-5.0288077E+00,-1.4935747E+00, 6.2593755E+00| 1.9479785E-02| 23) - 24 prt(o:321| 3.1235191E+00;-5.7448239E-01,-1.4674577E+00, 2.6512619E+00| 2.4371994E-01| 24) - 25 prt(o:-211| 4.6433642E+00;-1.3646400E+00,-2.4485153E+00, 3.6991731E+00| 1.9479785E-02| 25) - 26 prt(o:-211| 1.0196417E+01;-2.3820963E+00,-4.5981725E+00, 8.7823608E+00| 1.9479785E-02| 26) - 27 prt(o:211| 7.0270768E+00;-1.6198427E+00,-3.0869827E+00, 6.0997521E+00| 1.9479785E-02| 27) - 28 prt(o:2112| 1.1830511E+00; 6.6793443E-01,-1.8478258E-01,-1.9114703E-01| 8.8279178E-01| 28) - 29 prt(o:-211| 1.2816533E+00; 7.4382158E-01, 3.4165614E-01,-9.7629707E-01| 1.9479785E-02| 29) - 30 prt(o:-2112| 3.2798944E+00; 1.9816153E+00, 7.7750790E-01,-2.3116222E+00| 8.8279178E-01| 30) - 31 prt(o:211| 8.1345963E-01; 2.6057901E-01, 2.4338299E-02,-7.5745826E-01| 1.9479785E-02| 31) - 32 prt(o:130| 1.4910003E+00; 4.0230525E-01, 4.4220872E-01,-1.2720330E+00| 2.4761571E-01| 32) - 33 prt(o:211| 3.2508235E+00; 1.3038623E+00, 1.2462409E+00,-2.7009628E+00| 1.9479785E-02| 33) - 34 prt(o:-211| 3.7337820E+00; 2.0131964E+00, 9.2034417E-01,-3.0036070E+00| 1.9479785E-02| 34) - 35 prt(o:211| 1.3153348E+01; 6.3246260E+00, 4.2231403E+00,-1.0731043E+01| 1.9479785E-02| 35) - 36 prt(o:-211| 2.5562326E+01; 1.3114208E+01, 7.9229234E+00,-2.0461130E+01| 1.9479785E-02| 36) - 37 prt(o:211| 4.2114878E+01; 2.1116966E+01, 1.2550599E+01,-3.4208182E+01| 1.9479785E-02| 37) - 38 prt(o:-211| 8.4927346E+01; 4.2662189E+01, 2.6376010E+01,-6.8533775E+01| 1.9479785E-02| 38) - 39 prt(o:130| 3.2352477E+01;-6.7049323E+00,-1.4742434E+01, 2.8002494E+01| 2.4761571E-01| 39) - 40 prt(o:211| 3.7672329E+00;-2.3120513E+00,-7.2146021E-01, 2.8820962E+00| 1.9479785E-02| 40) - 41 prt(o:-211| 1.5518609E+01;-8.6690195E+00,-4.0314266E+00, 1.2223070E+01| 1.9479785E-02| 41) - 42 prt(o:22| 3.4596799E+01;-2.0965690E+01,-6.9618312E+00, 2.6625387E+01| 0.0000000E+00| 42) - 43 prt(o:22| 1.9831211E+01;-1.1942722E+01,-4.0435328E+00, 1.5306801E+01| 0.0000000E+00| 43) - 44 prt(o:211| 3.8606340E+00;-2.2883098E+00,-9.3758570E-01, 2.9613488E+00| 1.9479785E-02| 44) - 45 prt(o:-211| 3.4953319E+01;-2.1060447E+01,-7.7168172E+00, 2.6807151E+01| 1.9479785E-02| 45) - 46 prt(o:22| 4.4462182E+01;-2.6068419E+01,-9.0140475E+00, 3.4872198E+01| 0.0000000E+00| 46) - 47 prt(o:22| 2.9987380E+00;-1.7667372E+00,-6.3864935E-01, 2.3373481E+00| 0.0000000E+00| 47) - 48 prt(o:211| 1.2538122E+01;-7.7533727E+00,-2.5356655E+00, 9.5205374E+00| 1.9479785E-02| 48) - 49 prt(o:-211| 1.0215289E+01;-6.4496085E+00,-2.3390549E+00, 7.5672994E+00| 1.9479785E-02| 49) - 50 prt(o:22| 7.3072686E-01;-4.3360547E-01,-2.6498317E-01, 5.2510185E-01| 0.0000000E+00| 50) - 51 prt(o:22| 4.0867001E-01;-1.5459155E-01,-1.7524614E-01, 3.3526322E-01| 0.0000000E+00| 51) - 52 prt(o:22| 5.9728587E-01;-6.8595735E-02,-4.5978371E-02, 5.9154968E-01| 0.0000000E+00| 52) - 53 prt(o:22| 6.4194690E-01;-4.2596364E-01,-1.6611101E-01, 4.5061949E-01| 0.0000000E+00| 53) - 54 prt(o:22| 6.3863341E+00;-3.9184141E+00,-1.6521880E+00, 4.7646164E+00| 0.0000000E+00| 54) - 55 prt(o:22| 4.7715117E+00;-9.9139040E-01,-2.5058248E+00, 3.9376784E+00| 0.0000000E+00| 55) - 56 prt(o:22| 8.7832420E-01;-1.9507881E-01,-5.0631084E-01, 6.9068588E-01| 0.0000000E+00| 56) - 57 prt(o:22| 4.2444068E-01; 3.2540992E-01,-1.6033508E-01,-2.2034277E-01| 0.0000000E+00| 57) - 58 prt(o:22| 6.8348643E-02; 8.9729238E-03,-5.8181619E-02,-3.4726400E-02| 0.0000000E+00| 58) - 59 prt(o:22| 1.1898178E-01;-1.4155885E-02, 2.5167306E-02, 1.1542479E-01| 0.0000000E+00| 59) - 60 prt(o:22| 3.8285723E-02; 4.2381727E-03,-7.4733211E-03,-3.7309301E-02| 0.0000000E+00| 60) - 61 prt(o:22| 7.7177196E+00;-4.5234388E+00,-2.0085654E+00, 5.9217701E+00| 0.0000000E+00| 61) - 62 prt(o:22| 1.4743379E+00;-8.1844573E-01,-3.7499908E-01, 1.1675592E+00| 0.0000000E+00| 62) - 63 prt(o:22| 2.2187128E+01;-1.3420243E+01,-5.1030500E+00, 1.6915218E+01| 0.0000000E+00| 63) - 64 prt(o:22| 1.0897363E+00;-6.8215241E-01,-2.3925294E-01, 8.1544544E-01| 0.0000000E+00| 64) - 65 prt(o:22| 1.2517601E+00;-7.2711018E-01,-3.7205485E-01, 9.4857227E-01| 0.0000000E+00| 65) - 66 prt(o:22| 1.8871889E+00;-1.1006150E+00,-4.0268162E-01, 1.4791808E+00| 0.0000000E+00| 66) - 67 prt(o:211| 2.4165378E-01; 8.4762311E-02,-1.1492570E-01, 1.3610363E-01| 1.9479785E-02| 67) - 68 prt(o:-211| 2.3597218E+00;-5.8954215E-01,-1.1638755E+00, 1.9612855E+00| 1.9479785E-02| 68) - 69 prt(o:22| 5.4613564E+00; 2.7335823E+00, 1.7578398E+00,-4.3890706E+00| 0.0000000E+00| 69) - 70 prt(o:22| 8.0536453E+00; 3.9510421E+00, 2.4824818E+00,-6.5641263E+00| 0.0000000E+00| 70) - 71 prt(o:22| 1.0686918E+01; 5.4233409E+00, 3.1822214E+00,-8.6412414E+00| 0.0000000E+00| 71) - 72 prt(o:22| 7.3815469E+00; 3.6573540E+00, 2.2588351E+00,-6.0007216E+00| 0.0000000E+00| 72) - 73 prt(o:22| 4.9479844E+00; 2.3888328E+00, 1.5814628E+00,-4.0342289E+00| 0.0000000E+00| 73) - 74 prt(o:22| 6.1525310E+00; 3.0309293E+00, 1.8295406E+00,-5.0318870E+00| 0.0000000E+00| 74) - 75 prt(o:22| 2.6749393E+00;-1.5596613E+00,-8.8067864E-01, 1.9867465E+00| 0.0000000E+00| 75) - 76 prt(o:22| 9.4445911E+00;-5.3373987E+00,-3.0219016E+00, 7.1819626E+00| 0.0000000E+00| 76) - 77 prt(o:22| 2.4046111E-01;-1.0578065E-01,-1.1001694E-01, 1.8581784E-01| 0.0000000E+00| 77) - 78 prt(o:22| 9.9446756E-01;-5.9859802E-01,-2.3295083E-01, 7.5919697E-01| 0.0000000E+00| 78) - 79 prt(o:22| 2.3462851E-01; 1.8882524E-01,-1.2473090E-01, 6.1949718E-02| 0.0000000E+00| 79) - 80 prt(o:22| 8.2321157E-02;-6.2573286E-03,-6.9993308E-02, 4.2878382E-02| 0.0000000E+00| 80) - 81 prt(o:22| 1.9122342E-01; 7.6083575E-02, 8.2167141E-03,-1.7524318E-01| 0.0000000E+00| 81) - 82 prt(o:22| 1.7775249E-01; 4.5929077E-02,-1.1509604E-01,-1.2743379E-01| 0.0000000E+00| 82) - 83 prt(o:22| 1.8675538E+01; 8.7078539E+00, 5.3394203E+00,-1.5634564E+01| 0.0000000E+00| 83) - 84 prt(o:22| 8.9695084E+00; 4.2422662E+00, 2.6146684E+00,-7.4577991E+00| 0.0000000E+00| 84) - 85 prt(o:22| 2.2898065E+00; 9.8030452E-01, 6.4268399E-01,-1.9670216E+00| 0.0000000E+00| 85) - 86 prt(o:22| 7.0478755E+00; 3.2295846E+00, 1.9472010E+00,-5.9540524E+00| 0.0000000E+00| 86) -======================================================================== Index: trunk/share/tests/Makefile.am =================================================================== --- trunk/share/tests/Makefile.am (revision 8850) +++ trunk/share/tests/Makefile.am (revision 8851) @@ -1,1634 +1,1636 @@ ## Makefile.am -- Makefile for WHIZARD tests ## ## Process this file with automake to produce Makefile.in ## ######################################################################## # # Copyright (C) 1999-2022 by # Wolfgang Kilian # Thorsten Ohl # Juergen Reuter # with contributions from # cf. main AUTHORS file # # WHIZARD is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # WHIZARD is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # ######################################################################## EXTRA_DIST = \ $(TESTSUITE_MACROS) $(TESTSUITES_M4) $(TESTSUITES_SIN) \ $(TESTSUITE_TOOLS) \ $(REF_OUTPUT_FILES) \ cascades2_1.fds \ cascades2_2.fds \ cascades2_lexer_1.fds \ ext_tests_nmssm/nmssm.slha \ functional_tests/structure_2_inc.sin functional_tests/testproc_3.phs \ functional_tests/susyhit.in \ functional_tests/ufo_5_test.slha TESTSUITE_MACROS = testsuite.m4 TESTSUITE_TOOLS = \ check-debug-output.py \ check-debug-output-hadro.py \ check-hepmc-weights.py \ compare-histograms.py \ compare-integrals.py \ compare-integrals-multi.py \ compare-methods.py REF_OUTPUT_FILES = \ extra_integration_results.dat \ $(REF_OUTPUT_FILES_BASE) $(REF_OUTPUT_FILES_DOUBLE) \ $(REF_OUTPUT_FILES_PREC) $(REF_OUTPUT_FILES_EXT) \ $(REF_OUTPUT_FILES_QUAD) REF_OUTPUT_FILES_BASE = \ unit_tests/ref-output/analysis_1.ref \ unit_tests/ref-output/api_1.ref \ unit_tests/ref-output/api_2.ref \ unit_tests/ref-output/api_3.ref \ unit_tests/ref-output/api_4.ref \ unit_tests/ref-output/api_5.ref \ unit_tests/ref-output/api_6.ref \ unit_tests/ref-output/api_7.ref \ unit_tests/ref-output/api_8.ref \ unit_tests/ref-output/api_c_1.ref \ unit_tests/ref-output/api_c_2.ref \ unit_tests/ref-output/api_c_3.ref \ unit_tests/ref-output/api_c_4.ref \ unit_tests/ref-output/api_c_5.ref \ unit_tests/ref-output/api_cc_1.ref \ unit_tests/ref-output/api_cc_2.ref \ unit_tests/ref-output/api_cc_3.ref \ unit_tests/ref-output/api_cc_4.ref \ unit_tests/ref-output/api_cc_5.ref \ unit_tests/ref-output/api_hepmc2_1.ref \ unit_tests/ref-output/api_hepmc2_cc_1.ref \ unit_tests/ref-output/api_hepmc3_1.ref \ unit_tests/ref-output/api_hepmc3_cc_1.ref \ unit_tests/ref-output/api_lcio_1.ref \ unit_tests/ref-output/api_lcio_cc_1.ref \ unit_tests/ref-output/array_list_1.ref \ unit_tests/ref-output/auto_components_1.ref \ unit_tests/ref-output/auto_components_2.ref \ unit_tests/ref-output/auto_components_3.ref \ unit_tests/ref-output/beam_1.ref \ unit_tests/ref-output/beam_2.ref \ unit_tests/ref-output/beam_3.ref \ unit_tests/ref-output/beam_structures_1.ref \ unit_tests/ref-output/beam_structures_2.ref \ unit_tests/ref-output/beam_structures_3.ref \ unit_tests/ref-output/beam_structures_4.ref \ unit_tests/ref-output/beam_structures_5.ref \ unit_tests/ref-output/beam_structures_6.ref \ unit_tests/ref-output/binary_tree_1.ref \ unit_tests/ref-output/blha_1.ref \ unit_tests/ref-output/blha_2.ref \ unit_tests/ref-output/blha_3.ref \ unit_tests/ref-output/bloch_vectors_1.ref \ unit_tests/ref-output/bloch_vectors_2.ref \ unit_tests/ref-output/bloch_vectors_3.ref \ unit_tests/ref-output/bloch_vectors_4.ref \ unit_tests/ref-output/bloch_vectors_5.ref \ unit_tests/ref-output/bloch_vectors_6.ref \ unit_tests/ref-output/bloch_vectors_7.ref \ unit_tests/ref-output/cascades2_1.ref \ unit_tests/ref-output/cascades2_2.ref \ unit_tests/ref-output/cascades2_lexer_1.ref \ unit_tests/ref-output/cascades_1.ref \ unit_tests/ref-output/cascades_2.ref \ unit_tests/ref-output/color_1.ref \ unit_tests/ref-output/color_2.ref \ unit_tests/ref-output/commands_1.ref \ unit_tests/ref-output/commands_2.ref \ unit_tests/ref-output/commands_3.ref \ unit_tests/ref-output/commands_4.ref \ unit_tests/ref-output/commands_5.ref \ unit_tests/ref-output/commands_6.ref \ unit_tests/ref-output/commands_7.ref \ unit_tests/ref-output/commands_8.ref \ unit_tests/ref-output/commands_9.ref \ unit_tests/ref-output/commands_10.ref \ unit_tests/ref-output/commands_11.ref \ unit_tests/ref-output/commands_12.ref \ unit_tests/ref-output/commands_13.ref \ unit_tests/ref-output/commands_14.ref \ unit_tests/ref-output/commands_15.ref \ unit_tests/ref-output/commands_16.ref \ unit_tests/ref-output/commands_17.ref \ unit_tests/ref-output/commands_18.ref \ unit_tests/ref-output/commands_19.ref \ unit_tests/ref-output/commands_20.ref \ unit_tests/ref-output/commands_21.ref \ unit_tests/ref-output/commands_22.ref \ unit_tests/ref-output/commands_23.ref \ unit_tests/ref-output/commands_24.ref \ unit_tests/ref-output/commands_25.ref \ unit_tests/ref-output/commands_26.ref \ unit_tests/ref-output/commands_27.ref \ unit_tests/ref-output/commands_28.ref \ unit_tests/ref-output/commands_29.ref \ unit_tests/ref-output/commands_30.ref \ unit_tests/ref-output/commands_31.ref \ unit_tests/ref-output/commands_32.ref \ unit_tests/ref-output/commands_33.ref \ unit_tests/ref-output/commands_34.ref \ unit_tests/ref-output/compilations_1.ref \ unit_tests/ref-output/compilations_2.ref \ unit_tests/ref-output/compilations_3.ref \ unit_tests/ref-output/compilations_static_1.ref \ unit_tests/ref-output/compilations_static_2.ref \ unit_tests/ref-output/cputime_1.ref \ unit_tests/ref-output/cputime_2.ref \ unit_tests/ref-output/decays_1.ref \ unit_tests/ref-output/decays_2.ref \ unit_tests/ref-output/decays_3.ref \ unit_tests/ref-output/decays_4.ref \ unit_tests/ref-output/decays_5.ref \ unit_tests/ref-output/decays_6.ref \ unit_tests/ref-output/dispatch_1.ref \ unit_tests/ref-output/dispatch_2.ref \ unit_tests/ref-output/dispatch_7.ref \ unit_tests/ref-output/dispatch_8.ref \ unit_tests/ref-output/dispatch_10.ref \ unit_tests/ref-output/dispatch_11.ref \ unit_tests/ref-output/dispatch_mci_1.ref \ unit_tests/ref-output/dispatch_phs_1.ref \ unit_tests/ref-output/dispatch_phs_2.ref \ unit_tests/ref-output/dispatch_rng_1.ref \ unit_tests/ref-output/dispatch_transforms_1.ref \ unit_tests/ref-output/dispatch_transforms_2.ref \ unit_tests/ref-output/eio_ascii_1.ref \ unit_tests/ref-output/eio_ascii_2.ref \ unit_tests/ref-output/eio_ascii_3.ref \ unit_tests/ref-output/eio_ascii_4.ref \ unit_tests/ref-output/eio_ascii_5.ref \ unit_tests/ref-output/eio_ascii_6.ref \ unit_tests/ref-output/eio_ascii_7.ref \ unit_tests/ref-output/eio_ascii_8.ref \ unit_tests/ref-output/eio_ascii_9.ref \ unit_tests/ref-output/eio_ascii_10.ref \ unit_tests/ref-output/eio_ascii_11.ref \ unit_tests/ref-output/eio_base_1.ref \ unit_tests/ref-output/eio_checkpoints_1.ref \ unit_tests/ref-output/eio_data_1.ref \ unit_tests/ref-output/eio_data_2.ref \ unit_tests/ref-output/eio_direct_1.ref \ unit_tests/ref-output/eio_dump_1.ref \ unit_tests/ref-output/eio_hepmc2_1.ref \ unit_tests/ref-output/eio_hepmc2_2.ref \ unit_tests/ref-output/eio_hepmc2_3.ref \ unit_tests/ref-output/eio_hepmc3_1.ref \ unit_tests/ref-output/eio_hepmc3_2.ref \ unit_tests/ref-output/eio_hepmc3_3.ref \ unit_tests/ref-output/eio_lcio_1.ref \ unit_tests/ref-output/eio_lcio_2.ref \ unit_tests/ref-output/eio_lhef_1.ref \ unit_tests/ref-output/eio_lhef_2.ref \ unit_tests/ref-output/eio_lhef_3.ref \ unit_tests/ref-output/eio_lhef_4.ref \ unit_tests/ref-output/eio_lhef_5.ref \ unit_tests/ref-output/eio_lhef_6.ref \ unit_tests/ref-output/eio_raw_1.ref \ unit_tests/ref-output/eio_raw_2.ref \ unit_tests/ref-output/eio_stdhep_1.ref \ unit_tests/ref-output/eio_stdhep_2.ref \ unit_tests/ref-output/eio_stdhep_3.ref \ unit_tests/ref-output/eio_stdhep_4.ref \ unit_tests/ref-output/eio_weights_1.ref \ unit_tests/ref-output/eio_weights_2.ref \ unit_tests/ref-output/eio_weights_3.ref \ unit_tests/ref-output/electron_pdfs_1.ref \ unit_tests/ref-output/electron_pdfs_2.ref \ unit_tests/ref-output/electron_pdfs_3.ref \ unit_tests/ref-output/electron_pdfs_4.ref \ unit_tests/ref-output/electron_pdfs_5.ref \ unit_tests/ref-output/electron_pdfs_6.ref \ unit_tests/ref-output/epa_handler_1.ref \ unit_tests/ref-output/epa_handler_2.ref \ unit_tests/ref-output/epa_handler_3.ref \ unit_tests/ref-output/evaluator_1.ref \ unit_tests/ref-output/evaluator_2.ref \ unit_tests/ref-output/evaluator_3.ref \ unit_tests/ref-output/evaluator_4.ref \ unit_tests/ref-output/event_streams_1.ref \ unit_tests/ref-output/event_streams_2.ref \ unit_tests/ref-output/event_streams_3.ref \ unit_tests/ref-output/event_streams_4.ref \ unit_tests/ref-output/event_transforms_1.ref \ unit_tests/ref-output/events_1.ref \ unit_tests/ref-output/events_2.ref \ unit_tests/ref-output/events_3.ref \ unit_tests/ref-output/events_4.ref \ unit_tests/ref-output/events_5.ref \ unit_tests/ref-output/events_6.ref \ unit_tests/ref-output/events_7.ref \ unit_tests/ref-output/expressions_1.ref \ unit_tests/ref-output/expressions_2.ref \ unit_tests/ref-output/expressions_3.ref \ unit_tests/ref-output/expressions_4.ref \ unit_tests/ref-output/fks_regions_1.ref \ unit_tests/ref-output/fks_regions_2.ref \ unit_tests/ref-output/fks_regions_3.ref \ unit_tests/ref-output/fks_regions_4.ref \ unit_tests/ref-output/fks_regions_5.ref \ unit_tests/ref-output/fks_regions_6.ref \ unit_tests/ref-output/fks_regions_7.ref \ unit_tests/ref-output/fks_regions_8.ref \ unit_tests/ref-output/format_1.ref \ unit_tests/ref-output/grids_1.ref \ unit_tests/ref-output/grids_2.ref \ unit_tests/ref-output/grids_3.ref \ unit_tests/ref-output/grids_4.ref \ unit_tests/ref-output/grids_5.ref \ unit_tests/ref-output/hep_events_1.ref \ unit_tests/ref-output/hepmc2_interface_1.ref \ unit_tests/ref-output/hepmc3_interface_1.ref \ unit_tests/ref-output/integration_results_1.ref \ unit_tests/ref-output/integration_results_2.ref \ unit_tests/ref-output/integration_results_3.ref \ unit_tests/ref-output/integration_results_4.ref \ unit_tests/ref-output/integration_results_5.ref \ unit_tests/ref-output/integrations_1.ref \ unit_tests/ref-output/integrations_2.ref \ unit_tests/ref-output/integrations_3.ref \ unit_tests/ref-output/integrations_4.ref \ unit_tests/ref-output/integrations_5.ref \ unit_tests/ref-output/integrations_6.ref \ unit_tests/ref-output/integrations_7.ref \ unit_tests/ref-output/integrations_8.ref \ unit_tests/ref-output/integrations_9.ref \ unit_tests/ref-output/integrations_history_1.ref \ unit_tests/ref-output/interaction_1.ref \ unit_tests/ref-output/isr_handler_1.ref \ unit_tests/ref-output/isr_handler_2.ref \ unit_tests/ref-output/isr_handler_3.ref \ unit_tests/ref-output/iterations_1.ref \ unit_tests/ref-output/iterations_2.ref \ unit_tests/ref-output/iterator_1.ref \ unit_tests/ref-output/jets_1.ref \ unit_tests/ref-output/lcio_interface_1.ref \ unit_tests/ref-output/lexer_1.ref \ unit_tests/ref-output/lorentz_1.ref \ unit_tests/ref-output/lorentz_2.ref \ unit_tests/ref-output/lorentz_3.ref \ unit_tests/ref-output/lorentz_4.ref \ unit_tests/ref-output/lorentz_5.ref \ unit_tests/ref-output/mci_base_1.ref \ unit_tests/ref-output/mci_base_2.ref \ unit_tests/ref-output/mci_base_3.ref \ unit_tests/ref-output/mci_base_4.ref \ unit_tests/ref-output/mci_base_5.ref \ unit_tests/ref-output/mci_base_6.ref \ unit_tests/ref-output/mci_base_7.ref \ unit_tests/ref-output/mci_base_8.ref \ unit_tests/ref-output/mci_midpoint_1.ref \ unit_tests/ref-output/mci_midpoint_2.ref \ unit_tests/ref-output/mci_midpoint_3.ref \ unit_tests/ref-output/mci_midpoint_4.ref \ unit_tests/ref-output/mci_midpoint_5.ref \ unit_tests/ref-output/mci_midpoint_6.ref \ unit_tests/ref-output/mci_midpoint_7.ref \ unit_tests/ref-output/mci_none_1.ref \ unit_tests/ref-output/mci_vamp2_1.ref \ unit_tests/ref-output/mci_vamp2_2.ref \ unit_tests/ref-output/mci_vamp2_3.ref \ unit_tests/ref-output/mci_vamp_1.ref \ unit_tests/ref-output/mci_vamp_2.ref \ unit_tests/ref-output/mci_vamp_3.ref \ unit_tests/ref-output/mci_vamp_4.ref \ unit_tests/ref-output/mci_vamp_5.ref \ unit_tests/ref-output/mci_vamp_6.ref \ unit_tests/ref-output/mci_vamp_7.ref \ unit_tests/ref-output/mci_vamp_8.ref \ unit_tests/ref-output/mci_vamp_9.ref \ unit_tests/ref-output/mci_vamp_10.ref \ unit_tests/ref-output/mci_vamp_11.ref \ unit_tests/ref-output/mci_vamp_12.ref \ unit_tests/ref-output/mci_vamp_13.ref \ unit_tests/ref-output/mci_vamp_14.ref \ unit_tests/ref-output/mci_vamp_15.ref \ unit_tests/ref-output/mci_vamp_16.ref \ unit_tests/ref-output/md5_1.ref \ unit_tests/ref-output/models_1.ref \ unit_tests/ref-output/models_2.ref \ unit_tests/ref-output/models_3.ref \ unit_tests/ref-output/models_4.ref \ unit_tests/ref-output/models_5.ref \ unit_tests/ref-output/models_6.ref \ unit_tests/ref-output/models_7.ref \ unit_tests/ref-output/models_8.ref \ unit_tests/ref-output/models_9.ref \ unit_tests/ref-output/models_10.ref \ unit_tests/ref-output/numeric_utils_1.ref \ unit_tests/ref-output/numeric_utils_2.ref \ unit_tests/ref-output/os_interface_1.ref \ unit_tests/ref-output/parse_1.ref \ unit_tests/ref-output/particle_specifiers_1.ref \ unit_tests/ref-output/particle_specifiers_2.ref \ unit_tests/ref-output/particles_1.ref \ unit_tests/ref-output/particles_2.ref \ unit_tests/ref-output/particles_3.ref \ unit_tests/ref-output/particles_4.ref \ unit_tests/ref-output/particles_5.ref \ unit_tests/ref-output/particles_6.ref \ unit_tests/ref-output/particles_7.ref \ unit_tests/ref-output/particles_8.ref \ unit_tests/ref-output/particles_9.ref \ unit_tests/ref-output/parton_states_1.ref \ unit_tests/ref-output/pdg_arrays_1.ref \ unit_tests/ref-output/pdg_arrays_2.ref \ unit_tests/ref-output/pdg_arrays_3.ref \ unit_tests/ref-output/pdg_arrays_4.ref \ unit_tests/ref-output/pdg_arrays_5.ref \ unit_tests/ref-output/phs_base_1.ref \ unit_tests/ref-output/phs_base_2.ref \ unit_tests/ref-output/phs_base_3.ref \ unit_tests/ref-output/phs_base_4.ref \ unit_tests/ref-output/phs_base_5.ref \ unit_tests/ref-output/phs_fks_generator_1.ref \ unit_tests/ref-output/phs_fks_generator_2.ref \ unit_tests/ref-output/phs_fks_generator_3.ref \ unit_tests/ref-output/phs_fks_generator_4.ref \ unit_tests/ref-output/phs_fks_generator_5.ref \ unit_tests/ref-output/phs_fks_generator_6.ref \ unit_tests/ref-output/phs_fks_generator_7.ref \ unit_tests/ref-output/phs_forest_1.ref \ unit_tests/ref-output/phs_forest_2.ref \ unit_tests/ref-output/phs_none_1.ref \ unit_tests/ref-output/phs_points_1.ref \ unit_tests/ref-output/phs_rambo_1.ref \ unit_tests/ref-output/phs_rambo_2.ref \ unit_tests/ref-output/phs_rambo_3.ref \ unit_tests/ref-output/phs_rambo_4.ref \ unit_tests/ref-output/phs_single_1.ref \ unit_tests/ref-output/phs_single_2.ref \ unit_tests/ref-output/phs_single_3.ref \ unit_tests/ref-output/phs_single_4.ref \ unit_tests/ref-output/phs_tree_1.ref \ unit_tests/ref-output/phs_tree_2.ref \ unit_tests/ref-output/phs_wood_1.ref \ unit_tests/ref-output/phs_wood_2.ref \ unit_tests/ref-output/phs_wood_3.ref \ unit_tests/ref-output/phs_wood_4.ref \ unit_tests/ref-output/phs_wood_5.ref \ unit_tests/ref-output/phs_wood_6.ref \ unit_tests/ref-output/phs_wood_vis_1.ref \ unit_tests/ref-output/polarization_1.ref \ unit_tests/ref-output/polarization_2.ref \ unit_tests/ref-output/prc_omega_1.ref \ unit_tests/ref-output/prc_omega_2.ref \ unit_tests/ref-output/prc_omega_3.ref \ unit_tests/ref-output/prc_omega_4.ref \ unit_tests/ref-output/prc_omega_5.ref \ unit_tests/ref-output/prc_omega_6.ref \ unit_tests/ref-output/prc_omega_diags_1.ref \ unit_tests/ref-output/prc_recola_1.ref \ unit_tests/ref-output/prc_recola_2.ref \ unit_tests/ref-output/prc_template_me_1.ref \ unit_tests/ref-output/prc_template_me_2.ref \ unit_tests/ref-output/prc_test_1.ref \ unit_tests/ref-output/prc_test_2.ref \ unit_tests/ref-output/prc_test_3.ref \ unit_tests/ref-output/prc_test_4.ref \ unit_tests/ref-output/prclib_interfaces_1.ref \ unit_tests/ref-output/prclib_interfaces_2.ref \ unit_tests/ref-output/prclib_interfaces_3.ref \ unit_tests/ref-output/prclib_interfaces_4.ref \ unit_tests/ref-output/prclib_interfaces_5.ref \ unit_tests/ref-output/prclib_interfaces_6.ref \ unit_tests/ref-output/prclib_interfaces_7.ref \ unit_tests/ref-output/prclib_stacks_1.ref \ unit_tests/ref-output/prclib_stacks_2.ref \ unit_tests/ref-output/process_configurations_1.ref \ unit_tests/ref-output/process_configurations_2.ref \ unit_tests/ref-output/process_libraries_1.ref \ unit_tests/ref-output/process_libraries_2.ref \ unit_tests/ref-output/process_libraries_3.ref \ unit_tests/ref-output/process_libraries_4.ref \ unit_tests/ref-output/process_libraries_5.ref \ unit_tests/ref-output/process_libraries_6.ref \ unit_tests/ref-output/process_libraries_7.ref \ unit_tests/ref-output/process_libraries_8.ref \ unit_tests/ref-output/process_stacks_1.ref \ unit_tests/ref-output/process_stacks_2.ref \ unit_tests/ref-output/process_stacks_3.ref \ unit_tests/ref-output/process_stacks_4.ref \ unit_tests/ref-output/processes_1.ref \ unit_tests/ref-output/processes_2.ref \ unit_tests/ref-output/processes_3.ref \ unit_tests/ref-output/processes_4.ref \ unit_tests/ref-output/processes_5.ref \ unit_tests/ref-output/processes_6.ref \ unit_tests/ref-output/processes_7.ref \ unit_tests/ref-output/processes_8.ref \ unit_tests/ref-output/processes_9.ref \ unit_tests/ref-output/processes_10.ref \ unit_tests/ref-output/processes_11.ref \ unit_tests/ref-output/processes_12.ref \ unit_tests/ref-output/processes_13.ref \ unit_tests/ref-output/processes_14.ref \ unit_tests/ref-output/processes_15.ref \ unit_tests/ref-output/processes_16.ref \ unit_tests/ref-output/processes_17.ref \ unit_tests/ref-output/processes_18.ref \ unit_tests/ref-output/processes_19.ref \ unit_tests/ref-output/radiation_generator_1.ref \ unit_tests/ref-output/radiation_generator_2.ref \ unit_tests/ref-output/radiation_generator_3.ref \ unit_tests/ref-output/radiation_generator_4.ref \ unit_tests/ref-output/real_subtraction_1.ref \ unit_tests/ref-output/recoil_kinematics_1.ref \ unit_tests/ref-output/recoil_kinematics_2.ref \ unit_tests/ref-output/recoil_kinematics_3.ref \ unit_tests/ref-output/recoil_kinematics_4.ref \ unit_tests/ref-output/recoil_kinematics_5.ref \ unit_tests/ref-output/recoil_kinematics_6.ref \ unit_tests/ref-output/resonance_insertion_1.ref \ unit_tests/ref-output/resonance_insertion_2.ref \ unit_tests/ref-output/resonance_insertion_3.ref \ unit_tests/ref-output/resonance_insertion_4.ref \ unit_tests/ref-output/resonance_insertion_5.ref \ unit_tests/ref-output/resonance_insertion_6.ref \ unit_tests/ref-output/resonances_1.ref \ unit_tests/ref-output/resonances_2.ref \ unit_tests/ref-output/resonances_3.ref \ unit_tests/ref-output/resonances_4.ref \ unit_tests/ref-output/resonances_5.ref \ unit_tests/ref-output/resonances_6.ref \ unit_tests/ref-output/resonances_7.ref \ unit_tests/ref-output/restricted_subprocesses_1.ref \ unit_tests/ref-output/restricted_subprocesses_2.ref \ unit_tests/ref-output/restricted_subprocesses_3.ref \ unit_tests/ref-output/restricted_subprocesses_4.ref \ unit_tests/ref-output/restricted_subprocesses_5.ref \ unit_tests/ref-output/restricted_subprocesses_6.ref \ unit_tests/ref-output/rng_base_1.ref \ unit_tests/ref-output/rng_base_2.ref \ unit_tests/ref-output/rng_stream_1.ref \ unit_tests/ref-output/rng_stream_2.ref \ unit_tests/ref-output/rng_stream_3.ref \ unit_tests/ref-output/rng_tao_1.ref \ unit_tests/ref-output/rng_tao_2.ref \ unit_tests/ref-output/rt_data_1.ref \ unit_tests/ref-output/rt_data_2.ref \ unit_tests/ref-output/rt_data_3.ref \ unit_tests/ref-output/rt_data_4.ref \ unit_tests/ref-output/rt_data_5.ref \ unit_tests/ref-output/rt_data_6.ref \ unit_tests/ref-output/rt_data_7.ref \ unit_tests/ref-output/rt_data_8.ref \ unit_tests/ref-output/rt_data_9.ref \ unit_tests/ref-output/rt_data_10.ref \ unit_tests/ref-output/rt_data_11.ref \ unit_tests/ref-output/selectors_1.ref \ unit_tests/ref-output/selectors_2.ref \ unit_tests/ref-output/sf_aux_1.ref \ unit_tests/ref-output/sf_aux_2.ref \ unit_tests/ref-output/sf_aux_3.ref \ unit_tests/ref-output/sf_aux_4.ref \ unit_tests/ref-output/sf_base_1.ref \ unit_tests/ref-output/sf_base_2.ref \ unit_tests/ref-output/sf_base_3.ref \ unit_tests/ref-output/sf_base_4.ref \ unit_tests/ref-output/sf_base_5.ref \ unit_tests/ref-output/sf_base_6.ref \ unit_tests/ref-output/sf_base_7.ref \ unit_tests/ref-output/sf_base_8.ref \ unit_tests/ref-output/sf_base_9.ref \ unit_tests/ref-output/sf_base_10.ref \ unit_tests/ref-output/sf_base_11.ref \ unit_tests/ref-output/sf_base_12.ref \ unit_tests/ref-output/sf_base_13.ref \ unit_tests/ref-output/sf_base_14.ref \ unit_tests/ref-output/sf_beam_events_1.ref \ unit_tests/ref-output/sf_beam_events_2.ref \ unit_tests/ref-output/sf_beam_events_3.ref \ unit_tests/ref-output/sf_circe1_1.ref \ unit_tests/ref-output/sf_circe1_2.ref \ unit_tests/ref-output/sf_circe1_3.ref \ unit_tests/ref-output/sf_circe2_1.ref \ unit_tests/ref-output/sf_circe2_2.ref \ unit_tests/ref-output/sf_circe2_3.ref \ unit_tests/ref-output/sf_epa_1.ref \ unit_tests/ref-output/sf_epa_2.ref \ unit_tests/ref-output/sf_epa_3.ref \ unit_tests/ref-output/sf_epa_4.ref \ unit_tests/ref-output/sf_epa_5.ref \ unit_tests/ref-output/sf_escan_1.ref \ unit_tests/ref-output/sf_escan_2.ref \ unit_tests/ref-output/sf_ewa_1.ref \ unit_tests/ref-output/sf_ewa_2.ref \ unit_tests/ref-output/sf_ewa_3.ref \ unit_tests/ref-output/sf_ewa_4.ref \ unit_tests/ref-output/sf_ewa_5.ref \ unit_tests/ref-output/sf_gaussian_1.ref \ unit_tests/ref-output/sf_gaussian_2.ref \ unit_tests/ref-output/sf_isr_1.ref \ unit_tests/ref-output/sf_isr_2.ref \ unit_tests/ref-output/sf_isr_3.ref \ unit_tests/ref-output/sf_isr_4.ref \ unit_tests/ref-output/sf_isr_5.ref \ unit_tests/ref-output/sf_lhapdf5_1.ref \ unit_tests/ref-output/sf_lhapdf5_2.ref \ unit_tests/ref-output/sf_lhapdf5_3.ref \ unit_tests/ref-output/sf_lhapdf6_1.ref \ unit_tests/ref-output/sf_lhapdf6_2.ref \ unit_tests/ref-output/sf_lhapdf6_3.ref \ unit_tests/ref-output/sf_mappings_1.ref \ unit_tests/ref-output/sf_mappings_2.ref \ unit_tests/ref-output/sf_mappings_3.ref \ unit_tests/ref-output/sf_mappings_4.ref \ unit_tests/ref-output/sf_mappings_5.ref \ unit_tests/ref-output/sf_mappings_6.ref \ unit_tests/ref-output/sf_mappings_7.ref \ unit_tests/ref-output/sf_mappings_8.ref \ unit_tests/ref-output/sf_mappings_9.ref \ unit_tests/ref-output/sf_mappings_10.ref \ unit_tests/ref-output/sf_mappings_11.ref \ unit_tests/ref-output/sf_mappings_12.ref \ unit_tests/ref-output/sf_mappings_13.ref \ unit_tests/ref-output/sf_mappings_14.ref \ unit_tests/ref-output/sf_mappings_15.ref \ unit_tests/ref-output/sf_mappings_16.ref \ unit_tests/ref-output/sf_pdf_builtin_1.ref \ unit_tests/ref-output/sf_pdf_builtin_2.ref \ unit_tests/ref-output/sf_pdf_builtin_3.ref \ unit_tests/ref-output/shower_1.ref \ unit_tests/ref-output/shower_2.ref \ unit_tests/ref-output/shower_base_1.ref \ unit_tests/ref-output/simulations_1.ref \ unit_tests/ref-output/simulations_2.ref \ unit_tests/ref-output/simulations_3.ref \ unit_tests/ref-output/simulations_4.ref \ unit_tests/ref-output/simulations_5.ref \ unit_tests/ref-output/simulations_6.ref \ unit_tests/ref-output/simulations_7.ref \ unit_tests/ref-output/simulations_8.ref \ unit_tests/ref-output/simulations_9.ref \ unit_tests/ref-output/simulations_10.ref \ unit_tests/ref-output/simulations_11.ref \ unit_tests/ref-output/simulations_12.ref \ unit_tests/ref-output/simulations_13.ref \ unit_tests/ref-output/simulations_14.ref \ unit_tests/ref-output/simulations_15.ref \ unit_tests/ref-output/slha_1.ref \ unit_tests/ref-output/slha_2.ref \ unit_tests/ref-output/sm_physics_1.ref \ unit_tests/ref-output/sm_physics_2.ref \ unit_tests/ref-output/sm_physics_3.ref \ unit_tests/ref-output/sm_qcd_1.ref \ unit_tests/ref-output/sm_qed_1.ref \ unit_tests/ref-output/solver_1.ref \ unit_tests/ref-output/sorting_1.ref \ unit_tests/ref-output/state_matrix_1.ref \ unit_tests/ref-output/state_matrix_2.ref \ unit_tests/ref-output/state_matrix_3.ref \ unit_tests/ref-output/state_matrix_4.ref \ unit_tests/ref-output/state_matrix_5.ref \ unit_tests/ref-output/state_matrix_6.ref \ unit_tests/ref-output/state_matrix_7.ref \ unit_tests/ref-output/su_algebra_1.ref \ unit_tests/ref-output/su_algebra_2.ref \ unit_tests/ref-output/su_algebra_3.ref \ unit_tests/ref-output/su_algebra_4.ref \ unit_tests/ref-output/subevt_expr_1.ref \ unit_tests/ref-output/subevt_expr_2.ref \ unit_tests/ref-output/ttv_formfactors_1.ref \ unit_tests/ref-output/ttv_formfactors_2.ref \ unit_tests/ref-output/vamp2_1.ref \ unit_tests/ref-output/vamp2_2.ref \ unit_tests/ref-output/vamp2_3.ref \ unit_tests/ref-output/vamp2_4.ref \ unit_tests/ref-output/vamp2_5.ref \ unit_tests/ref-output/vegas_1.ref \ unit_tests/ref-output/vegas_2.ref \ unit_tests/ref-output/vegas_3.ref \ unit_tests/ref-output/vegas_4.ref \ unit_tests/ref-output/vegas_5.ref \ unit_tests/ref-output/vegas_6.ref \ unit_tests/ref-output/vegas_7.ref \ unit_tests/ref-output/whizard_lha_1.ref \ unit_tests/ref-output/xml_1.ref \ unit_tests/ref-output/xml_2.ref \ unit_tests/ref-output/xml_3.ref \ unit_tests/ref-output/xml_4.ref \ functional_tests/ref-output/alphas.ref \ functional_tests/ref-output/analyze_1.ref \ functional_tests/ref-output/analyze_2.ref \ functional_tests/ref-output/analyze_3.ref \ functional_tests/ref-output/analyze_4.ref \ functional_tests/ref-output/analyze_5.ref \ functional_tests/ref-output/analyze_6.ref \ functional_tests/ref-output/beam_events_1.ref \ functional_tests/ref-output/beam_events_4.ref \ functional_tests/ref-output/beam_setup_1.ref \ functional_tests/ref-output/beam_setup_2.ref \ functional_tests/ref-output/beam_setup_3.ref \ functional_tests/ref-output/beam_setup_4.ref \ functional_tests/ref-output/bjet_cluster.ref \ functional_tests/ref-output/br_redef_1.ref \ functional_tests/ref-output/cascades2_phs_1.ref \ functional_tests/ref-output/cascades2_phs_2.ref \ functional_tests/ref-output/circe1_1.ref \ functional_tests/ref-output/circe1_2.ref \ functional_tests/ref-output/circe1_3.ref \ functional_tests/ref-output/circe1_6.ref \ functional_tests/ref-output/circe1_10.ref \ functional_tests/ref-output/circe1_errors_1.ref \ functional_tests/ref-output/circe2_1.ref \ functional_tests/ref-output/circe2_2.ref \ functional_tests/ref-output/circe2_3.ref \ functional_tests/ref-output/cmdline_1.ref \ functional_tests/ref-output/colors.ref \ functional_tests/ref-output/colors_hgg.ref \ functional_tests/ref-output/cuts.ref \ functional_tests/ref-output/decay_err_1.ref \ functional_tests/ref-output/decay_err_2.ref \ functional_tests/ref-output/decay_err_3.ref \ functional_tests/ref-output/energy_scan_1.ref \ functional_tests/ref-output/ep_3.ref \ functional_tests/ref-output/epa_1.ref \ functional_tests/ref-output/epa_2.ref \ functional_tests/ref-output/epa_3.ref \ functional_tests/ref-output/epa_4.ref \ functional_tests/ref-output/event_dump_1.ref \ functional_tests/ref-output/event_dump_2.ref \ functional_tests/ref-output/event_eff_1.ref \ functional_tests/ref-output/event_eff_2.ref \ functional_tests/ref-output/event_failed_1.ref \ functional_tests/ref-output/event_weights_1.ref \ functional_tests/ref-output/event_weights_2.ref \ functional_tests/ref-output/ewa_4.ref \ functional_tests/ref-output/extpar.ref \ functional_tests/ref-output/fatal.ref \ functional_tests/ref-output/fatal_beam_decay.ref \ functional_tests/ref-output/fks_res_2.ref \ functional_tests/ref-output/flvsum_1.ref \ functional_tests/ref-output/gaussian_1.ref \ functional_tests/ref-output/gaussian_2.ref \ functional_tests/ref-output/hadronize_1.ref \ functional_tests/ref-output/hepmc_1.ref \ functional_tests/ref-output/hepmc_2.ref \ functional_tests/ref-output/hepmc_3.ref \ functional_tests/ref-output/hepmc_4.ref \ functional_tests/ref-output/hepmc_5.ref \ functional_tests/ref-output/hepmc_6.ref \ functional_tests/ref-output/hepmc_7.ref \ functional_tests/ref-output/hepmc_9.ref \ functional_tests/ref-output/hepmc_10.ref \ functional_tests/ref-output/isr_1.ref \ functional_tests/ref-output/isr_epa_1.ref \ functional_tests/ref-output/jets_xsec.ref \ functional_tests/ref-output/job_id_1.ref \ functional_tests/ref-output/job_id_2.ref \ functional_tests/ref-output/job_id_3.ref \ functional_tests/ref-output/job_id_4.ref \ functional_tests/ref-output/lcio_1.ref \ functional_tests/ref-output/lcio_3.ref \ functional_tests/ref-output/lcio_4.ref \ functional_tests/ref-output/lcio_5.ref \ functional_tests/ref-output/lcio_6.ref \ functional_tests/ref-output/lcio_8.ref \ functional_tests/ref-output/lcio_9.ref \ functional_tests/ref-output/lcio_10.ref \ functional_tests/ref-output/lcio_11.ref \ functional_tests/ref-output/lhef_1.ref \ functional_tests/ref-output/lhef_2.ref \ functional_tests/ref-output/lhef_3.ref \ functional_tests/ref-output/lhef_4.ref \ functional_tests/ref-output/lhef_5.ref \ functional_tests/ref-output/lhef_6.ref \ functional_tests/ref-output/lhef_9.ref \ functional_tests/ref-output/lhef_10.ref \ functional_tests/ref-output/lhef_11.ref \ functional_tests/ref-output/libraries_1.ref \ functional_tests/ref-output/libraries_2.ref \ functional_tests/ref-output/libraries_4.ref \ functional_tests/ref-output/method_ovm_1.ref \ functional_tests/ref-output/mlm_matching_fsr.ref \ functional_tests/ref-output/mlm_pythia6_isr.ref \ functional_tests/ref-output/model_change_1.ref \ functional_tests/ref-output/model_change_2.ref \ functional_tests/ref-output/model_change_3.ref \ functional_tests/ref-output/model_scheme_1.ref \ functional_tests/ref-output/model_test.ref \ functional_tests/ref-output/mssmtest_1.ref \ functional_tests/ref-output/mssmtest_2.ref \ functional_tests/ref-output/mssmtest_3.ref \ functional_tests/ref-output/multi_comp_4.ref \ functional_tests/ref-output/nlo_1.ref \ functional_tests/ref-output/nlo_2.ref \ functional_tests/ref-output/nlo_6.ref \ functional_tests/ref-output/nlo_decay_1.ref \ functional_tests/ref-output/observables_1.ref \ functional_tests/ref-output/openloops_1.ref \ functional_tests/ref-output/openloops_2.ref \ functional_tests/ref-output/openloops_4.ref \ functional_tests/ref-output/openloops_5.ref \ functional_tests/ref-output/openloops_6.ref \ functional_tests/ref-output/openloops_7.ref \ functional_tests/ref-output/openloops_8.ref \ functional_tests/ref-output/openloops_9.ref \ functional_tests/ref-output/openloops_10.ref \ functional_tests/ref-output/openloops_11.ref \ functional_tests/ref-output/pack_1.ref \ functional_tests/ref-output/parton_shower_1.ref \ functional_tests/ref-output/photon_isolation_1.ref \ functional_tests/ref-output/photon_isolation_2.ref \ functional_tests/ref-output/polarized_1.ref \ functional_tests/ref-output/process_log.ref \ functional_tests/ref-output/pythia6_1.ref \ functional_tests/ref-output/pythia6_2.ref \ + functional_tests/ref-output/pythia8_1.ref \ + functional_tests/ref-output/pythia8_2.ref \ functional_tests/ref-output/qcdtest_4.ref \ functional_tests/ref-output/qcdtest_5.ref \ functional_tests/ref-output/qcdtest_6.ref \ functional_tests/ref-output/qedtest_1.ref \ functional_tests/ref-output/qedtest_2.ref \ functional_tests/ref-output/qedtest_5.ref \ functional_tests/ref-output/qedtest_6.ref \ functional_tests/ref-output/qedtest_7.ref \ functional_tests/ref-output/qedtest_8.ref \ functional_tests/ref-output/qedtest_9.ref \ functional_tests/ref-output/qedtest_10.ref \ functional_tests/ref-output/rambo_vamp_1.ref \ functional_tests/ref-output/rambo_vamp_2.ref \ functional_tests/ref-output/real_partition_1.ref \ functional_tests/ref-output/rebuild_2.ref \ functional_tests/ref-output/rebuild_3.ref \ functional_tests/ref-output/rebuild_4.ref \ functional_tests/ref-output/recola_1.ref \ functional_tests/ref-output/recola_2.ref \ functional_tests/ref-output/recola_3.ref \ functional_tests/ref-output/recola_4.ref \ functional_tests/ref-output/recola_5.ref \ functional_tests/ref-output/recola_6.ref \ functional_tests/ref-output/recola_7.ref \ functional_tests/ref-output/recola_8.ref \ functional_tests/ref-output/recola_9.ref \ functional_tests/ref-output/resonances_5.ref \ functional_tests/ref-output/resonances_6.ref \ functional_tests/ref-output/resonances_7.ref \ functional_tests/ref-output/resonances_8.ref \ functional_tests/ref-output/resonances_9.ref \ functional_tests/ref-output/resonances_12.ref \ functional_tests/ref-output/restrictions.ref \ functional_tests/ref-output/reweight_1.ref \ functional_tests/ref-output/reweight_2.ref \ functional_tests/ref-output/reweight_3.ref \ functional_tests/ref-output/reweight_4.ref \ functional_tests/ref-output/reweight_5.ref \ functional_tests/ref-output/reweight_6.ref \ functional_tests/ref-output/reweight_7.ref \ functional_tests/ref-output/reweight_8.ref \ functional_tests/ref-output/reweight_9.ref \ functional_tests/ref-output/reweight_10.ref \ functional_tests/ref-output/select_1.ref \ functional_tests/ref-output/select_2.ref \ functional_tests/ref-output/show_1.ref \ functional_tests/ref-output/show_2.ref \ functional_tests/ref-output/show_3.ref \ functional_tests/ref-output/show_4.ref \ functional_tests/ref-output/show_5.ref \ functional_tests/ref-output/shower_err_1.ref \ functional_tests/ref-output/sm_cms_1.ref \ functional_tests/ref-output/smtest_1.ref \ functional_tests/ref-output/smtest_3.ref \ functional_tests/ref-output/smtest_4.ref \ functional_tests/ref-output/smtest_5.ref \ functional_tests/ref-output/smtest_6.ref \ functional_tests/ref-output/smtest_7.ref \ functional_tests/ref-output/smtest_9.ref \ functional_tests/ref-output/smtest_10.ref \ functional_tests/ref-output/smtest_11.ref \ functional_tests/ref-output/smtest_12.ref \ functional_tests/ref-output/smtest_13.ref \ functional_tests/ref-output/smtest_14.ref \ functional_tests/ref-output/smtest_15.ref \ functional_tests/ref-output/smtest_16.ref \ functional_tests/ref-output/smtest_17.ref \ functional_tests/ref-output/spincor_1.ref \ functional_tests/ref-output/static_1.ref \ functional_tests/ref-output/static_2.ref \ functional_tests/ref-output/stdhep_1.ref \ functional_tests/ref-output/stdhep_2.ref \ functional_tests/ref-output/stdhep_3.ref \ functional_tests/ref-output/stdhep_4.ref \ functional_tests/ref-output/stdhep_5.ref \ functional_tests/ref-output/stdhep_6.ref \ functional_tests/ref-output/structure_1.ref \ functional_tests/ref-output/structure_2.ref \ functional_tests/ref-output/structure_3.ref \ functional_tests/ref-output/structure_4.ref \ functional_tests/ref-output/structure_5.ref \ functional_tests/ref-output/structure_6.ref \ functional_tests/ref-output/structure_7.ref \ functional_tests/ref-output/structure_8.ref \ functional_tests/ref-output/susyhit.ref \ functional_tests/ref-output/template_me_1.ref \ functional_tests/ref-output/template_me_2.ref \ functional_tests/ref-output/testproc_1.ref \ functional_tests/ref-output/testproc_2.ref \ functional_tests/ref-output/testproc_3.ref \ functional_tests/ref-output/testproc_4.ref \ functional_tests/ref-output/testproc_5.ref \ functional_tests/ref-output/testproc_6.ref \ functional_tests/ref-output/testproc_7.ref \ functional_tests/ref-output/testproc_8.ref \ functional_tests/ref-output/testproc_9.ref \ functional_tests/ref-output/testproc_10.ref \ functional_tests/ref-output/testproc_11.ref \ functional_tests/ref-output/ufo_1.ref \ functional_tests/ref-output/ufo_2.ref \ functional_tests/ref-output/ufo_3.ref \ functional_tests/ref-output/ufo_4.ref \ functional_tests/ref-output/ufo_5.ref \ functional_tests/ref-output/ufo_6.ref \ functional_tests/ref-output/user_prc_threshold_1.ref \ functional_tests/ref-output/user_prc_threshold_2.ref \ functional_tests/ref-output/vamp2_1.ref \ functional_tests/ref-output/vamp2_2.ref \ functional_tests/ref-output/vamp2_3.ref \ functional_tests/ref-output/vars.ref \ ext_tests_nlo/ref-output/nlo_ee4j.ref \ ext_tests_nlo/ref-output/nlo_ee4t.ref \ ext_tests_nlo/ref-output/nlo_ee5j.ref \ ext_tests_nlo/ref-output/nlo_eejj.ref \ ext_tests_nlo/ref-output/nlo_eejjj.ref \ ext_tests_nlo/ref-output/nlo_eett.ref \ ext_tests_nlo/ref-output/nlo_eetth.ref \ ext_tests_nlo/ref-output/nlo_eetthh.ref \ ext_tests_nlo/ref-output/nlo_eetthj.ref \ ext_tests_nlo/ref-output/nlo_eetthz.ref \ ext_tests_nlo/ref-output/nlo_eettwjj.ref \ ext_tests_nlo/ref-output/nlo_eettww.ref \ ext_tests_nlo/ref-output/nlo_eettz.ref \ ext_tests_nlo/ref-output/nlo_eettzj.ref \ ext_tests_nlo/ref-output/nlo_eettzjj.ref \ ext_tests_nlo/ref-output/nlo_eettzz.ref \ ext_tests_nlo/ref-output/nlo_ppzj_real_partition.ref \ ext_tests_nlo/ref-output/nlo_pptttt.ref \ ext_tests_nlo/ref-output/nlo_ppw.ref \ ext_tests_nlo/ref-output/nlo_ppz.ref \ ext_tests_nlo/ref-output/nlo_ppzj_sim_1.ref \ ext_tests_nlo/ref-output/nlo_ppzj_sim_2.ref \ ext_tests_nlo/ref-output/nlo_ppzj_sim_3.ref \ ext_tests_nlo/ref-output/nlo_ppzj_sim_4.ref \ ext_tests_nlo/ref-output/nlo_ppzw.ref \ ext_tests_nlo/ref-output/nlo_ppzz.ref \ ext_tests_nlo/ref-output/nlo_ppee_ew.ref \ ext_tests_nlo/ref-output/nlo_pphee_ew.ref \ ext_tests_nlo/ref-output/nlo_pphjj_ew.ref \ ext_tests_nlo/ref-output/nlo_pphz_ew.ref \ ext_tests_nlo/ref-output/nlo_ppllll_ew.ref \ ext_tests_nlo/ref-output/nlo_ppllnn_ew.ref \ ext_tests_nlo/ref-output/nlo_pptt_ew.ref \ ext_tests_nlo/ref-output/nlo_pptj_ew.ref \ ext_tests_nlo/ref-output/nlo_ppwhh_ew.ref \ ext_tests_nlo/ref-output/nlo_ppww_ew.ref \ ext_tests_nlo/ref-output/nlo_ppwzh_ew.ref \ ext_tests_nlo/ref-output/nlo_ppz_ew.ref \ ext_tests_nlo/ref-output/nlo_ppzzz_ew.ref # Reference files that depend on the numerical precision REF_OUTPUT_FILES_DOUBLE = \ functional_tests/ref-output-double/beam_events_2.ref \ functional_tests/ref-output-double/beam_events_3.ref \ functional_tests/ref-output-double/beam_setup_5.ref \ functional_tests/ref-output-double/circe1_4.ref \ functional_tests/ref-output-double/circe1_5.ref \ functional_tests/ref-output-double/circe1_7.ref \ functional_tests/ref-output-double/circe1_8.ref \ functional_tests/ref-output-double/circe1_9.ref \ functional_tests/ref-output-double/circe1_photons_1.ref \ functional_tests/ref-output-double/circe1_photons_2.ref \ functional_tests/ref-output-double/circe1_photons_3.ref \ functional_tests/ref-output-double/circe1_photons_4.ref \ functional_tests/ref-output-double/circe1_photons_5.ref \ functional_tests/ref-output-double/colors_2.ref \ functional_tests/ref-output-double/defaultcuts.ref \ functional_tests/ref-output-double/ep_1.ref \ functional_tests/ref-output-double/ep_2.ref \ functional_tests/ref-output-double/ewa_1.ref \ functional_tests/ref-output-double/ewa_2.ref \ functional_tests/ref-output-double/ewa_3.ref \ functional_tests/ref-output-double/fks_res_1.ref \ functional_tests/ref-output-double/fks_res_3.ref \ functional_tests/ref-output-double/helicity.ref \ functional_tests/ref-output-double/hepmc_8.ref \ functional_tests/ref-output-double/ilc.ref \ functional_tests/ref-output-double/isr_2.ref \ functional_tests/ref-output-double/isr_3.ref \ functional_tests/ref-output-double/isr_4.ref \ functional_tests/ref-output-double/isr_5.ref \ functional_tests/ref-output-double/isr_6.ref \ functional_tests/ref-output-double/lcio_2.ref \ functional_tests/ref-output-double/lcio_7.ref \ functional_tests/ref-output-double/lcio_12.ref \ functional_tests/ref-output-double/lhapdf5.ref \ functional_tests/ref-output-double/lhapdf6.ref \ functional_tests/ref-output-double/lhef_7.ref \ functional_tests/ref-output-double/mlm_matching_isr.ref \ functional_tests/ref-output-double/multi_comp_1.ref \ functional_tests/ref-output-double/multi_comp_2.ref \ functional_tests/ref-output-double/multi_comp_3.ref \ functional_tests/ref-output-double/testproc_12.ref \ functional_tests/ref-output-double/nlo_3.ref \ functional_tests/ref-output-double/nlo_4.ref \ functional_tests/ref-output-double/nlo_5.ref \ functional_tests/ref-output-double/nlo_7.ref \ functional_tests/ref-output-double/nlo_8.ref \ functional_tests/ref-output-double/nlo_9.ref \ functional_tests/ref-output-double/nlo_10.ref \ functional_tests/ref-output-double/observables_2.ref \ functional_tests/ref-output-double/openloops_3.ref \ functional_tests/ref-output-double/openloops_12.ref \ functional_tests/ref-output-double/openloops_13.ref \ functional_tests/ref-output-double/openloops_14.ref \ functional_tests/ref-output-double/parton_shower_2.ref \ functional_tests/ref-output-double/pdf_builtin.ref \ functional_tests/ref-output-double/powheg_1.ref \ functional_tests/ref-output-double/powheg_2.ref \ functional_tests/ref-output-double/pythia6_3.ref \ functional_tests/ref-output-double/pythia6_4.ref \ functional_tests/ref-output-double/qcdtest_1.ref \ functional_tests/ref-output-double/qcdtest_2.ref \ functional_tests/ref-output-double/qcdtest_3.ref \ functional_tests/ref-output-double/qedtest_3.ref \ functional_tests/ref-output-double/qedtest_4.ref \ functional_tests/ref-output-double/resonances_1.ref \ functional_tests/ref-output-double/resonances_2.ref \ functional_tests/ref-output-double/resonances_3.ref \ functional_tests/ref-output-double/resonances_4.ref \ functional_tests/ref-output-double/resonances_10.ref \ functional_tests/ref-output-double/resonances_11.ref \ functional_tests/ref-output-double/resonances_13.ref \ functional_tests/ref-output-double/resonances_14.ref \ functional_tests/ref-output-double/resonances_15.ref \ functional_tests/ref-output-double/smtest_2.ref \ functional_tests/ref-output-double/smtest_8.ref \ functional_tests/ref-output-double/tauola_1.ref \ functional_tests/ref-output-double/tauola_2.ref \ functional_tests/ref-output-double/tauola_3.ref REF_OUTPUT_FILES_PREC = \ functional_tests/ref-output-prec/beam_setup_5.ref \ functional_tests/ref-output-prec/circe1_9.ref \ functional_tests/ref-output-prec/circe1_photons_1.ref \ functional_tests/ref-output-prec/circe1_photons_2.ref \ functional_tests/ref-output-prec/circe1_photons_3.ref \ functional_tests/ref-output-prec/circe1_photons_4.ref \ functional_tests/ref-output-prec/circe1_photons_5.ref \ functional_tests/ref-output-prec/colors_2.ref \ functional_tests/ref-output-prec/defaultcuts.ref \ functional_tests/ref-output-prec/ep_1.ref \ functional_tests/ref-output-prec/ep_2.ref \ functional_tests/ref-output-prec/ewa_1.ref \ functional_tests/ref-output-prec/fks_res_1.ref \ functional_tests/ref-output-prec/fks_res_3.ref \ functional_tests/ref-output-prec/helicity.ref \ functional_tests/ref-output-prec/ilc.ref \ functional_tests/ref-output-prec/lhapdf5.ref \ functional_tests/ref-output-prec/lhapdf6.ref \ functional_tests/ref-output-prec/lhef_7.ref \ functional_tests/ref-output-prec/multi_comp_1.ref \ functional_tests/ref-output-prec/multi_comp_2.ref \ functional_tests/ref-output-prec/multi_comp_3.ref \ functional_tests/ref-output-prec/testproc_12.ref \ functional_tests/ref-output-prec/nlo_3.ref \ functional_tests/ref-output-prec/nlo_4.ref \ functional_tests/ref-output-prec/parton_shower_2.ref \ functional_tests/ref-output-prec/pdf_builtin.ref \ functional_tests/ref-output-prec/qcdtest_1.ref \ functional_tests/ref-output-prec/qcdtest_2.ref \ functional_tests/ref-output-prec/qcdtest_3.ref \ functional_tests/ref-output-prec/qedtest_3.ref \ functional_tests/ref-output-prec/qedtest_4.ref \ functional_tests/ref-output-prec/smtest_2.ref \ functional_tests/ref-output-prec/smtest_8.ref REF_OUTPUT_FILES_EXT = \ functional_tests/ref-output-ext/beam_events_2.ref \ functional_tests/ref-output-ext/beam_events_3.ref \ functional_tests/ref-output-ext/circe1_4.ref \ functional_tests/ref-output-ext/circe1_5.ref \ functional_tests/ref-output-ext/circe1_7.ref \ functional_tests/ref-output-ext/circe1_8.ref \ functional_tests/ref-output-ext/ewa_2.ref \ functional_tests/ref-output-ext/ewa_3.ref \ functional_tests/ref-output-ext/hepmc_8.ref \ functional_tests/ref-output-ext/isr_2.ref \ functional_tests/ref-output-ext/isr_3.ref \ functional_tests/ref-output-ext/isr_4.ref \ functional_tests/ref-output-ext/isr_5.ref \ functional_tests/ref-output-ext/isr_6.ref \ functional_tests/ref-output-ext/lcio_2.ref \ functional_tests/ref-output-ext/lcio_7.ref \ functional_tests/ref-output-ext/lcio_12.ref \ functional_tests/ref-output-ext/mlm_matching_isr.ref \ functional_tests/ref-output-ext/nlo_5.ref \ functional_tests/ref-output-ext/nlo_7.ref \ functional_tests/ref-output-ext/nlo_8.ref \ functional_tests/ref-output-ext/nlo_9.ref \ functional_tests/ref-output-ext/nlo_10.ref \ functional_tests/ref-output-ext/observables_2.ref \ functional_tests/ref-output-ext/openloops_3.ref \ functional_tests/ref-output-ext/openloops_12.ref \ functional_tests/ref-output-ext/openloops_13.ref \ functional_tests/ref-output-ext/openloops_14.ref \ functional_tests/ref-output-ext/powheg_1.ref \ functional_tests/ref-output-ext/powheg_2.ref \ functional_tests/ref-output-ext/pythia6_3.ref \ functional_tests/ref-output-ext/pythia6_4.ref \ functional_tests/ref-output-ext/resonances_1.ref \ functional_tests/ref-output-ext/resonances_2.ref \ functional_tests/ref-output-ext/resonances_3.ref \ functional_tests/ref-output-ext/resonances_4.ref \ functional_tests/ref-output-ext/resonances_10.ref \ functional_tests/ref-output-ext/resonances_11.ref \ functional_tests/ref-output-ext/resonances_13.ref \ functional_tests/ref-output-ext/resonances_14.ref \ functional_tests/ref-output-ext/resonances_15.ref \ functional_tests/ref-output-ext/tauola_1.ref \ functional_tests/ref-output-ext/tauola_2.ref \ functional_tests/ref-output-ext/tauola_3.ref REF_OUTPUT_FILES_QUAD = \ functional_tests/ref-output-quad/beam_events_2.ref \ functional_tests/ref-output-quad/beam_events_3.ref \ functional_tests/ref-output-quad/circe1_4.ref \ functional_tests/ref-output-quad/circe1_5.ref \ functional_tests/ref-output-quad/circe1_7.ref \ functional_tests/ref-output-quad/circe1_8.ref \ functional_tests/ref-output-quad/ewa_2.ref \ functional_tests/ref-output-quad/ewa_3.ref \ functional_tests/ref-output-quad/hepmc_8.ref \ functional_tests/ref-output-quad/isr_2.ref \ functional_tests/ref-output-quad/isr_3.ref \ functional_tests/ref-output-quad/isr_4.ref \ functional_tests/ref-output-quad/isr_5.ref \ functional_tests/ref-output-quad/isr_6.ref \ functional_tests/ref-output-quad/lcio_2.ref \ functional_tests/ref-output-quad/lcio_7.ref \ functional_tests/ref-output-quad/lcio_12.ref \ functional_tests/ref-output-quad/mlm_matching_isr.ref \ functional_tests/ref-output-quad/nlo_5.ref \ functional_tests/ref-output-quad/nlo_7.ref \ functional_tests/ref-output-quad/nlo_8.ref \ functional_tests/ref-output-quad/nlo_9.ref \ functional_tests/ref-output-quad/nlo_10.ref \ functional_tests/ref-output-quad/observables_2.ref \ functional_tests/ref-output-quad/openloops_3.ref \ functional_tests/ref-output-quad/openloops_12.ref \ functional_tests/ref-output-quad/openloops_13.ref \ functional_tests/ref-output-quad/openloops_14.ref \ functional_tests/ref-output-quad/powheg_1.ref \ functional_tests/ref-output-quad/powheg_2.ref \ functional_tests/ref-output-quad/pythia6_3.ref \ functional_tests/ref-output-quad/pythia6_4.ref \ functional_tests/ref-output-quad/resonances_1.ref \ functional_tests/ref-output-quad/resonances_2.ref \ functional_tests/ref-output-quad/resonances_3.ref \ functional_tests/ref-output-quad/resonances_4.ref \ functional_tests/ref-output-quad/resonances_10.ref \ functional_tests/ref-output-quad/resonances_11.ref \ functional_tests/ref-output-quad/resonances_13.ref \ functional_tests/ref-output-quad/resonances_14.ref \ functional_tests/ref-output-quad/resonances_15.ref \ functional_tests/ref-output-quad/tauola_1.ref \ functional_tests/ref-output-quad/tauola_2.ref \ functional_tests/ref-output-quad/tauola_3.ref TESTSUITES_M4 = \ $(MISC_TESTS_M4) \ $(EXT_MSSM_M4) \ $(EXT_NMSSM_M4) TESTSUITES_SIN = \ $(MISC_TESTS_SIN) \ $(EXT_ILC_SIN) \ $(EXT_MSSM_SIN) \ $(EXT_NMSSM_SIN) \ $(EXT_SHOWER_SIN) \ $(EXT_NLO_SIN) \ $(EXT_NLO_ADD_SIN) MISC_TESTS_M4 = MISC_TESTS_SIN = \ functional_tests/alphas.sin \ functional_tests/analyze_1.sin \ functional_tests/analyze_2.sin \ functional_tests/analyze_3.sin \ functional_tests/analyze_4.sin \ functional_tests/analyze_5.sin \ functional_tests/analyze_6.sin \ functional_tests/beam_events_1.sin \ functional_tests/beam_events_2.sin \ functional_tests/beam_events_3.sin \ functional_tests/beam_events_4.sin \ functional_tests/beam_setup_1.sin \ functional_tests/beam_setup_2.sin \ functional_tests/beam_setup_3.sin \ functional_tests/beam_setup_4.sin \ functional_tests/beam_setup_5.sin \ functional_tests/bjet_cluster.sin \ functional_tests/br_redef_1.sin \ functional_tests/cascades2_phs_1.sin \ functional_tests/cascades2_phs_2.sin \ functional_tests/circe1_1.sin \ functional_tests/circe1_2.sin \ functional_tests/circe1_3.sin \ functional_tests/circe1_4.sin \ functional_tests/circe1_5.sin \ functional_tests/circe1_6.sin \ functional_tests/circe1_7.sin \ functional_tests/circe1_8.sin \ functional_tests/circe1_9.sin \ functional_tests/circe1_10.sin \ functional_tests/circe1_errors_1.sin \ functional_tests/circe1_photons_1.sin \ functional_tests/circe1_photons_2.sin \ functional_tests/circe1_photons_3.sin \ functional_tests/circe1_photons_4.sin \ functional_tests/circe1_photons_5.sin \ functional_tests/circe2_1.sin \ functional_tests/circe2_2.sin \ functional_tests/circe2_3.sin \ functional_tests/cmdline_1.sin \ functional_tests/cmdline_1_a.sin \ functional_tests/cmdline_1_b.sin \ functional_tests/colors.sin \ functional_tests/colors_2.sin \ functional_tests/colors_hgg.sin \ functional_tests/cuts.sin \ functional_tests/decay_err_1.sin \ functional_tests/decay_err_2.sin \ functional_tests/decay_err_3.sin \ functional_tests/defaultcuts.sin \ functional_tests/empty.sin \ functional_tests/energy_scan_1.sin \ functional_tests/ep_1.sin \ functional_tests/ep_2.sin \ functional_tests/ep_3.sin \ functional_tests/epa_1.sin \ functional_tests/epa_2.sin \ functional_tests/epa_3.sin \ functional_tests/epa_4.sin \ functional_tests/event_dump_1.sin \ functional_tests/event_dump_2.sin \ functional_tests/event_eff_1.sin \ functional_tests/event_eff_2.sin \ functional_tests/event_failed_1.sin \ functional_tests/event_weights_1.sin \ functional_tests/event_weights_2.sin \ functional_tests/ewa_1.sin \ functional_tests/ewa_2.sin \ functional_tests/ewa_3.sin \ functional_tests/ewa_4.sin \ functional_tests/extpar.sin \ functional_tests/fatal.sin \ functional_tests/fatal_beam_decay.sin \ functional_tests/fks_res_1.sin \ functional_tests/fks_res_2.sin \ functional_tests/fks_res_3.sin \ functional_tests/flvsum_1.sin \ functional_tests/gaussian_1.sin \ functional_tests/gaussian_2.sin \ functional_tests/hadronize_1.sin \ functional_tests/helicity.sin \ functional_tests/hepmc_1.sin \ functional_tests/hepmc_2.sin \ functional_tests/hepmc_3.sin \ functional_tests/hepmc_4.sin \ functional_tests/hepmc_5.sin \ functional_tests/hepmc_6.sin \ functional_tests/hepmc_7.sin \ functional_tests/hepmc_8.sin \ functional_tests/hepmc_9.sin \ functional_tests/hepmc_10.sin \ functional_tests/ilc.sin \ functional_tests/isr_1.sin \ functional_tests/isr_2.sin \ functional_tests/isr_3.sin \ functional_tests/isr_4.sin \ functional_tests/isr_5.sin \ functional_tests/isr_6.sin \ functional_tests/isr_epa_1.sin \ functional_tests/jets_xsec.sin \ functional_tests/job_id_1.sin \ functional_tests/job_id_2.sin \ functional_tests/job_id_3.sin \ functional_tests/job_id_4.sin \ functional_tests/lcio_1.sin \ functional_tests/lcio_2.sin \ functional_tests/lcio_3.sin \ functional_tests/lcio_4.sin \ functional_tests/lcio_5.sin \ functional_tests/lcio_6.sin \ functional_tests/lcio_7.sin \ functional_tests/lcio_8.sin \ functional_tests/lcio_9.sin \ functional_tests/lcio_10.sin \ functional_tests/lcio_11.sin \ functional_tests/lcio_12.sin \ functional_tests/lhapdf5.sin \ functional_tests/lhapdf6.sin \ functional_tests/lhef_1.sin \ functional_tests/lhef_2.sin \ functional_tests/lhef_3.sin \ functional_tests/lhef_4.sin \ functional_tests/lhef_5.sin \ functional_tests/lhef_6.sin \ functional_tests/lhef_7.sin \ functional_tests/lhef_8.sin \ functional_tests/lhef_9.sin \ functional_tests/lhef_10.sin \ functional_tests/lhef_11.sin \ functional_tests/libraries_1.sin \ functional_tests/libraries_2.sin \ functional_tests/libraries_3.sin \ functional_tests/libraries_4.sin \ functional_tests/method_ovm_1.sin \ functional_tests/mlm_matching_fsr.sin \ functional_tests/mlm_matching_isr.sin \ functional_tests/mlm_pythia6_isr.sin \ functional_tests/model_change_1.sin \ functional_tests/model_change_2.sin \ functional_tests/model_change_3.sin \ functional_tests/model_scheme_1.sin \ functional_tests/model_test.sin \ functional_tests/mssmtest_1.sin \ functional_tests/mssmtest_2.sin \ functional_tests/mssmtest_3.sin \ functional_tests/multi_comp_1.sin \ functional_tests/multi_comp_2.sin \ functional_tests/multi_comp_3.sin \ functional_tests/multi_comp_4.sin \ functional_tests/nlo_1.sin \ functional_tests/nlo_2.sin \ functional_tests/nlo_3.sin \ functional_tests/nlo_4.sin \ functional_tests/nlo_5.sin \ functional_tests/nlo_6.sin \ functional_tests/nlo_7.sin \ functional_tests/nlo_8.sin \ functional_tests/nlo_9.sin \ functional_tests/nlo_10.sin \ functional_tests/nlo_decay_1.sin \ functional_tests/observables_1.sin \ functional_tests/observables_2.sin \ functional_tests/openloops_1.sin \ functional_tests/openloops_2.sin \ functional_tests/openloops_3.sin \ functional_tests/openloops_4.sin \ functional_tests/openloops_5.sin \ functional_tests/openloops_6.sin \ functional_tests/openloops_7.sin \ functional_tests/openloops_8.sin \ functional_tests/openloops_9.sin \ functional_tests/openloops_10.sin \ functional_tests/openloops_11.sin \ functional_tests/openloops_12.sin \ functional_tests/openloops_13.sin \ functional_tests/openloops_14.sin \ functional_tests/pack_1.sin \ functional_tests/parton_shower_1.sin \ functional_tests/parton_shower_2.sin \ functional_tests/pdf_builtin.sin \ functional_tests/photon_isolation_1.sin \ functional_tests/photon_isolation_2.sin \ functional_tests/polarized_1.sin \ functional_tests/powheg_1.sin \ functional_tests/powheg_2.sin \ functional_tests/process_log.sin \ functional_tests/pythia6_1.sin \ functional_tests/pythia6_2.sin \ functional_tests/pythia6_3.sin \ functional_tests/pythia6_4.sin \ functional_tests/pythia8_1.sin \ functional_tests/pythia8_2.sin \ functional_tests/qcdtest_1.sin \ functional_tests/qcdtest_2.sin \ functional_tests/qcdtest_3.sin \ functional_tests/qcdtest_4.sin \ functional_tests/qcdtest_5.sin \ functional_tests/qcdtest_6.sin \ functional_tests/qedtest_1.sin \ functional_tests/qedtest_2.sin \ functional_tests/qedtest_3.sin \ functional_tests/qedtest_4.sin \ functional_tests/qedtest_5.sin \ functional_tests/qedtest_6.sin \ functional_tests/qedtest_7.sin \ functional_tests/qedtest_8.sin \ functional_tests/qedtest_9.sin \ functional_tests/qedtest_10.sin \ functional_tests/rambo_vamp_1.sin \ functional_tests/rambo_vamp_2.sin \ functional_tests/real_partition_1.sin \ functional_tests/rebuild_1.sin \ functional_tests/rebuild_2.sin \ functional_tests/rebuild_3.sin \ functional_tests/rebuild_4.sin \ functional_tests/rebuild_5.sin \ functional_tests/recola_1.sin \ functional_tests/recola_2.sin \ functional_tests/recola_3.sin \ functional_tests/recola_4.sin \ functional_tests/recola_5.sin \ functional_tests/recola_6.sin \ functional_tests/recola_7.sin \ functional_tests/recola_8.sin \ functional_tests/recola_9.sin \ functional_tests/resonances_1.sin \ functional_tests/resonances_2.sin \ functional_tests/resonances_3.sin \ functional_tests/resonances_4.sin \ functional_tests/resonances_5.sin \ functional_tests/resonances_6.sin \ functional_tests/resonances_7.sin \ functional_tests/resonances_8.sin \ functional_tests/resonances_9.sin \ functional_tests/resonances_10.sin \ functional_tests/resonances_11.sin \ functional_tests/resonances_12.sin \ functional_tests/resonances_13.sin \ functional_tests/resonances_14.sin \ functional_tests/resonances_15.sin \ functional_tests/restrictions.sin \ functional_tests/reweight_1.sin \ functional_tests/reweight_2.sin \ functional_tests/reweight_3.sin \ functional_tests/reweight_4.sin \ functional_tests/reweight_5.sin \ functional_tests/reweight_6.sin \ functional_tests/reweight_7.sin \ functional_tests/reweight_8.sin \ functional_tests/reweight_9.sin \ functional_tests/reweight_10.sin \ functional_tests/select_1.sin \ functional_tests/select_2.sin \ functional_tests/show_1.sin \ functional_tests/show_2.sin \ functional_tests/show_3.sin \ functional_tests/show_4.sin \ functional_tests/show_5.sin \ functional_tests/shower_err_1.sin \ functional_tests/sm_cms_1.sin \ functional_tests/smtest_1.sin \ functional_tests/smtest_2.sin \ functional_tests/smtest_3.sin \ functional_tests/smtest_4.sin \ functional_tests/smtest_5.sin \ functional_tests/smtest_6.sin \ functional_tests/smtest_7.sin \ functional_tests/smtest_8.sin \ functional_tests/smtest_9.sin \ functional_tests/smtest_10.sin \ functional_tests/smtest_11.sin \ functional_tests/smtest_12.sin \ functional_tests/smtest_13.sin \ functional_tests/smtest_14.sin \ functional_tests/smtest_15.sin \ functional_tests/smtest_16.sin \ functional_tests/smtest_17.sin \ functional_tests/spincor_1.sin \ functional_tests/static_1.exe.sin \ functional_tests/static_1.sin \ functional_tests/static_2.exe.sin \ functional_tests/static_2.sin \ functional_tests/stdhep_1.sin \ functional_tests/stdhep_2.sin \ functional_tests/stdhep_3.sin \ functional_tests/stdhep_4.sin \ functional_tests/stdhep_5.sin \ functional_tests/stdhep_6.sin \ functional_tests/structure_1.sin \ functional_tests/structure_2.sin \ functional_tests/structure_3.sin \ functional_tests/structure_4.sin \ functional_tests/structure_5.sin \ functional_tests/structure_6.sin \ functional_tests/structure_7.sin \ functional_tests/structure_8.sin \ functional_tests/susyhit.sin \ functional_tests/tauola_1.sin \ functional_tests/tauola_2.sin \ functional_tests/tauola_3.sin \ functional_tests/template_me_1.sin \ functional_tests/template_me_2.sin \ functional_tests/testproc_1.sin \ functional_tests/testproc_2.sin \ functional_tests/testproc_3.sin \ functional_tests/testproc_4.sin \ functional_tests/testproc_5.sin \ functional_tests/testproc_6.sin \ functional_tests/testproc_7.sin \ functional_tests/testproc_8.sin \ functional_tests/testproc_9.sin \ functional_tests/testproc_10.sin \ functional_tests/testproc_11.sin \ functional_tests/testproc_12.sin \ functional_tests/ufo_1.sin \ functional_tests/ufo_2.sin \ functional_tests/ufo_3.sin \ functional_tests/ufo_4.sin \ functional_tests/ufo_5.sin \ functional_tests/ufo_6.sin \ functional_tests/user_prc_threshold_1.sin \ functional_tests/user_prc_threshold_2.sin \ functional_tests/vamp2_1.sin \ functional_tests/vamp2_2.sin \ functional_tests/vamp2_3.sin \ functional_tests/vars.sin EXT_MSSM_M4 = \ ext_tests_mssm/mssm_ext-aa.m4 \ ext_tests_mssm/mssm_ext-bb.m4 \ ext_tests_mssm/mssm_ext-bt.m4 \ ext_tests_mssm/mssm_ext-dd.m4 \ ext_tests_mssm/mssm_ext-dd2.m4 \ ext_tests_mssm/mssm_ext-ddckm.m4 \ ext_tests_mssm/mssm_ext-dg.m4 \ ext_tests_mssm/mssm_ext-ee.m4 \ ext_tests_mssm/mssm_ext-ee2.m4 \ ext_tests_mssm/mssm_ext-en.m4 \ ext_tests_mssm/mssm_ext-ga.m4 \ ext_tests_mssm/mssm_ext-gg.m4 \ ext_tests_mssm/mssm_ext-gw.m4 \ ext_tests_mssm/mssm_ext-gz.m4 \ ext_tests_mssm/mssm_ext-tn.m4 \ ext_tests_mssm/mssm_ext-tt.m4 \ ext_tests_mssm/mssm_ext-ug.m4 \ ext_tests_mssm/mssm_ext-uu.m4 \ ext_tests_mssm/mssm_ext-uu2.m4 \ ext_tests_mssm/mssm_ext-uuckm.m4 \ ext_tests_mssm/mssm_ext-wa.m4 \ ext_tests_mssm/mssm_ext-ww.m4 \ ext_tests_mssm/mssm_ext-wz.m4 \ ext_tests_mssm/mssm_ext-za.m4 \ ext_tests_mssm/mssm_ext-zz.m4 EXT_NMSSM_M4 = \ ext_tests_nmssm/nmssm_ext-aa.m4 \ ext_tests_nmssm/nmssm_ext-bb1.m4 \ ext_tests_nmssm/nmssm_ext-bb2.m4 \ ext_tests_nmssm/nmssm_ext-bt.m4 \ ext_tests_nmssm/nmssm_ext-dd1.m4 \ ext_tests_nmssm/nmssm_ext-dd2.m4 \ ext_tests_nmssm/nmssm_ext-ee1.m4 \ ext_tests_nmssm/nmssm_ext-ee2.m4 \ ext_tests_nmssm/nmssm_ext-en.m4 \ ext_tests_nmssm/nmssm_ext-ga.m4 \ ext_tests_nmssm/nmssm_ext-gg.m4 \ ext_tests_nmssm/nmssm_ext-gw.m4 \ ext_tests_nmssm/nmssm_ext-gz.m4 \ ext_tests_nmssm/nmssm_ext-qg.m4 \ ext_tests_nmssm/nmssm_ext-tn.m4 \ ext_tests_nmssm/nmssm_ext-tt1.m4 \ ext_tests_nmssm/nmssm_ext-tt2.m4 \ ext_tests_nmssm/nmssm_ext-uu1.m4 \ ext_tests_nmssm/nmssm_ext-uu2.m4 \ ext_tests_nmssm/nmssm_ext-wa.m4 \ ext_tests_nmssm/nmssm_ext-ww1.m4 \ ext_tests_nmssm/nmssm_ext-ww2.m4 \ ext_tests_nmssm/nmssm_ext-wz.m4 \ ext_tests_nmssm/nmssm_ext-za.m4 \ ext_tests_nmssm/nmssm_ext-zz1.m4 \ ext_tests_nmssm/nmssm_ext-zz2.m4 EXT_MSSM_SIN = $(EXT_MSSM_M4:.m4=.sin) EXT_NMSSM_SIN = $(EXT_NMSSM_M4:.m4=.sin) EXT_ILC_SIN = \ ext_tests_ilc/ilc_settings.sin \ ext_tests_ilc/ilc_top_pair_360.sin \ ext_tests_ilc/ilc_top_pair_500.sin \ ext_tests_ilc/ilc_vbf_higgs_360.sin \ ext_tests_ilc/ilc_vbf_higgs_500.sin \ ext_tests_ilc/ilc_vbf_no_higgs_360.sin \ ext_tests_ilc/ilc_vbf_no_higgs_500.sin \ ext_tests_ilc/ilc_higgs_strahlung_360.sin \ ext_tests_ilc/ilc_higgs_strahlung_500.sin \ ext_tests_ilc/ilc_higgs_strahlung_background_360.sin \ ext_tests_ilc/ilc_higgs_strahlung_background_500.sin \ ext_tests_ilc/ilc_higgs_coupling_360.sin \ ext_tests_ilc/ilc_higgs_coupling_500.sin \ ext_tests_ilc/ilc_higgs_coupling_background_360.sin \ ext_tests_ilc/ilc_higgs_coupling_background_500.sin EXT_SHOWER_SIN = \ ext_tests_shower/shower_1_norad.sin \ ext_tests_shower/shower_2_aall.sin \ ext_tests_shower/shower_3_bb.sin \ ext_tests_shower/shower_3_jj.sin \ ext_tests_shower/shower_3_qqqq.sin \ ext_tests_shower/shower_3_tt.sin \ ext_tests_shower/shower_3_z_nu.sin \ ext_tests_shower/shower_3_z_tau.sin \ ext_tests_shower/shower_4_ee.sin \ ext_tests_shower/shower_5.sin \ ext_tests_shower/shower_6.sin EXT_NLO_SIN = \ ext_tests_nlo/nlo_ee4b.sin \ ext_tests_nlo/nlo_ee4j.sin \ ext_tests_nlo/nlo_ee4t.sin \ ext_tests_nlo/nlo_ee4tj.sin \ ext_tests_nlo/nlo_ee5j.sin \ ext_tests_nlo/nlo_eebb.sin \ ext_tests_nlo/nlo_eebbj.sin \ ext_tests_nlo/nlo_eebbjj.sin \ ext_tests_nlo/nlo_eejj.sin \ ext_tests_nlo/nlo_eejjj.sin \ ext_tests_nlo/nlo_eett.sin \ ext_tests_nlo/nlo_eetta.sin \ ext_tests_nlo/nlo_eettaa.sin \ ext_tests_nlo/nlo_eettah.sin \ ext_tests_nlo/nlo_eettaj.sin \ ext_tests_nlo/nlo_eettajj.sin \ ext_tests_nlo/nlo_eettaz.sin \ ext_tests_nlo/nlo_eettbb.sin \ ext_tests_nlo/nlo_eetth.sin \ ext_tests_nlo/nlo_eetthh.sin \ ext_tests_nlo/nlo_eetthj.sin \ ext_tests_nlo/nlo_eetthjj.sin \ ext_tests_nlo/nlo_eetthz.sin \ ext_tests_nlo/nlo_eettj.sin \ ext_tests_nlo/nlo_eettjj.sin \ ext_tests_nlo/nlo_eettjjj.sin \ ext_tests_nlo/nlo_eettwjj.sin \ ext_tests_nlo/nlo_eettww.sin \ ext_tests_nlo/nlo_eettz.sin \ ext_tests_nlo/nlo_eettzj.sin \ ext_tests_nlo/nlo_eettzjj.sin \ ext_tests_nlo/nlo_eettzz.sin \ ext_tests_nlo/nlo_ppzj_real_partition.sin \ ext_tests_nlo/nlo_pptttt.sin \ ext_tests_nlo/nlo_ppw.sin \ ext_tests_nlo/nlo_ppz.sin \ ext_tests_nlo/nlo_ppzj_sim_1.sin \ ext_tests_nlo/nlo_ppzj_sim_2.sin \ ext_tests_nlo/nlo_ppzj_sim_3.sin \ ext_tests_nlo/nlo_ppzj_sim_4.sin \ ext_tests_nlo/nlo_ppzw.sin \ ext_tests_nlo/nlo_ppzz.sin \ ext_tests_nlo/nlo_ppee_ew.sin \ ext_tests_nlo/nlo_pphee_ew.sin \ ext_tests_nlo/nlo_pphjj_ew.sin \ ext_tests_nlo/nlo_pphz_ew.sin \ ext_tests_nlo/nlo_ppllll_ew.sin \ ext_tests_nlo/nlo_ppllnn_ew.sin \ ext_tests_nlo/nlo_pptj_ew.sin \ ext_tests_nlo/nlo_ppwhh_ew.sin \ ext_tests_nlo/nlo_ppww_ew.sin \ ext_tests_nlo/nlo_ppwzh_ew.sin \ ext_tests_nlo/nlo_ppz_ew.sin \ ext_tests_nlo/nlo_ppzzz_ew.sin \ ext_tests_nlo/nlo_ppeej_ew.sin \ ext_tests_nlo/nlo_ppevj_ew.sin \ ext_tests_nlo/nlo_pptt_ew.sin \ ext_tests_nlo/nlo_settings.sin \ ext_tests_nlo/nlo_settings_ew.sin EXT_NLO_ADD_SIN = \ ext_tests_nlo_add/nlo_decay_tbw.sin \ ext_tests_nlo_add/nlo_fks_delta_i_ppee.sin \ ext_tests_nlo_add/nlo_fks_delta_o_eejj.sin \ ext_tests_nlo_add/nlo_jets.sin \ ext_tests_nlo_add/nlo_methods_gosam.sin \ ext_tests_nlo_add/nlo_qq_powheg.sin \ ext_tests_nlo_add/nlo_threshold_factorized.sin \ ext_tests_nlo_add/nlo_threshold.sin \ ext_tests_nlo_add/nlo_tt_powheg_sudakov.sin \ ext_tests_nlo_add/nlo_tt_powheg.sin \ ext_tests_nlo_add/nlo_tt.sin \ ext_tests_nlo_add/nlo_uu_powheg.sin \ ext_tests_nlo_add/nlo_uu.sin all-local: $(TESTSUITES_SIN) if M4_AVAILABLE SUFFIXES = .m4 .sin .m4.sin: case "$@" in \ */*) \ mkdir -p `sed 's,/.[^/]*$$,,g' <<< "$@"` ;; \ esac $(M4) $(srcdir)/$(TESTSUITE_MACROS) $< > $@ endif M4_AVAILABLE Index: trunk/share/doc/custom.hva =================================================================== --- trunk/share/doc/custom.hva (revision 8850) +++ trunk/share/doc/custom.hva (revision 8851) @@ -1,50 +1,50 @@ % custom.hva -- tuning HEVEA for WHIZARD documentation % Wolfgang's version, continued by JRR % Specials -\newcommand{\thisversion}{3.0.3} +\newcommand{\thisversion}{3.1.0} \newenvironment{interaction}{\small\verbatim}{\endverbatim\endsmall} \newenvironment{syntax}{\begin{quote}\begin{flushleft}\tt}{\end{flushleft}\end{quote}} \newcommand{\var}[1]{$\langle$\textit{#1}$\rangle$} % Standard Math %% \newcommand{\to}{->} \newcommand{\text}[1]{#1} \newcommand{\substack}[1]{#1} \newenvironment{multline}{\begin{equation}}{\end{equation}} \newenvironment{subequations}{}{} % Thophys \newcommand{\braket}[1]{\langle#1\rangle} \newcommand{\Braket}[1]{\langle#1\rangle} \newcommand{\bra}[1]{\langle#1|} \newcommand{\Bra}[1]{\langle#1|} \newcommand{\ket}[1]{|#1\rangle} \newcommand{\Ket}[1]{|#1\rangle} \newcommand{\strut}{} \newcommand{\diag}{\text{diag}} % Thohacks \newcommand{\dubious}{\begin{quote}} \newcommand{\enddubious}{\end{quote}} \newcommand{\timestamp}{\heveadate} % TeX \newcommand{\hfil}{} \newcommand{\hfill}{} \newcommand{\hss}{} %% \newcommand{\sqrt}[1]{#1^{\frac12}} %% \newcommand{\baselineskip}{3mm} % Misc \newcommand{\tr}{\mathrm{tr}} % Color! \definecolor{code}{gray}{0.8} \newenvironment{fwbgcolor}[1] {\@open{TABLE}{CELLPADDING=10 WIDTH="100\%"} \@open{TR}{} \@open{TD}{BGCOLOR=\@getcolor{#1}}} { \@close{TD} \@close{TR} \@close{TABLE}} \newenvironment{code}{\fwbgcolor{code}\verbatim}{\endverbatim\endfwbgcolor} \newenvironment{Code}{\fwbgcolor{code}\verbatim}{\endverbatim\endfwbgcolor} \endinput Local Variables: mode:latex indent-tabs-mode:nil End: Index: trunk/share/doc/manual.tex =================================================================== --- trunk/share/doc/manual.tex (revision 8850) +++ trunk/share/doc/manual.tex (revision 8851) @@ -1,19138 +1,19140 @@ \documentclass[12pt]{book} % \usepackage{feynmp} \usepackage{microtype} \usepackage{graphics,graphicx} \usepackage{color} \usepackage{amsmath,amssymb} \usepackage[colorlinks,bookmarks,bookmarksnumbered=true]{hyperref} \usepackage{thophys} \usepackage{fancyvrb} \usepackage{makeidx} \usepackage{units} \usepackage{ifpdf} %HEVEA\pdftrue \makeindex \usepackage{url} \usepackage[latin1]{inputenc} %HEVEA\@def@charset{UTF-8} %BEGIN LATEX \usepackage{supertabular,fancyvrb} \usepackage{hevea} %END LATEX \renewcommand{\topfraction}{0.9} \renewcommand{\bottomfraction}{0.8} \renewcommand{\textfraction}{0.1} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Macro section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\email}[2]{\thanks{\ahref{#1@{}#2}{#1@{}#2}}} \newcommand{\hepforgepage}{\url{https://whizard.hepforge.org}} \newcommand{\whizardwiki}{\url{https://whizard.hepforge.org/trac/wiki}} \tocnumber %BEGIN LATEX \DeclareMathOperator{\diag}{diag} %END LATEX %BEGIN LATEX \makeatletter \newif\if@preliminary \@preliminaryfalse \def\preliminary{\@preliminarytrue} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Changes referring to article.cls % %%% Title page \def\preprintno#1{\def\@preprintno{#1}} \def\address#1{\def\@address{#1}} \def\email#1#2{\thanks{\tt #1@{}#2}} \def\abstract#1{\def\@abstract{#1}} \newcommand\abstractname{ABSTRACT} \newlength\preprintnoskip \setlength\preprintnoskip{\textwidth\@plus -1cm} \newlength\abstractwidth \setlength\abstractwidth{\textwidth\@plus -3cm} % \@titlepagetrue \renewcommand\maketitle{\begin{titlepage}% \let\footnotesize\small \hfill\parbox{\preprintnoskip}{% \begin{flushright}\@preprintno\end{flushright}}\hspace*{1cm} \vskip 60\p@ \begin{center}% {\Large\bf\boldmath \@title \par}\vskip 1cm% {\sc\@author \par}\vskip 3mm% {\@address \par}% \if@preliminary \vskip 2cm {\large\sf PRELIMINARY DRAFT \par \@date}% \fi \end{center}\par \@thanks \vfill \begin{center}% \parbox{\abstractwidth}{\centerline{\abstractname}% \vskip 3mm% \@abstract} \end{center} \end{titlepage}% \setcounter{footnote}{0}% \let\thanks\relax\let\maketitle\relax \gdef\@thanks{}\gdef\@author{}\gdef\@address{}% \gdef\@title{}\gdef\@abstract{}\gdef\@preprintno{} }% % %%% New settings of dimensions \topmargin -1.5cm \textheight 22cm \textwidth 17cm \oddsidemargin 0cm \evensidemargin 0cm % %%% Original Latex definition of citex, except for the removal of %%% 'space' following a ','. \citerange replaces the ',' by '--'. \def\@citex[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi \def\@citea{}\@cite{\@for\@citeb:=#2\do {\@citea\def\@citea{,\penalty\@m}\@ifundefined {b@\@citeb}{{\bf ?}\@warning {Citation `\@citeb' on page \thepage \space undefined}}% \hbox{\csname b@\@citeb\endcsname}}}{#1}} \def\citerange{\@ifnextchar [{\@tempswatrue\@citexr}{\@tempswafalse\@citexr[]}} \def\@citexr[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi \def\@citea{}\@cite{\@for\@citeb:=#2\do {\@citea\def\@citea{--\penalty\@m}\@ifundefined {b@\@citeb}{{\bf ?}\@warning {Citation `\@citeb' on page \thepage \space undefined}}% \hbox{\csname b@\@citeb\endcsname}}}{#1}} % %%% Captions set in italics \long\def\@makecaption#1#2{% \vskip\abovecaptionskip \sbox\@tempboxa{#1: \emph{#2}}% \ifdim \wd\@tempboxa >\hsize #1: \emph{#2}\par \else \hbox to\hsize{\hfil\box\@tempboxa\hfil}% \fi \vskip\belowcaptionskip} % %%% Other useful macros \def\fmslash{\@ifnextchar[{\fmsl@sh}{\fmsl@sh[0mu]}} \def\fmsl@sh[#1]#2{% \mathchoice {\@fmsl@sh\displaystyle{#1}{#2}}% {\@fmsl@sh\textstyle{#1}{#2}}% {\@fmsl@sh\scriptstyle{#1}{#2}}% {\@fmsl@sh\scriptscriptstyle{#1}{#2}}} \def\@fmsl@sh#1#2#3{\m@th\ooalign{$\hfil#1\mkern#2/\hfil$\crcr$#1#3$}} \makeatother % Labelling command for Feynman graphs generated by package FEYNMF %\def\fmfL(#1,#2,#3)#4{\put(#1,#2){\makebox(0,0)[#3]{#4}}} %END LATEX %%%% Environment for showing user input and program response \newenvironment{interaction}% {\begingroup\small \Verbatim}% {\endVerbatim \endgroup\noindent} %BEGIN LATEX %%%% Environment for typesetting listings verbatim \newenvironment{code}% {\begingroup\footnotesize \quote \Verbatim}% {\endVerbatim \endquote \endgroup\noindent} %%%% Boxed environment for typesetting listings verbatim \newenvironment{Code}% {\begingroup\footnotesize \quote \Verbatim[frame=single]}% {\endVerbatim \endquote \endgroup\noindent} %%% Environment for displaying syntax \newenvironment{syntax}% {\begin{quote} \begin{flushleft}\tt}% {\end{flushleft} \end{quote}} \newcommand{\var}[1]{$\langle$\textit{#1}$\rangle$} %END LATEX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros specific for this paper %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\ttt}[1]{\texttt{#1}} \newcommand{\whizard}{\ttt{WHIZARD}} \newcommand{\oMega}{\ttt{O'Mega}} \newcommand{\vamp}{\ttt{VAMP}} \newcommand{\vamptwo}{\ttt{VAMP2}} \newcommand{\vegas}{\ttt{VEGAS}} \newcommand{\madgraph}{\ttt{MadGraph}} \newcommand{\CalcHep}{\ttt{CalcHep}} \newcommand{\helas}{\ttt{HELAS}} \newcommand{\herwig}{\ttt{HERWIG}} \newcommand{\isajet}{\ttt{ISAJET}} \newcommand{\pythia}{\ttt{PYTHIA}} \newcommand{\pythiasix}{\ttt{PYTHIA6}} \newcommand{\pythiaeight}{\ttt{PYTHIA8}} \newcommand{\jetset}{\ttt{JETSET}} \newcommand{\comphep}{\ttt{CompHEP}} \newcommand{\circe}{\ttt{CIRCE}} \newcommand{\circeone}{\ttt{CIRCE1}} \newcommand{\circetwo}{\ttt{CIRCE2}} \newcommand{\gamelan}{\textsf{gamelan}} \newcommand{\stdhep}{\ttt{STDHEP}} \newcommand{\lcio}{\ttt{LCIO}} \newcommand{\pdflib}{\ttt{PDFLIB}} \newcommand{\lhapdf}{\ttt{LHAPDF}} \newcommand{\hepmc}{\ttt{HepMC}} \newcommand{\hepmcthree}{\ttt{HepMC3}} \newcommand{\fastjet}{\ttt{FastJet}} \newcommand{\hoppet}{\ttt{HOPPET}} \newcommand{\metapost}{\ttt{MetaPost}} \newcommand{\sarah}{\ttt{SARAH}} \newcommand{\spheno}{\ttt{SPheno}} \newcommand{\Mathematica}{\ttt{Mathematica}} \newcommand{\FeynRules}{\ttt{FeynRules}} \newcommand{\UFO}{\ttt{UFO}} \newcommand{\gosam}{\ttt{Gosam}} \newcommand{\openloops}{\ttt{OpenLoops}} \newcommand{\recola}{\ttt{Recola}} \newcommand{\collier}{\ttt{Collier}} \newcommand{\powheg}{\ttt{POWHEG}} \newcommand{\delphes}{\ttt{Delphes}} \newcommand{\geant}{\ttt{Geant}} \newcommand{\ROOT}{\ttt{ROOT}} \newcommand{\rivet}{\ttt{Rivet}} %%%%% \newcommand{\sindarin}{\ttt{SINDARIN}} \newcommand{\cpp}{\ttt{C++}} \newcommand{\fortran}{\ttt{Fortran}} \newcommand{\fortranSeventySeven}{\ttt{FORTRAN77}} \newcommand{\fortranNinetyFive}{\ttt{Fortran95}} \newcommand{\fortranOThree}{\ttt{Fortran2003}} \newcommand{\ocaml}{\ttt{OCaml}} \newcommand{\python}{\ttt{Python}} \newenvironment{commands}{\begin{quote}\tt}{\end{quote}} \newcommand{\eemm}{$e^+e^- \to \mu^+\mu^-$} %\def\~{$\sim$} \newcommand{\sgn}{\mathop{\rm sgn}\nolimits} \newcommand{\GeV}{\textrm{GeV}} \newcommand{\fb}{\textrm{fb}} \newcommand{\ab}{\textrm{ab}} \newenvironment{parameters}{% \begin{center} \begin{tabular}{lccp{65mm}} \hline Parameter & Value & Default & Description \\ \hline }{% \hline \end{tabular} \end{center} } \newenvironment{options}{% \begin{center} \begin{tabular}{llcp{80mm}} \hline Option & Long version & Value & Description \\ \hline }{% \hline \end{tabular} \end{center} } %BEGIN LATEX \renewenvironment{options}{% \begin{center} \tablehead{\hline Option & Long version & Value & Description \\ \hline } \begin{supertabular}{llcp{80mm}} }{% \hline \end{supertabular} \end{center} } %END LATEX %BEGIN LATEX \renewenvironment{parameters}{% \begin{center} \tablehead{\hline Parameter & Value & Default & Description \\ \hline } \begin{supertabular}{lccp{65mm}} }{% \hline \end{supertabular} \end{center} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %END LATEX -\newcommand{\thisversion}{3.0.3} +\newcommand{\thisversion}{3.1.0} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %BEGIN LATEX \preprintno{} %%%\preprintno{arXiv:0708.4233 (also based on LC-TOOL-2001-039 (revised))} %END LATEX \title{% -%HEVEA WHIZARD 3.0 \\ +%HEVEA WHIZARD 3.1 \\ %BEGIN LATEX - \ttt{\huge WHIZARD 3.0} \\[\baselineskip] + \ttt{\huge WHIZARD 3.1} \\[\baselineskip] %END LATEX A generic \\ Monte-Carlo integration and event generation package \\ for multi-particle processes\\[\baselineskip] MANUAL \footnote{% This work is supported by Helmholtz-Alliance ``Physics at the Terascale''. In former stages this work has also been supported by the Helmholtz-Gemeinschaft VH--NG--005 \\ E-mail: \ttt{whizard@desy.de} } \\[\baselineskip] } % \def\authormail{\ttt{kilian@physik.uni-siegen.de}, % \ttt{ohl@physik.uni-wuerzburg.de}, % \ttt{juergen.reuter@desy.de}, \ttt{cnspeckn@googlemail.com}} \author{% Wolfgang Kilian, % Thorsten Ohl, % J\"urgen Reuter, % with contributions from Fabian Bach, % Simon Bra\ss, % Pia Bredt, % Bijan Chokouf\'{e} Nejad, % Christian Fleper, % Vincent Rothe, % Sebastian Schmidt, % Marco Sekulla, % Christian Speckner, % So Young Shim, % Florian Staub, % Pascal Stienemeier, % Christian Weiss} %BEGIN LATEX \address{% Universit\"at Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D--57068 Siegen, Germany \\ Universit\"at W\"urzburg, Emil-Hilb-Weg 22, D--97074 W\"urzburg, Germany \\ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D--22603 Hamburg, Germany \\ %% \authormail \vspace{1cm} \begin{center} \includegraphics[width=4cm]{Whizard-Logo} \end{center} \mbox{} \\ \vspace{2cm} \mbox{} when using \whizard\ please cite: \\ W. Kilian, T. Ohl, J. Reuter, \\ {\em WHIZARD: Simulating Multi-Particle Processes at LHC and ILC}, \\ Eur.Phys.J.{\bf C71} (2011) 1742, arXiv: 0708.4233 [hep-ph]; \\ M. Moretti, T. Ohl, J. Reuter, \\ {\em O'Mega: An Optimizing Matrix Element Generator}, \\ arXiv: hep-ph/0102195 } %END LATEX %BEGIN LATEX \abstract{% \whizard\ is a program system designed for the efficient calculation of multi-particle scattering cross sections and simulated event samples. The generated events can be written to file in various formats (including HepMC, LHEF, STDHEP, LCIO, and ASCII) or analyzed directly on the parton or hadron level using a built-in \LaTeX-compatible graphics package. \\[\baselineskip] Complete tree-level matrix elements are generated automatically for arbitrary partonic multi-particle processes by calling the built-in matrix-element generator \oMega. Beyond hard matrix elements, \whizard\ can generate (cascade) decays with complete spin correlations. Various models beyond the SM are implemented, in particular, the MSSM is supported with an interface to the SUSY Les Houches Accord input format. Matrix elements obtained by alternative methods (e.g., including loop corrections) may be interfaced as well. \\[\baselineskip] The program uses an adaptive multi-channel method for phase space integration, which allows to calculate numerically stable signal and background cross sections and generate unweighted event samples with reasonable efficiency for processes with up to eight and more final-state particles. Polarization is treated exactly for both the initial and final states. Quark or lepton flavors can be summed over automatically where needed. \\[\baselineskip] For hadron collider physics, we ship the package with the most recent PDF sets from the MSTW/MMHT and CTEQ/CT10/CJ12/CJ15/CT14 collaborations. Furthermore, an interface to the \lhapdf\ library is provided. \\[\baselineskip] For Linear Collider physics, beamstrahlung (\circeone, \circetwo), Compton and ISR spectra are included for electrons and photons, including the most recent ILC and CLIC collider designs. Alternatively, beam-crossing events can be read directly from file. \\[\baselineskip] For parton showering and matching/merging with hard matrix elements , fragmenting and hadronizing the final state, a first version of two different parton shower algorithms are included in the \whizard\ package. This also includes infrastructure for the MLM matching and merging algorithm. For hadronization and hadronic decays, \pythia\ and \herwig\ interfaces are provided which follow the Les Houches Accord. In addition, the last and final version of (\fortran) \pythia\ is included in the package. \\[\baselineskip] The \whizard\ distribution is available at %%% \begin{center} %%% \ttt{http://whizard.event-generator.org} %%% \end{center} %%% or at \begin{center} \url{https://whizard.hepforge.org} \end{center} where also the \ttt{svn} repository is located. } %END LATEX % \maketitle %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Text %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{fmffile} \tableofcontents \newpage \chapter{Introduction} \section{Disclaimer} \emph{This is a preliminary version of the WHIZARD manual. Many parts are still missing or incomplete, and some parts will be rewritten and improved soon. To find updated versions of the manual, visit the \whizard\ website} \begin{center} \hepforgepage \end{center} \emph{or consult the current version in the \ttt{svn} repository on \hepforgepage\ directly. Note, that the most recent version of the manual might contain information about features of the current \ttt{svn} version, which are not contained in the last official release version!} \emph{For information that is not (yet) written in the manual, please consult the examples in the \whizard\ distribution. You will find these in the subdirectory \ttt{share/examples} of the main directory where \whizard\ is installed. More information about the examples can be found on the \whizard\ Wiki page} \begin{center} \whizardwiki . \end{center} %%%%% \clearpage \section{Overview} \whizard\ is a multi-purpose event generator that covers all parts of event generation (unweighted and weighted), either through intrinsic components or interfaces to external packages. Realistic collider environments are covered through sophisticated descriptions for beam structures at hadron colliders, lepton colliders, lepton-hadron colliders, both circular and linear machines. Other options include scattering processes e.g. for dark matter annihilation or particle decays. \whizard\ contains its in-house generator for (tree-level) high-multiplicity matrix elements, \oMega\, that supports the whole Standard Model (SM) of particle physics and basically all possibile extensions of it. QCD parton shower describe high-multiplicity partonic jet events that can be matched with matrix elements. At the moment, only hadron collider parton distribution functions (PDFs) and hadronization are handled by packages not written by the main authors. This manual is organized mainly along the lines of the way how to run \whizard: this is done through a command language, \sindarin\ (Scripting INtegration, Data Analysis, Results display and INterfaces.) Though this seems a complication at first glance, the user is rewarded with a large possibility, flexibility and versatility on how to steer \whizard. After some general remarks in the follow-up sections, in Chap.~\ref{chap:installation} we describe how to get the program, the package structure, the prerequisites, possible external extensions of the program and the basics of the installation (both as superuser and locally). Also, a first technical overview how to work with \whizard\ on single computer, batch clusters and farms are given. Furthermore, some rare uncommon possible build problems are discussed, and a tour through options for debugging, testing and validation is being made. A first dive into the running of the program is made in Chap.~\ref{chap:start}. This is following by an extensive, but rather technical introduction into the steering language \sindarin\ in Chap.~\ref{chap:sindarinintro}. Here, the basic elements of the language like commands, statements, control structures, expressions and variables as well as the form of warnings and error messages are explained in detail. Chap.~\ref{chap:sindarin} contains the application of the \sindarin\ command language to the main tasks in running \whizard\ in a physics framework: the defintion of particles, subevents, cuts, and event selections. The specification of a particular physics models is \begin{figure}[t] \centering \includegraphics[width=0.9\textwidth]{whizstruct} \caption{General structure of the \whizard\ package.} \end{figure} discussed, while the next sections are devoted to the setup and compilation of code for particular processes, the specification of beams, beam structure and polarization. The next step is the integration, controlling the integration, phase space, generator cuts, scales and weights, proceeding further to event generation and decays. At the end of this chapter, \whizard's internal data analysis methods and graphical visualization options are documented. The following chapters are dedicated to the physics implemented in \whizard: methods for hard matrix interactions in Chap.~\ref{chap:hardint}. Then, in Chap.~\ref{chap:physics}, implemented methods for adaptive multi-channel integration, particularly the integrator \vamp\ are explained, together with the algorithms for the generation of the phase-space in \whizard. Finally, an overview is given over the physics models implemented in \whizard\ and its matrix element generator \oMega, together with possibilities for their extension. After that, the next chapter discusses parton showering, matching and hadronization as well as options for event normalizations and supported event formats. Also weighted event generation is explained along the lines with options for negative weights. Chap.~\ref{chap:visualization} is a stand-alone documentation of GAMELAN, the interal graphics support for the visualization of data and analysis. The next chapter, Chap.~\ref{chap:userint} details user interfaces: how to use more options of the \whizard\ command on the command line, how to use \whizard\ interactively, and how to include \whizard\ as a library into the user's own program. Then, an extensive list of examples in Chap.~\ref{chap:examples} documenting physics examples from the LEP, SLC, HERA, Tevatron, and LHC colliders to future linear and circular colliders. This chapter is a particular good reference for the beginning, as the whole chain from choosing a model, setting up processes, the beam structure, the integration, and finally simulation and (graphical) analysis are explained in detail. More technical details about efficiency, tuning and advance usage of \whizard\ are collected in Chap.~\ref{chap:tuning}. Then, Chap.~\ref{chap:extmodels} shows how to set up your own new physics model with the help of external programs like \sarah\ or \FeynRules\ program or the Universal Feynrules Output, UFO, and include it into the \whizard\ event generator. In the appendices, we e.g. give an exhaustive reference list of \sindarin\ commands and built-in variables. Please report any inconsistencies, bugs, problems or simply pose open questions to our contact \url{whizard@desy.de}. There is now also a support page on \texttt{Launchpad}, which offers support that is easily visible for the whole user community: \url{https://launchpad.net/whizard}. %%%%% \section{Historical remarks} This section gives a historical overview over the development of \whizard\ and can be easily skipped in a (first) reading of the manual. \whizard\ has been developed in a first place as a tool for the physics at the then planned linear electron-positron collider TESLA around 1999. The intention was to have a tool at hand to describe electroweak physics of multiple weak bosons and the Higgs boson as precise as possible with full matrix elements. Hence, the acronym: \ttt{WHiZard}, which stood for $\mathbf{W}$, {\bf H}iggs, $\mathbf{Z}$, {\bf a}nd {\bf r}espective {\bf d}ecays. Several components of the \whizard\ package that are also available as independent sub-packages have been published already before the first versions of the \whizard\ generator itself: the multi-channel adaptive Monte-Carlo integration package \vamp\ has been released mid 1998~\cite{VAMP}. The dedicated packages for the simulation of linear lepton collider beamstrahlung and the option for a photon collider on Compton backscattering (\ttt{CIRCE1/2}) date back even to mid 1996~\cite{CIRCE}. Also parts of the code for \whizard's internal graphical analysis (the \gamelan\ module) came into existence already around 1998. After first inofficial versions, the official version 1 of \whizard\ was release in the year 2000. The development, improvement and incorporation of new features continued for roughly a decade. Major milestones in the development were the full support of all kinds of beyond the Standard Model (BSM) models including spin 3/2 and spin 2 particles and the inclusion of the MSSM, the NMSSM, Little Higgs models and models for anomalous couplings as well as extra-dimensional models from version 1.90 on. In the beginning, several methods for matrix elements have been used, until the in-house matrix element generator \oMega\ became available from version 1.20 on. It was included as a part of the \whizard\ package from version 1.90 on. The support for full color amplitudes came with version 1.50, but in a full-fledged version from 2.0 on. Version 1.40 brought the necessary setups for all kinds of collider environments, i.e. asymmetric beams, decay processes, and intrinsic $p_T$ in structure functions. Version 2.0 was released in April 2010 as an almost complete rewriting of the original code. It brought the construction of an internal density-matrix formalism which allowed the use of factorized production and (cascade) decay processes including complete color and spin correlations. Another big new feature was the command-line language \sindarin\ for steering all parts of the program. Also, many performance improvement have taken place in the new release series, like OpenMP parallelization, speed gain in matrix element generation etc. Version 2.2 came out in May 2014 as a major refactoring of the program internals but keeping (almost everywhere) the same user interface. New features are inclusive processes, reweighting, and more interfaces for QCD environments (BLHA/HOPPET). The following tables shows some of the major steps (physics implementation and/or technical improvements) in the development of \whizard (we break the table into logical and temporal blocks of \whizard\ development). \newpage { {\bf \whizard\ \texttt{1}}, first line of development, ca. 1998-2010: \nopagebreak[4] \begin{center} \begin{tabular}{|l|l|l|}\hline 0.99 & 08/1999 & Beta version \\\hline 1.00 & 12/2000 & First public version \\\hline 1.10 & 03/2001 & Libraries; \pythiasix\ interface \\ 1.11 & 04/2001 & PDF support; anomalous couplings \\ \hline 1.20 & 02/2002 & \oMega\ matrix elements; \ttt{CIRCE} support\\ 1.22 & 03/2002 & QED ISR; beam remnants, phase space improvements \\ 1.25 & 05/2003 & MSSM; weighted events; user-code plug-in \\ 1.28 & 04/2004 & Improved phase space; SLHA interface; signal catching \\\hline 1.30 & 09/2004 & Major technical overhaul \\\hline 1.40 & 12/2004 & Asymmetric beams; decays; $p_T$ in structure functions \\\hline 1.50 & 02/2006 & QCD support in \oMega\ (color flows); LHA format \\ 1.51 & 06/2006 & $Hgg$, $H\gamma\gamma$; Spin 3/2 + 2; BSM models \\\hline 1.90 & 11/2007 & \oMega\ included; LHAPDF support; $Z'$; $WW$ scattering \\ 1.92 & 03/2008 & LHE format; UED; parton shower beta version \\ 1.93 & 04/2009 & NMSSM; SLHA2 accord; improved color/flavor sums \\ 1.95 & 02/2010 & MLM matching; development stop in version 1 \\ 1.97 & 05/2011 & Manual for version 1 completed. \\\hline\hline \end{tabular} \end{center} } \vspace{2cm} { {\bf \whizard\ \texttt{2.0-2.2}}: first major refactoring and early new release, ca. 2007-2015: \nopagebreak[4] \begin{center} \begin{tabular}{|l|l|l|}\hline 2.0.0 & 04/2010 & Major refactoring: automake setup; dynamic libraries \\ & & improved speed; cascades; OpenMP; \sindarin\ steering language \\ 2.0.3 & 07/2010 & QCD ISR+FSR shower; polarized beams \\ 2.0.5 & 05/2011 & Builtin PDFs; static builds; relocation scripts \\ 2.0.6 & 12/2011 & Anomalous top couplings; unit tests \\\hline 2.1.0 & 06/2012 & Analytic ISR+FSR parton shower; anomalous Higgs couplings \\\hline 2.2.0 & 05/2014 & Major technical refactoring: abstract object-orientation; THDM; \\ & & reweighting; LHE v2/3; BLHA; HOPPET interface; inclusive processes \\ 2.2.1 & 05/2014 & CJ12 PDFs; FastJet interface \\ 2.2.2 & 07/2014 & LHAPDF6 support; correlated LC beams; GuineaPig interface \\ 2.2.3 & 11/2014 & O'Mega virtual machine; lepton collider top pair threshold; \\ & & Higgs singlet extension \\ 2.2.4 & 02/2015 & LCIO support; progress on NLO; many technical bug fixes \\ 2.2.7 & 08/2015 & progress on POWHEG; fixed-order NLO events; \\ & & revalidation of ILC event chain \\ 2.2.8 & 11/2015 & support for quadruple precision; StdHEP included; \\ & & SM dim 6 operators supported \\\hline \end{tabular} \end{center} } \newpage { {\bf \whizard\ \texttt{2.3-2.8}}, completion of refactoring, continuous development, ca. 2015-2020: \nopagebreak[4] \begin{center} \begin{tabular}{|l|l|l|}\hline 2.3.0 & 07/2016 & NLO: resonance mappings for FKS subtraction; \\ & & more advanced cascade syntax; \\ & & GUI ($\alpha$ version); UFO support ($\alpha$ version); ILC v1.9x-v2.x final validation \\ 2.3.1 & 08/2016 & Complex mass scheme \\\hline 2.4.0 & 11/2016 & Refactoring of NLO setup \\ 2.4.1 & 03/2017 & $\alpha$ version of new VEGAS implementation \\\hline 2.5.0 & 05/2017 & Full UFO support (SM-like models) \\\hline 2.6.0 & 09/2017 & MPI parallel integration and event generation; resonance histories \\ & & for showers; RECOLA support \\ 2.6.1 & 11/2017 & EPA/ISR transverse distributions, handling of shower resonances; \\ & & more efficient (alternative) phase space generation \\ 2.6.2 & 12/2017 & $Hee$ coupling, improved resonance matching \\ 2.6.3 & 02/2018 & Partial NLO refactoring for quantum numbers, \\ & & unified RECOLA 1/2 interface. \\ 2.6.4 & 08/2018 & Gridpack functionality; Bug fixes: color flows, HSExt model, MPI setup \\\hline 2.7.0 & 01/2019 & PYTHIA8 interface, process setup refactoring, RAMBO PS option; \\ & & \quad gfortran 5.0+ necessary \\\hline 2.8.0 & 08/2019 & (Almost) complete UFO support, general Lorentz structures, n-point vertices \\ 2.8.1 & 09/2019 & HepMC3, NLO QCD pp (almost) complete, b/c jet selection, photon isolation \\ 2.8.2 & 10/2019 & Support for OCaml $\geq$ 4.06.0, UFO Spin-2 support, LCIO alternative weights \\ 2.8.3 & 07/2020 & UFO Majorana feature complete, many $e^+e^-$ related improvements \\ 2.8.4 & 07/2020 & Bug fix for UFO Majorana models \\ 2.8.5 & 09/2020 & Bug fix for polarizations in $H\to\tau\tau$ \\\hline\hline \end{tabular} \end{center} } \vspace{2cm} { {\bf \whizard\ \texttt{3.0}} and onwards, the NLO series: \nopagebreak[4] \begin{center} \begin{tabular}{|l|l|l|}\hline 3.0.0 & 04/2021 & NLO QCD automation \& UFO Majorana support released \\ 3.0.1 & 07/2021 & MPI load balancer, rescan of ILC mass production samples \\ 3.0.2 & 11/2021 & NLO EW for $pp$ processes, sums/products in \sindarin\ \\ 3.0.3 & 04/2022 & NLO EW/QCD mixed processes, NLL electron PDFs + \\\hline + 3.1.0 & 12/2022 & General POWHEG matching (hadron/lepton colliders) \\\hline\hline \end{tabular} \end{center} } \vspace{.5cm} For a detailed overview over the historical development of the code confer the \ttt{ChangeLog} file and the commit messages in our revision control system repository. \newpage %%%%% \section{About examples in this manual} Although \whizard\ has been designed as a Monte Carlo event generator for LHC physics, several elementary steps and aspects of its usage throughout the manual will be demonstrated with the famous textbook example of $e^+e^- \to \mu^+ \mu^-$. This is the same process, the textbook by Peskin/Schroeder \cite{PeskinSchroeder} uses as a prime example to teach the basics of quantum field theory. We use this example not because it is very special for \whizard\ or at the time being a relevant physics case, but simply because it is the easiest fundamental field theoretic process without the complications of structured beams (which can nevertheless be switched on like for ISR and beamstrahlung!), the need for jet definitions/algorithms and flavor sums; furthermore, it easily accomplishes a demonstration of polarized beams. After the basics of \whizard\ usage have been explained, we move on to actual physics cases from LHC (or Tevatron). \newpage \chapter{Installation} \label{chap:installation} \section{Package Structure} \whizard\ is a software package that consists of a main executable program (which is called \ttt{whizard}), libraries, auxiliary executable programs, and machine-independent data files. The whole package can be installed by the system administrator, by default, on a central location in the file system (\ttt{/usr/local} with its proper subdirectories). Alternatively, it is possible to install it in a user's home directory, without administrator privileges, or at any other location. A \whizard\ run requires a workspace, i.e., a writable directory where it can put generated code and data. There are no constraints on the location of this directory, but we recommend to use a separate directory for each \whizard\ project, or even for each \whizard\ run. Since \whizard\ generates the matrix elements for scattering and decay processes in form of \fortran\ code that is automatically compiled and dynamically linked into the running program, it requires a working \fortran\ compiler not just for the installation, but also at runtime. The previous major version \whizard1 did put more constraints on the setup. In a nutshell, not just the matrix element code was compiled at runtime, but other parts of the program as well, so the whole package was interleaved and had to be installed in user space. The workflow was controlled by \ttt{make} and PERL scripts. These constraints are gone in the present version in favor of a clean separation of installation and runtime workspace. \section{\label{sec:prerequisites}Prerequisites} \subsection{No Binary Distribution} \whizard\ is currently not distributed as a binary package, nor is it available as a debian or RPM package. This might change in the future. However, compiling from source is very simple (see below). Since the package needs a compiler also at runtime, it would not work without some development tools installed on the machine, anyway. Note, however, that we support an install script, that downloads all necessary prerequisites, and does the configuration and compilation described below automatically. This is called the ``instant WHIZARD'' and is accessible through the WHIZARD webpage from version 2.1.1 on: \url{https://whizard.hepforge.org/versions/install/install-whizard-2.X.X.sh}. Download this shell script, make it executable by \begin{interaction} chmod +x install-whizard-2.X.X.sh \end{interaction} and execute it. Note that this also involves compilation of the required \fortran\ compiler which takes 1-3 hours depending on your system. \ttt{Darwin} operating systems (a.k.a. as \ttt{Mac OS X}) have a very similar general system for all sorts of software, called \ttt{MacPorts} (\url{http://www.macports.org}). This offers to install \whizard\ as one of its software ports, and is very similar to ``instant WHIZARD'' described above. \subsection{Tarball Distribution} \label{sec:tarballdistr} This is the recommended way of obtaining \whizard. You may download the current stable distribution from the \whizard\ webpage, hosted at the HepForge webpage \begin{quote} \hepforgepage \end{quote} The distribution is a single file, say \ttt{whizard-\thisversion.tgz} for version \thisversion. You need the additional prerequisites: \begin{itemize} \item GNU \ttt{tar} (or \ttt{gunzip} and \ttt{tar}) for unpacking the tarball. \item The \ttt{make} utility. Other standard Unix utilities (\ttt{sed}, \ttt{grep}, etc.) are usually installed by default. \item A modern \fortran\ compiler (see Sec.~\ref{sec:compilers} for details). \item The \ocaml\ system. \ocaml\ is a functional and object-oriented language. Version 4.02.3 or newer is required to compile all components of \whizard. The package is freely available either as a debian/RPM package on your system (it might be necessary to install it from the usual repositories), or you can obtain it directly from \begin{quote} \url{http://caml.inria.fr} \end{quote} and install it yourself. If desired, the package can be installed in user space without administrator privileges\footnote{ Unfortunately, the version of the \ocaml\ compiler from 3.12.0 broke backwards compatibility. Therefore, versions of \oMega/\whizard\ up to 2.0.2 only compile with older versions (3.11.x works). This has been fixed in versions 2.0.3 and later. See also Sec.~\ref{sec:buildproblems}. \whizard\ versions up to 2.7.1 were still backwards compatible with \ocaml\ 3.12.0}. \end{itemize} The following optional external packages are not required, but used for certain purposes. Make sure to check whether you will need any of them, before you install \whizard. \begin{itemize} \item \LaTeX\ and \metapost\ for data visualization. Both are part of the \TeX\ program family. These programs are not absolutely necessary, but \whizard\ will lack the tools for visualization without them. \item The \lhapdf\ structure-function library. See Sec.~\ref{sec:lhapdf_install}. \item The \hoppet\ structure-function matching tool. See Sec.~\ref{sec:hoppet}. \item The \hepmc\ event-format package. See Sec.~\ref{sec:hepmc}. \item The \fastjet\ jet-algorithm package. See Sec.~\ref{sec:fastjet}. \item The \lcio\ event-format package. See Sec.~\ref{sec:lcio}. \end{itemize} Until version v2.2.7 of \whizard, the event-format package \stdhep\ used to be available as an external package. As their distribution is frozen with the final version v5.06.01, and it used to be notoriously difficult to compile and link \stdhep\ into \whizard, it was decided to include \stdhep\ into \whizard. This is the case from version v2.2.8 of \whizard\ on. Linking against an external version of \stdhep\ is precluded from there on. Nevertheless, we list some explanations in Sec.~\ref{sec:stdhep}, particularly on the need to install the \ttt{libtirpc} headers for the legacy support of this event format. Once these prerequisites are met, you may unpack the package in a directory of your choice \begin{quote}\small\tt some-directory> tar xzf whizard-\thisversion.tgz \end{quote} and proceed.\footnote{Without GNU \ttt{tar}, this would read \ttt{\small gunzip -c whizard-\thisversion.tgz | tar xz -}} For using external physics models that are directly supported by \whizard\ and \oMega, the user can use tools like \sarah\ or \FeynRules. There installation and linking to \whizard\ will be explained in Chap.~\ref{chap:extmodels}. Besides this, also new models can be conveniently included via \UFO\ files, which will be explained as well in that chapter. The directory will then contain a subdirectory \ttt{whizard-\thisversion} where the complete source tree is located. To update later to a new version, repeat these steps. Each new version will unpack in a separate directory with the appropriate name. %%%%% \subsection{SVN Repository Version} If you want to install the latest development version, you have to check it out from the \whizard\ SVN repository. Note that since a couple of years our development is now via a Git revision control system hosted at the University of Siegen, cf. the next subsection. In addition to the prerequisites listed in the previous section, you need: \begin{itemize} \item The \ttt{subversion} package (\ttt{svn}), the tool for dealing with SVN repositories. \item The \ttt{autoconf} package, part of the \ttt{autotools} development system. \ttt{automake} is needed with version \ttt{1.12.2} or newer. \item The \ttt{noweb} package, a light-weight tool for literate programming. This package is nowadays often part of Linux distributions\footnote{In Ubuntu from version 10.04 on, and in Debian since squeeze. For \ttt{Mac OS X}, \ttt{noweb} is available via the \ttt{MacPorts} system.}. You can obtain the source code from\footnote{Please, do not use any of the binary builds from this webpage. Probably all of them are quite old and broken.} \begin{quote} \url{http://www.cs.tufts.edu/~nr/noweb/} \end{quote} \end{itemize} To start, go to a directory of your choice and execute \begin{interaction} your-src-directory> svn checkout svn+ssh://vcs@phab.hepforge.org/source/whizardsvn/trunk \;\; . \end{interaction} Note that for the time being after the HepForge system modernization early September 2018, a HepForge account with a local ssl key is necessary to checkout the subversion repository. This is enforced by the phabricator framework of HepForge, and will hopefully be relaxed in the future. The SVN source tree will appear in the current directory. To update later, you just have to execute \begin{interaction} your-src-directory> svn update \end{interaction} within that directory. After checking out the sources, you first have to create \ttt{configure.ac} by executing the shell script \ttt{build\_master.sh}. In order to build the \ttt{configure} script, the \ttt{autotools} package \ttt{autoreconf} has to be run. On some \ttt{Unix} systems the \ttt{RPC} headers needed for the legacy support of the \stdhep\ event format are provided by the \ttt{TIRPC} library (cf. Sec.~\ref{sec:stdhep}). To easily check for them, \ttt{configure.ac} processed by \ttt{autoreconf} makes use of the \ttt{pkg-config} tool which needs to be installed for the developer version. So now, run\footnote{At least, version 2.65 of the \ttt{autoconf} package is required.} \begin{interaction} your-src-directory> autoreconf \end{interaction} This will generate a \ttt{configure} script. %%%%% \subsection{Public Git Repository Version} Since a couple of years, development of \whizard\ is done by means of a Git revision system, hosted at the University of Siegen. There is a public mirror of that Git repository available at \begin{quote} \url{https://gitlab.tp.nt.uni-siegen.de/whizard/public} \end{quote} Cloning via HTTPS brings the user to the same change as the SVN checkout from HepForge described in the previous subsection: \begin{quote} git clone https://gitlab.tp.nt.uni-siegen.de/whizard/public.git \end{quote} The next steps are the same as described in the previous subsection. %%%%% \subsection{Nightly development snapshots} Nightly development snapshots that are pre-packaged in the same way as an official distribution are available from \begin{quote} \url{https://whizard.tp.nt.uni-siegen.de/} \end{quote} Building \whizard\ works the way as described in Sec.~\ref{sec:tarballdistr}. %%%%% \subsection{\label{sec:compilers}Fortran Compilers} \whizard\ is written in modern \fortran. To be precise, it uses a subset of the \fortranOThree\ standard. At the time of this writing, this subset is supported by, at least, the following compilers: \begin{itemize} \item \ttt{gfortran} (GNU, Open Source). You will need version 5.1.0 or higher\footnote{Note that \whizard\ versions 2.0.0 until 2.3.1 compiled with \ttt{gfortran} 4.7.4, but the object-oriented refactoring of the \whizard\ code from 2.4.0 on until version 2.6.5 made a switch to \ttt{gfortran} 4.8.4 or higher necessary. In the same way, since version 2.7.0, \ttt{gfortran} 5.1.0 or newer is needed}. We recommend to use at least version 5.4 or higher, as especially the the early version of the \texttt{gfortran} experience some bugs. \ttt{gfortran} 6.5.0 has a severe regression and cannot be used. \item \ttt{nagfor} (NAG). You will need version 6.2 or higher. \item \ttt{ifort} (Intel). You will need version 19.0.2 or higher \end{itemize} %%%%% \subsection{LHAPDF} \label{sec:lhapdf_install} For computing scattering processes at hadron colliders such as the LHC, \whizard\ has a small set of standard structure-function parameterizations built in, cf.\ Sec.~\ref{sec:built-in-pdf}. For many applications, this will be sufficient, and you can skip this section. However, if you need structure-function parameterizations that are not in the default set (e.g. PDF error sets), you can use the \lhapdf\ structure-function library, which is an external package. It has to be linked during \whizard\ installation. For use with \whizard, version 5.3.0 or higher of the library is required\footnote{ Note that PDF sets which contain photons as partons are only supported with \whizard\ for \lhapdf\ version 5.7.1 or higher}. The \lhapdf\ package has undergone a major rewriting from \fortran\ version 5 to \cpp\ version 6. While still maintaining the interface for the \lhapdf\ version 5 series, from version 2.2.2 of \whizard\ on, the new release series of \lhapdf, version 6.0 and higher, is also supported. If \lhapdf\ is not yet installed on your system, you can download it from \begin{quote} \url{https://lhapdf.hepforge.org} \end{quote} for the most recent LHAPDF version 6 and newer, or \begin{quote} \url{https://lhapdf.hepforge.org/lhapdf5} \end{quote} for version 5 and older, and install it. The website contains comprehensive documentation on the configuring and installation procedure. Make sure that you have downloaded and installed not just the package, but also the data sets. Note that \lhapdf\ version 5 needs both a \fortran\ and a \cpp\ compiler. During \whizard\ configuration, \whizard\ looks for the script \ttt{lhapdf} (which is present in \lhapdf\ series 6) first, and then for \ttt{lhapdf-config} (which is present since \lhapdf\ version 4.1.0): if those are in an executable path (or only the latter for \lhapdf\ version 5), the environment variables for \lhapdf\ are automatically recognized by \whizard, as well as the version number. This should look like this in the \ttt{configure} output (for \lhapdf\ version 6 or newer), \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LHAPDF --- configure: checking for lhapdf... /usr/local/bin/lhapdf checking for lhapdf-config... /usr/local/bin/lhapdf-config checking the LHAPDF version... 6.2.1 checking the major version... 6 checking the LHAPDF pdfsets path... /usr/local/share/LHAPDF checking the standard PDF sets... all standard PDF sets installed checking if LHAPDF is functional... yes checking LHAPDF... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} while for \lhapdf\ version 5 and older it looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LHAPDF --- configure: checking for lhapdf... no checking for lhapdf-config... /usr/local/bin/lhapdf-config checking the LHAPDF version... 5.9.1 checking the major version... 5 checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets checking the standard PDF sets... all standard PDF sets installed checking for getxminm in -lLHAPDF... yes checking for has_photon in -lLHAPDF... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} If you want to use a different \lhapdf\ (e.g. because the one installed on your system by default is an older one), the preferred way to do so is to put the \ttt{lhapdf} (and/or \ttt{lhapdf-config}) scripts in an executable path that is checked before the system paths, e.g. \ttt{/bin}. For the old series, \lhapdf\ version 5, a possible error could arise if \lhapdf\ had been compiled with a different \fortran\ compiler than \whizard, and if the run-time library of that \fortran\ compiler had not been included in the \whizard\ configure process. The output then looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LHAPDF --- configure: checking for lhapdf... no checking for lhapdf-config... /usr/local/bin/lhapdf-config checking the LHAPDF version... 5.9.1 checking the major version... 5 checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets checking for standard PDF sets... all standard PDF sets installed checking for getxminm in -lLHAPDF... no checking for has_photon in -lLHAPDF... no configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} So, the \whizard\ configure found the \lhapdf\ distribution, but could not link because it could not resolve the symbols inside the library. In case of failure, for more details confer the \ttt{config.log}. If \lhapdf\ is installed in a non-default directory where \whizard\ would not find it, set the environment variable \ttt{LHAPDF\_DIR} to the correct installation path when configuring \whizard. The check for the standard PDF sets are those sets that are used in the default \whizard\ self tests in the case \lhapdf\ is enabled and correctly linked. If some of them are missing, then this test will result in a failure. They are the \ttt{CT10} set for \lhapdf\ version 6 (for version 5, \ttt{cteq61.LHpdf}, \ttt{cteq6ll.LHpdf}, \ttt{cteq5l.LHgrid}, and \ttt{GSG961.LHgrid} are demanded). If you want to use \lhapdf\ inside \whizard\ please install them such that \whizard\ could perform all its sanity checks with them. The last check is for the \ttt{has\_photon} flag, which tests whether photon PDFs are available in the found \lhapdf\ installation. %%%%% \subsection{HOPPET} \label{sec:hoppet} \hoppet\ (not Hobbit) is a tool for the QCD DGLAP evolution of PDFs for hadron colliders. It provides possibilities for matching algorithms for 4- and 5-flavor schemes, that are important for precision simulations of $b$-parton initiated processes at hadron colliders. If you are not interested in those features, you can skip this section. Note that this feature is not enabled by default (unlike e.g. \lhapdf), but has to be explicitly during the configuration (see below): \begin{interaction} your-build-directory> your-src-directory/configure --enable-hoppet \end{interaction} If you \ttt{configure} messages like the following: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- HOPPET --- configure: checking for hoppet-config... /usr/local/bin/hoppet-config checking for hoppetAssign in -lhoppet_v1... yes checking the HOPPET version... 1.2.0 configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} then you know that \hoppet\ has been found and was correctly linked. If that is not the case, you have to specify the location of the \hoppet\ library, e.g. by adding \begin{interaction} HOPPET=/lib \end{interaction} to the \ttt{configure} options above. For more details, please confer the \hoppet\ manual. %%%%% \subsection{HepMC} \label{sec:hepmc} With version 2.8.1, \whizard\ supports both the "classical" version 2 as well as the newly designed version 3 (release 2019). The configure step can successfully recognize the two different versions, the user do not have to specify which version is installed. \hepmc\ is a \cpp\ class library for handling collider scattering events. In particular, it provides a portable format for event files. If you want to use this format, you should link \whizard\ with \hepmc, otherwise you can skip this section. If it is not already installed on your system, you may obtain \hepmc\ from one of these two webpages: \begin{quote} \url{http://hepmc.web.cern.ch/hepmc/} \end{quote} or \begin{quote} \url{http://hepmc.web.cern.ch/hepmc/} \end{quote} If the \hepmc\ library is linked with the installation, \whizard\ is able to read and write files in the \hepmc\ format. Detailed information on the installation and usage can be found on the \hepmc\ homepage. We give here only some brief details relevant for the usage with \whizard: For the compilation of HepMC one needs a \cpp\ compiler. Then the procedure is the same as for the \whizard\ package, namely configure HepMC: \begin{interaction} configure --with-momentum=GEV --with-length=MM --prefix= \end{interaction} Note that the particle momentum and decay length flags are mandatory, and we highly recommend to set them to the values \ttt{GEV} and \ttt{MM}, respectively. After configuration, do \ttt{make}, an optional \ttt{make check} (which might sometimes fail for non-standard values of momentum and length), and finally \ttt{make install}. The latest version of \hepmc\ (2.6.10) as well as the new relase series use \texttt{cmake} for their build process. For more information, confer the \hepmc\ webpage. A \whizard\ configuration for \hepmc\ looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- HepMC --- configure: checking for HepMC-config... no checking HepMC3 or newer... no configure: HepMC3 not found, incompatible, or HepMC-config not found configure: looking for HepMC2 instead ... checking the HepMC version... 2.06.10 checking for GenEvent class in -lHepMC... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} If \hepmc\ is installed in a non-default directory where \whizard\ would not find it, set the environment variable \ttt{HEPMC\_DIR} to the correct installation path when configuring \whizard. Furthermore, the environment variable \ttt{CXXFLAGS} allows you to set specific \ttt{C/C++} preprocessor flags, e.g. non-standard include paths for header files. A typical configuration of \hepmcthree\ will look like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- ROOT --- configure: checking for root-config... /usr/local/bin/root-config checking for root... /usr/local/bin/root checking for rootcint... /usr/local/bin/rootcint checking for dlopen in -ldl... (cached) yes configure: -------------------------------------------------------------- configure: --- HepMC --- configure: checking for HepMC3-config... /usr/local/bin/HepMC3-config checking if HepMC3 is built with ROOT interface... yes checking if HepMC3 is functional... yes checking for HepMC3... yes checking the HepMC3 version... 3.02.01 configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} As can be seen, \whizard\ will check for the \ROOT\ environment as well as whether \hepmcthree\ has been built with support for the \ROOT\ and \ttt{RootTree} writer classes. This is an easy option to use \whizard\ to write out \ROOT\ events. For more information see Sec.~\ref{sec:root}. %%%%% \subsection{PYTHIA6} \label{sec:pythia6_conf} The \whizard\ package ships with the final version of the old \pythiasix\ release series, v6.427. This is no longer maintained, but many analyses are still set up for this shower and hadronization tool, so \whizard\ offers the possibility of backwards compatibility here. \begin{quote} configure: -------------------------------------------------------------- configure: --- SHOWERS PYTHIA6 PYTHIA8 MPI --- configure: checking whether we want to enable PYTHIA6... yes checking for PYTHIA6... (enabled) checking for PYTHIA6 eh settings... (disabled) \end{quote} \whizard\ automatically compiles \pythiasix, it has not to be specifically enabled by the user. In order to properly use \pythiasix\ for high-energy electron-hadron collisions which allow much further forward regions to be explored as old experiments like HERA, there is a special switch to enable those specific settings for $eh$-colliders: \begin{quote} \ttt{--enable-pythia6\_ep} \end{quote} Those settings have been provided by~\cite{UtaKlein}. %%%%% \subsection{PYTHIA8} \label{sec:pythia8} \pythiaeight\ is a \cpp\ class library for handling hadronization, showering and underlying event. If you want to use this feature (once it is fully supported in \whizard), you should link \whizard\ with \pythiaeight, otherwise you can skip this section. If it is not already installed on your system, you may obtain \pythiaeight\ from \begin{quote} \url{http://home.thep.lu.se/~torbjorn/Pythia.html} \end{quote} If the \pythiaeight\ library is linked with the installation, \whizard\ will be able to use its hadronization and showering, once this is fully supported within \whizard. To link a \pythiaeight\ installation to \whizard, you should specify the flag \begin{quote} \ttt{--enable-pythia8} \end{quote} to \ttt{configure}. If \pythiaeight\ is installed in a non-default directory where \whizard\ would not find it, specify also \begin{quote} \ttt{--with-pythia8=\emph{}} \end{quote} A successful \whizard\ configuration should produce a screen output similar to this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- SHOWERS PYTHIA6 PYTHIA8 MPI --- configure: [....] checking for pythia8-config... /usr/local/bin/pythia8-config checking if PYTHIA8 is functional... yes checking PYTHIA8... yes configure: WARNING: PYTHIA8 configure is for testing purposes at the moment. configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} %%%%% \subsection{FastJet} \label{sec:fastjet} \fastjet\ is a \cpp\ class library for handling jet clustering. If you want to use this feature, you should link \whizard\ with \fastjet, otherwise you can skip this section. If it is not already installed on your system, you may obtain \fastjet\ from \begin{quote} \url{http://fastjet.fr} \end{quote} If the \fastjet\ library is linked with the installation, \whizard\ is able to call the jet algorithms provided by this program for the purposes of applying cuts and analysis. To link a \fastjet\ installation to \whizard, you should specify the flag \begin{quote} \ttt{--enable-fastjet} \end{quote} to \ttt{configure}. If \fastjet\ is installed in a non-default directory where \whizard\ would not find it, specify also \begin{quote} \ttt{--with-fastjet=\emph{}} \end{quote} A successful \whizard\ configuration should produce a screen output similar to this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- FASTJET --- configure: checking for fastjet-config... /usr/local/bin/fastjet-config checking if FastJet is functional... yes checking FastJet... yes checking the FastJet version... 3.3.4 configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} Note that when compiling on Darwin/macOS it might be necessary to set the option \ttt{--disable-auto-ptr} when compiling with \ttt{clang++}. %%%%% \subsection{STDHEP} \label{sec:stdhep} \stdhep\ is a library for handling collider scattering events~\cite{stdhep}. In particular, it provides a portable format for event files. Until version 2.2.7 of \whizard, \stdhep\ that was maintained by Fermilab, could be linked as an externally compiled library. As the \stdhep\ package is frozen in its final release v5.06.1 and no longer maintained, it has from version 2.2.8 been included \whizard. This eases many things, as it was notoriously difficult to compile and link \stdhep\ in a way compatible with \whizard. Not the full package has been included, but only the libraries for file I/O (\ttt{mcfio}, the library for the XDR conversion), while the various translation tools for \pythia, \herwig, etc. have been abandoned. Note that \stdhep\ has largely been replaced in the hadron collider community by the \hepmc\ format, and in the lepton collider community by \lcio. \whizard\ might serve as a conversion tools for all these formats, but other tools also exist, of course. Note that the \ttt{mcfio} framework makes use of the \ttt{RPC} headers. These come -- provided by \ttt{SunOS/Oracle America, Inc.} -- together with the system headers, but on some \ttt{Unix} systems (e.g. \ttt{ArchLinux}, \ttt{Fedora}) have been replaced by the \ttt{libtirpc} headers . The \ttt{configure} script searches for these headers so these have to be installed mandatorily. If the \stdhep\ library is linked with the installation, \whizard\ is able to write files in the \stdhep\ format, the corresponding configure output notifies you that \stdhep\ is always included: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- STDHEP --- configure: checking for pkg-config... /opt/local/bin/pkg-config checking pkg-config is at least version 0.9.0... yes checking for libtirpc... no configure: for StdHEP legacy code: using SunRPC headers and library configure: StdHEP v5.06.01 is included internally configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} %%%%% \subsection{LCIO} \label{sec:lcio} \lcio\ is a \cpp\ class library for handling collider scattering events. In particular, it provides a portable format for event files. If you want to use this format, you should link \whizard\ with \lcio, otherwise you can skip this section. If it is not already installed on your system, you may obtain \lcio\ from: \begin{quote} \url{http://lcio.desy.de} \end{quote} If the \lcio\ library is linked with the installation, \whizard\ is able to read and write files in the \lcio\ format. Detailed information on the installation and usage can be found on the \lcio\ homepage. We give here only some brief details relevant for the usage with \whizard: For the compilation of \lcio\ one needs a \cpp\ compiler. \lcio\ is based on \ttt{cmake}. For the corresponding options please confer the \lcio\ manual. A \whizard\ configuration for \lcio\ looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LCIO --- configure: checking the LCIO version... 2.12.1 checking for LCEventImpl class in -llcio... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} If \lcio\ is installed in a non-default directory where \whizard\ would not find it, set the environment variable \ttt{LCIO} or \ttt{LCIO\_DIR} to the correct installation path when configuring \whizard. The first one is the variable exported by the \ttt{setup.sh} script while the second one is analogous to the environment variables of other external packages. \ttt{LCIO} takes precedence over \ttt{LCIO\_DIR}. Furthermore, the environment variable \ttt{CXXFLAGS} allows you to set specific \ttt{C/C++} preprocessor flags, e.g. non-standard include paths for header files. %%%%% \section{Installation} \label{sec:installation} Once you have unpacked the source (either the tarball or the SVN version), you are ready to compile it. There are several options. \subsection{Central Installation} This is the default and recommended way, but it requires adminstrator privileges. Make sure that all prerequisites are met (Sec.~\ref{sec:prerequisites}). \begin{enumerate} \item Create a fresh directory for the \whizard\ build. It is recommended to keep this separate from the source directory. \item Go to that directory and execute \begin{interaction} your-build-directory> your-src-directory/configure \end{interaction} This will analyze your system and prepare the compilation of \whizard\ in the build directory. Make sure to set the proper options to \ttt{configure}, see Sec.~\ref{sec:configure-options} below. \item Call \ttt{make} to compile and link \whizard: \begin{interaction} your-build-directory> make \end{interaction} \item If you want to make sure that everything works, run \begin{interaction} your-build-directory> make check \end{interaction} This will take some more time. \item Become superuser and say \begin{interaction} your-build-directory> make install \end{interaction} \end{enumerate} \whizard\ should now installed in the default locations, and the executable should be available in the standard path. Try to call \ttt{whizard --help} in order to check this. \subsection{Installation in User Space} You may lack administrator privileges on your system. In that case, you can still install and run \whizard. Make sure that all prerequisites are met (Sec.~\ref{sec:prerequisites}). \begin{enumerate} \item Create a fresh directory for the \whizard\ build. It is recommended to keep this separate from the source directory. \item Reserve a directory in user space for the \whizard\ installation. It should be empty, or yet non-existent. \item Go to that directory and execute \begin{interaction} your-build-directory> your-src-directory/configure --prefix=your-install-directory \end{interaction} This will analyze your system and prepare the compilation of \whizard\ in the build directory. Make sure to set the proper additional options to \ttt{configure}, see Sec.~\ref{sec:configure-options} below. \item Call \ttt{make} to compile and link \whizard: \begin{interaction} your-build-directory> make \end{interaction} \item If you want to make sure that everything works, run \begin{interaction} your-build-directory> make check \end{interaction} This will take some more time. \item Install: \begin{interaction} your-build-directory> make install \end{interaction} \end{enumerate} \whizard\ should now be installed in the installation directory of your choice. If the installation is not in your standard search paths, you have to account for this by extending the paths appropriately, see Sec.~\ref{sec:workspace}. \subsection{Configure Options} \label{sec:configure-options} The configure script accepts environment variables and flags. They can be given as arguments to the \ttt{configure} program in arbitrary order. You may run \ttt{configure --help} for a listing; only the last part of this long listing is specific for the \whizard\ system. Here is an example: \begin{interaction} configure FC=gfortran-5.4 FCFLAGS="-g -O3" --enable-fc-openmp \end{interaction} The most important options are \begin{itemize} \item \ttt{FC} (variable): The \fortran\ compiler. This is necessary if you need a compiler different from the standard compiler on the system, e.g., if the latter is too old. \item \ttt{FCFLAGS} (variable): The flags to be given to the \fortran\ compiler. The main use is to control the level of optimization. \item \ttt{--prefix=\var{directory-name}}: Specify a non-default directory for installation. \item \ttt{--enable-fc-openmp}: Enable parallel executing via OpenMP on a multi-processor/multi-core machine. This works only if OpenMP is supported by the compiler (e.g., \ttt{gfortran}). When running \whizard, the number of processors that are actually requested can be controlled by the user. Without this option, \whizard\ will run in serial mode on a single core. See Sec.~\ref{sec:openmp} for further details. \item \ttt{--enable-fc-mpi}: Enable parallel executing via MPI on a single machine using several cores or several machines. This works only if a MPI library is installed (e.g. \ttt{OpenMPI}) and \ttt{FC=mpifort CC=mpicc CXX=mpic++} is set. Without this option, \whizard\ will run in serial mode on a single core. The flag can be combined with \ttt{--enable-fc-openmp}. See Sec.~\ref{sec:mpi} for further details. \item \ttt{LHADPF\_DIR} (variable): The location of the optional \lhapdf\ package, if non-default. \item \ttt{LOOPTOOLS\_DIR} (variable): The location of the optional \ttt{LOOPTOOLS} package, if non-default. \item \ttt{OPENLOOPS\_DIR} (variable): The location of the optional \openloops\ package, if non-default. \item \ttt{GOSAM\_DIR} (variable): The location of the optional \gosam\ package, if non-default. \item \ttt{HOPPET\_DIR} (variable): The location of the optional \hoppet\ package, if non-default. \item \ttt{HEPMC\_DIR} (variable): The location of the optional \hepmc\ package, if non-default. \item \ttt{LCIO}/\ttt{LCIO\_DIR} (variable): The location of the optional \lcio\ package, if non-default. \end{itemize} Other flags that might help to work around possible problems are the flags for the $C$ and \cpp\ compilers as well as the \ttt{Fortran77} compiler, or the linker flags and additional libraries for the linking process. \begin{itemize} \item \ttt{CC} (variable): \ttt{C} compiler command \item \ttt{F77} (variable): \ttt{Fortran77} compiler command \item \ttt{CXX} (variable): \ttt{C++} compiler command \item \ttt{CPP} (variable): \ttt{C} preprocessor \item \ttt{CXXCPP} (variable): \ttt{C++} preprocessor \item \ttt{CFLAGS} (variable): \ttt{C} compiler flags \item \ttt{FFLAGS} (variable): \ttt{Fortran77} compiler flags \item \ttt{CXXFLAGS} (variable): \ttt{C++} compiler flags \item \ttt{LIBS} (variable): libraries to be passed to the linker as \ttt{-l{\em library}} \item \ttt{LDFLAGS} (variable): non-standard linker flags \end{itemize} For other options (like e.g. \ttt{--with-precision=...} etc.) please see the \ttt{configure --help} option. %%%%% \subsection{Details on the Configure Process} The configure process checks for the build and host system type; only if this is not detected automatically, the user would have to specify this by himself. After that system-dependent files are searched for, LaTeX and Acroread for documentation and plots, the \fortran\ compiler is checked, and finally the \ocaml\ compiler. The next step is the checks for external programs like \lhapdf\ and \ttt{HepMC}. Finally, all the Makefiles are being built. The compilation is done by invoking \ttt{make} and finally \ttt{make install}. You could also do a \ttt{make check} in order to test whether the compilation has produced sane files on your system. This is highly recommended. Be aware that there be problems for the installation if the install path or a user's home directory is part of an AFS file system. Several times problems were encountered connected with conflicts with permissions inside the OS permission environment variables and the AFS permission flags which triggered errors during the \ttt{make install} procedure. Also please avoid using \ttt{make -j} options of parallel execution of \ttt{Makefile} directives as AFS filesystems might not be fast enough to cope with this. For specific problems that might have been encountered in rare circumstances for some FORTRAN compilers confer the webpage \url{https://whizard.hepforge.org/compilers.html}. Note that the \pythia\ bundle for showering and hadronization (and some other external legacy code pieces) do still contain good old \ttt{Fortran77} code. These parts should better be compiled with the very same \ttt{Fortran2003} compiler as the \whizard\ core. There is, however, one subtlety: when the \ttt{configure} flag \ttt{FC} gets a full system path as argument, \ttt{libtool} is not able to recognize this as a valid (GNU) \ttt{Fortran77} compiler. It then searches automatically for binaries like \ttt{f77}, \ttt{g77} etc. or a standard system compiler. This might result in a compilation failure of the \ttt{Fortran77} code. A viable solution is to define an executable link and use this (not the full path!) as \ttt{FC} flag. It is possible to compile \whizard\ without the \ocaml\ parts of \oMega, namely by using the \ttt{--disable-omega} option of the configure. This will result in a built of \whizard\ with the \oMega\ \fortran\ library, but without the binaries for the matrix element generation. All selftests (cf. \ref{sec:selftests}) requiring \oMega\ matrix elements are thereby switched off. Note that you can install such a built (e.g. on a batch system without \ocaml\ installation), but the try to build a distribution (all \ttt{make distxxx} targets) will fail. %%%%%%%%%%% \subsection{Building on Darwin/macOS} The easiest way to build \whizard\ on Darwin/macOS is to install the complete GNU compiler suite (\ttt{gcc/g++/gfortran}). This can be done with one of the code repositories like \ttt{MacPorts}, \ttt{HomeBrew} or \ttt{Fink}. In order to include \ROOT\ which natively should be built using the intrinsic \ttt{clang/clang++} for the graphics support, there is also the possibility to build external tools like \hepmcthree, \pythiaeight, \fastjet, and \lcio\ with \ttt{clang++}, and set in the configure option for \whizard\ \ttt{C} and \ttt{C++} compiler accordingly: \begin{quote} ../configure CC=clang CXX=clang++ [...] \end{quote} Note that \fastjet\ might need to be configured with the \ttt{--disable-auto-ptr} option when compiling with \ttt{clang++} and strict \ttt{C++17} standard. Since Darwin v10.11, the security measures of the new Darwin systems do not allow e.g. environment variables passed to subprocesses. This does not change anything for the installed WHIZARD, but the testsuite (make check) will not work before make install has been executed. make distcheck will not work on El Capitan. There is also the option to disable the System Integrity Protocol (SIP) of modern OSX by booting in Recovery Mode, open a terminal and type \ttt{csrutil disable}. However, we do not recommend to do so. %%%%%%%%%%% \subsection{Building on Windows} For Windows, from \ttt{Windows 10} onwards, there is the possibility to install and use an underlying Linux operating system, e.g. \ttt{Ubuntu}. Installation and usage of \whizard\ works then the same way as described above. %%%%%%%%%%% \subsection{\whizard\ self tests/checks} \label{sec:selftests} \whizard\ has a number of self-consistency checks and tests which assure that most of its features are running in the intended way. The standard procedure to invoke these self tests is to perform a \ttt{make check} from the \ttt{build} directory. If \ttt{src} and \ttt{build} directories are the same, all relevant files for these self-tests reside in the \ttt{tests} subdirectory of the main \whizard\ directory. In that case, one could in principle just call the scripts individually from the command line. Note, that if \ttt{src} and \ttt{build} directory are different as recommended, then the input files will have been installed in \ttt{prefix/share/whizard/test}, while the corresponding test shell scripts remain in the \ttt{srcdir/test} directory. As the main shell script \ttt{run\_whizard.sh} has been built in the \ttt{build} directory, one now has to copy the files over by and set the correct paths by hand, if one wishes to run the test scripts individually. \ttt{make check} still correctly performs all \whizard\ self-consistency tests. The tests itself fall into two categories, unit self test that individually test the modular structure of \whizard, and tests that are run by \sindarin\ files. In future releases of \whizard, these two categories of tests will be better separated than in the 2.2.1 release. There are additional, quite extensiv numerical tests for validation and backwards compatibility checks for SM and MSSM processes. As a standard, these extended self tests are not invoked. However, they can be enabled by executing the corresponding specific \ttt{make check} operations in the subdirectories for these extensive tests. As the new \whizard\ testsuite does very thorough and scrupulous tests of the whole \whizard\ structure, it is always possible that some tests are failing due to some weird circumstances or because of numerical fluctuations. In such a case do not panic, contact the developers (\ttt{whizard@desy.de}) and provide them with the logfiles of the failing test as well as the setup of your configuration. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \chapter{Working with \whizard} \label{chap:start} \whizard\ can run as a stand-alone program. You (the user) can steer \whizard\ either interactively or by a script file. We will first describe the latter method, since it will be the most common way to interact with the \whizard\ system. \section{Hello World} The legacy version series 1 of the program relied on a bunch of input files that the user had to provide in some obfuscated format. This approach is sufficient for straightforward applications. However, once you get experienced with a program, you start thinking about uses that the program's authors did not foresee. In case of a Monte Carlo package, typical abuses are parameter scans, complex patterns of cuts and reweighting factors, or data analysis without recourse to external packages. This requires more flexibility. Instead of transferring control over data input to some generic scripting language like \ttt{PERL} or \python\ (or even \cpp), which come with their own peculiarities and learning curves, we decided to unify data input and scripting in a dedicated steering language that is particularly adapted to the needs of Monte-Carlo integration, simulation, and simple analysis of the results. Thus we discovered what everybody knew anyway: that W(h)izards communicate in \sindarin, Scripting INtegration, Data Analysis, Results display and INterfaces. \sindarin\ is a DSL -- a domain-specific scripting language -- that is designed for the single purpose of steering and talking to \whizard. Now since \sindarin\ is a programming language, we honor the old tradition of starting with the famous Hello World program. In \sindarin\ this reads simply \begin{quote} \begin{verbatim} printf "Hello World!" \end{verbatim} \end{quote} Open your favorite editor, type this text, and save it into a file named \verb|hello.sin|. \begin{figure} \centering \begin{scriptsize} \begin{Verbatim}[frame=single] | Writing log to 'whizard.log' |=============================================================================| | | | WW WW WW WW WW WWWWWW WW WWWWW WWWW | | WW WW WW WW WW WW WW WWWW WW WW WW WW | | WW WW WW WW WWWWWWW WW WW WW WW WWWWW WW WW | | WWWW WWWW WW WW WW WW WWWWWWWW WW WW WW WW | | WW WW WW WW WW WWWWWW WW WW WW WW WWWW | | | | | | W | | sW | | WW | | sWW | | WWW | | wWWW | | wWWWW | | WW WW | | WW WW | | wWW WW | | wWW WW | | WW WW | | WW WW | | WW WW | | WW WW | | WW WW | | WW WW | | wwwwww WW WW | | WWWWWww WW WW | | WWWWWwwwww WW WW | | wWWWwwwwwWW WW | | wWWWWWWWWWWwWWW WW | | wWWWWW wW WWWWWWW | | WWWW wW WW wWWWWWWWwww | | WWWW wWWWWWWWwwww | | WWWW WWWW WWw | | WWWWww WWWW | | WWWwwww WWWW | | wWWWWwww wWWWWW | | WwwwwwwwwWWW | | | | | | | | by: Wolfgang Kilian, Thorsten Ohl, Juergen Reuter | | with contributions from Christian Speckner | | Contact: | | | | if you use WHIZARD please cite: | | W. Kilian, T. Ohl, J. Reuter, Eur.Phys.J.C71 (2011) 1742 | | [arXiv: 0708.4233 [hep-ph]] | | M. Moretti, T. Ohl, J. Reuter, arXiv: hep-ph/0102195 | | | |=============================================================================| - | WHIZARD 3.0.3 + | WHIZARD 3.1.0 |=============================================================================| | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM | Process library 'default_lib': initialized | Preloaded library: default_lib | Reading commands from file 'hello.sin' Hello World! | WHIZARD run finished. |=============================================================================| \end{Verbatim} \end{scriptsize} \caption{Output of the \ttt{"Hello world!"} \sindarin\ script.\label{fig:helloworld}} \end{figure} Now we assume that you -- or your kind system administrator -- has installed \whizard\ in your executable path. Then you should open a command shell and execute (we will come to the meaning of the \verb|-r| option later.) \begin{verbatim} /home/user$ whizard -r hello.sin \end{verbatim} and if everything works well, you get the output (the complete output including the \whizard\ banner is shown in Fig.~\ref{fig:helloworld}) \begin{footnotesize} \begin{verbatim} | Writing log to 'whizard.log' \end{verbatim} \centerline{[... here a banner is displayed]} \begin{Verbatim} |=============================================================================| -| WHIZARD 3.0.3 +| WHIZARD 3.1.0 |=============================================================================| | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM ! Process library 'default_lib': initialized ! Preloaded library: default_lib | Reading commands from file 'hello.sin' Hello World! | WHIZARD run finished. |=============================================================================| \end{Verbatim} \end{footnotesize} If this has just worked for you, you can be confident that you have a working \whizard\ installation, and you have been able to successfully run the program. \section{A Simple Calculation} You may object that \whizard\ is not exactly designed for printing out plain text. So let us demonstrate a more useful example. Looking at the Hello World output, we first observe that the program writes a log file named (by default) \verb|whizard.log|. This file receives all screen output, except for the output of external programs that are called by \whizard. You don't have to cache \whizard's screen output yourself. After the welcome banner, \whizard\ tells you that it reads a physics \emph{model}, and that it initializes and preloads a \emph{process library}. The process library is initially empty. It is ready for receiving definitions of elementary high-energy physics processes (scattering or decay) that you provide. The processes are set in the context of a definite model of high-energy physics. By default this is the Standard Model, dubbed \verb|SM|. Here is the \sindarin\ code for defining a SM physics process, computing its cross section, and generating a simulated event sample in Les Houches event format: \begin{quote} \begin{Verbatim} process ee = e1, E1 => e2, E2 sqrts = 360 GeV n_events = 10 sample_format = lhef simulate (ee) \end{Verbatim} \end{quote} As before, you save this text in a file (named, e.g., \verb|ee.sin|) which is run by \begin{verbatim} /home/user$ whizard -r ee.sin \end{verbatim} (We will come to the meaning of the \verb|-r| option later.) This produces a lot of output which looks similar to this: \begin{footnotesize} \begin{verbatim} | Writing log to 'whizard.log' [... banner ...] |=============================================================================| - | WHIZARD 3.0.3 + | WHIZARD 3.1.0 |=============================================================================| | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM | Process library 'default_lib': initialized | Preloaded library: default_lib | Reading commands from file 'ee.sin' | Process library 'default_lib': recorded process 'ee' sqrts = 3.600000000000E+02 n_events = 10 \end{verbatim} \begin{verbatim} | Starting simulation for process 'ee' | Simulate: process 'ee' needs integration | Integrate: current process library needs compilation | Process library 'default_lib': compiling ... | Process library 'default_lib': writing makefile | Process library 'default_lib': removing old files rm -f default_lib.la rm -f default_lib.lo default_lib_driver.mod opr_ee_i1.mod ee_i1.lo rm -f ee_i1.f90 | Process library 'default_lib': writing driver | Process library 'default_lib': creating source code rm -f ee_i1.f90 rm -f opr_ee_i1.mod rm -f ee_i1.lo /usr/local/bin/omega_SM.opt -o ee_i1.f90 -target:whizard -target:parameter_module parameters_SM -target:module opr_ee_i1 -target:md5sum '70DB728462039A6DC1564328E2F3C3A5' -fusion:progress -scatter 'e- e+ -> mu- mu+' [1/1] e- e+ -> mu- mu+ ... allowed. [time: 0.00 secs, total: 0.00 secs, remaining: 0.00 secs] all processes done. [total time: 0.00 secs] SUMMARY: 6 fusions, 2 propagators, 2 diagrams | Process library 'default_lib': compiling sources [.....] \end{verbatim} \begin{verbatim} | Process library 'default_lib': loading | Process library 'default_lib': ... success. | Integrate: compilation done | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 9616 | Initializing integration for process ee: | ------------------------------------------------------------------------ | Process [scattering]: 'ee' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'ee_i1': e-, e+ => mu-, mu+ [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 3.600000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'ee_i1.phs' | Phase space: 2 channels, 2 dimensions | Phase space: found 2 channels, collected in 2 groves. | Phase space: Using 2 equivalences between channels. | Phase space: wood Warning: No cuts have been defined. \end{verbatim} \begin{verbatim} | Starting integration for process 'ee' | Integrate: iterations not specified, using default | Integrate: iterations = 3:1000:"gw", 3:10000:"" | Integrator: 2 chains, 2 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 1000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 784 8.3282892E+02 1.68E+00 0.20 0.06* 39.99 2 784 8.3118961E+02 1.23E+00 0.15 0.04* 76.34 3 784 8.3278951E+02 1.36E+00 0.16 0.05 54.45 |-----------------------------------------------------------------------------| 3 2352 8.3211789E+02 8.01E-01 0.10 0.05 54.45 0.50 3 |-----------------------------------------------------------------------------| 4 9936 8.3331732E+02 1.22E-01 0.01 0.01* 54.51 5 9936 8.3341072E+02 1.24E-01 0.01 0.01 54.52 6 9936 8.3331151E+02 1.23E-01 0.01 0.01* 54.51 |-----------------------------------------------------------------------------| 6 29808 8.3334611E+02 7.10E-02 0.01 0.01 54.51 0.20 3 |=============================================================================| \end{verbatim} \begin{verbatim} [.....] | Simulate: integration done | Simulate: using integration grids from file 'ee_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 9617 | Simulation: requested number of events = 10 | corr. to luminosity [fb-1] = 1.2000E-02 | Events: writing to LHEF file 'ee.lhe' | Events: writing to raw file 'ee.evx' | Events: generating 10 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. | Events: closing LHEF file 'ee.lhe' | Events: closing raw file 'ee.evx' | There were no errors and 1 warning(s). | WHIZARD run finished. |=============================================================================| \end{verbatim} \end{footnotesize} %$ The final result is the desired event file, \ttt{ee.lhe}. Let us discuss the output quickly to walk you through the procedures of a \whizard\ run: after the logfile message and the banner, the reading of the physics model and the initialization of a process library, the recorded process with tag \ttt{'ee'} is recorded. Next, user-defined parameters like the center-of-mass energy and the number of demanded (unweighted) events are displayed. As a next step, \whizard\ is starting the simulation of the process with tag \ttt{'ee'}. It recognizes that there has not yet been an integration over phase space (done by an optional \ttt{integrate} command, cf. Sec.~\ref{sec:integrate}), and consequently starts the integration. It then acknowledges, that the process code for the process \ttt{'ee'} needs to be compiled first (done by an optional \ttt{compile} command, cf. Sec.~\ref{sec:compilation}). So, \whizard\ compiles the process library, writes the makefile for its steering, and as a safeguard against garbage removes possibly existing files. Then, the source code for the library and its processes are generated: for the process code, the default method -- the matrix element generator \oMega\ is called (cf. Sec.~\ref{sec:omega_me}); and the sources are being compiled. The next steps are the loading of the process library, and \whizard\ reports the completion of the integration. For the Monte-Carlo integration, a random number generator is initialized. Here, it is the default generator, TAO (for more details, cf. Sec.~\ref{sec:tao}, while the random seed is set to a value initialized by the system clock, as no seed has been provided in the \sindarin\ input file. Now, the integration for the process \ttt{'ee'} is initialized, and information about the process (its name, the name of its process library, its index inside the library, and the process components out of which it consists, cf. Sec.~\ref{sec:processcomp}) are displayed. Then, the beam structure is shown, which in that case are symmetric partonic electron and positron beams with the center-of-mass energy provided by the user (360 GeV). The next step is the generation of the phase space, for which the default phase space method \ttt{wood} (for more details cf. Sec.~\ref{sec:wood}) is selected. The integration is performed, and the result with absolute and relative error, unweighting efficiency, accuracy, $\chi^2$ quality is shown. The final step is the event generation (cf. Chap.~\ref{chap:events}). The integration grids are now being used, again the random number generator is initialized. Finally, event generation of ten unweighted events starts (\whizard\ let us know to which integrated luminosity that would correspond), and events are written both in an internal (binary) event format as well as in the demanded LHE format. This concludes the \whizard\ run. After a more comprehensive introduction into the \sindarin\ steering language in the next chapter, Chap.~\ref{chap:sindarinintro}, we will discuss all the details of the different steps of this introductory example. \clearpage \section{WHIZARD in a Computing Environment} \subsection{Working on a Single Computer} \label{sec:workspace} After installation, \whizard\ is ready for use. There is a slight complication if \whizard\ has been installed in a location that is not in your standard search paths. In that case, to successfully run \whizard, you may either \begin{itemize} \item manually add \ttt{your-install-directory/bin} to your execution PATH\\ and \ttt{your-install-directory/lib} to your library search path (LD\_LIBRARY\_PATH), or \item whenever you start a project, execute \begin{interaction} your-workspace> . your-install-directory/bin/whizard-setup.sh \end{interaction} which will enable the paths in your current environment, or \item source \ttt{whizard-setup.sh} script in your shell startup file. \end{itemize} In either case, try to call \ttt{whizard --help} in order to check whether this is done correctly. For a new \whizard\ project, you should set up a new (empty) directory. Depending on the complexity of your task, you may want to set up separate directories for each subproblem that you want to tackle, or even for each separate run. The location of the directories is arbitrary. To run, \whizard\ needs only a single input file, a \sindarin\ command script with extension \ttt{.sin} (by convention). Running \whizard\ is as simple as \begin{interaction} your-workspace> whizard your-input.sin \end{interaction} No other configuration files are needed. The total number of auxiliary and output files generated in a single run may get quite large, however, and they may clutter your workspace. This is the reason behind keeping subdirectories on a per-run basis. Basic usage of \whizard\ is explained in Chapter~\ref{chap:start}, for more details, consult the following chapters. In Sec.~\ref{sec:cmdline-options} we give an account of the command-line options that \whizard\ accepts. \subsection{Working Parallel on Several Computers} \label{sec:mpi} For integration (only VAMP2), \whizard\ supports parallel execution via MPI by communicating between parallel tasks on a single machine or distributed over several machines. During integration the calculation of channels is distributed along several workers where a master worker collects the results and adapts weights and grids. In wortwhile cases (e.g. high number of calls in one channel), the calculation of a single grid is additionally distributed. For that, we provide two different parallelization methods, which can be steered by \verb|$vamp_parallel_method|, implementing the dualistic parallelization approach between channels and single grids. The \ttt{simple} method provides a locally-fixed assignment approach without the need of intermediate communication between the MPI workers. Whereas the \ttt{load} method provides a global queue with a master worker acting as a (communication) governor, therefore, excluding itself as potential "computing" worker. The governor receives and distributes work requests from all other workers, and, finally, receives their results. The methods differ from each other only in the way how they distribute excessive workers, in the case, where there are more workers than channels. Here, the \ttt{load} method implements a balancing condition based on the channel weights in contrast to the simplistic ansatz. Both methods use a full non-blocking communication approach in order to collect the integration results of each channel after each iteration. After finishing the computation of a channel, the associated slave worker spawns a callback mechansim leading to the initialization of a sending process to the master. The master worker organizes, depending on the parallelization method, the correct closing of the sending process for a given channel by a matching receiving process. The callback approach allows us to concurrently communicate and produce integration results providing an increased parallelization portion, i.e.\ better HPC performance and utilization. The \ttt{load} method comes with a drawback that it does not work with less than three workers. Hence, we recommend (e.g.\ for debugging purpose of the parallel setup) to use the \ttt{simple} method, and to use the \ttt{load} method only for direct production runs. In order to use these advancements, \whizard\ requires an installed MPI-3.1 capable library (e.g. OpenMPI) and configuration and compilation with the appropriate flags, cf.~Sec.~\ref{sec:installation}. MPI support is only active when the integration method is set to VAMP2. Additionally, to preserve the numerical properties of a single task run, it is recommended to use the RNGstream as random number generator. \begin{code} $integration_method = 'vamp2' $rng_method = 'rng_stream' $vamp_parallel_method = 'simple' !! or 'load' \end{code} \whizard\ has then to be called by mpirun \begin{footnotesize} \begin{Verbatim}[frame=single] your-workspace> mpirun -f hostfile -np 4 --output-filename mpi.log whizard your-input.sin \end{Verbatim} \end{footnotesize} where the number of parallel tasks can be set by \ttt{-np} and a hostfile can be given by \ttt{--hostfile}. It is recommended to use \ttt{--output-filename} which lets mpirun redirect the standard (error) output to a file, for each worker separately. \subsubsection{Notes on Parallelization with MPI} The parallelization of \whizard\ requires that all instances of the parallel run be able to write and read all files produced by \whizard\ in a network file system as the current implementation does not handle parallel I/O. Usually, high-performance clusters have support for at least one network filesystem. Furthermore, not all functions of \whizard\ are currently supported or are only supported in a limited way in parallel mode. Currently the \verb|?rebuild_| for the phase space and the matrix element library are not yet available, as well as the calculation of matrix elements with resonance histories. Some features that have been missing in the very first implementation of the parallelized integration have now been made available, like the support of run IDs and the parallelization of the event generation. A final remark on the stability of the numerical results in terms of the number of workers involved. Under certain circumstances, results between different numbers of workers but using otherwise an identical \sindarin\ file can lead to slightly numerically different (but statistically compatible) results for integration or event generation This is related to the execution of the computational operations in MPI, which we use to reduce results from all workers. If the order of the numbers in the arithmetical operations changes, for example, by different setups of the workers, then the numerical results change slightly, which in turn is amplified under the influence of the adaptation. Nevertheless, the results are all statistically consistent. \subsection{Stopping and Resuming WHIZARD Jobs} On a Unix-like system, it is possible to prematurely stop running jobs by a \ttt{kill(1)} command, or by entering \ttt{Ctrl-C} on the terminal. If the system supports this, \whizard\ traps these signals. It also traps some signals that a batch operating system might issue, e.g., for exceeding a predefined execution time limit. \whizard\ tries to complete the calculation of the current event and gracefully close open files. Then, the program terminates with a message and a nonzero return code. Usually, this should not take more than a fraction of a second. If, for any reason, the program does not respond to an interrupt, it is always possible to kill it by \ttt{kill -9}. A convenient method, on a terminal, would be to suspend it first by \ttt{Ctrl-Z} and then to kill the suspended process. The program is usually able to recover after being stopped. Simply run the job again from start, with the same input, all output files generated so far left untouched. The results obtained so far will be quickly recovered or gathered from files written in the previous run, and the actual time-consuming calculation is resumed near the point where it was interrupted.\footnote{This holds for simple workflow. In case of scans and repeated integrations of the same process, there may be name clashes on the written files which prevent resuming. A future \whizard\ version will address this problem.} If the interruption happened during an integration step, it is resumed after the last complete iteration. If it was during event generation, the previous events are taken from file and event generation is continued. The same mechanism allows for efficiently redoing a calculation with similar, somewhat modified input. For instance, you might want to add a further observable to event analysis, or write the events in a different format. The time for rerunning the program is determined just by the time it takes to read the existing integration or event files, and the additional calculation is done on the recovered information. By managing various checksums on its input and output files, \whizard\ detects changes that affect further calculations, so it does a real recalculation only where it is actually needed. This applies to all steps that are potentially time-consuming: matrix-element code generation, compilation, phase-space setup, integration, and event generation. If desired, you can set command-line options or \sindarin\ parameters that explicitly discard previously generated information. \subsection{Files and Directories: default and customization} \whizard\ jobs take a small set of files as input. In many cases, this is just a single \sindarin\ script provided by the user. When running, \whizard\ can produce a set of auxiliary and output files: \begin{enumerate} \item \textbf{Job.} Files pertaining to the \whizard\ job as a whole. This is the default log file \ttt{whizard.log}. \item \textbf{Process compilation.} Files that originate from generating and compiling process code. If the default \oMega\ generator is used, these files include \fortran\ source code as well as compiled libraries that are dynamically linked to the running executable. The file names are derived from either the process-library name or the individual process names, as defined in the \sindarin\ input. The default library name is \ttt{default\_lib}. \item \textbf{Integration.} Files that are created by integration, i.e., when calculating the total cross section for a scattering process using the Monte-Carlo algorithm. The file names are derived from the process name. \item \textbf{Simulation.} Files that are created during simulation, i.e., generating event samples for a process or a set of processes. By default, the file names are derived from the name of the first process. Event-file formats are distinguished by appropriate file name extensions. \item \textbf{Result Analysis.} Files that are created by the internal analysis tools and written by the command \ttt{write\_analysis} (or \ttt{compile\_analysis}). The default base name is \ttt{whizard\_analysis}. \end{enumerate} A complex workflow with several processes, parameter sets, or runs, can easily lead to in file-name clashes or a messy working directory. Furthermore, running a batch job on a dedicated computing environment often requires transferring data from a user directory to the server and back. Custom directory and file names can be used to organize things and facilitate dealing with the environment, along with the available batch-system tools for coordinating file transfer. \begin{enumerate} \item \textbf{Job.} \begin{itemize} \item The \ttt{-L} option on the command line defines a custom base name for the log file. \item The \ttt{-J} option on the command line defines a job ID. For instance, this may be set to the job ID assigned by the batch system. Within the \sindarin\ script, the job ID is available as the string variable \ttt{\$job\_id} and can be used for constructing custom job-specific file and directory names, as described below. \end{itemize} \item \textbf{Process compilation.} \begin{itemize} \item The user can require the program to put all files created during the compilation step including the library to be linked, in a subdirectory of the working directory. To enable this, set the string variable \ttt{\$compile\_workspace} within the \sindarin\ script. \end{itemize} \item \textbf{Integration.} \begin{itemize} \item The value of the string variable \ttt{\$run\_id}, if set, is appended to the base name of all files created by integration, separated by dots. If the \sindarin\ script scans over parameters, varying the run ID avoids repeatedly overwriting files with identical name during the scan. \item The user can require the program to put the important files created during the integration step -- the phase-space configuration file and the \vamp\ grid files -- in a subdirectory of the working directory. To enable this, set the string variable \ttt{\$integrate\_workspace} within the \sindarin\ script. (\ttt{\$compile\_workspace} and \ttt{\$integrate\_workspace} may be set to the same value.) \end{itemize} Log files produced during the integration step are put in the working directory. \item \textbf{Simulation.} \begin{itemize} \item The value of the string variable \ttt{\$run\_id}, if set, identifies the specific integration run that is used for the event sample. It is also inserted into default event-sample file names. \item The variable \ttt{\$sample}, if set, defines an arbitrary base name for the files related to the event sample. \end{itemize} Files resulting from simulation are put in the working directory. \item \textbf{Result Analysis.} \begin{itemize} \item The variable \ttt{\$out\_file}, if set, defines an arbitrary base name for the analysis data and auxiliary files. \end{itemize} Files resulting from result analysis are put in the working directory. \end{enumerate} \subsection{Batch jobs on a different machine} It is possible to separate the tasks of process-code compilation, integration, and simulation, and execute them on different machines. To make use of this feature, the local and remote machines including all installed libraries that are relevant for \whizard, must be binary-compatible. \begin{enumerate} \item Process-code compilation may be done once on a local machine, while the time-consuming tasks of integration and event generation for specific parameter sets are delegated to a remote machine, e.g., a batch cluster. To enable this, prepare a \sindarin\ script that just produces process code (i.e., terminates with a \ttt{compile} command) for the local machine. You may define \ttt{\$compile\_workspace} such that all generated code conveniently ends up in a single subdirectory. To start the batch job, transfer the workspace subdirectory to the remote machine and start \whizard\ there. The \sindarin\ script on the remote machine must include the local script unchanged in all parts that are relevant for process definition. The program will recognize the contents of the workspace, skip compilation and instead link the process library immediately. To proceed further, the script should define the run-specific parameters and contain the appropriate commands for integration and simulation. \item Analogously, you may execute both process-code compilation and integration locally, but generate event samples on a remote machine. To this end, prepare a \sindarin\ script that produces process code and computes integrals (i.e., terminates with an \ttt{integrate} command) for the local machine. You may define \ttt{\$compile\_workspace} and \ttt{\$integrate\_workspace} (which may coincide) such that all generated code, phase-space and integration grid data conveniently end up in subdirectories. To start the batch job, transfer the workspace(s) to the remote machine and start \whizard\ there. The \sindarin\ script on the remote machine must include the local script unchanged in all parts that are relevant for process definition and integration. The program will recognize the contents of the workspace, skip compilation and integration and instead load the process library and integration results immediately. To proceed further, the script should define the sample-specific parameters and contain the appropriate commands for simulation. \end{enumerate} To simplify transferring whole directories, \whizard\ supports the \ttt{--pack} and \ttt{--unpack} options. You may specify any number of these options for a \whizard\ run. (The feature relies on the GNU version of the \ttt{tar} utility.) For instance, \begin{code} whizard script1.sin --pack my_ws \end{code} runs \whizard\ with the \sindarin\ script \ttt{script1.sin} as input, where within the script you have defined \begin{code} $compile_workspace = "my_ws" \end{code} as the target directory for process-compilation files. After completion, the program will tar and gzip the target directory as \ttt{my\_ws.tgz}. You should copy this file to the remote machine as one of the job's input files. On the remote machine, you can then run the program with \begin{code} whizard script2.sin --unpack my_ws.tgz \end{code} where \ttt{script2.sin} should include \ttt{script1.sin}, and add integration or simulation commands. The contents of \ttt{ws.tgz} will thus be unpacked and reused on the remote machine, instead of generating new process code. \subsection{Static Linkage} In its default running mode, \whizard\ compiles process-specific matrix element code on the fly and dynamically links the resulting library. On the computing server, this requires availability of the appropriate \fortran\ compiler, as well as the \ocaml\ compiler suite, and the dynamical linking feature. Since this may be unavailable or undesired, there is a possibility to distribute \whizard\ as a statically linked executable that contains a pre-compiled library of processes. This removes the need for the \fortran\ compiler, the \ocaml\ system, and extra dynamic linking. Any external libraries that are accessed (the \fortran\ runtime environment, and possibly some dynamically linked external libraries and/or the \cpp\ runtime library, must still be available on the target system, binary-compatible. Otherwise, there is no need for transferring the complete \whizard\ installation or process-code compilation data. Generating, compiling and linking matrix element code is done in advance on a machine that can access the required tools and produces compatible libraries. This procedure is accomplished by \sindarin\ commands, explained below in Sec.~\ref{sec:static}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage \section{Troubleshooting} \label{sec:troubleshooting} In this section, we list known issues or problems and give advice on what can be done in case something does not work as intended. \subsection{Possible (uncommon) build problems} \label{sec:buildproblems} \subsubsection{\ocaml\ versions and \oMega\ builds} For the matrix element generator \oMega\ of \whizard\, the functional programming language \ocaml\ is used. Unfortunately, the versions of the \ocaml\ compiler from 3.12.0 on broke backwards compatibility. Therefore, versions of \oMega/\whizard\ up to v2.0.2 only compile with older versions (3.04 to 3.11 works). This has been fixed in all \whizard\ versions from 2.0.3 on. \subsubsection{Identical Build and Source directories} There is a problem that only occurred with version 2.0.0 and has been corected for all follow-up versions. It can only appear if you compile the \whizard\ sources in the source directory. Then an error like this may occur: \begin{footnotesize} \begin{Verbatim}[frame=single] ... libtool: compile: gfortran -I../misc -I../vamp -g -O2 -c processes.f90 -fPIC -o .libs/processes.o libtool: compile: gfortran -I../misc -I../vamp -g -O2 -c processes.f90 -o processes.o >/dev/null 2>&1 make[2]: *** No rule to make target `limits.lo', needed by `decays.lo'. Stop. ... make: *** [all-recursive] Error 1 \end{Verbatim} \end{footnotesize} In this case, please unpack a fresh copy of \whizard\ and configure it in a separate directory (not necessarily a subdirectory). Then the compilation will go through: \begin{footnotesize} \begin{Verbatim}[frame=single] $ zcat whizard-3.0.3.tar.gz | tar xf - $ cd whizard-3.0.3 $ mkdir _build $ cd _build $ ../configure FC=gfortran $ make \end{Verbatim} \end{footnotesize} The developers use this setup to be able to test different compilers. Therefore building in the same directory is not as thoroughly tested. This behavior has been patched from version 2.0.1 on. But note that in general it is always adviced to keep build and source directory apart from each other. %%%%% \subsection{What happens if \whizard\ throws an error?} \label{ref:errors} \subsubsection{Particle name special characters in process declarations} Trying to use a process declaration like \begin{code} process foo = e-, e+ => mu-, mu+ \end{code} will lead to a \sindarin\ syntax error: \begin{Code} process foo = e-, e+ => mu-, mu+ ^^ | Expected syntax: SEQUENCE = process '=' "mu-", "mu+"}. \subsubsection{Missing collider energy} This happens if you forgot to set the collider energy in the integration of a scattering process: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts) ****************************************************************************** ****************************************************************************** \end{Code} This will solve your problem: \begin{code} sqrts = \end{code} \subsubsection{Missing process declaration} If you try to integrate or simulate a process that has not declared before (and is also not available in a library that might be loaded), \whizard\ will complain: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Process library doesn't contain process 'f00' ****************************************************************************** ****************************************************************************** \end{Code} Note that this could sometimes be a simple typo, e.g. in that case an \ttt{integrate (f00)} instead of \ttt{integrate (foo)} \subsubsection{Ambiguous initial state without beam declaration} When the user declares a process with a flavor sum in the initial state, e.g. \begin{code} process qqaa = u:d, U:D => A, A sqrts = integrate (qqaa) \end{code} then a fatal error will be issued: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Setting up process 'qqaa': *** -------------------------------------------- *** Inconsistent initial state. This happens if either *** several processes with non-matching initial states *** have been added, or for a single process with an *** initial state flavor sum. In that case, please set beams *** explicitly [singling out a flavor / structure function.] ****************************************************************************** ****************************************************************************** \end{Code} What now? Either a structure function providing a tensor structure in flavors has to be provided like \begin{code} beams = p, pbar => pdf_builtin \end{code} or, if the partonic process was intended, a specific flavor has to be singled out, \begin{code} beams = u, U \end{code} which would take only the up-quarks. Note that a sum over process components with varying initial states is not possible. \subsubsection{Invalid or unsupported beam structure} An error message like \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Beam structure: [.......] not supported ****************************************************************************** ****************************************************************************** \end{Code} This happens if you try to use a beam structure with is either not supported by \whizard\ (meaning that there is no phase-space parameterization for Monte-Carlo integration available in order to allow an efficient sampling), or you have chosen a combination of beam structure functions that do not make sense physically. Here is an example for the latter (lepton collider ISR applied to protons, then proton PDFs): \begin{code} beams = p, p => isr => pdf_builtin \end{code} \subsubsection{Mismatch in beams} Sometimes you get a rather long error output statement followed by a fatal error: \begin{Code} Evaluator product First interaction Interaction: 6 Virtual: Particle 1 [momentum undefined] [.......] State matrix: norm = 1.000000000000E+00 [f(2212)] [f(11)] [f(92) c(1 )] [f(-6) c(-1 )] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00) [.......] ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Product of density matrices is empty *** -------------------------------------------- *** This happens when two density matrices are convoluted *** but the processes they belong to (e.g., production *** and decay) do not match. This could happen if the *** beam specification does not match the hard *** process. Or it may indicate a WHIZARD bug. ****************************************************************************** ****************************************************************************** \end{Code} As \whizard\ indicates, this could have happened because the hard process setup did not match the specification of the beams as in: \begin{code} process neutral_current_DIS = e1, u => e1, u beams_momentum = 27.5 GeV, 920 GeV beams = p, e => pdf_builtin, none integrate (neutral_current_DIS) \end{code} In that case, the order of the beam particles simply was wrong, exchange proton and electron (together with the structure functions) into \ttt{beams = e, p => none, pdf\_builtin}, and \whizard\ will be happy. \subsubsection{Unstable heavy beam particles} If you try to use unstable particles as beams that can potentially decay into the final state particles, you might encounter the following error message: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Phase space: Initial beam particle can decay ****************************************************************************** ****************************************************************************** \end{Code} This happens basically only for processes in testing/validation (like $t \bar t \to b \bar b$). In principle, it could also happen in a real physics setup, e.g. when simulating electron pairs at a muon collider: \begin{code} process mmee = "mu-", "mu+" => "e-", "e+" \end{code} However, \whizard\ at the moment does not allow a muon width, and so \whizard\ is not able to decay a muon in a scattering process. A possibile decay of the beam particle into (part of) the final state might lead to instabilities in the phase space setup. Hence, \whizard\ do not let you perform such an integration right away. When you nevertheless encounter such a rare occasion in your setup, there is a possibility to convert this fatal error into a simple warning by setting the flag: \begin{code} ?fatal_beam_decay = false \end{code} \subsubsection{Impossible beam polarization} If you specify a beam polarization that cannot correspond to any physically allowed spin density matrix, e.g., \begin{code} beams = e1, E1 beams_pol_density = @(-1), @(1:1:.5, -1, 1:-1) \end{code} \whizard\ will throw a fatal error like this: \begin{Code} Trace of matrix square = 1.4444444444444444 Polarization: spin density matrix spin type = 2 multiplicity = 2 massive = F chirality = 0 pol.degree = 1.0000000 pure state = F @(+1: +1: ( 3.333333333333E-01, 0.000000000000E+00)) @(-1: -1: ( 6.666666666667E-01, 0.000000000000E+00)) @(-1: +1: ( 6.666666666667E-01, 0.000000000000E+00)) ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Spin density matrix: not permissible as density matrix ****************************************************************************** ****************************************************************************** \end{Code} \subsubsection{Beams with crossing angle} Specifying a crossing angle (e.g. at a linear lepton collider) without explicitly setting the beam momenta, \begin{code} sqrts = 1 TeV beams = e1, E1 beams_theta = 0, 10 degree \end{code} triggers a fatal: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Beam structure: angle theta/phi specified but momentum/a p undefined ****************************************************************************** ****************************************************************************** \end{Code} In that case the single beam momenta have to be explicitly set: \begin{code} beams = e1, E1 beams\_momentum = 500 GeV, 500 GeV beams\_theta = 0, 10 degree \end{code} \subsubsection{Phase-space generation failed} Sometimes an error might be issued that \whizard\ could not generate a valid phase-space parameterization: \begin{Code} | Phase space: ... failed. Increasing phs_off_shell ... | Phase space: ... failed. Increasing phs_off_shell ... | Phase space: ... failed. Increasing phs_off_shell ... | Phase space: ... failed. Increasing phs_off_shell ... ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Phase-space: generation failed ****************************************************************************** ****************************************************************************** \end{Code} You see that \whizard\ tried to increase the number of off-shell lines that are taken into account for the phase-space setup. The second most important parameter for the phase-space setup, \ttt{phs\_t\_channel}, however, is not increased automatically. Its default value is $6$, so e.g. for the process $e^+ e^- \to 8\gamma$ you will run into the problem above. Setting \begin{code} phs_off_shell = -1 \end{code} where \ttt{} is the number of final-state particles will solve the problem. \subsubsection{Non-converging process integration} There could be several reasons for this to happen. The most prominent one is that no cuts have been specified for the process (\whizard\ttt{2} does not apply default cuts), and there are singular regions in the phase space over which the integration stumbles. If cuts have been specified, it could be that they are not sufficient. E.g. in $pp \to jj$ a distance cut between the two jets prevents singular collinear splitting in their generation, but if no $p_T$ cut have been set, there is still singular collinear splitting from the beams. \subsubsection{Why is there no event file?} If no event file has been generated, \whizard\ stumled over some error and should have told you, or, you simply forgot to set a \ttt{simulate} command for your process. In case there was a \ttt{simulate} command but the process under consideration is not possible (e.g. a typo, \ttt{e1, E1 => e2, E3} instead of \ttt{e1, E1 => e3, E3}), then you get an error like that: \begin{Code} ****************************************************************************** *** ERROR: Simulate: no process has a valid matrix element. ****************************************************************************** \end{Code} \subsubsection{Why is the event file empty?} In order to get events, you need to set either a desired number of events: \begin{code} n_events = \end{code} or you have to specify a certain integrated luminosity (the default unit being inverse femtobarn: \begin{code} luminosity = / 1 fbarn \end{code} In case you set both, \whizard\ will take the one that leads to the higher number of events. \subsubsection{Parton showering fails} For BSM models containing massive stable or long-lived particles parton showering with \pythiasix\ fails: \begin{Code} Advisory warning type 3 given after 0 PYEXEC calls: (PYRESD:) Failed to decay particle 1000022 with mass 15.000 ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Simulation: failed to generate valid event after 10000 tries ****************************************************************************** ****************************************************************************** \end{Code} The solution to that problem is discussed in Sec.~\ref{sec:pythia6}. \vspace{1cm} %%%%% \subsection{Debugging, testing, and validation} \subsubsection{Catching/tracking arithmetic exceptions} Catching arithmetic exceptions is not automatically supported by \fortran\ compilers. In general, flags that cause the compiler to keep track of arithmetic exceptions are diminishing the maximally possible performance, and hence they should not be used in production runs. Hence, we refrained from making these flags a default. They can be added using the \ttt{FCFLAGS = {\em }} settings during configuration. For the \ttt{NAG} \fortran\ compiler we use the flags \ttt{-C=all -nan -gline} for debugging purposes. For the \ttt{gfortran} compilers, the flags \ttt{-ffpe-trap=invalid,zero,overflow} are the corresponding debugging flags. For tests, debugging or first sanity checks on your setup, you might want to make use of these flags in order to track possible numerical exceptions in the produced code. Some compilers started to include \ttt{IEEE} exception handling support (\ttt{Fortran 2008} status), but we do not use these implementations in the \whizard\ code (yet). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Steering WHIZARD: \sindarin\ Overview} \label{chap:sindarinintro} \section{The command language for WHIZARD} A conventional physics application program gets its data from a set of input files. Alternatively, it is called as a library, so the user has to write his own code to interface it, or it combines these two approaches. \whizard~1 was built in this way: there were some input files which were written by the user, and it could be called both stand-alone or as an external library. \whizard~2 is also a stand-alone program. It comes with its own full-fledged script language, called \sindarin. All interaction between the user and the program is done in \sindarin\ expressions, commands, and scripts. Two main reasons led us to this choice: \begin{itemize} \item In any nontrivial physics study, cuts and (parton- or hadron-level) analysis are of central importance. The task of specifying appropriate kinematics and particle selection for a given process is well defined, but it is impossible to cover all possiblities in a simple format like the cut files of \whizard~1. The usual way of dealing with this problem is to write analysis driver code (often in \cpp, using external libraries for Lorentz algebra etc. However, the overhead of writing correct \cpp\ or \ttt{Fortran} greatly blows up problems that could be formulated in a few lines of text. \item While many problems lead to a repetitive workflow (process definition, integration, simulation), there are more involved tasks that involve parameter scans, comparisons of different processes, conditional execution, or writing output in widely different formats. This is easily done by a steering script, which should be formulated in a complete language. \end{itemize} The \sindarin\ language is built specifically around event analysis, suitably extended to support steering, including data types, loops, conditionals, and I/O. It would have been possible to use an established general-purpose language for these tasks. For instance, \ocaml\ which is a functional language would be a suitable candidate, and the matrix-element generator \oMega\ is written in that language. Another candidate would be a popular scripting language such as PYTHON. We started to support interfaces for commonly used languages: prime examples for \ttt{C}, \cpp, and PYTHON are found in the \ttt{share/interfaces} subdirectory. However, introducing a special-purpose language has the three distinct advantages: First, it is compiled and executed by the very \ttt{Fortran} code that handles data and thus accesses it without interfaces. Second, it can be designed with a syntax especially suited to the task of event handling and Monte-Carlo steering, and third, the user is not forced to learn all those features of a generic language that are of no relevance to the application he/she is interested in. \section{\sindarin\ scripts} A \sindarin\ script tells the \whizard\ program what it has to do. Typically, the script is contained in a file which you (the user) create. The file name is arbitrary; by convention, it has the extension `\verb|.sin|'. \whizard\ takes the file name as its argument on the command line and executes the contained script: \begin{verbatim} /home/user$ whizard script.sin \end{verbatim} Alternatively, you can call \whizard\ interactively and execute statements line by line; we describe this below in Sec.\ref{sec:whish}. A \sindarin\ script is a sequence of \emph{statements}, similar to the statements in any imperative language such as \ttt{Fortran} or \ttt{C}. Examples of statements are commands like \ttt{integrate}, variable declarations like \ttt{logical ?flag} or assigments like \ttt{mH = 130 GeV}. The script is free-form, i.e., indentation, extra whitespace and newlines are syntactically insignificant. In contrast to most languages, there is no statement separator. Statements simply follow each other, just separated by whitespace. \begin{code} statement1 statement2 statement3 statement4 \end{code} Nevertheless, for clarity we recommend to write one statement per line where possible, and to use proper indentation for longer statements, nested and bracketed expressions. A command may consist of a \emph{keyword}, a list of \emph{arguments} in parantheses \ttt{(}\ldots\ttt{)}, and an \emph{option} script which itself is a sequence of statements. \begin{code} command command_with_args (arg1, arg2) command_with_option { option } command_with_options (arg) { option_statement1 option_statement2 } \end{code} As a rule, parentheses \ttt{()} enclose arguments and expressions, as you would expect. Arguments enclosed in square brackets \ttt{[]} also exist. They have a special meaning, they denote subevents (collections of momenta) in event analysis. Braces \ttt{\{\}} enclose blocks of \sindarin\ code. In particular, the option script associated with a command is a block of code that may contain local parameter settings, for instance. Braces always indicate a scoping unit, so parameters will be restored their previous values when the execution of that command is completed. The script can contain comments. Comments are initiated by either a \verb|#| or a \verb|!| character and extend to the end of the current line. \begin{code} statement # This is a comment statement ! This is also a comment \end{code} %%%%%%%%%%%%%%% \section{Errors} \label{sec:errors} Before turning to proper \sindarin\ syntax, let us consider error messages. \sindarin\ distinguishes syntax errors and runtime errors. Syntax errors are recognized when the script is read and compiled, before any part is executed. Look at this example: \begin{code} process foo = u, ubar => d, dbar md = 10 integrade (foo) \end{code} \whizard\ will fail with the error message \begin{interaction} sqrts = 1 TeV integrade (foo) ^^ | Expected syntax: SEQUENCE = '=' | Found token: KEYWORD: '(' ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Syntax error (at or before the location indicated above) ****************************************************************************** ****************************************************************************** WHIZARD run aborted. \end{interaction} which tells you that you have misspelled the command \verb|integrate|, so the compiler tried to interpret it as a variable. Runtime errors are categorized by their severity. A warning is simply printed: \begin{interaction} Warning: No cuts have been defined. \end{interaction} This indicates a condition that is suspicious, but may actually be intended by the user. When an error is encountered, it is printed with more emphasis \begin{interaction} ****************************************************************************** *** ERROR: Variable 'md' set without declaration ****************************************************************************** \end{interaction} and the program tries to continue. However, this usually indicates that there is something wrong. (The $d$ quark is defined massless, so \verb|md| is not a model parameter.) \whizard\ counts errors and warnings and tells you at the end \begin{interaction} | There were 1 error(s) and no warnings. \end{interaction} just in case you missed the message. Other errors are considered fatal, and execution stops at this point. \begin{interaction} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts) ****************************************************************************** ****************************************************************************** \end{interaction} Here, \whizard\ was unable to do anything sensible. But at least (in this case) it told the user what to do to resolve the problem. %%%%%%%%%%%%%%% \section{Statements} \label{sec:statements} \sindarin\ statements are executed one by one. For an overview, we list the most common statements in the order in which they typically appear in a \sindarin\ script, and quote the basic syntax and simple examples. This should give an impression on the \whizard's capabilities and on the user interface. The list is not complete. Note that there are no mandatory commands (although an empty \sindarin\ script is not really useful). The details and options are explained in later sections. \subsection{Process Configuration} \subsubsection{model} \begin{syntax} model = \var{model-name} \end{syntax} This assignment sets or resets the current physics model. The Standard Model is already preloaded, so the \ttt{model} assignment applies to non-default models. Obviously, the model must be known to \whizard. Example: \begin{code} model = MSSM \end{code} See Sec.~\ref{sec:models}. \subsubsection{alias} \begin{syntax} alias \var{alias-name} = \var{alias-definition} \end{syntax} Particles are specified by their names. For most particles, there are various equivalent names. Names containing special characters such as a \verb|+| sign have to be quoted. The \ttt{alias} assignment defines an alias for a list of particles. This is useful for setting up processes with sums over flavors, cut expressions, and more. The alias name is then used like a simple particle name. Example: \begin{syntax} alias jet = u:d:s:U:D:S:g \end{syntax} See Sec.~\ref{sec:alias}. \subsubsection{process} \begin{syntax} process \var{tag} = \var{incoming} \verb|=>| \var{outgoing} \end{syntax} Define a process. You give the process a name \var{tag} by which it is identified later, and specify the incoming and outgoing particles, and possibly options. You can define an arbitrary number of processes as long as they are distinguished by their names. Example: \begin{code} process w_plus_jets = g, g => "W+", jet, jet \end{code} See Sec.~\ref{sec:processes}. \subsubsection{sqrts} \begin{syntax} sqrts = \var{energy-value} \end{syntax} Define the center-of-mass energy for collision processes. The default setup will assume head-on central collisions of two beams. Example: \begin{code} sqrts = 500 GeV \end{code} See Sec.~\ref{sec:beam-setup}. \subsubsection{beams} \begin{syntax} beams = \var{beam-particles} \\ beams = \var{beam-particles} => \var{structure-function-setup} \end{syntax} Declare beam particles and properties. The current value of \ttt{sqrts} is used, unless specified otherwise. Example: \begin{code} beams = u:d:s, U:D:S => lhapdf \end{code} With options, the assignment allows for defining beam structure in some detail. This includes beamstrahlung and ISR for lepton colliders, precise structure function definition for hadron colliders, asymmetric beams, beam polarization, and more. See Sec.~\ref{sec:beams}. \subsection{Parameters} \subsubsection{Parameter settings} \begin{syntax} \var{parameter} = \var{value} \\ \var{type} \var{user-parameter} \\ \var{type} \var{user-parameter} = \var{value} \end{syntax} Specify a value for a parameter. There are predefined parameters that affect the behavior of a command, model-specific parameters (masses, couplings), and user-defined parameters. The latter have to be declared with a type, which may be \ttt{int} (integer), \ttt{real}, \ttt{complex}, \ttt{logical}, \ttt{string}, or \ttt{alias}. Logical parameter names begin with a question mark, string parameter names with a dollar sign. Examples: \begin{code} mb = 4.2 GeV ?rebuild_grids = true real mass_sum = mZ + mW string $message = "This is a string" \end{code} % $ The value need not be a literal, it can be an arbitrary expression of the correct type. See Sec.~\ref{sec:variables}. \subsubsection{read\_slha} \begin{syntax} read\_slha (\var{filename}) \end{syntax} This is useful only for supersymmetric models: read a parameter file in the SUSY Les Houches Accord format. The file defines parameter values and, optionally, decay widths, so this command removes the need for writing assignments for each of them. \begin{code} read_slha ("sps1a.slha") \end{code} See Sec.~\ref{sec:slha}. \subsubsection{show} \begin{syntax} show (\var{data-objects}) \end{syntax} Print the current value of some data object. This includes not just variables, but also models, libraries, cuts, etc. This is rather a debugging aid, so don't expect the output to be concise in the latter cases. Example: \begin{code} show (mH, wH) \end{code} See Sec.~\ref{sec:I/O}. \subsubsection{printf} \begin{syntax} printf \var{format-string} (\var{data-objects}) \end{syntax} Pretty-print the data objects according to the given format string. If there are no data objects, just print the format string. This command is borrowed from the \ttt{C} programming language; it is actually an interface to the system's \ttt{printf(3)} function. The conversion specifiers are restricted to \ttt{d,i,e,f,g,s}, corresponding to the output of integer, real, and string variables. Example: \begin{code} printf "The Higgs mass is %f GeV" (mH) \end{code} See Sec.~\ref{sec:I/O}. \subsection{Integration} \subsubsection{cuts} \begin{syntax} cuts = \var{logical-cut-expression} \end{syntax} The cut expression is a logical macro expression that is evaluated for each phase space point during integration and event generation. You may construct expressions out of various observables that are computed for the (partonic) particle content of the current event. If the expression evaluates to \verb|true|, the matrix element is calculated and the event is used. If it evaluates to \verb|false|, the matrix element is set zero and the event is discarded. Note that for collisions the expression is evaluated in the lab frame, while for decays it is evaluated in the rest frame of the decaying particle. In case you want to impose cuts on a factorized process, i.e. a combination of a production process and one or more decay processes, you have to use the \ttt{selection} keyword instead. Example for the keyword \ttt{cuts}: \begin{code} cuts = all Pt > 20 GeV [jet] and all mZ - 10 GeV < M < mZ + 10 GeV [lepton, lepton] and no abs (Eta) < 2 [jet] \end{code} See Sec.~\ref{sec:cuts}. \subsubsection{integrate} \begin{syntax} integrate (\var{process-tags}) \end{syntax} Compute the total cross section for a process. The command takes into account the definition of the process, the beam setup, cuts, and parameters as defined in the script. Parameters may also be specified as options to the command. Integration is necessary for each process for which you want to know total or differential cross sections, or event samples. Apart from computing a value, it sets up and adapts phase space and integration grids that are used in event generation. If you just need an event sample, you can omit an explicit \ttt{integrate} command; the \ttt{simulate} command will call it automatically. Example: \begin{code} integrate (w_plus_jets, z_plus_jets) \end{code} See Sec.~\ref{sec:integrate}. \subsubsection{?phs\_only/n\_calls\_test} \begin{syntax} integrate (\var{process-tag}) \{ ?phs\_only = true n\_calls\_test = 1000 \} \end{syntax} These are just optional settings for the \ttt{integrate} command discussed just a second ago. The \ttt{?phs\_only = true} (note that variables starting with a question mark are logicals) option tells \whizard\ to prepare a process for integration, but instead of performing the integration, just to generate a phase space parameterization. \ttt{n\_calls\_test = } evaluates the sampling function for random integration channels and random momenta. \vamp\ integration grids are neither generated nor used, so the channel selection corresponds to the first integration pass, before any grids or channel weights are adapted. The number of sampling points is given by \verb||. The output contains information about the timing, number of sampling points that passed the kinematics selection, and the number of matrix-element values that were actually evaluated. This command is useful mainly for debugging and diagnostics. Example: \begin{code} integrate (some_large_process) { ?phs_only = true n_calls_test = 1000 } \end{code} (Note that there used to be a separate command \ttt{matrix\_element\_test} until version 2.1.1 of \whizard\ which has been discarded in order to simplify the \sindarin\ syntax.) \subsection{Events} \subsubsection{histogram} \begin{syntax} histogram \var{tag} (\var{lower-bound}, \var{upper-bound}) \\ histogram \var{tag} (\var{lower-bound}, \var{upper-bound}, \var{step}) \\ \end{syntax} Declare a histogram for event analysis. The histogram is filled by an analysis expression, which is evaluated once for each event during a subsequent simulation step. Example: \begin{code} histogram pt_distribution (0, 150 GeV, 10 GeV) \end{code} See Sec.~\ref{sec:histogram}. \subsubsection{plot} \begin{syntax} plot \var{tag} \end{syntax} Declare a plot for displaying data points. The plot may be filled by an analysis expression that is evaluated for each event; this would result in a scatter plot. More likely, you will use this feature for displaying data such as the energy dependence of a cross section. Example: \begin{code} plot total_cross_section \end{code} See Sec.~\ref{sec:plot}. \subsubsection{selection} \begin{syntax} selection = \var{selection-expression} \end{syntax} The selection expression is a logical macro expression that is evaluated once for each event. It is applied to the event record, after all decays have been executed (if any). It is therefore intended e.g. for modelling detector acceptance cuts etc. For unfactorized processes the usage of \ttt{cuts} or \ttt{selection} leads to the same results. Events for which the selection expression evaluates to false are dropped; they are neither analyzed nor written to any user-defined output file. However, the dropped events are written to \whizard's native event file. For unfactorized processes it is therefore preferable to implement all cuts using the \ttt{cuts} keyword for the integration, see \ttt{cuts} above. Example: \begin{code} selection = all Pt > 50 GeV [lepton] \end{code} The syntax is generically the same as for the \ttt{cuts expression}, see Sec.~\ref{sec:cuts}. For more information see also Sec.~\ref{sec:analysis}. \subsubsection{analysis} \begin{syntax} analysis = \var{analysis-expression} \end{syntax} The analysis expression is a logical macro expression that is evaluated once for each event that passes the integration and selection cuts in a subsequent simulation step. The expression has type logical in analogy with the cut expression; however, its main use will be in side effects caused by embedded \ttt{record} expressions. The \ttt{record} expression books a value, calculated from observables evaluated for the current event, in one of the predefined histograms or plots. Example: \begin{code} analysis = record pt_distribution (eval Pt [photon]) and record mval (eval M [lepton, lepton]) \end{code} See Sec.~\ref{sec:analysis}. \subsubsection{unstable} \begin{syntax} unstable \var{particle} (\var{decay-channels}) \end{syntax} Specify that a particle can decay, if it occurs in the final state of a subsequent simulation step. (In the integration step, all final-state particles are considered stable.) The decay channels are processes which should have been declared before by a \ttt{process} command (alternatively, there are options that \whizard\ takes care of this automatically; cf. Sec.~\ref{sec:decays}). They may be integrated explicitly, otherwise the \ttt{unstable} command will take care of the integration before particle decays are generated. Example: \begin{code} unstable Z (z_ee, z_jj) \end{code} Note that the decay is an on-shell approximation. Alternatively, \whizard\ is capable of generating the final state(s) directly, automatically including the particle as an internal resonance together with irreducible background. Depending on the physical problem and on the complexity of the matrix-element calculation, either option may be more appropriate. See Sec.~\ref{sec:decays}. \subsubsection{n\_events} \begin{syntax} n\_events = \var{integer} \end{syntax} Specify the number of events that a subsequent simulation step should produce. By default, simulated events are unweighted. (Unweighting is done by a rejection operation on weighted events, so the usual caveats on event unweighting by a numerical Monte-Carlo generator do apply.) Example: \begin{code} n_events = 20000 \end{code} See Sec.~\ref{sec:simulation}. \subsubsection{simulate} \begin{syntax} simulate (\var{process-tags}) \end{syntax} Generate an event sample. The command allows for analyzing the generated events by the \ttt{analysis} expression. Furthermore, events can be written to file in various formats. Optionally, the partonic events can be showered and hadronized, partly using included external (\pythia) or truly external programs called by \whizard. Example: \begin{code} simulate (w_plus_jets) { sample_format = lhef } \end{code} See Sec.~\ref{sec:simulation} and Chapter~\ref{chap:events}. \subsubsection{graph} \begin{syntax} graph (\var{tag}) = \var{histograms-and-plots} \end{syntax} Combine existing histograms and plots into a common graph. Also useful for pretty-printing single histograms or plots. Example: \begin{code} graph comparison { $title = "$p_T$ distribution for two different values of $m_h$" } = hist1 & hist2 \end{code} % $ See Sec.~\ref{sec:graphs}. \subsubsection{write\_analysis} \begin{syntax} write\_analysis (\var{analysis-objects}) \end{syntax} Writes out data tables for the specified analysis objects (plots, graphs, histograms). If the argument is empty or absent, write all analysis objects currently available. The tables are available for feeding external programs. Example: \begin{code} write_analysis \end{code} See Sec.~\ref{sec:analysis}. \subsubsection{compile\_analysis} \begin{syntax} compile\_analysis (\var{analysis-objects}) \end{syntax} Analogous to \ttt{write\_analysis}, but the generated data tables are processed by \LaTeX\ and \gamelan, which produces Postscript and PDF versions of the displayed data. Example: \begin{code} compile_analysis \end{code} See Sec.~\ref{sec:analysis}. \section{Control Structures} Like any complete programming language, \sindarin\ provides means for branching and looping the program flow. \subsection{Conditionals} \subsubsection{if} \begin{syntax} if \var{logical\_expression} then \var{statements} \\ elsif \var{logical\_expression} then \var{statements} \\ else \var{statements} \\ endif \end{syntax} Execute statements conditionally, depending on the value of a logical expression. There may be none or multiple \ttt{elsif} branches, and the \ttt{else} branch is also optional. Example: \begin{code} if (sqrts > 2 * mtop) then integrate (top_pair_production) else printf "Top pair production is not possible" endif \end{code} The current \sindarin\ implementation puts some restriction on the statements that can appear in a conditional. For instance, process definitions must be done unconditionally. \subsection{Loops} \subsubsection{scan} \begin{syntax} scan \var{variable} = (\var{value-list}) \{ \var{statements} \} \end{syntax} Execute the statements repeatedly, once for each value of the scan variable. The statements are executed in a local context, analogous to the option statement list for commands. The value list is a comma-separated list of expressions, where each item evaluates to the value that is assigned to \ttt{\var{variable}} for this iteration. The type of the variable is not restricted to numeric, scans can be done for various object types. For instance, here is a scan over strings: \begin{code} scan string $str = ("%.3g", "%.4g", "%.5g") { printf $str (mW) } \end{code} % $ The output: \begin{interaction} [user variable] $str = "%.3g" 80.4 [user variable] $str = "%.4g" 80.42 [user variable] $str = "%.5g" 80.419 \end{interaction} % $ For a numeric scan variable in particular, there are iterators that implement the usual functionality of \ttt{for} loops. If the scan variable is of type integer, an iterator may take one of the forms \begin{syntax} \var{start-value} \verb|=>| \var{end-value} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/+| \var{add-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/-| \var{subtract-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/*| \var{multiplicator} \\ \var{start-value} \verb|=>| \var{end-value} \verb|//| \var{divisor} \\ \end{syntax} The iterator can be put in place of an expression in the \ttt{\var{value-list}}. Here is an example: \begin{code} scan int i = (1, (3 => 5), (10 => 20 /+ 4)) \end{code} which results in the output \begin{interaction} [user variable] i = 1 [user variable] i = 3 [user variable] i = 4 [user variable] i = 5 [user variable] i = 10 [user variable] i = 14 [user variable] i = 18 \end{interaction} [Note that the \ttt{\var{statements}} part of the scan construct may be empty or absent.] For real scan variables, there are even more possibilities for iterators: \begin{syntax} \var{start-value} \verb|=>| \var{end-value} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/+| \var{add-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/-| \var{subtract-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/*| \var{multiplicator} \\ \var{start-value} \verb|=>| \var{end-value} \verb|//| \var{divisor} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/+/| \var{n-points-linear} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/*/| \var{n-points-logarithmic} \\ \end{syntax} The first variant is equivalent to \ttt{/+ 1}. The \ttt{/+} and \ttt{/-} operators are intended to add or subtract the given step once for each iteration. Since in floating-point arithmetic this would be plagued by rounding ambiguities, the actual implementation first determines the (integer) number of iterations from the provided step value, then recomputes the step so that the iterations are evenly spaced with the first and last value included. The \ttt{/*} and \ttt{//} operators are analogous. Here, the initial value is intended to be multiplied by the step value once for each iteration. After determining the integer number of iterations, the actual scan values will be evenly spaced on a logarithmic scale. Finally, the \ttt{/+/} and \ttt{/*/} operators allow to specify the number of iterations (not counting the initial value) directly. The \ttt{\var{start-value}} and \ttt{\var{end-value}} are always included, and the intermediate values will be evenly spaced on a linear (\ttt{/+/}) or logarithmic (\ttt{/*/}) scale. Example: \begin{code} scan real mh = (130 GeV, (140 GeV => 160 GeV /+ 5 GeV), 180 GeV, (200 GeV => 1 TeV /*/ 10)) { integrate (higgs_decay) } \end{code} \subsection{Including Files} \subsubsection{include} \begin{syntax} include (\var{file-name}) \end{syntax} Include a \sindarin\ script from the specified file. The contents must be complete commands; they are compiled and executed as if they were part of the current script. Example: \begin{code} include ("default_cuts.sin") \end{code} \section{Expressions} \sindarin\ expressions are classified by their types. The type of an expression is verified when the script is compiled, before it is executed. This provides some safety against simple coding errors. Within expressions, grouping is done using ordinary brackets \ttt{()}. For subevent expressions, use square brackets \ttt{[]}. \subsection{Numeric} The language supports the classical numeric types \begin{itemize} \item \ttt{int} for integer: machine-default, usually 32 bit; \item \ttt{real}, usually \emph{double precision} or 64 bit; \item \ttt{complex}, consisting of real and imaginary part equivalent to a \ttt{real} each. \end{itemize} \sindarin\ supports arithmetic expressions similar to conventional languages. In arithmetic expressions, the three numeric types can be mixed as appropriate. The computation essentially follows the rules for mixed arithmetic in \fortran. The arithmetic operators are \verb|+|, \verb|-|, \verb|*|, \verb|/|, \verb|^|. Standard functions such as \ttt{sin}, \ttt{sqrt}, etc. are available. See Sec.~\ref{sec:real} to Sec.~\ref{sec:complex}. Numeric values can be associated with units. Units evaluate to numerical factors, and their use is optional, but they can be useful in the physics context for which \whizard\ is designed. Note that the default energy/mass unit is \verb|GeV|, and the default unit for cross sections is \verb|fbarn|. \subsection{Logical and String} The language also has the following standard types: \begin{itemize} \item \ttt{logical} (a.k.a.\ boolean). Logical variable names have a \ttt{?} (question mark) as prefix. \item \ttt{string} (arbitrary length). String variable names have a \ttt{\$} (dollar) sign as prefix. \end{itemize} There are comparisons, logical operations, string concatenation, and a mechanism for formatting objects as strings for output. \subsection{Special} Furthermore, \sindarin\ deals with a bunch of data types tailored specifically for Monte Carlo applications: \begin{itemize} \item \ttt{alias} objects denote a set of particle species. \item \ttt{subevt} objects denote a collection of particle momenta within an event. They have their uses in cut and analysis expressions. \item \ttt{process} object are generated by a \ttt{process} statement. There are no expressions involving processes, but they are referred to by \ttt{integrate} and \ttt{simulate} commands. \item \ttt{model}: There is always a current object of type and name \ttt{model}. Several models can be used concurrently by appropriately defining processes, but this happens behind the scenes. \item \ttt{beams}: Similarly, the current implementation allows only for a single object of this type at a given time, which is assigned by a \ttt{beams =} statement and used by \ttt{integrate}. \end{itemize} In the current implementation, \sindarin\ has no container data types derived from basic types, such as lists, arrays, or hashes, and there are no user-defined data types. (The \ttt{subevt} type is a container for particles in the context of events, but there is no type for an individual particle: this is represented as a one-particle \ttt{subevt}). There are also containers for inclusive processes which are however simply handled as an expansion into several components of a master process tag. \section{Variables} \label{sec:variables} \sindarin\ supports global variables, variables local to a scoping unit (the option body of a command, the body of a \ttt{scan} loop), and variables local to an expression. Some variables are predefined by the system (\emph{intrinsic variables}). They are further separated into \emph{independent} variables that can be reset by the user, and \emph{derived} or locked variables that are automatically computed by the program, but not directly user-modifiable. On top of that, the user is free to introduce his own variables (\emph{user variables}). The names of numerical variables consist of alphanumeric characters and underscores. The first character must not be a digit. Logical variable names are furthermore prefixed by a \ttt{?} (question mark) sign, while string variable names begin with a \ttt{\$} (dollar) sign. Character case does matter. In this manual we follow the convention that variable names consist of lower-case letters, digits, and underscores only, but you may also use upper-case letters if you wish. Physics models contain their own, specific set of numeric variables (masses, couplings). They are attached to the model where they are defined, so they appear and disappear with the model that is currently loaded. In particular, if two different models contain a variable with the same name, these two variables are nevertheless distinct: setting one doesn't affect the other. This feature might be called, in computer-science jargon, a \emph{mixin}. User variables -- global or local -- are declared by their type when they are introduced, and acquire an initial value upon declaration. Examples: \begin{quote} \begin{footnotesize} \begin{verbatim} int i = 3 real my_cut_value = 10 GeV complex c = 3 - 4 * I logical ?top_decay_allowed = mH > 2 * mtop string $hello = "Hello world!" alias q = d:u:s:c \end{verbatim} \end{footnotesize} \end{quote} An existing user variable can be assigned a new value without a declaration: \begin{quote} \begin{footnotesize} \begin{verbatim} i = i + 1 \end{verbatim} \end{footnotesize} \end{quote} and it may also be redeclared if the new declaration specifies the same type, this is equivalent to assigning a new value. Variables local to an expression are introduced by the \ttt{let ... in} contruct. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} real a = let int n = 2 in x^n + y^n \end{verbatim} \end{footnotesize} \end{quote} The explicit \ttt{int} declaration is necessary only if the variable \ttt{n} has not been declared before. An intrinsic variable must not be declared: \ttt{let mtop = 175.3 GeV in \ldots} \ttt{let} constructs can be concatenated if several local variables need to be assigned: \ttt{let a = 3 in let b = 4 in \textit{expression}}. Variables of type \ttt{subevt} can only be defined in \ttt{let} constructs. Exclusively in the context of particle selections (event analysis), there are \emph{observables} as special numeric objects. They are used like numeric variables, but they are never declared or assigned. They get their value assigned dynamically, computed from the particle momentum configuration. Hence, they may be understood as (intrinsic and predefined) macros. By convention, observable names begin with a capital letter. Further macros are \begin{itemize} \item \ttt{cuts} and \ttt{analysis}. They are of type logical, and can be assigned an expression by the user. They are evaluated once for each event. \item \ttt{scale}, \ttt{factorization\_scale} and \ttt{renormalization\_scale} are real numeric macros which define the energy scale(s) of an event. The latter two override the former. If no scale is defined, the partonic energy is used as the process scale. \item \ttt{weight} is a real numeric macro. If it is assigned an expression, the expression is evaluated for each valid phase-space point, and the result multiplies the matrix element. \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{\sindarin\ in Details} \label{chap:sindarin} \section{Data and expressions} \subsection{Real-valued objects} \label{sec:real} Real literals have their usual form, mantissa and, optionally, exponent: \begin{center} \ttt{0.}\quad \ttt{3.14}\quad \ttt{-.5}\quad \ttt{2.345e-3}\quad \ttt{.890E-023} \end{center} Internally, real values are treated as double precision. The values are read by the \fortran\ library, so details depend on its implementation. A special feature of \sindarin\ is that numerics (real and integer) can be immediately followed by a physical unit. The supported units are presently hard-coded, they are \begin{center} \ttt{meV}\quad \ttt{eV}\quad \ttt{keV}\quad \ttt{MeV}\quad \ttt{GeV}\quad \ttt{TeV} \\ \ttt{nbarn}\quad \ttt{pbarn}\quad \ttt{fbarn}\quad \ttt{abarn} \\ \ttt{rad}\quad \ttt{mrad}\quad \ttt{degree} \\ \ttt{\%} \end{center} If a number is followed by a unit, it is automatically normalized to the corresponding default unit: \ttt{14.TeV} is transformed into the real number \ttt{14000.} Default units are \ttt{GeV}, \ttt{fbarn}, and \ttt{rad}. The \ttt{\%} sign after a number has the effect that the number is multiplied by $0.01$. Note that no checks for consistency of units are done, so you can add \ttt{1 meV + 3 abarn} if you absolutely wish to. Omitting units is always allowed, in that case, the default unit is assumed. Units are not treated as variables. In particular, you can't write \ttt{theta / degree}, the correct form is \ttt{theta / 1 degree}. There is a single predefined real constant, namely $\pi$ which is referred to by the keyword \ttt{pi}. In addition, there is a single predefined complex constant, which is the complex unit $i$, being referred to by the keyword \ttt{I}. The arithmetic operators are \begin{center} \verb|+| \verb|-| \verb|*| \verb|/| \verb|^| \end{center} with their obvious meaning and the usual precedence rules. \sindarin\ supports a bunch of standard numerical functions, mostly equivalent to their \fortran\ counterparts: \begin{center} \ttt{abs}\quad \ttt{conjg}\quad \ttt{sgn}\quad \ttt{mod}\quad \ttt{modulo} \\ \ttt{sqrt}\quad \ttt{exp}\quad \ttt{log}\quad \ttt{log10} \\ \ttt{sin}\quad \ttt{cos}\quad \ttt{tan}\quad \ttt{asin}\quad \ttt{acos}\quad \ttt{atan} \\ \ttt{sinh}\quad \ttt{cosh}\quad \ttt{tanh} \end{center} (Unlike \fortran, the \ttt{sgn} function takes only one argument and returns $1.$, or $-1.$) The function argument is enclosed in brackets: \ttt{sqrt (2.)}, \ttt{tan (11.5 degree)}. There are two functions with two real arguments: \begin{center} \ttt{max}\quad \ttt{min} \end{center} Example: \verb|real lighter_mass = min (mZ, mH)| The following functions of a real convert to integer: \begin{center} \ttt{int}\quad \ttt{nint}\quad \ttt{floor}\quad \ttt{ceiling} %% \; . \end{center} and this converts to complex type: \begin{center} \ttt{complex} \end{center} Real values can be compared by the following operators, the result is a logical value: \begin{center} \verb|==|\quad \verb|<>| \\ \verb|>|\quad \verb|<|\quad \verb|>=|\quad \verb|<=| \end{center} In \sindarin, it is possible to have more than two operands in a logical expressions. The comparisons are done from left to right. Hence, \begin{center} \verb|115 GeV < mH < 180 GeV| \end{center} is valid \sindarin\ code and evaluates to \ttt{true} if the Higgs mass is in the given range. Tests for equality and inequality with machine-precision real numbers are notoriously unreliable and should be avoided altogether. To deal with this problem, \sindarin\ has the possibility to make the comparison operators ``fuzzy'' which should be read as ``equal (unequal) up to an absolute tolerance'', where the tolerance is given by the real-valued intrinsic variable \ttt{tolerance}. This variable is initially zero, but can be set to any value (for instance, \ttt{tolerance = 1.e-13} by the user. Note that for non-zero tolerance, operators like \verb|==| and \verb|<>| or \verb|<| and \verb|>| are not mutually exclusive\footnote{In older versions of \whizard, until v2.1.1, there used to be separate comparators for the comparisons up to a tolerance, namely \ttt{==\~{}} and \ttt{<>\~{}}. These have been discarded from v2.2.0 on in order to simplify the syntax.}. %%%%%%%%%%%%%%% \subsection{Integer-valued objects} \label{sec:integer} Integer literals are obvious: \begin{center} \ttt{1}\quad \ttt{-98765}\quad \ttt{0123} \end{center} Integers are always signed. Their range is the default-integer range as determined by the \fortran\ compiler. Like real values, integer values can be followed by a physical unit: \ttt{1 TeV}, \ttt{30 degree}. This actually transforms the integer into a real. Standard arithmetics is supported: \begin{center} \verb|+| \verb|-| \verb|*| \verb|/| \verb|^| \end{center} It is important to note that there is no fraction datatype, and pure integer arithmetics does not convert to real. Hence \ttt{3/4} evaluates to \ttt{0}, but \ttt{3 GeV / 4 GeV} evaluates to \ttt{0.75}. Since all arithmetics is handled by the underlying \fortran\ library, integer overflow is not detected. If in doubt, do real arithmetics. Integer functions are more restricted than real functions. We support the following: \begin{center} \ttt{abs}\quad \ttt{sgn}\quad \ttt{mod}\quad \ttt{modulo} \\ \ttt{max}\quad \ttt{min} \end{center} and the conversion functions \begin{center} \ttt{real}\quad \ttt{complex} \end{center} Comparisons of integers among themselves and with reals are possible using the same set of comparison operators as for real values. This includes the operators with a finite tolerance. %%%%%%%%%%%%%%%% \subsection{Complex-valued objects} \label{sec:complex} Complex variables and values are currently not yet used by the physics models implemented in \whizard. There complex input coupling constants are always split into their real and imaginary parts (or modulus and phase). They are exclusively available for arithmetic calculations. There is no form for complex literals. Complex values must be created via an arithmetic expression, \begin{center} \ttt{complex c = 1 + 2 * I} \end{center} where the imaginary unit \ttt{I} is predefined as a constant. The standard arithmetic operations are supported (also mixed with real and integer). Support for functions is currently still incomplete, among the supported functions there are \ttt{sqrt}, \ttt{log}, \ttt{exp}. \subsection{Logical-valued objects} There are two predefined logical constants, \ttt{true} and \ttt{false}. Logicals are \emph{not} equivalent to integers (like in C) or to strings (like in PERL), but they make up a type of their own. Only in \verb|printf| output, they are treated as strings, that is, they require the \verb|%s| conversion specifier. The names of logical variables begin with a question mark \ttt{?}. Here is the declaration of a logical user variable: \begin{quote} \begin{footnotesize} \begin{footnotesize} \begin{verbatim} logical ?higgs_decays_into_tt = mH > 2 * mtop \end{verbatim} \end{footnotesize} \end{footnotesize} \end{quote} Logical expressions use the standard boolean operations \begin{center} \ttt{or}\quad \ttt{and}\quad \ttt{not} \end{center} The results of comparisons (see above) are logicals. There is also a special logical operator with lower priority, concatenation by a semicolon: \begin{center} \ttt{\textit{lexpr1} ; \textit{lexpr2}} \end{center} This evaluates \textit{lexpr1} and throws its result away, then evaluates \textit{lexpr2} and returns that result. This feature is to used with logical expressions that have a side effect, namely the \ttt{record} function within analysis expressions. The primary use for intrinsic logicals are flags that change the behavior of commands. For instance, \ttt{?unweighted = true} and \ttt{?unweighted = false} switch the unweighting of simulated event samples on and off. \subsection{String-valued objects and string operations} \label{sec:sprintf} String literals are enclosed in double quotes: \ttt{"This is a string."} The empty string is \ttt{""}. String variables begin with the dollar sign: \verb|$|. There is only one string operation, concatenation \begin{quote} \begin{footnotesize} \begin{verbatim} string $foo = "abc" & "def" \end{verbatim} \end{footnotesize} \end{quote} However, it is possible to transform variables and values to a string using the \ttt{sprintf} function. This function is an interface to the system's \ttt{C} function \ttt{sprintf} with some restrictions and modifications. The allowed conversion specifiers are \begin{center} \verb|%d|\quad \verb|%i| (integer) \\ \verb|%e|\quad \verb|%f|\quad \verb|%g|\quad \verb|%E|\quad \verb|%F|\quad \verb|%G| (real) \\ \verb|%s| (string and logical) \end{center} The conversions can use flag parameter, field width, and precision, but length modifiers are not supported since they have no meaning for the application. (See also Sec.~\ref{sec:I/O}.) The \ttt{sprintf} function has the syntax \begin{center} \ttt{sprintf} \textit{format-string} \ttt{(}\textit{arg-list}\ttt{)} \end{center} This is an expression that evaluates to a string. The format string contains the mentioned conversion specifiers. The argument list is optional. The arguments are separated by commas. Allowed arguments are integer, real, logical, and string variables, and numeric expressions. Logical and string expressions can also be printed, but they have to be dressed as \emph{anonymous variables}. A logical anonymous variable has the form \ttt{?(}\textit{logical\_expr}\ttt{)} (example: \ttt{?(mH > 115 GeV)}). A string anonymous variable has the form \ttt{\$(}\textit{string-expr}\ttt{)}. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} string $unit = "GeV" string $str = sprintf "mW = %f %s" (mW, $unit) \end{verbatim} \end{footnotesize} \end{quote} The related \ttt{printf} command with the same syntax prints the formatted string to standard output\footnote{In older versions of \whizard, until v2.1.1, there also used to be a \ttt{sprintd} function and a \ttt{printd} command for default formats without a format string. They have been discarded in order to simplify the syntax from version v2.2.0 on.}. \section{Particles and (sub)events} \subsection{Particle aliases} \label{sec:alias} A particle species is denoted by its name as a string: \verb|"W+"|. Alternatively, it can be addressed by an \ttt{alias}. For instance, the $W^+$ boson has the alias \ttt{Wp}. Aliases are used like variables in a context where a particle species is expected, and the user can specify his/her own aliases. An alias may either denote a single particle species or a class of particles species. A colon \ttt{:} concatenates particle names and aliases to yield multi-species aliases: \begin{quote} \begin{footnotesize} \begin{verbatim} alias quark = u:d:s alias wboson = "W+":"W-" \end{verbatim} \end{footnotesize} \end{quote} Such aliases are used for defining processes with summation over flavors, and for defining classes of particles for analysis. Each model files define both names and (single-particle) aliases for all particles it contains. Furthermore, it defines the class aliases \verb|colored| and \verb|charged| which are particularly useful for event analysis. \subsection{Subevents} Subevents are sets of particles, extracted from an event. The sets are unordered by default, but may be ordered by appropriate functions. Obviously, subevents are meaningful only in a context where an event is available. The possible context may be the specification of a cut, weight, scale, or analysis expression. To construct a simple subevent, we put a particle alias or an expression of type particle alias into square brackets: \begin{quote} \begin{footnotesize} \verb|["W+"]|\quad \verb|[u:d:s]|\quad \verb|[colored]| \end{footnotesize} \end{quote} These subevents evaluate to the set of all $W^+$ bosons (to be precise, their four-momenta), all $u$, $d$, or $s$ quarks, and all colored particles, respectively. A subevent can contain pseudoparticles, i.e., particle combinations. That is, the four-momenta of distinct particles are combined (added conmponent-wise), and the results become subevent elements just like ordinary particles. The (pseudo)particles in a subevent are non-overlapping. That is, for any of the particles in the original event, there is at most one (pseudo)particle in the subevent in which it is contained. Sometimes, variables (actually, named constants) of type subevent are useful. Subevent variables are declared by the \ttt{subevt} keyword, and their names carry the prefix \verb|@|. Subevent variables exist only within the scope of a \verb|cuts| (or \verb|scale|, \verb|analysis|, etc.) macro, which is evaluated in the presence of an actual event. In the macro body, they are assigned via the \ttt{let} construct: \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = let subevt @jets = select if Pt > 10 GeV [colored] in all Theta > 10 degree [@jets, @jets] \end{verbatim} \end{footnotesize} \end{quote} In this expression, we first define \verb|@jets| to stand for the set of all colored partons with $p_T>10\;\mathrm{GeV}$. This abbreviation is then used in a logical expression, which evaluates to true if all relative angles between distinct jets are greater than $10$ degree. We note that the example also introduces pairs of subevents: the square bracket with two entries evaluates to the list of all possible pairs which do not overlap. The objects within square brackets can be either subevents or alias expressions. The latter are transformed into subevents before they are used. As a special case, the original event is always available as the predefined subevent \verb|@evt|. \subsection{Subevent functions} There are several functions that take a subevent (or an alias) as an argument and return a new subevent. Here we describe them: \subsubsection{collect} \begin{quote} \begin{footnotesize} \ttt{collect [\textit{particles}]} \\ \ttt{collect if \textit{condition} [\textit{particles}]} \\ \ttt{collect if \textit{condition} [\textit{particles}, \textit{ref\_particles}]} \end{footnotesize} \end{quote} First version: collect all particle momenta in the argument and combine them to a single four-momentum. The \textit{particles} argument may either be a \ttt{subevt} expression or an \ttt{alias} expression. The result is a one-entry \ttt{subevt}. In the second form, only those particles are collected which satisfy the \textit{condition}, a logical expression. Example: \ttt{collect if Pt > 10 GeV [colored]} The third version is useful if you want to put binary observables (i.e., observables constructed from two different particles) in the condition. The \textit{ref\_particles} provide the second argument for binary observables in the \textit{condition}. A particle is taken into account if the condition is true with respect to all reference particles that do not overlap with this particle. Example: \ttt{collect if Theta > 5 degree [photon, charged]}: combine all photons that are separated by 5 degrees from all charged particles. \subsubsection{cluster} \begin{quote} \begin{footnotesize} \ttt{cluster [\textit{particles}]} \\ \ttt{cluster if \textit{condition} [\textit{particles}]} \\ \end{footnotesize} \end{quote} First version: collect all particle momenta in the argument and cluster them to a set of jets. The \textit{particles} argument may either be a \ttt{subevt} expression or an \ttt{alias} expression. The result is a one-entry \ttt{subevt}. In the second form, only those particles are clustered which satisfy the \textit{condition}, a logical expression. Example: \ttt{cluster if Pt > 10 GeV [colored]} % The third version is usefule if you want to put binary observables (i.e., % observables constructed from two different particles) in the condition. The % \textit{ref\_particles} provide the second argument for binary observables in % the \textit{condition}. A particle is taken into account if the condition is % true with respect to all reference particles that do not overlap with this % particle. Example: \ttt{cluster if Theta > 5 degree [photon, charged]}: % combine all photons that are separated by 5 degrees from all charged % particles. This command is available from \whizard\ version 2.2.1 on, and only if the \fastjet\ package has been installed and linked with \whizard\ (cf. Sec.\ref{sec:fastjet}); in a future version of \whizard\ it is foreseen to have also an intrinsic clustering package inside \whizard\ which will be able to support some of the clustering algorithms below. To use it in an analysis, you have to set the variable \ttt{jet\_algorithm} to one of the predefined jet-algorithm values (integer constants): \begin{quote} \begin{footnotesize} \ttt{kt\_algorithm}\\ \ttt{cambridge\_algorithm}\\ \ttt{antikt\_algorithm}\\ \ttt{genkt\_algorithm}\\ \ttt{cambridge\_for\_passive\_algorithm}\\ \ttt{genkt\_for\_passive\_algorithm}\\ \ttt{ee\_kt\_algorithm}\\ \ttt{ee\_genkt\_algorithm}\\ \ttt{plugin\_algorithm} \end{footnotesize} \end{quote} and the variable \ttt{jet\_r} to the desired $R$ parameter value, as appropriate for the analysis and the jet algorithm. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} jet_algorithm = antikt_algorithm jet_r = 0.7 cuts = all Pt > 15 GeV [cluster if Pt > 5 GeV [colored]] \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{select\_b\_jet, select\_non\_b\_jet, select\_c\_jet, select\_light\_jet} This command is available from \whizard\ version 2.8.1 on, and it only generates anything non-trivial if the \fastjet\ package has been installed and linked with \whizard\ (cf. Sec.\ref{sec:fastjet}). It only returns sensible results when it is applied to subevents after the \ttt{cluster} command (cf. the paragraph before). It is similar to the \ttt{select} command, and accepts a logical expression as a possible condition. The four commands \ttt{select\_b\_jet}, \ttt{select\_non\_b\_jet}, \ttt{select\_c\_jet}, and \ttt{select\_light\_jet} select $b$ jets, non-$b$ jets (anything lighter than $b$s), $c$ jets (neither $b$ nor light) and light jets (anything besides $b$ and $c$), respectively. An example looks like this: \begin{quote} \begin{footnotesize} \begin{verbatim} alias lightjet = u:U:d:D:s:S:c:C:gl alias jet = b:B:lightjet process eebbjj = e1, E1 => b, B, lightjet, lightjet jet_algorithm = antikt_algorithm jet_r = 0.5 cuts = let subevt @clustered_jets = cluster [jet] in let subevt @bjets = select_b_jet [@clustered_jets] in .... \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{photon\_isolation} This command is available from \whizard\ version 2.8.1 on. It provides isolation of photons from hadronic (and possibly electromagnetic) activity in the event to define a (especially) NLO cross section that is completely perturbative. The isolation criterion according to Frixione, cf.~\cite{Frixione:1998jh}, removes the non-perturbative contribution from the photon fragmentation function. This command can in principle be applied to elementary hard process partons (and leptons), but generates something sensible only if the \fastjet\ package has been installed and linked with \whizard\ (cf. Sec.\ref{sec:fastjet}). There are three parameters which allow to tune the isolation, \ttt{photon\_iso\_r0}, which is the radius $R^0_\gamma$ of the isolation cone, \ttt{photon\_iso\_eps}, which is the fraction $\epsilon_\gamma$ of the photon (transverse) energy that enters the isolation criterion, and the exponent of the isolation cone, \ttt{photon\_iso\_n}, $n^\gamma$. For more information cf.~\cite{Frixione:1998jh}. The command allows also a conditional cut on the photon which is applied before the isolation takes place. The first argument are the photons in the event, the second the particles from which they should be isolated. If also the electromagnetic activity is to be isolated, photons need to be isolated from themselves and must be included in the second argument. This is mandatory if leptons appear in the second argument. Two examples look like this: \begin{quote} \begin{footnotesize} \begin{verbatim} alias jet = u:U:d:D:s:S:c:C:gl process eeaajj = e1, E1 => A, A, jet, jet jet_algorithm = antikt_algorithm jet_r = 0.5 cuts = photon_isolation if Pt > 10 GeV [A, jet] .... cuts = let subevt @jets = cluster [jet] in photon_isolation if Pt > 10 GeV [A, @jets] .... process eeajmm = e1, E1 => A, jet, e2, E2 cuts = let subevt @jets = cluster [jet] in let subevt @iso = join [@jets, A:e2:E2] photon_isolation [A, @iso] \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{photon\_recombination} \begin{quote} \begin{footnotesize} \ttt{photon\_recombination [\textit{particles}]} \\ \ttt{photon\_recombination if \textit{condition} [\textit{particles}]} \end{footnotesize} \end{quote} This function, which maps a subevent into another subevent, is used for electroweak (and mixed coupling) higher order calculations. It takes the selection of photons in \texttt{particles} (for the moment, \whizard\ restricts this to one explicit photon in the final state) and recombines it with the closest non-photon particle from \texttt{particles} in $R$-distance, if the $R$-distance is smaller than the parameter set by \texttt{photon\_rec\_r0}. Otherwise the \texttt{particles} subevent is left unchanged so that it may contain possibly non-recombined photons. The logical variable \texttt{?keep\_flavors\_when\_recombining} determines whether \whizard\ keeps the flavor of the particle with which the photon is recombined into the pseudoparticle, the default being \texttt{true}. An example for photon recombination is shown here: \begin{quote} \begin{footnotesize} \begin{verbatim} alias lep = e1:e2:e3:E1:E2:E3 process eevv = e1, E1 => A, lep, lep, lep, lep photon_rec_r0 = 0.15 cuts = let subevt @reco = photon_recombination if abs (Eta) < 2.5 [A:lep] in .... \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{combine} \begin{quote} \begin{footnotesize} \ttt{combine [\textit{particles\_1}, \textit{particles\_2}]} \\ \ttt{combine if \textit{condition} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} Make a new subevent of composite particles. The composites are generated by combining all particles from subevent \textit{particles\_1} with all particles from subevent \textit{particles\_2} in all possible combinations. Overlapping combinations are excluded, however: if a (composite) particle in the first argument has a constituent in common with a composite particle in the second argument, the combination is dropped. In particular, this applies if the particles are identical. If a \textit{condition} is provided, the combination is done only when the logical expression, applied to the particle pair in question, returns true. For instance, here we reconstruct intermediate $W^-$ bosons: \begin{quote} \begin{footnotesize} \begin{verbatim} let @W_candidates = combine if 70 GeV < M < 80 GeV ["mu-", "numubar"] in ... \end{verbatim} \end{footnotesize} \end{quote} Note that the combination may fail, so the resulting subevent could be empty. \subsubsection{operator +} If there is no condition, the $+$ operator provides a convenient shorthand for the \verb|combine| command. In particular, it can be used if there are several particles to combine. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible] \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{select} \begin{quote} \begin{footnotesize} \ttt{select if \textit{condition} [\textit{particles}]} \\ \ttt{select if \textit{condition} [\textit{particles}, \textit{ref\_particles}]} \end{footnotesize} \end{quote} One argument: select all particles in the argument that satisfy the \textit{condition} and drop the rest. Two arguments: the \textit{ref\_particles} provide a second argument for binary observables. Select particles if the condition is satisfied for all reference particles. \subsubsection{extract} \begin{quote} \begin{footnotesize} \ttt{extract [\textit{particles}]} \\ \ttt{extract index \textit{index-value} [\textit{particles}]} \end{footnotesize} \end{quote} Return a single-particle subevent. In the first version, it contains the first particle in the subevent \textit{particles}. In the second version, the particle with index \textit{index-value} is returned, where \textit{index-value} is an integer expression. If its value is negative, the index is counted from the end of the subevent. The order of particles in an event or subevent is not always well-defined, so you may wish to sort the subevent before applying the \textit{extract} function to it. \subsubsection{sort} \begin{quote} \begin{footnotesize} \ttt{sort [\textit{particles}]} \\ \ttt{sort by \textit{observable} [\textit{particles}]} \\ \ttt{sort by \textit{observable} [\textit{particles}, \textit{ref\_particle}]} \end{footnotesize} \end{quote} Sort the subevent according to some criterion. If no criterion is supplied (first version), the subevent is sorted by increasing PDG code (first particles, then antiparticles). In the second version, the \textit{observable} is a real expression which is evaluated for each particle of the subevent in turn. The subevent is sorted by increasing value of this expression, for instance: \begin{quote} \begin{footnotesize} \begin{verbatim} let @sorted_evt = sort by Pt [@evt] in ... \end{verbatim} \end{footnotesize} \end{quote} In the third version, a reference particle is provided as second argument, so the sorting can be done for binary observables. It doesn't make much sense to have several reference particles at once, so the \ttt{sort} function uses only the first entry in the subevent \textit{ref-particle}, if it has more than one. \subsubsection{join} \begin{quote} \begin{footnotesize} \ttt{join [\textit{particles}, \textit{new\_particles}]} \\ \ttt{join if \textit{condition} [\textit{particles}, \textit{new\_particles}]} \end{footnotesize} \end{quote} This commands appends the particles in subevent \textit{new\_particles} to the subevent \textit{particles}, i.e., it joins the two particle sets. To be precise, a (pseudo)particle from \textit{new\_particles} is only appended if it does not overlap with any of the (pseudo)particles present in \textit{particles}, so the function will not produce overlapping entries. In the second version, each particle from \textit{new\_particles} is also checked with all particles in the first set whether \textit{condition} is fulfilled. If yes, and there is no overlap, it is appended, otherwise it is dropped. \subsubsection{operator \&} Subevents can also be concatenated by the operator \verb|&|. This effectively applies \ttt{join} to all operands in turn. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} let @visible = select if Pt > 10 GeV and E > 5 GeV [photon] & select if Pt > 20 GeV and E > 10 GeV [colored] & select if Pt > 10 GeV [lepton] in ... \end{verbatim} \end{footnotesize} \end{quote} \subsection{Calculating observables} Observables (invariant mass \ttt{M}, energy \ttt{E}, \ldots) are used in expressions just like ordinary numeric variables. By convention, their names start with a capital letter. They are computed using a particle momentum (unary observables), or two particle momenta (binary observables) or all momenta of the particles (n-ary/subeventary observables) which are taken from a subsequent subevent argument. We can extract the value of an observable for an event and make it available for computing the \ttt{scale} value, or for histogramming etc.: \subsubsection{eval} \begin{quote} \begin{footnotesize} \ttt{eval \textit{expr} [\textit{particles}]} \\ \ttt{eval \textit{expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The function \ttt{eval} takes an expression involving observables and evaluates it for the first momentum (or momentum pair) of the subevent (or subevent pair) in square brackets that follows the expression. For example, \begin{quote} \begin{footnotesize} \begin{verbatim} eval Pt [colored] \end{verbatim} \end{footnotesize} \end{quote} evaluates to the transverse momentum of the first colored particle, \begin{quote} \begin{footnotesize} \begin{verbatim} eval M [@jets, @jets] \end{verbatim} \end{footnotesize} \end{quote} evaluates to the invariant mass of the first distinct pair of jets (assuming that \verb|@jets| has been defined in a \ttt{let} construct), and \begin{quote} \begin{footnotesize} \begin{verbatim} eval E - M [combine [e1, N1]] \end{verbatim} \end{footnotesize} \end{quote} evaluates to the difference of energy and mass of the combination of the first electron-neutrino pair in the event. The last example illustrates why observables are treated like variables, even though they are functions of particles: the \ttt{eval} construct with the particle reference in square brackets after the expression allows to compute derived observables -- observables which are functions of new observables -- without the need for hard-coding them as new functions. For subeventary observables, e.g. \ttt{Ht}, the momenta of all particles in the subevent are taken to evaluate the observables, e.g. \begin{quote} \begin{verbatim} eval Ht/2 [t:T:Z:jet] \end{verbatim} \end{quote} takes the (half of) the transverse mass of all tops, $Z$s and jets in the final state. \subsubsection{sum} This \sindarin\ statement works similar to the \ttt{eval} statement above, with the syntax \begin{quote} \begin{verbatim} sum [] \end{verbatim} \end{quote} It sums the \ttt{} over all elements of the subevents \ttt{}, e.g. \begin{quote} \begin{verbatim} sum sqrt(Pt^2 + M^2)/2 [t:T:H:Z] \end{verbatim} \end{quote} would calculate the transverse mass (square root of the sum of squared transverse momentum and squared mass) of all tops, Higgs and $Z$ bosons in the final state. \subsubsection{prod} Identical to \ttt{sum}, but takes the product, not the sum of the expression \ttt{} evaluated over the full subevent. Syntax: \begin{quote} \begin{verbatim} prod [] \end{verbatim} \end{quote} \subsection{Cuts and event selection} \label{sec:cuts} Instead of a numeric value, we can use observables to compute a logical value. \subsubsection{all} \begin{quote} \begin{footnotesize} \ttt{all \textit{logical\_expr} [\textit{particles}]} \\ \ttt{all \textit{logical\_expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The \ttt{all} construct expects a logical expression and one or two subevent arguments in square brackets. \begin{quote} \begin{footnotesize} \begin{verbatim} all Pt > 10 GeV [charged] all 80 GeV < M < 100 GeV [lepton, antilepton] \end{verbatim} \end{footnotesize} \end{quote} In the second example, \ttt{lepton} and \ttt{antilepton} should be aliases defined in a \ttt{let} construct. (Recall that aliases are promoted to subevents if they occur within square brackets.) This construction defines a cut. The result value is \ttt{true} if the logical expression evaluates to \ttt{true} for all particles in the subevent in square brackets. In the two-argument case it must be \ttt{true} for all non-overlapping combinations of particles in the two subevents. If one of the arguments is the empty subevent, the result is also \ttt{true}. \subsubsection{any} \begin{quote} \begin{footnotesize} \ttt{any \textit{logical\_expr} [\textit{particles}]} \\ \ttt{any \textit{logical\_expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The \ttt{any} construct is true if the logical expression is true for at least one particle or non-overlapping particle combination: \begin{quote} \begin{footnotesize} \begin{verbatim} any E > 100 GeV [photon] \end{verbatim} \end{footnotesize} \end{quote} This defines a trigger or selection condition. If a subevent argument is empty, it evaluates to \ttt{false} \subsubsection{no} \begin{quote} \begin{footnotesize} \ttt{no \textit{logical\_expr} [\textit{particles}]} \\ \ttt{no \textit{logical\_expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The \ttt{no} construct is true if the logical expression is true for no single one particle or non-overlapping particle combination: \begin{quote} \begin{footnotesize} \begin{verbatim} no 5 degree < Theta < 175 degree ["e-":"e+"] \end{verbatim} \end{footnotesize} \end{quote} This defines a veto condition. If a subevent argument is empty, it evaluates to \ttt{true}. It is equivalent to \ttt{not any\ldots}, but included for notational convenience. \subsection{More particle functions} \subsubsection{count} \begin{quote} \begin{footnotesize} \ttt{count [\textit{particles}]} \\ \ttt{count [\textit{particles\_1}, \textit{particles\_2}]} \\ \ttt{count if \textit{logical-expr} [\textit{particles}]} \\ \ttt{count if \textit{logical-expr} [\textit{particles}, \textit{ref\_particles}]} \end{footnotesize} \end{quote} This counts the number of events in a subevent, the result is of type \ttt{int}. If there is a conditional expression, it counts the number of \ttt{particle} in the subevent that pass the test. If there are two arguments, it counts the number of non-overlapping particle pairs (that pass the test, if any). \subsubsection{Predefined observables} The following real-valued observables are available in \sindarin\ for use in \ttt{eval}, \ttt{all}, \ttt{any}, \ttt{no}, and \ttt{count} constructs. The argument is always the subevent or alias enclosed in square brackets. \begin{itemize} \item \ttt{M2} \begin{itemize} \item One argument: Invariant mass squared of the (composite) particle in the argument. \item Two arguments: Invariant mass squared of the sum of the two momenta. \end{itemize} \item \ttt{M} \begin{itemize} \item Signed square root of \ttt{M2}: positive if $\ttt{M2}>0$, negative if $\ttt{M2}<0$. \end{itemize} \item \ttt{E} \begin{itemize} \item One argument: Energy of the (composite) particle in the argument. \item Two arguments: Sum of the energies of the two momenta. \end{itemize} \item \ttt{Px}, \ttt{Py}, \ttt{Pz} \begin{itemize} \item Like \ttt{E}, but returning the spatial momentum components. \end{itemize} \item \ttt{P} \begin{itemize} \item Like \ttt{E}, returning the absolute value of the spatial momentum. \end{itemize} \item \ttt{Pt}, \ttt{Pl} \begin{itemize} \item Like \ttt{E}, returning the transversal and longitudinal momentum, respectively. \end{itemize} \item \ttt{Theta} \begin{itemize} \item One argument: Absolute polar angle in the lab frame \item Two arguments: Angular distance of two particles in the lab frame. \end{itemize} \item \ttt{Theta\_star} Only with two arguments, gives the relative polar angle of the two momenta in the rest system of the momentum sum (i.e. mother particle). \item \ttt{Phi} \begin{itemize} \item One argument: Absolute azimuthal angle in the lab frame \item Two arguments: Azimuthal distance of two particles in the lab frame \end{itemize} \item \ttt{Rap}, \ttt{Eta} \begin{itemize} \item One argument: rapidity / pseudorapidity \item Two arguments: rapidity / pseudorapidity difference \end{itemize} \item \ttt{Dist} \begin{itemize} \item Two arguments: Distance on the $\eta$-$\phi$ cylinder, i.e., $\sqrt{\Delta\eta^2 + \Delta\phi^2}$ \end{itemize} \item \ttt{kT} \begin{itemize} \item Two arguments: $k_T$ jet clustering variable: $2 \min (E_{j1}^2, E_{j2}^2) / Q^2 \times (1 - \cos\theta_{j1,j2})$. At the moment, $Q^2 = 1$ GeV$^2$. \end{itemize} \end{itemize} There are also integer-valued observables: \begin{itemize} \item \ttt{PDG} \begin{itemize} \item One argument: PDG code of the particle. For a composite particle, the code is undefined (value 0). For flavor sums in the \ttt{cuts} statement, this observable always returns the same flavor, i.e. the first one from the flavor list. It is thus only sensible to use it in an \ttt{analysis} or \ttt{selection} statement when simulating events. \end{itemize} \item \ttt{Ncol} \begin{itemize} \item One argument: Number of open color lines. Only count color lines, not anticolor lines. This is defined only if the global flag \ttt{?colorize\_subevt} is true. \end{itemize} \item \ttt{Nacl} \begin{itemize} \item One argument: Number of open anticolor lines. Only count anticolor lines, not color lines. This is defined only if the global flag \ttt{?colorize\_subevt} is true. \end{itemize} \end{itemize} %%%%%%%%%%%%%%% \section{Physics Models} \label{sec:models} A physics model is a combination of particles, numerical parameters (masses, couplings, widths), and Feynman rules. Many physics analyses are done in the context of the Standard Model (SM). The SM is also the default model for \whizard. Alternatively, you can choose a subset of the SM (QED or QCD), variants of the SM (e.g., with or without nontrivial CKM matrix), or various extensions of the SM. The complete list is displayed in Table~\ref{tab:models}. The model definitions are contained in text files with filename extension \ttt{.mdl}, e.g., \ttt{SM.mdl}, which are located in the \ttt{share/models} subdirectory of the \whizard\ installation. These files are easily readable, so if you need details of a model implementation, inspect their contents. The model file contains the complete particle and parameter definitions as well as their default values. It also contains a list of vertices. This is used only for phase-space setup; the vertices used for generating amplitudes and the corresponding Feynman rules are stored in different files within the \oMega\ source tree. In a \sindarin\ script, a model is a special object of type \ttt{model}. There is always a \emph{current} model. Initially, this is the SM, so on startup \whizard\ reads the \ttt{SM.mdl} model file and assigns its content to the current model object. (You can change the default model by the \ttt{--model} option on the command line. Also the preloading of a model can be switched off with the \ttt{--no-model} option) Once the model has been loaded, you can define processes for the model, and you have all independent model parameters at your disposal. As noted before, these are intrinsic parameters which need not be declared when you assign them a value, for instance: \begin{quote} \begin{footnotesize} \begin{verbatim} mW = 80.33 GeV wH = 243.1 MeV \end{verbatim} \end{footnotesize} \end{quote} Other parameters are \emph{derived}. They can be used in expressions like any other parameter, they are also intrinsic, but they cannot be modified directly at all. For instance, the electromagnetic coupling \ttt{ee} is a derived parameter. If you change either \ttt{GF} (the Fermi constant), \ttt{mW} (the $W$ mass), or \ttt{mZ} (the $Z$ mass), this parameter will reflect the change, but setting it directly is an error. In other words, the SM is defined within \whizard\ in the $G_F$-$m_W$-$m_Z$ scheme. (While this scheme is unusual for loop calculations, it is natural for a tree-level event generator where the $Z$ and $W$ poles have to be at their experimentally determined location\footnote{In future versions of \whizard\ it is foreseen to implement other electroweak schemes.}.) The model also defines the particle names and aliases that you can use for defining processes, cuts, or analyses. If you would like to generate a SUSY process instead, for instance, you can assign a different model (cf.\ Table~\ref{tab:models}) to the current model object: \begin{quote} \begin{footnotesize} \begin{verbatim} model = MSSM \end{verbatim} \end{footnotesize} \end{quote} This assignment has the consequence that the list of SM parameters and particles is replaced by the corresponding MSSM list (which is much longer). The MSSM contains essentially all SM parameters by the same name, but in fact they are different parameters. This is revealed when you say \begin{quote} \begin{footnotesize} \begin{verbatim} model = SM mb = 5.0 GeV model = MSSM show (mb) \end{verbatim} \end{footnotesize} \end{quote} After the model is reassigned, you will see the MSSM value of $m_b$ which still has its default value, not the one you have given. However, if you revert to the SM later, \begin{quote} \begin{footnotesize} \begin{verbatim} model = SM show (mb) \end{verbatim} \end{footnotesize} \end{quote} you will see that your modification of the SM's $m_b$ value has been remembered. If you want both mass values to agree, you have to set them separately in the context of their respective model. Although this might seem cumbersome at first, it is nevertheless a sensible procedure since the parameters defined by the user might anyhow not be defined or available for all chosen models. When using two different models which need an SLHA input file, these {\em have} to be provided for both models. Within a given scope, there is only one current model. The current model can be reset permanently as above. It can also be temporarily be reset in a local scope, i.e., the option body of a command or the body of a \ttt{scan} loop. It is thus possible to use several models within the same script. For instance, you may define a SUSY signal process and a pure-SM background process. Each process depends only on the respective model's parameter set, and a change to a parameter in one of the models affects only the corresponding process. \section{Processes} \label{sec:processes} The purpose of \whizard\ is the integration and simulation of high-energy physics processes: scatterings and decays. Hence, \ttt{process} objects play the central role in \sindarin\ scripts. A \sindarin\ script may contain an arbitrary number of process definitions. The initial states need not agree, and the processes may belong to different physics models. \subsection{Process definition} \label{sec:procdef} A process object is defined in a straightforward notation. The definition syntax is straightforward: \begin{quote} \begin{footnotesize} \ttt{process \textit{process-id} = \textit{incoming-particles}} \verb|=>| \ttt{\textit{outgoing-particles}} \end{footnotesize} \end{quote} Here are typical examples: \begin{quote} \begin{footnotesize} \begin{verbatim} process w_pair_production = e1, E1 => "W+", "W-" process zdecay = Z => u, ubar \end{verbatim} \end{footnotesize} \end{quote} Throughout the program, the process will be identified by its \textit{process-id}, so this is the name of the process object. This identifier is arbitrary, chosen by the user. It follows the rules for variable names, so it consists of alphanumeric characters and underscores, where the first character is not numeric. As a special rule, it must not contain upper-case characters. The reason is that this name is used for identifying the process not just within the script, but also within the \fortran\ code that the matrix-element generator produces for this process. After the equals sign, there follow the lists of incoming and outgoing particles. The number of incoming particles is either one or two: scattering processes and decay processes. The number of outgoing particles should be two or larger (as $2\to 1$ processes are proportional to a $\delta$ function they can only be sensibly integrated when using a structure function like a hadron collider PDF or a beamstrahlung spectrum.). There is no hard upper limit; the complexity of processes that \whizard\ can handle depends only on the practical computing limitations (CPU time and memory). Roughly speaking, one can assume that processes up to $2\to 6$ particles are safe, $2\to 8$ processes are feasible given sufficient time for reaching a stable integration, while more complicated processes are largely unexplored. We emphasize that in the default setup, the matrix element of a physics process is computed exactly in leading-order perturbation theory, i.e., at tree level. There is no restriction of intermediate states, the result always contains the complete set of Feynman graphs that connect the initial with the final state. If the result would actually be expanded in Feynman graphs (which is not done by the \oMega\ matrix element generator that \whizard\ uses), the number of graphs can easily reach several thousands, depending on the complexity of the process and on the physics model. More details about the different methods for quantum field-theoretical matrix elements can be found in Chap.~\ref{chap:hardint}. In the following, we will discuss particle names, options for processes like restrictions on intermediate states, parallelization, flavor sums and process components for inclusive event samples (process containers). \subsection{Particle names} The particle names are taken from the particle definition in the current model file. Looking at the SM, for instance, the electron entry in \ttt{share/models/SM.mdl} reads \begin{quote} \begin{footnotesize} \begin{verbatim} particle E_LEPTON 11 spin 1/2 charge -1 isospin -1/2 name "e-" e1 electron e anti "e+" E1 positron tex_name "e^-" tex_anti "e^+" mass me \end{verbatim} \end{footnotesize} \end{quote} This tells that you can identify an electron either as \verb|"e-"|, \verb|e1|, \verb|electron|, or simply \verb|e|. The first version is used for output, but needs to be quoted, because otherwise \sindarin\ would interpret the minus sign as an operator. (Technically, unquoted particle identifiers are aliases, while the quoted versions -- you can say either \verb|e1| or \verb|"e1"| -- are names. On input, this makes no difference.) The alternative version \verb|e1| follows a convention, inherited from \comphep~\cite{Boos:2004kh}, that particles are indicated by lower case, antiparticles by upper case, and for leptons, the generation index is appended: \verb|e2| is the muon, \verb|e3| the tau. These alternative names need not be quoted because they contain no special characters. In Table~\ref{tab:SM-particles}, we list the recommended names as well as mass and width parameters for all SM particles. For other models, you may look up the names in the corresponding model file. \begin{table}[p] \begin{center} \begin{tabular}{|l|l|l|l|cc|} \hline & Particle & Output name & Alternative names & Mass & Width\\ \hline\hline Leptons &$e^-$ & \verb|e-| & \ttt{e1}\quad\ttt{electron} & \ttt{me} & \\ &$e^+$ & \verb|e+| & \ttt{E1}\quad\ttt{positron} & \ttt{me} & \\ \hline &$\mu^-$ & \verb|mu-| & \ttt{e2}\quad\ttt{muon} & \ttt{mmu} & \\ &$\mu^+$ & \verb|mu+| & \ttt{E2} & \ttt{mmu} & \\ \hline &$\tau^-$ & \verb|tau-| & \ttt{e3}\quad\ttt{tauon} & \ttt{mtau} & \\ &$\tau^+$ & \verb|tau+| & \ttt{E3} & \ttt{mtau} & \\ \hline\hline Neutrinos &$\nu_e$ & \verb|nue| & \ttt{n1} & & \\ &$\bar\nu_e$ & \verb|nuebar| & \ttt{N1} & & \\ \hline &$\nu_\mu$ & \verb|numu| & \ttt{n2} & & \\ &$\bar\nu_\mu$ & \verb|numubar| & \ttt{N2} & & \\ \hline &$\nu_\tau$ & \verb|nutau| & \ttt{n3} & & \\ &$\bar\nu_\tau$ & \verb|nutaubar| & \ttt{N3} & & \\ \hline\hline Quarks &$d$ & \verb|d| & \ttt{down} & & \\ &$\bar d$ & \verb|dbar| & \ttt{D} & & \\ \hline &$u$ & \verb|u| & \ttt{up} & & \\ &$\bar u$ & \verb|ubar| & \ttt{U} & & \\ \hline &$s$ & \verb|s| & \ttt{strange} & \ttt{ms} & \\ &$\bar s$ & \verb|sbar| & \ttt{S} & \ttt{ms} & \\ \hline &$c$ & \verb|c| & \ttt{charm} & \ttt{mc} & \\ &$\bar c$ & \verb|cbar| & \ttt{C} & \ttt{mc} & \\ \hline &$b$ & \verb|b| & \ttt{bottom} & \ttt{mb} & \\ &$\bar b$ & \verb|bbar| & \ttt{B} & \ttt{mb} & \\ \hline &$t$ & \verb|t| & \ttt{top} & \ttt{mtop} & \ttt{wtop} \\ &$\bar t$ & \verb|tbar| & \ttt{T} & \ttt{mtop} & \ttt{wtop} \\ \hline\hline Vector bosons &$g$ & \verb|gl| & \ttt{g}\quad\ttt{G}\quad\ttt{gluon} & & \\ \hline &$\gamma$ & \verb|A| & \ttt{gamma}\quad\ttt{photon} & & \\ \hline &$Z$ & \verb|Z| & & \ttt{mZ} & \ttt{wZ} \\ \hline &$W^+$ & \verb|W+| & \ttt{Wp} & \ttt{mW} & \ttt{wW} \\ &$W^-$ & \verb|W-| & \ttt{Wm} & \ttt{mW} & \ttt{wW} \\ \hline\hline Scalar bosons &$H$ & \verb|H| & \ttt{h}\quad \ttt{Higgs} & \ttt{mH} & \ttt{wH} \\ \hline \end{tabular} \end{center} \caption{\label{tab:SM-particles} Names that can be used for SM particles. Also shown are the intrinsic variables that can be used to set mass and width, if applicable.} \end{table} Where no mass or width parameters are listed in the table, the particle is assumed to be massless or stable, respectively. This is obvious for particles such as the photon. For neutrinos, the mass is meaningless to particle physics collider experiments, so it is zero. For quarks, the $u$ or $d$ quark mass is unobservable directly, so we also set it zero. For the heavier quarks, the mass may play a role, so it is kept. (The $s$ quark is borderline; one may argue that its mass is also unobservable directly.) On the other hand, the electron mass is relevant, e.g., in photon radiation without cuts, so it is not zero by default. It pays off to set particle masses to zero, if the approximation is justified, since fewer helicity states will contribute to the matrix element. Switching off one of the helicity states of an external fermion speeds up the calculation by a factor of two. Therefore, script files will usually contain the assignments \begin{quote} \begin{footnotesize} \begin{verbatim} me = 0 mmu = 0 ms = 0 mc = 0 \end{verbatim} \end{footnotesize} \end{quote} unless they deal with processes where this simplification is phenomenologically unacceptable. Often $m_\tau$ and $m_b$ can also be neglected, but this excludes processes where the Higgs couplings of $\tau$ or $b$ are relevant. Setting fermion masses to zero enables, furthermore, the possibility to define multi-flavor aliases \begin{quote} \begin{footnotesize} \begin{verbatim} alias q = d:u:s:c alias Q = D:U:S:C \end{verbatim} \end{footnotesize} \end{quote} and handle processes such as \begin{quote} \begin{footnotesize} \begin{verbatim} process two_jets_at_ilc = e1, E1 => q, Q process w_pairs_at_lhc = q, Q => Wp, Wm \end{verbatim} \end{footnotesize} \end{quote} where a sum over all allowed flavor combination is automatically included. For technical reasons, such flavor sums are possible only for massless particles (or more general for mass-degenerate particles). If you want to generate inclusive processes with sums over particles of different masses (e.g. summing over $W/Z$ in the final state etc.), confer below the section about process components, Sec.~\ref{sec:processcomp}. Assignments of masses, widths and other parameters are actually in effect when a process is integrated, not when it is defined. So, these assignments may come before or after the process definition, with no significant difference. However, since flavor summation requires masses to be zero, the assignments may be put before the alias definition which is used in the process. The muon, tau, and the heavier quarks are actually unstable. However, the width is set to zero because their decay is a macroscopic effect and, except for the muon, affected by hadron physics, so it is not described by \whizard. (In the current \whizard\ setup, all decays occur at the production vertex. A future version may describe hadronic physics and/or macroscopic particle propagation, and this restriction may be eventually removed.) \subsection{Options for processes} \label{sec:process options} The \ttt{process} definition may contain an optional argument: \begin{quote} \begin{footnotesize} \ttt{process \textit{process-id} = \textit{incoming-particles}} \verb|=>| \ttt{\textit{outgoing-particles}} \ttt{\{\textit{options\ldots}\}} \end{footnotesize} \end{quote} The \textit{options} are a \sindarin\ script that is executed in a context local to the \ttt{process} command. The assignments it contains apply only to the process that is defined. In the following, we describe the set of potentially useful options (which all can be also set globally): \subsubsection{Model reassignment} It is possible to locally reassign the model via a \ttt{model =} statment, permitting the definition of process using a model other than the globally selected model. The process will retain this association during integration and event generation. \subsubsection{Restrictions on matrix elements} \label{subsec:restrictions} Another useful option is the setting \begin{quote} \begin{footnotesize} \verb|$restrictions =| \ttt{\textit{string}} \end{footnotesize} \end{quote} This option allows to select particular classes of Feynman graphs for the process when using the \oMega\ matrix element generator. The \verb|$restrictions| string specifies e.g. propagators that the graph must contain. Here is an example: \begin{code} process zh_invis = e1, E1 => n1:n2:n3, N1:N2:N3, H { $restrictions = "1+2 ~ Z" } \end{code} The complete process $e^-e^+ \to \nu\bar\nu H$, summed over all neutrino generations, contains both $ZH$ pair production (Higgs-strahlung) and $W^+W^-\to H$ fusion. The restrictions string selects the Higgs-strahlung graph where the initial electrons combine to a $Z$ boson. Here, the particles in the process are consecutively numbered, starting with the initial particles. An alternative for the same selection would be \verb|$restrictions = "3+4 ~ Z"|. Restrictions can be combined using \verb|&&|, for instance \begin{code} $restrictions = "1+2 ~ Z && 3 + 4 ~ Z" \end{code} which is redundant here, however. The restriction keeps the full energy dependence in the intermediate propagator, so the Breit-Wigner shape can be observed in distributions. This breaks gauge invariance, in particular if the intermediate state is off shell, so you should use the feature only if you know the implications. For more details, cf. the Chap.~\ref{chap:hardint} and the \oMega\ manual. Other restrictions that can be combined with the restrictions above on intermediate propagators allow to exclude certain particles from intermediate propagators, or to exclude certain vertices from the matrix elements. For example, \begin{code} process eemm = e1, E1 => e2, E2 { $restrictions = "!A" } \end{code} would exclude all photon propagators from the matrix element and leaves only the $Z$ exchange here. In the same way, \verb|$restrictions = "!gl"| would exclude all gluon exchange. This exclusion of internal propagators works also for lists of particles, like \begin{code} $restrictions = "!Z:H" \end{code} excludes all $Z$ and $H$ propagators from the matrix elements. Besides excluding certain particles as internal lines, it is also possible to exclude certain vertices using the restriction command \begin{code} process eeww = e1, E1 => Wp, Wm { $restrictions = "^[W+,W-,Z]" } \end{code} This would generate the matrix element for the production of two $W$ bosons at LEP without the non-Abelian vertex $W^+W^-Z$. Again, these restrictions are able to work on lists, so \begin{code} $restrictions = "^[W+,W-,A:Z]" \end{code} would exclude all triple gauge boson vertices from the above process and leave only the $t$-channel neutrino exchange. It is also possible to exlude vertices by their coupling constants, e.g. the photon exchange in the process $e^+ e^- \to \mu^+ \mu^-$ can also be removed by the following restriction: \begin{code} $restrictions = "^qlep" \end{code} Here, \ttt{qlep} is the \fortran\ variable for the coupling constant of the electron-positron-photon vertex. \begin{table} \begin{center} \begin{tabular}{|l|l|} \hline \verb|3+4~Z| & external particles 3 and 4 must come from intermediate $Z$ \\\hline \verb| && | & logical ``and'', e.g. in \verb| 3+5~t && 4+6~tbar| \\\hline \verb| !A | & exclude all $\gamma$ propagators \\\hline \verb| !e+:nue | & exclude a list of propagators, here $\gamma$, $\nu_e$ \\\hline \verb|^qlep:gnclep| & exclude all vertices with \ttt{qlep},\ttt{gnclep} coupling constants \\\hline \verb|^[A:Z,W+,W-]| & exclude all vertices $W^+W^-Z$, $W^+W^-\gamma$ \\\hline \verb|^c1:c2:c3[H,H,H]| & exclude all triple Higgs couplings with $c_i$ constants \\\hline \end{tabular} \end{center} \caption{List of possible restrictions that can be applied to \oMega\ matrix elements.} \label{tab:restrictions} \end{table} The Tab.~\ref{tab:restrictions} gives a list of options that can be applied to the \oMega\ matrix elements. \subsubsection{Other options} There are some further options that the \oMega\ matrix-element generator can take. If desired, any string of options that is contained in this variable \begin{quote} \begin{footnotesize} \verb|$omega_flags =| \ttt{\textit{string}} \end{footnotesize} \end{quote} will be copied verbatim to the \oMega\ call, after all other options. One important application is the scheme of treating the width of unstable particles in the $t$-channel. This is modified by the \verb|model:| class of \oMega\ options. It is well known that for some processes, e.g., single $W$ production from photon-$W$ fusion, gauge invariance puts constraints on the treatment of the unstable-particle width. By default, \oMega\ puts a nonzero width in the $s$ channel only. This correctly represents the resummed Dyson series for the propagator, but it violates QED gauge invariance, although the effect is only visible if the cuts permit the photon to be almost on-shell. An alternative is \begin{quote} \begin{footnotesize} \verb|$omega_flags = "-model:fudged_width"| \end{footnotesize}, \end{quote} which puts zero width in the matrix element, so that gauge cancellations hold, and reinstates the $s$-channel width in the appropriate places by an overall factor that multiplies the whole matrix element. Note that the fudged width option only applies to charged unstable particles, such as the $W$ boson or top quark. Another possibility is \begin{quote} \begin{footnotesize} \verb|$omega_flags = "-model:constant_width"| \end{footnotesize}, \end{quote} which puts the width both in the $s$- and in the $t$-channel like diagrams. A third option is provided by the running width scheme \begin{quote} \begin{footnotesize} \verb|$omega_flags = "-model:running_width"| \end{footnotesize}, \end{quote} which applies the width only for $s$-channel like diagrams and multiplies it by a factor of $p^2 / M^2$. The additional $p^2$-dependent factor mimicks the momentum dependence of the imaginary part of a vacuum polarization for a particle decaying into massles decay products. It is noted that none of the above options preserves gauge invariance. For a gauge preserving approach (at least at tree level), \oMega\ provides the complex-mass scheme \begin{quote} \begin{footnotesize} \verb|$omega_flags = "-model:cms_width| \end{footnotesize}. \end{quote} However, in this case, one also has to modify the model in usage. For example, the parameter setting for the Standard Model can be changed by, \begin{quote} \begin{footnotesize} \verb|model = SM (Complex_Mass_Scheme)| \end{footnotesize}. \end{quote} \subsubsection{Multithreaded calculation of helicity sums via OpenMP} \label{sec:openmp} On multicore and / or multiprocessor systems, it is possible to speed up the calculation by using multiple threads to perform the helicity sum in the matrix element calculation. As the processing time used by \whizard\ is not used up solely in the matrix element, the speedup thus achieved varies greatly depending on the process under consideration; while simple processes without flavor sums do not profit significantly from this parallelization, the computation time for processes involving flavor sums with four or more particles in the final state is typically reduced by a factor between two and three when utilizing four parallel threads. The parallization is implemented using \ttt{OpenMP} and requires \whizard\ to be compiled with an \ttt{OpenMP} aware compiler and the appropiate compiler flags This is done in the configuration step, cf.\ Sec.~\ref{sec:installation}. As with all \ttt{OpenMP} programs, the default number of threads used at runtime is up to the compiler runtime support and typically set to the number of independent hardware threads (cores / processors / hyperthreads) available in the system. This default can be adjusted by setting the \ttt{OMP\_NUM\_THREADS} environment variable prior to calling WHIZARD. Alternatively, the available number of threads can be reset anytime by the \sindarin\ parameter \ttt{openmp\_num\_threads}. Note however that the total number of threads that can be sensibly used is limited by the number of nonvanishing helicity combinations. %%%%%%%%%%%%%%% \subsection{Process components} \label{sec:processcomp} It was mentioned above that processes with flavor sums (in the initial or final state or both) have to be mass-degenerate (in most cases massless) in all particles that are summed over at a certain position. This condition is necessary in order to use the same phase-space parameterization and integration for the flavor-summed process. However, in many applications the user wants to handle inclusive process definitions, e.g. by defining inclusive decays, inclusive SUSY samples at hadron colliders (gluino pairs, squark pairs, gluino-squark associated production), or maybe lepton-inclusive samples where the tau and muon mass should be kept at different values. In \whizard\, from version v2.2.0 on, there is the possibility to define such inclusive process containers. The infrastructure for this feature is realized via so-called process components: processes are allowed to contain several process components. Those components need not be provided by the same matrix element generator, e.g. internal matrix elements, \oMega\ matrix elements, external matrix element (e.g. from a one-loop program, OLP) can be mixed. The very same infrastructure can also be used for next-to-leading order (NLO) calculations, containing the born with real emission, possible subtraction terms to make the several components infrared- and collinear finite, as well as the virtual corrections. Here, we want to discuss the use for inclusive particle samples. There are several options, the simplest of which to add up different final states by just using the \ttt{+} operator in \sindarin, e.g.: \begin{quote} \begin{footnotesize} \begin{verbatim} process multi_comp = e1, E1 => (e2, E2) + (e3, E3) + (A, A) \end{verbatim} \end{footnotesize} \end{quote} The brackets are not only used for a better grouping of the expressions, they are not mandatory for \whizard\ to interpret the sum correctly. When integrating, \whizard\ tells you that this a process with three different components: \begin{footnotesize} \begin{Verbatim} | Initializing integration for process multi_comp_1_p1: | ------------------------------------------------------------------------ | Process [scattering]: 'multi_comp' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'multi_comp_i1': e-, e+ => m-, m+ [omega] | 2: 'multi_comp_i2': e-, e+ => t-, t+ [omega] | 3: 'multi_comp_i3': e-, e+ => A, A [omega] | ------------------------------------------------------------------------ \end{Verbatim} \end{footnotesize} A different phase-space setup is used for each different component. The integration for each different component is performed separately, and displayed on screen. At the end, a sum of all components is shown. All files that depend on the components are being attached an \ttt{\_i{\em }} where \ttt{{\em }} is the number of the process component that appears in the list above: the \fortran\ code for the matrix element, the \ttt{.phs} file for the phase space parameterization, and the grid files for the \vamp\ Monte-Carlo integration (or any other integration method). However, there will be only one event file for the inclusive process, into which a mixture of events according to the size of the individual process component cross section enter. More options are to specify additive lists of particles. \whizard\ then expands the final states according to tensor product algebra: \begin{quote} \begin{footnotesize} \begin{verbatim} process multi_tensor = e1, E1 => e2 + e3 + A, E2 + E3 + A \end{verbatim} \end{footnotesize} \end{quote} This gives the same three process components as above, but \whizard\ recognized that e.g. $e^- e^+ \to \mu^- \gamma$ is a vanishing process, hence the numbering is different: \begin{footnotesize} \begin{Verbatim} | Process component 'multi_tensor_i2': matrix element vanishes | Process component 'multi_tensor_i3': matrix element vanishes | Process component 'multi_tensor_i4': matrix element vanishes | Process component 'multi_tensor_i6': matrix element vanishes | Process component 'multi_tensor_i7': matrix element vanishes | Process component 'multi_tensor_i8': matrix element vanishes | ------------------------------------------------------------------------ | Process [scattering]: 'multi_tensor' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'multi_tensor_i1': e-, e+ => m-, m+ [omega] | 5: 'multi_tensor_i5': e-, e+ => t-, t+ [omega] | 9: 'multi_tensor_i9': e-, e+ => A, A [omega] | ------------------------------------------------------------------------ \end{Verbatim} \end{footnotesize} Identical copies of the same process that would be created by expanding the tensor product of final states are eliminated and appear only once in the final sum of process components. Naturally, inclusive process definitions are also available for decays: \begin{quote} \begin{footnotesize} \begin{Verbatim} process multi_dec = Wp => E2 + E3, n2 + n3 \end{Verbatim} \end{footnotesize} \end{quote} This yields: \begin{footnotesize} \begin{Verbatim} | Process component 'multi_dec_i2': matrix element vanishes | Process component 'multi_dec_i3': matrix element vanishes | ------------------------------------------------------------------------ | Process [decay]: 'multi_dec' | Library name = 'default_lib' | Process index = 2 | Process components: | 1: 'multi_dec_i1': W+ => mu+, numu [omega] | 4: 'multi_dec_i4': W+ => tau+, nutau [omega] | ------------------------------------------------------------------------ \end{Verbatim} \end{footnotesize} %%%%%%%%%%%%%%% \subsection{Compilation} \label{sec:compilation} Once processes have been set up, to make them available for integration they have to be compiled. More precisely, the matrix-element generator \oMega\ (and it works similarly if a different matrix element method is chosen) is called to generate matrix element code, the compiler is called to transform this \fortran\ code into object files, and the linker is called to collect this in a dynamically loadable library. Finally, this library is linked to the program. From version v2.2.0 of \whizard\ this is no longer done by system calls of the OS but steered via process library Makefiles. Hence, the user can execute and manipulate those Makefiles in order to manually intervene in the particular steps, if he/she wants to do so. All this is done automatically when an \ttt{integrate}, \ttt{unstable}, or \ttt{simulate} command is encountered for the first time. You may also force compilation explicitly by the command \begin{quote} \begin{footnotesize} \begin{verbatim} compile \end{verbatim} \end{footnotesize} \end{quote} which performs all steps as listed above, including loading the generated library. The \fortran\ part of the compilation will be done using the \fortran\ compiler specified by the string variable \verb|$fc| and the compiler flags specified as \verb|$fcflags|. The default settings are those that have been used for compiling \whizard\ itself during installation. For library compatibility, you should stick to the compiler. The flags may be set differently. They are applied in the compilation and loading steps, and they are processed by \ttt{libtool}, so \ttt{libtool}-specific flags can also be given. \whizard\ has some precautions against unnecessary repetitions. Hence, when a \ttt{compile} command is executed (explicitly, or implicitly by the first integration), the program checks first whether the library is already loaded, and whether source code already exists for the requested processes. If yes, this code is used and no calls to \oMega\ (or another matrix element method) or to the compiler are issued. Otherwise, it will detect any modification to the process configuration and regenerate the matrix element or recompile accordingly. Thus, a \sindarin\ script can be executed repeatedly without rebuilding everything from scratch, and you can safely add more processes to a script in a subsequent run without having to worry about the processes that have already been treated. This default behavior can be changed. By setting \begin{quote} \begin{footnotesize} \begin{verbatim} ?rebuild_library = true \end{verbatim} \end{footnotesize} \end{quote} code will be re-generated and re-compiled even if \whizard\ would think that this is unncessary. The same effect is achieved by calling \whizard\ with a command-line switch, \begin{quote} \begin{footnotesize} \begin{verbatim} /home/user$ whizard --rebuild_library \end{verbatim} \end{footnotesize} \end{quote} There are further \ttt{rebuild} switches which are described below. If everything is to be rebuilt, you can set a master switch \ttt{?rebuild} or the command line option \verb|--rebuild|. The latter can be abbreviated as a short command-line option: \begin{quote} \begin{footnotesize} \begin{verbatim} /home/user$ whizard -r \end{verbatim} \end{footnotesize} \end{quote} Setting this switch is always a good idea when starting a new project, just in case some old files clutter the working directory. When re-running the same script, possibly modified, the \verb|-r| switch should be omitted, so the existing files can be reused. \subsection{Process libraries} Processes are collected in \emph{libraries}. A script may use more than one library, although for most applications a single library will probably be sufficient. The default library is \ttt{default\_lib}. If you do not specify anything else, the processes you compile will be collected by a driver file \ttt{default\_lib.f90} which is compiled together with the process code and combined as a libtool archive \ttt{default\_lib.la}, which is dynamically linked to the running \whizard\ process. Once in a while, you work on several projects at once, and you didn't care about opening a new working directory for each. If the \verb|-r| option is given, a new run will erase the existing library, which may contain processes needed for the other project. You could omit \verb|-r|, so all processes will be collected in the same library (this does not hurt), but you may wish to cleanly separate the projects. In that case, you should open a separate library for each project. Again, there are two possibilities. You may start the script with the specification \begin{quote} \begin{footnotesize} \begin{verbatim} library = "my_lhc_proc" \end{verbatim} \end{footnotesize} \end{quote} to open a library \verb|my_lhc_proc| in place of the default library. Repeating the command with different arguments, you may introduce several libraries in the script. The active library is always the one specified last. It is possible to issue this command locally, so a particular process goes into its own library. Alternatively, you may call \whizard\ with the option \begin{quote} \begin{footnotesize} \begin{verbatim} /home/user$ whizard --library=my_lhc_proc \end{verbatim} \end{footnotesize} \end{quote} If several libraries are open simultaneously, the \ttt{compile} command will compile all libraries that the script has referenced so far. If this is not intended, you may give the command an argument, \begin{quote} \begin{footnotesize} \begin{verbatim} compile ("my_lhc_proc", "my_other_proc") \end{verbatim} \end{footnotesize} \end{quote} to compile only a specific subset. The command \begin{quote} \begin{footnotesize} \begin{verbatim} show (library) \end{verbatim} \end{footnotesize} \end{quote} will display the contents of the actually loaded library together with a status code which indicates the status of the library and the processes within. %%%%%%%%%%%%%%% \subsection{Stand-alone \whizard\ with precompiled processes} \label{sec:static} Once you have set up a process library, it is straightforward to make a special stand-alone \whizard\ executable which will have this library preloaded on startup. This is a matter of convenience, and it is also useful if you need a statically linked executable for reasons of profiling, batch processing, etc. For this task, there is a variant of the \ttt{compile} command: \begin{quote} \begin{footnotesize} \begin{verbatim} compile as "my_whizard" () \end{verbatim} \end{footnotesize} \end{quote} which produces an executable \verb|my_whizard|. You can omit the library argument if you simply want to include everything. (Note that this command will \emph{not} load a library into the current process, it is intended for creating a separate program that will be started independently.) As an example, the script \begin{quote} \begin{footnotesize} \begin{verbatim} process proc1 = e1, E1 => e1, E1 process proc2 = e1, E1 => e2, E2 process proc3 = e1, E1 => e3, E3 compile as "whizard-leptons" () \end{verbatim} \end{footnotesize} \end{quote} will make a new executable program \verb|whizard-leptons|. This program behaves completely identical to vanilla \whizard, except for the fact that the processes \ttt{proc1}, \ttt{proc2}, and \ttt{proc3} are available without configuring them or loading any library. % This feature is particularly useful when compiling with the \ttt{-static} % flag. As long as the architecture is compatible, the resulting binary may be % run on a different computer where no \whizard\ libraries are present. (The % program will still need to find its model files, however.) \section{Beams} \label{sec:beams} Before processes can be integrated and simulated, the program has to know about the collider properties. They can be specified by the \ttt{beams} statement. In the command script, it is irrelevant whether a \ttt{beams} statement comes before or after process specification. The \ttt{integrate} or \ttt{simulate} commands will use the \ttt{beams} statement that was issued last. \subsection{Beam setup} \label{sec:beam-setup} If the beams have no special properties, and the colliding particles are the incoming particles in the process themselves, there is no need for a \ttt{beams} statement at all. You only \emph{must} specify the center-of-momentum energy of the collider by setting the value of $\sqrt{s}$, for instance \begin{quote} \begin{footnotesize} \begin{verbatim} sqrts = 14 TeV \end{verbatim} \end{footnotesize} \end{quote} The \ttt{beams} statement comes into play if \begin{itemize} \item the beams have nontrivial structure, e.g., parton structure in hadron collision or photon radiation in lepton collision, or \item the beams have non-standard properties: polarization, asymmetry, crossing angle. \end{itemize} Note that some of the abovementioned beam properties had not yet been reimplemented in the \whizard\ttt{2} release series. From version v2.2.0 on all options of the legacy series \whizard\ttt{1} are available again. From version v2.1 to version v2.2 of \whizard\ there has also been a change in possible options to the \ttt{beams} statement: in the early versions of \whizard\ttt{2} (v2.0/v2.1), local options could be specified within the beam settings, e.g. \ttt{beams = p, p { sqrts = 14 TeV } => pdf\_builtin}. These possibility has been abandoned from version v2.2 on, and the \ttt{beams} command does not allow for {\em any} optional arguments any more. Hence, beam parameters can -- with the exception of the specification of structure functions -- be specified only globally: \begin{quote} \begin{footnotesize} \begin{verbatim} sqrts = 14 TeV beams = p, p => lhapdf \end{verbatim} \end{footnotesize} \end{quote} It does not make any difference whether the value of \ttt{sqrts} is set before or after the \ttt{beams} statement, the last value found before an \ttt{integrate} or \ttt{simulate} is the relevant one. This in particularly allows to specify the beam structure, and then after that perform a loop or scan over beam energies, beam parameters, or structure function settings. The \ttt{beams} statement also applies to particle decay processes, where there is only a single beam. Here, it is usually redundant because no structure functions are possible, and the energy is fixed to the decaying particle's mass. However, it is needed for computing polarized decay, e.g. \begin{quote} \begin{footnotesize} \begin{verbatim} beams = Z beams_pol_density = @(0) \end{verbatim} \end{footnotesize} \end{quote} where for a boson at rest, the polarization axis is defined to be the $z$ axis. Beam polarization is described in detail below in Sec.~\ref{sec:polarization}. Note also that future versions of \whizard\ might give support for single-beam events, where structure functions for single particles indeed do make sense. In the following sections we list the available options for structure functions or spectra inside \whizard\ and explain their usage. More about the physics of the implemented structure functions can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Asymmetric beams and Crossing angles} \label{sec:asymmetricbeams} \whizard\ not only allows symmetric beam collisions, but basically arbitrary collider setups. In the case there are two different beam energies, the command \begin{quote} \begin{footnotesize} \ttt{beams\_momentum = {\em }, {\em }} \end{footnotesize} \end{quote} allows to specify the momentum (or as well energies for massless particles) for the beams. Note that for scattering processes both values for the beams must be present. So the following to setups for 14 TeV LHC proton-proton collisions are equivalent: \begin{quote} \begin{footnotesize} \ttt{beams = p, p => pdf\_builtin} \newline \ttt{sqrts = 14 TeV} \end{footnotesize} \end{quote} and \begin{quote} \begin{footnotesize} \ttt{beams = p, p => pdf\_builtin} \newline \ttt{beams\_momentum = 7 TeV, 7 TeV} \end{footnotesize} \end{quote} Asymmetric setups can be set by using different values for the two beam momenta, e.g. in a HERA setup: \begin{quote} \begin{footnotesize} \ttt{beams = e, p => none, pdf\_builtin} \ttt{beams\_momentum = 27.5 GeV, 920 GeV} \end{footnotesize} \end{quote} or for the BELLE experiment at the KEKB accelerator: \begin{quote} \begin{footnotesize} \ttt{beams = e1, E1} \ttt{beams\_momentum = 8 GeV, 3.5 GeV} \end{footnotesize} \end{quote} \whizard\ lets you know about the beam structure and calculates for you that the center of mass energy corresponds to 10.58 GeV: \begin{quote} \begin{footnotesize} \begin{Verbatim} | Beam structure: e-, e+ | momentum = 8.000000000000E+00, 3.500000000000E+00 | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 1.058300530253E+01 GeV | Beam structure: lab and c.m. frame differ \end{Verbatim} \end{footnotesize} \end{quote} It is also possible to specify beams for decaying particles, where \ttt{beams\_momentum} then only has a single argument, e.g.: \begin{quote} \begin{footnotesize} \ttt{process zee = Z => "e-", "e+"} \\ \ttt{beams = Z} \\ \ttt{beams\_momentum = 500 GeV} \\ \ttt{simulate (zee) \{ n\_events = 100 \} } \end{footnotesize} \end{quote} This would correspond to a beam of $Z$ bosons with a momentum of 500 GeV. Note, however, that \whizard\ will always do the integration of the particle width in the particle's rest frame, while the moving beam is then only taken into account for the frame of reference for the simulation. Further options then simply having different beam energies describe a non-vanishing between the two incoming beams. Such concepts are quite common e.g. for linear colliders to improve the beam properties in the collimation region at the beam interaction points. Such crossing angles can be specified in the beam setup, too, using the \ttt{beams\_theta} command: \begin{quote} \begin{footnotesize} \ttt{beams = e1, E1} \\ \ttt{beams\_momentum = 500 GeV, 500 GeV} \\ \ttt{beams\_theta = 0, 10 degree} \end{footnotesize} \end{quote} It is important that when a crossing angle is being specified, and the collision system consequently never is the center-of-momentum system, the beam momenta have to explicitly set. Besides a planar crossing angle, one is even able to rotate an azimuthal distance: \begin{quote} \begin{footnotesize} \ttt{beams = e1, E1} \\ \ttt{beams\_momentum = 500 GeV, 500 GeV} \\ \ttt{beams\_theta = 0, 10 degree} \\ \ttt{beams\_phi = 0, 45 degree} \end{footnotesize} \end{quote} %%%%%%%%%%%%%%% \subsection{LHAPDF} \label{sec:lhapdf} For incoming hadron beams, the \ttt{beams} statement specifies which structure functions are used. The simplest example is the study of parton-parton scattering processes at a hadron-hadron collider such as LHC or Tevatron. The \lhapdf\ structure function set is selected by a syntax similar to the process setup, namely the example already shown above: \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => lhapdf \end{verbatim} \end{footnotesize} \end{quote} Note that there are slight differences in using the \lhapdf\ release series 6 and the older \fortran\ \lhapdf\ release series 5, at least concerning the naming conventions for the PDF sets~\footnote{Until \whizard\ version 2.2.1 including, only the \lhapdf\ series 5 was supported, while from version 2.2.2 on also the \lhapdf\ release series 6 has been supported.}. The above \ttt{beams} statement selects a default \lhapdf\ structure-function set for both proton beams (which is the \ttt{CT10} central set for \lhapdf\ 6, and \ttt{cteq6ll.LHpdf} central set for \lhapdf 5). The structure function will apply for all quarks, antiquarks, and the gluon as far as supported by the particular \lhapdf\ set. Choosing a different set is done by adding the filename as a local option to the \ttt{lhapdf} keyword: \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => lhapdf $lhapdf_file = "MSTW2008lo68cl" \end{verbatim} \end{footnotesize} \end{quote} for the actual \lhapdf\ 6 series, and \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => lhapdf $lhapdf_file = "MSTW2008lo68cl.LHgrid" \end{verbatim} \end{footnotesize} \end{quote} for \lhapdf 5.Similarly, a member within the set is selected by the numeric variable \verb|lhapdf_member| (for both release series of \lhapdf). In some cases, different structure functions have to be chosen for the two beams. For instance, we may look at $ep$ collisions: \begin{quote} \begin{footnotesize} \begin{verbatim} beams = "e-", p => none, lhapdf \end{verbatim} \end{footnotesize} \end{quote} Here, there is a list of two independent structure functions (each with its own option set, if applicable) which applies to the two beams. Another mixed case is $p\gamma$ collisions, where the photon is to be resolved as a hadron. The simple assignment \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, gamma => lhapdf, lhapdf_photon \end{verbatim} \end{footnotesize} \end{quote} will be understood as follows: \whizard\ selects the appropriate default structure functions (here we are using \lhapdf\ 5 as an example as the support of photon and pion PDFs in \lhapdf\ 6 has been dropped), \ttt{cteq6ll.LHpdf} for the proton and \ttt{GSG960.LHgrid} for the photon. The photon case has an additional integer-valued parameter \verb|lhapdf_photon_scheme|. (There are also pion structure functions available.) For modifying the default, you have to specify separate structure functions \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, gamma => lhapdf, lhapdf_photon $lhapdf_file = ... $lhapdf_photon_file = ... \end{verbatim} \end{footnotesize} \end{quote} Finally, the scattering of elementary photons on partons is described by \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, gamma => lhapdf, none \end{verbatim} \end{footnotesize} \end{quote} Note that for \lhapdf\ version 5.7.1 or higher and for PDF sets which support it, photons can be used as partons. There is one more option for the \lhapdf\ PDFs, namely to specify the path where the \lhapdf\ PDF sets reside: this is done with the string variable \ttt{\$lhapdf\_dir = "{\em }"}. Usually, it is not necessary to set this because \whizard\ detects this path via the \ttt{lhapdf-config} script during configuration, but in the case paths have been moved, or special files/special locations are to be used, the user can specify this location explicitly. %%%%%%%%%%%%%%% \subsection{Built-in PDFs} \label{sec:built-in-pdf} In addition to the possibility of linking against \lhapdf, \whizard\ comes with a couple of built-in PDFs which are selected via the \verb?pdf_builtin? keyword % \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => pdf_builtin \end{verbatim} \end{footnotesize} \end{quote} % The default PDF set is CTEQ6L, but other choices are also available by setting the string variable \verb?$pdf_builtin_set? to an appropiate value. E.g, modifying the above setup to % \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => pdf_builtin $pdf_builtin_set = "mrst2004qedp" \end{verbatim} \end{footnotesize} \end{quote} % would select the proton PDF from the MRST2004QED set. A list of all currently available PDFs can be found in Table~\ref{tab:pdfs}. % \begin{table} \centerline{\begin{tabular}{|l||l|p{0.2\textwidth}|l|} \hline Tag & Name & Notes & References \\\hline\hline % \ttt{cteq6l} & CTEQ6L & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \ttt{cteq6l1} & CTEQ6L1 & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \ttt{cteq6d} & CTEQ6D & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \ttt{cteq6m} & CTEQ6M & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \hline \ttt{mrst2004qedp} & MRST2004QED (proton) & includes photon & \cite{Martin:2004dh} \\\hline \hline \ttt{mrst2004qedn} & MRST2004QED (neutron) & includes photon & \cite{Martin:2004dh} \\\hline \hline \ttt{mstw2008lo} & MSTW2008LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Martin:2009iq} \\\hline \ttt{mstw2008nlo} & MSTW2008NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Martin:2009iq} \\\hline \ttt{mstw2008nnlo} & MSTW2008NNLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Martin:2009iq} \\\hline \hline \ttt{ct10} & CT10 & \mbox{}\hfill---\hfill\mbox{} & \cite{Lai:2010vv} \\\hline \hline \ttt{CJ12\_max} & CJ12\_max & \mbox{}\hfill---\hfill\mbox{} & \cite{Owens:2012bv} \\\hline \ttt{CJ12\_mid} & CJ12\_mid & \mbox{}\hfill---\hfill\mbox{} & \cite{Owens:2012bv} \\\hline \ttt{CJ12\_min} & CJ12\_min & \mbox{}\hfill---\hfill\mbox{} & \cite{Owens:2012bv} \\\hline \hline \ttt{CJ15LO} & CJ15LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Accardi:2016qay} \\\hline \ttt{CJ15NLO} & CJ15NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Accardi:2016qay} \\\hline \hline \ttt{mmht2014lo} & MMHT2014LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Harland-Lang:2014zoa} \\\hline \ttt{mmht2014nlo} & MMHT2014NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Harland-Lang:2014zoa} \\\hline \ttt{mmht2014nnlo} & MMHT2014NNLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Harland-Lang:2014zoa} \\\hline \hline \ttt{CT14LL} & CT14LLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \ttt{CT14L} & CT14LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \ttt{CT14N} & CT1414NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \ttt{CT14NN} & CT14NNLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \hline % \end{tabular}} \caption{All PDF sets available as builtin sets. The two MRST2004QED sets also contain a photon.} \label{tab:pdfs} \end{table} The two MRST2004QED sets also contain the photon as a parton, which can be used in the same way as for \lhapdf\ from v5.7.1 on. Note, however, that there is no builtin PDF that contains a photon structure function. There is a \ttt{beams} structure function specifier \ttt{pdf\_builtin\_photon}, but at the moment this throws an error. It just has been implemented for the case that in future versions of \whizard\ a photon structure function might be included. Note that in general only the data sets for the central values of the different PDFs ship with \whizard. Using the error sets is possible, i.e. it is supported in the syntax of the code, but you have to download the corresponding data sets from the web pages of the PDF fitting collaborations. %%%%%%%%%%%%%%% \subsection{HOPPET $b$ parton matching} When the \hoppet\ tool~\cite{Salam:2008qg} for hadron-collider PDF structure functions and their manipulations are correctly linked to \whizard, it can be used for advanced calculations and simulations of hadron collider physics. Its main usage inside \whizard\ is for matching schemes between 4-flavor and 5-flavor schemes in $b$-parton initiated processes at hadron colliders. Note that in versions 2.2.0 and 2.2.1 it only worked together with \lhapdf\ version 5, while with the \lhapdf\ version 6 interface from version 2.2.2 on it can be used also with the modern version of PDFs from \lhapdf. Furthermore, from version 2.2.2, the \hoppet\ $b$ parton matching also works for the builtin PDFs. It depends on the corresponding process and the energy scales involved whether it is a better description to use the $g\to b\bar b$ splitting from the DGLAP evolution inside the PDF and just take the $b$ parton content of a PDF, e.g. in BSM Higgs production for large $\tan\beta$: $pp \to H$ with a partonic subprocess $b\bar b \to H$, or directly take the gluon PDFs and use $pp \to b\bar b H$ with a partonic subprocess $gg \to b \bar b H$. Elaborate schemes for a proper matching between the two prescriptions have been developed and have been incorporated into the \hoppet\ interface. Another prime example for using these matching schemes is single top production at hadron colliders. Let us consider the following setup: \begin{quote} \begin{footnotesize} \begin{Verbatim} process proc1 = b, u => t, d process proc2 = u, b => t, d process proc3 = g, u => t, d, B { $restrictions = "2+4 ~ W+" } process proc4 = u, g => t, d, B { $restrictions = "1+4 ~ W+" } beams = p,p => pdf_builtin sqrts = 14 TeV ?hoppet_b_matching = true $sample = "single_top_matched" luminosity = 1 / 1 fbarn simulate (proc1, proc2, proc3, proc4) \end{Verbatim} \end{footnotesize}%$ \end{quote} The first two processes are single top production from $b$ PDFs, the last two processes contain an explicit $g\to b\bar b$ splitting (the restriction, cf. Sec.~\ref{sec:process options} has been placed in order to single out the single top production signal process). PDFs are then chosen from the default builtin PDF (which is \ttt{CTEQ6L}), and the \hoppet\ matching routines are switched on by the flag \ttt{?hoppet\_b\_matching}. %%%%%%%%%%%%%%% \subsection{Lepton Collider ISR structure functions} \label{sec:lepton_isr} Initial state QED radiation off leptons is an important feature at all kinds of lepton colliders: the radiative return to the $Z$ resonance by ISR radiation was in fact the largest higher-order effect for the SLC and LEP I colliders. The soft-collinear and soft photon radiation can indeed be resummed/exponentiated to all orders in perturbation theory~\cite{Gribov:1972rt}, while higher orders in hard-collinear photons have to be explicitly calculated order by order~\cite{Kuraev:1985hb,Skrzypek:1990qs}. \whizard\ has an intrinsic implementation of the lepton ISR structure function that includes all orders of soft and soft-collinear photons as well as up to the third order in hard-collinear photons. It can be switched on by the following statement: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => isr \end{Verbatim} \end{footnotesize} \end{quote} As the ISR structure function is a single-beam structure function, this expression is synonymous for \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => isr, isr \end{Verbatim} \end{footnotesize} \end{quote} The ISR structure function can again be applied to only one of the two beams, e.g. in a HERA-like setup: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, p => isr, pdf_builtin \end{Verbatim} \end{footnotesize} \end{quote} Their are several options for the lepton-collider ISR structure function that are summarized in the following: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{isr\_alpha} & \ttt{0}/intrinsic & value of $\alpha_{QED}$ for ISR \\\hline \ttt{isr\_order} & \ttt{3} & max. order of hard-collinear photon emission \\\hline \ttt{isr\_mass} & \ttt{0}/intrinsic & mass of the radiating lepton \\\hline \ttt{isr\_q\_max} & \ttt{0}/$\sqrt{s}$ & upper cutoff for ISR \\\hline \hline \ttt{?isr\_recoil} & \ttt{false} & flag to switch on recoil/$p_T$ (\emph{deprecated})\\\hline \ttt{?isr\_keep\_energy} & \ttt{false} & recoil flag: conserve energy in splitting (\emph{deprecated}) \\\hline \end{tabular}}\mbox{} The maximal order of the hard-collinear photon emission taken into account by \whizard\ is set by the integer variable \ttt{isr\_order}; the default is the maximally available order of three. With the variable \ttt{isr\_alpha}, the value of the QED coupling constant $\alpha_{QED}$ used in the ISR structure function can be set. The default is taken from the active physics model. The mass of the radiating lepton (in most cases the electron) is set by \ttt{isr\_mass}; again the default is taken from the active physics model. Furthermore, the upper integration border for the ISR structure function which acts roughly as an upper hardness cutoff for the emitted photons, can be set through \ttt{isr\_q\_max}; if not set, the collider energy (possibly after beamstrahlung, cf. Sec.~\ref{sec:beamstrahlung}) $\sqrt{s}$ (or $\sqrt{\widehat{s}}$) is taken. Note that \whizard\ accounts for the exclusive effects of ISR radiation at the moment by a single (hard, resolved) photon in the event; a more realistic treatment of exclusive ISR photons in simulation is foreseen for a future version. While the ISR structure function is evaluated in the collinear limit, it is possible to generate transverse momentum for both the radiated photons and the recoiling partonic system. We recommend to stick to the collinear approximation for the integration step. Integration cuts should be set up such that they do not significantly depend on photon transverse momentum. In a subsequent simulation step, it is possible to transform the events with collinear ISR radiation into more realistic events with non-collinear radiation. To this end, \whizard\ provides a separate ISR photon handler which can be activated in the simulation step. The algorithm operates on the partonic event: it takes the radiated photons and the partons entering the hard process, and applies a $p_T$ distribution to those particles and their interaction products, i.e., all outgoing particles. Cuts that depend on photon $p_T$ may be applied to the modified events. For details on the ISR photon handler, cf.\ Sec.~\ref{sec:isr-photon-handler}. {\footnotesize The flag \ttt{?isr\_recoil} switches on $p_T$ recoil of the emitting lepton against photon radiation during integration; per default it is off. The flag \ttt{?isr\_keep\_energy} controls the mode of on-shell projection for the splitting process with $p_T$. Note that this feature is kept for backwards compatibility, but should not be used for new simulations. The reason is as follows: For a fraction of events, $p_T$ will become significant, and (i) energy/momentum non-conservation, applied to both beams separately, can lead to unexpected and unphysical effects, and (ii) the modified momenta enter the hard process, so the collinear approximation used in the ISR structure function computation does not hold. } %%%%%%%%%%%%%%% \subsection{Lepton Collider Beamstrahlung} \label{sec:beamstrahlung} At linear lepton colliders, the macroscopic electromagnetic interaction of the bunches leads to a distortion of the spectrum of the bunches that is important for an exact simulation of the beam spectrum. There are several methods to account for these effects. The most important tool to simulate classical beam-beam interactions in lepton-collider physics is \ttt{GuineaPig++}~\cite{Schulte:1998au,Schulte:1999tx,Schulte:2007zz}. A direct interface between this tool \ttt{GuineaPig++} and \whizard\ had existed as an inofficial add-on to the legacy branch \whizard\ttt{1}, but is no longer applicable in \whizard\ttt{2}. A \whizard-internal interface is foreseen for the very near future, most probably within this v2.2 release. Other options are to use parameterizations of the beam spectrum that have been included in the package \circeone~\cite{CIRCE} which has been interfaced to \whizard\ since version v1.20 and been included in the \whizard\ttt{2} release series. Another option is to generate a beam spectrum externally and then read it in as an ASCII data file, cf. Sec.~\ref{sec:beamevents}. More about this can be found in a dedicated section on lepton collider spectra, Sec.~\ref{sec:beamspectra}. In this section, we discuss the usage of beamstrahlung spectra by means of the \circeone\ package. The beamstrahlung spectra are true spectra, so they have to be applied to pairs of beams, and an application to only one beam is meaningless. They are switched on by this \ttt{beams} statement including structure functions: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => circe1 \end{Verbatim} \end{footnotesize} \end{quote} It is important to note that the parameterization of the beamstrahlung spectra within \circeone\ contain also processes where $e\to\gamma$ conversions have been taking place, i.e. also hard processes with one (or two) initial photons can be simulated with beamstrahlung switched on. In that case, the explicit photon flags, \ttt{?circe1\_photon1} and \ttt{?circe1\_photon2}, for the two beams have to be properly set, e.g. (ordering in the final state does not play a role): \begin{quote} \begin{footnotesize} \begin{Verbatim} process proc1 = A, e1 => A, e1 sqrts = 500 GeV beams = e1, E1 => circe1 ?circe1_photon1 = true integrate (proc1) process proc2 = e1, A => A, e1 sqrts = 1000 GeV beams = e1, A => circe1 ?circe1_photon2 = true \end{Verbatim} \end{footnotesize} \end{quote} or \begin{quote} \begin{footnotesize} \begin{Verbatim} process proc1 = A, A => Wp, Wm sqrts = 200 GeV beams = e1, E1 => circe1 ?circe1_photon1 = true ?circe1_photon2 = true ?circe1_generate = false \end{Verbatim} \end{footnotesize} \end{quote} In all cases (one or both beams with photon conversion) the beam spectrum applies to both beams simultaneously. In the last example ($\gamma\gamma\to W^+W^-$) the default \circeone\ generator mode was turned off by unsetting \verb|?circe1_generate|. In the other examples this flag is set, by default. For standard use cases, \circeone\ implements a beam-event generator inside the \whizard\ generator, which provides beam-event samples with correctly distributed probability. For electrons, the beamstrahlung spectrum sharply peaks near maximum energy. This distribution is most efficiently handled by the generator mode. By contrast, in the $\gamma\gamma$ mode, the beam-event c.m.\ energy is concentrated at low values. For final states with low invariant mass, which are typically produced by beamstrahlung photons, the generator mode is appropriate. However, the $W^+W^-$ system requires substantial energy, and such events will be very rare in the beam-event sample. Switching off the \circeone\ generator mode solves this problem. This is an overview over all options and flags for the \circeone\ setup for lepton collider beamstrahlung: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{?circe1\_photon1} & \ttt{false} & $e\to\gamma$ conversion for beam 1 \\\hline \ttt{?circe1\_photon2} & \ttt{false} & $e\to\gamma$ conversion for beam 2 \\\hline \ttt{circe1\_sqrts} & $\sqrt{s}$ & collider energy for the beam spectrum \\\hline \ttt{?circe1\_generate} & \ttt{true} & flag for the \circeone\ generator mode \\\hline \ttt{?circe1\_map} & \ttt{true} & flag to apply special phase-space mapping \\\hline \ttt{circe1\_mapping\_slope} & \ttt{2.} & value of PS mapping exponent \\\hline \ttt{circe1\_eps} & \ttt{1E-5} & parameter for mapping of spectrum peak position \\\hline \ttt{circe1\_ver} & \ttt{0} & internal version of \circeone\ package \\\hline \ttt{circe1\_rev} & \ttt{0}/most recent & internal revision of \circeone\ \\\hline \ttt{\$circe1\_acc} & \ttt{SBAND} & accelerator type \\\hline \ttt{circe1\_chat} & \ttt{0} & chattiness/verbosity of \circeone \\\hline \end{tabular}}\mbox{} The collider energy relevant for the beamstrahlung spectrum is set by \ttt{circe1\_sqrts}. As a default, this is always the value of \ttt{sqrts} set in the \sindarin\ script. However, sometimes these values do not match, e.g. the user wants to simulate $t\bar t h$ at \ttt{sqrts = 550 GeV}, but the only available beam spectrum is for 500 GeV. In that case, \ttt{circe1\_sqrts = 500 GeV} has to be set to use the closest possible available beam spectrum. As mentioned in the discussion of the examples above, in \circeone\ there are two options to use the beam spectra for beamstrahlung: intrinsic semi-analytic approximation formulae for the spectra, or a Monte-Carlo sampling of the sampling. The second possibility always give a better description of the spectra, and is the default for \whizard. It can, however, be switched off by setting the flag \ttt{?circe1\_generate} to \ttt{false}. As the beamstrahlung spectra are sharply peaked at the collider energy, but still having long tails, a mapping of the spectra for an efficient phase-space sampling is almost mandatory. This is the default in \whizard, which can be changed by the flag \ttt{?circe1\_map}. Also, the default exponent for the mapping can be changed from its default value \ttt{2.} with the variable \ttt{circe1\_mapping\_slope}. It is important to efficiently sample the peak position of the spectrum; the effective ratio of the peak to the whole sampling interval can be set by the parameter \ttt{circe1\_eps}. The integer parameter \ttt{circe1\_chat} sets the chattiness or verbosity of the \circeone\ package, i.e. how many messages and warnings from the beamstrahlung generation/sampling will be issued. The actual internal version and revision of the \circeone\ package are set by the two integer parameters \ttt{circe1\_ver} and \ttt{circe1\_rev}. The default is in any case always the newest version and revision, while older versions are still kept for backwards compatibility and regression testing. Finally, the geometry and design of the accelerator type is set with the string variable \ttt{\$circe1\_acc}: it contains the possible options for the old \ttt{"SBAND"} and \ttt{"XBAND"} setups, as well as the \ttt{"TESLA"} and JLC/NLC SLAC design \ttt{"JLCNLC"}. The setups for the most important energies of the ILC as they are summarized in the ILC TDR~\cite{Behnke:2013xla,Baer:2013cma,Adolphsen:2013jya,Adolphsen:2013kya} are available as \ttt{ILC}. Beam spectra for the CLIC~\cite{Aicheler:2012bya,Lebrun:2012hj,Linssen:2012hp} linear collider are much more demanding to correctly simulate (due to the drive beam concept; only the low-energy modes where the drive beam is off can be simulated with the same setup as the abovementioned machines). Their setup will be supported soon in one of the upcoming \whizard\ versions within the \circetwo\ package. An example of how to generate beamstrahlung spectra with the help of the package \circetwo\ (that is also a part of \whizard) is this: \begin{quote} \begin{footnotesize} \begin{Verbatim} process eemm = e1, E1 => e2, E2 sqrts = 500 GeV beams = e1, E1 => circe2 $circe2_file = "ilc500.circe" $circe2_design = "ILC" ?circe_polarized = false \end{Verbatim} \end{footnotesize}%$ \end{quote} Here, the ILC design is used for a beamstrahlung spectrum at 500 GeV nominal energy, with polarization averaged (hence, the setting of polarization to \ttt{false}). A list of all available options can be found in Sec.~\ref{sec:photoncoll}. More technical details about the simulation of beamstrahlung spectra see the documented source code of the \circeone\ package, as well as Chap.~\ref{chap:hardint}. In the next section, we discuss how to read in beam spectra from external files. %%%%%%%%%%%%%%% \subsection{Beam events} \label{sec:beamevents} As mentioned in the previous section, beamstrahlung is one of the crucial ingredients for a realistic simulation of linear lepton colliders. One option is to take a pre-generated beam spectrum for such a machine, and make it available for simulation within \whizard\ as an external ASCII data file. Such files basically contain only pairs of energy fractions of the nominal collider energy $\sqrt{s}$ ($x$ values). In \whizard\ they can be used in simulation with the following \ttt{beams} statement: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => beam_events $beam_events_file = "" \end{Verbatim} \end{footnotesize}%$ \end{quote} Note that beam spectra must always be pair spectra, i.e. they are automatically applied to both beam simultaneously. Beam spectra via external files are expected to reside in the current working directory. Alternatively, \whizard\ searches for them in the install directory of \whizard\ in \ttt{share/beam-sim}. There you can find an example file, \ttt{uniform\_spread\_2.5\%.dat} for such a beam spectrum. The only possible parameter that can be set is the flag \ttt{?beam\_events\_warn\_eof} whose default is \ttt{true}. This triggers the issuing of a warning when the end of file of an external beam spectrum file is reached. In such a case, \whizard\ starts to reuse the same file again from the beginning. If the available data points in the beam events file are not big enough, this could result in an insufficient sampling of the beam spectrum. %%%%%%%%%%%%%%% \subsection{Gaussian beam-energy spread} \label{sec:gaussian} Real beams have a small energy spread. If beamstrahlung is small, the spread may be approximately described as Gaussian. As a replacement for the full simulation that underlies \ttt{CIRCE2} spectra, it is possible to impose a Gaussian distributed beam energy, separately for each beam. \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => gaussian gaussian_spread1 = 0.1\% gaussian_spread2 = 0.2\% \end{Verbatim} \end{footnotesize}%$ \end{quote} (Note that the \% sign means multiplication by 0.01, as it should.) The spread values are defined as the $\sigma$ value of the Gaussian distribution, i.e., $2/3$ of the events are within $\pm 1\sigma$ for each beam, respectively. %%%%%%%%%%%%%%%% \subsection{Equivalent photon approximation} \label{sec:epa} The equivalent photon approximation (EPA) uses an on-shell approximation for the $e \to e\gamma$ collinear splitting to allow the simulation of photon-induced backgrounds in lepton collider physics. The original concept is that of the Weizs\"acker-Williams approximation~\cite{vonWeizsacker:1934sx,Williams:1934ad,Budnev:1974de}. This is a single-beam structure function that can be applied to both beams, or also to one beam only. Usually, there are some simplifications being made in the derivation. The formula which is implemented here and seems to be the best for the QCD background for low-$p_T$ hadrons, corresponds to Eq.~(6.17) of Ref.~\cite{Budnev:1974de}. As this reference already found, this leads to an "overshooting" of accuracy, and especially in the high-$x$ (high-energy) region to wrong results. This formula corresponds to \begin{equation} \label{eq:budnev_617} f(x) = \frac{\alpha}{\pi} \frac{1}{x} \biggl[ \left( \bar{x} + \frac{x^2}{2} \right) \log \frac{Q^2_{\text{max}}}{Q^2_{\text{min}}} - \left( 1 - \frac{x}{2} \right)^2 \log \frac{x^2 + \tfrac{Q^2_{\text{max}}}{E^2}}{x^2 + \tfrac{Q^2_{\text{min}}}{E^2}} - \frac{m_e^2 x^2}{Q^2_{\text{min}}} \left( 1 - \frac{Q^2_{\text{min}}}{Q^2_{\text{max}}} \right) \biggr] \qquad . \end{equation} Here, $x$ is the ratio of the photon energy (called frequency $\omega$ in~\cite{Budnev:1974de} over the original electron (or positron) beam energy $E$. The energy of the electron (or positron) after the splitting is given by $\bar{x} = 1-x$. The simplified version is the one that corresponds to many publications about the EPA during SLC and LEP times, and corresponds to the $q^2$ integration of Eq.~(6.16e) in~\cite{Budnev:1974de}, where $q^2$ is the virtuality or momentum transfer of the photon in the EPA: \begin{equation} \label{eq:budnev_616e} f(x) = \frac{\alpha}{\pi} \frac{1}{x} \biggl[ \left( \bar{x} + \frac{x^2}{2} \right) \log \frac{Q^2_{\text{max}}}{Q^2_{\text{min}}} - \frac{m_e^2 x^2}{Q^2_{\text{min}}} \left( 1 - \frac{Q^2_{\text{min}}}{Q^2_{\text{max}}} \right) \biggr] \qquad . \end{equation} While Eq.~(\ref{eq:budnev_617}) is supposed to be the better choice for simulating hadronic background like low-$p_T$ hadrons and should be applied for the low-$x$ region of the EPA, Eq.~(\ref{eq:budnev_616e}) seems better suited for high-$x$ simulations like the photoproduction of BSM resonances etc. Note that the first term in Eqs.~(\ref{eq:budnev_617}) and (\ref{eq:budnev_616e}) is the standard Altarelli-Parisi QED splitting function of electron, $P_{e\to e\gamma}(x) \propto 1 + (1-x)^2$, while the last term in both equations is the default power correction. The two parameters $Q^2_{\text{max}}$ and $Q^2_{\text{min}}$ are the integration boundaries of the photon virtuality integration. Usually, they are given by the kinematic limits: \begin{equation} Q^2_{\text{min}} = \frac{m_e^2 x^2}{\bar{x}} \qquad\qquad Q^2_{\text{max}} = 4 E^2 \bar{x} = s \bar{x} \qquad . \end{equation} For low-$p_T$ hadron simulations, it is not a good idea to take the kinematic limit as an upper limit, but one should cut the simulation off at a hadronic scale like e.g. a multiple of the $\rho$ mass. The user can switch between the two different options using the setting \begin{quote} \begin{footnotesize} \begin{Verbatim} $epa_mode = "default" \end{Verbatim} \end{footnotesize} \end{quote} or \begin{quote} \begin{footnotesize} \begin{Verbatim} $epa_mode = "Budnev_617" \end{Verbatim} \end{footnotesize} \end{quote} for Eq.~(\ref{eq:budnev_617}), while Eq.~(\ref{eq:budnev_616e}) can be chosen with \begin{quote} \begin{footnotesize} \begin{Verbatim} $epa_mode = "Budnev_616e" \end{Verbatim} \end{footnotesize} \end{quote} Note that a thorough study for high-energy $e^+e^-$ colliders regarding the suitability of different EPA options is still lacking. For testing purposes also three more variants or simplifications of Eq.~(\ref{eq:budnev_616e}) are implemented: the first, steered by \ttt{\$epa\_mode = log\_power} uses simply $Q^2_{\text{max}} = s$. This is also the case for the two other method. But the switch \ttt{\$epa\_mode = log\_simple} uses just \ttt{epa\_mass} (cf. below) as $Q^2_{\text{min}}$. The final simplification is to drop the power correction, which can be chosen with \ttt{\$epa\_mode = log}. This corresponds to the simple formula: \begin{equation} f(x) = \frac{\alpha}{2\pi} \frac{1}{x} \, \log\frac{s}{m^2} \qquad . \end{equation} Examples for the application of the EPA in \whizard\ are: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => epa \end{Verbatim} \end{footnotesize} \end{quote} or for a single beam: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, p => epa, pdf_builtin \end{Verbatim} \end{footnotesize} \end{quote} The last process allows the reaction of (quasi-) on-shell photons with protons. In the following, we collect the parameters and flags that can be adjusted when using the EPA inside \whizard: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{epa\_alpha} & \ttt{0}/intrinsic & value of $\alpha_{QED}$ for EPA \\\hline \ttt{epa\_x\_min} & \ttt{0.} & soft photon cutoff in $x$ (mandatory) \\\hline \ttt{epa\_q\_min} & \ttt{0.} & minimal $\gamma$ momentum transfer \\\hline \ttt{epa\_mass} & \ttt{0}/intrinsic & mass of the radiating fermion (mandatory) \\\hline \ttt{epa\_q\_max} & \ttt{0}/$\sqrt{s}$ & upper cutoff for EPA \\\hline \ttt{?epa\_recoil} & \ttt{false} & flag to switch on recoil/$p_T$ \\\hline \ttt{?epa\_keep\_energy} & \ttt{false} & recoil flag to conserve energy in splitting \\\hline \end{tabular}}\mbox{} The adjustable parameters are partially similar to the parameters in the QED initial-state radiation (ISR), cf. Sec.~\ref{sec:lepton_isr}: the parameter \ttt{epa\_alpha} sets the value of the electromagnetic coupling constant, $\alpha_{QED}$ used in the EPA structure function. If not set, this is taken from the value inside the active physics model. The same is true for the mass of the particle that radiates the photon of the hard interaction, which can be reset by the user with the variable \ttt{epa\_mass}. There are two dimensionful scale parameters, the minimal momentum transfer to the photon, \ttt{epa\_q\_min}, which must not be zero, and the upper momentum-transfer cutoff for the EPA structure function, \ttt{epa\_q\_max}. The default for the latter value is the collider energy, $\sqrt{s}$, or the energy reduced by another structure function like e.g. beamstrahlung, $\sqrt{\hat{s}}$. Furthermore, there is a soft-photon regulator for the splitting function in $x$ space, \ttt{epa\_x\_min}, which also has to be explicitly set different from zero. Hence, a minimal viable scenario that will be accepted by \whizard\ looks like this: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => epa epa_q_min = 5 GeV epa_x_min = 0.01 \end{Verbatim} \end{footnotesize} \end{quote} Finally, like the ISR case in Sec.~\ref{sec:lepton_isr}, there is a flag to consider the recoil of the photon against the radiating electron by setting \ttt{?epa\_recoil} to \ttt{true} (default: \ttt{false}). Though in principle processes like $e^+ e^- \to e^+ e^- \gamma \gamma$ where the two photons have been created almost collinearly and then initiate a hard process could be described by exact matrix elements and exact kinematics. However, the numerical stability in the very far collinear kinematics is rather challenging, such that the use of the EPA is very often an acceptable trade-off between quality of the description on the one hand and numerical stability and speed on the other hand. In the case, the EPA is set after a second structure function like a hadron collider PDF, there is a flavor summation over the quark constituents inside the proton, which are then the radiating fermions for the EPA. Here, the masses of all fermions have to be identical. More about the physics of the equivalent photon approximation can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Effective $W$ approximation} \label{sec:ewa} An approach similar to the equivalent photon approximation (EPA) discussed in the previous section Sec.~\ref{sec:epa}, is the usage of a collinear splitting function for the radiation of massive electroweak vector bosons $W$/$Z$, the effective $W$ approximation (EWA). It has been developed for the description of high-energy weak vector-boson fusion and scattering processes at hadron colliders, particularly the Superconducting Super-Collider (SSC). This was at a time when the simulation of $2\to 4$ processes war still very challenging and $2\to 6$ processes almost impossible, such that this approximation was the only viable solution for the simulation of processes like $pp \to jjVV$ and subsequent decays of the bosons $V \equiv W, Z$. Unlike the EPA, the EWA is much more involved as the structure functions do depend on the isospin of the radiating fermions, and are also different for transversal and longitudinal polarizations. Also, a truely collinear kinematics is never possible due to the finite $W$ and $Z$ boson masses, which start becoming more and more negligible for energies larger than the nominal LHC energy of 14 TeV. Though in principle all processes for which the EWA might be applicable are technically feasible in \whizard\ to be generated also via full matrix elements, the EWA has been implemented in \whizard\ for testing purposes, backwards compatibility and comparison with older simulations. Like the EPA, it is a single-beam structure function that can be applied to one or both beams. We only give an example for both beams here, this is for a 3 TeV CLIC collider: \begin{quote} \begin{footnotesize} \begin{Verbatim} sqrts = 3 TeV beams = e1, E1 => ewa \end{Verbatim} \end{footnotesize} \end{quote} And this is for LHC or a higher-energy follow-up collider (which also shows the concatenation of the single-beam structure functions, applied to both beams consecutively, cf. Sec.~\ref{sec:concatenation}: \begin{quote} \begin{footnotesize} \begin{Verbatim} sqrts = 14 TeV beams = p, p => pdf_builtin => ewa \end{Verbatim} \end{footnotesize} \end{quote} Again, we list all the options, parameters and flags that can be adapted for the EWA: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{ewa\_x\_min} & \ttt{0.} & soft $W$/$Z$ cutoff in $x$ (mandatory) \\\hline \ttt{ewa\_mass} & \ttt{0}/intrinsic & mass of the radiating fermion \\\hline \ttt{ewa\_pt\_max} & \ttt{0}/$\sqrt{\hat{s}}$ & upper cutoff for EWA \\\hline \ttt{?ewa\_recoil} & \ttt{false} & recoil switch \\\hline \ttt{?ewa\_keep\_energy} & \ttt{false} & energy conservation for recoil in splitting \\\hline \end{tabular}}\mbox{} First of all, all coupling constants are taken from the active physics model as they have to be consistent with electroweak gauge invariance. Like for EPA, there is a soft $x$ cutoff for the $f \to f V$ splitting, \ttt{ewa\_x\_min}, that has to be set different from zero by the user. Again, the mass of the radiating fermion can be set explicitly by the user; and, also again, the masses for the flavor sum of quarks after a PDF as radiators of the electroweak bosons have to be identical. Also for the EWA, there is an upper cutoff for the $p_T$ of the electroweak boson, that can be set via \ttt{eta\_pt\_max}. Indeed, the transversal $W$/$Z$ structure function is logarithmically divergent in that variable. If it is not set by the user, it is estimated from $\sqrt{s}$ and the splitting kinematics. For the EWA, there is a flag to switch on a recoil for the electroweak boson against the radiating fermion, \ttt{?ewa\_recoil}. Note that this is an experimental feature that is not completely tested. In any case, the non-collinear kinematics violates 4-four momentum conservation, so there are two choices: either to conserve the energy (\ttt{?ewa\_keep\_energy = true}) or to conserve 3-momentum (\ttt{?ewa\_keep\_energy = false}). Momentum conservation for the kinematics is the default. This is due to the fact that for energy conservation, there will be a net total momentum in the event including the beam remnants (ISR/EPA/EWA radiated particles) that leeds to unexpected or unphysical features in the energy distributions of the beam remnants recoiling against the rest of the event. More details about the physics can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Energy scans using structure functions} In \whizard, there is an implementation of a pair spectrum, \ttt{energy\_scan}, that allows to scan the energy dependence of a cross section without actually scanning over the collider energies. Instead, only a single integration at the upper end of the scan interval over the process with an additional pair spectrum structure function performed. The structure function is chosen in such a way, that the distribution of $x$ values of the energy scan pair spectrum translates in a plot over the energy of the final state in an energy scan from \ttt{0} to \ttt{sqrts} for the process under consideration. The simplest example is the $1/s$ fall-off with the $Z$ resonance in $e^+e^- \to \mu^+ \mu^-$, where the syntax is very easy: \begin{quote} \begin{footnotesize} \begin{Verbatim} process eemm = e1, E1 => e2, E2 sqrts = 500 GeV cuts = sqrts_hat > 50 beams = e1, E1 => energy_scan integrate (eemm) \end{Verbatim} \end{footnotesize} \end{quote} The value of \ttt{sqrts = 500 GeV} gives the upper limit for the scan, while the cut effectively lets the scan start at 50 GeV. There are no adjustable parameters for this structure function. How to plot the invariant mass distribution of the final-state muon pair to show the energy scan over the cross section, will be explained in Sec.~\ref{sec:analysis}. More details can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Photon collider spectra} \label{sec:photoncoll} One option that has been discussed as an alternative possibility for a high-energy linear lepton collider is to convert the electron and positron beam via Compton backscattering off intense laser beams into photon beams~\cite{Ginzburg:1981vm,Telnov:1989sd,Telnov:1995hc}. Naturally, due to the production of the photon beams and the inherent electron spectrum, the photon beams have a characteristic spectrum. The simulation of such spectra is possible within \whizard\ by means of the subpackage \circetwo, which have been mentioned already in Sec.~\ref{sec:beamstrahlung}. It allows to give a much more elaborate description of a linear lepton collider environment than \circeone\ (which, however, is not in all cases necessary, as the ILC beamspectra for electron/positrons can be perfectly well described with \circeone). Here is a typical photon collider setup where we take a photon-initiated process: \begin{quote} \begin{footnotesize} \begin{Verbatim} process aaww = A, A => Wp, Wm beams = A, A => circe2 $circe2_file = "teslagg_500_polavg.circe" $circe2_design = "TESLA/GG" ?circe2_polarized = false \end{Verbatim} \end{footnotesize}%$ \end{quote} Here, the photons are the initial states initiating the hard scattering. The structure function is \ttt{circe2} which always is a pair spectrum. The list of available options are: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{?circe2\_polarized} & \ttt{true} & spectrum respects polarization info \\\hline \ttt{\$circe2\_file} & -- & name of beam spectrum data file \\\hline \ttt{\$circe2\_design} & \ttt{"*"} & collider design \\\hline \end{tabular}}\mbox{} The only logical flag \ttt{?circe2\_polarized} let \whizard\ know whether it should keep polarization information in the beam spectra or average over polarizations. Naturally, because of the Compton backscattering generation of the photons, photon spectra are always polarized. The collider design can be specified by the string variable \ttt{\$circe2\_design}, where the default setting \ttt{"*"} corresponds to the default of \circetwo\ (which is the TESLA 500 GeV machine as discussed in the TESLA Technical Design Report~\cite{AguilarSaavedra:2001rg,Richard:2001qm}). Note that up to now there have not been any setups for a photon collider option for the modern linear collider concepts like ILC and CLIC. The string variable \ttt{\$circe2\_file} then allows to give the name of the file containing the actual beam spectrum; all files that ship with \whizard\ are stored in the directory \ttt{circe2/share/data}. More details about the subpackage \circetwo\ and the physics it covers, can be found in its own manual and the chapter Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Concatenation of several structure functions} \label{sec:concatenation} As has been shown already in Sec.~\ref{sec:epa} and Sec.~\ref{sec:ewa}, it is possible within \whizard\ to concatenate more than one structure function, irrespective of the fact, whether the structure functions are single-beam structure functions or pair spectra. One important thing is whether there is a phase-space mapping for these structure functions. Also, there are some combinations which do not make sense from the physics point of view, for example using lepton-collider ISR for protons, and then afterwards switching on PDFs. Such combinations will be vetoed by \whizard, and you will find an error message like (cf. also Sec.~\ref{sec:errors}): \begin{interaction} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Beam structure: [....] not supported ****************************************************************************** ****************************************************************************** \end{interaction} Common examples for the concatenation of structure functions are linear collider applications, where beamstrahlung (macroscopic electromagnetic beam-beam interactions) and electron QED initial-state radiation are both switched on: \begin{code} beams = e1, E1 => circe1 => isr \end{code} Another possibility is the simulation of photon-induced backgrounds at ILC or CLIC, using beamstrahlung and equivalent photon approximation (EPA): \begin{code} beams = e1, E1 => circe1 => epa \end{code} or with beam events from a data file: \begin{code} beams = e1, E1 => beam_events => isr \end{code} In hadron collider physics, parton distribution functions (PDFs) are basically always switched on, while afterwards the user could specify to use the effective $W$ approximation (EWA) to simulate high-energy vector boson scattering: \begin{code} sqrts = 100 TeV beams = p, p => pdf_builtin => ewa \end{code} Note that this last case involves a flavor sum over the five active quark (and anti-quark) species $u$, $d$, $c$, $s$, $b$ in the proton, all of which act as radiators for the electroweak vector bosons in the EWA. This would be an example with three structure functions: \begin{code} beams = e1, E1 => circe1 => isr => epa \end{code} %%%%%%%%%%%%%%% \section{Polarization} \label{sec:polarization} %%%%% \subsection{Initial state polarization} \label{sec:initialpolarization} \whizard\ supports polarizing the inital state fully or partially by assigning a nontrivial density matrix in helicity space. Initial state polarization requires a beam setup and is initialized by means of the \ttt{beams\_pol\_density} statement\footnote{Note that the syntax for the specification of beam polarization has changed from version v2.1 to v2.2 and is incompatible between the two release series. The old syntax \ttt{beam\_polarization} with its different polarization constructors has been discarded in favor of a unified syntax.}: \begin{quote} \begin{footnotesize} \begin{verbatim} beams_pol_density = @([]), @([]) \end{verbatim} \end{footnotesize} \end{quote} The command \ttt{beams\_pol\_fraction} gives the degree of polarization of the two beams: \begin{quote} \begin{footnotesize} \begin{verbatim} beams_pol_fraction = , \end{verbatim} \end{footnotesize} \end{quote} Both commands in the form written above apply to scattering processes, where the polarization of both beams must be specified. The \ttt{beams\_pol\_density} and \ttt{beams\_pol\_fraction} are possible with a single beam declaration if a decay process is considered, but only then. While the syntax for the command \ttt{beams\_pol\_fraction} is pretty obvious, the syntax for the actual specification of the beam polarization is more intricate. We start with the polarization fraction: for each beam there is a real number between zero (unpolarized) and one (complete polarization) that can be specified either as a floating point number like \ttt{0.4} or with a percentage: \ttt{40 \%}. Note that the actual arithmetics is sometimes counterintuitive: 80 \% left-handed electron polarization means that 80 \% of the electron beam are polarized, 20 \% are unpolarized, i.e. 20 \% have half left- and half right-handed polarization each. Hence, 90 \% of the electron beam is left-handed, 10 \% is right-handed. How does the specification of the polarization work? If there are no entries at all in the polarization constructor, \ttt{@()}, the beam is unpolarized, and the spin density matrix is proportional to the unit/identity matrix. Placing entries into the \ttt{@()} constructor follows the concept of sparse matrices, i.e. the entries that have been specified will be present, while the rest remains zero. Single numbers do specify entries for that particular helicity on the main diagonal of the spin density matrix, e.g. for an electron \ttt{@(-1)} means (100\%) left-handed polarization. Different entries are separated by commas: \ttt{@(1,-1)} sets the two diagonal entries at positions $(1,1)$ and $(-1,-1)$ in the density matrix both equal to one. Two remarks are in order already here. First, note that you do not have to worry about the correct normalization of the spin density matrix, \whizard\ is taking care of this automatically. Second, in the screen output for the beam data, only those entries of the spin density matrix that have been specified by the user, will be displayed. If a \ttt{beams\_pol\_fraction} statement appears, other components will be non-zero, but might not be shown. E.g. ILC-like, 80 \% polarization of the electrons, 30 \% positron polarization will be specified like this for left-handed electrons and right-handed positrons: \begin{code} beams = e1, E1 beams_pol_density = @(-1), @(+1) beams_pol_fraction = 80%, 30% \end{code} The screen output will be like this: \begin{code} | ------------------------------------------------------------------------ | Beam structure: e-, e+ | polarization (beam 1): | @(-1: -1: ( 1.000000000000E+00, 0.000000000000E+00)) | polarization (beam 2): | @(+1: +1: ( 1.000000000000E+00, 0.000000000000E+00)) | polarization degree = 0.8000000, 0.3000000 | Beam data (collision): | e- (mass = 0.0000000E+00 GeV) polarized | e+ (mass = 0.0000000E+00 GeV) polarized \end{code} But because of the fraction of unpolarized electrons and positrons, the spin density matrices for electrons and positrons are: \[ \rho(e^-) = \diag \left ( 0.10, 0.90 \right) \qquad \rho(e^+) = \diag \left ( 0.65, 0.35 \right) \quad , \] respectively. So, in general, only the entries due to the polarized fraction will be displayed on screen. We will come back to more examples below. Again, the setting of a single entry, e.g. \ttt{@($\pm m$)}, which always sets the diagonal component $(\pm m, \pm m)$ of the spin density matrix equal to one. Here $m$ can have the following values for the different spins (in parentheses are entries that exist only for massive particles): \vspace{1mm} \begin{center} \begin{tabular}{|l|l|l|}\hline Spin $j$ & Particle type & possible $m$ values \\\hline 0 & Scalar boson & 0 \\ 1/2 & Spinor & +1, -1 \\ 1 & (Massive) Vector boson & +1, (0), -1 \\ 3/2 & (Massive) Vectorspinor & +2, (+1), (-1), -2 \\ 2 & (Massive) Tensor & +2, (+1), (0), (-1), -2 \\\hline \end{tabular} \end{center} \vspace{1mm} Off-diagonal entries that are equal to one (up to the normalization) of the spin-density matrix can be specified simply by the position, namely: \ttt{@($m$:$m'$, $m''$)}. This would result in a spin density matrix with diagonal entry $1$ for the position $(m'', m'')$, and an entry of $1$ for the off-diagonal position $(m,m')$. Furthermore, entries in the density matrix different from $1$ with a numerical value \ttt{{\em }} can be specified, separated by another colon: \ttt{@($m$:$m'$:{\em })}. Here, it does not matter whether $m$ and $m'$ are different or not. For $m = m'$ also diagonal spin density matrix entries different from one can be specified. Note that because spin density matrices have to be Hermitian, only the entry $(m,m')$ has to be set, while the complex conjugate entry at the transposed position $(m',m)$ is set automatically by \whizard. We will give some general density matrices now, and after that a few more definite examples. In the general setups below, we always give the expression for the spin density matrix only for one single beam. % { \newcommand{\cssparse}[4]{% \begin{pmatrix} #1 & 0 & \cdots & \cdots & #3 \\ 0 & 0 & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots & 0 & 0 \\ #4 & \cdots & \cdots & 0 & #2 \end{pmatrix}% } % \begin{itemize} \item {\bf Unpolarized:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @()} \end{footnotesize} \end{center} % \newline This has the same effect as not specifying any polarization at all and is the only constructor available for scalars and fermions declared as left- or right-handed (like the neutrino). Density matrix: \[ \rho = \frac{1}{|m|}\mathbb{I} \] ($|m|$: particle multiplicity which is 2 for massless, $2j + 1$ for massive particles). % \item {\bf Circular polarization:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @($\pm j$) \qquad beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} A fraction $f$ (parameter range $f \in \left[0\;;\;1\right]$) of the particles are in the maximum / minimum helicity eigenstate $\pm j$, the remainder is unpolarized. For spin $\frac{1}{2}$ and massless particles of spin $>0$, only the maximal / minimal entries of the density matrix are populated, and the density matrix looks like this: \[ \rho = \diag\left(\frac{1\pm f}{2}\;,\;0\;,\;\dots\;,\;0\;, \frac{1\mp f}{2}\right) \] % \item {\bf Longitudinal polarization (massive):} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(0) \qquad beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} We consider massive particles with maximal spin component $j$, a fraction $f$ of which having longitudinal polarization, the remainder is unpolarized. Longitudinal polarization is (obviously) only available for massive bosons of spin $>0$. Again, the parameter range for the fraction is: $f \in \left[0\;;\;1\right]$. The density matrix has the form: \[ \rho = \diag\left(\frac{1-f}{|m|}\;,\;\dots\;,\;\frac{1-f}{|m|}\;,\; \frac{1+f \left(|m| - 1\right)}{|m|}\;,\;\frac{1-f}{|m|}\;, \;\dots\;,\;\frac{1-f}{|m|}\right) \] ($|m| = 2j+1 $: particle multiplicity) % \item {\bf Transverse polarization (along an axis):} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(j, -j, j:-j:exp(-I*phi)) \qquad beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} This so called transverse polarization is a polarization along an arbitrary direction in the $x-y$ plane, with $\phi=0$ being the positive $x$ direction and $\phi=90^\circ$ the positive $y$ direction. Note that the value of \ttt{phi} has either to be set inside the beam polarization expression explicitly or by a statement \ttt{real phi = {\em val} degree} before. A fraction $f$ of the particles are polarized, the remainder is unpolarized. Note that, although this yields a valid density matrix for all particles with multiplicity $>1$ (in which the only the highest and lowest helicity states are populated), it is meaningful only for spin $\frac{1}{2}$ particles and massless bosons of spin $>0$. The range of the parameters are: $f \in \left[0\;;\;1\right]$ and $\phi \in \mathbb{R}$. This yields a density matrix: \[ \rho = \cssparse{1}{1} {\frac{f}{2}\,e^{-i\phi}} {\frac{f}{2}\,e^{i\phi}} \] (for antiparticles, the matrix is conjugated). % \item {\bf Polarization along arbitrary axis $\left(\theta, \phi\right)$:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(j:j:1-cos(theta), j:-j:sin(theta)*exp(-I*phi), -j:-j:1+cos(theta))} \qquad\quad\qquad \ttt{beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} This example describes polarization along an arbitrary axis in polar coordinates (polar axis in positive $z$ direction, polar angle $\theta$, azimuthal angle $\phi$). A fraction $f$ of the particles are polarized, the remainder is unpolarized. Note that, although axis polarization defines a valid density matrix for all particles with multiplicity $>1$, it is meaningful only for particles with spin $\frac{1}{2}$. Valid ranges for the parameters are $f \in \left[0\;;\;1\right]$, $\theta \in \mathbb{R}$, $\phi \in \mathbb{R}$. The density matrix then has the form: \[ \rho = \frac{1}{2}\cdot \cssparse{1 - f\cos\theta}{1 + f\cos\theta} {f\sin\theta\, e^{-i\phi}}{f\sin\theta\, e^{i\phi}} \] % \item {\bf Diagonal density matrix:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(j:j:$h_j$, j-1:j-1:$h_{j-1}$, $\ldots$, -j:-j:$h_{-j}$)} \end{footnotesize} \end{center} This defines an arbitrary diagonal density matrix with entries $\rho_{j,j}\,,\,\dots\,,\,\rho_{-j,-j}$. % \item {\bf Arbitrary density matrix:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @($\{m:m':x_{m,m'}\}$)}: \end{footnotesize} \end{center} Here, \ttt{$\{m:m':x_{m,m'}\}$} denotes a selection of entries at various positions somewhere in the spin density matrix. \whizard\ will check whether this is a valid spin density matrix, but it does e.g. not have to correspond to a pure state. % \end{itemize} } % The beam polarization statements can be used both globally directly with the \ttt{beams} specification, or locally inside the \ttt{integrate} or \ttt{simulate} command. Some more specific examples are in order to show how initial state polarization works: % \begin{itemize} \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = A, A beams_pol_density = @(+1), @(1, -1, 1:-1:-I) \end{verbatim} \end{footnotesize} \end{quote} This declares the initial state to be composed of two incoming photons, where the first photon is right-handed, and the second photon has transverse polarization in $y$ direction. % \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = A, A beams_pol_density = @(+1), @(1, -1, 1:-1:-1) \end{verbatim} \end{footnotesize} \end{quote} Same as before, but this time the second photon has transverse polarization in $x$ direction. % \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = "W+" beams_pol\_density = @(0) \end{verbatim} \end{footnotesize} \end{quote} This example sets up the decay of a longitudinal vector boson. % \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = E1, e1 scan int hel_ep = (-1, 1) { scan int hel_em = (-1, 1) { beams_pol_density = @(hel_ep), @(hel_em) integrate (eeww) } } integrate (eeww) \end{verbatim} \end{footnotesize} \end{quote} This example loops over the different positron and electron helicity combinations and calculates the respective integrals. The \ttt{beams\_pol\_density} statement is local to the scan loop(s) and, therefore, the last \ttt{integrate} calculates the unpolarized integral. \end{itemize} % Although beam polarization should be straightforward to use, some pitfalls exist for the unwary: \begin{itemize} \item Once \ttt{beams\_pol\_density} is set globally, it persists and is applied every time \ttt{beams} is executed (unless it is reset). In particular, this means that code like \begin{quote} \begin{footnotesize} \begin{verbatim} process wwaa = Wp, Wm => A, A process zee = Z => e1, E1 sqrts = 200 GeV beams_pol_density = @(1, -1, 1:-1:-1), @() beams = Wp, Wm integrate (wwaa) beams = Z integrate (zee) beams_pol_density = @(0) \end{verbatim} \end{footnotesize} \end{quote} will throw an error, because \whizard\ complains that the spin density matrix has the wrong dimensionality for the second (the decay) process. This kind of trap can be avoided be using \ttt{beams\_pol\_density} only locally in \ttt{integrate} or \ttt{simulate} statements. % \item On-the-fly integrations executed by \ttt{simulate} use the beam setup found at the point of execution. This implies that any polarization settings you have previously done affect the result of the integration. % \item The \ttt{unstable} command also requires integrals of the selected decay processes, and will compute them on-the-fly if they are unavailable. Here, a polarized integral is not meaningful at all. Therefore, this command ignores the current \ttt{beam} setting and issues a warning if a previous polarized integral is available; this will be discarded. \end{itemize} \subsection{Final state polarization} Final state polarization is available in \whizard\ in the sense that the polarization of real final state particles can be retained when generating simulated events. In order for the polarization of a particle to be retained, it must be declared as polarized via the \ttt{polarized} statement \begin{quote} \begin{footnotesize} \begin{verbatim} polarized particle [, particle, ...] \end{verbatim} \end{footnotesize} \end{quote} The effect of \ttt{polarized} can be reversed with the \ttt{unpolarized} statement which has the same syntax. For example, \begin{quote} \begin{footnotesize} \begin{verbatim} polarized "W+", "W-", Z \end{verbatim} \end{footnotesize} \end{quote} will cause the polarization of all final state $W$ and $Z$ bosons to be retained, while \begin{quote} \begin{footnotesize} \begin{verbatim} unpolarized "W+", "W-", Z \end{verbatim} \end{footnotesize} \end{quote} will reverse the effect and cause the polarization to be summed over again. Note that \ttt{polarized} and \ttt{unpolarized} are global statements which cannot be used locally as command arguments and if you use them e.g. in a loop, the effects will persist beyond the loop body. Also, a particle cannot be \ttt{polarized} and \ttt{unstable} at the same time (this restriction might be loosened in future versions of \whizard). After toggling the polarization flag, the generation of polarized events can be requested by using the \ttt{?polarized\_events} option of the \ttt{simulate} command, e.g. \begin{quote} \begin{footnotesize} \begin{verbatim} simulate (eeww) { ?polarized_events = true } \end{verbatim} \end{footnotesize} \end{quote} When \ttt{simulate} is run in this mode, helicity information for final state particles that have been toggled as \ttt{polarized} is written to the event file(s) (provided that polarization is supported by the selected event file format(s) ) and can also be accessed in the analysis by means of the \ttt{Hel} observable. For example, an analysis definition like \begin{quote} \begin{footnotesize} \begin{verbatim} analysis = if (all Hel == -1 ["W+"] and all Hel == -1 ["W-"] ) then record cta_nn (eval cos (Theta) ["W+"]) endif; if (all Hel == -1 ["W+"] and all Hel == 0 ["W-"] ) then record cta_nl (eval cos (Theta) ["W+"]) endif \end{verbatim} \end{footnotesize} \end{quote} can be used to histogram the angular distribution for the production of polarized $W$ pairs (obviously, the example would have to be extended to cover all possible helicity combinations). Note, however, that helicity information is not available in the integration step; therefore, it is not possible to use \ttt{Hel} as a cut observable. While final state polarization is straightforward to use, there is a caveat when used in combination with flavor products. If a particle in a flavor product is defined as \ttt{polarized}, then all particles ``originating'' from the product will act as if they had been declared as \ttt{polarized} --- their polarization will be recorded in the generated events. E.g., the example \begin{quote} \begin{footnotesize} \begin{verbatim} process test = u:d, ubar:dbar => d:u, dbar:ubar, u, ubar ! insert compilation, cuts and integration here polarized d, dbar simulate (test) {?polarized_events = true} \end{verbatim} \end{footnotesize} \end{quote} will generate events including helicity information for all final state $d$ and $\overline{d}$ quarks, but only for part of the final state $u$ and $\overline{u}$ quarks. In this case, if you had wanted to keep the helicity information also for all $u$ and $\overline{u}$, you would have had to explicitely include them into the \ttt{polarized} statement. \section{Cross sections} Integrating matrix elements over phase space is the core of \whizard's activities. For any process where we want the cross section, distributions, or event samples, the cross section has to be determined first. This is done by a doubly adaptive multi-channel Monte-Carlo integration. The integration, in turn, requires a \emph{phase-space setup}, i.e., a collection of phase-space \emph{channels}, which are mappings of the unit hypercube onto the complete space of multi-particle kinematics. This phase-space information is encoded in the file \emph{xxx}\ttt{.phs}, where \emph{xxx} is the process tag. \whizard\ generates the phase-space file on the fly and can reuse it in later integrations. For each phase-space channel, the unit hypercube is binned in each dimension. The bin boundaries are allowed to move during a sequence of iterations, each with a fixed number of sampled phase-space points, so they adapt to the actual phase-space density as far as possible. In addition to this \emph{intrinsic} adaptation, the relative channel weights are also allowed to vary. All these steps are done automatically when the \ttt{integrate} command is executed. At the end of the iterative adaptation procedure, the program has obtained an estimate for the integral of the matrix element over phase space, together with an error estimate, and a set of integration \emph{grids} which contains all information on channel weights and bin boundaries. This information is stored in a file \emph{xxx}\ttt{.vg}, where \emph{xxx} is the process tag, and is used for event generation by the \ttt{simulate} command. \subsection{Integration} \label{sec:integrate} Since everything can be handled automatically using default parameters, it often suffices to write the command \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (proc1) \end{verbatim} \end{footnotesize} \end{quote} for integrating the process with name tag \ttt{proc1}, and similarly \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (proc1, proc2, proc3) \end{verbatim} \end{footnotesize} \end{quote} for integrating several processes consecutively. Options to the integrate command are specified, if not globally, by a local option string \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (proc1, proc2, proc3) { mH = 200 GeV } \end{verbatim} \end{footnotesize} \end{quote} (It is possible to place a \ttt{beams} statement inside the option string, if desired.) If the process is configured but not compiled, compilation will be done automatically. If it is not available at all, integration will fail. The integration method can be specified by the string variable \begin{quote} \begin{footnotesize} \ttt{\$integration\_method = "{\em }"} \end{footnotesize} \end{quote} %$ The default method is called \ttt{"vamp"} and uses the \vamp\ algorithm and code. (At the moment, there is only a single simplistic alternative, using the midpoint rule or rectangle method for integration, \ttt{"midpoint"}. This is mainly for testing purposes. In future versions of \whizard, more methods like e.g. Gauss integration will be made available). \vamp, however, is clearly the main integration method. It is done in several \emph{passes} (usually two), and each pass consists of several \emph{iterations}. An iteration consists of a definite number of \emph{calls} to the matrix-element function. For each iteration, \whizard\ computes an estimate of the integral and an estimate of the error, based on the binned sums of matrix element values and squares. It also computes an estimate of the rejection efficiency for generating unweighted events, i.e., the ratio of the average sampling function value over the maximum value of this function. After each iteration, both the integration grids (the binnings) and the relative weights of the integration channels can be adapted to minimize the variance estimate of the integral. After each pass of several iterations, \whizard\ computes an average of the iterations within the pass, the corresponding error estimate, and a $\chi^2$ value. The integral, error, efficiency and $\chi^2$ value computed for the most recent integration pass, together with the most recent integration grid, are used for any subsequent calculation that involves this process, in particular for event generation. In the default setup, during the first pass(es) both grid binnings and channel weights are adapted. In the final (usually second) pass, only binnings are further adapted. Roughly speaking, the final pass is the actual calculation, while the previous pass(es) are used for ``warming up'' the integration grids, without using the numerical results. Below, in the section about the specification of the iterations, Sec.~\ref{sec:iterations}, we will explain how it is possible to change the behavior of adapting grids and weights. Here is an example of the integration output, which illustrates these properties. The \sindarin\ script describes the process $e^+e^-\to q\bar q q\bar q$ with $q$ being any light quark, i.e., $W^+W^-$ and $ZZ$ production and hadronic decay together will any irreducible background. We cut on $p_T$ and energy of jets, and on the invariant mass of jet pairs. Here is the script: \begin{quote} \begin{footnotesize} \begin{verbatim} alias q = d:u:s:c alias Q = D:U:S:C process proc_4f = e1, E1 => q, Q, q, Q ms = 0 mc = 0 sqrts = 500 GeV cuts = all (Pt > 10 GeV and E > 10 GeV) [q:Q] and all M > 10 GeV [q:Q, q:Q] integrate (proc_4f) \end{verbatim} \end{footnotesize} \end{quote} After the run is finished, the integration output looks like \begin{quote} \begin{footnotesize} \begin{verbatim} | Process library 'default_lib': loading | Process library 'default_lib': ... success. | Integrate: compilation done | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 12511 | Initializing integration for process proc_4f: | ------------------------------------------------------------------------ | Process [scattering]: 'proc_4f' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'proc_4f_i1': e-, e+ => d:u:s:c, dbar:ubar:sbar:cbar, | d:u:s:c, dbar:ubar:sbar:cbar [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 5.000000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'proc_4f_i1.phs' | Phase space: 123 channels, 8 dimensions | Phase space: found 123 channels, collected in 15 groves. | Phase space: Using 195 equivalences between channels. | Phase space: wood | Applying user-defined cuts. | OpenMP: Using 8 threads | Starting integration for process 'proc_4f' | Integrate: iterations not specified, using default | Integrate: iterations = 10:10000:"gw", 5:20000:"" | Integrator: 15 chains, 123 channels, 8 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 10000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 9963 2.3797857E+03 3.37E+02 14.15 14.13* 4.02 2 9887 2.8307603E+03 9.58E+01 3.39 3.37* 4.31 3 9815 3.0132091E+03 5.10E+01 1.69 1.68* 8.37 4 9754 2.9314937E+03 3.64E+01 1.24 1.23* 10.65 5 9704 2.9088284E+03 3.40E+01 1.17 1.15* 12.99 6 9639 2.9725788E+03 3.53E+01 1.19 1.17 15.34 7 9583 2.9812484E+03 3.10E+01 1.04 1.02* 17.97 8 9521 2.9295139E+03 2.88E+01 0.98 0.96* 22.27 9 9435 2.9749262E+03 2.94E+01 0.99 0.96 20.25 10 9376 2.9563369E+03 3.01E+01 1.02 0.99 21.10 |-----------------------------------------------------------------------------| 10 96677 2.9525019E+03 1.16E+01 0.39 1.22 21.10 1.15 10 |-----------------------------------------------------------------------------| 11 19945 2.9599072E+03 2.13E+01 0.72 1.02 15.03 12 19945 2.9367733E+03 1.99E+01 0.68 0.96* 12.68 13 19945 2.9487747E+03 2.03E+01 0.69 0.97 11.63 14 19945 2.9777794E+03 2.03E+01 0.68 0.96* 11.19 15 19945 2.9246612E+03 1.95E+01 0.67 0.94* 10.34 |-----------------------------------------------------------------------------| 15 99725 2.9488622E+03 9.04E+00 0.31 0.97 10.34 1.05 5 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:00m:51s | Creating integration history display proc_4f-history.ps and proc_4f-history.pdf \end{verbatim} \end{footnotesize} \end{quote} Each row shows the index of a single iteration, the number of matrix element calls for that iteration, and the integral and error estimate. Note that the number of calls displayed are the real calls to the matrix elements after all cuts and possible rejections. The error should be viewed as the $1\sigma$ uncertainty, computed on a statistical \begin{figure} \centering \includegraphics[width=.56\textwidth]{proc_4f-history} \caption{\label{fig:inthistory} Graphical output of the convergence of the adaptation during the integration of a \whizard\ process.} \end{figure} basis. The next two columns display the error in percent, and the \emph{accuracy} which is the same error normalized by $\sqrt{n_{\rm calls}}$. The accuracy value has the property that it is independent of $n_{\rm calls}$, it describes the quality of adaptation of the current grids. Good-quality grids have a number of order one, the smaller the better. The next column is the estimate for the rejection efficiency in percent. Here, the value should be as high as possible, with $100\,\%$ being the possible maximum. In the example, the grids are adapted over ten iterations, after which the accuracy and efficiency have saturated at about $1.0$ and $10\,\%$, respectively. The asterisk in the accuracy column marks those iterations where an improvement over the previous iteration is seen. The average over these iterations exhibits an accuracy of $1.22$, corresponding to $0.39\,\%$ error, and a $\chi^2$ value of $1.15$, which is just right: apparently, the phase-space for this process and set of cuts is well-behaved. The subsequent five iterations are used for obtaining the final integral, which has an accuracy below one (error $0.3\,\%$), while the efficiency settles at about $10\,\%$. In this example, the final $\chi^2$ value happens to be quite small, i.e., the individual results are closer together than the error estimates would suggest. One should nevertheless not scale down the error, but rather scale it up if the $\chi^2$ result happens to be much larger than unity: this often indicates sub-optimally adapted grids, which insufficiently map some corner of phase space. One should note that all values are subject to statistical fluctuations, since the number of calls within each iterations is finite. Typically, fluctuations in the efficiency estimate are considerably larger than fluctuations in the error/accuracy estimate. Two subsequent runs of the same script should yield statistically independent results which may differ in all quantities, within the error estimates, since the seed of the random-number generator will differ by default. It is possible to get exactly reproducible results by setting the random-number seed explicitly, e.g., \begin{quote} \begin{footnotesize} \begin{verbatim} seed = 12345 \end{verbatim} \end{footnotesize} \end{quote} at any point in the \sindarin\ script. \ttt{seed} is a predefined intrinsic variable. The value can be any 32bit integer. Two runs with different seeds can be safely taken as statistically independent. In the example above, no seed has been set, and the seed has therefore been determined internally by \whizard\ from the system clock. The concluding line with the time estimate applies to a subsequent simulation step with unweighted events, which is not actually requested in the current example. It is based on the timing and efficiency estimate of the most recent iteration. As a default, a graphical output of the integration history will be produced (if both \LaTeX\ and \metapost\ have been available during configuration). Fig.~\ref{fig:inthistory} shows how this looks like, and demonstrates how a proper convergence of the integral during the adaptation looks like. The generation of these graphical history files can be switched off using the command \ttt{?vis\_history = false}. %%%%% \subsection{Integration run IDs} A single \sindarin\ script may contain multiple calls to the \ttt{integrate} command with different parameters. By default, files generated for the same process in a subsequent integration will overwrite the previous ones. This is undesirable when the script is re-run: all results that have been overwritten have to be recreated. To avoid this, the user may identify a specific run by a string-valued ID, e.g. \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (foo) { $run_id = "first" } \end{verbatim} \end{footnotesize} \end{quote} This ID will become part of the file name for all files that are created specifically for this run. Often it is useful to create a run ID from a numerical value using \ttt{sprintf}, e.g., in this scan: \begin{quote} \begin{footnotesize} \begin{verbatim} scan real mh = (100 => 200 /+ 10) { $run_id = sprintf "%e" (mh) integrate (h_production) } \end{verbatim} \end{footnotesize} \end{quote} With unique run IDs, a subsequent run of the same \sindarin\ script will be able to reuse all previous results, even if there is more than a single integration per process. \subsection{Controlling iterations} \label{sec:iterations} \whizard\ has some predefined numbers of iterations and calls for the first and second integration pass, respectively, which depend on the number of initial and final-state particles. They are guesses for values that yield good-quality grids and error values in standard situations, where no exceptionally strong peaks or loose cuts are present in the integrand. Actually, the large number of warmup iterations in the previous example indicates some safety margin in that respect. It is possible, and often advisable, to adjust the iteration and call numbers to the particular situation. One may reduce the default numbers to short-cut the integration, if either less accuracy is needed, or CPU time is to be saved. Otherwise, if convergence is bad, the number of iterations or calls might be increased. To set iterations manually, there is the \ttt{iterations} command: \begin{quote} \begin{footnotesize} \begin{verbatim} iterations = 5:50000, 3:100000 \end{verbatim} \end{footnotesize} \end{quote} This is a comma-separated list. Each pair of values corresponds to an integration pass. The value before the colon is the number of iterations for this pass, the other number is the number of calls per iteration. While the default number of passes is two (one for warmup, one for the final result), you may specify a single pass \begin{quote} \begin{footnotesize} \begin{verbatim} iterations = 5:100000 \end{verbatim} \end{footnotesize} \end{quote} where the relative channel weights will \emph{not} be adjusted (because this is the final pass). This is appropriate for well-behaved integrands where weight adaptation is not necessary. You can also define more than two passes. That might be useful when reusing a previous grid file with insufficient quality: specify the previous passes as-is, so the previous results will be read in, and then a new pass for further adaptation. In the final pass, the default behavior is to not adapt grids and weights anymore. Otherwise, different iterations would be correlated, and a final reliable error estimate would not be possible. For all but the final passes, the user can decide whether to adapt grids and weights by attaching a string specifier to the number of iterations: \ttt{"g"} does adapt grids, but not weights, \ttt{"w"} the other way round. \ttt{"gw"} or \ttt{"wg"} does adapt both. By the setting \ttt{""}, all adaptations are switched off. An example looks like this: \begin{code} iterations = 2:10000:"gw", 3:5000 \end{code} Since it is often not known beforehand how many iterations the grid adaptation will need, it is generally a good idea to give the first pass a large number of iterations. However, in many cases these turn out to be not necessary. To shortcut iterations, you can set any of \begin{quote} \begin{footnotesize} \begin{verbatim} accuracy_goal error_goal relative_error_goal \end{verbatim} \end{footnotesize} \end{quote} to a positive value. If this is done, \whizard\ will skip warmup iterations once all of the specified goals are reached by the current iteration. The final iterations (without weight adaptation) are always performed. \subsection{Phase space} Before \ttt{integrate} can start its work, it must have a phase-space configuration for the process at hand. The method for the phase-space parameterization is determined by the string variable \ttt{\$phs\_method}. At the moment there are only two options, \ttt{"single"}, for testing purposes, that is mainly used internally, and \whizard's traditional method, \ttt{"wood"}. This parameterization is particularly adapted and fine-tuned for electroweak processes and might not be the ideal for for pure jet cross sections. In future versions of \whizard, more options for phase-space parameterizations will be made available, e.g. the \ttt{RAMBO} algorithm and its massive cousin, and phase-space parameterizations that take care of the dipole-like emission structure in collinear QCD (or QED) splittings. For the standard method, the phase-space parameterization is laid out in an ASCII file \ttt{\textit{\_}i\textit{}.phs}. Here, \ttt{{\em }} is the process name chosen by the user while \ttt{{\em }} is the number of the process component of the corresponding process. This immediately shows that different components of processes are getting different phase space setups. This is necessary for inclusive processes, e.g. the sum of $pp \to Z + nj$ and $pp \to W + nj$, or in future versions of \whizard\ for NLO processes, where one component is the interference between the virtual and the Born matrix element, and another one is the subtraction terms. Normally, you do not have to deal with this file, since \whizard\ will generate one automatically if it does not find one. (\whizard\ is careful to check for consistency of process definition and parameters before using an existing file.) Experts might find it useful to generate a phase-space file and inspect and/or modify it before proceeding further. To this end, there is the parameter \verb|?phs_only|. If you set this \ttt{true}, \whizard\ skips the actual integration after the phase-space file has been generated. There is also a parameter \verb|?vis_channels| which can be set independently; if this is \ttt{true}, \whizard\ will generate a graphical visualization of the phase-space parameterizations encoded in the phase-space file. This file has to be taken with a grain of salt because phase space channels are represented by sample Feynman diagrams for the corresponding channel. This does however {\em not} mean that in the matrix element other Feynman diagrams are missing (the default matrix element method, \oMega, is not using Feynman-diagrammatic amplitudes at all). Things might go wrong with the default phase-space generation, or manual intervention might be necessary to improve later performance. There are a few parameters that control the algorithm of phase-space generation. To understand their meaning, you should realize that phase-space parameterizations are modeled after (dominant) Feynman graphs for the current process. \subsubsection{The main phase space setup {\em wood}} For the main phase-space parameterization of \whizard, which is called \ttt{"wood"}, there are many different parameters and flags that allow to tune and customize the phase-space setup for every certain process: The parameter \verb|phs_off_shell| controls the number of off-shell lines in those graphs, not counting $s$-channel resonances and logarithmically enhanced $s$- and $t$-channel lines. The default value is $2$. Setting it to zero will drop everything that is not resonant or logarithmically enhanced. Increasing it will include more subdominant graphs. (\whizard\ increases the value automatically if the default value does not work.) There is a similar parameter \verb|phs_t_channel| which controls multiperipheral graphs in the parameterizations. The default value is $6$, so graphs with up to $6$ $t/u$-channel lines are considered. In particular cases, such as $e^+e^-\to n\gamma$, all graphs are multiperipheral, and for $n>7$ \whizard\ would find no parameterizations in the default setup. Increasing the value of \verb|phs_t_channel| solves this problem. (This is presently not done automatically.) There are two numerical parameters that describe whether particles are treated like massless particles in particular situations. The value of \verb|phs_threshold_s| has the default value $50\;\GeV$. Hence, $W$ and $Z$ are considered massive, while $b$ quarks are considered massless. This categorization is used for deciding whether radiation of $b$ quarks can lead to (nearly) singular behavior, i.e., logarithmic enhancement, in the infrared and collinear regions. If yes, logarithmic mappings are applied to phase space. Analogously, \verb|phs_threshold_t| decides about potential $t$-channel singularities. Here, the default value is $100\;\GeV$, so amplitudes with $W$ and $Z$ in the $t$-channel are considered as logarithmically enhanced. For a high-energy hadron collider of 40 or 100 TeV energy, also $W$ and $Z$ in $s$-channel like situations might be necessary to be considered massless. Such logarithmic mappings need a dimensionful scale as parameter. There are three such scales, all with default value $10\;\GeV$: \verb|phs_e_scale| (energy), \verb|phs_m_scale| (invariant mass), and \verb|phs_q_scale| (momentum transfer). If cuts and/or masses are such that energies, invariant masses of particle pairs, and momentum transfer values below $10\;\GeV$ are excluded or suppressed, the values can be kept. In special cases they should be changed: for instance, if you want to describe $\gamma^*\to\mu^+\mu^-$ splitting well down to the muon mass, no cuts, you may set \verb|phs_m_scale = mmu|. The convergence of the Monte-Carlo integration result will be considerably faster. There are more flags. These and more details about the phase space parameterization will be described in Sec.~\ref{sec:wood}. \subsection{Cuts} \whizard~2 does not apply default cuts to the integrand. Therefore, processes with massless particles in the initial, intermediate, or final states may not have a finite cross section. This fact will manifest itself in an integration that does not converge, or is unstable, or does not yield a reasonable error or reweighting efficiency even for very large numbers of iterations or calls per iterations. When doing any calculation, you should verify first that the result that you are going to compute is finite on physical grounds. If not, you have to apply cuts that make it finite. A set of cuts is defined by the \ttt{cuts} statement. Here is an example \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = all Pt > 20 GeV [colored] \end{verbatim} \end{footnotesize} \end{quote} This implies that events are kept only (for integration and simulation) if the transverse momenta of all colored particles are above $20\;\GeV$. Technically, \ttt{cuts} is a special object, which is unique within a given scope, and is defined by the logical expression on the right-hand side of the assignment. It may be defined in global scope, so it is applied to all subsequent processes. It may be redefined by another \ttt{cuts} statement. This overrides the first cuts setting: the \ttt{cuts} statement is not cumulative. Multiple cuts should be specified by the logical operators of \sindarin, for instance \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = all Pt > 20 GeV [colored] and all E > 5 GeV [photon] \end{verbatim} \end{footnotesize} \end{quote} Cuts may also be defined local to an \ttt{integrate} command, i.e., in the options in braces. They will apply only to the processes being integrated, overriding any global cuts. The right-hand side expression in the \ttt{cuts} statement is evaluated at the point where it is used by an \ttt{integrate} command (which could be an implicit one called by \ttt{simulate}). Hence, if the logical expression contains parameters, such as \begin{quote} \begin{footnotesize} \begin{verbatim} mH = 120 GeV cuts = all M > mH [b, bbar] mH = 150 GeV integrate (myproc) \end{verbatim} \end{footnotesize} \end{quote} the Higgs mass value that is inserted is the value in place when \ttt{integrate} is evaluated, $150\;\GeV$ in this example. This same value will also be used when the process is called by a subsequent \ttt{simulate}; it is \ttt{integrate} which compiles the cut expression and stores it among the process data. This behavior allows for scanning over parameters without redefining the cuts every time. The cut expression can make use of all variables and constructs that are defined at the point where it is evaluated. In particular, it can make use of the particle content and kinematics of the hard process, as in the example above. In addition to the predefined variables and those defined by the user, there are the following variables which depend on the hard process: \begin{quote} \begin{tabular}{ll} integer: & \ttt{n\_in}, \ttt{n\_out}, \ttt{n\_tot} \\ real: & \ttt{sqrts}, \ttt{sqrts\_hat} \end{tabular} \end{quote} Example: \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = sqrts_hat > 150 GeV \end{verbatim} \end{footnotesize} \end{quote} The constants \ttt{n\_in} etc.\ are sometimes useful if a generic set of cuts is defined, which applies to various processes simultaneously. The user is encouraged to define his/her own set of cuts, if possible in a process-independent manner, even if it is not required. The \ttt{include} command allows for storing a set of cuts in a separate \sindarin\ script which may be read in anywhere. As an example, the system directories contain a file \verb|default_cuts.sin| which may be invoked by \begin{quote} \begin{footnotesize} \begin{verbatim} include ("default_cuts.sin") \end{verbatim} \end{footnotesize} \end{quote} \subsection{QCD scale and coupling} \whizard\ treats all physical parameters of a model, the coefficients in the Lagrangian, as constants. As a leading-order program, \whizard\ does not make use of running parameters as they are described by renormalization theory. For electroweak interactions where the perturbative expansion is sufficiently well behaved, this is a consistent approach. As far as QCD is concerned, this approach does not yield numerically reliable results, even on the validity scale of the tree approximation. In \whizard\ttt{2}, it is therefore possible to replace the fixed value of $\alpha_s$ (which is accessible as the intrinsic model variable \verb|alphas|), by a function of an energy scale $\mu$. This is controlled by the parameter \verb|?alphas_is_fixed|, which is \ttt{true} by default. Setting it to \ttt{false} enables running~$\alpha_s$. The user has then to decide how $\alpha_s$ is calculated. One option is to set \verb|?alphas_from_lhapdf| (default \ttt{false}). This is recommended if the \lhapdf\ library is used for including structure functions, but it may also be set if \lhapdf\ is not invoked. \whizard\ will then use the $\alpha_s$ formula and value that matches the active \lhapdf\ structure function set and member. In the very same way, the $\alpha_s$ running from the PDFs implemented intrinsically in \whizard\ can be taken by setting \verb|?alphas_from_pdf_builtin| to \ttt{true}. This is the same running then the one from \lhapdf, if the intrinsic PDF coincides with a PDF chosen from \lhapdf. If this is not appropriate, there are again two possibilities. If \verb|?alphas_from_mz| is \ttt{true}, the user input value \verb|alphas| is interpreted as the running value $\alpha_s(m_Z)$, and for the particular event, the coupling is evolved to the appropriate scale $\mu$. The formula is controlled by the further parameters \verb|alphas_order| (default $0$, meaning leading-log; maximum $2$) and \verb|alphas_nf| (default $5$). Otherwise there is the option to set \verb|?alphas_from_lambda_qcd = true| in order to evaluate $\alpha_s$ from the scale $\Lambda_{\rm QCD}$, represented by the intrinsic variable \verb|lambda_qcd|. The reference value for the QCD scale is $\Lambda\_{\rm QCD} = 200$ MeV. \verb|alphas_order| and \verb|alphas_nf| apply analogously. Note that for using one of the running options for $\alpha_s$, always \ttt{?alphas\_is\_fixed = false} has to be invoked. In any case, if $\alpha_s$ is not fixed, each event has to be assigned an energy scale. By default, this is $\sqrt{\hat s}$, the partonic invariant mass of the event. This can be replaced by a user-defined scale, the special object \ttt{scale}. This is assigned and used just like the \ttt{cuts} object. The right-hand side is a real-valued expression. Here is an example: \begin{quote} \begin{footnotesize} \begin{verbatim} scale = eval Pt [sort by -Pt [colored]] \end{verbatim} \end{footnotesize} \end{quote} This selects the $p_T$ value of the first entry in the list of colored particles sorted by decreasing $p_T$, i.e., the $p_T$ of the hardest jet. The \ttt{scale} definition is used not just for running $\alpha_s$ (if enabled), but it is also the factorization scale for the \lhapdf\ structure functions. These two values can be set differently by specifying \ttt{factorization\_scale} for the scale at which the PDFs are evaluated. Analogously, there is a variable \ttt{renormalization\_scale} that sets the scale value for the running $\alpha_s$. Whenever any of these two values is set, it supersedes the \ttt{scale} value. Just like the \ttt{cuts} expression, the expressions for \ttt{scale}, \ttt{factorization\_scale} and also \ttt{renormalization\_scale} are evaluated at the point where it is read by an explicit or implicit \ttt{integrate} command. \subsection{Reweighting factor} It is possible to reweight the integrand by a user-defined function of the event kinematics. This is done by specifying a \ttt{weight} expression. Syntax and usage is exactly analogous to the \ttt{scale} expression. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} weight = eval (1 + cos (Theta) ^ 2) [lepton] \end{verbatim} \end{footnotesize} \end{quote} We should note that the phase-space setup is not aware of this reweighting, so in complicated cases you should not expect adaptation to achieve as accurate results as for plain cross sections. Needless to say, the default \ttt{weight} is unity. \section{Events} After the cross section integral of a scattering process is known (or the partial-width integral of a decay process), \whizard\ can generate event samples. There are two limiting cases or modes of event generation: \begin{enumerate} \item For a physics simulation, one needs \emph{unweighted} events, so the probability of a process and a kinematical configuration in the event sample is given by its squared matrix element. \item Monte-Carlo integration yields \emph{weighted} events, where the probability (without any grid adaptation) is uniformly distributed over phase space, while the weight of the event is given by its squared matrix element. \end{enumerate} The choice of parameterizations and the iterative adaptation of the integration grids gradually shift the generation mode from option 2 to option 1, which obviously is preferred since it simulates the actual outcome of an experiment. Unfortunately, this adaptation is perfect only in trivial cases, such that the Monte-Carlo integration yields non-uniform probability still with weighted events. Unweighted events are obtained by rejection, i.e., accepting an event with a probability equal to its own weight divided by the maximal possible weight. Furthermore, the maximal weight is never precisely known, so this probability can only be estimated. The default generation mode of \whizard\ is unweighted. This is controlled by the parameter \verb|?unweighted| with default value \ttt{true}. Unweighted events are easy to interpret and can be directly compared with experiment, if properly interfaced with detector simulation and analysis. However, when applying rejection to generate unweighted events, the generator discards information, and for a single event it needs, on the average, $1/\epsilon$ calls, where the efficiency $\epsilon$ is the ratio of the average weight over the maximal weight. If \verb|?unweighted| is \ttt{false}, all events are kept and assigned their respective weights in histograms or event files. \subsection{Simulation} \label{sec:simulation} The \ttt{simulate} command generates an event sample. The number of events can be set either by specifying the integer variable \verb|n_events|, or by the real variable \verb|luminosity|. (This holds for unweighted events. If weighted events are requested, the luminosity value is ignored.) The luminosity is measured in femtobarns, but other units can be used, too. Since the cross sections for the processes are known at that point, the number of events is determined as the luminosity multiplied by the cross section. As usual, both parameters can be set either as global or as local parameters: \begin{quote} \begin{footnotesize} \begin{verbatim} n_events = 10000 simulate (proc1) simulate (proc2, proc3) { luminosity = 100 / 1 pbarn } \end{verbatim} \end{footnotesize} \end{quote} In the second example, both \verb|n_events| and \verb|luminosity| are set. In that case, \whizard\ chooses whatever produces the larger number of events. If more than one process is specified in the argument of \ttt{simulate}, events are distributed among the processes with fractions proportional to their cross section values. The processes are mixed randomly, as it would be the case for real data. The raw event sample is written to a file which is named after the first process in the argument of \ttt{simulate}. If the process name is \ttt{proc1}, the file will be named \ttt{proc1.evx}. You can choose another basename by the string variable \verb|$sample|. For instance, \begin{quote} \begin{footnotesize} \begin{verbatim} simulate (proc1) { n_events = 4000 $sample = "my_events" } \end{verbatim} \end{footnotesize} \end{quote} will produce an event file \verb|my_events.evx| which contains $4000$ events. This event file is in a machine-dependent binary format, so it is not of immediate use. Its principal purpose is to serve as a cache: if you re-run the same script, before starting simulation, it will look for an existing event file that matches the input. If nothing has changed, it will find the file previously generated and read in the events, instead of generating them. Thus you can modify the analysis or any further steps without repeating the time-consuming task of generating a large event sample. If you change the number of events to generate, the program will make use of the existing event sample and generate further events only when it is used up. If necessary, you can suppress the writing/reading of the raw event file by the parameters \verb|?write_raw| and \verb|?read_raw|. If you try to reuse an event file that has been written by a previous version of \whizard, you may run into an incompatibility, which will be detected as an error. If this happens, you may enforce a compatibility mode (also for writing) by setting \ttt{\$event\_file\_version} to the appropriate version string, e.g., \verb|"2.0"|. Be aware that this may break some more recent features in the event analysis. Generating an event sample can serve several purposes. First of all, it can be analyzed directly, by \whizard's built-in capabilities, to produce tables, histograms, or calculate inclusive observables. The basic analysis features of \whizard\ are described below in Sec.~\ref{sec:analysis}. It can be written to an external file in a standard format that a human or an external program can understand. In Chap.~\ref{chap:events}, you will find a more thorough discussion of event generation with \whizard, which also covers in detail the available event-file formats. Finally, \whizard\ can rescan an existing event sample. The event sample may either be the result of a previous \ttt{simulate} run or, under certain conditions, an external event sample produced by another generator or reconstructed from data. \begin{quote} \begin{footnotesize} \begin{verbatim} rescan "my_events" (proc1) { $pdf_builtin_set = "MSTW2008LO" } \end{verbatim} \end{footnotesize} \end{quote} The rescanning may apply different parameters and recalculate the matrix element, it may apply a different event selection, it may reweight the events by a different PDF set (as above). The modified event sample can again be analyzed or written to file. For more details, cf.\ Sec.~\ref{sec:rescan}. %%%%%%%%%%%%%%% \subsection{Decays} \label{sec:decays} Normally, the events generated by the \ttt{simulate} command will be identical in structure to the events that the \ttt{integrate} command generates. This implies that for a process such as $pp\to W^+W^-$, the final-state particles are on-shell and stable, so they appear explicitly in the generated event files. If events are desired where the decay products of the $W$ bosons appear, one has to generate another process, e.g., $pp\to u\bar d\bar ud$. In this case, the intermediate vector bosons, if reconstructed, are off-shell as dictated by physics, and the process contains all intermediate states that are possible. In this example, the matrix element contains also $ZZ$, photon, and non-resonant intermediate states. (This can be restricted via the \verb|$restrictions| option, cf.\ \ref{sec:process options}. Another approach is to factorize the process in production (of $W$ bosons) and decays ($W\to q\bar q$). This is actually the traditional approach, since it is much less computing-intensive. The factorization neglects all off-shell effects and irreducible background diagrams that do not have the decaying particles as an intermediate resonance. While \whizard\ is able to deal with multi-particle processes without factorization, the needed computing resources rapidly increase with the number of external particles. Particularly, it is the phase space integration that becomes the true bottleneck for a high multiplicity of final state particles. In order to use the factorized approach, one has to specify particles as \ttt{unstable}. (Also, the \ttt{?allow\_decays} switch must be \ttt{true}; this is however its default value.) We give an example for a $pp \to Wj$ final state: \begin{code} process wj = u, gl => d, Wp process wen = Wp => E1, n1 integrate (wen) sqrts = 7 TeV beams = p, p => pdf_builtin unstable Wp (wen) simulate (wj) { n_events = 1 } \end{code} This defines a $2 \to 2$ hard scattering process of $W + j$ production at the 7 TeV LHC 2011 run. The $W^+$ is marked as unstable, with its decay process being $W^+ \to e^+ \nu_e$. In the \ttt{simulate} command both processes, the production process \ttt{wj} and the decay process \ttt{wen} will be integrated, while the $W$ decays become effective only in the final event sample. This event sample will contain final states with multiplicity $3$, namely $e^+ \nu_e d$. Note that here only one decay process is given, hence the branching ratio for the decay will be taken to be $100 \%$ by \whizard. A natural restriction of the factorized approach is the implied narrow-width approximation. Theoretically, this restriction is necessary since whenever the width plays an important role, the usage of the factorized approach will not be fully justified. In particular, all involved matrix elements must be evaluated on-shell, or otherwise gauge-invariance issues could spoil the calculation. (There are plans for a future \whizard\ version to also include Breit-Wigner or Gaussian distributions when using the factorized approach.) Decays can be concatenated, e.g. for top pair production and decay, $e^+ e^- \to t \bar t$ with decay $t \to W^+ b$, and subsequent leptonic decay of the $W$ as in $W^+ \to \mu^+ \nu_\mu$: \begin{code} process eett = e1, E1 => t, tbar process t_dec = t => Wp, b process W_dec = Wp => E2, n2 unstable t (t_dec) unstable Wp (W_dec) sqrts = 500 simulate (eett) { n_events = 1 } \end{code} Note that in this case the final state in the event file will consist of $\bar t b \mu^+ \nu_\mu$ because the anti-top is not decayed. If more than one decay process is being specified like in \begin{code} process eeww = e1, E1 => Wp, Wm process w_dec1 = Wp => E2, n2 process w_dec2 = Wp => E3, n3 unstable Wp (w_dec1, w_dec2) sqrts = 500 simulate (eeww) { n_events = 100 } \end{code} then \whizard\ takes the integrals of the specified decay processes and distributes the decays statistically according to the calculated branching ratio. Note that this might not be the true branching ratios if decay processes are missing, or loop corrections to partial widths give large(r) deviations. In the calculation of the code above, \whizard\ will issue an output like \begin{code} | Unstable particle W+: computed branching ratios: | w_dec1: 5.0018253E-01 mu+, numu | w_dec2: 4.9981747E-01 tau+, nutau | Total width = 4.5496085E-01 GeV (computed) | = 2.0490000E+00 GeV (preset) | Decay options: helicity treated exactly \end{code} So in this case, \whizard\ uses 50 \% muonic and 50 \% tauonic decays of the positively charged $W$, while the $W^-$ appears directly in the event file. \whizard\ shows the difference between the preset $W$ width from the physics model file and the value computed from the two decay channels. Note that a particle in a \sindarin\ input script can be also explictly marked as being stable, using the \begin{code} stable \end{code} constructor for the particle \ttt{}. \subsubsection{Resetting branching fractions} \label{sec:br-reset} As described above, decay processes that appear in a simulation must first be integrated by the program, either explicitly via the \verb|integrate| command, or implicitly by \verb|unstable|. In either case, \whizard\ will use the computed partial widths in order to determine branching fractions. In the spirit of a purely leading-order calculation, this is consistent. However, it may be desired to rather use different branching-fraction values for the decays of a particle, for instance, NLO-corrected values. In fact, after \whizard\ has integrated any process, the integration result becomes available as an ordinary \sindarin\ variable. For instance, if a decay process has the ID \verb|h_bb|, the integral of this process -- the partial width, in this case -- becomes the variable \verb|integral(h_bb)|. This variable may be reset just like any other variable: \begin{code} integral(h_bb) = 2.40e-3 GeV \end{code} The new value will be used for all subsequent Higgs branching-ratio calculations and decays, if an unstable Higgs appears in a process for simulation. \subsubsection{Spin correlations in decays} \label{sec:spin-correlations} By default, \whizard\ applies full spin and color correlations to the factorized processes, so it keeps both color and spin coherence between productions and decays. Correlations between decay products of distinct unstable particles in the same event are also fully retained. The program sums over all intermediate quantum numbers. Although this approach obviously yields the optimal description with the limits of production-decay factorization, there is support for a simplified handling of particle decays. Essentially, there are four options, taking a decay \ttt{W\_ud}: $W^-\to \bar u d$ as an example: \begin{enumerate} \item Full spin correlations: \verb|unstable Wp (W_ud)| \item Isotropic decay: \verb|unstable Wp (W_ud) { ?isotropic_decay = true }| \item Diagonal decay matrix: \verb|unstable Wp (W_ud) { ?diagonal_decay = true }| \item Project onto specific helicity: \verb|unstable Wp (W_ud) { decay_helicity = -1 }| \end{enumerate} Here, the isotropic option completely eliminates spin correlations. The diagonal-decays option eliminates just the off-diagonal entries of the $W$ spin-density matrix. This is equivalent to a measurement of spin before the decay. As a result, spin correlations are still present in the classical sense, while quantum coherence is lost. The definite-helicity option is similar and additional selects only the specified helicity component for the decaying particle, so its decay distribution assumes the shape for an accordingly polarized particle. All options apply in the rest frame of the decaying particle, with the particle's momentum as the quantization axis. \subsubsection{Automatic decays} A convenient option is if the user did not have to specify the decay mode by hand, but if they were generated automatically. \whizard\ does have this option: the flag \ttt{?auto\_decays} can be set to \ttt{true}, and is taking care of that. In that case the list for the decay processes of the particle marked as unstable is left empty (we take a $W^-$ again as example): \begin{code} unstable Wm () { ?auto_decays = true } \end{code} \whizard\ then inspects at the local position within the \sindarin\ input file where that \ttt{unstable} statement appears the masses of all the particles of the active physics model in order to determine which decays are possible. It then calculates their partial widths. There are a few options to customize the decays. The integer variable \ttt{auto\_decays\_multiplicity} allows to set the maximal multiplicity of the final states considered in the auto decay option. The defaul value of that variable is \ttt{2}; please be quite careful when setting this to values larger than that. If you do so, the flag \ttt{?auto\_decays\_radiative} allows to specify whether final states simply containing additional resolved gluons or photons are taken into account or not. For the example above, you almost hit the PDG value for the $W$ total width: \begin{code} | Unstable particle W-: computed branching ratios: | decay_a24_1: 3.3337068E-01 d, ubar | decay_a24_2: 3.3325864E-01 s, cbar | decay_a24_3: 1.1112356E-01 e-, nuebar | decay_a24_4: 1.1112356E-01 mu-, numubar | decay_a24_5: 1.1112356E-01 tau-, nutaubar | Total width = 2.0478471E+00 GeV (computed) | = 2.0490000E+00 GeV (preset) | Decay options: helicity treated exactly \end{code} \subsubsection{Future shorter notation for decays} {\color{red} In an upcoming \whizard\ version there will be a shorter and more concise notation already in the process definition for such decays, which, however, is current not yet implemented. The two first examples above will then be shorter and have this form:} \begin{code} process wj = u, gl => (Wp => E1, n1), d \end{code} {\color{red} as well as } \begin{code} process eett = e1, E1 => (t => (Wp => E2, n2), b), tbar \end{code} %%%%% \subsection{Event formats} As mentioned above, the internal \whizard\ event format is a machine-dependent event format. There are a series of human-readable ASCII event formats that are supported: very verbose formats intended for debugging, formats that have been agreed upon during the Les Houches workshops like LHA and LHEF, or formats that are steered through external packages like HepMC. More details about event formats can be found in Sec.~\ref{sec:eventformats}. %%%%%%%%%%%%%%% \section{Analysis and Visualization} \label{sec:analysis} \sindarin\ natively supports basic methods of data analysis and visualization which are frequently used in high-energy physics studies. Data generated during script execution, in particular simulated event samples, can be analyzed to evaluate further observables, fill histograms, and draw two-dimensional plots. So the user does not have to rely on his/her own external graphical analysis method (like e.g. \ttt{gnuplot} or \ttt{ROOT} etc.), but can use methods that automatically ship with \whizard. In many cases, the user, however, clearly will use his/her own analysis machinery, especially experimental collaborations. In the following sections, we first summarize the available data structures, before we consider their graphical display. \subsection{Observables} Analyses in high-energy physics often involve averages of quantities other than a total cross section. \sindarin\ supports this by its \ttt{observable} objects. An \ttt{observable} is a container that collects a single real-valued variable with a statistical distribution. It is declared by a command of the form \begin{quote} \begin{footnotesize} \ttt{observable \emph{analysis-tag}} \end{footnotesize} \end{quote} where \ttt{\emph{analysis-tag}} is an identifier that follows the same rules as a variable name. Once the observable has been declared, it can be filled with values. This is done via the \ttt{record} command: \begin{quote} \begin{footnotesize} \ttt{record \emph{analysis-tag} (\emph{value})} \end{footnotesize} \end{quote} To make use of this, after values have been filled, we want to perform the actual analysis and display the results. For an observable, these are the mean value and the standard deviation. There is the command \ttt{write\_analysis}: \begin{quote} \begin{footnotesize} \ttt{write\_analysis (\emph{analysis-tag})} \end{footnotesize} \end{quote} Here is an example: \begin{quote} \begin{footnotesize} \begin{verbatim} observable obs record obs (1.2) record obs (1.3) record obs (2.1) record obs (1.4) write_analysis (obs) \end{verbatim} \end{footnotesize} \end{quote} The result is displayed on screen: \begin{quote} \begin{footnotesize} \begin{verbatim} ############################################################################### # Observable: obs average = 1.500000000000E+00 error[abs] = 2.041241452319E-01 error[rel] = 1.360827634880E-01 n_entries = 4 \end{verbatim} \end{footnotesize} \end{quote} \subsection{The analysis expression} \label{subsec:analysis} The most common application is the computation of event observables -- for instance, a forward-backward asymmetry -- during simulation. To this end, there is an \ttt{analysis} expression, which behaves very similar to the \ttt{cuts} expression. It is defined either globally \begin{quote} \begin{footnotesize} \ttt{analysis = \emph{logical-expr}} \end{footnotesize} \end{quote} or as a local option to the \ttt{simulate} or \ttt{rescan} commands which generate and handle event samples. If this expression is defined, it is not evaluated immediately, but it is evaluated once for each event in the sample. In contrast to the \ttt{cuts} expression, the logical value of the \ttt{analysis} expression is discarded; the expression form has been chosen just by analogy. To make this useful, there is a variant of the \ttt{record} command, namely a \ttt{record} function with exactly the same syntax. As an example, here is a calculation of the forward-backward symmetry in a process \ttt{ee\_mumu} with final state $\mu^+\mu^-$: \begin{quote} \begin{footnotesize} \begin{verbatim} observable a_fb analysis = record a_fb (eval sgn (Pz) ["mu-"]) simulate (ee_mumu) { luminosity = 1 / 1 fbarn } \end{verbatim} \end{footnotesize} \end{quote} The logical return value of \ttt{record} -- which is discarded here -- is \ttt{true} if the recording was successful. In case of histograms (see below) it is true if the value falls within bounds, false otherwise. Note that the function version of \ttt{record} can be used anywhere in expressions, not just in the \ttt{analysis} expression. When \ttt{record} is called for an observable or histogram in simulation mode, the recorded value is weighted appropriately. If \ttt{?unweighted} is true, the weight is unity, otherwise it is the event weight. The \ttt{analysis} expression can involve any other construct that can be expressed as an expression in \sindarin. For instance, this records the energy of the 4th hardest jet in a histogram \ttt{pt\_dist}, if it is in the central region: \begin{quote} \begin{footnotesize} \begin{verbatim} analysis = record pt_dist (eval E [extract index 4 [sort by - Pt [select if -2.5 < Eta < 2.5 [colored]]]]) \end{verbatim} \end{footnotesize} \end{quote} Here, if there is no 4th jet in the event which satisfies the criterion, the result will be an undefined value which is not recorded. In that case, \ttt{record} evaluates to \ttt{false}. Selection cuts can be part of the analysis expression: \begin{code} analysis = if any Pt > 50 GeV [lepton] then record jet_energy (eval E [collect [jet]]) endif \end{code} Alternatively, we can specify a separate selection expression: \begin{code} selection = any Pt > 50 GeV [lepton] analysis = record jet_energy (eval E [collect [jet]]) \end{code} The former version writes all events to file (if requested), but applies the analysis expression only to the selected events. This allows for the simultaneous application of different selections to a single event sample. The latter version applies the selection to all events before they are analyzed or written to file. The analysis expression can make use of all variables and constructs that are defined at the point where it is evaluated. In particular, it can make use of the particle content and kinematics of the hard process, as in the example above. In addition to the predefined variables and those defined by the user, there are the following variables which depend on the hard process. Some of them are constants, some vary event by event: \begin{quote} \begin{tabular}{ll} integer: &\ttt{event\_index} \\ integer: &\ttt{process\_num\_id} \\ string: &\ttt{\$process\_id} \\ integer: &\ttt{n\_in}, \ttt{n\_out}, \ttt{n\_tot} \\ real: &\ttt{sqrts}, \ttt{sqrts\_hat} \\ real: &\ttt{sqme}, \ttt{sqme\_ref} \\ real: &\ttt{event\_weight}, \ttt{event\_excess} \end{tabular} \end{quote} The \ttt{process\_num\_id} is the numeric ID as used by external programs, while the process index refers to the current library. By default, the two are identical. The process index itself is not available as a predefined observable. The \ttt{sqme} and \ttt{sqme\_ref} values indicate the squared matrix element and the reference squared matrix element, respectively. The latter applies when comparing with a reference sample (the \ttt{rescan} command). \ttt{record} evaluates to a logical, so several \ttt{record} functions may be concatenated by the logical operators \ttt{and} or \ttt{or}. However, since usually the further evaluation should not depend on the return value of \ttt{record}, it is more advisable to concatenate them by the semicolon (\ttt{;}) operator. This is an operator (\emph{not} a statement separator or terminator) that connects two logical expressions and evaluates both of them in order. The lhs result is discarded, the result is the value of the rhs: \begin{quote} \begin{footnotesize} \begin{verbatim} analysis = record hist_pt (eval Pt [lepton]) ; record hist_ct (eval cos (Theta) [lepton]) \end{verbatim} \end{footnotesize} \end{quote} \subsection{Histograms} \label{sec:histogram} In \sindarin, a histogram is declared by the command \begin{quote} \begin{footnotesize} \ttt{histogram \emph{analysis-tag} (\emph{lower-bound}, \emph{upper-bound})} \end{footnotesize} \end{quote} This creates a histogram data structure for an (unspecified) observable. The entries are organized in bins between the real values \ttt{\emph{lower-bound}} and \ttt{\emph{upper-bound}}. The number of bins is given by the value of the intrinsic integer variable \ttt{n\_bins}, the default value is 20. The \ttt{histogram} declaration supports an optional argument, so the number of bins can be set locally, for instance \begin{quote} \begin{footnotesize} \ttt{histogram pt\_distribution (0 GeV, 500 GeV) \{ n\_bins = 50 \}} \end{footnotesize} \end{quote} Sometimes it is more convenient to set the bin width directly. This can be done in a third argument to the \ttt{histogram} command. \begin{quote} \begin{footnotesize} \ttt{histogram pt\_distribution (0 GeV, 500 GeV, 10 GeV)} \end{footnotesize} \end{quote} If the bin width is specified this way, it overrides the setting of \ttt{n\_bins}. The \ttt{record} command or function fills histograms. A single call \begin{quote} \begin{footnotesize} \ttt{record (\emph{real-expr})} \end{footnotesize} \end{quote} puts the value of \ttt{\emph{real-expr}} into the appropriate bin. If the call is issued during a simulation where \ttt{unweighted} is false, the entry is weighted appropriately. If the value is outside the range specified in the histogram declaration, it is put into one of the special underflow and overflow bins. The \ttt{write\_analysis} command prints the histogram contents as a table in blank-separated fixed columns. The columns are: $x$ (bin midpoint), $y$ (bin contents), $\Delta y$ (error), excess weight, and $n$ (number of entries). The output also contains comments initiated by a \verb|#| sign, and following the histogram proper, information about underflow and overflow as well as overall contents is added. \subsection{Plots} \label{sec:plot} While a histogram stores only summary information about a data set, a \ttt{plot} stores all data as $(x,y)$ pairs, optionally with errors. A plot declaration is as simple as \begin{quote} \begin{footnotesize} \ttt{plot \emph{analysis-tag}} \end{footnotesize} \end{quote} Like observables and histograms, plots are filled by the \ttt{record} command or expression. To this end, it can take two arguments, \begin{quote} \begin{footnotesize} \ttt{record (\emph{x-expr}, \emph{y-expr})} \end{footnotesize} \end{quote} or up to four: \begin{quote} \begin{footnotesize} \ttt{record (\emph{x-expr}, \emph{y-expr}, \emph{y-error})} \\ \ttt{record (\emph{x-expr}, \emph{y-expr}, \emph{y-error-expr}, \emph{x-error-expr})} \end{footnotesize} \end{quote} Note that the $y$ error comes first. This is because applications will demand errors for the $y$ value much more often than $x$ errors. The plot output, again written by \ttt{write\_analysis} contains the four values for each point, again in the ordering $x,y,\Delta y, \Delta x$. \subsection{Analysis Output} There is a default format for piping information into observables, histograms, and plots. In older versions of \whizard\ there was a first version of a custom format, which was however rather limited. A more versatile custom output format will be coming soon. \begin{enumerate} \item By default, the \ttt{write\_analysis} command prints all data to the standard output. The data are also written to a default file with the name \ttt{whizard\_analysis.dat}. Output is redirected to a file with a different name if the variable \ttt{\$out\_file} has a nonempty value. If the file is already open, the output will be appended to the file, and it will be kept open. If the file is not open, \ttt{write\_analysis} will open the output file by itself, overwriting any previous file with the same name, and close it again after data have been written. The command is able to print more than one dataset, following the syntax \begin{quote} \begin{footnotesize} \ttt{write\_analysis (\emph{analysis-tag1}, \emph{analysis-tag2}, \ldots) \{ \emph{options} \}} \end{footnotesize} \end{quote} The argument in brackets may also be empty or absent; in this case, all currently existing datasets are printed. The default data format is suitable for compiling analysis data by \whizard's built-in \gamelan\ graphics driver (see below and particularly Chap.~\ref{chap:visualization}). Data are written in blank-separated fixed columns, headlines and comments are initiated by the \verb|#| sign, and each data set is terminated by a blank line. However, external programs often require special formatting. The internal graphics driver \gamelan\ of \whizard\ is initiated by the \ttt{compile\_analysis} command. Its syntax is the same, and it contains the \ttt{write\_analysis} if that has not been separately called (which is unnecessary). For more details about the \gamelan\ graphics driver and data visualization within \whizard, confer Chap.~\ref{chap:visualization}. \item Custom format. Not yet (re-)implemented in a general form. \end{enumerate} \section{Custom Input/Output} \label{sec:I/O} \whizard\ is rather chatty. When you run examples or your own scripts, you will observe that the program echoes most operations (assignments, commands, etc.) on the standard output channel, i.e., on screen. Furthermore, all screen output is copied to a log file which by default is named \ttt{whizard.log}. For each integration run, \whizard\ writes additional process-specific information to a file \ttt{\var{tag}.log}, where \ttt{\var{tag}} is the process name. Furthermore, the \ttt{write\_analysis} command dumps analysis data -- tables for histograms and plots -- to its own set of files, cf.\ Sec.~\ref{sec:analysis}. However, there is the occasional need to write data to extra files in a custom format. \sindarin\ deals with that in terms of the following commands: \subsection{Output Files} \subsubsection{open\_out} \begin{syntax} open\_out (\var{filename}) \\ open\_out (\var{filename}) \{ \var{options} \} \end{syntax} Open an external file for writing. If the file exists, it is overwritten without warning, otherwise it is created. Example: \begin{code} open_out ("my_output.dat") \end{code} \subsubsection{close\_out} \begin{syntax} close\_out (\var{filename}) \\ close\_out (\var{filename}) \{ \var{options} \} \end{syntax} Close an external file that is open for writing. Example: \begin{code} close_out ("my_output.dat") \end{code} \subsection{Printing Data} \subsubsection{printf} \begin{syntax} printf \var{format-string-expr} \\ printf \var{format-string-expr} (\var{data-objects}) \end{syntax} Format \ttt{\var{data-objects}} according to \ttt{\var{format-string-expr}} and print the resulting string to standard output if the string variable \ttt{\$out\_file} is undefined. If \ttt{\$out\_file} is defined and the file with this name is open for writing, print to this file instead. Print a newline at the end if \ttt{?out\_advance} is true, otherwise don't finish the line. The \ttt{\var{format-string-expr}} must evaluate to a string. Formatting follows a subset of the rules for the \ttt{printf(3)} command in the \ttt{C} language. The supported rules are: \begin{itemize} \item All characters are printed as-is, with the exception of embedded conversion specifications. \item Conversion specifications are initiated by a percent (\verb|%|) sign and followed by an optional prefix flag, an optional integer value, an optional dot followed by another integer, and a mandatory letter as the conversion specifier. \item A percent sign immediately followed by another percent sign is interpreted as a single percent sign, not as a conversion specification. \item The number of conversion specifiers must be equal to the number of data objects. The data types must also match. \item The first integer indicates the minimum field width, the second one the precision. The field is expanded as needed. \item The conversion specifiers \ttt{d} and \ttt{i} are equivalent, they indicate an integer value. \item The conversion specifier \ttt{e} indicates a real value that should be printed in exponential notation. \item The conversion specifier \ttt{f} indicates a real value that should be printed in decimal notation without exponent. \item The conversion specifier \ttt{g} indicates a real value that should be printed either in exponential or in decimal notation, depending on its value. \item The conversion specifier \ttt{s} indicates a logical or string value that should be printed as a string. \item Possible prefixes are \verb|#| (alternate form, mandatory decimal point for reals), \verb|0| (zero padding), \verb|-| (left adjusted), \verb|+| (always print sign), `\verb| |' (print space before a positive number). \end{itemize} For more details, consult the \verb|printf(3)| manpage. Note that other conversions are not supported and will be rejected by \whizard. The data arguments are numeric, logical or string variables or expressions. Numeric expressions must be enclosed in parantheses. Logical expressions must be enclosed in parantheses prefixed by a question mark \verb|?|. String expressions must be enclosed in parantheses prefixed by a dollar sign \verb|$|. These forms behave as anonymous variables. Note that for simply printing a text string, you may call \ttt{printf} with just a format string and no data arguments. Examples: \begin{code} printf "The W mass is %8f GeV" (mW) int i = 2 int j = 3 printf "%i + %i = %i" (i, j, (i+j)) string $directory = "/usr/local/share" string $file = "foo.dat" printf "File path: %s/%s" ($directory, $file) \end{code} There is a related \ttt{sprintf} function, cf.~Sec.~\ref{sec:sprintf}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{WHIZARD at next-to-leading order} \subsection{Prerequisites} A full NLO computation requires virtual matrix elements obtained from loop diagrams. Since \oMega\ cannot calculate such diagrams, external programs are used. \whizard\ has a generic interface to matrix-element generators that are BLHA-compatible. Explicit implementations exist for \gosam, \openloops\ and \recola. %%%%% \subsubsection{Setting up \gosam} The installation of \gosam\ is detailed on the HepForge page \url{https://gosam/hepforge.org}. We mention here some of the steps necessary to get it to be linked with \whizard. {\bf Bug in \gosam\ installation scripts:} In many versions of \gosam\ there is a bug in the installation scripts that is only relevant if \gosam\ is installed with superuser privileges. Then all files in \ttt{\$installdir/share/golem} do not have read privileges for normal users. These privileges must be given manually to all files in that directory. Prerequisites for \gosam\ to produce code for one-loop matrix elements are the scientific algebra program \ttt{form} and the generator of loop topologies and diagrams, \ttt{qgraf}. These can be accessed via their respective webpages \url{http://www.nikhef.nl/~form/} and \url{http://cfif.ist.utl.pt/~paulo/qgraf.html}. Note also that both \ttt{Java} and the Java runtime environment have to be installed in order for \gosam\ to properly work. Furthermore, \ttt{libtool} needs to be installed. A more convenient way to install \gosam, is the automatic installation script \url{https://gosam.hepforge.org/gosam_installer.py}. %%%%% \subsubsection{Setting up \openloops} \label{sec:openloops-setup} The installation of \openloops\ is explained in detail on the HepForge page \url{https://openloops.hepforge.org}. In the following, the main steps for usage with \whizard\ are summarized. Please note that at the moment, \openloops\ cannot be installed such that in almost all cases the explicit \openloops\ package directory has to be set via \ttt{--with-openloops=}. \openloops\ can be checked out with \begin{code} git clone https://gitlab.com/openloops/OpenLoops.git \end{code} Note that \whizard\ only supports \openloops\ version that are at least 2.1.1 or newer. Alternatively, one can use the public beta version of \openloops, which can be checked out by the command \begin{code} git clone -b public_beta https://gitlab.com/openloops/OpenLoops.git \end{code} The program can be build by running \ttt{scons} or \ttt{./scons}, a local version that is included in the \openloops\ directory. This produces the script \ttt{./openloops}, which is the main hook for the further usage of the program. \openloops\ works by downloading prebuild process libraries, which have to be installed for each individual process. This requires the file \ttt{openloops.cfg}, which should contain the following content: \begin{code} [OpenLoops] process_repositories=public, whizard compile_extra=1 \end{code} The first line instructs \openloops\ to also look for process libraries in an additional lepton collider repository. The second line triggers the inclusion of $N+1$-particle tree-level matrix elements in the process directory, so that a complete NLO calculation including real amplitudes can be performed only with \openloops. The libraries can then be installed via \begin{code} ./openloops libinstall proc_name \end{code} A list of supported library names can be found on the \openloops\ web page. Note that a process library also includes all possible permutated processes. The process library \ttt{ppllj}, for example, can also be used to compute the matrix elements for $e^+ e^- \rightarrow q \bar{q}$ (massless quarks only). The massive case of the top quark is handled in \ttt{eett}. Additionally, there are process libraries for top and gauge boson decays, \ttt{tbw}, \ttt{vjj}, \ttt{tbln} and \ttt{tbqq}. Finally, \openloops\ can be linked to \whizard\ during configuration by including \begin{code} --enable-openloops --with-openloops=$OPENLOOPS_PATH, \end{code} where \ttt{\$OPENLOOPS\_PATH} is the directory the \openloops\ executable is located in. \openloops\ one-loop diagrams can then be used with the \sindarin\ option \begin{code} $loop_me_method = "openloops". \end{code} The functional tests which check the \openloops\ functionality require the libraries \ttt{ppllj}, \ttt{eett} and \ttt{tbw} to be installed (note that \ttt{eett} is not contained in \ttt{ppll}). During the configuration of \whizard, it is automatically checked that these two libraries, as well as the option \ttt{compile\_extra=1}, are present. \subsubsection{\openloops\ \sindarin\ flags} Several \sindarin\ options exist to control the behavior of \openloops. \begin{itemize} \item \ttt{openloops\_verbosity}:\\ Decide how much \openloops\ output is printed. Can have values 0, 1 and 2. \item \ttt{?openloops\_use\_cms}:\\ Activates the complex mass scheme. For computations with decaying resonances like the top quark or W or Z bosons, this is the preferred option to avoid gauge-dependencies. \item \ttt{openloops\_phs\_tolerance}:\\ Controls the exponent of \ttt{extra psp\_tolerance} in the BLHA interface, which is the numerical tolerance for the on-shell condition of external particles \item \ttt{openloops\_switch\_off\_muon\_yukawa}:\\ Sets the Yukawa coupling of muons to zero in order to assure agreement with \oMega, which is possibly used for other components and per default does not take $H\mu\mu$ couplings into account. \item \ttt{openloops\_stability\_log}:\\ Creates the directory \ttt{stability\_log}, which contains information about the performance of the matrix elements. Possible values are \begin{itemize} \item 0: No output (default), \item 1: On finish() call, \item 2: Adaptive, \item 3: Always \end{itemize} \item \ttt{?openloops\_use\_collier}: Use Collier as the reduction method (default true). \end{itemize} %%%%% \subsubsection{Setting up \recola} \label{sec:recola-setup} The installation of \recola\ is explained in detail on the HepForge page \url{https://recola.hepforge.org}. In the following the main steps for usage with \whizard\ are summarized. The minimal required version number of \recola\ is 1.3.0. \recola\ can be linked to \whizard\ during configuration by including \begin{code} --enable-recola \end{code} In case the \recola\ library is not in a standard path or a path accessible in the \ttt{LD\_LIBRARY\_PATH} (or \ttt{DYLD\_LIBRARY\_PATH}) of the operating system, then the option \begin{code} --with-recola=$RECOLA_PATH \end{code} can be set, where \ttt{\$RECOLA\_PATH} is the directory the \recola\ library is located in. \recola\ can then be used with the \sindarin\ option \begin{code} $method = "recola" \end{code} or any other of the matrix element methods. Note that there might be a clash of the \collier\ libraries when you have \collier\ installed both via \recola\ and via \openloops, but have compiled them with different \fortran\ compilers. %%%%% \subsection{NLO cross sections} An NLO computation can be switched on in \sindarin\ with \begin{code} process proc_nlo = in1, in2 => out1, ..., outN { nlo_calculation = }, \end{code} where the \ttt{nlo\_calculation} can be followed by a list of strings specifying the desired NLO-components to be integrated, i.e. \ttt{born}, \ttt{real}, \ttt{virtual}, \ttt{dglap}, (for hadron collisions) or \ttt{mismatch} (for the soft mismatch in resonance-aware computations) and \ttt{full}. The \ttt{full} option switches on all components and is required if the total NLO result is desired. For example, specifying \begin{code} nlo_calculation = born, virtual \end{code} will result in the computation of the Born and virtual component. The integration can be carried out in two different modes: Combined and separate integration. In the separate integration mode, each component is integrated individually, allowing for a good overview of their contributions to the total cross section and a fine tuned control over the iterations in each component. In the combined integration mode, all components are added up during integration so that the sum of them is evaluated. Here, only one integration will be displayed. The default method is the separate integration. The convergence of the integration can crucially be influenced by the presence of resonances. A better convergence is in this case achieved activating the resonance-aware FKS subtraction, \begin{code} $fks_mapping_type = "resonances". \end{code} This mode comes with an additional integration component, the so-called soft mismatch. Note that you can modify the number of iterations in each component with the multipliers: \begin{itemize} \item \ttt{mult\_call\_real} multiplies the number of calls to be used in the integration of the real component. A reasonable choice is \ttt{10.0} as the real phase-space is more complicated than the Born but the matrix elements evaluate faster than the virtuals. \item \ttt{mult\_call\_virt} multiplies the number of calls to be used in the integration of the virtual component. A reasonable choice is \ttt{0.5} to make sure that the fast Born component only contributes a negligible MC error compared to the real and virtual components. \item \ttt{mult\_call\_dglap} multiplies the number of calls to be used in the integration of the DGLAP component. \end{itemize} \subsection{Fixed-order NLO events} \label{ss:fixedorderNLOevents} Fixed-order NLO events can also be produced in three different modes: Combined weighted, combined unweighted and separated weighted. \begin{itemize} \item \textbf{Combined weighted}\\ In the combined mode, one single integration grid is produced, from which events are generated with the total NLO weight. The corresponding event file contains $N$ events with born-like kinematics and weight equal to $\mathcal{B} + \mathcal{V} + \sum_{\alpha_r} \mathcal{C}_{\alpha_r}$, where $\mathcal{B}$ is the Born matrix element, $\mathcal{V}$ is the virtual matrix element and $\mathcal{C}_{\alpha_r}$ are the subtraction terms in each singular region. For resonance-aware processes, also the mismatch value is added. Each born-like event is followed by $N_{\text{phs}}$ associated events with real kinematics, i.e. events where one additional QCD particle is present. The corresponding real matrix elements $\mathcal{R}_\alpha$ form the weight of these events. $N_{\text{phs}}$ is the number of distinct phase spaces. Two phase spaces are distinct if they have different resonance histories and/or have different emitters. So, two $\alpha_r$ can share the same phase space index. The combined event mode is activated by \begin{code} ?combined_nlo_integration = true ?unweighted = false ?fixed_order_nlo_events = true \end{code} Moreover, the process must be specified at next-to-leading-order in its definition using \ttt{nlo\_calculation = full}. \whizard\ then proceeds as in the usual simulation mode. I.e. it first checks whether integration grids are already present and uses them if they fit. Otherwise, it starts an integration. \item \textbf{Combined unweighted}\\ The unweighted combined events can be generated by using the \powheg\ mode, cf. also the next subsection, but disabling the additional radiation and Sudakov factors with the \ttt{?powheg\_disable\_sudakov} switch: \begin{code} ?combined_nlo_integration = true ?powheg_matching = true ?powheg_disable_sudakov = true \end{code} This will produce events with Born kinematics and unit weights (as \ttt{?unweighted} is \ttt{true} by default). The events are unweighted by using $\mathcal{B} + \mathcal{V} + \sum_{\alpha_r} (\mathcal{C}_{\alpha_r} + \mathcal{R}_{\alpha_r})$. Of course, this only works when these weights are positive over the full phase-space, which is not guaranteed for all scales and regions at NLO. However, for many processes perturbation theory works nicely and this is not an issue. \item \textbf{Separate weighted}\\ In the separate mode, grids and events are generated for each individual component of the NLO process. This method is preferable for complicated processes, since it allows to individually tune each grid generation. Moreover, the grid generation is then trivially parallelized. The event files either contain only Born kinematics with weight $\mathcal{B}$ or $\mathcal{V}$ (and mismatch in case of a resonance-aware process) or mixed Born and real kinematics for the real component like in the combined mode. However, the Born events have only the weight $\sum_{\alpha_r} \mathcal{C}_{\alpha_r}$ in this case. The separate event mode is activated by \begin{code} ?unweighted = false ?negative_weights = true ?fixed_order_nlo_events = true \end{code} Note that negative weights have to be switched on because, in contrast to the combined mode, the total cross sections of the individual components can be negative. Also, the desired component has to appear in the process NLO specification, e.g. using \ttt{nlo\_calculation = real}. \end{itemize} Weighted fixed-order NLO events are supported by any output format that supports weights like the \ttt{HepMC} format and unweighted NLO events work with any format. The output can either be written to disk or put into a FIFO to interface it to an analysis program without writing events to file. The weights in the real event output, both in the combined and separate weighted mode, are divided by a factor $N_{\text{phs}} + 1$. This is to account for the fact that we artificially increase the number of events in the output file. Thus, the sum of all event weights correctly reproduces the total cross section. \subsection{\powheg\ matching} To match the NLO events with a parton shower, \whizard\ supports the \powheg\ matching. It generates a distribution according to \begin{align} \label{eq:powheg} \text{d}\sigma &= \text{d}\Phi_n \,{\bar{B}_{\text{s}}}\,\biggl( {\Delta_{\text{s}}}(p_T^{\text{min}}\bigr) + \text{d}\Phi_{\text{rad}}\,{\Delta_{\text{s}}}(k_{\text{T}}(\Phi_{\text{rad}})\bigr) {\frac{R_{\text{s}}}B}\biggr) \quad \text{where} \\ {\bar{B}_{\text{s}}} &= {B} + {\mathcal{V}} + \text{d}\Phi_{\text{rad}}\, {\mathcal{R}_{\text{s}}} \quad \text{and} \\ {\Delta_{\text{s}}}(p_T) &= \exp\left[- \int{\text{d}\Phi_{\text{rad}}} {\frac{R_{\text{s}}}{B}}\; \theta\left(k_T^2(\Phi_{\text{rad}}) - p_T^2\right)\right]\;. \end{align} The subscript s refers to the singular part of the real component, cf. to the next subsection. Eq.~\eqref{eq:powheg} produces either no or one additional emission. These events can then either be analyzed directly or passed on to the parton shower\footnote{E.g. \pythiaeight\ has explicit examples for \powheg\ input, see also \url{http://home.thep.lu.se/Pythia/pythia82html/POWHEGMerging.html}.} for the full simulation. You activate this with \begin{code} ?fixed_order_nlo_events = false ?combined_nlo_integration = true ?powheg_matching = true \end{code} The $p_T^{\text{min}}$ of Eq.~\eqref{eq:powheg} can be set with \ttt{powheg\_pt\_min}. It sets the minimal scale for the \powheg\ evolution and should be of order 1 GeV and set accordingly in the interfaced shower. The maximal scale is currently given by \ttt{sqrts} but should in the future be changeable with \ttt{powheg\_pt\_max}. Note that the \powheg\ event generation needs an additional grid for efficient event generation that is generated during integration if \ttt{?powheg\_matching = true} is set. Thus, this needs to be set before the \ttt{integrate} statement. Further options that steer the efficiency of this grid are \ttt{powheg\_grid\_size\_xi}, \ttt{powheg\_grid\_size\_y} and \ttt{powheg\_grid\_sampling\_points}. \subsection{Separation of finite and singular contributions} For both the pure NLO computations as well as the \powheg\ event generation, \whizard\ supports the partitioning of the real into finite and singular contributions with the flag \begin{code} ?nlo_use_real_partition = true \end{code} The finite contributions, which by definition should not contain soft or collinear emissions, will then integrate like an ordinary LO integration with one additional particle. Similarly, the event generation will produce only real events without subtraction terms with Born kinematics for this additional finite component. The \powheg\ event generation will also only use the singular parts. The current implementation uses the following parametrization \begin{align} R &= R_{\text{fin}} + R_{\text{sing}} \;,\\ R_{\text{sing}} &= R F(\Phi_{n+1}) \;,\\ R_{\text{fin}} &= R (1-F(\Phi_{n+1})) \;,\\ F(\Phi_{n+1}) &= \begin{cases} 1 & \text{if} \quad\exists\,(i,j)\in\mathcal{P}_{\text{FKS}}\quad \text{with} \quad \sqrt{(p_i+p_j)^2} < h + m_i + m_j \\ 0 & \text{else} \end{cases} \;. \end{align} Thus, a point is {singular ($F=1$)}, if {any} of the {FKS tuples} forms an {invariant mass} that is {smaller than the hardness scale $h$}. This parameter is controlled in \sindarin\ with \ttt{real\_partition\_scale}. This simplifies in {massless case} to \begin{align} F(\Phi_{n+1}) = \begin{cases} 1 & \text{if} \;\exists\,(i,j)\in\mathcal{P}_{\text{FKS}}\quad \text{with} \quad 2 E_i E_j (1-\cos\theta_{ij}) < h^2 \\ 0 & \text{else} \end{cases} \;. \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Random number generators} \label{chap:rng} \section{General remarks} \label{sec:rng} The random number generators (RNG) are one of the crucialer points of Monte Carlo calculations, hence, giving those their ``randomness''. A decent multipurpose random generator covers \begin{itemize} \item reproducibility \item large period \item fast generation \item independence \end{itemize} of the random numbers. Therefore, special care is taken for the choice of the RNGs in \whizard{}. It is stated that \whizard{} utilizes \textit{pseudo}-RNGs, which are based on one (or more) recursive algorithm(s) and start-seed(s) to have reproducible sequences of numbers. In contrast, a genuine random generator relies on physical processes. \whizard\ ships with two completely different random number generators which can be selected by setting the \sindarin\ option \begin{code} $rng_method = "rng_tao" \end{code} Although, \whizard{} sets a default seed, it is adviced to use a different one \begin{code} seed = 175368842 \end{code} note that some RNGs do not allow certain seed values (e.g. zero seed). \section{The TAO Random Number Generator} \label{sec:tao} The TAO (``The Art Of'') random number generator is a lagged Fibonacci generator based upon (signed) 32-bit integer arithmetic and was proposed by Donald E. Knuth and is implemented in the \vamp\ package. The TAO random number generator is the default RNG of \whizard{}, but can additionally be set as \sindarin\ option \begin{code} $rng_method = rng_tao \end{code} The TAO random number generators is a subtractive lagged Fibonacci generator \begin{equation*} x_{j} = \left( x_{j-k} - x_{j-L} \right) \mod 2^{30} \end{equation*} with lags $k = 100$ and $l = 37$ and period length $\rho = 2^{30} - 2$. \section{The RNGStream Generator} \label{sec:rngstream} The RNGStream \cite{L_Ecuyer:2002} was originally implemented in \cpp\ with floating point arithmetic and has been ported to \fortranOThree{}. The RNGstream can be selected by the \sindarin\ option \begin{code} $rng_method = "rng_stream" \end{code} The RNGstream supports multiple independent streams and substreams of random numbers which can be directly accessed. The main advantage of the RNGStream lies in the domain of parallelization where different worker have to access different parts of the random number stream to ensure numerical reproducibility. The RNGstream provides exactly this property with its (sub)stream-driven model. Unfortunately, the RNGStream can only be used in combination with \vamptwo{}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Integration Methods} \section{The Monte-Carlo integration routine: \ttt{VAMP}} \label{sec:vamp} \vamp\ \cite{Ohl:1998jn} is a multichannel extension of the \vegas\ \cite{Lepage:1980dq} algorithm. For all possible singularities in the integrand, suitable maps and integration channels are chosen which are then weighted and superimposed to build the phase space parameterization. Both grids and weights are modified in the adaption phase of the integration. The multichannel integration algorithm is implemented as a \fortranNinetyFive\ library with the task of mapping out the integrand and finding suitable parameterizations being completely delegated to the calling program (\whizard\ core in this case). This makes the actual \vamp\ library completely agnostic of the model under consideration. \section{The next generation integrator: \ttt{VAMP2}} \label{sec:vamp2} \vamptwo\ is a modern implementation of the integrator package \vamp\ written in \fortranOThree\, providing the same features. The backbone integrator is still \vegas\ \cite{Lepage:1980dq}, although implemented differently as in \vamp{}. The main advantage over \vamp\ is the overall faster integration due to the usage of \fortranOThree{}, the possible usage of different random number generators and the complete parallelization of \vegas\ and the multichannel integration. \vamptwo{} can be set by the \sindarin{} option \begin{code} $integration_method = "vamp2" \end{code} It is said that the generated grids between \vamp{} and \vamptwo{} are incompatible. \subsection{Multichannel integration} \label{sec:multi-channel} The usual matrix elements do not factorise with respect to their integration variables, thus making an direct integration ansatz with VEGAS unfavorable.\footnote{One prerequisite for the VEGAS algorithm is that the integral factorises, and such produces only the best results for those.} Instead, we apply the multichannel ansatz and let VEGAS integrate each channel in a factorising mapping. The different structures of the matrix element are separated by a partition of unity and the respective mappings, such that each structure factorise at least once. We define the mappings $\phi_i : U \mapsto \Omega$, where $U$ is the unit hypercube and $\Omega$ the physical phase space. We refer to each mapping as a \textit{channel}. Each channel then gives rise to a probability density $g_i : U \mapsto [0, \infty)$, normalised to unity \begin{equation*} \int_0^1 g_i(\phi_i^{-1}(p)) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right| \mathrm{d}\mu(p) = 1, \quad g_i(\phi_i^{-1}(p)) \geq 0, \end{equation*} written for a phase space point $p$ using the mapping $\phi_i$. The \textit{a-priori} channel weights $\alpha_i$ are defined as partition of unity by $\sum_{i\in I} \alpha_i = 1$ and $0 \leq \alpha_i \leq 1$. The overall probability density $g$ of a random sample is then obtained by \begin{equation*} g(p) = \sum_{i \in I} \alpha_i g_i(\phi_i^{-1}(p)) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right|, \end{equation*} which is also a non-negative and normalized probability density. We reformulate the integral \begin{equation*} I(f) = \sum_{i \in I} \alpha_i \int_\Omega g_i(\phi_i^{-1}(p)) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right| \frac{f(p)}{g(p)} \mathrm{d}\mu(p). \end{equation*} The actual integration of each channel is then done by VEGAS, which shapes the $g_i$. \subsection{VEGAS} \label{sec:vegas} VEGAS is an adaptive and iterative Monte Carlo algorithm for integration using importance sampling. After each iteration, VEGAS adapts the probability density $g_i$ using information collected while sampling. For independent integration variables, the probability density factorises $g_i = \prod_{j = 1}^{d} g_{i,j}$ for each integration axis and each (independent) $g_{i,j}$ is defined by a normalised step function \begin{equation*} g_{i,j} (x_j) = \frac{1}{N\Delta x_{j,k}}, \quad x_{j,k} - \Delta x_{j,k} \leq x_{j} < x_{j,k}, \end{equation*} where the steps are $0 = x_{j, 0} < \cdots < x_{j,k} < \cdots < x_{j,N} = 1$ for each dimension $j$. The algorithm randomly selects for each dimension a bin and a position inside the bin and calculates the respective $g_{i,j}$. \subsection{Channel equivalences} \label{sec:equivalences} The automated mulitchannel phasespace configuration can lead to a surplus of degrees of freedom, e.g. for a highly complex process with a large number of channels (VBS). In order to marginalize the redundant degrees of freedom of phasespace configuration, the adaptation distribution of the grids are aligned in accordance to their phasespace relation, hence the binning of the grids is equialized. These equivalences are activated by default for \vamp{} and \vamptwo{}, but can be steered by: \begin{code} ?use_vamp_equivalences = true \end{code} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Phase space parameterizations} \section{General remarks} \whizard\ as a default performs an adaptive multi-channel Monte-Carlo integration. Besides its default phase space algorithm, \ttt{wood}, to be detailed in Sec.~\ref{sec:wood}, \whizard\ contains a phase space method \ttt{phs\_none} which is a dummy method that is intended for setups of processes where no phase space integration is needed, but the program flow needs a (dummy) integrator for internal consistency. Then, for testing purposes, there is a single-channel phase space integrator, \ttt{phs\_single}. From version 2.6.0 of \whizard\ on, there is also a second implementation of the \ttt{wood} phase space algorithm, called \ttt{fast\_wood}, cf. Sec.~\ref{sec:fast_wood}, whose implementation differs technically and which therefore solves certain technical flaws of the \ttt{wood} implementation. Additionally, \whizard\ supports single-channel, flat phase-space using RAMBO (on diet). %%% \section{The flat method: \ttt{rambo}} \label{sec:rambo} The \ttt{RAMBO} algorithm produces a flat phase-space with constant volume for massless particles. \ttt{RAMBO} was originally published in \cite{Kleiss:1985gy}. We use the slim version, called \ttt{RAMBO} on diet, published in \cite{Platzer:2013esa}. The overall weighting efficiency of the algorithm is unity for massless final-state particles. For the massive case, the weighting efficiency of unity will decrease rendering the algorithm less efficient. But in most cases, the invariants are in regions of phase space where they are much larger than the masses of the final-state particles. We provide the \ttt{RAMBO} mainly for cross checking our implementation and do not recommend it for real world application, even though it can be used as one. The \ttt{RAMBO} method becomes useful as a fall-back option if the standard algorithm fails for physical reasons, see, e.g., Sec.~\ref{sec:ps_anomalous}. %%% \section{The default method: \ttt{wood}} \label{sec:wood} The \ttt{wood} algorithm classifies different phase space channels according to their importance for a full scattering or decay process following heuristic rules. For that purpose, \whizard\ investigates the kinematics of the different channels depending on the total center-of-mass energy (or the mass of the decaying particle) and the masses of the final-state particles. The \ttt{wood} phase space inherits its name from the naming schemes of structures of increasing complexities, namely trees, forests and groves. Simply stated, a phase-space forest is a collection of phase-space trees. A phase-space tree is a parameterization for a valid channel in the multi-channel adaptive integration, and each variable in the a tree corresponds to an integration dimension, defined by an appropriate mapping of the $(0,1)$ interval of the unit hypercube to the allowed range of the corresponding integration variable. The whole set of these phase-space trees, collected in a phase-space forest object hence contains all parameterizations of the phase space that \whizard\ will use for a single hard process. Note that processes might contain flavor sums of particles in the final state. As \whizard\ will use the same phase space parameterization for all channels for this set of subprocesses, all particles in those flavor sums have to have the same mass. E.g. in the definition of a "light" jet consisting of the first five quarks and antiquarks, \begin{code} alias jet = u:d:s:c:b:U:D:S:C:B \end{code} all quarks including strange, charm and bottom have to be massless for the phase-space integration. \whizard\ can treat processes with subprocesses having final-state particles with different masses in an "additive" way, where each subprocess will become a distinct component of the whole process. Each process component will get its own phase-space parameterization, such that they can allow for different masses. E.g. in a 4-flavor scheme for massless $u,d,s,c$ quarks one can write \begin{code} alias jet = u:d:s:c:U:D:S:C process eeqq = e1, E1 => (jet, jet) + (b, B) \end{code} In that case, the parameterizations will be for massless final state quarks for the first subprocess, and for massive $b$ quarks for the second subprocess. In general, for high-energy lepton colliders, the difference would not matter much, but performing the integration e.g. for $\sqrt{s} = 11$ GeV, the difference will be tremendous. \whizard\ avoids inconsistent phase-space parameterizations in that way. As a multi-particle process will contain hundred or thousands of different channels, the different integration channels (trees) are grouped into so called {\em groves}. All channels/trees in the same grove share a common weight for the phase-space integration, following the assumption that they are related by some approximate symmetry. The \vamp\ adaptive multi-channel integrator (cf. Sec.~\ref{sec:vamp}) allows for equivalences between different integration channels. This means that trees/channels that are related by an exact symmetry are connected by an array of these equivalences. The phase-space setup, i.e. the detailed structure of trees and forests, are written by \whizard\ into a phase-space file that has the same name as the corresponding process (or process component) with the suffix \ttt{.phs}. For the \ttt{wood} phase-space method this file is written by a \fortran\ module which constructs a similar tree-like structure as the directed acyclical graphs (DAGs) in the \oMega\ matrix element generator but in a less efficient way. In some very rare cases with externally generated models (cf. Chapter~\ref{chap:extmodels}) the phase-space generation has been reported to fail as \whizard\ could not find a valid phase-space channel. Such pathological cases cannot occur for the hard-coded model implementations inside \whizard. They can only happen if there are in principle two different Feynman diagrams contributing to the same phase-space channel and \whizard\ considers the second one as extremely subleading (and would hence drop it). If for some reason however the first Feynman diagram is then absent, no phase-space channel could be found. This problem cannot occur with the \ttt{fast\_wood} implementation discussed in the next section, cf.~\ref{sec:fast_wood}. The \ttt{wood} algorithms orders the different groves of phase-space channels according to a heuristic importance depending on the kinematic properties of the different phase-space channels in the groves. A phase-space (\ttt{.phs}) file looks typically like this: \begin{code} process sm_i1 ! List of subprocesses with particle bincodes: ! 8 4 1 2 ! e+ e- => mu+ mu- ! 8 4 1 2 md5sum_process = "1B3B7A30C24664A73D3D027382CFB4EF" md5sum_model_par = "7656C90A0B2C4325AD911301DACF50EB" md5sum_phs_config = "6F72D447E8960F50FDE4AE590AD7044B" sqrts = 1.000000000000E+02 m_threshold_s = 5.000000000000E+01 m_threshold_t = 1.000000000000E+02 off_shell = 2 t_channel = 6 keep_nonresonant = T ! Multiplicity = 2, no resonances, 0 logs, 0 off-shell, s-channel graph grove #1 ! Channel #1 tree 3 ! Multiplicity = 1, 1 resonance, 0 logs, 0 off-shell, s-channel graph grove #2 ! Channel #2 tree 3 map 3 s_channel 23 ! Z \end{code} The first line contains the process name, followed by a list of subprocesses with the external particles and their binary codes. Then there are three lines of MD5 check sums, used for consistency checks. \whizard\ (unless told otherwise) will check for the existence of a phase-space file, and if the check sum matches, it will reuse the existing file and not generate it again. Next, there are several kinematic parameters, namely the center-of-mass energy of the process, \ttt{sqrts}, and two mass thresholds, \ttt{m\_threshold\_s} and \ttt{m\_threshold\_t}. The latter two are kinematical thresholds, below which \whizard\ will consider $s$-channel and $t$-channel-like kinematic configurations as effectively massless, respectively. The default values shown in the example have turned out to be optimal values for Standard Model particles. The two integers \ttt{off\_shell} and \ttt{t\_channel} give the number of off-shell lines and of $t$-channel lines that \whizard\ will allow for finding valid phase-space channels, respectively. This neglects extremley multi-peripheral background-like diagram constellations which are very subdominamnt compared to resonant signal processes. The final flag specifies whether \whizard\ will keep non-resonant phase-space channels (default), or whether it will focus only on resonant situations. After this header, there is a list of all groves, i.e. collections of phase-space channels which are connected by quasi-symmetries, together with the corresponding multiplicity of subchannels in that grove. In the phase-space file behind the multiplicity, \whizard\ denotes the number of (massive) resonances, logarithmcally enhanced kinematics (e.g. collinear regions), and number of off-shell lines, respectively. The final entry in the grove header notifies whether the diagrams in that grove have $s$-channel topologies, or count the number of corresponding $t$-channel lines. Another example is shown here, \begin{code} ! Multiplicity = 3, no resonances, 2 logs, 0 off-shell, 1 t-channel line grove #1 ! Channel #1 tree 3 12 map 3 infrared 22 ! A map 12 t_channel 2 ! u ! Channel #2 tree 3 11 map 3 infrared 22 ! A map 11 t_channel 2 ! u ! Channel #3 tree 3 20 map 3 infrared 22 ! A map 20 t_channel 2 ! u ! Channel #4 tree 3 19 map 3 infrared 22 ! A map 19 t_channel 2 ! u \end{code} where \whizard\ notifies in different situations a photon exchange as \ttt{infrared}. So it detects a possible infrared singularity where a particle can become arbitrarily soft. Such a situation can tell the user that there might be a cut necessary in order to get a meaningful integration result. The phase-space setup that is generated and used by the \ttt{wood} phase-space method can be visualized using the \sindarin\ option \begin{code} ?vis_channels = true \end{code} The \ttt{wood} phase-space method can be invoked with the \sindarin\ command \begin{code} $phs_method = "wood" \end{code} Note that this line is unnecessary, as \ttt{wood} is the default phase-space method of \whizard. %%%%% \section{A new method: \ttt{fast\_wood}} \label{sec:fast_wood} This method (which is available from version 2.6.0 on) is an alternative implementation of the \ttt{wood} phase-space algorithm. It uses the recursive structures inside the \oMega\ matrix element generator to generate all the structures needed for the different phase-space channels. In that way, it can avoid some of the bottlenecks of the \ttt{wood} \fortran\ implementation of the algorithm. On the other hand, it is only available if the \oMega\ matrix element generator has been enabled (which is the default for \whizard). The \ttt{fast\_wood} method is then invoked via \begin{code} ?omega_write_phs_output = true $phs_method = "fast_wood" \end{code} The first option is necessary in order to tell \oMega\ to write out the output needed for the \ttt{fast\_wood} parser in order to generate the phase-space file. This is not enabled by default in order not to generate unnecessary files in case the default method \ttt{wood} is used. So the \ttt{fast\_wood} implementation of the \ttt{wood} phase-space algorithm parses the tree-like represenation of the recursive set of one-particle off-shell wave functions that make up the whole amplitude inside \oMega\ in the form of a directed acyclical graph (DAG) in order to generate the phase-space (\ttt{.phs}) file (cf. Sec.~\ref{sec:wood}). In that way, the algorithm makes sure that only phase-space channels are generated for which there are indeed (sub)amplitudes in the matrix elements, and this also allows to exclude vetoed channels due to restrictions imposed on the matrix elements from the phase-space setup (cf. next Sec.~\ref{sec:ps_restrictions}). %%%%% \section{Phase space respecting restrictions on subdiagrams} \label{sec:ps_restrictions} The \fortran\ implementation of the \ttt{wood} phase-space does not know anything about possible restrictions that maybe imposed on the \oMega\ matrix elements, cf. Sec.~\ref{sec:process options}. Consequently, the \ttt{wood} phase space also generates phase-space channels that might be absent when restrictions are imposed. This is not a principal problem, as in the adaptation of the phase-space channels \whizard's integrator \vamp\ will recognize that there is zero weight in that channel and will drop the channel (stop sampling in that channel) after some iterations. However, this is a waste of ressources as it is in principle known that this channel is absent. Using the \ttt{fast\_wood} phase-space algorithm (cf. Sec.~\ref{sec:fast_wood} will take restrictions into account, as \oMega\ will not generate trees for channels that are removed with the restrictions command. So it advisable for the user in the case of very complicated processes with restrictions to use the \ttt{fast\_wood} phase-space method to make \whizard\ generation and integration of the phase space less cumbersome. %%%%% \section{Phase space for processes forbidden at tree level} \label{sec:ps_anomalous} The phase-space generators \ttt{wood} and \ttt{fast\_wood} are intended for tree-level processes with their typical patterns of singularities, which can be read off from Feynman graphs. They can and should be used for loop-induced or for externally provided matrix elements as long as \whizard\ does not provide a dedicated phase-space module. Some scattering processes do not occur at tree level but become allowed if loop effects are included in the calculation. A simple example is the elastic QED process \begin{displaymath} A\quad A \longrightarrow A\quad A \end{displaymath} which is mediated by a fermion loop. Similarly, certain applications provide externally provided or hand-taylored matrix-element code that replaces the standard \oMega\ code. Currently, \whizard's phase-space parameterization is nevertheless tied to the \oMega\ generator, so for tree-level forbidden processes the phase-space construction process will fail. There are two possible solutions for this problem: \begin{enumerate} \item It is possible to provide the phase-space parameterization information externally, by supplying an appropriately formatted \ttt{.phs} file, bypassing the automatic algorithm. Assuming that this phase-space file has been named \ttt{my\_phase\_space.phs}, the \sindarin\ code should contain the following: \begin{code} ?rebuild_phase_space = false $phs_file = "my_phase_space.phs" \end{code} Regarding the contents of this file, we recommend to generate an appropriate \ttt{.phs} for a similar setup, using the standard algorithm. The generated file can serve as a template, which can be adapted to the particular case. In detail, the \ttt{.phs} file consists of entries that specify the process, then a standard header which contains MD5 sums and such -- these variables must be present but their values are irrelevant for the present case --, and finally at least one \ttt{grove} with \ttt{tree} entries that specify the parameterization. Individual parameterizations are built from the final-state and initial-state momenta (in this order) which we label in binary form as $1,2,4,8,\dots$. The actual tree consists of iterative fusions of those external lines. Each fusion is indicated by the number that results from adding the binary codes of the external momenta that contribute to it. For instance, a valid phase-space tree for the process $AA\to AA$ is given by the simple entry \begin{code} tree 3 \end{code} which indicates that the final-state momenta $1$ and $2$ are combined to a fusion $1+2=3$. The setup is identical to a process such as $e^+e^-\to\mu^+\mu^-$ below the $Z$ threshold. Hence, we can take the \ttt{.phs} file for the latter process, replace the process tag, and use it as an external phase-space file. \item For realistic applications of \whizard\ together with one-loop matrix-element providers, the actual number of final-state particles may be rather small, say $2,3,4$. Furthermore, one-loop processes which are forbidden at tree level do not contain soft or collinear singularities. In this situation, the \ttt{RAMBO} phase-space integration method, cf.\ Sec.~\ref{sec:rambo} is a viable alternative which does not suffer from the problem. \end{enumerate} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Methods for Hard Interactions} \label{chap:hardint} The hard interaction process is the core of any physics simulation within an MC event generator. One tries to describe the dominant particle interaction in the physics process of interest at a given order in perturbation theory, thereby making use of field-theoretic factorization theorems, especially for QCD, in order to separate non-perturbative physics like parton distribution functions (PDFs) or fragmentation functions from the perturbative part. Still, it is in many cases not possible to describe the perturbative part completely by means of fixed-order hard matrix elements: in soft and/or collinear regions of phase space, multiple emission of gluons and quarks (in general QCD jets) and photons necessitates a resummation, as large logarithms accompany the perturbative coupling constants and render fixed-order perturbation theory unreliable. The resummation of these large logarithms can be done analytically or (semi-)numerically, however, usually only for very inclusive quantities. At the level of exclusive events, these phase space regions are the realm of (QCD and also QED) parton showers that approximate multi-leg matrix elements from the hard perturbative into to the soft-/collinear regime. The hard matrix elements are then the core building blocks of the physics description inside the MC event generator. \whizard\ generates these hard matrix elements at tree-level (or sometimes for loop-induced processes using effective operators as insertions) as leading-order processes. This is done by the \oMega\ subpackage that is automatically called by \whizard. Besides these physical matrix elements, there exist a couple of methods to generate dummy matrix elements for testing purposes, or for generating beam profiles and using them with externally linked special matrix elements. Especially for one-loop processes (next-to-leading order for tree-allowed processes or leading-order for loop-induced processes), \whizard\ allows to use matrix elements from external providers, so called OLP programs (one-loop providers). Of course, all of these external packages can also generate tree-level matrix elements, which can then be used as well in \whizard. We start the discussion with the two different options for test matrix elements, internal test matrix elements with no generated compiled code in Sec.~\ref{sec:test_me} and so called template matrix elements with actual \fortran\ code that is compiled and linked, and can also be modified by the user in Sec.~\ref{sec:template_me}. Then, we move to the main matrix element method by the matrix element generator \oMega\ in Sec.~\ref{sec:omega_me}. Matrix elements from the external matrix element generators are discussed in the order of which interfaces for the external tools have been implemented: \gosam\ in Sec.~\ref{sec:gosam_me}, \openloops\ in Sec.~\ref{sec:openloops_me}, and \recola\ in Sec.~\ref{sec:recola_me}. %%%%% \section{Internal test matrix elements} \label{sec:test_me} This method is merely for internal consistency checks inside \whizard, and is not really intended to be utilized by the user. The method is invoked by \begin{code} $method = "unit_test" \end{code} This particular method is only applicable for the internal test model \ttt{Test.mdl}, which just contains a Higgs boson and a top quark. Technically, it will also works within model specifications for the Standard Model, or the Minimal Supersymmetric Standard Model (MSSM), or all models which contain particles named as \ttt{H} and \ttt{t} with PDG codes 25 and 6, respectively. So, the models \ttt{QED} and {QCD} will not work. Irrespective of what is given in the \sindarin\ file as a scattering input process, \whizard\ will always take the process \begin{code} model = SM process = H, H => H, H \end{code} or for the test model: \begin{code} model = Test process = s, s => s, s \end{code} as corresponding process. (This is the same process, just with differing nomenclature in the different models). No matrix element code is generated and compiled, the matrix element is completely internal, included in the \whizard\ executable (or library), with a unit value for the squared amplitude. The integration will always be performed for this particularly process, even if the user provides a different process for that method. Hence, the result will always be the volume of the relativistic two-particle phase space. The only two parameters that influence the result are the collider energy, \ttt{sqrts}, and the mass of the Higgs particle with PDG code 25 (this mass parameter can be changed in the model \ttt{Test} as \ttt{ms}, while it would be \ttt{mH} in the Standard Model \ttt{SM}. It is also possible to use a test matrix element, again internal, for decay processes, where again \whizard\ will take a predefined process: \begin{code} model = SM process = H => t, tbar \end{code} in the \ttt{SM} model or \begin{code} model = Test process = s => f, fbar \end{code} Again, this is the same process with PDG codes $25 \to 6 \; -6$ in the corresponding models. Note that in the model \ttt{SM} the mass of the quark is set via the variable \ttt{mtop}, while it is \ttt{mf} in the model \ttt{Test}. Besides the fact that the user always gets a fixed process and cannot modify any matrix element code by hand, one can do all things as for a normal process like generating events, different weights, testing rebuild flags, using different setups and reweight events accordingly. Also factorized processes with production and decay can be tested that way. In order to avoid confusion, it is highly recommended to use this method \ttt{unit\_test} only with the test model setup, model \ttt{Test}. On the technical side, the method \ttt{unit\_test} does not produce a process library (at least not an externally linked one), and also not a makefile in order to modify any process files (which anyways do not exist for that method). Except for the logfiles and the phase space file, all files are internal. %%%%% \section{Template matrix elements} \label{sec:template_me} Much more versatile for the user than the previous matrix element method in~\ref{sec:test_me}, are two different methods with constant template matrix elements. These are written out as \fortran\ code by the \whizard\ main executable (or library), providing an interface that is (almost) identical to the matrix element code produced by the \oMega\ generator (cf. the next section, Sec.~\ref{sec:omega_me}. There are actually two different methods for that purpose, providing matrix elements with different normalizations: \begin{code} $method = "template" \end{code} generates matrix elements which give after integration over phase space exactly one. Of course, for multi-particle final states the integration can fluctuate numerically and could then give numbers that are only close to one but not exactly one. Furthermore, the normalization is not exact if any of the external particles have non-zero masses, or there are any cuts involved. But otherwise, the integral from \whizard\ should give unity irrespective of the number of final state particles. In contrast to this, the second method, \begin{code} $method = "template_unity" \end{code} gives a unit matrix elements, or rather a matrix element that contains helicity and color averaging factors for the initial state and the square root of the factorials of identical final state particles in the denominator. Hence, integration over the final state momentum configuration gives a cross section that corresponds to the volume of the $n$-particle final state phase space, divided by the corresponding flux factor, resulting in \begin{equation} \sigma(s, 2 \to 2,0) = \frac{3.8937966\cdot 10^{11}}{16\pi} \cdot \frac{1}{s \text{[GeV]}^2} \; \text{fb} \end{equation} for the massless case and \begin{equation} \sigma(s, 2 \to 2,m_i) = \frac{3.8937966\cdot 10^{11}}{16\pi} \cdot \sqrt{\frac{\lambda (s,m_3^2,m_4^2)}{\lambda (s,m_1^2,m_2^2)}} \cdot \frac{1}{s \text{[GeV]}^2} \; \text{fb} \end{equation} for the massive case. Here, $m_1$ and $m_2$ are the masses of the incoming, $m_3$ and $m_4$ the masses of the outgoing particles, and $\lambda(x,y,z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$. For the general massless case with no cuts, the integral should be exactly \begin{equation} \sigma(s, 2\to n, 0) = \frac{(2\pi)^4}{2 s}\Phi_n(s) = \frac{1}{16\pi s}\,\frac{\Phi_n(s)}{\Phi_2(s)}, \end{equation} where the volume of the massless $n$-particle phase space is given by \begin{equation}\label{phi-n} \Phi_n(s) = \frac{1}{4(2\pi)^5} \left(\frac{s}{16\pi^2}\right)^{n-2} \frac{1}{(n-1)!(n-2)!}. \end{equation} For $n\neq2$ the phase space volume is dimensionful, so the units of the integral are $\fb\times\GeV^{2(n-2)}$. (Note that for physical matrix elements this is compensated by momentum factors from wave functions, propagators, vertices and possibly dimensionful coupling constants, but here the matrix element is just equal to unity.) Note that the phase-space integration for the \ttt{template} and \ttt{template\_unity} matrix element methods is organized in the same way as it would be for the real $2\to n$ process. Since such a phase space parameterization is not optimized for the constant matrix element that is supplied instead, good convergence is not guaranteed. (Setting \ttt{?stratified = true} may be helpful here.) The possibility to call a dummy matrix element with this method allows to histogram spectra or structure functions: Choose a trivial process such as $uu\to dd$, select the \ttt{template\_unity} method, switch on structure functions for one (or both) beams, and generate events. The distribution of the final-state mass squared reflects the $x$ dependence of the selected structure function. Furthermore, the constant in the source code of the unit matrix elements can be easily modified by the user with their \fortran\ code in order to study customized matrix elements. Just rerun \whizard\ with the \ttt{--recompile} option after the modification of the matrix element code. Both methods, \ttt{template} and \ttt{template\_unity} will also work even if no \ocaml\ compiler is found or used and consequently the \oMega\ matrix elemente generator (cf. Sec.~\ref{sec:omega_me} is disable. The methods produce a process library for their corresponding processes, and a makefile, by which \whizard\ steers compilation and linking of the process source code. %%%%% \section{The O'Mega matrix elements} \label{sec:omega_me} \oMega\ is a subpackage of \whizard, written in \ocaml, which can produce matrix elements for a wide class of implemented physics models (cf. Sec.~\ref{sec:smandfriends} and \ref{sec:bsmmodels} for a list of all implemented physics models), and even almost arbitrary models when using external Lagrange level tools, cf. Chap.~\ref{chap:extmodels}. There are two different variants for matrix elements from \oMega: the first one is invoked as \begin{code} $method = "omega" \end{code} and is the default method for \whizard. It produces matrix element as \fortran\ code which is then compiled and linked. An alternative method, which for the moment is only available for the Standard Model and its variants as well models which are quite similar to the SM, e.g. the Two-Higgs doublet model or the Higgs-singlet extension. This method is taken when setting \begin{code} $method = "ovm" \end{code} The acronym \ttt{ovm} stands for \oMega\ Virtual Machine (OVM). The first (default) method (\ttt{omega}) of \oMega\ matrix elements produces \fortran\ code for the matrix elements,that is compiled by the same compiler with which \whizard\ has been compiled. The OVM method (\ttt{ovm}) generates an \ttt{ASCII} file with so called op code for operations. These are just numbers which tell what numerical operations are to be performed on momenta, wave functions and vertex expression in order to yield a complex number for the amplitude. The op codes are interpreted by the OVM in the same as a Java Virtual Machine. In both cases, a compiled \fortran\ is generated which for the \ttt{omega} method contains the full expression for the matrix element as \fortran\ code, while for the \ttt{ovm} method this is the driver file of the OVM. Hence, for the \ttt{ovm} method this file always has roughly the same size irrespective of the complexity of the process. For the \ttt{ovm} method, there will also be the \ttt{ASCII} file that contains the op codes, which has a name with an \ttt{.hbc} suffix: \ttt{.hbc}. For both \oMega\ methods, there will be a process library created as for the template matrix elements (cf. Sec.~\ref{sec:template_me}) named \ttt{default\_lib.f90} which can be given a user-defined name using the \ttt{library = ""} command. Again, for both methods \ttt{omega} and \ttt{ovm}, a makefile named \ttt{\_lib.makefile} is generated by which \whizard\ steers compilation, linking and clean-up of the process sources. This makefile can handily be adapted by the user in case she or he wants to modify the source code for the process (in the case of the source code method). Note that \whizard's default ME method via \oMega\ allows the user to specify many different options either globally for all processes in the \sindarin, or locally for each process separately in curly brackets behind the corresponding process definition. Examples are \begin{itemize} \item Restrictions for the matrix elements like the exclusion of intermediate resonances, the appearance of specific vertices or coupling constants in the matrix elments. For more details on this cf. Sec.~\ref{subsec:restrictions}. \item Choice of a specific scheme for the width of massive intermediate resonances, whether to use constant width, widths only in $s$-channel like kinematics (this is the default), a fudged-width scheme or the complex-mass scheme. The latter is actually steered as a specific scheme of the underlying model and not with a specific \oMega\ command. \item Choice of the electroweak gauge for the amplitude. The default is the unitary gauge. \end{itemize} With the exception of the restrictions steered by the \ttt{\$restrictions = ""} string expression, these options have to be set in their specific \oMega\ syntax verbatim via the string command \ttt{\$omega\_flags = ""}. %%%%% \section{Interface to GoSam} \label{sec:gosam_me} One of the supported methods for automated matrix elements from external providers is for the \gosam\ package. This program package which is a combination of \python\ scripts and \fortran\ libraries, allows both for tree and one-loop matrix elements (which is leading or next-to-leading order, depending on whether the corresponding process is allowed at the tree level or not). In principle, the advanced version of \gosam\ also allows for the evaluation of two-loop virtual matrix elements, however, this is currently not supported in \whizard. This method is invoked via the command \begin{code} $method = "gosam" \end{code} Of course, this will only work correctly of \gosam\ with all its subcomponents has been correctly found during configuration of \whizard\ and then subsequently correctly linked. In order to generate the tables for spin, flavor and color states for the corresponding process, first \oMega\ is called to provide \fortran\ code for the interfaces to all the metadata for the process(es) to be evaluated. Next, the \gosam\ \python\ script is automatically invoked that first checks for the necessary ingredients to produce, compile and link the \gosam\ matrix elements. These are the the \ttt{Qgraf} topology generator for the diagrams, \ttt{Form} to perform algebra, the \ttt{Samurai}, \ttt{AVHLoop}, \ttt{QCDLoop} and \ttt{Ninja} libraries for Passarino-Veltman reduction, one-loop tensor integrals etc. As a next step, \gosam\ automatically writes and executes a \ttt{configure} script, and then it exchanges the Binoth Les Houches accord (BLHA) contract files between \whizard\ and itself~\cite{Binoth:2010xt,Alioli:2013nda} to check whether it actually generate code for the demanded process at the given order. Note that the contract and answer files do not have to be written by the user by hand, but are generated automatically within the program work flow initiated by the original \sindarin\ script. \gosam\ then generates \fortran\ code for the different components of the processes, compiles it and links it into a library, which is then automatically accessible (as an external process library) from inside \whizard. The phase space setup and the integration as well as the LO (and NLO) event generation work then in exactly the same way as for \oMega\ matrix elements. As an NLO calculation consists of different components for the Born, the real correction, the virtual correction, the subtraction part and possible further components depending on the details of the calculation, there is the possible to separately choose the matrix element method for those components via the keywords \ttt{\$loop\_me\_method}, \ttt{\$real\_tree\_me\_method}, \ttt{\$correlation\_me\_method} etc. These keywords overwrite the master switch of the \ttt{\$method} keyword. For more information on the switches and details of the functionality of \gosam, cf. \url{http://gosam.hepforge.org}. %%%%% \section{Interface to Openloops} \label{sec:openloops_me} Very similar to the case of \gosam, cf. Sec.~\ref{sec:gosam_me}, is the case for \openloops\ matrix elements. Also here, first \oMega\ is called in order to provide an interface for the spin, flavor and color degrees of freedom for the corresponding process. Information exchange between \whizard\ and \openloops\ then works in the same automatic way as for \gosam\ via the BLHA interface. This matrix element method is invoked via \begin{code} $method = "openloops" \end{code} This again is the master switch that will tell \whizard\ to use \openloops\ for all components, while there are special keywords to tailor-make the setup for the different components of an NLO calculation (cf. Sec.~\ref{sec:gosam_me}. The main difference between \openloops\ and \gosam\ is that for \openloops\ there is no process code to be generated, compiled and linked for a process, but a precompiled library is called and linked, e.g. \ttt{ppllj} for the Drell-Yan process. Of course, this library has to be installed on the system, but if that is not the case, the user can execute the \openloops\ script in the source directory of \openloops\ to download, compile and link the corresponding dynamic library. This limits (for the moment) the usage of \openloops\ to processes where pre-existint libraries for that specific processes have been generated by the \openloops\ authors. A new improved generator for general process libraries for \openloops\ will get rid of that restriction. For more information on the installation, switches and details of the functionality of \openloops, cf. \url{http://openloops.hepforge.org}. %%%%% \section{Interface to Recola} \label{sec:recola_me} The third one-loop provider (OLP) for external matrix elements that is supported by \whizard, is \recola. In contrast to \gosam, cf. Sec.~\ref{sec:gosam_me}, and \openloops, cf. Sec.~\ref{sec:openloops_me}, \recola\ does not use a BLHA interface to exchange information with \whizard, but its own tailor-made C interoperable library interface to communicate to the Monte Carlo side. \recola\ matrix elements are called for via \begin{code} $method = "recola" \end{code} \recola\ uses a highly efficient algorithm to generate process code for LO and NLO SM amplitudes in a fully recursive manner. At the moment, the setup of the interface within \whizard\ does not allow to invoke more than one different process in \recola: this would lead to a repeated initialization of the main setup of \recola\ and would consequently crash it. It is foreseen in the future to have a safeguard mechanism inside \whizard\ in order to guarantee initialization of \recola\ only once, but this is not yet implemented. Further information on the installation, details and parameters of \recola\ can be found at \url{http://recola.hepforge.org}. %%%%% \section{Special applications} \label{sec:special_me} There are also special applications with combinations of matrix elements from different sources for dedicated purposes like e.g. for the matched top--anti-top threshold in $e^+e^-$. For this special application which depending on the order of the matching takes only \oMega\ matrix elements or at NLO combines amplitudes from \oMega\ and \openloops, is invoked by the method: \begin{code} $method = "threshold" \end{code} \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Implemented physics} \label{chap:physics} %%%%% \section{The hard interaction models} In this section, we give a brief overview over the different incarnations of models for the description of the realm of subatomic particles and their interactions inside \whizard. In Sec.~\ref{sec:smandfriends}, the Standard Model (SM) itself and straightforward extensions and modifications thereof in the gauge, fermionic and Higgs sector are described. Then, Sec.~\ref{sec:bsmmodels} gives a list and short description of all genuine beyond the SM models (BSM) that are currently implemented in \whizard\ and its matrix element generator \oMega. Additional models beyond that can be integrated and handled via the interfaces to external tools like \sarah\ and \FeynRules, or the universal model format \UFO, cf. Chap.~\ref{chap:extmodels}. %%%%%%%%%%%%%%% \subsection{The Standard Model and friends} \label{sec:smandfriends} %%%% \subsection{Beyond the Standard Model} \label{sec:bsmmodels} \begin{table} \begin{center} \begin{tabular}{|l|l|l|} \hline MODEL TYPE & with CKM matrix & trivial CKM \\ \hline\hline Yukawa test model & \tt{---} & \tt{Test} \\ \hline QED with $e,\mu,\tau,\gamma$ & \tt{---} & \tt{QED} \\ QCD with $d,u,s,c,b,t,g$ & \tt{---} & \tt{QCD} \\ Standard Model & \tt{SM\_CKM} & \tt{SM} \\ SM with anomalous gauge couplings & \tt{SM\_ac\_CKM} & \tt{SM\_ac} \\ SM with $Hgg$, $H\gamma\gamma$, $H\mu\mu$, $He^+e^-$ & \tt{SM\_Higgs\_CKM} & \tt{SM\_Higgs} \\ SM with bosonic dim-6 operators & \tt{---} & \tt{SM\_dim6} \\ SM with charge 4/3 top & \tt{---} & \tt{SM\_top} \\ SM with anomalous top couplings & \tt{---} & \tt{SM\_top\_anom} \\ SM with anomalous Higgs couplings & \tt{---} & \tt{SM\_rx}/\tt{NoH\_rx}/\tt{SM\_ul} \\\hline SM extensions for $VV$ scattering & \tt{---} & \tt{SSC}/\tt{AltH}/\tt{SSC\_2}/\tt{SSC\_AltT} \\\hline SM with $Z'$ & \tt{---} & \tt{Zprime} \\ \hline Two-Higgs Doublet Model & \tt{THDM\_CKM} & \tt{THDM} \\ \hline\hline MSSM & \tt{MSSM\_CKM} & \tt{MSSM} \\ \hline MSSM with gravitinos & \tt{---} & \tt{MSSM\_Grav} \\ \hline NMSSM & \tt{NMSSM\_CKM} & \tt{NMSSM} \\ \hline extended SUSY models & \tt{---} & \tt{PSSSM} \\ \hline\hline Littlest Higgs & \tt{---} & \tt{Littlest} \\ \hline Littlest Higgs with ungauged $U(1)$ & \tt{---} & \tt{Littlest\_Eta} \\ \hline Littlest Higgs with $T$ parity & \tt{---} & \tt{Littlest\_Tpar} \\ \hline Simplest Little Higgs (anomaly-free) & \tt{---} & \tt{Simplest} \\ \hline Simplest Little Higgs (universal) & \tt{---} & \tt{Simplest\_univ} \\ \hline\hline SM with graviton & \tt{---} & \tt{Xdim} \\ \hline UED & \tt{---} & \tt{UED} \\ \hline ``SQED'' with gravitino & \tt{---} & \tt{GravTest} \\ \hline Augmentable SM template & \tt{---} & \tt{Template} \\ \hline \end{tabular} \end{center} \caption{\label{tab:models} List of models available in \whizard. There are pure test models or models implemented for theoretical investigations, a long list of SM variants as well as a large number of BSM models.} \end{table} \subsubsection{Strongly Interacting Models and Composite Models} Higgsless models have been studied extensively before the Higgs boson discovery at the LHC Run I in 2012 in order to detect possible loopholes in the electroweak Higgs sector discovery potential of this collider. The Threesite Higgsless Model is one of the simplest incarnations of these models, and was one of the first BSM models beyond SUSY and Little Higgs models that have been implemented in \whizard~\cite{Speckner:2010zi}. It is also called the Minimal Higgsless Model (MHM)~\cite{Chivukula:2006cg} is a minimal deconstructed Higgsless model which contains only the first resonance in the tower of Kaluza-Klein modes of a Higgsless extra-dimensional model. It is a non-renormalizable, effective theory whose gauge group is an extension of the SM with an extra $SU(2)$ gauge group. The breaking of the extended electroweak gauge symmetry is accomplished by a set of nonlinear sigma fields which represent the effects of physics at a higher scale and make the theory nonrenormalizable. The physical vector boson spectrum contains the usual photon, $W^\pm$ and $Z$ bosons as well as a $W'^\pm$ and $Z'$ boson. Additionally, a new set of heavy fermions are introduced to accompany the new gauge group ``site'' which mix to form the physical eigenstates. This mixing is controlled by the small mixing parameter $\epsilon_L$ which is adjusted to satisfy constraints from precision observables, such as the S parameter~\cite{Chivukula:2005xm}. Here, additional weak gauge boson production at the LHC was one of the focus of the studies with \whizard~\cite{Ohl:2008ri}. \subsubsection{Supersymmetric Models} \whizard/\oMega\ was the first multi-leg matrix-element/event generator to include the full Minimal Supersymmetric Standard Model (MSSM), and also the NMSSM. The SUSY implementations in \whizard\ have been extensively tested~\cite{Ohl:2002jp,Reuter:2009ex}, and have been used for many theoretical and experimental studies (some prime examples being~\cite{Kalinowski:2008fk,Robens:2008sa,Hagiwara:2005wg}. \subsubsection{Little Higgs Models} \subsubsection{Inofficial models} There have been several models that have been included within the \whizard/\oMega\ framework but never found their way into the official release series. One famous example is the non-commutative extension of the SM, the NCSM. There have been several studies, e.g. simulations on the $s$-channel production of a $Z$ boson at the photon collider option of the ILC~\cite{Ohl:2004tn}. Also, the production of electroweak gauge bosons at the LHC in the framework of the NCSM have been studied~\cite{Ohl:2010zf}. %%%%%%%%%%%%%%% \section{The SUSY Les Houches Accord (SLHA) interface} \label{sec:slha} To be filled in ...~\cite{Skands:2003cj,AguilarSaavedra:2005pw,Allanach:2008qq}. The neutralino sector deserves special attention. After diagonalization of the mass matrix expresssed in terms of the gaugino and higgsino eigenstates, the resulting mass eigenvalues may be either negative or positive. In this case, two procedures can be followed. Either the masses are rendered positive and the associated mixing matrix gets purely imaginary entries or the masses are kept signed, the mixing matrix in this case being real. According to the SLHA agreement, the second option is adopted. For a specific eigenvalue, the phase is absorbed into the definition of the relevant eigenvector, rendering the mass negative. However, \whizard\ has not yet officially tested for negative masses. For external SUSY models (cf.~Chap.~\ref{chap:extmodels}) this means, that one must be careful using a SLHA file with explicit factors of the complex unity in the mixing matrix, and on the other hand, real and positive masses for the neutralinos. For the hard-coded SUSY models, this is completely handled internally. Especially Ref.~\cite{Hagiwara:2005wg} discusses the details of the neutralino (and chargino) mixing matrix. %%%%%%%%%%%%%%%% \section{Lepton Collider Beam Spectra} \label{sec:beamspectra} For the simulation of lepton collider beam spectra there are two dedicated tools, \circeone\ and \circetwo\ that have been written as in principle independent tools. Both attempt to describe the details of electron (and positron) beams in a realistic lepton collider environment. Due to the quest for achieving high peak luminosities at $e^+e^-$ machines, the goal is to make the spatial extension of the beam as small as possible but keeping the area of the beam roughly constant. This is achieved by forcing the beams in the final focus into the shape of a quasi-2D bunch. Due to the high charge density in that bunch, the bunch electron distribution is modified by classical electromagnetic radiation, so called {\em beamstrahlung}. The two \circe\ packages are intended to perform a simulation of this beamstrahlung and its consequences on the electron beam spectrum as realistic as possible. More details about the two packages can be found in their stand-alone documentations. We will discuss the basic features of lepton-collider beam simulations in the next two sections, including the technicalities of passing simulations of the machine beam setup to \whizard. This will be followed by a section on the simulation of photon collider spectra, included for historical reasons. %%%%% \subsection{\circeone} While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. There is a code to simulate the impact of this effect on luminosity and background, called \ttt{GuineaPig++}~\cite{Schulte:1998au,Schulte:1999tx,Schulte:2007zz}. This takes into account the details of the accelerator, the final focus etc. on the structure of the beam and the main features of the resulting energy spectrum of the electrons and positrons. It offers the state-of-the-art simulation of lepton-collider beam spectra as close as possible to reality. However, for many high-luminosity simulations, event files produced with \ttt{GuineaPig++} are usually too small, in the sense that not enough independent events are available for physics simulations. Lepton collider beam spectra do peak at the nominal beam energy ($\sqrt{s}/2$) of the collider, and feature very steeply falling tails. Such steeply falling distributions are very poorly mapped by histogrammed distributions with fixed bin widths. The main working assumption to handle such spectra are being followed within \circeone: \begin{enumerate} \label{circe1_assumptions} \item The beam spectra for the two beams $P_1$ and $P_2$ factorize (here $x_1$ and $x_2$ are the energy fractions of the two beams, respectively): \begin{equation*} D_{P_1P_2} (x_1, x_2) = D_{P_1} (x_1) \cdot D_{P_2} (x_2) \end{equation*} \item The peak is described with a delta distribution, and the tail with a power law: \begin{equation*} D(x) = d \cdot \delta(1-x) \; + \; c \cdot x^\alpha \, (1-x)^\beta \end{equation*} \end{enumerate} The two powers $\alpha$ and $\beta$ are the main coefficients that can be tuned in order to describe the spectrum with \circeone\ as close as possible as the original \ttt{GuineaPig++} spectrum. More details about how \circeone\ works and what it does can be found in its own write-up in \ttt{circe1/share/doc}. \subsection{\circetwo} The two conditions listed in \ref{circe1_assumptions} are too restrictive and hence insufficient to describe more complicated lepton-collider beam spectra, as they e.g. occur in the CLIC drive-beam design. Here, the two beams are highly correlated and also a power-law description does not give good enough precision for the tails. To deal with these problems, \circetwo\ starts with a two-dimensional histogram featuring factorized, but variable bin widths in order to simulate the steep parts of the distributions. The limited statistics from too small \ttt{GuineaPig++} event output files leads to correlated fluctuations that would leave strange artifacts in the distributions. To abandon them, Gaussian filters are applied to smooth out the correlated fluctuations. Here care has to be taken when going from the continuum in $x$ momentum fraction space to the corresponding \begin{figure} \centering \includegraphics{circe2-smoothing} \caption{\label{fig:circe2-smoothing} Smoothing the bin at the $x_{e^+} = 1$ boundary with Gaussian filters of 3 and 10 bins width compared to no smoothing.} \end{figure} boundaries: separate smoothing procedures are being applied to the bins in the continuum region and those in the boundary in order to avoid artificial unphysical beam energy spreads. Fig.~\ref{fig:circe2-smoothing} shows the smoothing of the distribution for the bin at the $x_{e^+} = 1$ boundary. The blue dots show the direct \ttt{GuineaPig++} output comprising the fluctuations due to the low statistics. Gaussian filters with widths of 3 and 10 bins, respectively, have been applied (orange and green dots, resp.). While there is still considerable fluctuation for 3 bin width Gaussian filtering, the distribution is perfectly smooth for 10 bin width. Hence, five bin widths seem a reasonable compromise for histograms with a total of 100 bins. Note that the bins are not equidistant, but shrink with a power law towards the $x_{e^-} = 1$ boundary on the right hand side of Fig.~\ref{fig:circe2-smoothing}. \whizard\ ships (inside its subpackage \circetwo) with prepared beam spectra ready to be used within \circetwo\ for the ILC beam spectra used in the ILC TDR~\cite{Behnke:2013xla,Baer:2013cma,Adolphsen:2013jya,Adolphsen:2013kya,Behnke:2013lya}. These comprise the designed staging energies of 200 GeV, 230 GeV, 250 GeV, 350 GeV, and 500 GeV. Note that all of these spectra up to now do not take polarization of the original beams on the beamstrahlung into account, but are polarization-averaged. For backwards compatibility, also the 500 GeV spectra for the TESLA design~\cite{AguilarSaavedra:2001rg,Richard:2001qm}, here both for polarized and polarization-averaged cases, are included. Correlated spectra for CLIC staging energies like 350 GeV, 1400 GeV and 3000 GeV are not yet (as of version 2.2.4) included in the \whizard\ distribution. In the following we describe how to obtain such files with the tools included in \whizard (resp. \circetwo). The procedure is equivalent to the so-called \ttt{lumi-linker} construction used by Timothy Barklow (SLAC) together with the legacy version \whizard\ttt{ 1.95}. The workflow to produce such files is to run \ttt{GuineaPig++} with the following input parameters: \begin{Code} do_lumi = 7; num_lumi = 100000000; num_lumi_eg = 100000000; num_lumi_gg = 100000000; \end{Code} This demands from \ttt{GuineaPig++} the generation of distributions for the $e^-e^+$, $e^\mp \gamma$, and $\gamma\gamma$ components of the beamstrahlung's spectrum, respectively. These are the files \ttt{lumi.ee.out}, \ttt{lumi.eg.out}, \ttt{lumi.ge.out}, and \ttt{lumi.gg.out}, respectively. These contain pairs $(E_1, E_2)$ of beam energies, {\em not} fractions of the original beam energy. Huge event numbers are out in here, as \ttt{GuineaPig++} will produce only a small fraction due to a very low generation efficiency. The next step is to transfer these output files from \ttt{GuineaPig++} into input files used with \circetwo. This is done by means of the tool \ttt{circe\_tool.opt} that is installed together with the \whizard\ main binary and libraries. The user should run this executable with the following input file: \begin{Code} { file="ilc500/ilc500.circe" # to be loaded by WHIZARD { design="ILC" roots=500 bins=100 scale=250 # E in [0,1] { pid/1=electron pid/2=positron pol=0 # unpolarized e-/e+ events="ilc500/lumi.ee.out" columns=2 # <= Guinea-Pig lumi = 1564.763360 # <= Guinea-Pig iterations = 10 # adapting bins smooth = 5 [0,1) [0,1) # Gaussian filter 5 bins smooth = 5 [1] [0,1) smooth = 5 [0,1) [1] } } } \end{Code} The first line defines the output file, that later can be read in into the beamstrahlung's description of \whizard\ (cf. below). Then, in the second line the design of the collider (here: ILC for 500 GeV center-of-mass energy, with the number of bins) is specified. The next line tells the tool to take the unpolarized case, then the \ttt{GuineaPig++} parameters (event file and luminosity) are set. In the last three lines, details concerning the adaptation of the simulation as well as the smoothing procedure are being specified: the number of iterations in the adaptation procedure, and for the smoothing with the Gaussian filter first in the continuum and then at the two edges of the spectrum. For more details confer the documentation in the \circetwo\ subpackage. This produces the corresponding input files that can be used within \whizard\ to describe beamstrahlung for lepton colliders, using a \sindarin\ input file like: \begin{Code} beams = e1, E1 => circe2 $circe2_file = "ilc500.circe" $circe2_design = "ILC" ?circe2_polarized = false \end{Code} %%%%% \subsection{Photon Collider Spectra} For details confer the complete write-up of the \circetwo\ subpackage. %%%%% \section{Transverse momentum for ISR photons} \label{sec:isr-photon-handler} The structure functions that describe the splitting of a beam particle into a particle pair, of which one enters the hard interaction and the other one is radiated, are defined and evaluated in the strict collinear approximation. In particular, this holds for the ISR structure function which describes the radiation of photons off a charged particle in the initial state. The ISR structure function that is used by \whizard\ is understood to be inclusive, i.e., it implicitly contains an integration over transverse momentum. This approach is to be used for computing a total cross section via \ttt{integrate}. In \whizard, it is possible to unfold this integration, as a transformation that is applied by \ttt{simulate} step, event by event. The resulting modified events will show a proper logarithmic momentum-transfer ($Q^2$) distribution for the radiated photons. The recoil is applied to the hard-interaction system, such that four-momentum and $\sqrt{\hat s}$ are conserved. The distribution is cut off by $Q_{\text{max}}^2$ (cf. \ttt{isr\_q\_max}) for large momentum transfer, and smoothly by the parton mass (cf.\ \ttt{isr\_mass}) for small momentum transfer. To activate this modification, set \begin{Code} ?isr_handler = true $isr_handler_mode = "recoil" \end{Code} before, or as an option to, the \ttt{simulate} command. Limitations: the current implementation of the $p_T$ modification works only for the symmetric double-ISR case, i.e., both beams have to be charged particles with identical mass (e.g., $e^+e^-$). The mode \ttt{recoil} generates exactly one photon per beam, i.e., it modifies the momentum of the single collinear photon that the ISR structure function implementation produces, for each beam. (It is foreseen that further modes or options will allow to generate multiple photons. Alternatively, the \pythia\ shower can be used to simulate multiple photons radiated from the initial state.) %%%%% \section{Transverse momentum for the EPA approximation} \label{sec:epa-beam-handler} For the equivalent-photon approximation (EPA), which is also defined in the collinear limit, recoil momentum can be inserted into generated events in an entirely analogous way. The appropriate settings are \begin{Code} ?epa_handler = true $epa_handler_mode = "recoil" \end{Code} Limitations: as for ISR, the current implementation of the $p_T$ modification works only for the symmetric double-EPA case. Both incoming particles of the hard process must be photons, while both beams must be charged particles with identical mass (e.g., $e^+e^-$). Furthermore, the current implementation does not respect the kinematical limit parameter \verb|epa_q_min|, it has to be set to zero. In effect, the lower $Q^2$ cutoff is determined by the beam-particle mass \verb|epa_mass|, and the upper cutoff is either given by $Q_{\text{max}}$ (the parameter \verb|epa_q_max|), or by the limit $\sqrt{s}$ if this is not set. It is possible to combine the ISR and EPA handlers, for processes where ISR is active for one of the beams, EPA for the other beam. For this scenario to work, both handler switches must be on, and both mode strings must coincide. The parameters are set separately for ISR and EPA, as described above. %%%%% \section{Resonances and continuum} \subsection{Complete matrix elements} Many elementary physical processes are composed of contributions that can be qualified as (multiply) \emph{resonant} or \emph{continuum}. For instance, the amplitude for the process $e^+e^-\to q\bar q q\bar q$, evaluated at tree level in perturbation theory, contains Feynman diagrams with zero, one, or two $W$ and $Z$ bosons as virtual lines. If the kinematical constraints allow this, two vector bosons can become simultaneously on-shell in part of phase space. To a first approximation, this situation is understood as $W^+W^-$ or $ZZ$ production with subsequent decay. The kinematical distributions show distinct resonances in the quark-pair spectra. Other graphs contain only one s-channel $W/Z$ boson, or none at all, such as graphs with $q\bar q$ production and subsequent gluon radiation, splitting into another $q\bar q$ pair. A \whizard\ declaration of the form \begin{Code} process q4 = e1, E1 => u, U, d, D \end{Code} produces the full set of graphs for the selected final state, which after squaring and integrating yields the exact tree-level result for the process. The result contains all doubly and singly resonant parts, with correct resonance shapes, as well as the continuum contribution and all interference. This is, to given order in perturbation theory, the best possible approximation to the true result. \subsection{Processes restricted to resonances} For an intuitive separation of a two-boson ``signal'' contribution, it is possible to restrict the set of graphs to a certain intermediate state. For instance, the declaration \begin{Code} process q4_zz = e1, E1 => u, U, d, D { $restrictions = "3+4~Z && 5+6~Z" } \end{Code} generates an amplitude that contains only those Feynman graphs where the specified quarks are connected to a $Z$ virtual line. The result may be understood as $ZZ$ production with subsequent decay, where the $Z$ resonances exhibit a Breit-Wigner shape. Combining this with the analogous $W^+W^-$ restricted process, the user can generate ``signal'' processes. Adding both ``signal'' cross sections $WW$ and $ZZ$ will result in a reasonable approximation to the exact tree-level cross section. The amplitude misses the single-resonant and continuum contributions, and the squared amplitude misses the interference terms, however. More importantly, the restricted processes as such are not gauge-invariant (with respect to the electroweak gauge group), and they are no longer dominant away from resonant kinematics. We therefore strongly recommend that such restricted processes are always accompanied by a cut setup that restricts the kinematics to an approximately on-shell pattern for both resonances. For instance: \begin{Code} cuts = all 85 GeV < M < 95 GeV [u:U] and all 85 GeV < M < 95 GeV [d:D] \end{Code} In this region, the gauge-dependent and continuum contributions are strictly subdominant. Away from the resonance(s), the results for a restricted process are meaningless, and the full process has to be computed instead. \subsection{Factorized processes} Another method for obtaining the signal contribution is a proper factorization into resonance production and decay. We would have to generate a production process and two decay processes: \begin{Code} process z_uu = Z => u, U process z_dd = Z => d, D process zz = e1, E1 => Z, Z \end{Code} All three processes must be integrated. The integration results are partial decay widths and the $ZZ$ production cross section, respectively. (Note that cut expressions in \sindarin\ apply to all integrations, so make sure that no production-process cuts are active when integrating the decay processes.) During a later event-generation step, the $Z$ decays can then be activated by declaring the $Z$ as unstable, \begin{Code} unstable Z (z_uu, z_dd) \end{Code} and then simulating the production process \begin{Code} simulate (zz) \end{Code} The generated events will consist of four-fermion final states, including all combinations of both decay modes. It is important to note that in this setup, the invariant $u\bar u$ and $d\bar d$ masses will be always \emph{exactly} equal to the $Z$ mass. There is no Breit-Wigner shape involved. However, in this approximation the results are gauge-invariant, as there is no off-shell contribution involved. For further details on factorized processes and spin correlations, cf.\ Sec.~\ref{sec:spin-correlations}. \subsection{Resonance insertion in the event record} From the above discussion, we may conclude that it is always preferable to compute the complete process for a given final state, as long as this is computationally feasible. However, in the simulation step this approach also has a drawback. Namely, if a parton-shower module (see below) is switched on, the parton-shower algorithm relies on event details in order to determine the radiation pattern of gluons and further splitting. In the generated event records, the full-process events carry the signature of non-resonant continuum production with no intermediate resonances. The parton shower will thus start the evolution at the process energy scale, the total available energy. By contrast, for an electroweak production and decay process, the evolution should start only at the vector boson mass, $m_Z$. In effect, even though the resonant contribution of $WW$ and $ZZ$ constitutes the bulk of the cross section, the radiation pattern follows the dynamics of four-quark continuum production. In general, the number of radiated hadrons will be too high. \begin{figure} \begin{center} \includegraphics[width=.41\textwidth]{resonance_e_gam} \includegraphics[width=.41\textwidth]{resonance_n_charged} \\ \includegraphics[width=.41\textwidth]{resonance_n_hadron} \includegraphics[width=.41\textwidth]{resonance_n_particles} \\ \includegraphics[width=.41\textwidth]{resonance_n_photons} \includegraphics[width=.41\textwidth]{resonance_n_visible} \end{center} \caption{The process $e^+e^- \to jjjj$ at 250 GeV center-of-mass energy is compared transferring the partonic events naively to the parton shower, i.e. without respecting any intermediate resonances (red lines). The blue lines show the process factorized into $WW$ production and decay, where the shower knows the origin of the two jet pairs. The orange and dark green lines show the resonance treatment as mentioned in the text, with \ttt{resonance\_on\_shell\_limit = 1} and \ttt{= 4}, respectively. \pythiasix\ parton shower and hadronization with the OPAL tune have been used. The observables are: photon energy distribution and number of charged tracks (upper line left/right, number of hadrons and total number of particles (middle left/right), and number of photons and neutral particles (lower line left/right).} \end{figure} To overcome this problem, there is a refinement of the process description available in \whizard. By modifying the process declaration to \begin{Code} ?resonance_history = true resonance_on_shell_limit = 4 process q4 = e1, E1 => u, U, d, D \end{Code} we advise the program to produce not just the complete matrix element, but also all possible restricted matrix elements containing resonant intermediate states. This has no effect at all on the integration step, and thus on the total cross section. However, when subsequently events are generated with this setting, the program checks, for each event, the kinematics and determines the set of potentially resonant contributions. The criterion is whether the off-shellness of a particular would-be resonance is less than the resonance width multiplied by the value of \verb|resonance_on_shell_limit| (default value $=4$). For the set of resonance histories which pass this criterion (which can be empty), their respective squared matrix element is related to the full-process matrix element. The ratio is interpreted as a probability. The random-number generator then selects one or none of the resonance histories, and modifies the event record accordingly. In effect, for an appropriate fraction of the events, depending on the kinematics, the parton-shower module is provided with resonance information, so it can adjust the radiation pattern accordingly. It has to be mentioned that generating the matrix-element code for all possible resonance histories takes additional computing resources. In the current default setup, this feature is switched off. It has to be explicitly activated via the \verb|?resonance_history| flag. Also, the feature can be activated or deactivated individually for each process, such as in \begin{Code} ?resonance_history = true process q4_with_res = e1, E1 => u, U, d, D { ?resonance_history = true } process q4_wo_res = e1, E1 => u, U, d, D { ?resonance_history = false } \end{Code} If the flag is \verb|false| for a process, no resonance code will be generated. Similarly, the flag has to be globally or locally active when \verb|simulate| is called, such that the feature takes effect for event generation. There are two additional parameters that can fine-tune the conditions for resonance insertion in the event record. Firstly, the parameter \verb|resonance_on_shell_turnoff|, if nonzero, enables a Gaussian suppression of the probability for resonance insertion. For instance, setting \begin{Code} ?resonance_history = true resonance_on_shell_turnoff = 4 resonance_on_shell_limit = 8 \end{Code} will reduce the probability for the event to be qualified as resonant by $e^{-1}= 37\,\%$ if the kinematics is off-shell by four units of the width, and by $e^{-4}=2\,\%$ at eight units of the width. Beyond this point, the setting of the \verb|resonance_on_shell_limit| parameter eliminates resonance insertion altogether. In effect, the resonance-background transition is realized in a smooth way. Secondly, within the resonant-kinematics range the probability for qualifying the event as background can be reduced by the parameter \verb|resonance_background_factor| (default value $=1$) to a number between zero and one. Setting this to zero means that the event will be necessarily qualified as resonant, if it falls within the resonant-kinematics range. Note that if an event, by the above mechanism, is identified as following a certain resonance history, the assigned color flow will be chosen to match the resonance history, not the complete matrix element. This may result in a reassignment of color flow with respect to the original partonic event. Finally, we mention the order of execution: any additional matrix element code is compiled and linked when \verb|compile| is executed for the processes in question. If this command is omitted, the \verb|simulate| command will trigger compilation. \section{Parton showers and Hadronization} In order to produce sensible events, final state QCD (and also QED) radiation has to be considered as well as the binding of strongly interacting partons into mesons and baryons. Furthermore, final state hadronic resonances undergo subsequent decays into those particles showing up in (or traversing) the detector. The latter are mostly pions, kaons, photons, electrons and muons. The physics associated with these topics can be divided into the perturbative part which is the regime of the parton shower, and the non-perturbative part which is the regime for the hadronization. \whizard\ comes with its own two different parton shower implementations, an analytic and a so-called $k_T$-ordered parton shower that will be detailed in the next section. Note that in general it is not advisable to use different shower and hadronization methods, or in other words, when using shower and hadronization methods from different programs these would have to be tuned together again with the corresponding data. Parton showers are approximations to full matrix elements taking only the leading color flow into account, and neglecting all interferences between different amplitudes leading to the same exclusive final state. They rely on the QCD (and QED) splitting functions to describe the emissions of partons off other partons. This is encoded in the so-called Sudakov form factor~\cite{Sudakov:1954sw}: \begin{equation*} \Delta( t_1, t_2) = \exp \left[ \int\limits_{t_1}^{t_2} \mbox{d} t \int\limits_{z_-}^{z_+} \mbox{d} z \frac{\alpha_s}{2 \pi t} P(z) \right] \end{equation*} This gives the probability for a parton to evolve from scale $t_2$ to $t_1$ without any further emissions of partons. $t$ is the evolution parameter of the shower, which can be a parton energy, an emission angle, a virtuality, a transverse momentum etc. The variable $z$ relates the two partons after the branching, with the most common choice being the ratio of energies of the parton after and before the branching. For final-state radiation brachings occur after the hard interaction, the evolution of the shower starts at the scale of the hard interaction, $t \sim \hat{s}$, down to a cut-off scale $t = t_{\text{cut}}$ that marks the transition to the non-perturbative regime of hadronization. In the space-like evolution for the initial-state shower, the evolution is from a cut-off representing the factorization scale for the parton distribution functions (PDFs) to the inverse of the hard process scale, $-\hat{s}$. Technically, this evolution is then backwards in (shower) time~\cite{Sjostrand:1985xi}, leading to the necessity to include the PDFs in the Sudakov factors. The main switches for the shower and hadronization which are realized as transformations on the partonic events within \whizard\ are \ttt{?allow\_shower} and \ttt{?allow\_hadronization}, which are true by default and only there for technical reasons. Next, different shower and hadronization methods can be chosen within \whizard: \begin{code} $shower_method = "WHIZARD" $hadronization_method = "PYTHIA6" \end{code} The snippet above shows the default choices in \whizard\, namely \whizard's intrinsic parton shower, but \pythiasix\ as hadronization tool. (Note that \whizard\ does not have its own hadronization module yet.) The usage of \pythiasix\ for showering and hadronization will be explained in Sec.~\ref{sec:pythia6}, while the two different implementations of the \whizard\ homebrew parton showers are discussed in Sec.~\ref{sec:ktordered} and~\ref{sec:analytic}, respectively. %%%%% \subsection{The $k_T$-ordered parton shower} \label{sec:ktordered} %%%%% \subsection{The analytic parton shower} \label{sec:analytic} %%%%% \subsection{Parton shower and hadronization from \pythiasix} \label{sec:pythia6} Development of the \pythiasix\ generator for parton shower and hadronization (the \fortran\ version) has been discontinued by the authors several years ago. Hence, the final release of that program is frozen. This allowed to ship this final version, v6.427, with the \whizard\ distribution without the need of updating it all the time. One of the main reasons for that inclusion -- besides having the standard tool for showering and hadronization for decays at hand -- is to allow for backwards validation within \whizard\ particularly for the event samples generated for the development of linear collider physics: first for TESLA, JLC and NLC, and later on for the Conceptual and Technical Design Report for ILC, for the Conceptual Design Report for CLIC as well as for the Letters of Intent for the LC detectors, ILD and SiD. Usually, an external parton shower and hadronization program (PS) is steered via the transfer of event files that are given to the PS via LHE events, while the PS program then produces hadron level events, usually in HepMC format. These can then be directed towards a full or fast detector simulation program. As \pythiasix\ has been completely integrated inside the \whizard\ framework, the showered or more general hadron level events can be returned to and kept inside \whizard's internal event record, and hence be used in \whizard's internal event analysis. In that way, the events can be also written out in event formats that are not supported by \pythiasix, e.g. \ttt{LCIO} via the output capabilities of \whizard. There are several switches to directly steer \pythiasix\ (the values in brackets correspond to the \pythiasix\ variables): \begin{code} ps_mass_cutoff = 1 GeV [PARJ(82)] ps_fsr_lambda = 0.29 GeV [PARP(72)] ps_isr_lambda = 0.29 GeV [PARP(61)] ps_max_n_flavors = 5 [MSTJ(45)] ?ps_isr_alphas_running = true [MSTP(64)] ?ps_fsr_alphas_running = true [MSTJ(44)] ps_fixed_alphas = 0.2 [PARU(111)] ?ps_isr_angular_ordered = true [MSTP(62)] ps_isr_primordial_kt_width = 1.5 GeV [PARP(91)] ps_isr_primordial_kt_cutoff = 5.0 GeV [PARP(93)] ps_isr_z_cutoff = 0.999 [1-PARP(66)] ps_isr_minenergy = 2 GeV [PARP(65)] ?ps_isr_only_onshell_emitted_partons = true [MSTP(63)] \end{code} The values given above are the default values. The first value corresponds to the \pythiasix\ parameter \ttt{PARJ(82)}, its squared being the minimal virtuality that is allowed for the parton shower, i.e. the cross-over to the hadronization. The same parameter is used also for the \whizard\ showers. \ttt{ps\_fsr\_lambda} is the equivalent of \ttt{PARP(72)} and is the $\Lambda_{\text{QCD}}$ for the final state shower. The corresponding variable for the initial state shower is called \ttt{PARP(61)} in \pythiasix. By the next variable (\ttt{MSTJ(45)}), the maximal number of flavors produced in splittings in the shower is given, together with the number of active flavors in the running of $\alpha_s$. \ttt{?ps\_isr\_alphas\_running} which corresponds to \ttt{MSTP(64)} in \pythiasix\ determines whether or net a running $\alpha_s$ is taken in the space-like initial state showers. The same variable for the final state shower is \ttt{MSTJ(44)}. For fixed $\alpha_s$, the default value is given by \ttt{ps\_fixed\_alpha}, corresponding to \ttt{PARU(111)}. \ttt{MSTP(62)} determines whether the ISR shower is angular order, i.e. whether angles are increasing towards the hard interaction. This is per default true, and set in the variable \ttt{?ps\_isr\_angular\_ordered}. The width of the distribution for the primordial (intrinsic) $k_T$ distribution (which is a non-perturbative quantity) is the \pythiasix\ variable \ttt{PARP(91)}, while in \whizard\ it is given by \ttt{pythia\_isr\_primordial\_kt\_width}. The next variable (\ttt{PARP(93}) gives the upper cutoff for that distribution, which is 5 GeV per default. For splitting in space-like showers, there is a cutoff on the $z$ variable named \ttt{ps\_isr\_z\_cutoff} in \whizard. This corresponds to one minus the value of the \pythiasix\ parameter \ttt{PARP(66)}. \ttt{PARP(65)}, on the other hand, gives the minimal (effective) energy for a time-like or on-shell emitted parton on a space-like QCD shower, given by the \sindarin\ parameter \ttt{ps\_isr\_minenergy}. Whether or not partons emitted from space-like showers are allowed to be only on-shell is given by \ttt{?ps\_isr\_only\_onshell\_emitted\_partons}, \ttt{MSTP(63)} in \pythiasix\ language. For more details confer the \pythiasix\ manual~\cite{Sjostrand:2006za}. Any other non-standard \pythiasix\ parameter can be fed into the parton shower via the string variable \begin{code} $ps_PYTHIA_PYGIVE = "...." \end{code} Variables set here get preference over the ones set explicitly by dedicated \sindarin\ commands. For example, the OPAL tune for hadronic final states can be set via: \begin{code} $ps_PYTHIA_PYGIVE = "MSTJ(28)=0; PMAS(25,1)=120.; PMAS(25,2)=0.3605E-02; MSTJ(41)=2; MSTU(22)=2000; PARJ(21)=0.40000; PARJ(41)=0.11000; PARJ(42)=0.52000; PARJ(81)=0.25000; PARJ(82)=1.90000; MSTJ(11)=3; PARJ(54)=-0.03100; PARJ(55)=-0.00200; PARJ(1)=0.08500; PARJ(3)=0.45000; PARJ(4)=0.02500; PARJ(2)=0.31000; PARJ(11)=0.60000; PARJ(12)=0.40000; PARJ(13)=0.72000; PARJ(14)=0.43000; PARJ(15)=0.08000; PARJ(16)=0.08000; PARJ(17)=0.17000; MSTP(3)=1;MSTP(71)=1" \end{code} \vspace{0.5cm} A very common error that appears quite often when using \pythiasix\ for SUSY or any other model having a stable particle that serves as a possible Dark Matter candidate, is the following warning/error message: \begin{Code} Advisory warning type 3 given after 0 PYEXEC calls: (PYRESD:) Failed to decay particle 1000022 with mass 15.000 ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Simulation: failed to generate valid event after 10000 tries ****************************************************************************** ****************************************************************************** \end{Code} In that case, \pythiasix\ gets a stable particle (here the lightest neutralino with the PDG code 1000022) handed over and does not know what to do with it. Particularly, it wants to treat it as a heavy resonance which should be decayed, but does not know how do that. After a certain number of tries (in the example abobe 10k), \whizard\ ends with a fatal error telling the user that the event transformation for the parton shower in the simulation has failed without producing a valid event. The solution to work around that problem is to let \pythiasix\ know that the neutralino (or any other DM candidate) is stable by means of \begin{code} $ps_PYTHIA_PYGIVE = "MDCY(C1000022,1)=0" \end{code} Here, 1000022 has to be replaced by the stable dark matter candidate or long-lived particle in the user's favorite model. Also note that with other options being passed to \pythiasix\, the \ttt{MDCY} option above has to be added to an existing \ttt{\$ps\_PYTHIA\_PYGIVE} command separated by a semicolon. %%%%% \subsection{Parton shower and hadronization from \pythiaeight} \subsection{Other tools for parton shower and hadronization} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{More on Event Generation} \label{chap:events} In order to perform a physics analysis with \whizard\ one has to generate events. This seems to be a trivial statement, but as there have been any questions like "My \whizard\ does not produce plots -- what has gone wrong?" we believe that repeating that rule is worthwile. Of course, it is not mandatory to use \whizard's own analysis set-up, the user can always choose to just generate events and use his/her own analysis package like \ttt{ROOT}, or \ttt{TopDrawer}, or you name it for the analysis. Accordingly, we first start to describe how to generate events and what options there are -- different event formats, renaming output files, using weighted or unweighted events with different normalizations. How to re-use and manipulate already generated event samples, how to limit the number of events per file, etc. etc. \section{Event generation} To explain how event generation works, we again take our favourite example, $e^+e^- \to \mu^+ \mu^-$, \begin{verbatim} process eemm = e1, E1 => e2, E2 \end{verbatim} The command to trigger generation of events is \ttt{simulate () \{ \}}, so in our case -- neglecting any options for now -- simply: \begin{verbatim} simulate (eemm) \end{verbatim} When you run this \sindarin\ file you will experience a fatal error: \ttt{FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts)}. This is because \whizard\ needs to compile and integrate the process \ttt{eemm} first before event simulation, because it needs the information of the corresponding cross section, phase space parameterization and grids. It does both automatically, but you have to provide \whizard\ with the beam setup, or at least with the center-of-momentum energy. A corresponding \ttt{integrate} command like \begin{verbatim} sqrts = 500 GeV integrate (eemm) { iterations = 3:10000 } \end{verbatim} obviously has to appear {\em before} the corresponding \ttt{simulate} command (otherwise you would be punished by the same error message as before). Putting things in the correct order results in an output like: \begin{footnotesize} \begin{verbatim} | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM | Process library 'default_lib': initialized | Preloaded library: default_lib | Reading commands from file 'bla.sin' | Process library 'default_lib': recorded process 'eemm' sqrts = 5.000000000000E+02 | Integrate: current process library needs compilation | Process library 'default_lib': compiling ... | Process library 'default_lib': keeping makefile | Process library 'default_lib': keeping driver | Process library 'default_lib': active | Process library 'default_lib': ... success. | Integrate: compilation done | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 29912 | Initializing integration for process eemm: | ------------------------------------------------------------------------ | Process [scattering]: 'eemm' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'eemm_i1': e-, e+ => mu-, mu+ [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 5.000000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'eemm_i1.phs' | Phase space: 2 channels, 2 dimensions | Phase space: found 2 channels, collected in 2 groves. | Phase space: Using 2 equivalences between channels. | Phase space: wood Warning: No cuts have been defined. | OpenMP: Using 8 threads | Starting integration for process 'eemm' | Integrate: iterations = 3:10000 | Integrator: 2 chains, 2 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 10000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 9216 4.2833237E+02 7.14E-02 0.02 0.02* 40.29 2 9216 4.2829071E+02 7.08E-02 0.02 0.02* 40.29 3 9216 4.2838304E+02 7.04E-02 0.02 0.02* 40.29 |-----------------------------------------------------------------------------| 3 27648 4.2833558E+02 4.09E-02 0.01 0.02 40.29 0.43 3 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:00m:04s | Creating integration history display eemm-history.ps and eemm-history.pdf | Starting simulation for process 'eemm' | Simulate: using integration grids from file 'eemm_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 29913 | OpenMP: Using 8 threads | Simulation: requested number of events = 0 | corr. to luminosity [fb-1] = 0.0000E+00 | Events: writing to raw file 'eemm.evx' | Events: generating 0 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. | Events: closing raw file 'eemm.evx' | There were no errors and 1 warning(s). | WHIZARD run finished. |=============================================================================| \end{verbatim} \end{footnotesize} So, \whizard\ tells you that it has entered simulation mode, but besides this, it has not done anything. The next step is that you have to demand event generation -- there are two ways to do this: you could either specify a certain number, say 42, of events you want to have generated by \whizard, or you could provide a number for an integrated luminosity of some experiment. (Note, that if you choose to take both options, \whizard\ will take the one which gives the larger event sample. This, of course, depends on the given process(es) -- as well as cuts -- and its corresponding cross section(s).) The first of these options is set with the command: \ttt{n\_events = }, the second with \ttt{luminosity = }. Another important point already stated several times in the manual is that \whizard\ follows the commands in the steering \sindarin\ file in a chronological order. Hence, a given number of events or luminosity {\em after} a \ttt{simulate} command will be ignored -- or are relevant only for any \ttt{simulate} command potentially following further down in the \sindarin\ file. So, in our case, try: \begin{verbatim} n_events = 500 luminosity = 10 simulate (eemm) \end{verbatim} Per default, numbers for integrated luminosity are understood as inverse femtobarn. So, for the cross section above this would correspond to 4283 events, clearly superseding the demand for 500 events. After reducing the luminosity number from ten to one inverse femtobarn, 500 is the larger number of events taken by \whizard\ for event generation. Now \whizard\ tells you: \begin{verbatim} | Simulation: requested number of events = 500 | corr. to luminosity [fb-1] = 1.1673E+00 | Events: reading from raw file 'eemm.evx' | Events: reading 500 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event file terminates after 0 events. | Events: appending to raw file 'eemm.evx' | Generating remaining 500 events ... | ... event sample complete. | Events: closing raw file 'eemm.evx' \end{verbatim} I.e., it evaluates the luminosity to which the sample of 500 events would correspond to, which is now, of course, bigger than the $1 \fb^{-1}$ explicitly given for the luminosity. Furthermore, you can read off that a file \ttt{whizard.evx} has been generated, containing the demanded 500 events. (It was there before containing zero events, because to \ttt{n\_events} or \ttt{luminosity} value had been set. \whizard\ then tried to get the events first from file before generating new ones). Files with the suffix \ttt{.evx} are binary format event files, using a machine-dependent \whizard-specific event file format. Before we list the event formats supported by \whizard, the next two sections will tell you more about unweighted and weighted events as well as different possibilities to normalize events in \whizard. As already explained for the libraries, as well as the phase space and grid files in Chap.~\ref{chap:sindarin}, \whizard\ is trying to re-use as much information as possible. This is of course also true for the event files. There are special MD5 check sums testing the integrity and compatibility of the event files. If you demand for a process for which an event file already exists (as in the example above, though it was empty) equally many or less events than generated before, \whizard\ will not generate again but re-use the existing events (as already explained, the events are stored in a \whizard-own binary event format, i.e. in a so-called \ttt{.evx} file. If you suppress generation of that file, as will be described in subsection \ref{sec:eventformats} then \whizard\ has to generate events all the time). From version v2.2.0 of \whizard\ on, the program is also able to read in event from different event formats. However, most event formats do not contain as many information as \whizard's internal format, and a complete reconstruction of the events might not be possible. Re-using event files is very practical for doing several different analyses with the same data, especially if there are many and big data samples. Consider the case, there is an event file with 200 events, and you now ask \whizard\ to generate 300 events, then it will re-use the 200 events (if MD5 check sums are OK!), generate the remaining 100 events and append them to the existing file. If the user for some reason, however, wants to regenerate events (i.e. ignoring possibly existing events), there is the command option \ttt{whizard --rebuild-events}. %%%%%%%%% \section{Unweighted and weighted events} \whizard\ is able to generate unweighted events, i.e. events that are distributed uniformly and each contribute with the same event weight to the whole sample. This is done by mapping out the phase space of the process under consideration according to its different phase space channels (which each get their own weights), and then unweighting the sample of weighted events. Only a sample of unweighted events could in principle be compared to a real data sample from some experiment. The seventh column in the \whizard\ iteration/adaptation procedure tells you about the efficiency of the grids, i.e. how well the phase space is mapped to a flat function. The better this is achieved, the higher the efficiency becomes, and the closer the weights of the different phase space channels are to uniformity. This means, for higher efficiency less weighted events ("calls") are needed to generate a single unweighted event. An efficiency of 10 \% means that ten weighted events are needed to generate one single unweighted event. After the integration is done, \whizard\ uses the duration of calls during the adaptation to estimate a time interval needed to generate 10,000 unweighted events. The ability of the adaptive multi-channel Monte Carlo decreases with the number of integrations, i.e. with the number of final state particles. Adding more and more final state particles in general also increases the complexity of phase space, especially its singularity structure. For a $2 \to 2$ process the efficiency is roughly of the order of several tens of per cent. As a rule of thumb, one can say that with every additional pair of final state particle the average efficiency one can achieve decreases by a factor of five to ten. The default of \whizard\ is to generate {\em unweighted} events. One can use the logical variable \ttt{?unweighted = false} to disable unweighting and generate weighted events. (The command \ttt{?unweighted = true} is a tautology, because \ttt{true} is the default for this variable.) Note that again this command has to appear {\em before} the corresponding \ttt{simulate} command, otherwise it will be ignored or effective only for any \ttt{simulate} command appearing later in the \sindarin\ file. In the unweighted procedure, \whizard\ is keeping track of the highest weight that has been appeared during the adaptation, and the efficiency for the unweighting has been estimated from the average value of the sampling function compared to the maximum value. In principle, during event generation no events should be generated whose sampling function value exceeds the maximum function value encountered during the grid adaptation. Sometimes, however, there are numerical fluctuations and such events are happening. They are called {\em excess events}. \whizard\ does keep track of these excess events during event generation and will report about them, e.g.: \begin{code} Warning: Encountered events with excess weight: 9 events ( 0.090 %) | Maximum excess weight = 6.083E-01 | Average excess weight = 2.112E-04 \end{code} Whenever in an event generation excess events appear, this shows that the adaptation of the sampling function has not been perfect. When the number of excess weights is a finite number of percent, you should inspect the phase-space setup and try to improve its settings to get a better adaptation. Generating \emph{weighted} events is, of course, much faster if the same number of events is requested. Each event carries a weight factor which is taken into account for any internal analysis (histograms), and written to file if an external file format has been selected. The file format must support event weights. In a weighted event sample, there is typically a fraction of events which effectively have weight zero, namely those that have been created by the phase-space sampler but do not pass the requested cuts. In the default setup, those events are silently dropped, such that the events written to file or available for analysis all have nonzero weight. However, dropping such events affects the overall normalization. If this has happened, the program will issue a warning of the form \begin{code} | Dropped events (weight zero) = 1142 (total 2142) Warning: All event weights must be rescaled by f = 4.66853408E-01 \end{code} This factor has to be applied by hand to any external event files (and to internally generated histograms). The program cannot include the factor in the event records, because it is known only after all events have been generated. To avoid this problem, there is the logical flag \ttt{?keep\_failed\_events} which tells \whizard\ not to drop events with weight zero. The normalization will be correct, but the event sample will include invalid events which have to be vetoed by their zero weight, before any operations on the event record are performed. %%%%%%%%% \section{Choice on event normalizations} There are basically four different choices to normalize event weights ($\braket{\ldots}$ denotes the average): \begin{enumerate} \item $\braket{w_i} = 1$, \qquad\qquad $\Braket{\sum_i w_i} = N$ \item $\braket{w_i} = \sigma$, \qquad\qquad $\Braket{\sum_i w_i} = N \times \sigma$ \item $\braket{w_i} = 1/N$, \quad\qquad $\Braket{\sum_i w_i} = 1$ \item $\braket{w_i} = \sigma/N$, \quad\qquad $\Braket{\sum_i w_i} = \sigma$ \end{enumerate} So the four options are to have the average weight equal to unity, to the cross section of the corresponding process, to one over the number of events, or the cross section over the event calls. In these four cases, the event weights sum up to the event number, the event number times the cross section, to unity, and to the cross section, respectively. Note that neither of these really guarantees that all event weights individually lie in the interval $0 \leq w_i \leq 1$. The user can steer the normalization of events by using in \sindarin\ input files the string variable \ttt{\$sample\_normalization}. The default is \ttt{\$sample\_normalization = "auto"}, which uses option 1 for unweighted and 2 for weighted events, respectively. Note that this is also what the Les Houches Event Format (LHEF) demands for both types of events. This is \whizard's preferred mode, also for the reason, that event normalizations are independent from the number of events. Hence, event samples can be cut or expanded without further need to adjust the normalization. The unit normalization (option 1) can be switched on also for weighted events by setting the event normalization variable equal to \ttt{"1"}. Option 2 can be demanded by setting \ttt{\$sample\_normalization = "sigma"}. Options 3 and 4 can be set by \ttt{"1/n"} and \ttt{"sigma/n"}, respectively. \whizard\ accepts small and capital letters for these expressions. There are several event formats (based upon the old common block definition HEPRUP) like some of the ASCII formats, LHA, LHE and HepMC that demand cross sections (and corresponding MCintegration errors) to be given in picobarn. So they are converted from the \whizard\ default of femtobarn to picobarn. The only exception is if a (pseudo-)event file for a decay is generated where the unit in those entries is downscaled by a factor of 1000, but remains in GeV as default unit. In the following section we show some examples when discussing the different event formats available in \whizard. %%%%%%%%% \section{Event selection} The \ttt{selection} expression (cf.\ Sec.~\ref{subsec:analysis}) reduces the event sample during generation or rescanning, selecting only events for which the expression evaluates to \ttt{true}. Apart from internal analysis, the selection also applies to writing external files. For instance, the following code generates a $e^+e^-\to W^+W^-$ sample with longitudinally polarized $W$ bosons only: \begin{footnotesize} \begin{verbatim} process ww = "e+", "e-" => "W-", "W+" polarized "W+" polarized "W-" ?polarized_events = true sqrts = 500 selection = all Hel == 0 ["W+":"W-"] simulate (ww) { n_events = 1000 } \end{verbatim} \end{footnotesize} The number of events that end up in the sample on file is equal to the number of events with longitudinally polarized $W$s in the generated sample, so the file will contain less than 1000 events. %%%%%%%%% \section{Supported event formats} \label{sec:eventformats} Event formats can either be distinguished whether they are plain text (i.e. ASCII) formats or binary formats. Besides this, one can classify event formats according to whether they are natively supported by \whizard\ or need some external program or library to be linked. Table~\ref{tab:eventformats} gives a complete list of all event formats available in \whizard. The second column shows whether these are ASCII or binary formats, the third column contains brief remarks about the corresponding format, while the last column tells whether external programs or libraries are needed (which is the case only for the HepMC formats). \begin{table} \begin{center} \begin{tabular}{|l||l|l|r|}\hline Format & Type & remark & ext. \\\hline ascii & ASCII & \whizard\ verbose format & no \\ Athena & ASCII & variant of HEPEVT & no \\ debug & ASCII & most verbose \whizard\ format & no \\ evx & binary & \whizard's home-brew & no \\ HepMC & ASCII & HepMC format & yes \\ HEPEVT & ASCII & \whizard~1 style & no \\ LCIO & ASCII & LCIO format & yes \\ LHA & ASCII & \whizard~1/old Les Houches style &no \\ LHEF & ASCII & Les Houches accord compliant & no \\ long & ASCII & variant of HEPEVT & no \\ mokka & ASCII & variant of HEPEVT & no \\ short & ASCII & variant of HEPEVT & no \\ StdHEP (HEPEVT) & binary & based on HEPEVT common block & no \\ StdHEP (HEPRUP/EUP) & binary & based on HEPRUP/EUP common block & no \\ Weight stream & ASCII & just weights & no \\ \hline \end{tabular} \end{center} \caption{\label{tab:eventformats} Event formats supported by \whizard, classified according to ASCII/binary formats and whether an external program or library is needed to generate a file of this format. For both the HEPEVT and the LHA format there is a more verbose variant. } \end{table} The "\ttt{.evx}'' is \whizard's native binary event format. If you demand event generation and do not specify anything further, \whizard\ will write out its events exclusively in this binary format. So in the examples discussed in the previous chapters (where we omitted all details about event formats), in all cases this and only this internal binary format has been generated. The generation of this raw format can be suppressed (e.g. if you want to have only one specific event file type) by setting the variable \verb|?write_raw = false|. However, if the raw event file is not present, \whizard\ is not able to re-use existing events (e.g. from an ASCII file) and will regenerate events for a given process. Note that from version v2.2.0 of \whizard\ on, the program is able to (partially) reconstruct complete events also from other formats than its internal format (e.g. LHEF), but this is still under construction and not yet complete. Other event formats can be written out by setting the variable \ttt{sample\_format = }, where \ttt{} can be any of the following supported variables: \begin{itemize} \item \ttt{ascii}: a quite verbose ASCII format which contains lots of information (an example is shown in the appendix). \newline Standard suffix: \ttt{.evt} \item \ttt{debug}: an even more verbose ASCII format intended for debugging which prints out also information about the internal data structures \newline Standard suffix: \ttt{.debug} \item \ttt{hepevt}: ASCII format that writes out a specific incarnation of the HEPEVT common block (\whizard~1 back-compatibility) \newline Standard suffix: \ttt{.hepevt} \item \ttt{hepevt\_verb}: more verbose version of \ttt{hepevt} (\whizard~1 back-compatibility) \newline Standard suffix: \ttt{.hepevt.verb} \item \ttt{short}: abbreviated variant of the previous HEPEVT (\whizard\ 1 back-compatibility) \newline Standard suffix: \ttt{.short.evt} \item \ttt{long}: HEPEVT variant that contains a little bit more information than the short format but less than HEPEVT (\whizard\ 1 back-compatibility) \newline Standard suffix: \ttt{.long.evt} \item \ttt{athena}: HEPEVT variant suitable for read-out in the ATLAS ATHENA software environment (\whizard\ 1 back-compatibility) \newline Standard suffix: \ttt{.athena.evt} \item \ttt{mokka}: HEPEVT variant suitable for read-out in the MOKKA ILC software environment \newline Standard suffix: \ttt{.mokka.evt} \item \ttt{lcio}: LCIO ASCII format (only available if LCIO is installed and correctly linked) \newline Standard suffix: \ttt{.lcio} \item \ttt{lha}: Implementation of the Les Houches Accord as it was in the old MadEvent and \whizard~1 \newline Standard suffix: \ttt{.lha} \item \ttt{lha\_verb}: more verbose version of \ttt{lha} \newline Standard suffix: \ttt{.lha.verb} \item \ttt{lhef}: Formatted Les Houches Accord implementation that contains the XML headers \newline Standard suffix: \ttt{.lhe} \item \ttt{hepmc}: HepMC ASCII format (only available if HepMC is installed and correctly linked) \newline Standard suffix: \ttt{.hepmc} \item \ttt{stdhep}: StdHEP binary format based on the HEPEVT common block \newline Standard suffix: \ttt{.hep} \item \ttt{stdhep\_up}: StdHEP binary format based on the HEPRUP/HEPEUP common blocks \newline Standard suffix: \ttt{.up.hep} \item \ttt{stdhep\_ev4}: StdHEP binary format based on the HEPEVT/HEPEV4 common blocks \newline Standard suffix: \ttt{.ev4.hep} \item \ttt{weight\_stream}: Format that prints out only the event weight (and maybe alternative ones) \newline Standard suffix: \ttt{.weight.dat} \end{itemize} Of course, the variable \ttt{sample\_format} can contain more than one of the above identifiers, in which case more than one different event file format is generated. The list above also shows the standard suffixes for these event formats (remember, that the native binary format of \whizard\ does have the suffix \ttt{.evx}). (The suffix of the different event formats can even be changed by the user by setting the corresponding variable \ttt{\$extension\_lhef = "foo"} or \ttt{\$extension\_ascii\_short = "bread"}. The dot is automatically included.) The name of the corresponding event sample is taken to be the string of the name of the first process in the \ttt{simulate} statement. Remember, that conventionally the events for all processes in one \ttt{simulate} statement will be written into one single event file. So \ttt{simulate (proc1, proc2)} will write events for the two processes \ttt{proc1} and \ttt{proc2} into one single event file with name \ttt{proc1.evx}. The name can be changed by the user with the command \ttt{\$sample = ""}. The commands \ttt{\$sample} and \ttt{sample\_format} are both accepted as optional arguments of a \ttt{simulate} command, so e.g. \ttt{simulate (proc) \{ \$sample = "foo" sample\_format = hepmc \}} generates an event sample in the HepMC format for the process \ttt{proc} in the file \ttt{foo.hepmc}. Examples for event formats, for specifications of the event formats correspond the different accords and publications~\footnote{Some event formats, based on the \ttt{HEPEVT} or \ttt{HEPEUP} common blocks, use fixed-form ASCII output with a two-digit exponent for real numbers. There are rare cases (mainly, ISR photons) where the event record can contain numbers with absolute value less than $10^{-99}$. Since those numbers are not representable in that format, \whizard\ will set all non-zero numbers below that value to $\pm 10^{-99}$, when filling either common block. Obviously, such values are physically irrelevant, but in the output they are representable and distinguishable from zero.}: \paragraph{HEPEVT:} The HEPEVT is an ASCII event format that does not contain an event file header. There is a one-line header for each single event, containing four entries. The number of particles in the event (\ttt{ISTHEP}), which is four for a fictitious example process $hh\to hh$, but could be larger if e.g. beam remnants are demanded to be included in the event. The second entry and third entry are the number of outgoing particles and beam remnants, respectively. The event weight is the last entry. For each particle in the event there are three lines: the first one is the status according to the HEPEVT format, \ttt{ISTHEP}, the second one the PDG code, \ttt{IDHEP}, then there are the one or two possible mother particle, \ttt{JMOHEP}, the first and last possible daughter particle, \ttt{JDAHEP}, and the polarization. The second line contains the three momentum components, $p_x$, $p_y$, $p_z$, the particle energy $E$, and its mass, $m$. The last line contains the position of the vertex in the event reconstruction. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 2 25 0 0 3 4 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2 25 0 0 3 4 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1 25 1 2 0 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1 25 1 2 0 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 \end{verbatim} \end{scriptsize} \paragraph{ASCII SHORT:} This is basically the same as the HEPEVT standard, but very much abbreviated. The header line for each event is identical, but the first line per particle does only contain the PDG and the polarization, while the vertex information line is omitted. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 25 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 25 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 \end{verbatim} \end{scriptsize} \paragraph{ASCII LONG:} Identical to the ASCII short format, but after each event there is a line containg two values: the value of the sample function to be integrated over phase space, so basically the squared matrix element including all normalization factors, flux factor, structure functions etc. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 25 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 25 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 1.0000000000E+00 1.0000000000E+00 \end{verbatim} \end{scriptsize} \paragraph{ATHENA:} Quite similar to the HEPEVT ASCII format. The header line, however, does contain only two numbers: an event counter, and the number of particles in the event. The first line for each particle lacks the polarization information (irrelevant for the ATHENA environment), but has as leading entry an ordering number counting the particles in the event. The vertex information line has only the four relevant position entries. \begin{scriptsize} \begin{verbatim} 0 4 1 2 25 0 0 3 4 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2 2 25 0 0 3 4 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 3 1 25 1 2 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 4 1 25 1 2 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 \end{verbatim} \end{scriptsize} \paragraph{MOKKA:} Quite similar to the ASCII short format, but the event entries are the particle status, the PDG code, the first and last daughter, the three spatial components of the momentum, as well as the mass. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 2 25 3 4 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 1.2500000000E+02 2 25 3 4 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 1.2500000000E+02 1 25 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 1.2500000000E+02 1 25 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 1.2500000000E+02 \end{verbatim} \end{scriptsize} \paragraph{LHA:} This is the implementation of the Les Houches Accord, as it was used in \whizard\ 1 and the old MadEvent. There is a first line containing six entries: 1. the number of particles in the event, \ttt{NUP}, 2. the subprocess identification index, \ttt{IDPRUP}, 3. the event weight, \ttt{XWGTUP}, 4. the scale of the process, \ttt{SCALUP}, 5. the value or status of $\alpha_{QED}$, \ttt{AQEDUP}, 6. the value for $\alpha_s$, \ttt{AQCDUP}. The next seven lines contain as many entries as there are particles in the event: the first one has the PDG codes, \ttt{IDUP}, the next two the first and second mother of the particles, \ttt{MOTHUP}, the fourth and fifth line the two color indices, \ttt{ICOLUP}, the next one the status of the particle, \ttt{ISTUP}, and the last line the polarization information, \ttt{ISPINUP}. At the end of the event there are as lines for each particles with the counter in the event and the four-vector of the particle. For more information on this event format confer~\cite{LesHouches}. \begin{scriptsize} \begin{verbatim} 25 25 5.0000000000E+02 5.0000000000E+02 -1 -1 -1 -1 3 1 1.0000000000E-01 1.0000000000E-03 1.0000000000E+00 42 4 1 3.0574068604E+08 1.000000E+03 -1.000000E+00 -1.000000E+00 25 25 25 25 0 0 1 1 0 0 2 2 0 0 0 0 0 0 0 0 -1 -1 1 1 9 9 9 9 1 5.0000000000E+02 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 2 5.0000000000E+02 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 3 5.0000000000E+02 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 4 5.0000000000E+02 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 \end{verbatim} \end{scriptsize} \paragraph{LHEF:} This is the modern version of the Les Houches accord event format (LHEF), for the details confer the corresponding publication~\cite{LHEF}. \begin{scriptsize} \begin{verbatim}
WHIZARD - 3.0.3 + 3.1.0
25 25 5.0000000000E+02 5.0000000000E+02 -1 -1 -1 -1 3 1 1.0000000000E-01 1.0000000000E-03 1.0000000000E+00 42 4 42 3.0574068604E+08 1.0000000000E+03 -1.0000000000E+00 -1.0000000000E+00 25 -1 0 0 0 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00 25 -1 0 0 0 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00 25 1 1 2 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00 25 1 1 2 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00
\end{verbatim} \end{scriptsize} Note that for the LHEF format, there are different versions according to the different stages of agreement. They can be addressed from within the \sindarin\ file by setting the string variable \ttt{\$lhef\_version} to one of (at the moment) three values: \ttt{"1.0"}, \ttt{"2.0"}, or \ttt{"3.0"}. The examples above corresponds (as is indicated in the header) to the version \ttt{"1.0"} of the LHEF format. Additional information in form of alternative squared matrix elements or event weights in the event are the most prominent features of the other two more advanced versions. For more details confer the literature. \vspace{.5cm} Sample files for the default ASCII format as well as for the debug event format are shown in the appendix. %%%%%%%%% \section[Interfaces to Parton Showers, Matching and Hadronization]{Interfaces to Parton Showers, Matching\\and Hadronization} This section describes the interfaces to the internal parton shower as well as the parton shower and hadronization routines from \pythia. Moreover, our implementation of the MLM matching making use of the parton showers is described. Sample \sindarin\ files are located in the \ttt{share/examples} directory. All input files come in two versions, one using the internal shower, ending in \ttt{W.sin}, and one using \pythia's shower, ending in \ttt{P.sin}. Thus we state all file names as ending with \ttt{X.sin}, where \ttt{X} has to be replaced by either \ttt{W} or \ttt{P}. The input files include \ttt{EENoMatchingX.sin} and \ttt{DrellYanNoMatchingX.sin} for $e^+ e^- \to hadrons$ and $p\bar{p} \to Z$ without matching. The corresponding \sindarin\ files with matching enabled are \ttt{EEMatching2X.sin} to \ttt{EEMatching5X.sin} for $e^+ e^- \to hadrons$ with a different number of partons included in the matrix element and \ttt{DrallYanMatchingX.sin} for Drell-Yan with one matched emission. \subsection{Parton Showers and Hadronization} From version 2.1 onwards, \whizard\ contains an implementation of an analytic parton shower as presented in \cite{Kilian:2011ka}, providing the opportunity to perform the parton shower from whithin \whizard. Moreover, an interface to \pythia\ is included, which can be used to delegate the parton shower to \pythia. The same interface can be used to hadronize events using the generated events using \pythia's hadronization routines. Note that by \pythia's default, when performing initial-state radiation multiple interactions are included and when performing the hadronization hadronic decays are included. If required, these additional steps have to be switched off using the corresponding arguments for \pythia's \ttt{PYGIVE} routine via the \ttt{\$ps\_PYTHIA\_PYGIVE} string. Note that from version 2.2.4 on the earlier flag \ttt{--enable-shower} flag has been abandoned, and there is only a flag to either compile or not compile the interally attached \pythia\ttt{6} package (\ttt{--enable-pythia6}) last release of the \fortran\ \pythia, v6.427) as well as the interface. It can be invoked by the following \sindarin\ keywords:\\[2ex] % \centerline{\begin{tabular}{|l|l|} \hline\ttt{?ps\_fsr\_active = true} & master switch for final-state parton showers\\\hline \ttt{?ps\_isr\_active = true} & master switch for initial-state parton showers\\\hline \ttt{?ps\_taudec\_active = true} & master switch for $\tau$ decays (at the moment only via \ttt{TAUOLA}\\\hline \ttt{?hadronization\_active = true} & master switch to enable hadronization\\\hline \ttt{\$shower\_method = "PYTHIA6"} & switch to use \pythiasix's parton shower instead of \\ & \whizard's own shower\\\hline \end{tabular}}\mbox{} \vspace{4mm} If either \ttt{?ps\_fsr\_active} or \ttt{?ps\_isr\_active} is set to \verb|true|, the event will be transferred to the internal shower routines or the \pythia\ data structures, and the chosen shower steps (initial- and final-state radiation) will be performed. If hadronization is enabled via the \ttt{?hadronization\_active} switch, \whizard\ will call \pythia's hadronization routine. The hadron\-ization can be applied to events showered using the internal shower or showered using \pythia's shower routines, as well as unshowered events. Any necessary transfer of event data to \pythia\ is automatically taken care of within \whizard's shower interface. The resulting (showered and/or hadronized) event will be transferred back to \whizard, the former final particles will be marked as intermediate. The analysis can be applied to a showered and/or hadronized event just like in the unshowered/unhadronized case. Any event file can be used and will contain the showered/hadronized event. Settings for the internal analytic parton shower are set via the following \sindarin\ variables:\\[2ex] \begin{description} \item[\ttt{ps\_mass\_cutoff}] The cut-off in virtuality, below which, partons are assumed to radiate no more. Used for both ISR and FSR. Given in $\mbox{GeV}$. (Default = 1.0) \item[\ttt{ps\_fsr\_lambda}] The value for $\Lambda$ used in calculating the value of the running coupling constant $\alpha_S$ for Final State Radiation. Given in $\mbox{GeV}$. (Default = 0.29) \item[\ttt{ps\_isr\_lambda}] The value for $\Lambda$ used in calculating the value of the running coupling constant $\alpha_S$ for Initial State Radiation. Given in $\mbox{GeV}$. (Default = 0.29) \item[\ttt{ps\_max\_n\_flavors}] Number of quark flavours taken into account during shower evolution. Meaningful choices are 3 to include $u,d,s$-quarks, 4 to include $u,d,s,c$-quarks and 5 to include $u,d,s,c,b$-quarks. (Default = 5) \item[\ttt{?ps\_isr\_alphas\_running}] Switch to decide between a constant $\alpha_S$, given by \ttt{ps\_fixed\_alphas}, and a running $\alpha_S$, calculated using \ttt{ps\_isr\_lambda} for ISR. (Default = true) \item[\ttt{?ps\_fsr\_alphas\_running}] Switch to decide between a constant $\alpha_S$, given by \ttt{ps\_fixed\_alphas}, and a running $\alpha_S$, calculated using \ttt{ps\_fsr\_lambda} for FSR. (Default = true) \item[\ttt{ps\_fixed\_alphas}] Fixed value of $\alpha_S$ for the parton shower. Used if either one of the variables \ttt{?ps\_fsr\_alphas\_running} or \ttt{?ps\_isr\_alphas\_running} are set to \verb|false|. (Default = 0.0) \item[\ttt{?ps\_isr\_angular\_ordered}] Switch for angular ordered ISR. (Default = true )\footnote{The FSR is always simulated with angular ordering enabled.} \item[\ttt{ps\_isr\_primordial\_kt\_width}] The width in $\mbox{GeV}$ of the Gaussian assumed to describe the transverse momentum of partons inside the proton. Other shapes are not yet implemented. (Default = 0.0) \item[\ttt{ps\_isr\_primordial\_kt\_cutoff}] The maximal transverse momentum in $\mbox{GeV}$ of a parton inside the proton. Used as a cut-off for the Gaussian. (Default = 5.0) \item[\ttt{ps\_isr\_z\_cutoff}] Maximal $z$-value in initial state branchings. (Default = 0.999) \item[\ttt{ps\_isr\_minenergy}] Minimal energy in $\mbox{GeV}$ of an emitted timelike or final parton. Note that the energy is not calculated in the labframe but in the center-of-mas frame of the two most initial partons resolved so far, so deviations may occur. (Default = 1.0) \item[\ttt{ps\_isr\_tscalefactor}] Factor for the starting scale in the initial state shower evolution. ( Default = 1.0 ) \item[\ttt{?ps\_isr\_only\_onshell\_emitted\_partons}] Switch to allow only for on-shell emitted partons, thereby rejecting all possible final state parton showers starting from partons emitted during the ISR. (Default = false) \end{description} Settings for the \pythia\ are transferred using the following \sindarin\ variables:\\[2ex] \centerline{\begin{tabular}{|l|l|} \hline\ttt{?ps\_PYTHIA\_verbose} & if set to false, output from \pythia\ will be suppressed\\\hline \ttt{\$ps\_PYTHIA\_PYGIVE} & a string containing settings transferred to \pythia's \ttt{PYGIVE} subroutine.\\ & The format is explained in the \pythia\ manual. The limitation to 100 \\ & characters mentioned there does not apply here, the string is split \\ & appropriately before being transferred to \pythia.\\\hline \end{tabular}}\mbox{} \vspace{4mm} Note that the included version of \pythia\ uses \lhapdf\ for initial state radiation whenever this is available, but the PDF set has to be set manually in that case using the keyword \ttt{ps\_PYTHIA\_PYGIVE}. \subsection{Parton shower -- Matrix Element Matching} Along with the inclusion of the parton showers, \whizard\ includes an implementation of the MLM matching procedure. For a detailed description of the implemented steps see \cite{Kilian:2011ka}. The inclusion of MLM matching still demands some manual settings in the \sindarin\ file. For a given base process and a matching of $N$ additional jets, all processes that can be obtained by attaching up to $N$ QCD splittings, either a quark emitting a gluon or a gluon splitting into two quarks ar two gluons, have to be manually specified as additional processes. These additional processes need to be included in the \ttt{simulate} statement along with the original process. The \sindarin\ variable \ttt{mlm\_nmaxMEjets} has to be set to the maximum number of additional jets $N$. Moreover additional cuts have to be specified for the additional processes. \begin{verbatim} alias quark = u:d:s:c alias antiq = U:D:S:C alias j = quark:antiq:g ?mlm_matching = true mlm_ptmin = 5 GeV mlm_etamax = 2.5 mlm_Rmin = 1 cuts = all Dist > mlm_Rmin [j, j] and all Pt > mlm_ptmin [j] and all abs(Eta) < mlm_etamax [j] \end{verbatim} Note that the variables \ttt{mlm\_ptmin}, \ttt{mlm\_etamax} and \ttt{mlm\_Rmin} are used by the matching routine. Thus, replacing the variables in the \ttt{cut} expression and omitting the assignment would destroy the matching procedure. The complete list of variables introduced to steer the matching procedure is as follows: \begin{description} \item[\ttt{?mlm\_matching\_active}] Master switch to enable MLM matching. (Default = false) \item[\ttt{mlm\_ptmin}] Minimal transverse momentum, also used in the definition of a jet \item[\ttt{mlm\_etamax}] Maximal absolute value of pseudorapidity $\eta$, also used in defining a jet \item[\ttt{mlm\_Rmin}] Minimal $\eta-\phi$ distance $R_{min}$ \item[\ttt{mlm\_nmaxMEjets}] Maximum number of jets $N$ \item[\ttt{mlm\_ETclusfactor}] Factor to vary the jet definition. Should be $\geq 1$ for complete coverage of phase space. (Default = 1) \item[\ttt{mlm\_ETclusminE}] Minimal energy in the variation of the jet definition \item[\ttt{mlm\_etaclusfactor}] Factor in the variation of the jet definition. Should be $\leq 1$ for complete coverage of phase space. (Default = 1) \item[\ttt{mlm\_Rclusfactor}] Factor in the variation of the jet definition. Should be $\ge 1$ for complete coverage of phase space. (Default = 1) \end{description} The variation of the jet definition is a tool to asses systematic uncertainties introduced by the matching procedure (See section 3.1 in \cite{Kilian:2011ka}). %%%%%%%%% \section{Rescanning and recalculating events} \label{sec:rescan} In the simplest mode of execution, \whizard\ handles its events at the point where they are generated. It can apply event transforms such as decays or shower (see above), it can analyze the events, calculate and plot observables, and it can output them to file. However, it is also possible to apply two different operations to those events in parallel, or to reconsider and rescan an event sample that has been previously generated. We first discuss the possibilities that \ttt{simulate} offers. For each event, \whizard\ calculates the matrix element for the hard interaction, supplements this by Jacobian and phase-space factors in order to obtain the event weight, optionally applies a rejection step in order to gather uniformly weighted events, and applies the cuts and analysis setup. We may ask about the event matrix element or weight, or the analysis result, that we would have obtained for a different setting. To this end, there is an \ttt{alt\_setup} option. This option allows us to recalculate, event by event, the matrix element, weight, or analysis contribution with a different parameter set but identical kinematics. For instance, we may evaluate a distribution for both zero and non-zero anomalous coupling \ttt{fw} and enter some observable in separate histograms: \begin{footnotesize} \begin{verbatim} simulate (some_proc) { fw = 0 analysis = record hist1 (eval Pt [H]) alt_setup = { fw = 0.01 analysis = record hist2 (eval Pt [H]) } } \end{verbatim} \end{footnotesize} In fact, the \ttt{alt\_setup} object is not restricted to a single code block (enclosed in curly braces) but can take a list of those, \begin{footnotesize} \begin{verbatim} alt_setup = { fw = 0.01 }, { fw = 0.02 }, ... \end{verbatim} \end{footnotesize} Each block provides the environment for a separate evaluation of the event data. The generation of these events, i.e., their kinematics, is still steered by the primary environment. The \ttt{alt\_setup} blocks may modify various settings that affect the evaluation of an event, including physical parameters, PDF choice, cuts and analysis, output format, etc. This must not (i.e., cannot) affect the kinematics of an event, so don't modify particle masses. When applying cuts, they can only reduce the generated event sample, so they apply on top of the primary cuts for the simulation. Alternatively, it is possible to \ttt{rescan} a sample that has been generated by a previous \ttt{simulate} command: \begin{footnotesize} \begin{verbatim} simulate (some_proc) { $sample = "my_events" analysis = record hist1 (eval Pt [H]) } ?update_sqme = true ?update_weight = true rescan "my_events" (some_proc) { fw = 0.01 analysis = record hist2 (eval Pt [H]) } rescan "my_events" (some_proc) { fw = 0.05 analysis = record hist3 (eval Pt [H]) } \end{verbatim} \end{footnotesize} In more complicated situation, rescanning is more transparent and offers greater flexibility than doing all operations at the very point of event generation. Combining these features with the \ttt{scan} looping construct, we already cover a considerable range of applications. (There are limitations due to the fact that \sindarin\ doesn't provide array objects, yet.) Note that the \ttt{rescan} construct also allows for an \ttt{alt\_setup} option. You may generate a new sample by rescanning, for which you may choose any output format: \begin{footnotesize} \begin{verbatim} rescan "my_events" (some_proc) { selection = all Pt > 100 GeV [H] $sample = "new_events" sample_format = lhef } \end{verbatim} \end{footnotesize} The event sample that you rescan need not be an internal raw \whizard\ file, as above. You may rescan a LHEF file, \begin{footnotesize} \begin{verbatim} rescan "lhef_events" (proc) { $rescan_input_format = "lhef" } \end{verbatim} \end{footnotesize} This file may have any origin, not necessarily from \whizard. To understand such an external file, \whizard\ must be able to reconstruct the hard process and match it to a process with a known name (e.g., \ttt{proc}), that has been defined in the \sindarin\ script previously. Within its limits, \whizard\ can thus be used for translating an event sample from one format to another format. There are three important switches that control the rescanning behavior. They can be set or unset independently. \begin{itemize} \item \ttt{?update\_sqme} (default: false). If true, \whizard\ will recalculate the hard matrix element for each event. When applying an analysis, the recalculated squared matrix element (averaged and summed over quantum numbers as usual) is available as the variable \ttt{sqme\_prc}. This may be related to \ttt{sqme\_ref}, the corresponding value in the event file, if available. (For the \ttt{alt\_env} option, this switch is implied.) \item \ttt{?update\_weight} (default: false). If true, \whizard\ will recalculate the event weight according to the current environment and apply this to the event. In particular, the user may apply a \ttt{reweight} expression. In an analysis, the new weight value is available as \ttt{weight\_prc}, to be related to \ttt{weight\_ref} from the sample. The updated weight will be applied for histograms and averages. An unweighted event sample will thus be transformed into a weighted event sample. (This switch is also implied for the \ttt{alt\_env} option.) \item \ttt{?update\_event} (default: false). If true, \whizard\ will generate a new decay chain etc., if applicable. That is, it reuses just the particles in the hard process. Otherwise, the complete event is kept as it is written to file. \end{itemize} For these options to make sense, \whizard\ must have access to a full process object, so the \sindarin\ script must contain not just a definition but also a \ttt{compile} command for the matrix elements in question. If an event file (other than raw format) contains several processes as a mixture, they must be identifiable by a numeric ID. \whizard\ will recognize the processes if their respective \sindarin\ definitions contain appropriate \ttt{process\_num\_id} options, such as \begin{footnotesize} \begin{verbatim} process foo = u, ubar => d, dbar { process_num_id = 42 } \end{verbatim} \end{footnotesize} Certain event-file formats, such as LHEF, support alternative matrix-element values or weights. \whizard\ can thus write both original and recalculated matrix-element and weight values. Other formats support only a single event weight, so the \ttt{?update\_weight} option is necessary for a visible effect. External event files in formats such as LHEF, HepMC, or LCIO, also may carry information about the value of the strong coupling $\alpha_s$ and the energy scale of each event. This information will also be provided by \whizard\ when writing external event files. When such an event file is rescanned, the user has the choice to either user the $\alpha_s$ value that \whizard\ defines in the current context (or the method for obtaining an event-specific running $\alpha_s$ value), or override this for each event by using the value in the event file. The corresponding parameter is \ttt{?use\_alphas\_from\_file}, which is false by default. Analogously, the parameter \ttt{?use\_scale\_from\_file} may be set to override the scale definition in the current context. Obviously, these settings influence matrix-element recalculation and therefore require \ttt{?update\_sqme} to be set in order to become operational. %%%%%%%%% \section{Negative weight events} For usage at NLO refer to Subsection~\ref{ss:fixedorderNLOevents}. In case, you have some other mechanism to produce events with negative weights (e.g. with the \ttt{weight = {\em }} command), keep in mind that you should activate \ttt{?negative\_weights = true} and \ttt{unweighted = false}. The generation of unweighted events with varying sign (also known as events and counter events) is currently not supported. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Internal Data Visualization} \label{chap:visualization} \section{GAMELAN} The data values and tables that we have introduced in the previous section can be visualized using built-in features of \whizard. To be precise, \whizard\ can write \LaTeX\ code which incorporates code in the graphics language GAMELAN to produce a pretty-printed account of observables, histograms, and plots. GAMELAN is a macro package for MetaPost, which is part of the \TeX/\LaTeX\ family. MetaPost, a derivative of Knuth's MetaFont language for font design, is usually bundled with the \TeX\ distribution, but might need a separate switch for installation. The GAMELAN macros are contained in a subdirectory of the \whizard\ package. Upon installation, they will be installed in the appropriate directory, including the \ttt{gamelan.sty} driver for \LaTeX. \whizard\ uses a subset of GAMELAN's graphics macros directly, but it allows for access to the full package if desired. An (incomplete) manual for GAMELAN can be found in the \ttt{share/doc} subdirectory of the \whizard\ system. \whizard\ itself uses a subset of the GAMELAN capabilities, interfaced by \sindarin\ commands and parameters. They are described in this chapter. To process analysis output beyond writing tables to file, the \ttt{write\_analysis} command described in the previous section should be replaced by \ttt{compile\_analysis}, with the same syntax: \begin{quote} \begin{footnotesize} \ttt{compile\_analysis (\emph{analysis-tags}) \{ \ttt{\emph{options}} \}} \end{footnotesize} \end{quote} where \ttt{\emph{analysis-tags}}, a comma-separated list of analysis objects, is optional. If there are no tags, all analysis objects are processed. The \ttt{\emph{options}} script of local commands is also optional, of course. This command will perform the following actions: \begin{enumerate} \item It writes a data file in default format, as \ttt{write\_analysis} would do. The file name is given by \ttt{\$out\_file}, if nonempty. The file must not be already open, since the command needs a self-contained file, but the name is otherwise arbitrary. If the value of \ttt{\$out\_file} is empty, the default file name is \ttt{whizard\_analysis.dat}. \item It writes a driver file for the chosen datasets, whose name is derived from the data file by replacing the file extension of the data file with the extension \ttt{.tex}. The driver file is a \LaTeX\ source file which contains embedded GAMELAN code that handles the selected graphics data. In the \LaTeX\ document, there is a separate section for each contained dataset. Furthermore, a process-/analysis-specific makefile with the name \ttt{\_ana.makefile} is created that can be used to generate postscript or PDF output from the \LaTeX\ source. If the steering flag \ttt{?analysis\_file\_only} is set to \ttt{true}, then the \LaTeX\ file and the makefile are only written, but no execution of the makefile resulting in compilation of the \LaTeX\ code (see the next item) is invoked. \item As mentioned above, if the flag \ttt{?analysis\_file\_only} is set to \ttt{false} (which is the default), the driver file is processed by \LaTeX (invoked by calling the makefile with the name \ttt{\_ana.makefile}), which generates an appropriate GAMELAN source file with extension \ttt{.mp}. This code is executed (calling GAMELAN/MetaPost, and again \LaTeX\ for typesetting embedded labels). There is a second \LaTeX\ pass (automatically done by the makefile) which collects the results, and finally conversion to PostScript and PDF formats. \end{enumerate} The resulting PostScript or PDF file -- the file name is the name of the data file with the extension replaced by \ttt{.ps} or \ttt{.pdf}, respectively -- can be printed or viewed with an appropriate viewer such as \ttt{gv}. The viewing command is not executed automatically by \whizard. Note that \LaTeX\ will write further files with extensions \ttt{.log}, \ttt{.aux}, and \ttt{.dvi}, and GAMELAN will produce auxiliary files with extensions \ttt{.ltp} and \ttt{.mpx}. The log file in particular, could overwrite \whizard's log file if the basename is identical. Be careful to use a value for \ttt{\$out\_file} which is not likely to cause name clashes. \subsection{User-specific changes} In the case, that the \sindarin\ \ttt{compile\_analysis} command is invoked and the flag named \ttt{?analysis\_file\_only} is not changed from its default value \ttt{false}, \whizard\ calls the process-/analysis-specific makefile triggering the compilation of the \LaTeX\ code and the GAMELAN plots and histograms. If the user wants to edit the analysis output, for example changing captions, headlines, labels, properties of the plots, graphs and histograms using GAMELAN specials etc., this is possible and the output can be regenerated using the makefile. The user can also directly invoke the GAMELAN script, \ttt{whizard-gml}, that is installed in the binary directly along with the \whizard\ binary and other scripts. Note however, that the \LaTeX\ environment for the specific style files have to be set by hand (the command line invocation in the makefile does this automatically). Those style files are generally written into \ttt{share/texmf/whizard/} directory. The user can execute the commands in the same way as denoted in the process-/analysis-specific makefile by hand. %%%%% \section{Histogram Display} %%%%% \section{Plot Display} \section{Graphs} \label{sec:graphs} Graphs are an additional type of analysis object. In contrast to histograms and plots, they do not collect data directly, but they rather act as containers for graph elements, which are copies of existing histograms and plots. Their single purpose is to be displayed by the GAMELAN driver. Graphs are declared by simple assignments such as \begin{quote} \begin{footnotesize} \ttt{graph g1 = hist1} \\ \ttt{graph g2 = hist2 \& hist3 \& plot1} \end{footnotesize} \end{quote} The first declaration copies a single histogram into the graph, the second one copies two histograms and a plot. The syntax for collecting analysis objects uses the \ttt{\&} concatenation operator, analogous to string concatenation. In the assignment, the rhs must contain only histograms and plots. Further concatenating previously declared graphs is not supported. After the graph has been declared, its contents can be written to file (\ttt{write\_analysis}) or, usually, compiledd by the \LaTeX/GAMELAN driver via the \ttt{compile\_analysis} command. The graph elements on the right-hand side of the graph assignment are copied with their current data content. This implies a well-defined order of statements: first, histograms and plots are declared, then they are filled via \ttt{record} commands or functions, and finally they can be collected for display by graph declarations. A simple graph declaration without options as above is possible, but usually there are options which affect the graph display. There are two kinds of options: graph options and drawing options. Graph options apply to the graph as a whole (title, labels, etc.) and are placed in braces on the lhs of the assigment. Drawing options apply to the individual graph elements representing the contained histograms and plots, and are placed together with the graph element on the rhs of the assignment. Thus, the complete syntax for assigning multiple graph elements is \begin{quote} \begin{footnotesize} \ttt{graph \emph{graph-tag} \{ \emph{graph-options} \}} \\ \ttt{= \emph{graph-element-tag1} \{ \emph{drawing-options1} \}} \\ \ttt{\& \emph{graph-element-tag2} \{ \emph{drawing-options2} \}} \\ \ldots \end{footnotesize} \end{quote} This form is recommended, but graph and drawing options can also be set as global parameters, as usual. We list the supported graph and drawing options in Tables~\ref{tab:graph-options} and \ref{tab:drawing-options}, respectively. \begin{table} \caption{Graph options. The content of strings of type \LaTeX\ must be valid \LaTeX\ code (containing typesetting commands such as math mode). The content of strings of type GAMELAN must be valid GAMELAN code. If a graph bound is kept \emph{undefined}, the actual graph bound is determined such as not to crop the graph contents in the selected direction.} \label{tab:graph-options} \begin{center} \begin{tabular}{|l|l|l|l|} \hline Variable & Default & Type & Meaning \\ \hline\hline \ttt{\$title} & \ttt{""} & \LaTeX & Title of the graph = subsection headline \\ \hline \ttt{\$description} & \ttt{""} & \LaTeX & Description text for the graph \\ \hline \ttt{\$x\_label} & \ttt{""} & \LaTeX & $x$-axis label \\ \hline \ttt{\$y\_label} & \ttt{""} & \LaTeX & $y$-axis label \\ \hline \ttt{graph\_width\_mm} & 130 & Integer & graph width (on paper) in mm \\ \hline \ttt{graph\_height\_mm} & 90 & Integer & graph height (on paper) in mm \\ \hline \ttt{?x\_log} & false & Logical & Whether the $x$-axis scale is linear or logarithmic \\ \hline \ttt{?y\_log} & false & Logical & Whether the $y$-axis scale is linear or logarithmic \\ \hline \ttt{x\_min} & \emph{undefined} & Real & Lower bound for the $x$ axis \\ \hline \ttt{x\_max} & \emph{undefined} & Real & Upper bound for the $x$ axis \\ \hline \ttt{y\_min} & \emph{undefined} & Real & Lower bound for the $y$ axis \\ \hline \ttt{y\_max} & \emph{undefined} & Real & Upper bound for the $y$ axis \\ \hline \ttt{gmlcode\_bg} & \ttt{""} & GAMELAN & Code to be executed before drawing \\ \hline \ttt{gmlcode\_fg} & \ttt{""} & GAMELAN & Code to be executed after drawing \\ \hline \end{tabular} \end{center} \end{table} \begin{table} \caption{Drawing options. The content of strings of type GAMELAN must be valid GAMELAN code. The behavior w.r.t. the flags with \emph{undefined} default value depends on the type of graph element. Histograms: draw baseline, piecewise, fill area, draw curve, no errors, no symbols; Plots: no baseline, no fill, draw curve, no errors, no symbols.} \label{tab:drawing-options} \begin{center} \begin{tabular}{|l|l|l|l|} \hline Variable & Default & Type & Meaning \\ \hline\hline \ttt{?draw\_base} & \emph{undefined} & Logical & Whether to draw a baseline for the curve \\ \hline \ttt{?draw\_piecewise} & \emph{undefined} & Logical & Whether to draw bins separately (histogram) \\ \hline \ttt{?fill\_curve} & \emph{undefined} & Logical & Whether to fill area between baseline and curve \\ \hline \ttt{\$fill\_options} & \ttt{""} & GAMELAN & Options for filling the area \\ \hline \ttt{?draw\_curve} & \emph{undefined} & Logical & Whether to draw the curve as a line \\ \hline \ttt{\$draw\_options} & \ttt{""} & GAMELAN & Options for drawing the line \\ \hline \ttt{?draw\_errors} & \emph{undefined} & Logical & Whether to draw error bars for data points \\ \hline \ttt{\$err\_options} & \ttt{""} & GAMELAN & Options for drawing the error bars \\ \hline \ttt{?draw\_symbols} & \emph{undefined} & Logical & Whether to draw symbols at data points \\ \hline \ttt{\$symbol} & Black dot & GAMELAN & Symbol to be drawn \\ \hline \ttt{gmlcode\_bg} & \ttt{""} & GAMELAN & Code to be executed before drawing \\ \hline \ttt{gmlcode\_fg} & \ttt{""} & GAMELAN & Code to be executed after drawing \\ \hline \end{tabular} \end{center} \end{table} \section{Drawing options} The options for coloring lines, filling curves, or choosing line styles make use of macros in the GAMELAN language. At this place, we do not intend to give a full account of the possiblities, but we rather list a few basic features that are likely to be useful for drawing graphs. \subsubsection{Colors} GAMELAN knows about basic colors identified by name: \begin{center} \ttt{black}, \ttt{white}, \ttt{red}, \ttt{green}, \ttt{blue}, \ttt{cyan}, \ttt{magenta}, \ttt{yellow} \end{center} More generically, colors in GAMELAN are RGB triplets of numbers (actually, numeric expressions) with values between 0 and 1, enclosed in brackets: \begin{center} \ttt{(\emph{r}, \emph{g}, \emph{b})} \end{center} To draw an object in color, one should apply the construct \ttt{withcolor \emph{color}} to its drawing code. The default color is always black. Thus, this will make a plot drawn in blue: \begin{quote} \begin{footnotesize} \ttt{\$draw\_options = "withcolor blue"} \end{footnotesize} \end{quote} and this will fill the drawing area of some histogram with an RGB color: \begin{quote} \begin{footnotesize} \ttt{\$fill\_options = "withcolor (0.8, 0.7, 1)"} \end{footnotesize} \end{quote} \subsubsection{Dashes} By default, lines are drawn continuously. Optionally, they can be drawn using a \emph{dash pattern}. Predefined dash patterns are \begin{center} \ttt{evenly}, \ttt{withdots}, \ttt{withdashdots} \end{center} Going beyond the predefined patterns, a generic dash pattern has the syntax \begin{center} \ttt{dashpattern (on \emph{l1} off \emph{l2} on} \ldots \ttt{)} \end{center} with an arbitrary repetition of \ttt{on} and \ttt{off} clauses. The numbers \ttt{\emph{l1}}, \ttt{\emph{l2}}, \ldots\ are lengths measured in pt. To apply a dash pattern, the option syntax \ttt{dashed \emph{dash-pattern}} should be used. Options strings can be concatenated. Here is how to draw in color with dashes: \begin{quote} \begin{footnotesize} \ttt{\$draw\_options = "withcolor red dashed evenly"} \end{footnotesize} \end{quote} and this draws error bars consisting of intermittent dashes and dots: \begin{quote} \begin{footnotesize} \ttt{\$err\_options = "dashed (withdashdots scaled 0.5)"} \end{footnotesize} \end{quote} The extra brackets ensure that the scale factor $1/2$ is applied only the dash pattern. \subsubsection{Hatching} Areas (e.g., below a histogram) can be filled with plain colors by the \ttt{withcolor} option. They can also be hatched by stripes, optionally rotated by some angle. The syntax is completely analogous to dashes. There are two predefined \emph{hatch patterns}: \begin{center} \ttt{withstripes}, \ttt{withlines} \end{center} and a generic hatch pattern is written \begin{center} \ttt{hatchpattern (on \emph{w1} off \emph{w2} on} \ldots \ttt{)} \end{center} where the numbers \ttt{\emph{l1}}, \ttt{\emph{l2}}, \ldots\ determine the widths of the stripes, measured in pt. When applying a hatch pattern, the pattern may be rotated by some angle (in degrees) and scaled. This looks like \begin{quote} \begin{footnotesize} \ttt{\$fill\_options = "hatched (withstripes scaled 0.8 rotated 60)"} \end{footnotesize} \end{quote} \subsubsection{Smooth curves} Plot points are normally connected by straight lines. If data are acquired by statistical methods, such as Monte Carlo integration, this is usually recommended. However, if a plot is generated using an analytic mathematical formula, or with sufficient statistics to remove fluctuations, it might be appealing to connect lines by some smooth interpolation. GAMELAN can switch on spline interpolation by the specific drawing option \ttt{linked smoothly}. Note that the results can be surprising if the data points do have sizable fluctuations or sharp kinks. \subsubsection{Error bars} Plots and histograms can be drawn with error bars. For histograms, only vertical error bars are supported, while plot points can have error bars in $x$ and $y$ direction. Error bars are switched on by the \ttt{?draw\_errors} flag. There is an option to draw error bars with ticks: \ttt{withticks} and an alternative option to draw arrow heads: \ttt{witharrows}. These can be used in the \ttt{\$err\_options} string. \subsubsection{Symbols} To draw symbols at plot points (or histogram midpoints), the flag \ttt{?draw\_symbols} has to be switched on. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Fast Detector Simulation and External Analysis} \label{chap:ext_anal} Events from a Monte Carlo event generator are further used in an analysis, most often combined with a detector simulation. Event files from the generator are then classified whether they are (i) parton level (coming from the hard matrix element) for which mostly LHE or \hepmc\ event formats are used, particle level (after parton shower and hadronization) - usually in \hepmc\ or \lcio\ format -, or detector level objects. The latter is the realm of packages like \ROOT\ or specific software from the experimental software frameworks. While detailed experimental studies take into account the best-possible detector description in a so-called full simulation via \geant\ which takes several seconds per event, fast studies are made with parameterized fast detector simulations like in \delphes\ or \texttt{SGV}. In the following, we discuss the options to interface external packages for these purposes or to pipe events from \whizard\ to such external packages. %%%%% \section{Interfacing ROOT} \label{sec:root} One of the most distributed analysis framework is \ROOT~\cite{Brun:1997pa}. In \whizard\ for the moment there is no direct interface to the \ROOT\ framework. The easiest way to write out particle-level events in the \ROOT\ or \ttt{RootTree} format is to use \whizard's interface to \hepmcthree: this modern incarnation of the \hepmc\ format has different writer classes, where the writer class for \ROOT\ and \ttt{RootTree} files is supported by \whizard's \hepmcthree\ interface. For this to work, one only has to make sure that \hepmcthree\ has been built with \ROOT\ support, and that the \whizard\ \ttt{configure} has to detect the \ROOT\ setup on the computing environment. For more details cf. the installation section~\ref{sec:hepmc}. If this has been successfully linked, then \whizard\ can use its own \hepmcthree\ interface to write out \ROOT\ or \ttt{RootTree} formats. This can be done by setting the following options in the \sindarin\ files: \begin{code} $hepmc3_mode = "Root" \end{code} or \begin{code} $hepmc3_mode = "RootTree" \end{code} For more details cf.~the \ROOT\ manual and documentation therein. %%%%% \section{Interfacing RIVET} \label{sec:rivet} \rivet~\cite{Buckley:2010ar} is a very mighty analysis framework which has been developed to make experimental analyses from the LHC experiments available for non-collaboration members. It can be easily used to analyze events and produce high-quality plots for differential distributions and experimental observables. Since version 3~\cite{Bierlich:2019rhm} there is now also a lot of functionality that comes very handy for plotting differential distributions at fixed order in NLO calculations, e.g. negative weights in bins or how to treat imperfectly balanced events and counterevents close to bin boundaries etc. For the moment, \whizard\ does not have a dedicated interface to \rivet, so the preferred method is to write out events, best in the \hepmc\ or \hepmcthree\ format and then read them into \rivet. A more sophisticated interface is foreseen for a future version of \whizard, while there are already development versions where \whizard\ detects all the \rivet\ infrastructure and libraries. But they are not yet used. For more details and practical examples cf.~the \rivet\ manual. This describes in detail especially the \rivet\ installation. A typical error that occurs on systems where no \ROOT\ is installed (cf.~Sec.~\ref{sec:root}) is the one these \ttt{Missing TPython.h} missing headers. Then \rivet\ can nevertheless be easily built without \ROOT\ support by setting \begin{code} --disable-root \end{code} in the \ttt{rivet-bootstrap} script. For an installation of \rivet\ it is favorable to include the location of the \rivet\ \python\ scripts in the \ttt{PYTHONPATH} environment variable. They can be accessed from the \rivet\ configuration script as \begin{code} /rivet-config --pythonpath \end{code} If the \python\ path is not known within the environment variables, then one commonly encounters error like \ttt{No module named rivet} or \ttt{Import error: no module named yoda} when running \rivet\ scripts like e.g. \ttt{yodamerge}. If you use a \rivet\ version older than \ttt{v3.1.1} there is no support for \hepmcthree\ yet, so when using \hepmcthree\ with \whizard\ please use the backwards compatibility mode of \hepmcthree in the \sindarin\ file: \begin{code} $hepmc3_mode = "HepMC2" \end{code} When using MPI parallelized runs of \whizard\ there will a large number of different \ttt{.hepmc} files (also if some grid architecture has produced these event files in junks). Then one has to first merge these event files. Here, we quickly explain how to steer \rivet\ for your own analysis. For more details, please confer the \rivet\ manual. \begin{enumerate} \item The command \begin{code} rivet-mkanalysis \end{code} creates a template \rivet\ plugin for the analysis \ttt{.cc}, a template info file \ttt{.info} amd a template file for the plot generation \ttt{.plot}. Note that this overwrites potentially existing files in this folder with the same name. \item Now, analysis statements like e.g. cuts etc. can be implemented in \ttt{.cc}. For analysis of parton-level events without parton showering, the cuts can be equivalent to those in \whizard, i.e. the generator-level cuts can be as strict as the analysis cuts to avoid generating unnecessary events. If parton showering is applied it is better to have looser generator than analysis cuts to avoid undesired plot artifacts. \item Next, one executes the command (the shared library name might be different e.g. on Darwin or BSD OS) \begin{code} rivet-buildplugin Rivet.so .cc \end{code} This creates an executable \rivet\ analysis library \ttt{Rivet.so}. The custom analysis should now appear in the output of \begin{code} rivet --list \end{code} If this is not the case, the analysis path has to be exported first as \ttt{RIVET\_ANALYSIS\_PATH=\$PWD}. \item We are now ready to use the custom analysis to analyze the \ttt{.hepmc} events by executing the command \begin{code} rivet --pwd --analysis= -o .yoda \end{code} and save the produced histograms of the analysis in the \ttt{.yoda} format. In general the option \ttt{--ignore-beams} for \rivet\ should be used to prevent \rivet\ to stumble over beam remnants. This is also relevant for lepton collider processes with electron PDFs. For a large number of events, event files can become very big. To avoid writing them all on disk, a FIFO for the \ttt{} can be used. \item Different \ttt{yoda} files can now be merged into a single file using the command \begin{code} _full.yoda _01.yoda ... \end{code} This should be applied e.g. for the case of fixed-order NLO differential distributions where Born, real and virtual components have been generated separately. \item Finally, plots can be produced: after listing all the histograms to be plotted in the plot file \ttt{.plot}, the command \begin{code} rivet-mkhtml _full.yoda \end{code} translates the \ttt{.yoda} file into a histogram file in the \ttt{.dat} format. These plots can either be visually enhanced by modifying the \ttt{.plot} file as is described on the webpage \url{https://rivet.hepforge.org/make-plots.html}, or by using any other external plotting tool like e.g. \ttt{Gnuplot} for the \ttt{.dat} files. \end{enumerate} Clearly, this gives only a rough sketch on how to use \rivet\ for an analysis. For more details, please consult the \rivet\ webpage and the \rivet\ manual. %%%%% \vspace{1cm} \section{Fast Detector Simulation with DELPHES} \label{sec:delphes} Fast detector simulation allows relatively quick checks whether experimental analyses actually work in a semi-realistic detector study. There are some older tools for fast simulation like e.g.~\ttt{PGS} (which is no longer actively maintained) and \ttt{SGV} which is default fast simulation for ILC studies. For LHC and general future hadron collider studies, \delphes~\cite{deFavereau:2013fsa} is the most commonly used tool for fast detector simulation. The details on how to obtain and build \delphes\ can be obtained from their webpage, \url{https://cp3.irmp.ucl.ac.be/projects/delphes}. It depends both on~\ttt{Tcl/Tk} as well as \ROOT~(cf. Sec.~\ref{sec:root}. Interfacing any Monte Carlo event generator with a fast detector simulation like \delphes\ is rather trivial: \delphes\ ships with up to five executables \begin{code} DelphesHepMC DelphesLHEF DelphesPythia8 DelphesROOT DelphesSTDHEP \end{code} \ttt{DelphesPythia8} is a direct interface between \pythiaeight\ and \delphes, so detector-level events are directly produced via an API interface between \pythiaeight\ and \delphes. This is the most convenient method which is foreseen for \whizard, however not yet implemented. The other four binaries take input files in the \hepmc, LHE, \stdhep\ and \ROOT\ format, apply a fast detector simulation according to the chosen input file and give a \ROOT\ detector-level event file as output. Executing one of the binaries above without options, the following message will be displayed: \begin{code} ./DelphesHepMC Usage: DelphesHepMC config_file output_file [input_file(s)] config_file - configuration file in Tcl format, output_file - output file in ROOT format, input_file(s) - input file(s) in HepMC format, with no input_file, or when input_file is -, read standard input. \end{code} Using \delphes\ with \hepmc\ event files then works as \begin{code} ./DelphesHepMC cards/delphes_card_ATLAS.tcl output.root input.hepmc \end{code} For \stdhep\ files which are directly by \whizard\ without external packages (only assuming that the XDR C libraries are present on the system), execute \begin{code} ./DelphesSTDHEP cards/delphes_card_ILD.tcl delphes_output.root input.hep \end{code} For LHE files as input, use \begin{code} ./DelphesLHEF cards/delphes_card_CLICdet_Stage1.tcl delphes_output.root input.lhef \end{code} and for \ROOT\ (particle-level) files use \begin{code} ./DelphesROOT cards/delphes_card_CMS.tcl delphes_output.root input.root \end{code} In the \delphes\ cards directory, there is a long list of supported input files for existing and future detectors, a few of which we have displayed here. \delphes\ detector-level output files can then be analyzed with \ROOT\ as described in the \delphes\ manual. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{User Interfaces for WHIZARD} \label{chap:userint} \section{Command Line and \sindarin\ Input Files} \label{sec:cmdline-options} The standard way of using \whizard\ involves a command script written in \sindarin. This script is executed by \whizard\ by mentioning it on the command line: \begin{interaction} whizard script-name.sin \end{interaction} You may specify several script files on the command line; they will be executed consecutively. If there is no script file, \whizard\ will read commands from standard input. Hence, this is equivalent: \begin{interaction} cat script-name.sin | whizard \end{interaction} When executed from the command line, \whizard\ accepts several options. They are given in long form, i.e., they begin with two dashes. Values that belong to options follow the option string, separated either by whitespace or by an equals sign. Hence, \ttt{--prefix /usr} and \ttt{--prefix=/usr} are equivalent. Some options are also available in short form, a single dash with a single letter. Short-form options can be concatenated, i.e., a dash followed by several option letters. The first set of options is intended for normal operation. \begin{description} \item[\ttt{--debug AREA}]: Switch on debug output for \ttt{AREA}. \ttt{AREA} can be one of \whizard's source directories or \ttt{all}. \item[\ttt{--debug2 AREA}]: Switch on more verbose debug output for \ttt{AREA}. \item[\ttt{--single-event}]: Only compute one phase-space point (for debugging). \item[\ttt{--execute COMMANDS}]: Execute \ttt{COMMANDS} as a script before the script file (see below). Short version: \ttt{-e} \item[\ttt{--file CMDFILE}]: Execute commands in \ttt{CMDFILE} before the main script file (see below). Short version: \ttt{-f} \item[\ttt{--help}]: List the available options and exit. Short version: \ttt{-h} \item[\ttt{--interactive}]: Run \whizard\ interactively. See Sec.~\ref{sec:whish}. Short version: \ttt{-i}. \item[\ttt{--library LIB}]: Preload process library \ttt{LIB} (instead of the default \ttt{processes}). Short version: \ttt{-l}. \item[\ttt{--localprefix DIR}]: Search in \ttt{DIR} for local models. Default is \ttt{\$HOME/.whizard}. \item[\ttt{--logfile \ttt{FILE}}]: Write log to \ttt{FILE}. Default is \ttt{whizard.log}. Short version: \ttt{-L}. \item[\ttt{--logging}]: Start logging on startup (default). \item[\ttt{--model MODEL}]: Preload model \ttt{MODEL}. Default is the Standard Model \ttt{SM}. Short version: \ttt{-m}. \item[\ttt{--no-banner}]: Do not display banner at startup. \item[\ttt{--no-library}]: Do not preload a library. \item[\ttt{--no-logfile}]: Do not write a logfile. \item[\ttt{--no-logging}]: Do not issue information into the logfile. \item[\ttt{--no-model}]: Do not preload a specific physics model. \item[\ttt{--no-rebuild}]: Do not force a rebuild. \item[\ttt{--query VARIABLE}]: Display documentation of \ttt{VARIABLE}. Short version: \ttt{-q}. \item[\ttt{--rebuild}]: Do not preload a process library and do all calculations from scratch, even if results exist. This combines all rebuild options. Short version: \ttt{-r}. \item[\ttt{--rebuild-library}]: Rebuild the process library, even if code exists. \item[\ttt{--rebuild-phase-space}]: Rebuild the phase space setup, even if it exists. \item[\ttt{--rebuild-grids}]: Redo the integration, even if previous grids and results exist. \item[\ttt{--rebuild-events}]: Redo event generation, discarding previous event files. \item[\ttt{--show-config}]: Show build-time configuration. \item[\ttt{--version}]: Print version information and exit. Short version: \ttt{-V}. \item[-]: Any further options are interpreted as file names. \end{description} The second set of options refers to the configuration. They are relevant when dealing with a relocated \whizard\ installation, e.g., on a batch systems. \begin{description} \item[\ttt{--prefix DIR}]: Specify the actual location of the \whizard\ installation, including all subdirectories. \item[\ttt{--exec-prefix DIR}]: Specify the actual location of the machine-specific parts of the \whizard\ installation (rarely needed). \item[\ttt{--bindir DIR}]: Specify the actual location of the executables contained in the \whizard\ installation (rarely needed). \item[\ttt{--libdir DIR}]: Specify the actual location of the libraries contained in the \whizard\ installation (rarely needed). \item[\ttt{--includedir DIR}]: Specify the actual location of the include files contained in the \whizard\ installation (rarely needed). \item[\ttt{--datarootdir DIR}]: Specify the actual location of the data files contained in the \whizard\ installation (rarely needed). \item[\ttt{--libtool LOCAL\_LIBTOOL}]: Specify the actual location and name of the \ttt{libtool} script that should be used by \whizard. \item[\ttt{--lhapdfdir DIR}]: Specify the actual location and of the \lhapdf\ installation that should be used by \whizard. \end{description} The \ttt{--execute} and \ttt{--file} options allow for fine-tuning the command flow. The \whizard\ main program will concatenate all commands given in \ttt{--execute} commands together with all commands contained in \ttt{--file} options, in the order they are encountered, as a contiguous command stream that is executed \emph{before} the main script (in the example above, \ttt{script-name.sin}). Regarding the \ttt{--execute} option, commands that contain blanks must be enclosed in matching single- or double-quote characters since the individual tokens would otherwise be intepreted as separate option strings. Unfortunately, a Unix/Linux shell interpreter will strip quotes before handing the command string over to the program. In that situation, the quote-characters must be quoted themselves, or the string must be enclosed in quotes twice. Either version should work as a command line interpreted by the shell: \begin{interaction} whizard --execute \'int my_flag = 1\' script-name.sin whizard --execute "'int my_flag = 1'" script-name.sin \end{interaction} \section{WHISH -- The \whizard\ Shell/Interactive mode} \label{sec:whish} \whizard\ can be also run in the interactive mode using its own shell environment. This is called the \whizard\ Shell (WHISH). For this purpose, one starts with the command \begin{interaction} /home/user$ whizard --interactive \end{interaction} or \begin{interaction} /home/user$ whizard -i \end{interaction} \whizard\ will preload the Standard Model and display a command prompt: \begin{interaction} whish? \end{interaction} You now can enter one or more \sindarin\ commands, just as if they were contained in a script file. The commands are compiled and executed after you hit the ENTER key. When done, you get a new prompt. The WHISH can be closed by the \ttt{quit} command: \begin{verbatim} whish? quit \end{verbatim} Obviously, each input must be self-contained: commands must be complete, and conditionals or scans must be closed on the same line. If \whizard\ is run without options and without a script file, it also reads commands interactively, from standard input. The difference is that in this case, interactive input is multi-line, terminated by \ttt{Ctrl-D}, the script is then compiled and executed as a whole, and \whizard\ terminates. In WHISH mode, each input line is compiled and executed individually. Furthermore, fatal errors are masked, so in case of error the program does not terminate but returns to the WHISH command line. (The attempt to recover may fail in some circumstances, however.) \section{Graphical user interface} \emph{This is still experimental.} \whizard\ ships with a graphical interface that can be steered in a browser of your choice. It is located in \ttt{share/gui}. To use it, you have to run \ttt{npm install} (which will install javascript libraries locally in that folder) and \ttt{npm start} (which will start a local web server on your machine) in that folder. More technical details and how to get \ttt{npm} is discussed in \ttt{share/gui/README.md}. When it is running, you can access the GUI by entering \ttt{localhost:3000} as address in your browser. The GUI is separated into different tabs for basic settings, integration, simulation, cuts, scans, NLO and beams. You can select and enter what you are interested in and the GUI will produce a \sindarin\ file. You can use the GUI to run WHIZARD with that \sindarin\ or just produce it with the GUI and then tweak it further with an editor. In case you run it in the GUI, the log file will be updated in the browser as it is produced. Any \sindarin\ features that are not supported by the GUI can be added directly as "Additional Code". \section{\whizard\ as a library} The compiled \whizard\ program consists of two libraries (\ttt{libwhizard} and \ttt{libomega}). In the standard setup, these are linked to a short main program which deals with command line options and top-level administration. This is the stand-alone \ttt{whizard} executable program. Alternatively, it is possible to link the libraries to a different main program of the user's choice. The user program can take complete control of the \whizard\ features. The \ttt{libwhizard} library provides an API, a well-defined set of procedures which can be called from a foreign main program. The supported languages are \fortran, \ttt{C}, and \cpp. Using the C API, any other language which supports linking against C libraries can also be interfaced. \subsection{Fortran main program} To link a \fortran\ main program with the \whizard\ library, the following steps must be performed: \begin{enumerate} \item Configure, build and install \whizard\ as normal. \item Include code for accessing \whizard\ functionality in the user program. The code should initialize \whizard, execute the intended commands, and finalize. For an example, see below. \item Compile the user program. The user program must be compiled with the same \fortran\ compiler that has been used for the \whizard\ build. If necessary, specify an option that finds the installed \whizard\ module files. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} -Iwhizard-path/lib/mod/whizard \end{code} \item Link the program (or compile-link in a single step). If necessary, specify options that find the installed \whizard\ and \oMega\ libraries. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} -Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}. Such an example compile-link could look like \begin{code} gfortran manual_example_api.f90 -Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega \end{code} If \whizard\ has been compiled with a non-default \fortran\ compiler, you may have to explicitly link the appropriate \fortran\ run-time libraries. The \ttt{tirpc} library is used by the \ttt{StdHEP} subsystem for \ttt{xdr} functionality. This library should be present on the host system. This library needs only be linked of the SunRPC library is not installed on the system. If additional libraries such as \hepmc\ are enabled in the \whizard\ configuration, it may be necessary to provide extra options for linking those. An example here looks like \begin{code} gfortran manual_example_api.f90 -Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega -lHepMC3 -lHepMC3rootIO -llcio \end{code} \item Run the program. If necessary, provide the path to the installed shared libraries. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH" \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}, as above. The \whizard\ subsystem will work with input and output files in the current working directory, unless asked to do otherwise. \end{enumerate} Below is an example program, adapted from \whizard's internal unit-test suite. The user program controls the \whizard\ workflow in the same way as a \sindarin\ script would do. The commands are a mixture of \sindarin\ command calls and functionality for passing information between the \whizard\ subsystem and the host program. In particular, the program can process generated events one-by-one. \begin{code} program main ! WHIZARD API as a module use api ! Standard numeric types use iso_fortran_env, only: real64, int32 implicit none ! WHIZARD and event-sample objects type(whizard_api_t) :: whizard type(simulation_api_t) :: sample ! Local variables real(real64) :: integral, error real(real64) :: sqme, weight integer(int32) :: idx integer(int32) :: i, it_begin, it_end ! Initialize WHIZARD, setting some global option call whizard%option ("model", "QED") call whizard%init () ! Define a process, set some variables call whizard%command ("process mupair = e1, E1 => e2, E2") call whizard%set_var ("sqrts", 100._real64) call whizard%set_var ("seed", 0) ! Generate matrix-element code, integrate and retrieve result call whizard%command ("integrate (mupair)") call whizard%get_integration_result ("mupair", integral, error) ! Print result print 1, "cross section =", integral / 1000, "pb" print 1, "error =", error / 1000, "pb" 1 format (2x,A,1x,F5.1,1x,A) 2 format (2x,A,1x,L1) ! Settings for event generation call whizard%set_var ("$sample", "mupair_events") call whizard%set_var ("n_events", 2) ! Create an event-sample object and generate events call whizard%new_sample ("mupair", sample) call sample%open (it_begin, it_end) do i = it_begin, it_end call sample%next_event () call sample%get_event_index (idx) call sample%get_weight (weight) call sample%get_sqme (sqme) print "(A,I0)", "Event #", idx print 3, "sqme =", sqme print 3, "weight =", weight 3 format (2x,A,1x,ES10.3) end do ! Finalize the event-sample object call sample%close () ! Finalize the WHIZARD object call whizard%final () end program main \end{code} The API provides the following commands as \fortran\ subroutines. Most of them are used in the example above. \subsubsection{Module} There is only one module from the \whizard\ package which must be \texttt{use}d by the user program: \begin{quote} \tt use api \end{quote} You may \texttt{use} any other \whizard\ module in our program, all module files are part of the installation. Be aware, however, that all other modules are considered internal. Unless explictly mentioned in this manual, interfaces are not documented here and may change between versions. Changes to the \ttt{api} module, if any, will be documented here. \subsubsection{Master object} All functionality is accessed via a master API object which should be declared as follows: \begin{quote} \tt type(whizard\_api\_t) :: whizard \end{quote} There should be only one master object. \subsubsection{Pre-Initialization options} Before initializing the API object, it is possible to provide options. The available options mirror the command-line options of the stand-alone program, cf.\ Sec.~\ref{sec:cmdline-options}. \begin{quote} \tt call whizard\%option (\textit{key}, \textit{value}) \end{quote} All keys and values are \fortran\ character strings. The following options are available. For all options, default values exist as listed in Sec.~\ref{sec:cmdline-options}. \begin{description} \item[\tt model] Model that should be preloaded. \item[\tt library] Name of the library where matrix-element code should end up. \item[\tt logfile] Name of the logfile that \whizard\ will write. \item[\tt job\_id] Name of the current job; can be used for writing unique output files. \item[\tt unpack] Comma-separated list of files to be uncompressed and unpacked (via \ttt{tar} and \ttt{gzip}) when \ttt{init} is called on the API object. \item[\tt pack] Comma-separated list of files or directories to be packed and compressed when \ttt{final} is called. \item[\tt rebuild] All of the following: \item[\tt rebuild\_library] Force rebuilding a matrix-element code library, overwriting results from a previous run. \item[\tt recompile] Force recompiling the matrix-element code library. \item[\tt rebuild\_grids] Force reproducing integration passes. \item[\tt rebuild\_events] Force regenerating event samples. \end{description} \subsubsection{Initialization and finalization} After options have been set, the system is initialized via \begin{quote} \tt call whizard\%init \end{quote} Once initialized, \whizard\ can execute commands as listed below. When this is complete, clean up by \begin{quote} \tt call whizard\%final \end{quote} \subsubsection{Variables and values} In the API, \whizard\ requires numeric data types according to the IEEE standard, which is available to \fortran\ in the \ttt{iso\_fortran\_env} intrinsic module. Strictly speaking, integer data must have type \ttt{int32}, and real data must have type \ttt{real64}. For most systems and default compiler settings, it is not really necessary to \ttt{use} the ISO module and its data types. Integers map to default \fortran\ \ttt{integer}, and real values map to default \fortran\ \ttt{double precision}. As an alternative, you may \ttt{use} the \whizard\ internal \ttt{kinds} module which declares a \ttt{real(default)} type \begin{quote} \tt use kinds, only: default \end{quote} On most systems, this will be equivalent to \ttt{real(real64)}. To set a \sindarin\ variable, use the function that corresponds to the data type: \begin{quote} \tt call whizard\%set\_var (\textit{name}, \textit{value}) \end{quote} The name is a \fortran\ string which has to be equal to the name of the corresponding \sindarin\ variable, including any prefix character (\$ or ?). The value depends on the type of the \sindarin\ variable. To retrieve the current value of a variable: \begin{quote} \tt call whizard\%get\_var (\textit{name}, \textit{var}) \end{quote} The variable must be declared as \ttt{integer}, \ttt{real(real64)}, \ttt{logical}, or \ttt{character(:), allocatable}. This depends on the \sindarin\ variable type. \subsubsection{Commands} Any \sindarin\ command can be called via \begin{quote} \tt call whizard\%command (\textit{command}) \end{quote} \ttt{\it command} is a \fortran\ character string, as it would appear in a \sindarin\ script. This includes, in particular, the important commands \ttt{process}, \ttt{integrate}, and \ttt{simulate}. You may also set variables that way. \subsubsection{Retrieving cross-section results} This call returns the results (integration and error) from a preceding integration run for the process \textit{process-name}: \begin{quote} \tt call whizard\%get\_integration\_result ("\textit{process-name}", integral, error) \end{quote} There is also an optional argument \ttt{known} of type \ttt{logical} which is set if the integration run was successful, so integral and error are meaningful. \subsubsection{Event-sample object} A \ttt{simulate} command will produce an event sample. With the appropriate settings, the sample will be written to file in any chosen format, to be post-processed when it is complete. However, a possible purpose of using the \whizard\ API is to process events one-by-one when they are generated. To this end, there is an event-sample handle, which can be declared in this way: \begin{quote} \tt type(simulation\_api\_t) :: sample \end{quote} An instance \ttt{sample} of this type is created by this factory method: \begin{quote} \tt call whizard\%new\_sample ("\textit{process-name(s)}", sample) \end{quote} The command accepts a comma-separated list of process names which should be included in the event sample. To start event generation for this sample, call \begin{quote} \tt call sample\%open (\textit{it\_begin}, \textit{it\_end} ) \end{quote} where the two output parameters (integers) \ttt{\it it\_begin} and \ttt{\it it\_end} provide the bounds for an event loop in the calling program. (In serial mode, the bounds are equal to 1 and \ttt{n\_events}, respectively, but in an MPI parallel environment, they depend on the computing node.) This command generates a new event, to be enclosed within an event loop: \begin{quote} \tt call sample\%next\_event \end{quote} The event will be available by format-specific access methods, see below. This command closes and deletes an event sample after the event loop has completed: \begin{quote} \tt call sample\%close \end{quote} \subsubsection{Retrieving event data} After a call to \ttt{next\_event}, the sample object can be queried for specific event data. \begin{quote} \tt call sample\%get\_event\_index (\textit{value}) \end{quote} returns the index (integer counter) of the current event. \begin{quote} \tt call sample\%get\_process\_index (\textit{value}) \\ \tt call sample\%get\_process\_id (\textit{value}) \end{quote} returns the numeric (string) ID of the hard process, respectively, that was generated in this event. The variables must be declared as \ttt{integer} and \ttt{character(:), allocatable}, respectively. The following methods return \ttt{real(real64)} values. \begin{quote} \tt call sample\%get\_sqrts (\textit{value}) \end{quote} returns the $\sqrt{s}$ value of this event. \begin{quote} \tt call sample\%get\_fac\_scale (\textit{value}) \end{quote} returns the factorization scale of this event (\textit{value}). \begin{quote} \tt call sample\%get\_alpha\_s (\textit{value}) \end{quote} returns the value of the strong coupling for this event (\textit{value}). \begin{quote} \tt call sample\%get\_sqme (\textit{value}) \end{quote} returns the value of the squared matrix element (summed over final states and averaged over initial states). \begin{quote} \tt call sample\%get\_weight (\textit{value}) \end{quote} returns the Monte-Carlo weight of this event. Access to the event record depends on the event format that has been selected. The format must allow access to individual events via data structures in memory. There are three cases where such structures exist and are accessible: \begin{enumerate} \item If the event format uses a COMMON block, event data is accessible via this COMMON block, which must be declared in the calling routine. \item The \hepmc\ event format communicates via a \cpp\ object. In \fortran, there is a wrapper which has to be declared as \begin{quote} \tt type(hepmc\_event\_t) :: hepmc\_event \end{quote} To activate this handle, the \ttt{next\_event} call must reference it as an argument: \begin{quote} \tt call sample\%next\_event (hepmc\_event) \end{quote} The \whizard\ module \ttt{hepmc\_interface} contains procedures which can work with this record. A pointer to the actual \cpp\ object can be retrieved as a \fortran\ \ttt{c\_ptr} object as follows: \begin{quote} \tt type(c\_ptr) :: hepmc\_ptr \\ \dots \\ hepmc\_ptr = hepmc\_event\_get\_c\_ptr (hepmc\_event) \end{quote} \item The \lcio\ event format also communicates via a \cpp\ object. The access methods are entirely analogous, replacing \ttt{hepmc} by \ttt{lcio} in all calls and names. \end{enumerate} \subsection{C main program} To link a C main program with the \whizard\ library, the following steps must be performed: \begin{enumerate} \item Configure, build and install \whizard\ as normal. \item Include code for accessing \whizard\ functionality in the user program. The code should initialize \whizard, execute the intended commands, and finalize. For an example, see below. \item Compile the user program with the option that finds the WHIZARD \ttt{C/C++} interface header file. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} -Iwhizard-path/include \end{code} \item Link the program with the necessary libraries (or compile-link in a single step). If \whizard\ has been installed in a system path, this should work automatically. If \whizard\ has been installed in a non-default \ttt{whizard-path}, these are the options: \begin{code} -Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega -ltirpc \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}. If \whizard\ has been compiled with a non-default \fortran\ compiler, you may have to explicitly link the appropriate \fortran\ run-time libraries. The \ttt{tirpc} library is used by the \ttt{StdHEP} subsystem for \ttt{xdr} functionality. This library should be present on the host system. Cf. the corresponding remarks in the section for a \fortran\ main program. If additional libraries such as \hepmc\ are enabled in the \whizard\ configuration, it may be necessary to provide extra options for linking those. \item Run the program. If necessary, provide the path to the installed shared libraries. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH" \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}, as above. The \whizard\ subsystem will work with input and output files in the current working directory, unless asked to do otherwise. \end{enumerate} Below is an example program, adapted from \whizard's internal unit-test suite. The user program controls the \whizard\ workflow in the same way as a \sindarin\ script would do. The commands are a mixture of \sindarin\ command calls and functionality for passing information between the \whizard\ subsystem and the host program. In particular, the program can process generated events one-by-one. \begin{code} #include #include "whizard.h" int main( int argc, char* argv[] ) { /* WHIZARD and event-sample objects */ void* wh; void* sample; /* Local variables */ double integral, error; double sqme, weight; int idx; int it, it_begin, it_end; /* Initialize WHIZARD, setting some global option */ whizard_create( &wh ); whizard_option( &wh, "model", "QED" ); whizard_init( &wh ); /* Define a process, set some variables */ whizard_command( &wh, "process mupair = e1, E1 => e2, E2" ); whizard_set_double( &wh, "sqrts", 10. ); whizard_set_int( &wh, "seed", 0 ); /* Generate matrix-element code, integrate and retrieve result */ whizard_command( &wh, "integrate (mupair)" ); /* Print result */ whizard_get_integration_result( &wh, "mupair", &integral, &error); printf( " cross section = %5.1f pb\n", integral / 1000. ); printf( " error = %5.1f pb\n", error / 1000. ); /* Settings for event generation */ whizard_set_char( &wh, "$sample", "mupair_events" ); whizard_set_int( &wh, "n_events", 2 ); /* Create an event-sample object and generate events */ whizard_new_sample( &wh, "mupair", &sample ); whizard_sample_open( &sample, &it_begin, &it_end ); for (it=it_begin; it<=it_end; it++) { whizard_sample_next_event( &sample ); whizard_sample_get_event_index( &sample, &idx ); whizard_sample_get_weight( &sample, &weight ); whizard_sample_get_sqme( &sample, &sqme ); printf( "Event #%d\n", idx ); printf( " sqme = %10.3e\n", sqme ); printf( " weight = %10.3e\n", weight ); } /* Finalize the event-sample object */ whizard_sample_close( &sample ); /* Finalize the WHIZARD object */ whizard_final( &wh ); } \end{code} \subsubsection{Header} The necessary declarations are imported by the directive \begin{quote} \tt \#include "whizard.h" \end{quote} \subsubsection{Master object} All functionality is accessed via a master API object which should be declared as a \ttt{void*} pointer: \begin{quote} \tt void* wh; \end{quote} The object must be explicitly created: \begin{quote} \tt whizard\_create( \&wh ); \end{quote} There should be only one master object. \subsubsection{Pre-Initialization options} Before initializing the API object, it is possible to provide options. The available options mirror the command-line options of the stand-alone program, cf.\ Sec.~\ref{sec:cmdline-options}. \begin{quote} \tt whizard\_option( \&wh, \textit{key}, \textit{value} ); \end{quote} All keys and values are null-terminated C character strings. The available options are listed above in the \fortran\ interface documentation. \subsubsection{Initialization and finalization} After options have been set, the system is initialized via \begin{quote} \tt whizard\_init( \&wh ); \end{quote} Once initialized, \whizard\ can execute commands as listed below. When this is complete, clean up by \begin{quote} \tt whizard\_final( \&wh ); \end{quote} \subsubsection{Variables and values} In the API, \whizard\ requires numeric data types according to the IEEE standard. Integers map to C \ttt{int}, and real values map to C \ttt{double}. Logical values map to C \ttt{int} interpreted as \ttt{bool}, and string values map to null-terminated C strings. To set a \sindarin\ variable of appropriate type: \begin{quote} \tt whizard\_set\_int ( \&wh, \textit{name}, \textit{value} ); \\ \tt whizard\_set\_double ( \&wh, \textit{name}, \textit{value} ); \\ \tt whizard\_set\_bool ( \&wh, \textit{name}, \textit{value} ); \\ \tt whizard\_set\_char ( \&wh, \textit{name}, \textit{value} ); \end{quote} \textit{name} is declared \ttt{const char*}. It must match the corresponding \sindarin\ variable name, including any prefix character (\$ or ?). \textit{value} is declared \ttt{const double/int/char*}. To retrieve the current value of a variable: \begin{quote} \tt whizard\_get\_int ( \&wh, \textit{name}, \&\textit{var} ); \\ \tt whizard\_get\_double ( \&wh, \textit{name}, \&\textit{var} ); \\ \tt whizard\_get\_bool ( \&wh, \textit{name}, \&\textit{var} ); \\ \tt whizard\_get\_char ( \&wh, \textit{name}, \textit{var}, \textit{len} ); \end{quote} Here, \ttt{\it var} is a C variable of appropriate type. In the character case, \ttt{\it var} is a C character array declared as \ttt{\it var}[\ttt{\it len}]. The functions return zero if the \sindarin\ variable has a known value. \subsubsection{Commands} Any \sindarin\ command can be called via \begin{quote} \tt whizard\_command( \&wh, \textit{command} ); \end{quote} \ttt{\it command} is a null-terminated C string that contains commands as they would appear in a \sindarin\ script. This includes, in particular, the important commands \ttt{process}, \ttt{integrate}, and \ttt{simulate}. You may also set variables that way. \subsubsection{Retrieving cross-section results} This call returns the results (integration and error) from a preceding integration run for the process \textit{process-name}: \begin{quote} \tt whizard\_get\_integration\_result( \&wh, "\textit{process-name}", \&\textit{integral}, \&\textit{error}) \end{quote} \ttt{\it integral} and \ttt{\it error} are C variables of type \ttt{double}. The function returns zero if the integration run was successful, so integral and error are meaningful. \subsubsection{Event-sample object} A \ttt{simulate} command will produce an event sample. With the appropriate settings, the sample will be written to file in any chosen format, to be post-processed when it is complete. However, a possible purpose of using the \whizard\ API is to process events one-by-one when they are generated. To this end, there is an event-sample handle, which can be declared in this way: \begin{quote} \tt void* \textit{sample}; \end{quote} An instance \ttt{\it sample} of this type is created by this factory method: \begin{quote} \tt whizard\_new\_sample( \&wh, "\textit{process-name(s)}", \&\textit{sample}); \end{quote} The command accepts a comma-separated list of process names which should be included in the event sample. To start event generation for this sample, call \begin{quote} \tt whizard\_sample\_open( \&\textit{sample}, \&\textit{it\_begin}, \&\textit{it\_end} ); \end{quote} where the two output variables (\ttt{int}) \ttt{\it it\_begin} and \ttt{\it it\_end} provide the bounds for an event loop in the calling program. (In serial mode, the bounds are equal to 1 and \ttt{n\_events}, respectively, but in an MPI parallel environment, they depend on the computing node.) This command generates a new event, to be enclosed within an event loop: \begin{quote} \tt whizard\_sample\_next\_event( \&\textit{sample} ); \end{quote} The event will be available by format-specific access methods, see below. This command closes and deletes an event sample after the event loop has completed: \begin{quote} \tt whizard\_sample\_close( \&\textit{sample} ); \end{quote} \subsubsection{Retrieving event data} After a call to \ttt{whizard\_sample\_next\_event}, the sample object can be queried for specific event data. \begin{quote} \tt whizard\_sample\_get\_event\_index( \&\textit{sample}, \&\textit{value} ); \\ \tt whizard\_sample\_get\_process\_index( \&\textit{sample}, \&\textit{value} ); \\ \tt whizard\_sample\_get\_process\_id( \&\textit{sample}, \textit{value}, \textit{len} ); \\ \tt whizard\_sample\_get\_sqrts( \&\textit{sample}, \&\textit{value} ); \\ \tt whizard\_sample\_get\_fac\_scale( \&\textit{sample}, \&\textit{value} ); \\ \tt whizard\_sample\_get\_alpha\_s( \&\textit{sample}, \&\textit{value} ); \\ \tt whizard\_sample\_get\_sqme( \&\textit{sample}, \&\textit{value} ); \\ \tt whizard\_sample\_get\_weight( \&\textit{sample}, \&\textit{value} ); \end{quote} where the \ttt{\it value} is a variable of appropriate type (see above). Event data are stored in a format-specific way. This may be a COMMON block, or a \hepmc\ or \lcio\ event record. In the latter cases, cf.\ the \cpp\ API below for access information. \subsection{C++ main program} To link a \cpp\ main program with the \whizard\ library, the following steps must be performed: \begin{enumerate} \item Configure, build and install \whizard\ as normal. \item Include code for accessing \whizard\ functionality in the user program. The code should initialize \whizard, execute the intended commands, and finalize. For an example, see below. \item Compile the user program with the option that finds the WHIZARD \ttt{C/C++} interface header file. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} -Iwhizard-path/include \end{code} \item Link the program with the necessary libraries (or compile-link in a single step). If \whizard\ has been installed in a system path, this should work automatically. If \whizard\ has been installed in a non-default \ttt{whizard-path}, these are the options: \begin{code} -Lwhizard-path/lib -lwhizard -lwhizard_prebuilt -lomega -ltirpc \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}. If \whizard\ has been compiled with a non-default \fortran\ compiler, you may have to explicitly link the appropriate \fortran\ run-time libraries. The \ttt{tirpc} library is used by the \ttt{StdHEP} subsystem for \ttt{xdr} functionality. This library should be present on the host system. If additional libraries such as \hepmc\ are enabled in the \whizard\ configuration, it may be necessary to provide extra options for linking those. \item Run the program. If necessary, provide the path to the installed shared libraries. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH" \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}, as above. The \whizard\ subsystem will work with input and output files in the current working directory, unless asked to do otherwise. \end{enumerate} Below is an example program, adapted from \whizard's internal unit-test suite. The user program controls the \whizard\ workflow in the same way as a \sindarin\ script would do. The commands are a mixture of \sindarin\ command calls and functionality for passing information between the \whizard\ subsystem and the host program. In particular, the program can process generated events one-by-one. \begin{code} #include #include #include "whizard.h" int main( int argc, char* argv[] ) { // WHIZARD and event-sample objects Whizard* whizard; WhizardSample* sample; // Local variables double integral, error; double sqme, weight; int idx; int it, it_begin, it_end; // Initialize WHIZARD, setting some global option whizard = new Whizard(); whizard->option( "model", "QED" ); whizard->init(); // Define a process, set some variables whizard->command( "process mupair = e1, E1 => e2, E2" ); whizard->set_double( "sqrts", 10. ); whizard->set_int( "seed", 0 ); // Generate matrix-element code, integrate and retrieve result whizard->command( "integrate (mupair)" ); // Print result whizard->get_integration_result( "mupair", &integral, &error ); printf( " cross section = %5.1f pb\n", integral / 1000. ); printf( " error = %5.1f pb\n", error / 1000. ); // Settings for event generation whizard->set_string( "$sample", "mupair_events" ); whizard->set_int( "n_events", 2 ); // Create an event-sample object and generate events sample = whizard->new_sample( "mupair" ); sample->open( &it_begin, &it_end ); for (it=it_begin; it<=it_end; it++) { sample->next_event(); idx = sample->get_event_index(); weight = sample->get_weight(); sqme = sample->get_sqme(); printf( "Event #%d\n", idx ); printf( " sqme = %10.3e\n", sqme ); printf( " weight = %10.3e\n", weight ); } // Finalize the event-sample object sample->close(); delete sample; // Finalize the WHIZARD object delete whizard; } \end{code} \subsubsection{Header} The necessary declarations are imported by the directive \begin{quote} \tt \#include "whizard.h" \end{quote} \subsubsection{Master object} All functionality is accessed via a master API object which should be declared as follows: \begin{quote} \tt Whizard* whizard; \end{quote} The constructor takes no arguments: \begin{quote} \tt whizard = new Whizard(); \end{quote} There should be only one master object. \subsubsection{Pre-Initialization options} Before initializing the API object, it is possible to provide options. The available options mirror the command-line options of the stand-alone program, cf.\ Sec.~\ref{sec:cmdline-options}. \begin{quote} \tt whizard->option( \textit{key}, \textit{value} ); \end{quote} All keys and values are \cpp\ strings. The available options are listed above in the \fortran\ interface documentation. \subsubsection{Initialization and finalization} After options have been set, the system is initialized via \begin{quote} \tt whizard->init(); \end{quote} Once initialized, \whizard\ can execute commands as listed below. When all is complete, delete the \whizard\ object. This will call the destructor that correctly finalizes the \whizard\ workflow. \subsubsection{Variables and values} In the API, \whizard\ requires numeric data types according to the IEEE standard. Integers map to C \ttt{int}, and real values map to C \ttt{double}. Logical values map to C \ttt{int} interpreted as \ttt{bool}, and string values map to \cpp\ \ttt{string}. To set a \sindarin\ variable of appropriate type: \begin{quote} \tt whizard->set\_int ( \textit{name}, \textit{value} ); \\ \tt whizard->set\_double ( \textit{name}, \textit{value} ); \\ \tt whizard->set\_bool ( \textit{name}, \textit{value} ); \\ \tt whizard->set\_string ( \textit{name}, \textit{value} ); \end{quote} \textit{name} is a \cpp\ string value. It must match the corresponding \sindarin\ variable name, including any prefix character (\$ or ?). \textit{value} is a \ttt{double/int/string}, respectively. To retrieve the current value of a variable: \begin{quote} \tt whizard->get\_int ( \textit{name}, \&\textit{var} ); \\ \tt whizard->get\_double ( \textit{name}, \&\textit{var} ); \\ \tt whizard->get\_bool ( \textit{name}, \&\textit{var} ); \\ \tt whizard->get\_string ( \textit{name}, \&\textit{var} ); \end{quote} Here, \ttt{\it var} is a C variable of appropriate type. The functions return zero if the \sindarin\ variable has a known value. \subsubsection{Commands} Any \sindarin\ command can be called via \begin{quote} \tt whizard->command( \textit{command} ); \end{quote} \ttt{\it command} is a \cpp\ string value that contains commands as they would appear in a \sindarin\ script. This includes, in particular, the important commands \ttt{process}, \ttt{integrate}, and \ttt{simulate}. You may also set variables that way. \subsubsection{Retrieving cross-section results} This call returns the results (integration and error) from a preceding integration run for the process \textit{process-name}: \begin{quote} \tt whizard->get\_integration\_result( "\textit{process-name}", \&\textit{integral}, \&\textit{error} ); \end{quote} \ttt{\it integral} and \ttt{\it error} are variables of type \ttt{double}. The function returns zero if the integration run was successful, so integral and error are meaningful. \subsubsection{Event-sample object} A \ttt{simulate} command will produce an event sample. With the appropriate settings, the sample will be written to file in any chosen format, to be post-processed when it is complete. However, a possible purpose of using the \whizard\ API is to process events one-by-one when they are generated. To this end, there is an event-sample handle, which can be declared in this way: \begin{quote} \tt WhizardSample* {sample}; \end{quote} An instance \ttt{\it sample} of this type is created by this factory method: \begin{quote} \tt {sample} = whizard->new\_sample( "\textit{process-name(s)}" ); \end{quote} The command accepts a comma-separated list of process names which should be included in the event sample. To start event generation for this sample, call \begin{quote} \tt sample->open( \&\textit{it\_begin}, \&\textit{it\_end}); \end{quote} where the two output variables (\ttt{int}) \ttt{\it it\_begin} and \ttt{\it it\_end} provide the bounds for an event loop in the calling program. (In serial mode, the bounds are equal to 1 and \ttt{n\_events}, respectively, but in an MPI parallel environment, they depend on the computing node.) This command generates a new event, to be enclosed within an event loop: \begin{quote} \tt sample->next\_event(); \end{quote} The event will be available by format-specific access methods, see below. This command closes and deletes an event sample after the event loop has completed: \begin{quote} \tt sample->close(); \end{quote} \subsubsection{Retrieving event data} After a call to \ttt{sample->next\_event}, the sample object can be queried for specific event data. \begin{quote} \tt value = sample->get\_event\_index(); \\ \tt value = sample->get\_process\_index(); \\ \tt value = sample->get\_process\_id(); \\ \tt value = sample->get\_sqrts(); \\ \tt value = sample->get\_fac\_scale(); \\ \tt value = sample->get\_alpha\_s(); \\ \tt value = sample->get\_sqme(); \\ \tt value = sample->get\_weight(); \end{quote} where the \ttt{\it value} is a variable of appropriate type (see above). Event data are stored in a format-specific way. This may be a \hepmc\ or \lcio\ \cpp\ event record. For interfacing with the \hepmc\ event record, the appropriate declarations must be in place, e.g., \begin{quote} \tt \#include "HepMC/GenEvent.h" \\ using namespace HepMC; \end{quote} An event-record object must be declared, \begin{quote} \tt GenEvent* evt; \end{quote} and the \whizard\ event call must take the event as an argument \begin{quote} \tt sample->next\_event ( \&evt ); \end{quote} This will create a new \ttt{evt} object. Then, the \hepmc\ event record can be accessed via its own methods. After an event has been processed, the event record should be deleted \begin{quote} \tt delete evt; \end{quote} Analogously, for interfacing with the \lcio\ event record, the appropriate declarations must be in place, e.g., \begin{quote} \tt \#include "lcio.h" \\ \#include "IMPL/LCEventImpl.h" \\ using namespace lcio; \end{quote} An event-record object must be declared, \begin{quote} \tt LCEvent* evt; \end{quote} and the \whizard\ event call must take the event as an argument \begin{quote} \tt sample->next\_event ( \&evt ); \end{quote} This will create a new \ttt{evt} object. Then, the \lcio\ event record can be accessed via its own methods. After an event has been processed, the event record should be deleted \begin{quote} \tt delete evt; \end{quote} \subsection{Python main program} To create a \python\ executable, \whizard\ provides a \ttt{Cython} interface that uses \cpp\ bindings to link a dynamic library which can then be loaded as a module via \python. Note that \whizard's \ttt{Cython}/\python\ interface only works with \python\ttt{v3}. Also make sure that you do not mix different \python\ versions when linking external programs which also provide \python\ interfaces like \hepmc\ or \lcio. To link a \python\ main program with the \whizard\ library, the following steps must be performed: \begin{enumerate} \item Configure, build and install \whizard\ as normal. \item Include code for accessing \whizard\ functionality in the user program. The code should initialize \whizard, execute the intended commands, and finalize. For an example, see below. \item Run \python\ on the user program. Make sure that the operating system finds the \whizard\ \python\ and library path. If \whizard\ has been installed in a non-default \ttt{whizard-path}, these are the options: \begin{code} export PYTHONPATH=whizard-path/lib/python/site-packages/:$PYTHONPATH \end{code} If necessary, provide the path to the installed shared libraries. For instance, if \whizard\ has been installed in \ttt{whizard-path}, this should read \begin{code} export LD_LIBRARY_PATH="whizard-path/lib:$LD_LIBRARY_PATH" \end{code} On some systems, you may have to replace \ttt{lib} by \ttt{lib64}, as above. The \whizard\ subsystem will work with input and output files in the current working directory, unless asked to do otherwise. \item The \ttt{tirpc} library is used by the \ttt{StdHEP} subsystem for \ttt{xdr} functionality. This library should be present on the host system. \item Run the program. \end{enumerate} Below is an example program, similar to \whizard's internal unit-test suite for different external programming languages. The user program controls the \whizard\ workflow in the same way as a \sindarin\ script would do. The commands are a mixture of \sindarin\ command calls and functionality for passing information between the \whizard\ subsystem and the host program. In particular, the program can process generated events one-by-one. \begin{code} import whizard wz = whizard.Whizard() wz.option("logfile", "whizard_1_py.log") wz.option("job_id", "whizard_1_py_ID") wz.option("library", "whizard_1_py_1_lib") wz.option("model", "QED") wz.init() wz.set_double("sqrts", 100) wz.set_int("n_events", 3) wz.set_bool("?unweighted", True) wz.set_string("$sample", "foobar") wz.set_int("seed", 0) wz.command("process whizard_1_py_1_p = e1, E1 => e2, E2") wz.command("iterations = 1:100") integral, error = wz.get_integration_result("whizard_1_py_1_p") print(integral, error) wz.command("integrate (whizard_1_py_1_p)") sqrts = wz.get_double("sqrts") print(f"sqrts = {sqrts:5.1f} GeV") print(f"sigma = integral:5.1f} pb") print(f"error {error:5.1f} pb") sample = wz.new_sample("whizard_1_py_p1, whizard_1_py_p2, whizard_1_py_p3") it_begin, it_end = sample.open() for it in range(it_begin, it_end + 1): sample.next_event() idx = sample.get_event_index() i_proc = sample.get_process_index() proc_id = sample.get_process_id() f_scale = sample.get_fac_scale() alpha_s = sample.get_alpha_s() weight = sample.get_weight() sqme = sample.get_sqme() print(f"Event #{idx}") print(f" process #{i_proc}") print(f" proc_id = {proc_id}") print(f" f_scale = {f_scale:10.3e}") print(f" alpha_s = {f_scale:10.3e}") print(f" sqme = {f_scale:10.3e}") print(f" weight = {f_scale:10.3e}") sample.close() del(wz) \end{code} \subsubsection{Python module import} There are no necessary headers here as all of this information has been automatically taken care by the \ttt{Cython} interface layer. The \whizard\ module needs to be imported by \python\: \begin{quote} \tt import whizard \end{quote} \subsubsection{Master object} All functionality is accessed via a master API object which should be declared as follows: \begin{quote} \tt wz = whizard.Whizard() \end{quote} The constructor takes no arguments.There should be only one master object. \subsubsection{Pre-Initialization options} Before initializing the API object, it is possible to provide options. The available options mirror the command-line options of the stand-alone program, cf.\ Sec.~\ref{sec:cmdline-options}. \begin{quote} \tt wz.option( \textit{key}, \textit{value} ); \end{quote} All keys and values are \python\ strings. The available options are listed above in the \fortran\ interface documentation. \subsubsection{Initialization and finalization} After options have been set, the system is initialized via \begin{quote} \tt wz.init() \end{quote} Once initialized, \whizard\ can execute commands as listed below. When all is complete, delete the \whizard\ object. This will call the destructor that correctly finalizes the \whizard\ workflow. \subsubsection{Variables and values} In the API, \whizard\ requires numeric data types according to the IEEE standard. Integers map to \ttt{Python int}, and real values map to \ttt{Python double}. Logical values map to \ttt{True} and \ttt{False}, and string values map to \python\ strings. To set a \sindarin\ variable of appropriate type: \begin{quote} \tt wz.set\_int ( \textit{name}, \textit{value} ); \\ \tt wz.set\_double ( \textit{name}, \textit{value} ); \\ \tt wz.set\_bool ( \textit{name}, \textit{value} ); \\ \tt wz.set\_string ( \textit{name}, \textit{value} ); \end{quote} \textit{name} is a \python\ string value. It must match the corresponding \sindarin\ variable name, including any prefix character (\$ or ?). \textit{value} is a \ttt{double/int/string}, respectively. To retrieve the current value of a variable: \begin{quote} \tt wz.get\_int ( \textit{name}, \textit{var} ); \\ \tt wz.get\_double ( \textit{name}, \textit{var} ); \\ \tt wz.get\_bool ( \textit{name}, \textit{var} ); \\ \tt wz.get\_string ( \textit{name}, \textit{var} ); \end{quote} Here, \ttt{\it var} is a \python\ variable of appropriate type. The functions return zero if the \sindarin\ variable has a known value. \subsubsection{Commands} Any \sindarin\ command can be called via \begin{quote} \tt wz.command( \textit{command} ); \end{quote} \ttt{\it command} is a \python\ string value that contains commands as they would appear in a \sindarin\ script. This includes, in particular, the important commands \ttt{process}, \ttt{integrate}, and \ttt{simulate}. You may also set variables that way. \subsubsection{Retrieving cross-section results} This call returns the results (integration and error) from a preceding integration run for the process \textit{process-name}: \begin{quote} \tt wz.get\_integration\_result( "\textit{process-name}", \textit{integral}, \textit{error} ); \end{quote} \ttt{\it integral} and \ttt{\it error} are variables of type \ttt{double}. The function returns zero if the integration run was successful, so integral and error are meaningful. \subsubsection{Event-sample object} A \ttt{simulate} command will produce an event sample. With the appropriate settings, the sample will be written to file in any chosen format, to be post-processed when it is complete. However, a possible purpose of using the \whizard\ API is to process events one-by-one when they are generated. To this end, there is an event-sample handle, which can be declared in this way: \begin{quote} \tt WhizardSample* {sample}; \end{quote} An instance \ttt{\it sample} of this type is created by this factory method: \begin{quote} \tt {sample} = wz.new\_sample( "\textit{process-name(s)}" ); \end{quote} The command accepts a comma-separated list of process names which should be included in the event sample. To start event generation for this sample, call \begin{quote} \tt \textit{it\_begin}, \textit{it\_end} = wz.sample\_open() \end{quote} where the two output variables (\ttt{int}) \ttt{\it it\_begin} and \ttt{\it it\_end} provide the bounds for an event loop in the calling program. (In serial mode, the bounds are equal to 1 and \ttt{n\_events}, respectively, but in an MPI parallel environment, they depend on the computing node.) This command generates a new event, to be enclosed within an event loop: \begin{quote} \tt sample.next\_event(); \end{quote} The event will be available by format-specific access methods, see below. This command closes and deletes an event sample after the event loop has completed: \begin{quote} \tt sample.close(); \end{quote} \subsubsection{Retrieving event data} After a call to \ttt{sample.next\_event}, the sample object can be queried for specific event data. \begin{quote} \tt value = sample.get\_event\_index(); \\ \tt value = sample.get\_process\_index(); \\ \tt value = sample.get\_process\_id(); \\ \tt value = sample.get\_sqrts(); \\ \tt value = sample.get\_fac\_scale(); \\ \tt value = sample.get\_alpha\_s(); \\ \tt value = sample.get\_sqme(); \\ \tt value = sample.get\_weight(); \end{quote} where the \ttt{\it value} is a variable of appropriate type (see above). Event data are stored in a format-specific way. This may be a \hepmc\ or \lcio\ \cpp\ event record, or some formats supported by \whizard\ intrinsically like LHEF etc. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Examples} \label{chap:examples} In this chapter we discuss the running and steering of \whizard\ with the help of several examples. These examples can be found in the \ttt{share/examples} directory of your installation. All of these examples are also shown on the \whizard\ Wiki page: \url{https://whizard.hepforge.org/trac/wiki}. \section{$Z$ lineshape at LEP I} By this example, we demonstrate how a scan over collision energies works, using as example the measurement of the $Z$ lineshape at LEP I in 1989. The \sindarin\ script for this example, \ttt{Z-lineshape.sin} can be found in the \ttt{share/examples} folder of the \whizard\ installation. We first use the Standard model as physics model: \begin{code} model = SM \end{code} Aliases for electron, muon and their antiparticles as leptons and those including the photon as particles in general are introduced: \begin{code} alias lep = e1:E1:e2:E2 alias prt = lep:A \end{code} Next, the two processes are defined, \eemm, and the same with an explicit QED photon: $e^+e^- \to \mu^+\mu^-\gamma$, \begin{code} process bornproc = e1, E1 => e2, E2 process rc = e1, E1 => e2, E2, A compile \end{code} and the processes are compiled. Now, we define some very loose cuts to avoid singular regions in phase space, name an infrared cutoff of 100 MeV for all particles, a cut on the angular separation from the beam axis and a di-particle invariant mass cut which regularizes collinear singularities: \begin{code} cuts = all E >= 100 MeV [prt] and all abs (cos(Theta)) <= 0.99 [prt] and all M2 >= (1 GeV)^2 [prt, prt] \end{code} For the graphical analysis, we give a description and labels for the $x$- and $y$-axis in \LaTeX\ syntax: \begin{code} $description = "A WHIZARD Example" $x_label = "$\sqrt{s}$/GeV" $y_label = "$\sigma(s)$/pb" \end{code} We define two plots for the lineshape of the \eemm\ process between 88 and 95 GeV, \begin{code} $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$" plot lineshape_born { x_min = 88 GeV x_max = 95 GeV } \end{code} and the same for the radiative process with an additional photon: \begin{code} $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$" plot lineshape_rc { x_min = 88 GeV x_max = 95 GeV } \end{code} %$ The next part of the \sindarin\ file actually performs the scan: \begin{code} scan sqrts = ((88.0 GeV => 90.0 GeV /+ 0.5 GeV), (90.1 GeV => 91.9 GeV /+ 0.1 GeV), (92.0 GeV => 95.0 GeV /+ 0.5 GeV)) { beams = e1, E1 integrate (bornproc) { iterations = 2:1000:"gw", 1:2000 } record lineshape_born (sqrts, integral (bornproc) / 1000) integrate (rc) { iterations = 5:3000:"gw", 2:5000 } record lineshape_rc (sqrts, integral (rc) / 1000) } \end{code} So from 88 to 90 GeV, we go in 0.5 GeV steps, then from 90 to 92 GeV in tenth of GeV, and then up to 95 GeV again in half a GeV steps. The partonic beam definition is redundant. Then, the born process is integrated, using a certain specification of calls with adaptation of grids and weights, as well as a final pass. The lineshape of the Born process is defined as a \ttt{record} statement, generating tuples of $\sqrt{s}$ and the Born cross section (converted from femtobarn to picobarn). The same happens for the radiative $2\to3$ process with a bit more iterations because of the complexity, and the definition of the corresponding lineshape record. If you run the \sindarin\ script, you will find an output like: \begin{scriptsize} \begin{Verbatim}[frame=single] | Process library 'default_lib': loading | Process library 'default_lib': ... success. $description = "A WHIZARD Example" $x_label = "$\sqrt{s}$/GeV" $y_label = "$\sigma(s)$/pb" $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$" x_min = 8.800000000000E+01 x_max = 9.500000000000E+01 $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$" x_min = 8.800000000000E+01 x_max = 9.500000000000E+01 sqrts = 8.800000000000E+01 | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 10713 | Initializing integration for process bornproc: | ------------------------------------------------------------------------ | Process [scattering]: 'bornproc' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'bornproc_i1': e-, e+ => mu-, mu+ [omega] | ------------------------------------------------------------------------ | Beam structure: e-, e+ | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 8.800000000000E+01 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'bornproc_i1.phs' | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood | Applying user-defined cuts. | OpenMP: Using 8 threads | Starting integration for process 'bornproc' | Integrate: iterations = 2:1000:"gw", 1:2000 | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 1000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 800 2.5881432E+05 1.85E+03 0.72 0.20* 48.97 2 800 2.6368495E+05 9.25E+02 0.35 0.10* 28.32 |-----------------------------------------------------------------------------| 2 1600 2.6271122E+05 8.28E+02 0.32 0.13 28.32 5.54 2 |-----------------------------------------------------------------------------| 3 1988 2.6313791E+05 5.38E+02 0.20 0.09* 35.09 |-----------------------------------------------------------------------------| 3 1988 2.6313791E+05 5.38E+02 0.20 0.09 35.09 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:00m:05s [.......] \end{Verbatim} \end{scriptsize} %$ and then the integrations for the other energy points of the scan will \begin{figure} \centering \includegraphics[width=.47\textwidth]{Z-lineshape_1} \includegraphics[width=.47\textwidth]{Z-lineshape_2} \caption{\label{fig:zlineshape} $Z$ lineshape in the dimuon final state (left), and with an additional photon (right)} \end{figure} follow, and finally the same is done for the radiative process as well. At the end of the \sindarin\ script we compile the graphical \whizard\ analysis and direct the data for the plots into the file \ttt{Z-lineshape.dat}: \begin{code} compile_analysis { $out_file = "Z-lineshape.dat" } \end{code} %$ In this case there is no event generation, but simply the cross section values for the scan are dumped into a data file: \begin{scriptsize} \begin{Verbatim}[frame=single] $out_file = "Z-lineshape.dat" | Opening file 'Z-lineshape.dat' for output | Writing analysis data to file 'Z-lineshape.dat' | Closing file 'Z-lineshape.dat' for output | Compiling analysis results display in 'Z-lineshape.tex' \end{Verbatim} \end{scriptsize} %$ Fig.~\ref{fig:zlineshape} shows the graphical \whizard\ output of the $Z$ lineshape in the dimuon final state from the scan on the left, and the same for the radiative process with an additional photon on the right. %%%%%%%%%%%%%%% \section{$W$ pairs at LEP II} This example which can be found as file \ttt{LEP\_cc10.sin} in the \ttt{share/examples} directory, shows $W$ pair production in the semileptonic mode at LEP II with its final energy of 209 GeV. Because there are ten contributing Feynman diagrams, the process has been dubbed CC10: charged current process with 10 diagrams. We work within the Standard Model: \begin{code} model = SM \end{code} Then the process is defined, where no flavor summation is done for the jets here: \begin{code} process cc10 = e1, E1 => e2, N2, u, D \end{code} A compilation statement is optional, and then we set the muon mass to zero: \begin{code} mmu = 0 \end{code} The final LEP center-of-momentum energy of 209 GeV is set: \begin{code} sqrts = 209 GeV \end{code} Then, we integrate the process: \begin{code} integrate (cc10) { iterations = 12:20000 } \end{code} Running the \sindarin\ file up to here, results in the output: \begin{scriptsize} \begin{Verbatim}[frame=single] | Process library 'default_lib': loading | Process library 'default_lib': ... success. SM.mmu = 0.000000000000E+00 sqrts = 2.090000000000E+02 | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 31255 | Initializing integration for process cc10: | ------------------------------------------------------------------------ | Process [scattering]: 'cc10' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'cc10_i1': e-, e+ => mu-, numubar, u, dbar [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 2.090000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'cc10_i1.phs' | Phase space: 25 channels, 8 dimensions | Phase space: found 25 channels, collected in 7 groves. | Phase space: Using 25 equivalences between channels. | Phase space: wood Warning: No cuts have been defined. | OpenMP: Using 8 threads | Starting integration for process 'cc10' | Integrate: iterations = 12:20000 | Integrator: 7 chains, 25 channels, 8 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 20000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 19975 6.4714908E+02 2.17E+01 3.36 4.75* 2.33 2 19975 7.3251876E+02 2.45E+01 3.34 4.72* 2.17 3 19975 6.7746497E+02 2.39E+01 3.52 4.98 1.77 4 19975 7.2075198E+02 2.41E+01 3.34 4.72* 1.76 5 19975 6.5976152E+02 2.26E+01 3.43 4.84 1.46 6 19975 6.6633310E+02 2.26E+01 3.39 4.79* 1.43 7 19975 6.7539385E+02 2.29E+01 3.40 4.80 1.43 8 19975 6.6754027E+02 2.11E+01 3.15 4.46* 1.41 9 19975 7.3975817E+02 2.52E+01 3.40 4.81 1.53 10 19975 7.2284275E+02 2.39E+01 3.31 4.68* 1.47 11 19975 6.5476917E+02 2.18E+01 3.33 4.71 1.33 12 19975 7.2963866E+02 2.54E+01 3.48 4.92 1.46 |-----------------------------------------------------------------------------| 12 239700 6.8779583E+02 6.69E+00 0.97 4.76 1.46 2.18 12 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:01m:16s | Creating integration history display cc10-history.ps and cc10-history.pdf \end{Verbatim} \end{scriptsize} \begin{figure} \centering \includegraphics[width=.6\textwidth]{cc10_1} \\\vspace{5mm} \includegraphics[width=.6\textwidth]{cc10_2} \caption{Histogram of the dijet invariant mass from the CC10 $W$ pair production at LEP II, peaking around the $W$ mass (upper plot), and of the muon energy (lower plot).} \label{fig:cc10} \end{figure} The next step is event generation. In order to get smooth distributions, we set the integrated luminosity to 10 fb${}^{-1}$. (Note that LEP II in its final year 2000 had an integrated luminosity of roughly 0.2 fb${}^{-1}$.) \begin{code} luminosity = 10 \end{code} With the simulated events corresponding to those 10 inverse femtobarn we want to perform a \whizard\ analysis: we are going to plot the dijet invariant mass, as well as the energy of the outgoing muon. For the plot of the analysis, we define a description and label the $y$ axis: \begin{code} $description = "A WHIZARD Example. Charged current CC10 process from LEP 2." $y_label = "$N_{\textrm{events}}$" \end{code} We also use \LaTeX-syntax for the title of the first plot and the $x$-label, and then define the histogram of the dijet invariant mass in the range around the $W$ mass from 70 to 90 GeV in steps of half a GeV: \begin{code} $title = "Di-jet invariant mass $M_{jj}$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$M_{jj}$/GeV" histogram m_jets (70 GeV, 90 GeV, 0.5 GeV) \end{code} And we do the same for the second histogram of the muon energy: \begin{code} $title = "Muon energy $E_\mu$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$E_\mu$/GeV" histogram e_muon (0 GeV, 209 GeV, 4) \end{code} Now, we define the \ttt{analysis} consisting of two \ttt{record} statements initializing the two observables that are plotted as histograms: \begin{code} analysis = record m_jets (eval M [u,D]); record e_muon (eval E [e2]) \end{code} At the very end, we perform the event generation \begin{code} simulate (cc10) \end{code} and finally the writing and compilation of the analysis in a named data file: \begin{code} compile_analysis { $out_file = "cc10.dat" } \end{code} This event generation part screen output looks like this: \begin{scriptsize} \begin{Verbatim}[frame=single] luminosity = 1.000000000000E+01 $description = "A WHIZARD Example. Charged current CC10 process from LEP 2." $y_label = "$N_{\textrm{events}}$" $title = "Di-jet invariant mass $M_{jj}$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$M_{jj}$/GeV" $title = "Muon energy $E_\mu$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$E_\mu$/GeV" | Starting simulation for process 'cc10' | Simulate: using integration grids from file 'cc10_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 9910 | OpenMP: Using 8 threads | Simulation: using n_events as computed from luminosity value | Events: writing to raw file 'cc10.evx' | Events: generating 6830 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. Warning: Encountered events with excess weight: 39 events ( 0.571 %) | Maximum excess weight = 1.027E+00 | Average excess weight = 6.764E-04 | Events: closing raw file 'cc10.evx' $out_file = "cc10.dat" | Opening file 'cc10.dat' for output | Writing analysis data to file 'cc10.dat' | Closing file 'cc10.dat' for output | Compiling analysis results display in 'cc10.tex' \end{Verbatim} \end{scriptsize} %$ Then comes the \LaTeX\ output of the compilation of the graphical analysis. Fig.~\ref{fig:cc10} shows the two histograms as the are produced as result of the \whizard\ internal graphical analysis. %%%%%%%%%%%%%%% \section{Higgs search at LEP II} This example can be found under the name \ttt{LEP\_higgs.sin} in the \ttt{share/doc} folder of \whizard. It displays different search channels for a very light would-be SM Higgs boson of mass 115 GeV at the LEP II machine at its highest energy it finally achieved, 209 GeV. First, we use the Standard Model: \begin{code} model = SM \end{code} Then, we define aliases for neutrinos, antineutrinos, light quarks and light anti-quarks: \begin{code} alias n = n1:n2:n3 alias N = N1:N2:N3 alias q = u:d:s:c alias Q = U:D:S:C \end{code} Now, we define the signal process, which is Higgsstrahlung, \begin{code} process zh = e1, E1 => Z, h \end{code} the missing-energy channel, \begin{code} process nnbb = e1, E1 => n, N, b, B \end{code} and finally the 4-jet as well as dilepton-dijet channels: \begin{code} process qqbb = e1, E1 => q, Q, b, B process bbbb = e1, E1 => b, B, b, B process eebb = e1, E1 => e1, E1, b, B process qqtt = e1, E1 => q, Q, e3, E3 process bbtt = e1, E1 => b, B, e3, E3 compile \end{code} and we compile the code. We set the center-of-momentum energy to the highest energy LEP II achieved, \begin{code} sqrts = 209 GeV \end{code} For the Higgs boson, we take the values of a would-be SM Higgs boson with mass of 115 GeV, which would have had a width of a bit more than 3 MeV: \begin{code} mH = 115 GeV wH = 3.228 MeV \end{code} We take a running $b$ quark mass to take into account NLO corrections to the $Hb\bar b$ vertex, while all other fermions are massless: \begin{code} mb = 2.9 GeV me = 0 ms = 0 mc = 0 \end{code} \begin{scriptsize} \begin{Verbatim}[frame=single] | Process library 'default_lib': loading | Process library 'default_lib': ... success. sqrts = 2.090000000000E+02 SM.mH = 1.150000000000E+02 SM.wH = 3.228000000000E-03 SM.mb = 2.900000000000E+00 SM.me = 0.000000000000E+00 SM.ms = 0.000000000000E+00 SM.mc = 0.000000000000E+00 \end{Verbatim} \end{scriptsize} To avoid soft-collinear singular phase-space regions, we apply an invariant mass cut on light quark pairs: \begin{code} cuts = all M >= 10 GeV [q,Q] \end{code} Now, we integrate the signal process as well as the combined signal and background processes: \begin{code} integrate (zh) { iterations = 5:5000} integrate(nnbb,qqbb,bbbb,eebb,qqtt,bbtt) { iterations = 12:20000 } \end{code} \begin{scriptsize} \begin{Verbatim}[frame=single] | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 21791 | Initializing integration for process zh: | ------------------------------------------------------------------------ | Process [scattering]: 'zh' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'zh_i1': e-, e+ => Z, H [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 0.0000000E+00 GeV) | e+ (mass = 0.0000000E+00 GeV) | sqrts = 2.090000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'zh_i1.phs' | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood | Applying user-defined cuts. | OpenMP: Using 8 threads | Starting integration for process 'zh' | Integrate: iterations = 5:5000 | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 5000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 4608 1.6114109E+02 5.52E-04 0.00 0.00* 99.43 2 4608 1.6114220E+02 5.59E-04 0.00 0.00 99.43 3 4608 1.6114103E+02 5.77E-04 0.00 0.00 99.43 4 4608 1.6114111E+02 5.74E-04 0.00 0.00* 99.43 5 4608 1.6114103E+02 5.66E-04 0.00 0.00* 99.43 |-----------------------------------------------------------------------------| 5 23040 1.6114130E+02 2.53E-04 0.00 0.00 99.43 0.82 5 |=============================================================================| [.....] \end{Verbatim} \end{scriptsize} \begin{figure} \centering \includegraphics[width=.48\textwidth]{lep_higgs_1} \includegraphics[width=.48\textwidth]{lep_higgs_2} \\\vspace{5mm} \includegraphics[width=.48\textwidth]{lep_higgs_3} \caption{Upper line: final state $bb + E_{miss}$, histogram of the invisible mass distribution (left), and of the di-$b$ distribution (right). Lower plot: light dijet distribution in the $bbjj$ final state.} \label{fig:lep_higgs} \end{figure} Because the other integrations look rather similar, we refrain from displaying them here, too. As a next step, we define titles, descriptions and axis labels for the histograms we want to generate. There are two of them, one os the invisible mass distribution, the other is the di-$b$-jet invariant mass. Both histograms are taking values between 70 and 130 GeV with bin widths of half a GeV: \begin{code} $description = "A WHIZARD Example. Light Higgs search at LEP. A 115 GeV pseudo-Higgs has been added. Luminosity enlarged by two orders of magnitude." $y_label = "$N_{\textrm{events}}$" $title = "Invisible mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$" $x_label = "$M_{\nu\nu}$/GeV" histogram m_invisible (70 GeV, 130 GeV, 0.5 GeV) $title = "$bb$ invariant mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$" $x_label = "$M_{b\bar b}$/GeV" histogram m_bb (70 GeV, 130 GeV, 0.5 GeV) \end{code} The analysis is initialized by defining the two records for the invisible mass and the invariant mass of the two $b$ jets: \begin{code} analysis = record m_invisible (eval M [n,N]); record m_bb (eval M [b,B]) \end{code} In order to have enough statistics, we enlarge the LEP integrated luminosity at 209 GeV by more than two orders of magnitude: \begin{code} luminosity = 10 \end{code} We start event generation by simulating the process with two $b$ jets and two neutrinos in the final state: \begin{code} simulate (nnbb) \end{code} As a third histogram, we define the dijet invariant mass of two light jets: \begin{code} $title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$" $x_label = "$M_{q\bar q}$/GeV" histogram m_jj (70 GeV, 130 GeV, 0.5 GeV) \end{code} Then we simulate the 4-jet process defining the light-dijet distribution as a local record: \begin{code} simulate (qqbb) { analysis = record m_jj (eval M / 1 GeV [combine [q,Q]]) } \end{code} Finally, we compile the analysis, \begin{code} compile_analysis { $out_file = "lep_higgs.dat" } \end{code} \begin{scriptsize} \begin{Verbatim}[frame=single] | Starting simulation for process 'nnbb' | Simulate: using integration grids from file 'nnbb_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 21798 | OpenMP: Using 8 threads | Simulation: using n_events as computed from luminosity value | Events: writing to raw file 'nnbb.evx' | Events: generating 1070 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. Warning: Encountered events with excess weight: 207 events ( 19.346 %) | Maximum excess weight = 1.534E+00 | Average excess weight = 4.909E-02 | Events: closing raw file 'nnbb.evx' $title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$" $x_label = "$M_{q\bar q}$/GeV" | Starting simulation for process 'qqbb' | Simulate: using integration grids from file 'qqbb_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 21799 | OpenMP: Using 8 threads | Simulation: using n_events as computed from luminosity value | Events: writing to raw file 'qqbb.evx' | Events: generating 4607 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. Warning: Encountered events with excess weight: 112 events ( 2.431 %) | Maximum excess weight = 8.875E-01 | Average excess weight = 4.030E-03 | Events: closing raw file 'qqbb.evx' $out_file = "lep_higgs.dat" | Opening file 'lep_higgs.dat' for output | Writing analysis data to file 'lep_higgs.dat' | Closing file 'lep_higgs.dat' for output | Compiling analysis results display in 'lep_higgs.tex' \end{Verbatim} \end{scriptsize} The graphical analysis of the events generated by \whizard\ are shown in Fig.~\ref{fig:lep_higgs}. In the upper left, the invisible mass distribution in the $b\bar b + E_{miss}$ state is shown, peaking around the $Z$ mass. The upper right shows the $M(b\bar b)$ distribution in the same final state, while the lower plot has the invariant mass distribution of the two non-$b$-tagged (light) jets in the $bbjj$ final state. The latter shows only the $Z$ peak, while the former exhibits the narrow would-be 115 GeV Higgs state. %%%%%%%%%%%%%%% \section{Deep Inelastic Scattering at HERA} %%%%%%%%%%%%%%% \section{$W$ endpoint at LHC} %%%%%%%%%%%%%%% \section{SUSY Cascades at LHC} %%%%%%%%%%%%%%% \section{Polarized $WW$ at ILC} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Technical details -- Advanced Spells} \label{chap:tuning} \section{Efficiency and tuning} Since massless fermions and vector bosons (or almost massless states in a certain approximation) lead to restrictive selection rules for allowed helicity combinations in the initial and final state. To make use of this fact for the efficiency of the \whizard\ program, we are applying some sort of heuristics: \whizard\ dices events into all combinatorially possible helicity configuration during a warm-up phase. The user can specify a helicity threshold which sets the number of zeros \whizard\ should have got back from a specific helicity combination in order to ignore that combination from now on. By that mechanism, typically half up to more than three quarters of all helicity combinations are discarded (and hence the corresponding number of matrix element calls). This reduces calculation time up to more than one order of magnitude. \whizard\ shows at the end of the integration those helicity combinations which finally contributed to the process matrix element. Note that this list -- due to the numerical heuristics -- might very well depend on the number of calls for the matrix elements per iteration, and also on the corresponding random number seed. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{New External Physics Models} \label{chap:extmodels} It is never possible to include all incarnations of physics models that can be described by the maybe weirdest form of a quantum field theory in a tailor-made implementation within a program like \whizard. Users clearly want to be able to use their own special type of model; in order to do so there are external tools to translate models described by their field content and Lagrangian densities into Feynman rules and make them available in an event generator like \whizard. In this chapter, we describe the interfaces to two such external models, \sarah\ and \FeynRules. The \FeynRules\ interface had been started already for the legacy version \whizard\ttt{1} (where it had to be downloaded from \url{https://whizard.hepforge.org} as a separate package), but for the \whizard\ttt{two} release series it has been included in the \FeynRules\ package (from their version v1.6.0 on). Note that there was a regression for the usage of external models (from either \sarah\ or \FeynRules) in the first release of series v2.2, v2.2.0. This has been fixed in all upcoming versions. Besides using \sarah\ or \FeynRules\ via their interfaces, there is now a much easier way to let those programs output model files in the "Universal FeynRules Output" (or \UFO). This option does not have any principle limitations for models, and also does not rely on the never truly constant interfaces between two different tools. Their usage is described in Sec.~\ref{sec:ufo}. %%%%%%%%%%%%%%% \section{New physics models via \sarah} \sarah~\cite{Staub:2008uz,Staub:2009bi,Staub:2010jh,Staub:2012pb,Staub:2013tta} is a \Mathematica~\cite{mathematica} package which derives for a given model the minimum conditions of the vacuum, the mass matrices, and vertices at tree-level as well as expressions for the one-loop corrections for all masses and the full two-loop renormalization group equations (RGEs). The vertices can be exported to be used with \whizard/\oMega. All other information can be used to generate \fortran\ source code for the RGE solution tool and spectrum generator \spheno~\cite{Porod:2003um,Porod:2011nf} to get a spectrum generator for any model. The advantage is that \spheno\ calculates a consistent set of parameters (couplings, masses, rotation matrices, decay widths) which can be used as input for \whizard. \sarah\ and \spheno\ can be also downloaded from the \ttt{HepForge} server: \begin{center} \url{https://sarah.hepforge.org} \\ \url{https://spheno.hepforge.org} \end{center} \subsection{\whizard/\oMega\ model files from \sarah} \subsubsection{Generating the model files} Here we are giving only the information relevant to generate models for \whizard. For more details about the installation of \sarah\ and an exhaustion documentation about its usage, confer the \sarah\ manual. To generate the model files for \whizard/\oMega\ with \sarah, a new \Mathematica\ session has to be started. \sarah\ is loaded via \begin{code} </Output/TMSSM/EWSB/WHIZARD_Omega/ \end{code} and run % \begin{code} ./configure make install \end{code} % By default, the last command installs the compiled model into \verb".whizard" in current user's home directory where it is automatically picked up by \whizard. Alternative installation paths can be specified using the \verb"--prefix" option to \whizard. % \begin{code} ./configure --prefix=/path/to/installation/prefix \end{code} % If the files are installed into the \whizard\ installation prefix, the program will also pick them up automatically, while {\whizard}'s \verb"--localprefix" option must be used to communicate any other choice to \whizard. In case \whizard\ is not available in the binary search path, the \verb"WO_CONFIG" environment variable can be used to point \verb"configure" to the binaries % \begin{code} ./configure WO_CONFIG=/path/to/whizard/binaries \end{code} % More information on the available options and their syntax can be obtained with the \verb"--help" option. After the model is compiled it can be used in \whizard\ as \begin{code} model = tmssm_sarah \end{code} \subsection{Linking \spheno\ and \whizard} As mentioned above, the user can also use \spheno\ to generate spectra for its models. This is done by means of \fortran\ code for \spheno, exported from \sarah. To do so, the user has to apply the command \verb"MakeSPheno[]". For more details about the options of this command and how to compile and use the \spheno\ output, we refer to the \sarah\ manual. \\ As soon as the \spheno\ version for the given model is ready it can be used to generate files with all necessary numerical values for the parameters in a format which is understood by \whizard. For this purpose, the corresponding flag in the Les Houches input file of \spheno\ has to be turned on: \begin{code} Block SPhenoInput # SPheno specific input ... 75 1 # Write WHIZARD files \end{code} Afterwards, \spheno\ returns not only the spectrum file in the standard SUSY Les Houches accord (SLHA) format (for more details about the SLHA and the \whizard\ SLHA interface cf. Sec.~\ref{sec:slha}), but also an additional file called \verb"WHIZARD.par.TMSSM" for our example. This file can be used in the \sindarin\ input file via \begin{code} include ("WHIZARD.par.TMSSM") \end{code} %%%%% \subsection{BSM Toolbox} A convenient way to install \sarah\ together with \whizard, \spheno\ and some other codes are the \ttt{BSM Toolbox} scripts \footnote{Those script have been published under the name SUSY Toolbox but \sarah\ is with version 4 no longer restricted to SUSY models}~\cite{Staub:2011dp}. These scripts are available at \begin{center} \url{https://sarah.hepforge.org/Toolbox.html} \end{center} The \ttt{Toolbox} provides two scripts. First, the \verb"configure" script is used via \begin{code} toolbox-src-dir> mkdir build toolbox-src-dir> cd build toolbox-src-dir> ../configure \end{code} % The \verb"configure" script checks for the requirements of the different packages and downloads all codes. All downloaded archives will be placed in the \verb"tarballs" subdirectory of the directory containing the \verb"configure" script. Command line options can be used to disable specific packages and to point the script to custom locations of compilers and of the \Mathematica\ kernel; a full list of those can be obtained by calling \verb"configure" with the \verb"--help" option. After \verb"configure" finishes successfully, \verb"make" can be called to build all configured packages % \begin{code} toolbox-build-dir> make \end{code} \verb"configure" creates also the second script which automates the implementation of a new model into all packages. The \verb"butler" script takes as argument the name of the model in \sarah, e.g. \begin{code} > ./butler TMSSM \end{code} The \verb"butler" script runs \sarah\ to get the output in the same form as the \whizard/\oMega\ model files and the code for \spheno. Afterwards, it installs the model in all packages and compiles the new \whizard/\oMega\ model files as well as the new \spheno\ module. %%%%% \newpage \section{New physics models via \FeynRules} In this section, we present the interface between the external tool \FeynRules\ \cite{Christensen:2008py,Christensen:2009jx,Duhr:2011se} and \whizard. \FeynRules\ is a \Mathematica~\cite{mathematica} package that allows to derive Feynman rules from any perturbative quantum field theory-based Lagrangian in an automated way. It can be downloaded from \begin{center} \url{http://feynrules.irmp.ucl.ac.be/} \end{center} The input provided by the user is threefold and consists of the Lagrangian defining the model, together with the definitions of all the particles and parameters that appear in the model. Once this information is provided, \FeynRules\ can perform basic checks on the sanity of the implementation (e.g. hermiticity, normalization of the quadratic terms), and finally computes all the interaction vertices associated with the model and store them in an internal format for later processing. After the Feynman rules have been obtained, \FeynRules\ can export the interaction vertices to \whizard\ via a dedicated interface~\cite{Christensen:2010wz}. The interface checks whether all the vertices are compliant with the structures supported by \whizard's matrix element generator \oMega, and discard them in the case they are not supported. The output of the interface consists of a set of files organized in a single directory which can be injected into \whizard/\oMega\ and used as any other built-in models. Together with the model files, a framework is created which allows to communicate the new models to \whizard\ in a well defined way, after which step the model can be used exactly like the built-in ones. This specifically means that the user is not required to manually modify the code of \whizard/\oMega, the models created by the interface can be used directly without any further user intervention. We first describe the installation and general usage of the interface, and then list the general properties like the supported particle types, color quantum numbers and Lorentz structures as well as types of gauge interactions. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Installation and Usage of the \whizard-\FeynRules\ interface} \label{sec:interface-usage} \paragraph{{\bf Installation and basic usage:}} % From \FeynRules\ version 1.6.0 onward, the interface to \whizard\ is part of the \FeynRules\ distribution\footnote{Note that though the main interface of \FeynRules\ to \whizard\ is for the most recent \whizard\ release, but also the legacy branch \whizard\ttt{1} is supported.}. In addition, the latest version of the interface can be downloaded from the \whizard\ homepage on \ttt{HepForge}. There you can also find an installer that can be used to inject the interface into an existing \FeynRules\ installation (which allows to use the interface with the \FeynRules\ release series1.4.x where it is not part of the package). Once installed, the interface can be called and used in the same way \FeynRules' other interfaces described in~\cite{Christensen:2008py}. The details of how to install and use \FeynRules\ itself can be found there,~\cite{Christensen:2008py,Christensen:2009jx,Duhr:2011se}. Here, we only describe how to use the interface to inject new models into \whizard. For example, once the \FeynRules\ environment has been initialized and a model has been loaded, the command \begin{code} WriteWOOutput[L] \end{code} will call the \ttt{FeynmanRules} command to extract the Feynman rules from the Lagrangian \ttt{L}, translate them together with the model data and finally write the files necessary for using the model within \whizard\ to an output directory (the name of which is inferred from the model name by default). Options can be added for further control over the translation process (see Sec.~\ref{app:interface-options}). Instead of using a Lagrangian, it is also possible to call the interface on a pure vertex list. For example, the following command \begin{code} WriteWOOutput[Input -> list] \end{code} will directly translate the vertex list \ttt{list}. Note that this vertex list must be given in flavor-expanded form in order for the interface to process it correctly. The interface also supports the \ttt{WriteWOExtParams} command described in~\cite{Christensen:2008py}. Issuing \begin{code} WriteWOExtParams[filename] \end{code} will write a list of all the external parameters to \ttt{filename}. This is done in the form of a \sindarin\ script. The only option accepted by the command above is the target version of \whizard, set by the option \ttt{WOWhizardVersion}. During execution, the interface will print out a series of messages. It is highly advised to carefully read through this output as it not only summarizes the settings and the location of the output files, but also contains information on any skipped vertices or potential incompatibilities of the model with \whizard. After the interface has run successfully and written the model files to the output directory, the model must be imported into \whizard. For doing so, the model files have to be compiled and can then be installed independently of \whizard. In the simplest scenario, assuming that the output directory is the current working directory and that the \whizard\ binaries can be found in the current \ttt{\$\{PATH\}}, the installation is performed by simply executing \begin{code} ./configure~\&\&~make clean~\&\&~make install \end{code} This will compile the model and install it into the directory \ttt{\$\{HOME\}/.whizard}, making it fully available to \whizard\ without any further intervention. The build system can be adapted to more complicated cases through several options to the \ttt{configure} which are listed in the \ttt{INSTALL} file created in the output directory. A detailed explanation of all options can be found in Sec.~\ref{app:interface-options}. \paragraph{\bf Supported fields and vertices:} The following fields are currently supported by the interface: scalars, Dirac and Majorana fermions, vectors and symmetric tensors. The set of accepted operators, the full list of which can be found in Tab.~\ref{tab-operators}, is a subset of all the operators supported by \oMega. While still limited, this list is sufficient for a large number of BSM models. In addition, a future version of \whizard/\oMega\ will support the definition of completely general Lorentz structures in the model, allowing the interface to translate all interactions handled by \FeynRules. This will be done by means of a parser within \oMega\ of the \ttt{UFO} file format for model files from \FeynRules. \begin{table*}[!t] \centerline{\begin{tabular}{|c|c|} \hline Particle spins & Supported Lorentz structures \\\hline\hline FFS & \parbox{0.7\textwidth}{\raggedright All operators of dimension four are supported. \strut}\\\hline FFV & \parbox[t]{0.7\textwidth}{\raggedright All operators of dimension four are supported. \strut}\\\hline SSS & \parbox{0.7\textwidth}{\raggedright All dimension three interactions are supported. \strut}\\\hline SVV & \parbox[t]{0.7\textwidth}{\raggedright Supported operators:\\ \mbox{}\hspace{5ex}$\begin{aligned} \text{dimension 3:} & \quad\mathcal{O}_3 = V_1^\mu V_{2\mu}\phi \mbox{}\\ \text{dimension 5:} & \quad\mathcal{O}_5 = \phi \left(\partial^\mu V_1^\nu - \partial^\nu V_1^\mu\right) \left(\partial_\mu V_{2\nu} - \partial_\nu V_{2\mu}\right) \end{aligned}$\\ Note that $\mathcal{O}_5$ generates the effective gluon-gluon-Higgs couplings obtained by integrating out heavy quarks. \strut}\\\hline SSV & \parbox[t]{0.7\textwidth}{\raggedright $\left(\phi_1\partial^\mu\phi_2 - \phi_2\partial^\mu\phi_1\right)V_\mu\;$ type interactions are supported. \strut}\\\hline SSVV & \parbox{0.7\textwidth}{\raggedright All dimension four interactions are supported. \strut}\\\hline SSSS & \parbox{0.7\textwidth}{\raggedright All dimension four interactions are supported. \strut}\\\hline VVV & \parbox[t]{0.7\textwidth}{\raggedright All parity-conserving dimension four operators are supported, with the restriction that non-gauge interactions may be split into several vertices and can only be handled if all three fields are mutually different.\strut \strut}\\\hline VVVV & \parbox[t]{0.7\textwidth}{\raggedright All parity conserving dimension four operators are supported. \strut}\\\hline TSS, TVV, TFF & \parbox[t]{0.7\textwidth}{\raggedright The three point couplings in the Appendix of Ref.\ \cite{Han:1998sg} are supported. \strut}\\\hline \end{tabular}} \caption{All Lorentz structures currently supported by the \whizard-\FeynRules\ interface, sorted with respect to the spins of the particles. ``S'' stands for scalar, ``F'' for fermion (either Majorana or Dirac) and ``V'' for vector.} \label{tab-operators} \end{table*} \paragraph{\bf Color:} % Color is treated in \oMega\ in the color flow decomposition, with the flow structure being implicitly determined from the representations of the particles present at the vertex. Therefore, the interface has to strip the color structure from the vertices derived by \FeynRules\ before writing them out to the model files. While this process is straightforward for all color structures which correspond only to a single flow assignment, vertices with several possible flow configurations must be treated with care in order to avoid mismatches between the flows assigned by \oMega\ and those actually encoded in the couplings. To this end, the interface derives the color flow decomposition from the color structure determined by \FeynRules\ and rejects all vertices which would lead to a wrong flow assignment by \oMega\ (these rejections are accompanied by warnings from the interface)\footnote{For the old \whizard\ttt{1} legacy branch, there was a maximum number of external color flows that had to explicitly specified. Essentially, this is $n_8 - \frac{1}{2}n_3$ where $n_8$ is the maximum number of external color octets and $n_3$ is the maximum number of external triplets and antitriplets. This can be set in the \whizard/\FeynRules\ interface by the \ttt{WOMaxNcf} command, whose default is \ttt{4}.}. At the moment, the $SU(3)_C$ representations supported by both \whizard\ and the interface are singlets ($1$), triplets ($3$), antitriplets ($\bar{3}$) and octets ($8$). Tab.~\ref{tab:su3struct} shows all combinations of these representations which can form singlets together with the support status of the respective color structures in \whizard\ and the interface. Although the supported color structures do not comprise all possible singlets, the list is sufficient for a large number of SM extensions. Furthermore, a future revision of \whizard/\oMega\ will allow for explicit color flow assignments, thus removing most of the current restrictions. \begin{table*} \centerline{\begin{tabular}{|c|c|} \hline $SU(3)_C$ representations & Support status \\\hline\hline \parbox[t]{0.2\textwidth}{ \centerline{\begin{tabular}[t]{lll} $111,\quad$ & $\bar{3}31,\quad$ & $\bar{3}38,$ \\ $1111,$ & $\bar{3}311,$ & $\bar{3}381$ \end{tabular}}} & \parbox[t]{0.7\textwidth}{\raggedright\strut Fully supported by the interface\strut} \\\hline $888,\quad 8881$ & \parbox{0.7\textwidth}{\raggedright\strut Supported only if at least two of the octets are identical particles.\strut} \\\hline $881,\quad 8811$ & \parbox{0.7\textwidth}{\raggedright\strut Fully supported by the interface\footnote{% Not available in version 1.95 and earlier. Note that in order to use such couplings in 1.96/97, the \oMega\ option \ttt{2g} must be added to the process definition in \ttt{whizard.prc}.}.\strut} \\\hline $\bar{3}388$ & \parbox{0.7\textwidth}{\raggedright\strut Supported only if the octets are identical particles.\strut} \\\hline $8888$ & \parbox{0.7\textwidth}{\raggedright\strut The only supported flow structure is \begin{equation*} \parbox{21mm}{\includegraphics{flow4}}\cdot\;\Gamma(1,2,3,4) \quad+\quad \text{all acyclic permutations} \end{equation*} where $\Gamma(1,2,3,4)$ represents the Lorentz structure associated with the first flow.\strut} \\\hline \parbox[t]{0.2\textwidth}{ \centerline{\begin{tabular}[t]{lll} $333,\quad$ & $\bar{3}\bar{3}\bar{3},\quad$ & $3331$\\ $\bar{3}\bar{3}\bar{3}1,$ & $\bar{3}\bar{3}33$ \end{tabular}}} & \parbox[t]{0.7\textwidth}{\raggedright\strut Unsupported (at the moment)\strut} \\\hline \end{tabular}} \caption{All possible combinations of three or four $SU(3)_C$ representations supported by \FeynRules\ which can be used to build singlets, together with the support status of the corresponding color structures in \whizard\ and the interface.} \label{tab:su3struct} \end{table*} \paragraph{\bf Running $\alpha_S$:} While a running strong coupling is fully supported by the interface, a choice has to be made which quantities are to be reevaluated when the strong coupling is evolved. By default \ttt{aS}, \ttt{G} (see Ref.~\cite{Christensen:2008py} for the nomenclature regarding the QCD coupling) and any vertex factors depending on them are evolved. The list of internal parameters that are to be recalculated (together with the vertex factors depending on them) can be extended (beyond \ttt{aS} and \ttt{G}) by using the option \ttt{WORunParameters} when calling the interface~\footnote{As the legacy branch, \whizard\ttt{1}, does not support a running strong coupling, this is also vetoed by the interface when using \whizard \ttt{1.x}.}. \paragraph{\bf Gauge choices:} \label{sec:gauge-choices} The interface supports the unitarity, Feynman and $R_\xi$ gauges. The choice of gauge must be communicated to the interface via the option \ttt{WOGauge}. Note that massless gauge bosons are always treated in Feynman gauge. If the selected gauge is Feynman or $R_\xi$, the interface can automatically assign the proper masses to the Goldstone bosons. This behavior is requested by using the \ttt{WOAutoGauge} option. In the $R_\xi$ gauges, the symbol representing the gauge $\xi$ must be communicated to the interface by using the \ttt{WOGaugeSymbol} option (the symbol is automatically introduced into the list of external parameters if \ttt{WOAutoGauge} is selected at the same time). This feature can be used to automatically extend models implemented in Feynman gauge to the $R_\xi$ gauges. Since \whizard\ (at least until the release series 2.3) is a tree-level tool working with helicity amplitudes, the ghost sector is irrelevant for \whizard\ and hence dropped by the interface. \subsection{Options of the \whizard-\FeynRules\ interface} \label{app:interface-options} In the following we present a comprehensive list of all the options accepted by \ttt{WriteWOOutput}. Additionally, we note that all options of the \FeynRules\ command \ttt{FeynmanRules} are accepted by \ttt{WriteWOOutput}, which passes them on to \ttt{FeynmanRules}. \begin{description} \item[\ttt{Input}]\mbox{}\\ An optional vertex list to use instead of a Lagrangian (which can then be omitted). % \item[\ttt{WOWhizardVersion}]\mbox{}\\ Select the \whizard\ version for which code is to be generated. The currently available choices are summarized in Tab.~\ref{tab-wowhizardversion}. %% \begin{table} \centerline{\begin{tabular}{|l|l|} \hline \ttt{WOWhizardVersion} & \whizard\ versions supported \\\hline\hline \ttt{"2.0.3"} (default) & 2.0.3+ \\\hline \ttt{"2.0"} & 2.0.0 -- 2.0.2 \\\hline\hline \ttt{"1.96"} & 1.96+ \qquad (deprecated) \\\hline \ttt{"1.93"} & 1.93 -- 1.95 \qquad (deprecated) \\\hline \ttt{"1.92"} & 1.92 \qquad (deprecated) \\\hline \end{tabular}} \caption{Currently available choices for the \ttt{WOWhizardVersion} option, together with the respective \whizard\ versions supported by them.} \label{tab-wowhizardversion} \end{table} %% This list will expand as the program evolves. To get a summary of all choices available in a particular version of the interface, use the command \ttt{?WOWhizardVersion}. % \item[\ttt{WOModelName}]\mbox{}\\ The name under which the model will be known to \whizard\footnote{For versions 1.9x, model names must start with ``\ttt{fr\_}'' if they are to be picked up by \whizard\ automatically.}. The default is determined from the \FeynRules\ model name. % \item[\ttt{Output}]\mbox{}\\ The name of the output directory. The default is determined from the \FeynRules\ model name. % \item[\ttt{WOGauge}]\mbox{}\\ Gauge choice (\emph{cf.} Sec.~\ref{sec:gauge-choices}). Possible values are: \ttt{WOUnitarity} (default), \ttt{WOFeynman}, \ttt{WORxi} % \item[\ttt{WOGaugeParameter}]\mbox{}\\ The external or internal parameter representing the gauge $\xi$ in the $R_\xi$ gauges (\emph{cf.} Sec.~\ref{sec:gauge-choices}). Default: \ttt{Rxi} % \item[\ttt{WOAutoGauge}]\mbox{}\\ Automatically assign the Goldstone boson masses in the Feynman and $R_\xi$ gauges and automatically append the symbol for $\xi$ to the parameter list in the $R_\xi$ gauges. Default: \ttt{False} % \item[\ttt{WORunParameters}]\mbox{}\\ The list of all internal parameters which will be recalculated if $\alpha_S$ is evolved (see above)\footnote{Not available for versions older than 2.0.0}. Default: \mbox{\ttt{\{aS, G\}}} % \item[\ttt{WOFast}]\mbox{}\\ If the interface drops vertices which are supported, this option can be set to \ttt{False} to enable some more time consuming checks which might aid the identification. Default: \ttt{True} % \item[\ttt{WOMaxCouplingsPerFile}]\mbox{}\\ The maximum number of couplings that are written to a single \fortran\ file. If compilation takes too long or fails, this can be lowered. Default: \ttt{500} % \item[\ttt{WOVerbose}]\mbox{}\\ Enable verbose output and in particular more extensive information on any skipped vertices. Default: \ttt{False} \end{description} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Validation of the interface} The output of the interface has been extensively validated. Specifically, the integrated cross sections for all possible $2\rightarrow 2$ processes in the \FeynRules\ SM, the MSSM and the Three-Site Higgsless Model have been compared between \whizard, \madgraph, and \CalcHep, using the respective \FeynRules\ interfaces as well as the in-house implementations of these models (the Three-Site Higgsless model not being available in \madgraph). Also, different gauges have been checked for \whizard\ and \CalcHep. In all comparisons, excellent agreement within the Monte Carlo errors was achieved. The detailed comparison including examples of the comparison tables can be found in~\cite{Christensen:2010wz}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Examples for the \whizard-/\FeynRules\ interface} Here, we will use the Standard Model, the MSSM and the Three-Site Higgsless Model as prime examples to explain the usage of the interface. Those are the models that have been used in the validation of the interface in~\cite{Christensen:2010wz}. The examples are constructed to show the application of the different options of the interface and to serve as a starting point for the generation of the user's own \whizard\ versions of other \FeynRules\ models. \subsubsection{\whizard-\FeynRules\ example: Standard Model}\label{sec:usageSM} To start off, we will create {\sc Whizard} 2 versions of the Standard Model as implemented in \FeynRules\ for different gauge choices. \paragraph{SM: Unitarity Gauge} In order to invoke \FeynRules, we change to the corresponding directory and load the program in \Mathematica\ via \begin{code} $FeynRulesPath = SetDirectory[""]; < WOFeynman]; \end{code} The modified gauge is reflected in the output of the interface \begin{code} Short model name is "fr_standard_model" Gauge: Feynman Generating code for WHIZARD / O'Mega version 2.0.3 Maximum number of couplings per FORTRAN module: 500 Extensive lorentz structure checks disabled. \end{code} The summary of the vertex identification now takes the following form \begin{code} processed a total of 163 vertices, kept 139 of them and threw away 24, 24 of which contained ghosts. \end{code} Again, this line tells us that there were no problems --- the only discarded interactions involved the ghost sector which is irrelevant for the tree-level part of \whizard. For a tree-level calculation, the only difference between the different gauges from the perspective of the interface are the gauge boson propagators and the Goldstone boson masses. Therefore, the interface can automatically convert a model in Feynman gauge to a model in $R_\xi$ gauge. To this end, the call to the interface must be changed to \begin{code} WriteWOOutput[LSM, WOGauge -> WORxi, WOAutoGauge -> True]; \end{code} The \verb?WOAutoGauge? argument instructs the interface to automatically \begin{enumerate} \item Introduce a symbol for the gauge parameter $\xi$ into the list of external parameters \item Generate the Goldstone boson masses from those of the associated gauge bosons (ignoring the values provided by \FeynRules) \end{enumerate} The modified setup is again reflected in the interface output \begin{code} Short model name is "fr_standard_model" Gauge: Rxi Gauge symbol: "Rxi" Generating code for WHIZARD / O'Mega version 2.0.3 Maximum number of couplings per FORTRAN module: 500 Extensive lorentz structure checks disabled. \end{code} Note the default choice \verb?Rxi? for the name of the $\xi$ parameter -- this can be modified via the option \verb?WOGaugeParameter?. While the \verb?WOAutoGauge? feature allows to generate $R_\xi$ gauged models from models implemented in Feynman gauge, it is of course also possible to use models genuinely implemented in $R_\xi$ gauge by setting this parameter to \verb?False?. Also, note that the choice of gauge only affects the propagators of massive fields. Massless gauge bosons are always treated in Feynman gauge. \paragraph{Compilation and usage} In order to compile and use the freshly generated model files, change to the output directory which can be determined from the interface output (in this example, it is \verb?fr_standard_model-WO?). Assuming that \whizard\ is available in the binary search path, compilation and installation proceeds as described above by executing \begin{code} ./configure && make && make install \end{code} The model is now ready and can be used similarly to the builtin \whizard\ models. For example, a minimal \whizard\ input file for calculating the $e^+e^- \longrightarrow W^+W^-$ scattering cross section in the freshly generated model would look like \begin{code} model = fr_standard_model process test = "e+", "e-" -> "W+", "W-" sqrts = 500 GeV integrate (test) \end{code} %%%%% \subsubsection{\whizard/\FeynRules\ example: MSSM} In this Section, we illustrate the usage of the interface between {\sc FeynRules} and {\sc Whizard} in the context of the MSSM. All the parameters of the model are then ordered in Les Houches blocks and counters following the SUSY Les Houches Accord (SLHA) \cite{Skands:2003cj,AguilarSaavedra:2005pw,Allanach:2008qq} (cf. also Sec.~\ref{sec:slha}). After having downloaded the model from the \FeynRules\ website, we store it in a new directory, labelled \verb"MSSM", of the model library of the local installation of \FeynRules. The model can then be loaded in \Mathematica\ as in the case of the SM example above \begin{code} $FeynRulesPath = SetDirectory[""]; <True" option of both interface commands \verb"FeynmanRules" and \verb"WriteWOOutput". The Feynman rules of the MSSM are then computed within the \Mathematica\ notebook by \begin{code} rules = FeynmanRules[lag, Exclude4Scalars->True, FlavorExpand->True]; \end{code} where \verb'lag' is the variable containing the Lagrangian. By default, all the parameters of the model are set to the value of \ttt{1}. A complete parameter \ttt{{\em }.dat} file must therefore be loaded. Such a parameter file can be downloaded from the \FeynRules\ website or created by hand by the user, and loaded into \FeynRules\ as \begin{code} ReadLHAFile[Input -> ".dat"]; \end{code} This command does not reduce the size of the model output by removing vertices with vanishing couplings. However, if desired, this task could be done with the \ttt{LoadRestriction} command (see Ref.\ \cite{Fuks:2012im} for details). The vertices are exported to \whizard\ by the command \begin{code} WriteWOOutput[Input -> rules]; \end{code} Note that the numerical values of the parameters of the model can be modified directly from \whizard, without having to generate a second time the \whizard\ model files from \FeynRules. A \sindarin\ script is created by the interface with the help of the instruction \begin{code} WriteWOExtParams["parameters.sin"]; \end{code} and can be further modified according to the needs of the user. \subsubsection{\whizard-\FeynRules\ example: Three-Site Higgsless Model} The Three-Site Higgsless model or Minimal Higgsless model (MHM) has been implemented into \ttt{LanHEP}~\cite{He:2007ge}, \FeynRules\ and independently into \whizard~\cite{Speckner:2010zi}, and the collider phenomenology has been studied by making use of these implementations \cite{He:2007ge,Ohl:2010zf,Speckner:2010zi}. Furthermore, the independent implementations in \FeynRules\ and directly into {\sc Whizard} have been compared and found to agree~\cite{Christensen:2010wz}. After the discovery of a Higgs boson at the LHC in 2012, such a model is not in good agreement with experimental data any more. Here, we simply use it as a guinea pig to describe the handling of a model with non-renormalizable interactions with the \FeynRules\ interface, and discuss how to generate \whizard\ model files for it. The model has been implemented in Feynman gauge as well as unitarity gauge and contains the variable \verb|FeynmanGauge| which can be set to \verb|True| or \verb|False|. When set to \verb|True|, the option \verb|WOGauge-> WOFeynman| must be used, as explained in~\cite{Christensen:2010wz}. $R_\xi$ gauge can also be accomplished with this model by use of the options \verb|WOGauge -> WORxi| and \verb?WOAutoGauge -> True?. Since this model makes use of a nonlinear sigma field of the form \begin{equation} \Sigma = 1 + i\pi - \frac{1}{2}\pi^2+\cdots \end{equation} many higher dimensional operators are included in the model which are not currently not supported by \whizard. Even for a future release of \whizard\ containing general Lorentz structures in interaction vertices, the user would be forced to expand the series only up to a certain order. Although \whizard\ can reject these vertices and print a warning message to the user, it is preferable to remove the vertices right away in the interface by the option \verb|MaxCanonicalDimension->4|. This is passed to the command \verb|FeynmanRules| and restricts the Feynman rules to those of dimension four and smaller\footnote{\ttt{MaxCanonicalDimension} is an option of the \ttt{FeynmanRules} function rather than of the interface, itself. In fact, the interface accepts all the options of {\tt FeynmanRules} and simply passes them on to the latter.}. As the use of different gauges was already illustrated in the SM example, we discuss the model only in Feynman gauge here. We load \FeynRules: \begin{code} $FeynRulesPath = SetDirectory[""]; <"]; LoadModel["3-Site-particles.fr", "3-Site-parameters.fr", "3-Site-lagrangian.fr"]; FeynmanGauge = True; \end{code} where \verb|| is the path to the directory where the MHM model files are stored and where the output of the \whizard\ interface will be written. The \whizard\ interface is then initiated: \begin{code} WriteWOOutput[LGauge, LGold, LGhost, LFermion, LGoldLeptons, LGoldQuarks, MaxCanonicalDimension->4, WOGauge->WOFeynman, WOModelName->"fr_mhm"]; \end{code} where we have also made use of the option \verb|WOModelName| to change the name of the model as seen by \whizard. As in the case of the SM, the interface begins by writing a short informational message: \begin{code} Short model name is "fr_mhm" Gauge: Feynman Generating code for WHIZARD / O'Mega version 2.0.3 Automagically assigning Goldstone boson masses... Maximum number of couplings per FORTRAN module: 500 Extensive lorentz structure checks disabled. \end{code} After calculating the Feynman rules and processing the vertices, the interface gives a summary: \begin{code} processed a total of 922 vertices, kept 633 of them and threw away 289, 289 of which contained ghosts. \end{code} showing that no vertices were missed. The files are stored in the directory \verb|fr_mhm| and are ready to be installed and used with \whizard. %%%%%%%%%%%%%%% \section{New physics models via the \UFO\ file format} \label{sec:ufo} In this section, we describe how to use the {\em Universal FeynRules Output} (\UFO, \cite{Degrande:2011ua}) format for physics models inside \whizard. Please refer the manuals of e.g.~\FeynRules\ manual for details on how to generate a \UFO\ file for your favorite physics model. \UFO\ files are a collection of \python\ scripts that encode the particles, the couplings, the Lorentz structures, the decays, as well as parameters, vertices and propagators of the corresponding model. They reside in a directory of the exact name of the model they have been created from. If the user wants to generate events for processes from a physics model from a \UFO\ file, then this directory of scripts generated by \FeynRules\ is immediately available if it is a subdirectory of the working directory of \whizard. The directory name will be taken as the model name. (The \UFO-model file name must not start with a non-letter character, i.e. especially not a number. In case such a file name wants to be used at all costs, the model name in the \sindarin\ script has to put in quotation marks, but this is not guaranteed to always work.) Then, a \UFO\ model named, e.g., \ttt{test\_model} is accessed by an extra \ttt{ufo} tag in the model assignment: \begin{Code} model = test_model (ufo) \end{Code} If desired, \whizard\ can access a directory of \UFO\ files elsewhere on the file system. For instance, if \FeynRules\ output resides in the subdirectory \ttt{MyMdl} of \ttt{/home/users/john/ufo}, \whizard\ can use the model named \ttt{MyMdl} as follows \begin{Code} model = MyMdl (ufo ('/home/users/john/my_ufo_models')) \end{Code} that is, the \sindarin\ keyword \ttt{ufo} can take an argument. Note however, that the latter approach can backfire --- in case just the working directory is packed and archived for future reference. %%%%%%%%%%%%%%% \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \appendix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{\sindarin\ Reference} In the \sindarin\ language, there are certain pre-defined constructors or commands that cannot be used in different context by the user, which are e.g. \ttt{alias}, \ttt{beams}, \ttt{integrate}, \ttt{simulate} etc. A complete list will be given below. Also units are fixed, like \ttt{degree}, \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{GeV}, and \ttt{TeV}. Again, these tags are locked and not user-redefinable. Their functionality will be listed in detail below, too. Furthermore, a variable with a preceding question mark, ?, is a logical, while a preceding dollar, \$, denotes a character string variable. Also, a lot of unary and binary operators exist, \ttt{+ - $\backslash$ , = : => < > <= >= \^ \; () [] \{\} } \url{==}, as well as quotation marks, ". Note that the different parentheses and brackets fulfill different purposes, which will be explained below. Comments in a line can either be marked by a hash, \#, or an exclamation mark, !. \section{Commands and Operators} We begin the \sindarin\ reference with all commands, operators, functions and constructors. The list of variables (which can be set to change behavior of \whizard) can be found in the next section. \begin{itemize} \item \ttt{+} \newline 1) Arithmetic operator for addition of integers, reals and complex numbers. Example: \ttt{real mm = mH + mZ} (cf. also \ttt{-}, \ttt{*}, \ttt{/}, \ttt{\^{}}). 2) It also adds different particles for inclusive process containers: \ttt{process foo = e1, E1 => (e2, E2) + (e3, E3)}. 3) It also serves as a shorthand notation for the concatenation of ($\to$) \ttt{combine} operations on particles/subevents, e.g. \ttt{cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible]}. %%%%% \item \ttt{-} \newline Arithmetic operator for subtraction of integers, reals and complex numbers. Example: \ttt{real foo = 3.1 - 5.7} (cf. also \ttt{+}, \ttt{*}, \ttt{/}, \ttt{\^{}}). %%%%% \item \ttt{/} \newline Arithmetic operator for division of integers, reals and complex numbers. Example: \ttt{scale = mH / 2} (cf. also \ttt{+}, \ttt{*}, \ttt{-}, \ttt{\^{}}). %%%%% \item \ttt{*} \newline Arithmetic operator for multiplication of integers, reals and complex numbers. Example: \ttt{complex z = 2 * I} (cf. also \ttt{+}, \ttt{/}, \ttt{-}, \ttt{\^{}}). %%%%% \item \ttt{\^{}} \newline Arithmetic operator for exponentiation of integers, reals and complex numbers. Example: \ttt{real z = x\^{}2 + y\^{}2} (cf. also \ttt{+}, \ttt{/}, \ttt{-}, \ttt{\^{}}). %%%%% \item \ttt{<} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } < {\em }} tests whether \ttt{{\em val1}} is smaller than \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{>} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } > {\em }} tests whether \ttt{{\em val1}} is larger than \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{<=} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } <= {\em }} tests whether \ttt{{\em val1}} is smaller than or equal \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{<}, \ttt{>=}) %%%%% \item \ttt{>=} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } >= {\em }} tests whether \ttt{{\em val1}} is larger than or equal \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{<}, \ttt{>=}) %%%%% \item \ttt{==} \newline Arithmetic comparator between values that checks for identity of two values: \ttt{{\em } == {\em }}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{>}, \ttt{<}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{<>} \newline Arithmetic comparator between values that checks for two values being unequal: \ttt{{\em } <> {\em }}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{==}, \ttt{>}, \ttt{<}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{!} \newline The exclamation mark tells \sindarin\ that everything that follows in that line should be treated as a comment. It is the same as ($\to$) \ttt{\#}. %%%%% \item \ttt{\#} \newline The hash tells \sindarin\ that everything that follows in that line should be treated as a comment. It is the same as ($\to$) \ttt{!}. %%%%% \item \ttt{\&} \newline Concatenates two or more particle lists/subevents and hence acts in the same way as the subevent function ($\to$) \ttt{join}: \ttt{let @visible = [photon] \& [colored] \& [lepton] in ...}. (cf. also \ttt{join}, \ttt{combine}, \ttt{collect}, \ttt{extract}, \ttt{sort}). %%%%% \item \ttt{\$} \newline Constructor at the beginning of a variable name, \ttt{\${\em }}, that specifies a string variable. %%%%% \item \ttt{@} \newline Constructor at the beginning of a variable name, \ttt{@{\em }}, that specifies a subevent variable, e.g. \ttt{let @W\_candidates = combine ["mu-", "numubar"] in ...}. %%%%% \item \ttt{=} \newline Binary constructor to appoint values to commands, e.g. \ttt{{\em } = {\em }} or \newline \ttt{{\em } {\em } = {\em }}. %%%%% \item \ttt{\%} \newline Constructor that gives the percentage of a number, so in principle multiplies a real number by \ttt{0.01}. Example: \ttt{1.23 \%} is equal to \ttt{0.0123}. %%%%% \item \ttt{:} \newline Separator in alias expressions for particles, e.g. \ttt{alias neutrino = n1:n2:n3:N1:N2:N3}. (cf. also \ttt{alias}) %%%%% \item \ttt{;} \newline Concatenation operator for logical expressions: \ttt{{\em lexpr1} ; {\em lexpr2}}. Evaluates \ttt{{\em lexpr1}} and throws the result away, then evaluates \ttt{{\em lexpr2}} and returns that result. Used in analysis expressions. (cf. also \ttt{analysis}, \ttt{record}) %%%%% \item \ttt{/+} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments additively, \ttt{scan {\em } = ({\em } => {\em } /+ {\em })}. E.g. \ttt{scan int i = (1 => 5 /+ 2)} scans over the values \ttt{1}, \ttt{3}, \ttt{5}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (1 => 1.5 /+ 0.2)} runs over \ttt{1.0}, \ttt{1.333}, \ttt{1.667}, \ttt{1.5}. %%%%% \item \ttt{/+/} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments additively, but the number after the incrementor is the number of steps, not the step size: \ttt{scan {\em } = ({\em } => {\em } /+/ {\em })}. It is only available for real scan ranges, and divides the interval \ttt{{\em } - {\em }} into \ttt{{\em }} steps, e.g. \ttt{scan real r = (1 => 1.5 /+/ 3)} runs over \ttt{1.0}, \ttt{1.25}, \ttt{1.5}. %%%%% \item \ttt{/-} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments subtractively, \ttt{scan {\em } {\em } = ({\em } => {\em } /- {\em })}. E.g. \ttt{scan int i = (9 => 0 /+ 3)} scans over the values \ttt{9}, \ttt{6}, \ttt{3}, \ttt{0}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (1 => 0.5 /- 0.2)} runs over \ttt{1.0}, \ttt{0.833}, \ttt{0.667}, \ttt{0.5}. %%%%% \item \ttt{/*} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments multiplicatively, \ttt{scan {\em } {\em } = ({\em } => {\em } /* {\em })}. E.g. \ttt{scan int i = (1 => 4 /* 2)} scans over the values \ttt{1}, \ttt{2}, \ttt{4}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (1 => 5 /* 2)} runs over \ttt{1.0}, \ttt{2.236} (i.e. $\sqrt{5}$), \ttt{5.0}. %%%%% \item \ttt{/*/} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments multiplicatively, but the number after the incrementor is the number of steps, not the step size: \ttt{scan {\em } {\em } = ({\em } => {\em } /*/ {\em })}. It is only available for real scan ranges, and divides the interval \ttt{{\em } - {\em }} into \ttt{{\em }} steps, e.g. \ttt{scan real r = (1 => 9 /*/ 4)} runs over \ttt{1.000}, \ttt{2.080}, \ttt{4.327}, \ttt{9.000}. %%%%% \item \ttt{//} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments by division, \ttt{scan {\em } {\em } = ({\em } => {\em } // {\em })}. E.g. \ttt{scan int i = (13 => 0 // 3)} scans over the values \ttt{13}, \ttt{4}, \ttt{1}, \ttt{0}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (5 => 1 // 2)} runs over \ttt{5.0}, \ttt{2.236} (i.e. $\sqrt{5}$), \ttt{1.0}. %%%%% \item \ttt{=>} \newline Binary operator that is used in several different contexts: 1) in process declarations between the particles specifying the initial and final state, e.g. \ttt{process {\em } = {\em }, {\em } => {\em }, ....}; 2) for the specification of beams when structure functions are applied to the beam particles, e.g. \ttt{beams = p, p => pdf\_builtin}; 3) for the specification of the scan range in the \ttt{scan {\em } {\em } = ({\em } => {\em } {\em })} (cf. also \ttt{process}, \ttt{beams}, \ttt{scan}) %%%%% \item \ttt{\%d} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for decimal integer numbers, e.g. \ttt{printf "one = \%d" (i)}. The difference between \ttt{\%i} and \ttt{\%d} does not play a role here. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%e} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for floating-point numbers in standard form \ttt{[-]d.ddd e[+/-]ddd}. Usage e.g. \ttt{printf "pi = \%e" (PI)}. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%E} \newline Same as ($\to$) \ttt{\%e}, but using upper-case letters. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%f} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for floating-point numbers in fixed-point form. Usage e.g. \ttt{printf "pi = \%f" (PI)}. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%F} \newline Same as ($\to$) \ttt{\%f}, but using upper-case letters. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%g} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for floating-point numbers in normal or exponential notation, whichever is more approriate. Usage e.g. \ttt{printf "pi = \%g" (PI)}. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%G} \newline Same as ($\to$) \ttt{\%g}, but using upper-case letters. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%s}) %%%%% \item \ttt{\%i} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for integer numbers, e.g. \ttt{printf "one = \%i" (i)}. The difference between \ttt{\%i} and \ttt{\%d} does not play a role here. (cf. \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%s} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for logical or string variables e.g. \ttt{printf "foo = \%s" (\$method)}. (cf. \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}) %%%%% \item \ttt{abarn} \newline Physical unit, stating that a number is in attobarns ($10^{-18}$ barn). (cf. also \ttt{nbarn}, \ttt{fbarn}, \ttt{pbarn}) %%%%% \item \ttt{abs} \newline Numerical function that takes the absolute value of its argument: \ttt{abs ({\em })} yields \ttt{|{\em }|}. (cf. also \ttt{conjg}, \ttt{sgn}, \ttt{mod}, \ttt{modulo}) %%%%% \item \ttt{acos} \newline Numerical function \ttt{asin ({\em })} that calculates the arccosine trigonometric function (inverse of \ttt{cos}) of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{tan}, \ttt{asin}, \ttt{atan}) %%%%% \item \ttt{alias} \newline This allows to define a collective expression for a class of particles, e.g. to define a generic expression for leptons, neutrinos or a jet as \ttt{alias lepton = e1:e2:e3:E1:E2:E3}, \ttt{alias neutrino = n1:n2:n3:N1:N2:N3}, and \ttt{alias jet = u:d:s:c:U:D:S:C:g}, respectively. %%%%% \item \ttt{all} \newline \ttt{all} is a function that works on a logical expression and a list, \ttt{all {\em } [{\em }]}, and returns \ttt{true} if and only if \ttt{log\_expr} is fulfilled for {\em all} entries in \ttt{list}, and \ttt{false} otherwise. Examples: \ttt{all Pt > 100 GeV [lepton]} checks whether all leptons are harder than 100 GeV, \ttt{all Dist > 2 [u:U, d:D]} checks whether all pairs of corresponding quarks are separated in $R$ space by more than 2. Logical expressions with \ttt{all} can be logically combined with \ttt{and} and \ttt{or}. (cf. also \ttt{any}, \ttt{and}, \ttt{no}, and \ttt{or}) %%%%% \item \ttt{alt\_setup} \newline This command allows to specify alternative setups for a process/list of processes, \ttt{alt\_setup = \{ {\em } \} [, \{ {\em } \} , ...]}. An alternative setup can be a resetting of a coupling constant, or different cuts etc. It can be particularly used in a ($\to$) \ttt{rescan} procedure. %%%%% \item \ttt{analysis} \newline This command, \ttt{analysis = {\em }}, allows to define an analysis as a logical expression, with a syntax similar to the ($\to$) \ttt{cuts} or ($\to$) \ttt{selection} command. Note that a ($\to$) formally is a logical expression. %%%%% \item \ttt{and} \newline This is the standard two-place logical connective that has the value true if both of its operands are true, otherwise a value of false. It is applied to logical values, e.g. cut expressions. (cf. also \ttt{all}, \ttt{no}, \ttt{or}). %%%%% \item \ttt{any} \newline \ttt{any} is a function that works on a logical expression and a list, \ttt{any {\em } [{\em }]}, and returns \ttt{true} if \ttt{log\_expr} is fulfilled for any entry in \ttt{list}, and \ttt{false} otherwise. Examples: \ttt{any PDG == 13 [lepton]} checks whether any lepton is a muon, \ttt{any E > 2 * mW [jet]} checks whether any jet has an energy of twice the $W$ mass. Logical expressions with \ttt{any} can be logically combined with \ttt{and} and \ttt{or}. (cf. also \ttt{all}, \ttt{and}, \ttt{no}, and \ttt{or}) %%%%% \item \ttt{as} \newline cf. \ttt{compile} %%%%% \item \ttt{ascii} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the standard \whizard\ verbose/debug ASCII event files. (cf. also \ttt{\$sample}, \ttt{\$sample\_normalization}, \ttt{sample\_format}) %%%%% \item \ttt{asin} \newline Numerical function \ttt{asin ({\em })} that calculates the arcsine trigonometric function (inverse of \ttt{sin}) of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{tan}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{atan} \newline Numerical function \ttt{atan ({\em })} that calculates the arctangent trigonometric function (inverse of \ttt{tan}) of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{tan}, \ttt{asin}, \ttt{acos}) %%%%% \item \ttt{athena} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the ATHENA variant for HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{\$sample\_normalization}, \ttt{sample\_format}) %%%%% \item \ttt{beam} \newline Constructor that specifies a particle (in a subevent) as beam particle. It is used in cuts, analyses or selections, e.g. \ttt{cuts = all Theta > 20 degree [beam lepton, lepton]}. (cf. also \ttt{incoming}, \ttt{outgoing}, \ttt{cuts}, \ttt{analysis}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{beam\_events} \newline Beam structure specifier to read in lepton collider beamstrahlung's spectra from external files as pairs of energy fractions: \ttt{beams: e1, E1 => beam\_events}. Note that this is a pair spectrum that has to be applied to both beams simultaneously. (cf. also \ttt{beams}, \ttt{\$beam\_events\_file}, \ttt{?beam\_events\_warn\_eof}) %%%%% \item \ttt{beams} \newline This specifies the contents and structure of the beams: \ttt{beams = {\em }, {\em } [ => {\em } ....]}. If this command is absent in the input file, \whizard\ automatically takes the two incoming partons (or one for decays) of the corresponding process as beam particles, and no structure functions are applied. Protons and antiprotons as beam particles are predefined as \ttt{p} and \ttt{pbar}, respectively. A structure function, like \ttt{pdf\_builtin}, \ttt{ISR}, \ttt{EPA} and so on are switched on as e.g. \ttt{beams = p, p => lhapdf}. Structure functions can be specified for one of the two beam particles only, of the structure function is not a spectrum. (cf. also \ttt{beams\_momentum}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}, \ttt{beam\_events}, \ttt{circe1}, \ttt{circe2}, \ttt{energy\_scan}, \ttt{epa}, \ttt{ewa}, \ttt{isr}, \ttt{lhapdf}, \ttt{pdf\_builtin}). %%%%% \item \ttt{beams\_momentum} \newline Command to set the momenta (or energies) for the two beams of a scattering process: \ttt{beams\_momentum = {\em }, {\em }} to allow for asymmetric beam setups (e.g. HERA: \ttt{beams\_momentum = 27.5 GeV, 920 GeV}). Two arguments must be present for a scattering process, but the command can be used with one argument to integrate and simulate a decay of a moving particle. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{beams\_phi} \newline Same as ($\to$) \ttt{beams\_theta}, but to allow for a non-vanishing beam azimuth angle, too. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_momentum}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{beams\_pol\_density} \newline This command allows to specify the initial state for polarized beams by the syntax: \ttt{beams\_pol\_density = @({\em }), @({\em })}. Two polarization specifiers are mandatory for scattering, while one can be used for decays from polarized probes. The specifier \ttt{{\em }} can be empty (no polarization), has one entry (for a definite helicity/spin orientation), or ranges of entries of a spin density matrix. The command can be used globally, or as a local argument of the \ttt{integrate} command. For detailed information, see Sec.~\ref{sec:initialpolarization}. It is also possible to use variables as placeholders in the specifiers. Note that polarization is assumed to be complete, for partial polarization use ($\to$) \ttt{beams\_pol\_fraction}. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_momentum}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{beams\_pol\_fraction} \newline This command allows to specify the amount of polarization when using polarized beams ($\to$ \ttt{beams\_pol\_density}). The syntax is: \ttt{beams\_pol\_fraction = {\em }, {\em }}. Two fractions must be present for scatterings, being real numbers between \ttt{0} and \ttt{1}. A specification with percentage is also possible, e.g. \ttt{beams\_pol\_fraction = 80\%, 40\%}. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_momentum}, \ttt{beams\_pol\_density}) %%%%% \item \ttt{beams\_theta} \newline Command to set a crossing angle (with respect to the $z$ axis) for one or both of the beams of a scattering process: \ttt{beams\_theta = {\em }, {\em }} to allow for asymmetric beam setups (e.g. \ttt{beams\_angle = 0, 10 degree}). Two arguments must be present for a scattering process, but the command can be used with one argument to integrate and simulate a decay of a moving particle. (cf. also \ttt{beams}, \ttt{beams\_phi}, \ttt{beams\_momentum}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{by} \newline Constructor that replaces the default sorting criterion (according to PDG codes) of the ($\to$) \ttt{sort} function on particle lists/subevents by one given by a unary or binary particle observable: \ttt{sort by {\em } [{\em } [, {\em }] ]}. (cf. also \ttt{sort}, \ttt{extract}, \ttt{join}, \ttt{collect}, \ttt{combine}, \ttt{+}) %%%%% \item \ttt{ceiling} \newline This is a function \ttt{ceiling ({\em })} that gives the least integer greater than or equal to \ttt{{\em }}, e.g. \ttt{int i = ceiling (4.56789)} gives \ttt{i = 5}. (cf. also \ttt{int}, \ttt{nint}, \ttt{floor}) %%%%% \item \ttt{circe1} \newline Beam structure specifier for the \circeone\ structure function for beamstrahlung at a linear lepton collider: \ttt{beams = e1, E1 => circe1}. Note that this is a pair spectrum, so the specifier acts for both beams simultaneously. (cf. also \ttt{beams}, \ttt{?circe1\_photons}, \ttt{?circe1\_photon2}, \ttt{circe1\_sqrts}, \ttt{?circe1\_generate}, \ttt{?circe1\_map}, \ttt{circe1\_eps}, \newline \ttt{circe1\_mapping\_slope}, \ttt{circe1\_ver}, \ttt{circe1\_rev}, \ttt{\$circe1\_acc}, \ttt{circe1\_chat}) %%%%% \item \ttt{circe2} \newline Beam structure specifier for the lepton-collider structure function for photon spectra, \circetwo: \ttt{beams = A, A => circe2}. Note that this is a pair spectrum, an application to only one beam is not possible. (cf. also \ttt{beams}, \ttt{?circe2\_polarized}, \ttt{\$circe2\_file}, \ttt{\$circe2\_design}) %%%%% \item \ttt{clear} \newline This command allows to clear a variable set before: \ttt{clear ({\em })} resets the variable \ttt{{\em }} which could be the \ttt{beams}, the \ttt{unstable} settings, \ttt{sqrts}, any kind of \ttt{cuts} or \ttt{scale} expressions, any user-set variable etc. The syntax of the command is completely analogous to ($\to$) \ttt{show}. %%%%% \item \ttt{close\_out} \newline With the command, \ttt{close\_out ("{\em })} user-defined information like data or ($\to$) \ttt{printf} statements can be written out to a user-defined file. The command closes an I/O stream to an external file \ttt{{\em }}. (cf. also \ttt{open\_out}, \ttt{\$out\_file}, \ttt{printf}) %%%%% \item \ttt{cluster} \newline Command that allows to cluster all particles in a subevent to a set of jets: \ttt{cluster [{\em}]}. It also to cluster particles subject to a certain boolean condition, \ttt{cluster if {\em} [{\em}]}. At the moment only available if the \fastjet\ package is linked. (cf. also \ttt{jet\_r}, \ttt{combine}, \ttt{jet\_algorithm}, \ttt{kt\_algorithm}, \newline \ttt{cambridge\_[for\_passive\_]algorithm}, \ttt{antikt\_algorithm}, \ttt{plugin\_algorithm}, \newline \ttt{genkt\_[for\_passive\_]algorithm}, \ttt{ee\_kt\_algorithm}, \ttt{ee\_genkt\_algorithm}, \ttt{?keep\_flavors\_when\_clustering}) %%%%% \item \ttt{collect} \newline The \ttt{collect [{\em }]} operation collects all particles in the list \ttt{{\em }} into a one-entry subevent with a four-momentum of the sum of all four-momenta of non-overlapping particles in \ttt{{\em }}. (cf. also \ttt{combine}, \ttt{select}, \ttt{extract}, \ttt{sort}) %%%%% \item \ttt{complex} \newline Defines a complex variable. The syntax is e.g. \ttt{complex x = 2 + 3 * I}. (cf.~also \ttt{int}, \ttt{real}) %%%%% \item \ttt{combine} \newline The \ttt{combine [{\em }, {\em }]} operation makes a particle list whose entries are the result of adding (the momenta of) each pair of particles in the two input lists \ttt{list1}, {list2}. For example, \ttt{combine [incoming lepton, lepton]} constructs all mutual pairings of an incoming lepton with an outgoing lepton (an alias for the leptons has to be defined, of course). (cf. also \ttt{collect}, \ttt{select}, \ttt{extract}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{compile} \newline The \ttt{compile ()} command has no arguments (the parentheses can also been left out: /\ttt{compile ()}. The command is optional, it invokes the compilation of the process(es) (i.e. the matrix element file(s)) to be compiled as a shared library. This shared object file has the standard name \ttt{default\_lib.so} and resides in the \ttt{.libs} subdirectory of the corresponding user workspace. If the user has defined a different library name \ttt{lib\_name} with the \ttt{library} command, then WHIZARD compiles this as the shared object \ttt{.libs/lib\_name.so}. (This allows to split process classes and to avoid too large libraries.) Another possibility is to use the command \ttt{compile as "static\_name"}. This will compile and link the process library in a static way and create the static executable \ttt{static\_name} in the user workspace. (cf. also \ttt{library}) %%%%% \item \ttt{compile\_analysis} \newline The \ttt{compile\_analysis} statement does the same as the \ttt{write\_analysis} command, namely to tell \whizard\ to write the analysis setup by the user for the \sindarin\ input file under consideration. If no \ttt{\$out\_file} is provided, the histogram tables/plot data etc. are written to the default file \ttt{whizard\_analysis.dat}. In addition to \ttt{write\_analysis}, \ttt{compile\_analysis} also invokes the \whizard\ \LaTeX routines for producing postscript or PDF output of the data (unless the flag $\rightarrow$ \ttt{?analysis\_file\_only} is set to \ttt{true}). (cf. also \ttt{\$out\_file}, \ttt{write\_analysis}, \ttt{?analysis\_file\_only}) %%%%% \item \ttt{conjg} \newline Numerical function that takes the complex conjugate of its argument: \ttt{conjg ({\em })} yields \ttt{{\em }$^\ast$}. (cf. also \ttt{abs}, \ttt{sgn}, \ttt{mod}, \ttt{modulo}) %%%%% \item \ttt{cos} \newline Numerical function \ttt{cos ({\em })} that calculates the cosine trigonometric function of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{tan}, \ttt{asin}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{cosh} \newline Numerical function \ttt{cosh ({\em })} that calculates the hyperbolic cosine function of real and complex numerical numbers or variables. Note that its inverse function is part of the \ttt{Fortran2008} status and hence not realized. (cf. also \ttt{sinh}, \ttt{tanh}) %%%%% \item \ttt{count} \newline Subevent function that counts the number of particles or particle pairs in a subevent: \ttt{count [{\em } [, {\em }]]}. This can also be a counting subject to a condition: \ttt{count if {\em } [{\em } [, {\em }]]}. %%%%% \item \ttt{cuts} \newline This command defines the cuts to be applied to certain processes. The syntax is: \ttt{cuts = {\em } {\em } [{\em }]}, where the cut expression must be initialized with a logical classifier \ttt{log\_class} like \ttt{all}, \ttt{any}, \ttt{no}. The logical expression \ttt{log\_expr} contains the cut to be evaluated. Note that this need not only be a kinematical cut expression like \ttt{E > 10 GeV} or \ttt{5 degree < Theta < 175 degree}, but can also be some sort of trigger expression or event selection. Whether the expression is evaluated on particles or pairs of particles depends on whether the discriminating variable is unary or binary, \ttt{Dist} being obviously binary, \ttt{Pt} being unary. Note that some variables are both unary and binary, e.g. the invariant mass $M$. Cut expressions can be connected by the logical connectives \ttt{and} and \ttt{or}. The \ttt{cuts} statement acts on all subsequent process integrations and analyses until a new \ttt{cuts} statement appears. (cf. also \ttt{all}, \ttt{any}, \ttt{Dist}, \ttt{E}, \ttt{M}, \ttt{no}, \ttt{Pt}). %%%%% \item \ttt{debug} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the very verbose \whizard\ ASCII event file format intended for debugging. (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{\$sample\_normalization}) %%%%% \item \ttt{degree} \newline Expression specifying the physical unit of degree for angular variables, e.g. the cut expression function \ttt{Theta}. (if no unit is specified for angular variables, radians are used; cf. \ttt{rad}, \ttt{mrad}). %%%% \item \ttt{Dist} \newline Binary observable specifier, that gives the $\eta$-$\phi$- (pseudorapidity-azimuth) distance $R = \sqrt{(\Delta \eta)^2 + (\Delta\phi)^2}$ between the momenta of the two particles: \ttt{eval Dist [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Theta}, \ttt{Eta}, \ttt{Phi}) %%%%% \item \ttt{dump} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the intrinsic \whizard\ event record format (output of the \ttt{particle\_t} type container). (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{\$sample\_normalization} %%%%% \item \ttt{E} \newline Unary (binary) observable specifier for the energy of a single (two) particle(s), e.g. \ttt{eval E ["W+"]}, \ttt{all E > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{else} \label{sindarin_else}\newline Constructor for providing an alternative in a conditional clause: \ttt{if {\em } then {\em } else {\em } endif}. (cf. also \ttt{if}, \ttt{elsif}, \ttt{endif}, \ttt{then}). %%%%% \item \ttt{elsif} \newline Constructor for concatenating more than one conditional clause with each other: \ttt{if {\em } then {\em } elsif {\em } then {\em } \ldots endif}. (cf. also \ttt{if}, \ttt{else}, \ttt{endif}, \ttt{then}). %%%%% \item \ttt{endif} \newline Mandatory constructor to conclude a conditional clause: \ttt{if {\em } then \ldots endif}. (cf. also \ttt{if}, \ttt{else}, \ttt{elsif}, \ttt{then}). %%%%% \item \ttt{energy\_scan} \newline Beam structure specifier for the energy scan structure function: \ttt{beams = e1, E1 => energy\_scan}. This pair spectrum that has to be applied to both beams simultaneously can be used to scan over a range of collider energies without using the \ttt{scan} command. (cf. also \ttt{beams}, \ttt{scan}, \ttt{?energy\_scan\_normalize}) %%%%% \item \ttt{epa} \newline Beam structure specifier for the equivalent-photon approximation (EPA), i.e the Weizs\"acker-Williams structure function: e.g. \ttt{beams = e1, E1 => epa} (applied to both beams), or e.g. \ttt{beams = e1, u => epa, none} (applied to only one beam). (cf. also \ttt{beams}, \ttt{epa\_alpha}, \ttt{epa\_x\_min}, \ttt{epa\_mass}, \ttt{epa\_q\_max}, \ttt{epa\_q\_min}, \ttt{?epa\_recoil}, \ttt{?epa\_keep\_energy}) %%%%% \item \ttt{Eta} \newline Unary and also binary observable specifier, that as a unary observable gives the pseudorapidity of a particle momentum. The pseudorapidity is given by $\eta = - \log \left[ \tan (\theta/2) \right]$, where $\theta$ is the angle with the beam direction. As a binary observable, it gives the pseudorapidity difference between the momenta of two particles, where $\theta$ is the enclosed angle: \ttt{eval Eta [e1]}, \ttt{all abs (Eta) < 3.5 [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Rap}, \ttt{abs}) %%%%% \item \ttt{eV} \newline Physical unit, stating that the corresponding number is in electron volt. (cf. also \ttt{keV}, \ttt{meV}, \ttt{MeV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{eval} \newline Evaluator that tells \whizard\ to evaluate the following expr: \ttt{eval {\em }}. Examples are: \ttt{eval Rap [e1]}, \ttt{eval M / 1 GeV [combine [q,Q]]} etc. (cf. also \ttt{cuts}, \ttt{selection}, \ttt{record}, \ttt{sum}, \ttt{prod}) %%%%% \item \ttt{ewa} \newline Beam structure specifier for the equivalent-photon approximation (EWA): e.g. \ttt{beams = e1, E1 => ewa} (applied to both beams), or e.g. \ttt{beams = e1, u => ewa, none} (applied to only one beam). (cf. also \ttt{beams}, \ttt{ewa\_x\_min}, \ttt{ewa\_pt\_max}, \ttt{ewa\_mass}, \ttt{?ewa\_keep\_energy}, \ttt{?ewa\_recoil}) %%%%% \item \ttt{exec} \newline Constructor \ttt{exec ("{\em }")} that demands WHIZARD to execute/run the command \ttt{cmd\_name}. For this to work that specific command must be present either in the path of the operating system or as a command in the user workspace. %%%%% \item \ttt{exit} \newline Command to finish the \whizard\ run (and not execute any further code beyond the appearance of \ttt{exit} in the \sindarin\ file. The command (which is the same as $\to$ \ttt{quit}) allows for an argument, \ttt{exit ({\em })}, where the expression can be executed, e.g. a screen message or an exit code. %%%%% \item \ttt{exp} \newline Numerical function \ttt{exp ({\em })} that calculates the exponential of real and complex numerical numbers or variables. (cf. also \ttt{sqrt}, \ttt{log}, \ttt{log10}) %%%%% \item \ttt{expect} \newline The binary function \ttt{expect} compares two numerical expressions whether they fulfill a certain ordering condition or are equal up to a specific uncertainty or tolerance which can bet set by the specifier \ttt{tolerance}, i.e. in principle it checks whether a logical expression is true. The \ttt{expect} function does actually not just check a value for correctness, but also records its result. If failures are present when the program terminates, the exit code is nonzero. The syntax is \ttt{expect ({\em } {\em } {\em })}, where \ttt{{\em }} and \ttt{{\em }} are two numerical values (or corresponding variables) and \ttt{{\em }} is one of the following logical comparators: \ttt{<}, \ttt{>}, \ttt{<=}, \ttt{>=}, \ttt{==}, \ttt{<>}. (cf. also \ttt{<}, \ttt{>}, \ttt{<=}, \ttt{>=}, \ttt{==}, \ttt{<>}, \ttt{tolerance}). %%%%% \item \ttt{extract} \newline Subevent function that either extracts the first element of a particle list/subevent: \ttt{extract [ {\em }]}, or the element at position \ttt{} of the particle list: \ttt{extract {\em index } [ {\em }]}. Negative index values count from the end of the list. (cf. also \ttt{sort}, \ttt{combine}, \ttt{collect}, \ttt{+}, \ttt{index}) %%%%% \item \ttt{factorization\_scale} \newline This is a command, \ttt{factorization\_scale = {\em }}, that sets the factorization scale of a process or list of processes. It overwrites a possible scale set by the ($\to$) \ttt{scale} command. \ttt{{\em }} can be any kinematic expression that leads to a result of momentum dimension one, e.g. \ttt{100 GeV}, \ttt{eval Pt [e1]}. (cf. also \ttt{renormalization\_scale}). %%%%% \item \ttt{false} \newline Constructor stating that a logical expression or variable is false, e.g. \ttt{?{\em } = false}. (cf. also \ttt{true}). %%%%% \item \ttt{fbarn} \newline Physical unit, stating that a number is in femtobarns ($10^{-15}$ barn). (cf. also \ttt{nbarn}, \ttt{abarn}, \ttt{pbarn}) %%%%% \item \ttt{floor} \newline This is a function \ttt{floor ({\em })} that gives the greatest integer less than or equal to \ttt{{\em }}, e.g. \ttt{int i = floor (4.56789)} gives \ttt{i = 4}. (cf. also \ttt{int}, \ttt{nint}, \ttt{ceiling}) %%%%% \item \ttt{gaussian} \newline Beam structure specifier that imposes a Gaussian energy distribution, separately for each beam. The $\sigma$ values are set by \ttt{gaussian\_spread1} and \ttt{gaussian\_spread2}, respectively. %%%%% \item \ttt{GeV} \newline Physical unit, energies in $10^9$ electron volt. This is the default energy unit of WHIZARD. (cf. also \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{meV}, \ttt{TeV}) %%%%% \item \ttt{graph} \newline This command defines the necessary information regarding producing a graph of a function in \whizard's internal graphical \gamelan\ output. The syntax is: \ttt{graph {\em } \{ {\em } \}}. The record with name \ttt{{\em }} has to be defined, either before or after the graph definition. Possible optional arguments of the \ttt{graph} command are the minimal and maximal values of the axes (\ttt{x\_min}, \ttt{x\_max}, \ttt{y\_min}, \ttt{y\_max}). (cf. \ttt{plot}, \ttt{histogram}, \ttt{record}) %%%%% \item \ttt{Hel} \newline Unary observable specifier that allows to specify the helicity of a particle, e.g. \ttt{all Hel == -1 [e1]} in a selection. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{hepevt} \newline Specifier for the \ttt{sample\_format} command to demand the generation of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{hepevt\_verb} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the extended or verbose version of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{hepmc} \newline Specifier for the \ttt{sample\_format} command to demand the generation of HepMC ASCII event files. Note that this is only available if the HepMC package is installed and correctly linked. (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{?hepmc\_output\_cross\_section}) %%%%% \item \ttt{histogram} \newline This command defines the necessary information regarding plotting data as a histogram, in the form of: \ttt{histogram {\em } \{ {\em } \}}. The record with name \ttt{{\em }} has to be defined, either before or after the histogram definition. Possible optional arguments of the \ttt{histogram} command are the minimal and maximal values of the axes (\ttt{x\_min}, \ttt{x\_max}, \ttt{y\_min}, \ttt{y\_max}). (cf. \ttt{graph}, \ttt{plot}, \ttt{record}) %%%%% \item \ttt{Ht} \newline Subeventary observable specifier for the transverse mass ($\sqrt{p_T^2 + m^2}$ in the c.m. frame) summed over all particles in the subevent given as argument, e.g. \ttt{eval Ht [t:T:Z]}. (cf. \ttt{eval}, \ttt{sum}, \ttt{prod}, \ttt{Pt}, \ttt{M}) %%%%% \item \ttt{if} \newline Conditional clause with the construction \ttt{if {\em } then {\em } [else {\em } \ldots] endif}. Note that there must be an \ttt{endif} statement. For more complicated expressions it is better to use expressions in parentheses: \ttt{if ({\em }) then \{{\em }\} else \{{\em }\} endif}. Examples are a selection of up quarks over down quarks depending on a logical variable: \ttt{if ?ok then u else d}, or the setting of an integer variable depending on the rapidity of some particle: \ttt{if (eta > 0) then \{ a = +1\} else \{ a = -1\}}. (cf. also \ttt{elsif}, \ttt{endif}, \ttt{then}) %%%%% \item \ttt{in} \newline Second part of the constructor to let a variable be local to an expression. It has the syntax \ttt{let {\em } = {\em } in {\em }}. E.g. \ttt{let int a = 3 in let int b = 4 in {\em }} (cf. also \ttt{let}) %%%%% \item \ttt{include} \newline The \ttt{include} statement, \ttt{include ("file.sin")} allows to include external \sindarin\ files \ttt{file.sin} into the main WHIZARD input file. A standard example is the inclusion of the standard cut file \ttt{default\_cuts.sin}. %%%%% \item \ttt{incoming} \newline Constructor that specifies particles (or subevents) as incoming. It is used in cuts, analyses or selections, e.g. \ttt{cuts = all Theta > 20 degree [incoming lepton, lepton]}. (cf. also \ttt{beam}, \ttt{outgoing}, \ttt{cuts}, \ttt{analysis}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{index} \newline Specifies the position of the element of a particle to be extracted by the subevent function ($\to$) \ttt{extract}: \ttt{extract {\em index } [ {\em }]}. Negative index values count from the end of the list. (cf. also \ttt{extract}, \ttt{sort}, \ttt{combine}, \ttt{collect}, \ttt{+}) %%%%% \item \ttt{int} \newline 1) This is a constructor to specify integer constants in the input file. Strictly speaking, it is a unary function setting the value \ttt{int\_val} of the integer variable \ttt{int\_var}: \ttt{int {\em } = {\em }}. Note that is mandatory for all user-defined variables. (cf. also \ttt{real} and \ttt{complex}) 2) It is a function \ttt{int ({\em })} that converts real and complex numbers (here their real parts) into integers. (cf. also \ttt{nint}, \ttt{floor}, \ttt{ceiling}) %%%%% \item \ttt{integrate} \newline The \ttt{integrate ({\em }) \{ {\em } \}} command invokes the integration (phase-space generation and Monte-Carlo sampling) of the process \ttt{proc\_name} (which can also be a list of processes) with the integration options \ttt{{\em }}. Possible options are (1) via \ttt{\$integration\_method = "{\em }"} the integration method (the default being VAMP), (2) the number of iterations and calls per integration during the Monte-Carlo phase-space integration via the \ttt{iterations} specifier; (3) goal for the accuracy, error or relative error (\ttt{accuracy\_goal}, \ttt{error\_goal}, \ttt{relative\_error\_goal}). (4) Invoking only phase space generation (\ttt{?phs\_only = true}), (5) making test calls of the matrix element. (cf. also \ttt{iterations}, \ttt{accuracy\_goal}, \ttt{error\_goal}, \ttt{relative\_error\_goal}, \ttt{error\_threshold}) %%%%% \item \ttt{isr} \newline Beam structure specifier for the lepton-collider/QED initial-state radiation (ISR) structure function: e.g. \ttt{beams = e1, E1 => isr} (applied to both beams), or e.g. \ttt{beams = e1, u => isr, none} (applied to only one beam). (cf. also \ttt{beams}, \ttt{isr\_alpha}, \ttt{isr\_q\_max}, \ttt{isr\_mass}, \ttt{isr\_order}, \ttt{?isr\_recoil}, \ttt{?isr\_keep\_energy}) %%%%% \item \ttt{iterations} \qquad (default: internal heuristics) \newline Option to set the number of iterations and calls per iteration during the Monte-Carlo phase-space integration process. The syntax is \ttt{iterations = {\em }:{\em }}. Note that this can be also a list, separated by colons, which breaks up the integration process into passes of the specified number of integrations and calls each. It works for all integration methods. For VAMP, there is the additional option to specify whether grids and channel weights should be adapted during iterations (\ttt{"g"}, \ttt{"w"}, \ttt{"gw"} for both, or \ttt{""} for no adaptation). (cf. also \ttt{integrate}, \ttt{accuracy\_goal}, \ttt{error\_goal}, \ttt{relative\_error\_goal}, \ttt{error\_threshold}). %%%%% \item \ttt{join} \newline Subevent function that concatenates two particle lists/subevents if there is no overlap: \ttt{join [{\em }, {\em }]}. The joining of the two lists can also be made depending on a condition: \ttt{join if {\em } [{\em }, {\em }]}. (cf. also \ttt{\&}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{keV} \newline Physical unit, energies in $10^3$ electron volt. (cf. also \ttt{eV}, \ttt{meV}, \ttt{MeV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{kT} \newline Binary particle observable that represents a jet $k_T$ clustering measure: \ttt{kT [j1, j2]} gives the following kinematic expression: $2 \min(E_{j1}^2, E_{j2}^2) / Q^2 \times (1 - \cos\theta_{j1,j2})$. At the moment, $Q^2 = 1$. %%%%% \item \ttt{let} \newline This allows to let a variable be local to an expression. It has the syntax \ttt{let {\em } = {\em } in {\em }}. E.g. \ttt{let int a = 3 in let int b = 4 in {\em }} (cf. also \ttt{in}) %%%%% \item \ttt{lha} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the \whizard\ version 1 style (deprecated) LHA ASCII event format files. (cf. also \ttt{\$sample}, \newline \ttt{sample\_format}) %%%%% \item \ttt{lhapdf} \newline This is a beams specifier to demand calling \lhapdf\ parton densities as structure functions to integrate processes in hadron collisions. Note that this only works if the external \lhapdf\ library is present and correctly linked. (cf. \ttt{beams}, \ttt{\$lhapdf\_dir}, \ttt{\$lhapdf\_file}, \ttt{lhapdf\_photon}, \ttt{\$lhapdf\_photon\_file}, \ttt{lhapdf\_member}, \ttt{lhapdf\_photon\_scheme}) %%%%% \item \ttt{lhapdf\_photon} \newline This is a beams specifier to demand calling \lhapdf\ parton densities as structure functions to integrate processes in hadron collisions with a photon as initializer of the hard scattering process. Note that this only works if the external \lhapdf\ library is present and correctly linked. (cf. \ttt{beams}, \ttt{lhapdf}, \ttt{\$lhapdf\_dir}, \ttt{\$lhapdf\_file}, \ttt{\$lhapdf\_photon\_file}, \ttt{lhapdf\_member}, \ttt{lhapdf\_photon\_scheme}) %%%%% \item \ttt{lhef} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the Les Houches Accord (LHEF) event format files, with XML headers. There are several different versions of this format, which can be selected via the \ttt{\$lhef\_version} specifier (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{\$lhef\_version}, \ttt{\$lhef\_extension}, \ttt{?lhef\_write\_sqme\_prc}, \newline \ttt{?lhef\_write\_sqme\_ref}, \ttt{?lhef\_write\_sqme\_alt}) %%%%% \item \ttt{library} \newline The command \ttt{library = "{\em }"} allows to specify a separate shared object library archive \ttt{lib\_name.so}, not using the standard library \ttt{default\_lib.so}. Those libraries (when using shared libraries) are located in the \ttt{.libs} subdirectory of the user workspace. Specifying a separate library is useful for splitting up large lists of processes, or to restrict a larger number of different loaded model files to one specific process library. (cf. also \ttt{compile}, \ttt{\$library\_name}) %%%%% \item \ttt{log} \newline Numerical function \ttt{log ({\em })} that calculates the natural logarithm of real and complex numerical numbers or variables. (cf. also \ttt{sqrt}, \ttt{exp}, \ttt{log10}) %%%%% \item \ttt{log10} \newline Numerical function \ttt{log10 ({\em })} that calculates the base 10 logarithm of real and complex numerical numbers or variables. (cf. also \ttt{sqrt}, \ttt{exp}, \ttt{log}) %%%%% \item \ttt{long} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the long variant of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{M} \newline Unary (binary) observable specifier for the (signed) mass of a single (two) particle(s), e.g. \ttt{eval M [e1]}, \ttt{any M = 91 GeV [e2, E2]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{M2} \newline Unary (binary) observable specifier for the mass squared of a single (two) particle(s), e.g. \ttt{eval M2 [e1]}, \ttt{all M2 > 2*mZ [e2, E2]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{max} \newline Numerical function with two arguments \ttt{max ({\em }, {\em })} that gives the maximum of the two arguments: $\max (var1, var2)$. It can act on all combinations of integer and real variables. Example: \ttt{real heavier\_mass = max (mZ, mH)}. (cf. also \ttt{min}) %%%%% \item \ttt{meV} \newline Physical unit, stating that the corresponding number is in $10^{-3}$ electron volt. (cf. also \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{MeV} \newline Physical unit, energies in $10^6$ electron volt. (cf. also \ttt{eV}, \ttt{keV}, \ttt{meV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{min} \newline Numerical function with two arguments \ttt{min ({\em }, {\em })} that gives the minimum of the two arguments: $\min (var1, var2)$. It can act on all combinations of integer and real variables. Example: \ttt{real lighter\_mass = min (mZ, mH)}. (cf. also \ttt{max}) %%%%% \item \ttt{mod} \newline Numerical function for integer and real numbers \ttt{mod (x, y)} that computes the remainder of the division of \ttt{x} by \ttt{y} (which must not be zero). (cf. also \ttt{abs}, \ttt{conjg}, \ttt{sgn}, \ttt{modulo}) %%%%% \item \ttt{model} \qquad (default: \ttt{SM}) \newline With this specifier, \ttt{model = {\em }}, one sets the hard interaction physics model for the processes defined after this model specification. The list of available models can be found in Table \ref{tab:models}. Note that the model specification can appear arbitrarily often in a \sindarin\ input file, e.g. for compiling and running processes defined in different physics models. (cf. also \ttt{\$model\_name}) %%%%% \item \ttt{modulo} \newline Numerical function for integer and real numbers \ttt{modulo (x, y)} that computes the value of $x$ modulo $y$. (cf. also \ttt{abs}, \ttt{conjg}, \ttt{sgn}, \ttt{mod}) %%%%% \item \ttt{mokka} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the MOKKA variant for HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{mrad} \newline Expression specifying the physical unit of milliradians for angular variables. This default in \whizard\ is \ttt{rad}. (cf. \ttt{degree}, \ttt{rad}). %%%%% \item \ttt{nbarn} \newline Physical unit, stating that a number is in nanobarns ($10^{-9}$ barn). (cf. also \ttt{abarn}, \ttt{fbarn}, \ttt{pbarn}) %%%%% \item \ttt{n\_in} \newline Integer variable that accesses the number of incoming particles of a process. It can be used in cuts or in an analysis. (cf. also \ttt{sqrts\_hat}, \ttt{cuts}, \ttt{record}, \ttt{n\_out}, \ttt{n\_tot}) %%%%% \item \ttt{Nacl} \newline Unary observable specifier that returns the total number of open anticolor lines of a particle or subevent (i.e., composite particle). Defined only if \ttt{?colorize\_subevt} is true.. (cf. also \ttt{Ncol}, \ttt{?colorize\_subevt}) %%%%% \item \ttt{Ncol} \newline Unary observable specifier that returns the total number of open color lines of a particle or subevent (i.e., composite particle). Defined only if \ttt{?colorize\_subevt} is true.. (cf. also \ttt{Nacl}, \ttt{?colorize\_subevt}) %%%%% \item \ttt{nint} \newline This is a function \ttt{nint ({\em })} that converts real numbers into the closest integer, e.g. \ttt{int i = nint (4.56789)} gives \ttt{i = 5}. (cf. also \ttt{int}, \ttt{floor}, \ttt{ceiling}) %%%%% \item \ttt{no} \newline \ttt{no} is a function that works on a logical expression and a list, \ttt{no {\em } [{\em }]}, and returns \ttt{true} if and only if \ttt{log\_expr} is fulfilled for {\em none} of the entries in \ttt{list}, and \ttt{false} otherwise. Examples: \ttt{no Pt < 100 GeV [lepton]} checks whether no lepton is softer than 100 GeV. It is the logical opposite of the function \ttt{all}. Logical expressions with \ttt{no} can be logically combined with \ttt{and} and \ttt{or}. (cf. also \ttt{all}, \ttt{any}, \ttt{and}, and \ttt{or}) %%%%% \item \ttt{none} \newline Beams specifier that can used to explicitly {\em not} apply a structure function to a beam, e.g. in HERA physics: \ttt{beams = e1, P => none, pdf\_builtin}. (cf. also \ttt{beams}) %%%%% \item \ttt{not} \newline This is the standard logical negation that converts true into false and vice versa. It is applied to logical values, e.g. cut expressions. (cf. also \ttt{and}, \ttt{or}). %%%%% \item \ttt{n\_out} \newline Integer variable that accesses the number of outgoing particles of a process. It can be used in cuts or in an analysis. (cf. also \ttt{sqrts\_hat}, \ttt{cuts}, \ttt{record}, \ttt{n\_in}, \ttt{n\_tot}) %%%%% \item \ttt{n\_tot} \newline Integer variable that accesses the total number of particles (incoming plus outgoing) of a process. It can be used in cuts or in an analysis. (cf. also \ttt{sqrts\_hat}, \ttt{cuts}, \ttt{record}, \ttt{n\_in}, \ttt{n\_out}) %%%%% \item \ttt{observable} \newline With this, \ttt{observable = {\em }}, the user is able to define a variable specifier \ttt{obs\_spec} for observables. These can be reused in the analysis, e.g. as a \ttt{record}, as functions of the fundamental kinematical variables of the processes. (cf. \ttt{analysis}, \ttt{record}) %%%%% \item \ttt{open\_out} \newline With the command, \ttt{open\_out ("{\em })} user-defined information like data or ($\to$) \ttt{printf} statements can be written out to a user-defined file. The command opens an I/O stream to an external file \ttt{{\em }}. (cf. also \ttt{close\_out}, \ttt{\$out\_file}, \ttt{printf}) %%%%% \item \ttt{or} \newline This is the standard two-place logical connective that has the value true if one of its operands is true, otherwise a value of false. It is applied to logical values, e.g. cut expressions. (cf. also \ttt{and}, \ttt{not}). %%%%% \item \ttt{outgoing} \newline Constructor that specifies particles (or subevents) as outgoing. It is used in cuts, analyses or selections, e.g. \ttt{cuts = all Theta > 20 degree [incoming lepton, outgoing lepton]}. Note that the \ttt{outgoing} keyword is redundant and included only for completeness: \ttt{outgoing lepton} has the same meaning as \ttt{lepton}. (cf. also \ttt{beam}, \ttt{incoming}, \ttt{cuts}, \ttt{analysis}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{P} \newline Unary (binary) observable specifier for the spatial momentum $\sqrt{\vec{p}^2}$ of a single (two) particle(s), e.g. \ttt{eval P ["W+"]}, \ttt{all P > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{pbarn} \newline Physical unit, stating that a number is in picobarns ($10^{-12}$ barn). (cf. also \ttt{abarn}, \ttt{fbarn}, \ttt{nbarn}) %%%%% \item \ttt{pdf\_builtin} \newline This is a beams specifier for \whizard's internal PDF structure functions to integrate processes in hadron collisions. (cf. \ttt{beams}, \ttt{pdf\_builtin\_photon}, \ttt{\$pdf\_builtin\_file}) %%%%% \item \ttt{pdf\_builtin\_photon} \newline This is a beams specifier for \whizard's internal PDF structure functions to integrate processes in hadron collisions with a photon as initializer of the hard scattering process. (cf. \ttt{beams}, \ttt{\$pdf\_builtin\_file}) %%%%% \item \ttt{PDG} \newline Unary observable specifier that allows to specify the PDG code of a particle, e.g. \ttt{eval PDG [e1]}, giving \ttt{11}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Phi} \newline Unary and also binary observable specifier, that as a unary observable gives the azimuthal angle of a particle's momentum in the detector frame (beam into $+z$ direction). As a binary observable, it gives the azimuthal difference between the momenta of two particles: \ttt{eval Phi [e1]}, \ttt{all Phi > Pi [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Theta}) %%%%% \item \ttt{photon\_isolation} \newline Logical function \ttt{photon\_isolation if {\em } [{\em } , {\em }]} that cuts out event where the photons in \ttt{{\em }} do not fulfill the condition \ttt{{\em }} and are not isolated from hadronic (and electromagnetic) activity, i.e. the photon fragmentation. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{photon\_recombination} \newline Similar to the \ttt{cluster} statement takes a subevent as argument and combines a (single) photon with the closest non-photon object given in the subevent. Depends on the \sindarin\ variable \ttt{photon\_rec\_r0} which gives the $R$ radius within which the photon is recombined. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}) %%%%% \item \ttt{Pl} \newline Unary (binary) observable specifier for the longitudinal momentum ($p_z$ in the c.m. frame) of a single (two) particle(s), e.g. \ttt{eval Pl ["W+"]}, \ttt{all Pl > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{plot} \newline This command defines the necessary information regarding plotting data as a graph, in the form of: \ttt{plot {\em } \{ {\em } \}}. The record with name \ttt{{\em }} has to be defined, either before or after the plot definition. Possible optional arguments of the \ttt{plot} command are the minimal and maximal values of the axes (\ttt{x\_min}, \ttt{x\_max}, \ttt{y\_min}, \ttt{y\_max}). (cf. \ttt{graph}, \ttt{histogram}, \ttt{record}) %%%%% \item \ttt{polarized} \newline Constructor to instruct \whizard\ to retain polarization of the corresponding particles in the generated events: \ttt{polarized {\em } [, {\em } , ...]}. (cf. also \ttt{unpolarized}, \ttt{simulate}, \ttt{?polarized\_events}) %%%%% \item \ttt{printf} \newline Command that allows to print data as screen messages, into logfiles or into user-defined output files: \ttt{printf "{\em }"}. There exist format specifiers, very similar to the \ttt{C} command \ttt{printf}, e.g. \ttt{printf "\%i" (123)}. (cf. also \ttt{open\_out}, \ttt{close\_out}, \ttt{\$out\_file}, \ttt{?out\_advance}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{process} \newline Allows to set a hard interaction process, either for a decay process with name \ttt{{\em }} as \ttt{process {\em } = {\em } => {\em }, {\em }, ...}, or for a scattering process with name \ttt{{\em } = {\em }, {\em } => {\em }, {\em }, ...}. Note that there can be arbitrarily many processes to be defined in a \sindarin\ input file. There are two options for particle/process sums: flavor sums: \ttt{{\em }:{\em }:...}, where all masses have to be identical, and inclusive sums, \ttt{{\em } + {\em } + ...}. The latter can be done on the level of individual particles, or sums over whole final states. Here, masses can differ, and terms will be translated into different process components. The \ttt{process} command also allows for optional arguments, e.g. to specify a numerical identifier (cf. \ttt{process\_num\_id}), the method how to generate the code for the matrix element(s): \ttt{\$method}, possible methods are either with the \oMega\ matrix element generator, using template matrix elements with different normalizations, or completely internal matrix element; for \oMega\ matrix elements there is also the possibility to specify possible restrictions (cf. \ttt{\$restrictions}). %%%%% \item \ttt{prod} \newline Takes the product of an expression \ttt{} over the elements of the given subevent \ttt{}, \ttt{prod []}, e.g. \ttt{prod Hel [e1:E1]} (cf. \ttt{eval}, \ttt{sum}). %%%%% \item \ttt{Pt} \newline Unary (binary) observable specifier for the transverse momentum ($\sqrt{p_x^2 + p_y^2}$ in the c.m. frame) of a single (two) particle(s), e.g. \ttt{eval Pt ["W+"]}, \ttt{all Pt > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Px} \newline Unary (binary) observable specifier for the $x$-component of the momentum of a single (two) particle(s), e.g. \ttt{eval Px ["W+"]}, \ttt{all Px > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Py} \newline Unary (binary) observable specifier for the $y$-component of the momentum of a single (two) particle(s), e.g. \ttt{eval Py ["W+"]}, \ttt{all Py > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Pz} \newline Unary (binary) observable specifier for the $z$-component of the momentum of a single (two) particle(s), e.g. \ttt{eval Pz ["W+"]}, \ttt{all Pz > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{quit} \newline Command to finish the \whizard\ run (and not execute any further code beyond the appearance of \ttt{quit} in the \sindarin\ file. The command (which is the same as $\to$ \ttt{exit}) allows for an argument, \ttt{quit ({\em })}, where the expression can be executed, e.g. a screen message or an quit code. %%%%% \item \ttt{rad} \newline Expression specifying the physical unit of radians for angular variables. This is the default in \whizard. (cf. \ttt{degree}, \ttt{mrad}). %%%%% \item \ttt{Rap} \newline Unary and also binary observable specifier, that as a unary observable gives the rapidity of a particle momentum. The rapidity is given by $y = \frac12 \log \left[ (E + p_z)/(E-p_z) \right]$. As a binary observable, it gives the rapidity difference between the momenta of two particles: \ttt{eval Rap [e1]}, \ttt{all abs (Rap) < 3.5 [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Eta}, \ttt{abs}) %%%%% \item \ttt{read\_slha} \newline Tells \whizard\ to read in an input file in the SUSY Les Houches accord (SLHA), as \ttt{read\_slha ("slha\_file.slha")}. Note that the files for the use in \whizard\ should have the suffix \ttt{.slha}. (cf. also \ttt{write\_slha}, \ttt{?slha\_read\_decays}, \ttt{?slha\_read\_input}, \ttt{?slha\_read\_spectrum}) %%%%% \item \ttt{real} \newline This is a constructor to specify real constants in the input file. Strictly speaking, it is a unary function setting the value \ttt{real\_val} of the real variable \ttt{real\_var}: \ttt{real {\em } = {\em }}. (cf. also \ttt{int} and \ttt{complex}) %%%%% \item \ttt{real\_epsilon}\\ Predefined real; the relative uncertainty intrinsic to the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{real\_precision}\\ Predefined integer; the decimal precision of the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{real\_range}\\ Predefined integer; the decimal range of the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{real\_tiny}\\ Predefined real; the smallest number which can be represented by the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{record} \newline The \ttt{record} constructor provides an internal data structure in \sindarin\ input files. Its syntax is in general \ttt{record {\em } ({\em })}. The \ttt{{\em }} could be the definition of a tuple of points for a histogram or an \ttt{eval} constructor that tells \whizard\ e.g. by which rule to calculate an observable to be stored in the record \ttt{record\_name}. Example: \ttt{record h (12)} is a record for a histogram defined under the name \ttt{h} with the single data point (bin) at value 12; \ttt{record rap1 (eval Rap [e1])} defines a record with name \ttt{rap1} which has an evaluator to calculate the rapidity (predefined \whizard\ function) of an outgoing electron. (cf. also \ttt{eval}, \ttt{histogram}, \ttt{plot}) %%%%% \item \ttt{renormalization\_scale} \newline This is a command, \ttt{renormalization\_scale = {\em }}, that sets the renormalization scale of a process or list of processes. It overwrites a possible scale set by the ($\to$) \ttt{scale} command. \ttt{{\em }} can be any kinematic expression that leads to a result of momentum dimension one, e.g. \ttt{100 GeV}, \ttt{eval Pt [e1]}. (cf. also \ttt{factorization\_scale}). %%%%% \item \ttt{rescan} \newline This command allows to rescan event samples with modified model parameter, beam structure etc. to recalculate (analysis) observables, e.g.: \newline \ttt{rescan "{\em }" ({\em }) \{ {\em }\}}. \newline \ttt{"{\em }"} is the name of the event file and \ttt{{\em }} is the process whose (existing) event file of arbitrary size that is to be rescanned. Several flags allow to reconstruct the beams ($\to$ \ttt{?recover\_beams}), to reuse only the hard process but rebuild the full events ($\to$ \ttt{?update\_event}), to recalculate the matrix element ($\to$ \ttt{?update\_sqme}) or to recalculate the individual event weight ($\to$ \ttt{?update\_weight}). Further rescan options are redefining model parameter input, or defining a completely new alternative setup ($\to$ \ttt{alt\_setup}) (cf. also \ttt{\$rescan\_input\_format}) %%%%% \item \ttt{results} \newline Only used in the combination \ttt{show (results)}. Forces \whizard\ to print out a results summary for the integrated processes. (cf. also \ttt{show}) %%%%% \item \ttt{reweight} \newline The \ttt{reweight = {\em }} command allows to give for a process or list of processes an alternative weight, given by any kind of scalar expression \ttt{{\em }}, e.g. \ttt{reweight = 0.2} or \ttt{reweight = (eval M2 [e1, E1]) / (eval M2 [e2, E2])}. (cf. also \ttt{alt\_setup}, \ttt{weight}, \ttt{rescan}) %%%%% \item \ttt{sample\_format} \newline Variable that allows the user to specify additional event formats beyond the \whizard\ native binary event format. Its syntax is \ttt{sample\_format = {\em }}, where \ttt{{\em }} can be any of the following specifiers: \ttt{hepevt}, \ttt{hepevt\_verb}, \ttt{ascii}, \ttt{athena}, \ttt{debug}, \ttt{long}, \ttt{short}, \ttt{hepmc}, \ttt{lhef}, \ttt{lha}, \ttt{lha\_verb}, \ttt{stdhep}, \ttt{stdhep\_up}, \texttt{lcio}, \texttt{mokka}. (cf. also \ttt{\$sample}, \ttt{simulate}, \ttt{hepevt}, \ttt{ascii}, \ttt{athena}, \ttt{debug}, \ttt{long}, \ttt{short}, \ttt{hepmc}, \ttt{lhef}, \ttt{lha}, \ttt{stdhep}, \ttt{stdhep\_up}, \texttt{lcio}, \texttt{mokka}, \ttt{\$sample\_normalization}, \ttt{?sample\_pacify}, \newline \ttt{sample\_max\_tries}, \ttt{sample\_split\_n\_evt}, \ttt{sample\_split\_n\_kbytes}) %%%%% \item \ttt{scale} \newline This is a command, \ttt{scale = {\em }}, that sets the kinematic scale of a process or list of processes. Unless overwritten explicitly by ($\to$) \ttt{factorization\_scale} and/or ($\to$) \ttt{renormalization\_scale} it sets both scales. \ttt{{\em }} can be any kinematic expression that leads to a result of momentum dimension one, e.g. \ttt{scale = 100 GeV}, \ttt{scale = eval Pt [e1]}. %%%%% \item \ttt{scan} \newline Constructor to perform loops over variables or scan over processes in the integration procedure. The syntax is \ttt{scan {\em } {\em } ({\em } or {\em } => {\em } /{\em } {\em }) \{ {\em } \}}. The variable \ttt{var} can be specified if it is not a real, e.g. an integer. \ttt{var\_name} is the name of the variable which is also allowed to be a predefined one like \ttt{seed}. For the scan, one can either specify an explicit list of values \ttt{value list}, or use an initial and final value and a rule to increment. The \ttt{scan\_cmd} can either be just a \ttt{show} to print out the scanned variable or the integration of a process. Examples are: \ttt{scan seed (32 => 1 // 2) \{ show (seed\_value) \} }, which runs the seed down in steps 32, 16, 8, 4, 2, 1 (division by two). \ttt{scan mW (75 GeV, 80 GeV => 82 GeV /+ 0.5 GeV, 83 GeV => 90 GeV /* 1.2) \{ show (sw) \} } scans over the $W$ mass for the values 75, 80, 80.5, 81, 81.5, 82, 83 GeV, namely one discrete value, steps by adding 0.5 GeV, and increase by 20 \% (the latter having no effect as it already exceeds the final value). It prints out the corresponding value of the effective mixing angle which is defined as a dependent variable in the model input file(s). \ttt{scan sqrts (500 GeV => 600 GeV /+ 10 GeV) \{ integrate (proc) \} } integrates the process \ttt{proc} in eleven increasing 10 GeV steps in center-of-mass energy from 500 to 600 GeV. (cf. also \ttt{/+}, \ttt{/+/}, \ttt{/-}, \ttt{/*}, \ttt{/*/}, \ttt{//}) %%%%% \item \ttt{select} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_b\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are $b$ jets and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_c\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are $c$ jets (but {\em not} $b$ jets) and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_light\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are light(-flavor) jets and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_non\_b\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are {\em not} $b$ jets ($c$ and light jets) and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{selection} \newline Command that allows to select particular final states in an analysis selection, \ttt{selection = {\em }}. The term \ttt{log\_expr} can be any kind of logical expression. The syntax matches exactly the one of the ($\to$) \ttt{cuts} command. E.g. \ttt{selection = any PDG == 13} is an electron selection in a lepton sample. %%%%% \item \ttt{sgn} \newline Numerical function for integer and real numbers that gives the sign of its argument: \ttt{sgn ({\em })} yields $+1$ if \ttt{{\em }} is positive or zero, and $-1$ otherwise. (cf. also \ttt{abs}, \ttt{conjg}, \ttt{mod}, \ttt{modulo}) %%%%% \item \ttt{short} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the short variant of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{show} \newline This is a unary function that is operating on specific constructors in order to print them out in the \whizard\ screen output as well as the log file \ttt{whizard.log}. Examples are \ttt{show({\em })} to issue a specific parameter from a model or a constant defined in a \sindarin\ input file, \ttt{show(integral({\em }))}, \ttt{show(library)}, \ttt{show(results)}, or \ttt{show({\em })} for any arbitrary variable. Further possibilities are \ttt{show(real)}, \ttt{show(string)}, \ttt{show(logical)} etc. to allow to show all defined real, string, logical etc. variables, respectively. (cf. also \ttt{library}, \ttt{results}) %%%%% \item \ttt{simulate} \newline This command invokes the generation of events for the process \ttt{proc} by means of \ttt{simulate ({\em })}. Optional arguments: \ttt{\$sample}, \ttt{sample\_format}, \ttt{checkpoint} (cf. also \ttt{integrate}, \ttt{luminosity}, \ttt{n\_events}, \ttt{\$sample}, \ttt{sample\_format}, \ttt{checkpoint}, \ttt{?unweighted}, \ttt{safety\_factor}, \ttt{?negative\_weights}, \ttt{sample\_max\_tries}, \ttt{sample\_split\_n\_evt}, \ttt{sample\_split\_n\_kbytes}) %%%%% \item \ttt{sin} \newline Numerical function \ttt{sin ({\em })} that calculates the sine trigonometric function of real and complex numerical numbers or variables. (cf. also \ttt{cos}, \ttt{tan}, \ttt{asin}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{sinh} \newline Numerical function \ttt{sinh ({\em })} that calculates the hyperbolic sine function of real and complex numerical numbers or variables. Note that its inverse function is part of the \ttt{Fortran2008} status and hence not realized. (cf. also \ttt{cosh}, \ttt{tanh}) %%%%% \item \ttt{sort} \newline Subevent function that allows to sort a particle list/subevent either by increasing PDG code: \ttt{sort [{\em }]} (particles first, then antiparticles). Alternatively, it can sort according to a unary or binary particle observable (in that case there is a second particle list, where the first particle is taken as a reference): \ttt{sort by {\em } [{\em } [, {\em }]]}. (cf. also \ttt{extract}, \ttt{combine}, \ttt{collect}, \ttt{join}, \ttt{by}, \ttt{+}) %%%%% \item \ttt{sprintf} \newline Command that allows to print data into a string variable: \ttt{sprintf "{\em }"}. There exist format specifiers, very similar to the \ttt{C} command \ttt{sprintf}, e.g. \ttt{sprintf "\%i" (123)}. (cf. \ttt{printf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{sqrt} \newline Numerical function \ttt{sqrt ({\em })} that calculates the square root of real and complex numerical numbers or variables. (cf. also \ttt{exp}, \ttt{log}, \ttt{log10}) %%%%% \item \ttt{sqrts\_hat} \newline Real variable that accesses the partonic energy of a hard-scattering process. It can be used in cuts or in an analysis, e.g. \ttt{cuts = sqrts\_hat > {\em } [ {\em } ]}. The physical unit can be one of the following \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{GeV}, and \ttt{TeV}. (cf. also \ttt{sqrts}, \ttt{cuts}, \ttt{record}) %%%%% \item \ttt{stable} \newline This constructor allows particles in the final states of processes in decay cascade set-up to be set as stable, and not letting them decay. The syntax is \ttt{stable {\em }} (cf. also \ttt{unstable}) %%%%% \item \ttt{stdhep} \newline Specifier for the \ttt{sample\_format} command to demand the generation of binary StdHEP event files based on the HEPEVT common block. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{stdhep\_up} \newline Specifier for the \ttt{sample\_format} command to demand the generation of binary StdHEP event files based on the HEPRUP/HEPEUP common blocks. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{sum} \newline Takes the sum of an expression \ttt{} over the elements of the given subevent \ttt{}, \ttt{sum []}, e.g. \ttt{sum Pt/2 [jets]} (cf. \ttt{eval}, \ttt{prod}). %%%%% \item \ttt{tan} \newline Numerical function \ttt{tan ({\em })} that calculates the tangent trigonometric function of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{asin}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{tanh} \newline Numerical function \ttt{tanh ({\em })} that calculates the hyperbolic tangent function of real and complex numerical numbers or variables. Note that its inverse function is part of the \ttt{Fortran2008} status and hence not realized. (cf. also \ttt{cosh}, \ttt{sinh}) %%%%% \item \ttt{TeV} \newline Physical unit, for energies in $10^{12}$ electron volt. (cf. also \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{meV}, \ttt{GeV}) %%%% \item \ttt{then} \newline Mandatory phrase in a conditional clause: \ttt{if {\em } then {\em } \ldots endif}. (cf. also \ttt{if}, \ttt{else}, \ttt{elsif}, \ttt{endif}). %%%%% \item \ttt{Theta} \newline Unary and also binary observable specifier, that as a unary observable gives the angle between a particle's momentum and the beam axis ($+z$ direction). As a binary observable, it gives the angle enclosed between the momenta of the two particles: \ttt{eval Theta [e1]}, \ttt{all Theta > 30 degrees [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Phi}, \ttt{Theta\_star}) %%%%% \item \ttt{Theta\_star} \newline Binary observable specifier, that gives the polar angle enclosed between the momenta of the two particles in the rest frame of the mother particle (momentum sum of the two particle): \ttt{eval Theta\_star [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Theta}) %%%%% \item \ttt{true} \newline Constructor stating that a logical expression or variable is true, e.g. \ttt{?{\em } = true}. (cf. also \ttt{false}). %%%%% \item \ttt{unpolarized} \newline Constructor to force \whizard\ to discard polarization of the corresponding particles in the generated events: \ttt{unpolarized {\em } [, {\em } , ...]}. (cf. also \ttt{polarized}, \ttt{simulate}, \ttt{?polarized\_events}) %%%%% \item \ttt{unstable} \newline This constructor allows to let final state particles of the hard interaction undergo a subsequent (cascade) decay (in the on-shell approximation). For this the user has to define the list of desired \begin{figure} \begin{Verbatim}[frame=single] process zee = Z => e1, E1 process zuu = Z => u, U process zz = e1, E1 => Z, Z compile integrate (zee) { iterations = 1:100 } integrate (zuu) { iterations = 1:100 } sqrts = 500 GeV integrate (zz) { iterations = 3:5000, 2:5000 } unstable Z (zee, zuu) \end{Verbatim} \caption{\label{fig:ex_unstable} \sindarin\ input file for unstable particles and inclusive decays.} \end{figure} decay channels as \ttt{unstable {\em } ({\em }, {\em }, ....)}, where \ttt{mother} is the mother particle, and the argument is a list of decay channels. Note that -- unless the \ttt{?auto\_decays = true} flag has been set -- these decay channels have to be provided by the user as in the example in Fig. \ref{fig:ex_unstable}. First, the $Z$ decays to electrons and up quarks are generated, then $ZZ$ production at a 500 GeV ILC is called, and then both $Z$s are decayed according to the probability distribution of the two generated decay matrix elements. This obviously allows also for inclusive decays. (cf. also \ttt{stable}, \ttt{?auto\_decays}) %%%%% \item \ttt{weight} \newline This is a command, \ttt{weight = {\em }}, that allows to specify a weight for a process or list of processes. \ttt{{\em }} can be any expression that leads to a scalar result, e.g. \ttt{weight = 0.2}, \ttt{weight = eval Pt [jet]}. (cf. also \ttt{rescan}, \ttt{alt\_setup}, \ttt{reweight}) %%%%% \item \ttt{write\_analysis} \newline The \ttt{write\_analysis} statement tells \whizard\ to write the analysis setup by the user for the \sindarin\ input file under consideration. If no \ttt{\$out\_file} is provided, the histogram tables/plot data etc. are written to the default file \ttt{whizard\_analysis.dat}. Note that the related command \ttt{compile\_analysis} does the same as \ttt{write\_analysis} but in addition invokes the \whizard\ \LaTeX routines for producing postscript or PDF output of the data. (cf. also \ttt{\$out\_file}, \ttt{compile\_analysis}) %%%%% \item \ttt{write\_slha} \newline Demands \whizard\ to write out a file in the SUSY Les Houches accord (SLHA) format. (cf. also \ttt{read\_slha}, \ttt{?slha\_read\_decays}, \ttt{?slha\_read\_input}, \ttt{?slha\_read\_spectrum}) %%%%% \end{itemize} \section{Variables} \subsection{Rebuild Variables} \begin{itemize} \item \ttt{?rebuild\_events} \qquad (default: \ttt{false}) \newline This logical variable, if set \ttt{true} triggers \whizard\ to newly create an event sample, even if nothing seems to have changed, including the MD5 checksum. This can be used when manually manipulating some settings. (cf also \ttt{?rebuild\_grids}, \ttt{?rebuild\_library}, \ttt{?rebuild\_phase\_space}) %%%%% \item \ttt{?rebuild\_grids} \qquad (default: \ttt{false}) \newline The logical variable \ttt{?rebuild\_grids} forces \whizard\ to newly create the VAMP grids when using VAMP as an integration method, even if they are already present. (cf. also \ttt{?rebuild\_events}, \ttt{?rebuild\_library}, \ttt{?rebuild\_phase\_space}) %%%%% \item \ttt{?rebuild\_library} \qquad (default: \ttt{false}) \newline The logical variable \ttt{?rebuild\_library = true/false} specifies whether the library(-ies) for the matrix element code for processes is re-generated (incl. possible Makefiles etc.) by the corresponding ME method (e.g. if the process has been changed, but not its name). This can also be set as a command-line option \ttt{whizard --rebuild}. The default is \ttt{false}, i.e. code is never re-generated if it is present and the MD5 checksum is valid. (cf. also \ttt{?recompile\_library}, \ttt{?rebuild\_grids}, \ttt{?rebuild\_phase\_space}) %%%%% \item \ttt{?rebuild\_phase\_space} \qquad (default: \ttt{false}) \newline This logical variable, if set \ttt{true}, triggers recreation of the phase space file by \whizard\. (cf. also \ttt{?rebuild\_events}, \ttt{?rebuild\_grids}, \ttt{?rebuild\_library}) %%%%% \item \ttt{?recompile\_library} \qquad (default: \ttt{false}) \newline The logical variable \ttt{?recompile\_library = true/false} specifies whether the library(-ies) for the matrix element code for processes is re-compiled (e.g. if the process code has been manually modified by the user). This can also be set as a command-line option \ttt{whizard --recompile}. The default is \ttt{false}, i.e. code is never re-compiled if its corresponding object file is present. (cf. also \ttt{?rebuild\_library}) %%%%% \end{itemize} \subsection{Standard Variables} \begin{itemize} \input{variables} \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \section*{Acknowledgements} We would like to thank E.~Boos, R.~Chierici, K.~Desch, M.~Kobel, F.~Krauss, P.M.~Manakos, N.~Meyer, K.~M\"onig, H.~Reuter, T.~Robens, S.~Rosati, J.~Schumacher, M.~Schumacher, and C.~Schwinn who contributed to \whizard\ by their suggestions, bits of codes and valuable remarks and/or used several versions of the program for real-life applications and thus helped a lot in debugging and improving the code. Special thanks go to A.~Vaught and J.~Weill for their continuos efforts on improving the g95 and gfortran compilers, respectively. %\end{fmffile} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% References %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\baselineskip15pt \begin{thebibliography}{19} \bibitem{PYTHIA} T.~Sj\"ostrand, Comput.\ Phys.\ Commun.\ \textbf{82} (1994) 74. \bibitem{comphep} A.~Pukhov, \emph{et al.}, Preprint INP MSU 98-41/542, \ttt{hep-ph/9908288}. \bibitem{madgraph} T.~Stelzer and W.F.~Long, Comput.\ Phys.\ Commun.\ \textbf{81} (1994) 357. \bibitem{omega} T.~Ohl, \emph{Proceedings of the Seventh International Workshop on Advanced Computing and Analysis Technics in Physics Research}, ACAT 2000, Fermilab, October 2000, IKDA-2000-30, \ttt{hep-ph/0011243}; M.~Moretti, Th.~Ohl, and J.~Reuter, LC-TOOL-2001-040 \bibitem{VAMP} T.~Ohl, {\em Vegas revisited: Adaptive Monte Carlo integration beyond factorization}, Comput.\ Phys.\ Commun.\ {\bf 120}, 13 (1999) [arXiv:hep-ph/9806432]. %%CITATION = CPHCB,120,13;%% \bibitem{CIRCE} T.~Ohl, {\em CIRCE version 1.0: Beam spectra for simulating linear collider physics}, Comput.\ Phys.\ Commun.\ {\bf 101}, 269 (1997) [arXiv:hep-ph/9607454]. %%CITATION = CPHCB,101,269;%% %\cite{Gribov:1972rt} \bibitem{Gribov:1972rt} V.~N.~Gribov and L.~N.~Lipatov, {\em e+ e- pair annihilation and deep inelastic e p scattering in perturbation theory}, Sov.\ J.\ Nucl.\ Phys.\ {\bf 15}, 675 (1972) [Yad.\ Fiz.\ {\bf 15}, 1218 (1972)]. %%CITATION = SJNCA,15,675;%% %\cite{Kuraev:1985hb} \bibitem{Kuraev:1985hb} E.~A.~Kuraev and V.~S.~Fadin, {\em On Radiative Corrections to e+ e- Single Photon Annihilation at High-Energy}, Sov.\ J.\ Nucl.\ Phys.\ {\bf 41}, 466 (1985) [Yad.\ Fiz.\ {\bf 41}, 733 (1985)]. %%CITATION = SJNCA,41,466;%% %\cite{Skrzypek:1990qs} \bibitem{Skrzypek:1990qs} M.~Skrzypek and S.~Jadach, {\em Exact and approximate solutions for the electron nonsinglet structure function in QED}, Z.\ Phys.\ C {\bf 49}, 577 (1991). %%CITATION = ZEPYA,C49,577;%% %\cite{Schulte:1998au} \bibitem{Schulte:1998au} D.~Schulte, {\em Beam-beam simulations with Guinea-Pig}, eConf C {\bf 980914}, 127 (1998). %%CITATION = ECONF,C980914,127;%% %\cite{Schulte:1999tx} \bibitem{Schulte:1999tx} D.~Schulte, {\em Beam-beam simulations with GUINEA-PIG}, CERN-PS-99-014-LP. %%CITATION = CERN-PS-99-014-LP;%% %\cite{Schulte:2007zz} \bibitem{Schulte:2007zz} D.~Schulte, M.~Alabau, P.~Bambade, O.~Dadoun, G.~Le Meur, C.~Rimbault and F.~Touze, {\em GUINEA PIG++ : An Upgraded Version of the Linear Collider Beam Beam Interaction Simulation Code GUINEA PIG}, Conf.\ Proc.\ C {\bf 070625}, 2728 (2007). %%CITATION = CONFP,C070625,2728;%% %\cite{Behnke:2013xla} \bibitem{Behnke:2013xla} T.~Behnke, J.~E.~Brau, B.~Foster, J.~Fuster, M.~Harrison, J.~M.~Paterson, M.~Peskin and M.~Stanitzki {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 1: Executive Summary}, arXiv:1306.6327 [physics.acc-ph]. %%CITATION = ARXIV:1306.6327;%% %\cite{Baer:2013cma} \bibitem{Baer:2013cma} H.~Baer, T.~Barklow, K.~Fujii, Y.~Gao, A.~Hoang, S.~Kanemura, J.~List and H.~E.~Logan {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 2: Physics}, arXiv:1306.6352 [hep-ph]. %%CITATION = ARXIV:1306.6352;%% %\cite{Adolphsen:2013jya} \bibitem{Adolphsen:2013jya} C.~Adolphsen, M.~Barone, B.~Barish, K.~Buesser, P.~Burrows, J.~Carwardine, J.~Clark and H\'{e}l\`{e}n.~M.~Durand {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase}, arXiv:1306.6353 [physics.acc-ph]. %%CITATION = ARXIV:1306.6353;%% %\cite{Adolphsen:2013kya} \bibitem{Adolphsen:2013kya} C.~Adolphsen, M.~Barone, B.~Barish, K.~Buesser, P.~Burrows, J.~Carwardine, J.~Clark and H\'{e}l\`{e}n.~M.~Durand {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design}, arXiv:1306.6328 [physics.acc-ph]. %%CITATION = ARXIV:1306.6328;%% %\cite{Behnke:2013lya} \bibitem{Behnke:2013lya} T.~Behnke, J.~E.~Brau, P.~N.~Burrows, J.~Fuster, M.~Peskin, M.~Stanitzki, Y.~Sugimoto and S.~Yamada {\it et al.}, %``The International Linear Collider Technical Design Report - Volume 4: Detectors,'' arXiv:1306.6329 [physics.ins-det]. %%CITATION = ARXIV:1306.6329;%% %\cite{Aicheler:2012bya} \bibitem{Aicheler:2012bya} M.~Aicheler, P.~Burrows, M.~Draper, T.~Garvey, P.~Lebrun, K.~Peach and N.~Phinney {\it et al.}, {\em A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report}, CERN-2012-007. %%CITATION = CERN-2012-007;%% %\cite{Lebrun:2012hj} \bibitem{Lebrun:2012hj} P.~Lebrun, L.~Linssen, A.~Lucaci-Timoce, D.~Schulte, F.~Simon, S.~Stapnes, N.~Toge and H.~Weerts {\it et al.}, {\em The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report}, arXiv:1209.2543 [physics.ins-det]. %%CITATION = ARXIV:1209.2543;%% %\cite{Linssen:2012hp} \bibitem{Linssen:2012hp} L.~Linssen, A.~Miyamoto, M.~Stanitzki and H.~Weerts, {\em Physics and Detectors at CLIC: CLIC Conceptual Design Report}, arXiv:1202.5940 [physics.ins-det]. %%CITATION = ARXIV:1202.5940;%% %\cite{vonWeizsacker:1934sx} \bibitem{vonWeizsacker:1934sx} C.~F.~von Weizs\"acker, {\em Radiation emitted in collisions of very fast electrons}, Z.\ Phys.\ {\bf 88}, 612 (1934). %%CITATION = ZEPYA,88,612;%% %\cite{Williams:1934ad} \bibitem{Williams:1934ad} E.~J.~Williams, {\em Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae}, Phys.\ Rev.\ {\bf 45}, 729 (1934). %%CITATION = PHRVA,45,729;%% %\cite{Budnev:1974de} \bibitem{Budnev:1974de} V.~M.~Budnev, I.~F.~Ginzburg, G.~V.~Meledin and V.~G.~Serbo, {\em The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation}, Phys.\ Rept.\ {\bf 15} (1974) 181. %%CITATION = PRPLC,15,181;%% %\cite{Ginzburg:1981vm} \bibitem{Ginzburg:1981vm} I.~F.~Ginzburg, G.~L.~Kotkin, V.~G.~Serbo and V.~I.~Telnov, {\em Colliding gamma e and gamma gamma Beams Based on the Single Pass Accelerators (of Vlepp Type)}, Nucl.\ Instrum.\ Meth.\ {\bf 205}, 47 (1983). %%CITATION = NUIMA,205,47;%% %\cite{Telnov:1989sd} \bibitem{Telnov:1989sd} V.~I.~Telnov, {\em Problems of Obtaining $\gamma \gamma$ and $\gamma \epsilon$ Colliding Beams at Linear Colliders}, Nucl.\ Instrum.\ Meth.\ A {\bf 294}, 72 (1990). %%CITATION = NUIMA,A294,72;%% %\cite{Telnov:1995hc} \bibitem{Telnov:1995hc} V.~I.~Telnov, {\em Principles of photon colliders}, Nucl.\ Instrum.\ Meth.\ A {\bf 355}, 3 (1995). %%CITATION = NUIMA,A355,3;%% %\cite{AguilarSaavedra:2001rg} \bibitem{AguilarSaavedra:2001rg} J.~A.~Aguilar-Saavedra {\it et al.} [ECFA/DESY LC Physics Working Group Collaboration], {\em TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e+ e- linear collider}, hep-ph/0106315. %%CITATION = HEP-PH/0106315;%% %\cite{Richard:2001qm} \bibitem{Richard:2001qm} F.~Richard, J.~R.~Schneider, D.~Trines and A.~Wagner, {\em TESLA, The Superconducting Electron Positron Linear Collider with an Integrated X-ray Laser Laboratory, Technical Design Report Part 1 : Executive Summary}, hep-ph/0106314. %%CITATION = HEP-PH/0106314;%% %\cite{Sudakov:1954sw} \bibitem{Sudakov:1954sw} V.~V.~Sudakov, %``Vertex parts at very high-energies in quantum electrodynamics,'' Sov.\ Phys.\ JETP {\bf 3}, 65 (1956) [Zh.\ Eksp.\ Teor.\ Fiz.\ {\bf 30}, 87 (1956)]. %%CITATION = SPHJA,3,65;%% \cite{Sjostrand:1985xi} \bibitem{Sjostrand:1985xi} T.~Sjostrand, %``A Model for Initial State Parton Showers,'' Phys.\ Lett.\ {\bf 157B}, 321 (1985). doi:10.1016/0370-2693(85)90674-4 %%CITATION = doi:10.1016/0370-2693(85)90674-4;%% %\cite{Sjostrand:2006za} \bibitem{Sjostrand:2006za} T.~Sjostrand, S.~Mrenna and P.~Z.~Skands, %``PYTHIA 6.4 Physics and Manual,'' JHEP {\bf 0605}, 026 (2006) doi:10.1088/1126-6708/2006/05/026 [hep-ph/0603175]. %%CITATION = doi:10.1088/1126-6708/2006/05/026;%% %\cite{Ohl:1998jn} \bibitem{Ohl:1998jn} T.~Ohl, {\em Vegas revisited: Adaptive Monte Carlo integration beyond factorization}, Comput.\ Phys.\ Commun.\ {\bf 120}, 13 (1999) [hep-ph/9806432]. %%CITATION = HEP-PH/9806432;%% %\cite{Lepage:1980dq} \bibitem{Lepage:1980dq} G.~P.~Lepage, %``Vegas: An Adaptive Multidimensional Integration Program,'' CLNS-80/447. %%CITATION = CLNS-80/447;%% \bibitem{HDECAY} A.~Djouadi, J.~Kalinowski, M.~Spira, Comput.\ Phys.\ Commun.\ \textbf{108} (1998) 56-74. %\cite{Beyer:2006hx} \bibitem{Beyer:2006hx} M.~Beyer, W.~Kilian, P.~Krstono\v{s}ic, K.~M\"onig, J.~Reuter, E.~Schmidt and H.~Schr\"oder, {\em Determination of New Electroweak Parameters at the ILC - Sensitivity to New Physics}, Eur.\ Phys.\ J.\ C {\bf 48}, 353 (2006) [hep-ph/0604048]. %%CITATION = HEP-PH/0604048;%% %\cite{Alboteanu:2008my} \bibitem{Alboteanu:2008my} A.~Alboteanu, W.~Kilian and J.~Reuter, {\em Resonances and Unitarity in Weak Boson Scattering at the LHC}, JHEP {\bf 0811}, 010 (2008) [arXiv:0806.4145 [hep-ph]]. %%CITATION = ARXIV:0806.4145;%% %\cite{Binoth:2010xt} \bibitem{Binoth:2010xt} T.~Binoth {\it et al.}, %``A Proposal for a standard interface between Monte Carlo tools and one-loop programs,'' Comput.\ Phys.\ Commun.\ {\bf 181}, 1612 (2010) doi:10.1016/j.cpc.2010.05.016 [arXiv:1001.1307 [hep-ph]]. %%CITATION = doi:10.1016/j.cpc.2010.05.016;%% %\cite{Alioli:2013nda} \bibitem{Alioli:2013nda} S.~Alioli {\it et al.}, %``Update of the Binoth Les Houches Accord for a standard interface %between Monte Carlo tools and one-loop programs,'' Comput.\ Phys.\ Commun.\ {\bf 185}, 560 (2014) doi:10.1016/j.cpc.2013.10.020 [arXiv:1308.3462 [hep-ph]]. %%CITATION = doi:10.1016/j.cpc.2013.10.020;%% %\cite{Speckner:2010zi} \bibitem{Speckner:2010zi} C.~Speckner, {\em LHC Phenomenology of the Three-Site Higgsless Model}, PhD thesis, arXiv:1011.1851 [hep-ph]. %%CITATION = ARXIV:1011.1851;%% %\cite{Chivukula:2006cg} \bibitem{Chivukula:2006cg} R.~S.~Chivukula, B.~Coleppa, S.~Di Chiara, E.~H.~Simmons, H.~-J.~He, M.~Kurachi and M.~Tanabashi, {\em A Three Site Higgsless Model}, Phys.\ Rev.\ D {\bf 74}, 075011 (2006) [hep-ph/0607124]. %%CITATION = HEP-PH/0607124;%% %\cite{Chivukula:2005xm} \bibitem{Chivukula:2005xm} R.~S.~Chivukula, E.~H.~Simmons, H.~-J.~He, M.~Kurachi and M.~Tanabashi, {\em Ideal fermion delocalization in Higgsless models}, Phys.\ Rev.\ D {\bf 72}, 015008 (2005) [hep-ph/0504114]. %%CITATION = HEP-PH/0504114;%% %\cite{Ohl:2008ri} \bibitem{Ohl:2008ri} T.~Ohl and C.~Speckner, {\em Production of Almost Fermiophobic Gauge Bosons in the Minimal Higgsless Model at the LHC}, Phys.\ Rev.\ D {\bf 78}, 095008 (2008) [arXiv:0809.0023 [hep-ph]]. %%CITATION = ARXIV:0809.0023;%% %\cite{Ohl:2002jp} \bibitem{Ohl:2002jp} T.~Ohl and J.~Reuter, {\em Clockwork SUSY: Supersymmetric Ward and Slavnov-Taylor identities at work in Green's functions and scattering amplitudes}, Eur.\ Phys.\ J.\ C {\bf 30}, 525 (2003) [hep-th/0212224]. %%CITATION = HEP-TH/0212224;%% %\cite{Reuter:2009ex} \bibitem{Reuter:2009ex} J.~Reuter and F.~Braam, {\em The NMSSM implementation in WHIZARD}, AIP Conf.\ Proc.\ {\bf 1200}, 470 (2010) [arXiv:0909.3059 [hep-ph]]. %%CITATION = ARXIV:0909.3059;%% %\cite{Kalinowski:2008fk} \bibitem{Kalinowski:2008fk} J.~Kalinowski, W.~Kilian, J.~Reuter, T.~Robens and K.~Rolbiecki, {\em Pinning down the Invisible Sneutrino}, JHEP {\bf 0810}, 090 (2008) [arXiv:0809.3997 [hep-ph]]. %%CITATION = ARXIV:0809.3997;%% %\cite{Robens:2008sa} \bibitem{Robens:2008sa} T.~Robens, J.~Kalinowski, K.~Rolbiecki, W.~Kilian and J.~Reuter, {\em (N)LO Simulation of Chargino Production and Decay}, Acta Phys.\ Polon.\ B {\bf 39}, 1705 (2008) [arXiv:0803.4161 [hep-ph]]. %%CITATION = ARXIV:0803.4161;%% %\cite{Kilian:2004pp} \bibitem{Kilian:2004pp} W.~Kilian, D.~Rainwater and J.~Reuter, {\em Pseudo-axions in little Higgs models}, Phys.\ Rev.\ D {\bf 71}, 015008 (2005) [hep-ph/0411213]. %%CITATION = HEP-PH/0411213;%% %\cite{Kilian:2006eh} \bibitem{Kilian:2006eh} W.~Kilian, D.~Rainwater and J.~Reuter, {\em Distinguishing little-Higgs product and simple group models at the LHC and ILC}, Phys.\ Rev.\ D {\bf 74}, 095003 (2006) [Erratum-ibid.\ D {\bf 74}, 099905 (2006)] [hep-ph/0609119]. %%CITATION = HEP-PH/0609119;%% %\cite{Ohl:2004tn} \bibitem{Ohl:2004tn} T.~Ohl and J.~Reuter, {\em Testing the noncommutative standard model at a future photon collider}, Phys.\ Rev.\ D {\bf 70}, 076007 (2004) [hep-ph/0406098]. %%CITATION = HEP-PH/0406098;%% %\cite{Ohl:2010zf} \bibitem{Ohl:2010zf} T.~Ohl and C.~Speckner, {\em The Noncommutative Standard Model and Polarization in Charged Gauge Boson Production at the LHC}, Phys.\ Rev.\ D {\bf 82}, 116011 (2010) [arXiv:1008.4710 [hep-ph]]. %%CITATION = ARXIV:1008.4710;%% \bibitem{LesHouches} E.~Boos {\it et al.}, {\em Generic user process interface for event generators}, arXiv:hep-ph/0109068. %%CITATION = HEP-PH/0109068;%% \bibitem{Skands:2003cj} P.~Z.~Skands {\it et al.}, {\em SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators, Decay Packages, and Event Generators}, JHEP {\bf 0407}, 036 (2004) [arXiv:hep-ph/0311123]. %%CITATION = JHEPA,0407,036;%% %\cite{AguilarSaavedra:2005pw} \bibitem{AguilarSaavedra:2005pw} J.~A.~Aguilar-Saavedra, A.~Ali, B.~C.~Allanach, R.~L.~Arnowitt, H.~A.~Baer, J.~A.~Bagger, C.~Balazs and V.~D.~Barger {\it et al.}, {\em Supersymmetry parameter analysis: SPA convention and project}, Eur.\ Phys.\ J.\ C {\bf 46}, 43 (2006) [hep-ph/0511344]. %%CITATION = HEP-PH/0511344;%% %\cite{Allanach:2008qq} \bibitem{Allanach:2008qq} B.~C.~Allanach, C.~Balazs, G.~Belanger, M.~Bernhardt, F.~Boudjema, D.~Choudhury, K.~Desch and U.~Ellwanger {\it et al.}, %``SUSY Les Houches Accord 2,'' Comput.\ Phys.\ Commun.\ {\bf 180}, 8 (2009) [arXiv:0801.0045 [hep-ph]]. %%CITATION = ARXIV:0801.0045;%% \bibitem{LHEF} J.~Alwall {\it et al.}, {\em A standard format for Les Houches event files}, Comput.\ Phys.\ Commun.\ {\bf 176}, 300 (2007) [arXiv:hep-ph/0609017]. %%CITATION = CPHCB,176,300;%% \bibitem{Hagiwara:2005wg} K.~Hagiwara {\it et al.}, {\em Supersymmetry simulations with off-shell effects for LHC and ILC}, Phys.\ Rev.\ D {\bf 73}, 055005 (2006) [arXiv:hep-ph/0512260]. %%CITATION = PHRVA,D73,055005;%% \bibitem{Allanach:2002nj} B.~C.~Allanach {\it et al.}, {\em The Snowmass points and slopes: Benchmarks for SUSY searches}, in {\it Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) } ed. N.~Graf, Eur.\ Phys.\ J.\ C {\bf 25} (2002) 113 [eConf {\bf C010630} (2001) P125] [arXiv:hep-ph/0202233]. %%CITATION = HEP-PH 0202233;%% \bibitem{PeskinSchroeder} M.E. Peskin, D.V.Schroeder, {\em An Introduction to Quantum Field Theory}, Addison-Wesley Publishing Co., 1995. \bibitem{UtaKlein} U. Klein, O. Fischer, {\em private communications}. \bibitem{stdhep} L.~Garren, {\em StdHep, Monte Carlo Standardization at FNAL}, Fermilab CS-doc-903, \url{http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=903} %\cite{Frixione:1998jh} \bibitem{Frixione:1998jh} S.~Frixione, %``Isolated photons in perturbative QCD,'' Phys.\ Lett.\ B {\bf 429}, 369 (1998) doi:10.1016/S0370-2693(98)00454-7 [hep-ph/9801442]. %%CITATION = doi:10.1016/S0370-2693(98)00454-7;%% \bibitem{LHAPDF} W.~Giele {\it et al.}, {\em The QCD / SM working group: Summary report}, arXiv:hep-ph/0204316; %%CITATION = HEP-PH/0204316;%% M.~R.~Whalley, D.~Bourilkov and R.~C.~Group, {\em The Les Houches Accord PDFs (LHAPDF) and Lhaglue}, arXiv:hep-ph/0508110; %%CITATION = HEP-PH/0508110;%% D.~Bourilkov, R.~C.~Group and M.~R.~Whalley, {\em LHAPDF: PDF use from the Tevatron to the LHC}, arXiv:hep-ph/0605240. %%CITATION = HEP-PH/0605240;%% \bibitem{HepMC} M.~Dobbs and J.~B.~Hansen, {\em The HepMC C++ Monte Carlo event record for High Energy Physics}, Comput.\ Phys.\ Commun.\ {\bf 134}, 41 (2001). %%CITATION = CPHCB,134,41;%% %\cite{Boos:2004kh} \bibitem{Boos:2004kh} E.~Boos {\it et al.} [CompHEP Collaboration], %``CompHEP 4.4: Automatic computations from Lagrangians to events,'' Nucl.\ Instrum.\ Meth.\ A {\bf 534}, 250 (2004) [hep-ph/0403113]. %%CITATION = HEP-PH/0403113;%% %493 citations counted in INSPIRE as of 12 May 2014 % Parton distributions %\cite{Pumplin:2002vw} \bibitem{Pumplin:2002vw} J.~Pumplin, D.~R.~Stump, J.~Huston {\it et al.}, {\em New generation of parton distributions with uncertainties from global QCD analysis}, JHEP {\bf 0207}, 012 (2002). [hep-ph/0201195]. %\cite{Martin:2004dh} \bibitem{Martin:2004dh} A.~D.~Martin, R.~G.~Roberts, W.~J.~Stirling {\it et al.}, {\em Parton distributions incorporating QED contributions}, Eur.\ Phys.\ J.\ {\bf C39}, 155-161 (2005). [hep-ph/0411040]. %\cite{Martin:2009iq} \bibitem{Martin:2009iq} A.~D.~Martin, W.~J.~Stirling, R.~S.~Thorne {\it et al.}, {\em Parton distributions for the LHC}, Eur.\ Phys.\ J.\ {\bf C63}, 189-285 (2009). [arXiv:0901.0002 [hep-ph]]. %\cite{Lai:2010vv} \bibitem{Lai:2010vv} H.~L.~Lai, M.~Guzzi, J.~Huston, Z.~Li, P.~M.~Nadolsky, J.~Pumplin and C.~P.~Yuan, {\em New parton distributions for collider physics}, Phys.\ Rev.\ D {\bf 82}, 074024 (2010) [arXiv:1007.2241 [hep-ph]]. %%CITATION = PHRVA,D82,074024;%% %\cite{Owens:2012bv} \bibitem{Owens:2012bv} J.~F.~Owens, A.~Accardi and W.~Melnitchouk, {\em Global parton distributions with nuclear and finite-$Q^2$ corrections}, Phys.\ Rev.\ D {\bf 87}, no. 9, 094012 (2013) [arXiv:1212.1702 [hep-ph]]. %%CITATION = ARXIV:1212.1702;%% %\cite{Accardi:2016qay} \bibitem{Accardi:2016qay} A.~Accardi, L.~T.~Brady, W.~Melnitchouk, J.~F.~Owens and N.~Sato, %``Constraints on large-$x$ parton distributions from new weak boson production and deep-inelastic scattering data,'' arXiv:1602.03154 [hep-ph]. %%CITATION = ARXIV:1602.03154;%% %\cite{Harland-Lang:2014zoa} \bibitem{Harland-Lang:2014zoa} L.~A.~Harland-Lang, A.~D.~Martin, P.~Motylinski and R.~S.~Thorne, %``Parton distributions in the LHC era: MMHT 2014 PDFs,'' arXiv:1412.3989 [hep-ph]. %%CITATION = ARXIV:1412.3989;%% %\cite{Dulat:2015mca} \bibitem{Dulat:2015mca} S.~Dulat {\it et al.}, %``The CT14 Global Analysis of Quantum Chromodynamics,'' arXiv:1506.07443 [hep-ph]. %%CITATION = ARXIV:1506.07443;%% %\cite{Salam:2008qg} \bibitem{Salam:2008qg} G.~P.~Salam and J.~Rojo, {\em A Higher Order Perturbative Parton Evolution Toolkit (HOPPET)}, Comput.\ Phys.\ Commun.\ {\bf 180}, 120 (2009) [arXiv:0804.3755 [hep-ph]]. %%CITATION = ARXIV:0804.3755;%% %\cite{Kilian:2011ka} \bibitem{Kilian:2011ka} W.~Kilian, J.~Reuter, S.~Schmidt and D.~Wiesler, {\em An Analytic Initial-State Parton Shower}, JHEP {\bf 1204} (2012) 013 [arXiv:1112.1039 [hep-ph]]. %%CITATION = ARXIV:1112.1039;%% %\cite{Staub:2008uz} \bibitem{Staub:2008uz} F.~Staub, {\em Sarah}, arXiv:0806.0538 [hep-ph]. %%CITATION = ARXIV:0806.0538;%% %\cite{Staub:2009bi} \bibitem{Staub:2009bi} F.~Staub, {\em From Superpotential to Model Files for FeynArts and CalcHep/CompHep}, Comput.\ Phys.\ Commun.\ {\bf 181}, 1077 (2010) [arXiv:0909.2863 [hep-ph]]. %%CITATION = ARXIV:0909.2863;%% %\cite{Staub:2010jh} \bibitem{Staub:2010jh} F.~Staub, {\em Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies}, Comput.\ Phys.\ Commun.\ {\bf 182}, 808 (2011) [arXiv:1002.0840 [hep-ph]]. %%CITATION = ARXIV:1002.0840;%% %\cite{Staub:2012pb} \bibitem{Staub:2012pb} F.~Staub, {\em SARAH 3.2: Dirac Gauginos, UFO output, and more}, Computer Physics Communications {\bf 184}, pp. 1792 (2013) [Comput.\ Phys.\ Commun.\ {\bf 184}, 1792 (2013)] [arXiv:1207.0906 [hep-ph]]. %%CITATION = ARXIV:1207.0906;%% %\cite{Staub:2013tta} \bibitem{Staub:2013tta} F.~Staub, {\em SARAH 4: A tool for (not only SUSY) model builders}, Comput.\ Phys.\ Commun.\ {\bf 185}, 1773 (2014) [arXiv:1309.7223 [hep-ph]]. %%CITATION = ARXIV:1309.7223;%% \bibitem{mathematica} \Mathematica\ is a registered trademark of Wolfram Research, Inc., Champain, IL, USA. %\cite{Porod:2003um} \bibitem{Porod:2003um} W.~Porod, {\em SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders}, Comput.\ Phys.\ Commun.\ {\bf 153}, 275 (2003) [hep-ph/0301101]. %%CITATION = HEP-PH/0301101;%% %\cite{Porod:2011nf} \bibitem{Porod:2011nf} W.~Porod and F.~Staub, {\em SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM}, Comput.\ Phys.\ Commun.\ {\bf 183}, 2458 (2012) [arXiv:1104.1573 [hep-ph]]. %%CITATION = ARXIV:1104.1573;%% %\cite{Staub:2011dp} \bibitem{Staub:2011dp} F.~Staub, T.~Ohl, W.~Porod and C.~Speckner, %``A Tool Box for Implementing Supersymmetric Models,'' Comput.\ Phys.\ Commun.\ {\bf 183}, 2165 (2012) [arXiv:1109.5147 [hep-ph]]. %%CITATION = ARXIV:1109.5147;%% %%%%% FeynRules %%%%% %\cite{Christensen:2008py} \bibitem{Christensen:2008py} N.~D.~Christensen and C.~Duhr, {\em FeynRules - Feynman rules made easy}, Comput.\ Phys.\ Commun.\ {\bf 180}, 1614 (2009) [arXiv:0806.4194 [hep-ph]]. %%CITATION = ARXIV:0806.4194;%% %\cite{Christensen:2009jx} \bibitem{Christensen:2009jx} N.~D.~Christensen, P.~de Aquino, C.~Degrande, C.~Duhr, B.~Fuks, M.~Herquet, F.~Maltoni and S.~Schumann, {\em A Comprehensive approach to new physics simulations}, Eur.\ Phys.\ J.\ C {\bf 71}, 1541 (2011) [arXiv:0906.2474 [hep-ph]]. %%CITATION = ARXIV:0906.2474;%% %\cite{Duhr:2011se} \bibitem{Duhr:2011se} C.~Duhr and B.~Fuks, %``A superspace module for the FeynRules package,'' Comput.\ Phys.\ Commun.\ {\bf 182}, 2404 (2011) [arXiv:1102.4191 [hep-ph]]. %%CITATION = ARXIV:1102.4191;%% %\cite{Christensen:2010wz} \bibitem{Christensen:2010wz} N.~D.~Christensen, C.~Duhr, B.~Fuks, J.~Reuter and C.~Speckner, {\em Introducing an interface between WHIZARD and FeynRules}, Eur.\ Phys.\ J.\ C {\bf 72}, 1990 (2012) [arXiv:1010.3251 [hep-ph]]. %%CITATION = ARXIV:1010.3251;%% %\cite{Degrande:2011ua} \bibitem{Degrande:2011ua} C.~Degrande, C.~Duhr, B.~Fuks, D.~Grellscheid, O.~Mattelaer and T.~Reiter, %``UFO - The Universal FeynRules Output,'' Comput.\ Phys.\ Commun.\ {\bf 183}, 1201 (2012) doi:10.1016/j.cpc.2012.01.022 [arXiv:1108.2040 [hep-ph]]. %%CITATION = doi:10.1016/j.cpc.2012.01.022;%% %\cite{Han:1998sg} \bibitem{Han:1998sg} T.~Han, J.~D.~Lykken and R.~-J.~Zhang, {\em On Kaluza-Klein states from large extra dimensions}, Phys.\ Rev.\ D {\bf 59}, 105006 (1999) [hep-ph/9811350]. %%CITATION = HEP-PH/9811350;%% %\cite{Fuks:2012im} \bibitem{Fuks:2012im} B.~Fuks, {\em Beyond the Minimal Supersymmetric Standard Model: from theory to phenomenology}, Int.\ J.\ Mod.\ Phys.\ A {\bf 27}, 1230007 (2012) [arXiv:1202.4769 [hep-ph]]. %%CITATION = ARXIV:1202.4769;%% %\cite{He:2007ge} \bibitem{He:2007ge} H.~-J.~He, Y.~-P.~Kuang, Y.~-H.~Qi, B.~Zhang, A.~Belyaev, R.~S.~Chivukula, N.~D.~Christensen and A.~Pukhov {\it et al.}, {\em CERN LHC Signatures of New Gauge Bosons in Minimal Higgsless Model}, Phys.\ Rev.\ D {\bf 78}, 031701 (2008) [arXiv:0708.2588 [hep-ph]]. %%CITATION = ARXIV:0708.2588;%% %%%%% WHIZARD NLO %%%%% %\cite{Kilian:2006cj} \bibitem{Kilian:2006cj} W.~Kilian, J.~Reuter and T.~Robens, {\em NLO Event Generation for Chargino Production at the ILC}, Eur.\ Phys.\ J.\ C {\bf 48}, 389 (2006) [hep-ph/0607127]. %%CITATION = HEP-PH/0607127;%% %\cite{Binoth:2010ra} \bibitem{Binoth:2010ra} J.~R.~Andersen {\it et al.} [SM and NLO Multileg Working Group Collaboration], {\em Les Houches 2009: The SM and NLO Multileg Working Group: Summary report}, arXiv:1003.1241 [hep-ph]. %%CITATION = ARXIV:1003.1241;%% %\cite{Butterworth:2010ym} \bibitem{Butterworth:2010ym} J.~M.~Butterworth, A.~Arbey, L.~Basso, S.~Belov, A.~Bharucha, F.~Braam, A.~Buckley and M.~Campanelli {\it et al.}, {\em Les Houches 2009: The Tools and Monte Carlo working group Summary Report}, arXiv:1003.1643 [hep-ph], arXiv:1003.1643 [hep-ph]. %%CITATION = ARXIV:1003.1643;%% %\cite{Binoth:2009rv} \bibitem{Binoth:2009rv} T.~Binoth, N.~Greiner, A.~Guffanti, J.~Reuter, J.-P.~.Guillet and T.~Reiter, {\em Next-to-leading order QCD corrections to pp --> b anti-b b anti-b + X at the LHC: the quark induced case}, Phys.\ Lett.\ B {\bf 685}, 293 (2010) [arXiv:0910.4379 [hep-ph]]. %%CITATION = ARXIV:0910.4379;%% %\cite{Greiner:2011mp} \bibitem{Greiner:2011mp} N.~Greiner, A.~Guffanti, T.~Reiter and J.~Reuter, {\em NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC} Phys.\ Rev.\ Lett.\ {\bf 107}, 102002 (2011) [arXiv:1105.3624 [hep-ph]]. %% CITATION = ARXIV:1105.3624;%% %\cite{L_Ecuyer:2002} \bibitem{L_Ecuyer:2002} P.~L\'{e}Ecuyer, R.~Simard, E.~J.~Chen, and W.~D.~Kelton, {\em An Object-Oriented Random-Number Package with Many Long Streams and Substreams}, Operations Research, vol. 50, no. 6, pp. 1073-1075, Dec. 2002. %\cite{Platzer:2013esa} \bibitem{Platzer:2013esa} S.~Pl\"atzer, {\em RAMBO on diet}, [arXiv:1308.2922 [hep-ph]]. %% CITATION = ARXIV:1308.2922;%% %\cite{Kleiss:1991rn} \bibitem{Kleiss:1991rn} R.~Kleiss and W.~J.~Stirling, {\em Massive multiplicities and Monte Carlo}, Nucl.\ Phys.\ B {\bf 385}, 413 (1992). doi:10.1016/0550-3213(92)90107-M %%CITATION = doi:10.1016/0550-3213(92)90107-M;%% %\cite{Kleiss:1985gy} \bibitem{Kleiss:1985gy} R.~Kleiss, W.~J.~Stirling and S.~D.~Ellis, {\em A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies}, Comput.\ Phys.\ Commun.\ {\bf 40} (1986) 359. doi:10.1016/0010-4655(86)90119-0 %% CITATION = doi:10.1016/0010-4655(86)90119-0;%% %\cite{Brun:1997pa} \bibitem{Brun:1997pa} R.~Brun and F.~Rademakers, {\em ROOT: An object oriented data analysis framework}, Nucl. Instrum. Meth. A \textbf{389}, 81-86 (1997) doi:10.1016/S0168-9002(97)00048-X %\cite{Buckley:2010ar} \bibitem{Buckley:2010ar} A.~Buckley, J.~Butterworth, L.~L\"onnblad, D.~Grellscheid, H.~Hoeth, J.~Monk, H.~Schulz and F.~Siegert, {\em Rivet user manual}, Comput. Phys. Commun. \textbf{184}, 2803-2819 (2013) doi:10.1016/j.cpc.2013.05.021 [arXiv:1003.0694 [hep-ph]]. %\cite{Bierlich:2019rhm} \bibitem{Bierlich:2019rhm} C.~Bierlich, A.~Buckley, J.~Butterworth, C.~H.~Christensen, L.~Corpe, D.~Grellscheid, J.~F.~Grosse-Oetringhaus, C.~Gutschow, P.~Karczmarczyk, J.~Klein, L.~L\"onnblad, C.~S.~Pollard, P.~Richardson, H.~Schulz and F.~Siegert, {\em Robust Independent Validation of Experiment and Theory: Rivet version 3}, SciPost Phys. \textbf{8}, 026 (2020) doi:10.21468/SciPostPhys.8.2.026 [arXiv:1912.05451 [hep-ph]]. %\cite{deFavereau:2013fsa} \bibitem{deFavereau:2013fsa} J.~de Favereau \textit{et al.} [DELPHES 3], {\em DELPHES 3, A modular framework for fast simulation of a generic collider experiment}, JHEP \textbf{02}, 057 (2014) doi:10.1007/JHEP02(2014)057 [arXiv:1307.6346 [hep-ex]] \end{thebibliography} \end{document} Index: trunk/circe2/src/circe2.nw =================================================================== --- trunk/circe2/src/circe2.nw (revision 8850) +++ trunk/circe2/src/circe2.nw (revision 8851) @@ -1,1941 +1,1941 @@ % -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*- % circe2/circe2.nw -- @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Implementation of [[circe2]]} <>= -'Version 3.0.3+' +'Version 3.1.0' @ <<[[implicit none]]>>= implicit none @ <<[[circe2.f90]]>>= ! circe2.f90 -- correlated beam spectra for linear colliders <> <> module circe2 use kinds implicit none private <<[[circe2]] parameters>> <<[[circe2]] declarations>> contains <<[[circe2]] implementation>> end module circe2 @ <>= !----------------------------------------------------------------------- @ The following is usually not needed for scientific programs. Nobody is going to hijack such code. But let us include it anyway to spread the gospel of free software: <>= ! Copyright (C) 2001-2022 by Thorsten Ohl ! ! Circe2 is free software; you can redistribute it and/or modify it ! under the terms of the GNU General Public License as published by ! the Free Software Foundation; either version 2, or (at your option) ! any later version. ! ! Circe2 is distributed in the hope that it will be useful, but ! WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Data} <<[[circe2]] declarations>>= type circe2_division <<[[circe2_division]] members>> end type circe2_division @ <<[[circe2]] declarations>>= type circe2_channel <<[[circe2_channel]] members>> end type circe2_channel @ <<[[circe2]] declarations>>= type circe2_state <<[[circe2_state]] members>> end type circe2_state public :: circe2_state @ \begin{figure} \begin{center} \begin{empgraph}(110,60) setrange (0, 0, 1, 1); autogrid (,); pickup pencircle scaled 0.5pt; for i = 2 step 2 until 8: x := i / 10; gdraw (0,x) -- (1,x); gdraw (x,0) -- (x,1); endfor glabel (btex $x_{1}^{\min}$ etex, (0.0,-0.1)); glabel (btex $x_{1}^{\max}$ etex, (1.0,-0.1)); glabel (btex $x_{2}^{\min}$ etex, (-0.1,0.0)); glabel (btex $x_{3}^{\max}$ etex, (-0.1,1.0)); glabel (btex $i_1=1$ etex, (0.1,-0.1)); glabel (btex $2$ etex, (0.3,-0.1)); glabel (btex $3$ etex, (0.5,-0.1)); glabel (btex $\ldots$ etex, (0.7,-0.1)); glabel (btex $n_1$ etex, (0.9,-0.1)); glabel (btex $1$ etex, (-0.1,0.1)); glabel (btex $2$ etex, (-0.1,0.3)); glabel (btex $3$ etex, (-0.1,0.5)); glabel (btex $\ldots$ etex, (-0.1,0.7)); glabel (btex $i_2=n_2$ etex, (-0.1,0.9)); glabel (btex $1$ etex, (0.1,0.1)); glabel (btex $2$ etex, (0.3,0.1)); glabel (btex $3$ etex, (0.5,0.1)); glabel (btex $\ldots$ etex, (0.7,0.1)); glabel (btex $n_1$ etex, (0.9,0.1)); glabel (btex $n_1+1$ etex, (0.1,0.3)); glabel (btex $n_1+2$ etex, (0.3,0.3)); glabel (btex $\ldots$ etex, (0.5,0.3)); glabel (btex $\ldots$ etex, (0.7,0.3)); glabel (btex $2n_1$ etex, (0.9,0.3)); glabel (btex $2n_1+1$ etex, (0.1,0.5)); glabel (btex $\ldots$ etex, (0.3,0.5)); glabel (btex $\ldots$ etex, (0.5,0.5)); glabel (btex $\ldots$ etex, (0.7,0.5)); glabel (btex $\ldots$ etex, (0.9,0.5)); glabel (btex $\ldots$ etex, (0.1,0.7)); glabel (btex $\ldots$ etex, (0.3,0.7)); glabel (btex $\ldots$ etex, (0.5,0.7)); glabel (btex $\ldots$ etex, (0.7,0.7)); glabel (btex $n_1(n_2-1)$ etex, (0.9,0.7)); glabel (btex $\displaystyle {n_1(n_2-1)\atop\mbox{}+1}$ etex, (0.1,0.9)); glabel (btex $\displaystyle {n_1(n_2-1)\atop\mbox{}+2}$ etex, (0.3,0.9)); glabel (btex $\ldots$ etex, (0.5,0.9)); glabel (btex $n_1n_2-1$ etex, (0.7,0.9)); glabel (btex $n_1n_2$ etex, (0.9,0.9)); pickup pencircle scaled 1.0pt; \end{empgraph} \end{center} \caption{\label{fig:linear-enumeration}% Enumerating the bins linearly, starting from 1 (Fortran style). Probability distribution functions will have a sentinel at~0 that's always~0.} \end{figure} We store the probability distribution function as a one-dimensional array~[[wgt]]\footnote{The second ``dimension'' is just an index for the channel.}, since this simplifies the binary search used for inverting the distribution. [wgt(0,ic)] is always 0 and serves as a convenient sentinel for the binary search. It is \emph{not} written in the file, which contains the normalized weight of the bins. <<[[circe2_state]] members>>= type(circe2_channel), dimension(:), allocatable :: ch @ <<[[circe2_channel]] members>>= real(kind=default), dimension(:), allocatable :: wgt @ <<[[circe2_channel]] members>>= type(circe2_division), dimension(2) :: d @ Using figure~\ref{fig:linear-enumeration}, calculating the index of a bin from the two-dimensional coordinates is straightforward, of course: \begin{equation} i = i_1 + (i_2 - 1) n_1\,. \end{equation} The inverse \begin{subequations} \begin{align} i_1 &= 1 + ((i - 1) \mod n_1) \\ i_2 &= 1 + \lfloor (i - 1) / n_1 \rfloor \end{align} \end{subequations} can also be written \begin{subequations} \begin{align} i_2 &= 1 + \lfloor (i - 1) / n_1 \rfloor \\ i_1 &= i - (i_2 - 1) n_1 \end{align} \end{subequations} because \begin{subequations} \begin{multline} 1 + \lfloor (i - 1) / n_1 \rfloor = 1 + \lfloor i_2 - 1 + (i_1 - 1) / n_1 \rfloor \\ = 1 + \lfloor (i_1 + (i_2 - 1) n_1 - 1) / n_1 \rfloor = 1 + i_2 - 1 + \underbrace{\lfloor (i_1 - 1) / n_1 \rfloor}_{=0} = i_2 \end{multline} and trivially \begin{equation} i - (i_2 - 1) n_1 = i_1 + (i_2 - 1) n_1 - (i_2 - 1) n_1 = i_1 \end{equation} \end{subequations} <<$([[i1]],[[i2]]) \leftarrow [[i]]$>>= i2 = 1 + (i - 1) / ubound (ch%d(1)%x, dim=1) i1 = i - (i2 - 1) * ubound (ch%d(1)%x, dim=1) @ <<$[[ib]] \leftarrow [[i]]$>>= ib(2) = 1 + (i - 1) / ubound (ch%d(1)%x, dim=1) ib(1) = i - (ib(2) - 1) * ubound (ch%d(1)%x, dim=1) @ The density normalized to the bin size \begin{equation*} v = \frac{w}{\Delta x_1 \Delta x_2} \end{equation*} such that \begin{equation*} \int\!\mathrm{d}x_1\mathrm{d}x_2\; v = \sum w = 1 \end{equation*} For mapped distributions, on the level of bins, we can either use the area of the domain and apply a jacobian or the area of the codomain directly \begin{equation} \label{eq:jacobian-Delta_x-Delta_y} \frac{\mathrm{d}x}{\mathrm{d}y}\cdot\frac{1}{\Delta x} \approx \frac{1}{\Delta y} \end{equation} We elect to use the former, because this reflects the distribution of the events generated by~[[circe2_generate]] \emph{inside} the bins as well. This quantity is more conveniently stored as a true two-dimensional array: <<[[circe2_channel]] members>>= real(kind=default), dimension(:,:), allocatable :: val @ \begin{figure} \begin{center} \begin{empgraph}(50,50) pickup pencircle scaled 1.0pt; setrange (0, 0, 1, 1); autogrid (,); for i = 1 upto 15: xi := i / 16; x := 1 - xi * xi * xi; gdraw (0,x) -- (1,x); gdraw (x,0) -- (x,1); endfor \end{empgraph} \end{center} \caption{% Almost factorizable distributions, like $\mathrm{e}^+\mathrm{e}^-$.} \end{figure} <<[[circe2_division]] members>>= real(kind=default), dimension(:), allocatable :: x @ \begin{figure} \begin{center} \begin{empgraph}(50,50) setrange (0, 0, 1, 1); autogrid (,); for i = 1 upto 15: xi := i / 16; x := 1 - xi * xi * xi; pickup pencircle scaled 1.0pt; gdraw (0,0) -- (1,x); pickup pencircle scaled 0.5pt; gdraw (0,0) -- (x,1); endfor for i = 1 upto 15: xi := i / 16; x := 0.8 * (1 - xi * xi * xi); pickup pencircle scaled 1.0pt; gdraw (x,0) -- (x,x); pickup pencircle scaled 0.5pt; gdraw (0,x) -- (x,x); endfor pickup pencircle scaled 1.0pt; gdraw (0,0) -- (1,1); \end{empgraph} \end{center} \caption{% Symmetrical, strongly correlated distributions, e.\,g.~with a ridge on the diagonal, like $\gamma\gamma$ at a $\gamma$-collider.} \end{figure} <<[[circe2_channel]] members>>= logical :: triang @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Channels} The number of available channels $\gamma\gamma$, $\mathrm{e}^-\gamma$, $\mathrm{e}^-\mathrm{e}^+$, etc. can be found with [[size (circe2_state%ch)]]. @ The particles that are described by this channel and their polarizations: <<[[circe2_channel]] members>>= integer, dimension(2) :: pid, pol @ The integrated luminosity of the channel <<[[circe2_channel]] members>>= real(kind=default) :: lumi @ The integrated luminosity of the channel <<[[circe2_state]] members>>= real(kind=default), dimension(:), allocatable :: cwgt @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Maps} <<[[circe2_division]] members>>= integer, dimension(:), allocatable :: map @ <<[[circe2_division]] members>>= real(kind=default), dimension(:), allocatable :: y @ <<[[circe2_division]] members>>= real(kind=default), dimension(:), allocatable :: alpha, xi, eta, a, b @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Random Number Generation} We use the new WHIZARD interface. <<[[circe2]] declarations>>= public :: rng_type type, abstract :: rng_type contains procedure(rng_generate), deferred :: generate end type rng_type @ <<[[circe2]] declarations>>= abstract interface subroutine rng_generate (rng_obj, u) import :: rng_type, default class(rng_type), intent(inout) :: rng_obj real(kind=default), intent(out) :: u end subroutine rng_generate end interface @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Event Generation} Generate a two-dimensional distribution for~$([[x1]],[[x2]])$ according to the histogram for channel [[ic]]. @ <<[[circe2]] declarations>>= public :: circe2_generate interface circe2_generate module procedure circe2_generate_ph end interface circe2_generate @ <<[[circe2]] implementation>>= subroutine circe2_generate_ph (c2s, rng, y, p, h) type(circe2_state), intent(in) :: c2s class(rng_type), intent(inout) :: rng real(kind=default), dimension(:), intent(out) :: y integer, dimension(:), intent(in) :: p integer, dimension(:), intent(in) :: h integer :: i, ic <> <> call circe2_generate_channel (c2s%ch(ic), rng, y) end subroutine circe2_generate_ph <> @ <<[[circe2]] declarations>>= interface circe2_generate module procedure circe2_generate_channel end interface circe2_generate @ <<[[circe2]] implementation>>= subroutine circe2_generate_channel (ch, rng, y) type(circe2_channel), intent(in) :: ch class(rng_type), intent(inout) :: rng real(kind=default), dimension(:), intent(out) :: y integer :: i, d, ibot, itop integer, dimension(2) :: ib real(kind=default), dimension(2) :: x, v real(kind=default) :: u, tmp call rng%generate (u) <> <<$[[ib]] \leftarrow [[i]]$>> <<$[[x]]\in[ [[x(ib-1)]], [[x(ib)]] ]$>> y = circe2_map (ch%d, x, ib) <> end subroutine circe2_generate_channel <> @ <<[[circe2_state]] members>>= integer :: polspt @ <<[[circe2]] parameters>>= integer, parameter :: POLAVG = 1, POLHEL = 2, POLGEN = 3 @ A linear search for a matching channel should suffice, because the number if channels~[[nc]] will always be a small number. The most popular channels should be first in the list, anyway. <>= ic = 0 if ((c2s%polspt == POLAVG .or. c2s%polspt == POLGEN) .and. any (h /= 0)) then write (*, '(2A)') 'circe2: current beam description ', & 'supports only polarization averages' else if (c2s%polspt == POLHEL .and. any (h == 0)) then write (*, '(2A)') 'circe2: polarization averages ', & 'not supported by current beam description' else do i = 1, size (c2s%ch) if (all (p == c2s%ch(i)%pid .and. h == c2s%ch(i)%pol)) then ic = i end if end do end if @ <>= if (ic <= 0) then write (*, '(A,2I4,A,2I3)') & 'circe2: no channel for particles', p, & ' and polarizations', h y = - huge (y) return end if @ The number of bins is typically \emph{much} larger and we must use a binary search to get a reasonable performance. <>= ibot = 0 itop = ubound (ch%wgt, dim=1) do if (itop <= ibot + 1) then i = ibot + 1 exit else i = (ibot + itop) / 2 if (u < ch%wgt(i)) then itop = i else ibot = i end if end if end do @ <<$[[x]]\in[ [[x(ib-1)]], [[x(ib)]] ]$>>= call rng%generate (v(1)) call rng%generate (v(2)) do d = 1, 2 x(d) = ch%d(d)%x(ib(d))*v(d) + ch%d(d)%x(ib(d)-1)*(1-v(d)) end do @ The NAG compiler is picky and doesn't like $(-0)^\alpha$ at all. <<$y\leftarrow(a(x-\xi))^\alpha/b + \eta$>>= z = d%a(b) * (x - d%xi(b)) if (abs (z) <= tiny (z)) then z = abs (z) end if y = z**d%alpha(b) / d%b(b) + d%eta(b) @ <<[[circe2]] implementation>>= elemental function circe2_map (d, x, b) result (y) type(circe2_division), intent(in) :: d real(kind=default), intent(in) :: x integer, intent(in) :: b real(kind=default) :: y real(kind=default) :: z select case (d%map(b)) case (0) y = x case (1) <<$y\leftarrow(a(x-\xi))^\alpha/b + \eta$>> case (2) y = d%a(b) * tan (d%a(b)*(x-d%xi(b)) / d%b(b)**2) + d%eta(b) case default y = - huge (y) end select end function circe2_map @ cf.~(\ref{eq:jacobian-Delta_x-Delta_y}) <<[[circe2]] implementation>>= elemental function circe2_jacobian (d, y, b) result (j) type(circe2_division), intent(in) :: d real(kind=default), intent(in) :: y integer, intent(in) :: b real(kind=default) :: j select case (d%map(b)) case (0) j = 1 case (1) j = d%b(b) / (d%a(b)*d%alpha(b)) & * (d%b(b)*(y-d%eta(b)))**(1/d%alpha(b)-1) case (2) j = d%b(b)**2 / ((y-d%eta(b))**2 + d%a(b)**2) case default j = - huge (j) end select end function circe2_jacobian @ \begin{dubious} There's still something wrong with \emph{unweighted} events for the case that there is a triangle map \emph{together} with a non-trivial $[[x(2)]]\to[[y(2)]]$ map. \emph{Fix this!!!} \end{dubious} <>= if (ch%triang) then y(2) = y(1) * y(2) <> end if @ <>= call rng%generate (u) if (2*u >= 1) then tmp = y(1) y(1) = y(2) y(2) = tmp end if @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Channel selection} We could call [[circe2_generate]] immediately, but then [[circe2_generate]] and [[cir2_choose_channel]] would have the same calling conventions and might have caused a lot of confusion. <<[[circe2]] declarations>>= public :: circe2_choose_channel interface circe2_choose_channel module procedure circe2_choose_channel end interface circe2_choose_channel @ <<[[circe2]] implementation>>= subroutine circe2_choose_channel (c2s, rng, p, h) type(circe2_state), intent(in) :: c2s class(rng_type), intent(inout) :: rng integer, dimension(:), intent(out) :: p, h integer :: ic, ibot, itop real(kind=default) :: u call rng%generate (u) ibot = 0 itop = size (c2s%ch) do if (itop <= ibot + 1) then ic = ibot + 1 p = c2s%ch(ic)%pid h = c2s%ch(ic)%pol return else ic = (ibot + itop) / 2 if (u < c2s%cwgt(ic)) then itop = ic else ibot = ic end if end if end do write (*, '(A)') 'circe2: internal error' stop end subroutine circe2_choose_channel @ Below, we will always have $[[h]]=0$. but we don't have to check this explicitely, because [[circe2_density_matrix]] will do it anyway. The procedure could be made more efficient, since most of [[circe2_density_matrix]] is undoing parts of [[circe2_generate]]. <<[[circe2]] declarations>>= public :: circe2_generate_polarized interface circe2_generate_polarized module procedure circe2_generate_polarized end interface circe2_generate_polarized @ <<[[circe2]] implementation>>= subroutine circe2_generate_polarized (c2s, rng, p, pol, x) type(circe2_state), intent(in) :: c2s class(rng_type), intent(inout) :: rng integer, dimension(:), intent(out) :: p real(kind=default), intent(out) :: pol(0:3,0:3) real(kind=default), dimension(:), intent(out) :: x integer, dimension(2) :: h integer :: i1, i2 real(kind=default) :: pol00 call circe2_choose_channel (c2s, rng, p, h) call circe2_generate (c2s, rng, x, p, h) call circe2_density_matrix (c2s, pol, p, x) pol00 = pol(0,0) do i1 = 0, 3 do i2 = 0, 3 pol(i1,i2) = pol(i1,i2) / pol00 end do end do end subroutine circe2_generate_polarized @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Luminosity} <<[[circe2]] declarations>>= public :: circe2_luminosity @ <<[[circe2]] implementation>>= function circe2_luminosity (c2s, p, h) type(circe2_state), intent(in) :: c2s integer, dimension(:), intent(in) :: p integer, dimension(:), intent(in) :: h real(kind=default) :: circe2_luminosity integer :: ic circe2_luminosity = 0 do ic = 1, size (c2s%ch) if ( all (p == c2s%ch(ic)%pid .or. p == 0) & .and. all (h == c2s%ch(ic)%pol .or. h == 0)) then circe2_luminosity = circe2_luminosity + c2s%ch(ic)%lumi end if end do end function circe2_luminosity <> @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{2D-Distribution} <<[[circe2]] declarations>>= public :: circe2_distribution interface circe2_distribution module procedure circe2_distribution_ph end interface circe2_distribution @ <<[[circe2]] implementation>>= function circe2_distribution_ph (c2s, p, h, yy) type(circe2_state), intent(in) :: c2s integer, dimension(:), intent(in) :: p real(kind=default), dimension(:), intent(in) :: yy integer, dimension(:), intent(in) :: h real(kind=default) :: circe2_distribution_ph integer :: i, ic <> if (ic <= 0) then circe2_distribution_ph = 0 else circe2_distribution_ph = circe2_distribution_channel (c2s%ch(ic), yy) end if end function circe2_distribution_ph <> @ <<[[circe2]] declarations>>= interface circe2_distribution module procedure circe2_distribution_channel end interface circe2_distribution @ <<[[circe2]] implementation>>= function circe2_distribution_channel (ch, yy) type(circe2_channel), intent(in) :: ch real(kind=default), dimension(:), intent(in) :: yy real(kind=default) :: circe2_distribution_channel real(kind=default), dimension(2) :: y integer :: d, ibot, itop integer, dimension(2) :: ib <<$[[y]])\leftarrow[[yy]]$>> if ( y(1) < ch%d(1)%y(0) & .or. y(1) > ch%d(1)%y(ubound (ch%d(1)%y, dim=1)) & .or. y(2) < ch%d(2)%y(0) & .or. y(2) > ch%d(2)%y(ubound (ch%d(2)%y, dim=1))) then circe2_distribution_channel = 0 return end if <> circe2_distribution_channel = & ch%val(ib(1),ib(2)) * product (circe2_jacobian (ch%d, y, ib)) <> end function circe2_distribution_channel <> @ The triangle map \begin{equation} \begin{aligned} \tau : \{(x_{1},x_{2}) \in [0,1]\times[0,1] : x_{2} \le x_{1} \} &\to [0,1]\times[0,1] \\ (x_{1},x_{2}) &\mapsto (y_{1},y_{2}) = (x_{1},x_{1}x_{2}) \end{aligned} \end{equation} and its inverse \begin{equation} \begin{aligned} \tau^{-1} : [0,1]\times[0,1] &\to \{(x_{1},x_{2}) \in [0,1]\times[0,1] : x_{2} \le x_{1} \} \\ (y_{1},y_{2}) &\mapsto (x_{1},x_{2}) = (y_{1},y_{2}/y_{1}) \end{aligned} \end{equation} <<$[[y]])\leftarrow[[yy]]$>>= if (ch%triang) then y(1) = maxval (yy) y(2) = minval (yy) / y(1) else y = yy end if @ with the jacobian~$J^*(y_{1},y_{2})=1/y_{2}$ from \begin{equation} \mathrm{d}x_{1}\wedge\mathrm{d}x_{2} = \frac{1}{y_{2}} \cdot \mathrm{d}y_{1}\wedge\mathrm{d}y_{2} \end{equation} <>= if (ch%triang) then circe2_distribution_channel = circe2_distribution_channel / y(1) end if @ Careful: the loop over [[d]] \emph{must} be executed sequentially, because of the shared local variables [[ibot]] and [[itop]]. <>= do d = 1, 2 ibot = 0 itop = ubound (ch%d(d)%x, dim=1) search: do if (itop <= ibot + 1) then ib(d) = ibot + 1 exit search else ib(d) = (ibot + itop) / 2 if (y(d) < ch%d(d)%y(ib(d))) then itop = ib(d) else ibot = ib(d) end if end if end do search end do @ <<[[circe2]] declarations>>= public :: circe2_density_matrix @ <<[[circe2]] implementation>>= subroutine circe2_density_matrix (c2s, pol, p, x) type(circe2_state), intent(in) :: c2s real(kind=default), dimension(0:,0:), intent(out) :: pol integer, dimension(:), intent(in) :: p real(kind=default), dimension(:), intent(in) :: x <> print *, 'circe2: circe2_density_matrix not implemented yet!' if (p(1) < p(2) .and. x(1) < x(2)) then ! nonsense test to suppress warning end if pol = 0 end subroutine circe2_density_matrix <> @ <>= if (c2s%polspt /= POLGEN) then write (*, '(2A)') 'circe2: current beam ', & 'description supports no density matrices' return end if @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Reading Files} <<[[circe2]] declarations>>= public :: circe2_load <> @ <>= integer, parameter, public :: & EOK = 0, EFILE = -1, EMATCH = -2, EFORMT = -3, ESIZE = -4 @ <<[[circe2]] implementation>>= subroutine circe2_load (c2s, file, design, roots, ierror) type(circe2_state), intent(out) :: c2s character(len=*), intent(in) :: file, design real(kind=default), intent(in) :: roots integer, intent(out) :: ierror character(len=72) :: buffer, fdesgn, fpolsp real(kind=default) :: froots integer :: lun, loaded, prefix logical match <> <> if (lun < 0) then write (*, '(A)') 'circe2_load: no free unit' ierror = ESIZE return end if loaded = 0 <> if (ierror .gt. 0) then write (*, '(2A)') 'circe2_load: ', <> end if prefix = index (design, '*') - 1 do <> if (buffer(8:15) == 'FORMAT#1') then read (lun, *) read (lun, *) fdesgn, froots <> if (match .and. abs (froots - roots) <= 1) then <> loaded = loaded + 1 else <> cycle end if else write (*, '(2A)') 'circe2_load: invalid format: ', buffer(8:72) ierror = EFORMT return end if <> end do end subroutine circe2_load <> @ <>= match = .false. if (fdesgn == design) then match = .true. else if (prefix == 0) then match = .true. else if (prefix .gt. 0) then if (fdesgn(1:min(prefix,len(fdesgn))) & == design(1:min(prefix,len(design)))) then match = .true. end if end if @ <>= read (lun, *) read (lun, *) nc, fpolsp allocate (c2s%ch(nc), c2s%cwgt(0:nc)) <> c2s%cwgt(0) = 0 do ic = 1, nc call circe2_load_channel (c2s%ch(ic), c2s%polspt, lun, ierror) c2s%cwgt(ic) = c2s%cwgt(ic-1) + c2s%ch(ic)%lumi end do c2s%cwgt = c2s%cwgt / c2s%cwgt(nc) @ <<[[circe2]] implementation>>= subroutine circe2_load_channel (ch, polspt, lun, ierror) type(circe2_channel), intent(out) :: ch integer, intent(in) :: polspt, lun integer, intent(out) :: ierror integer :: d, i, ib integer :: i1, i2 integer, dimension(2) :: nb real(kind=default) :: w <> <> <> <> end subroutine circe2_load_channel @ @ <>= if (fpolsp(1:1)=='a' .or. fpolsp(1:1)=='A') then c2s%polspt = POLAVG else if (fpolsp(1:1)=='h' .or. fpolsp(1:1)=='H') then c2s%polspt = POLHEL else if (fpolsp(1:1)=='d' .or. fpolsp(1:1)=='D') then c2s%polspt = POLGEN else write (*, '(A,I5)') 'circe2_load: invalid polarization support: ', fpolsp ierror = EFORMT return end if @ <>= integer :: ic, nc @ <>= read (lun, *) read (lun, *) ch%pid(1), ch%pol(1), ch%pid(2), ch%pol(2), ch%lumi <> @ <>= if (polspt == POLAVG .and. any (ch%pol /= 0)) then write (*, '(A)') 'circe2_load: expecting averaged polarization' ierror = EFORMT return else if (polspt == POLHEL .and. any (ch%pol == 0)) then write (*, '(A)') 'circe2_load: expecting helicities' ierror = EFORMT return else if (polspt == POLGEN) then write (*, '(A)') 'circe2_load: general polarizations not supported yet' ierror = EFORMT return else if (polspt == POLGEN .and. any (ch%pol /= 0)) then write (*, '(A)') 'circe2_load: expecting pol = 0' ierror = EFORMT return end if @ <>= read (lun, *) read (lun, *) nb, ch%triang @ <>= do d = 1, 2 read (lun, *) allocate (ch%d(d)%x(0:nb(d)), ch%d(d)%y(0:nb(d))) allocate (ch%d(d)%map(nb(d)), ch%d(d)%alpha(nb(d))) allocate (ch%d(d)%xi(nb(d)), ch%d(d)%eta(nb(d))) allocate (ch%d(d)%a(nb(d)), ch%d(d)%b(nb(d))) read (lun, *) ch%d(d)%x(0) do ib = 1, nb(d) read (lun, *) ch%d(d)%x(ib), ch%d(d)%map(ib), & ch%d(d)%alpha(ib), ch%d(d)%xi(ib), ch%d(d)%eta(ib), & ch%d(d)%a(ib), ch%d(d)%b(ib) if (ch%d(d)%map(ib) < 0 .or. ch%d(d)%map(ib) > 2) then write (*, '(A,I3)') 'circe2_load: invalid map: ', ch%d(d)%map(ib) ierror = EFORMT return end if end do end do @ The boundaries are guaranteed to be fixed points of the maps only if the boundaries are not allowed to float. This doesn't affect the unweighted events, because they never see the codomain grid, but distribution would be distorted significantly. In the following sums [[i1]] and [[i2]] run over the maps, while [[i]] runs over the boundaries. \begin{dubious} An alternative would be to introduce sentinels [[alpha(1,0,:)]], [[xi(1,0,:)]], etc. \end{dubious} <>= do d = 1, 2 do i = 0, ubound (ch%d(d)%x, dim=1) ch%d(d)%y(i) = circe2_map (ch%d(d), ch%d(d)%x(i), max (i, 1)) end do end do @ cf.~(\ref{eq:jacobian-Delta_x-Delta_y}) <>= read (lun, *) allocate (ch%wgt(0:product(nb)), ch%val(nb(1),nb(2))) ch%wgt(0) = 0 do i = 1, ubound (ch%wgt, dim=1) read (lun, *) w ch%wgt(i) = ch%wgt(i-1) + w <<$([[i1]],[[i2]]) \leftarrow [[i]]$>> ch%val(i1,i2) = w & / ( (ch%d(1)%x(i1) - ch%d(1)%x(i1-1)) & * (ch%d(2)%x(i2) - ch%d(2)%x(i2-1))) end do ch%wgt(ubound (ch%wgt, dim=1)) = 1 @ <>= @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Auxiliary Code For Reading Files} <>= open (unit = lun, file = file, status = 'old', iostat = status) if (status /= 0) then write (*, '(2A)') 'circe2_load: can''t open ', file ierror = EFILE return end if @ <>= integer :: status @ The outer [[do]] loop is never repeated! <>= find_circe2: do skip_comments: do read (lun, '(A)', iostat = status) buffer if (status /= 0) then close (unit = lun) if (loaded > 0) then ierror = EOK else ierror = EMATCH end if return else if (buffer(1:6) == 'CIRCE2') then exit find_circe2 else if (buffer(1:1) == '!') then if (ierror > 0) then write (*, '(A)') buffer end if else exit skip_comments end if end if end do skip_comments write (*, '(A)') 'circe2_load: invalid file' ierror = EFORMT return end do find_circe2 @ <>= skip_data: do read (lun, *) buffer if (buffer(1:6) == 'ECRIC2') then exit skip_data end if end do skip_data @ <>= read (lun, '(A)') buffer if (buffer(1:6) /= 'ECRIC2') then write (*, '(A)') 'circe2_load: invalid file' ierror = EFORMT return end if @ <>= scan: do lun = 10, 99 inquire (unit = lun, exist = exists, opened = isopen, iostat = status) if (status == 0 .and. exists .and. .not.isopen) exit scan end do scan if (lun > 99) lun = -1 @ <>= logical exists, isopen @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \appendix \section{Tests and Examples} \subsection{Object-Oriented interface to [[tao_random_numbers]]} We need the object oriented interface to [[tao_random_numbers]] to be able to talk to the WHIZARD <<[[tao_random_objects.f90]]>>= module tao_random_objects use kinds use tao_random_numbers use circe2 implicit none private <<[[tao_random_objects]] declarations>> contains <<[[tao_random_objects]] implementation>> end module tao_random_objects @ <<[[tao_random_objects]] declarations>>= public :: rng_tao type, extends (rng_type) :: rng_tao integer :: seed = 0 integer :: n_calls = 0 type(tao_random_state) :: state contains procedure :: generate => rng_tao_generate procedure :: init => rng_tao_init end type rng_tao @ <<[[tao_random_objects]] implementation>>= subroutine rng_tao_generate (rng_obj, u) class(rng_tao), intent(inout) :: rng_obj real(default), intent(out) :: u call tao_random_number (rng_obj%state, u) rng_obj%n_calls = rng_obj%n_calls + 1 end subroutine rng_tao_generate @ <<[[tao_random_objects]] implementation>>= subroutine rng_tao_init (rng_obj, seed) class(rng_tao), intent(inout) :: rng_obj integer, intent(in) :: seed rng_obj%seed = seed call tao_random_create (rng_obj%state, seed) end subroutine rng_tao_init @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{[[circe2_generate]]: Standalone Generation of Samples} <<[[circe2_generate.f90]]>>= program circe2_generate_program use kinds use circe2 use tao_random_objects implicit none type(circe2_state) :: c2s type(rng_tao), save :: rng character(len=1024) :: filename, design, buffer integer :: status, nevents, seed real(kind=default) :: roots real(kind=default), dimension(2) :: x integer :: i, ierror <> call circe2_load (c2s, trim(filename), trim(design), roots, ierror) if (ierror /= 0) then print *, "circe2_generate: failed to load design ", trim(design), & " for ", real (roots, kind=single), & " GeV from ", trim(filename) stop end if do i = 1, nevents call circe2_generate (c2s, rng, x, [11, -11], [0, 0]) write (*, '(F12.10,1X,F12.10)') x end do contains <> end program circe2_generate_program @ <>= call get_command_argument (1, value = filename, status = status) if (status /= 0) filename = "" @ <>= call get_command_argument (2, value = design, status = status) if (status /= 0) design = "" if (filename == "" .or. design == "") then print *, "usage: circe2_generate filename design [roots] [#events] [seed]" stop end if @ <>= call get_command_argument (3, value = buffer, status = status) if (status == 0) then read (buffer, *, iostat = status) roots if (status /= 0) roots = 500 else roots = 500 end if @ <>= call get_command_argument (4, value = buffer, status = status) if (status == 0) then read (buffer, *, iostat = status) nevents if (status /= 0) nevents = 1000 else nevents = 1000 end if @ <>= call get_command_argument (5, value = buffer, status = status) if (status == 0) then read (buffer, *, iostat = status) seed if (status == 0) then call random2_seed (rng, seed) else call random2_seed (rng) end if else call random2_seed (rng) end if @ <>= subroutine random2_seed (rng, seed) class(rng_tao), intent(inout) :: rng integer, intent(in), optional:: seed integer, dimension(8) :: date_time integer :: seed_value if (present (seed)) then seed_value = seed else call date_and_time (values = date_time) seed_value = product (date_time) endif call rng%init (seed_value) end subroutine random2_seed @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{[[circe2_ls]]: Listing File Contents} Here's a small utility program for listing the contents of \KirkeTwo/ data files. It performs \emph{no} verification and assumes that the file is in the correct format (cf.~table~\ref{tab:fileformat}). <<[[circe2_ls.f90]]>>= ! circe2_ls.f90 -- beam spectra for linear colliders and photon colliders <> <> program circe2_ls use circe2 use kinds implicit none integer :: i, lun character(len=132) :: buffer character(len=60) :: design, polspt integer :: pid1, hel1, pid2, hel2, nc real(kind=default) :: roots, lumi integer :: status logical :: exists, isopen character(len=1024) :: filename <> if (lun < 0) then write (*, '(A)') 'circe2_ls: no free unit' stop end if files: do i = 1, command_argument_count () call get_command_argument (i, value = filename, status = status) if (status /= 0) then exit files else open (unit = lun, file = filename, status = 'old', iostat = status) if (status /= 0) then write (*, "(A,1X,A)") "circe2: can't open", trim(filename) else write (*, "(A,1X,A)") "file:", trim(filename) lines: do read (lun, '(A)', iostat = status) buffer if (status /= 0) exit lines if (buffer(1:7) == 'design,') then read (lun, *) design, roots read (lun, *) read (lun, *) nc, polspt <> <> else if (buffer(1:5) == 'pid1,') then read (lun, *) pid1, hel1, pid2, hel2, lumi <> end if end do lines end if close (unit = lun) end if end do files end program circe2_ls <> @ <>= write (*, '(A,1X,A)') ' design:', trim(design) write (*, '(A,1X,F7.1)') ' sqrt(s):', roots write (*, '(A,1X,I3)') ' #channels:', nc write (*, '(A,1X,A)') ' polarization:', trim(polspt) @ <>= write (*, '(4X,4(A5,2X),A)') & 'pid#1', 'hel#1', 'pid#2', 'hel#2', 'luminosity / (10^32cm^-2sec^-1)' @ <>= write (*, '(4X,4(I5,2X),F10.2)') pid1, hel1, pid2, hel2, lumi @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsection{$\beta$-distribitions} @ We need a fast generator of $\beta$-distribitions: \begin{equation} \beta_{x_{\text{min}},x_{\text{max}}}^{a,b}(x) = x^{a-1}(1-x)^{b-1}\cdot \frac{\Theta(x_{\text{max}}-x)\Theta(x-x_{\text{min}})}% {I(x_{\text{min}},a,b)-I(x_{\text{max}},a,b)} \end{equation} with the \emph{incomplete Beta-function~$I$:} \begin{align} I(x,a,b) & = \int_x^1\!d\xi\, \xi^{a-1}(1-\xi)^{b-1} \\ I(0,a,b) & = B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \end{align} This problem has been studied extensively~\cite{Devroye:1986:random_deviates} and we can use an algorithm~\cite{Atkinson/Whittaker:1979:beta_distribution} that is very fast for~$0>= public :: generate_beta @ <<[[circe2_moments_library]] implementation>>= subroutine generate_beta (rng, x, xmin, xmax, a, b) class(rng_type), intent(inout) :: rng real(kind=default), intent(out) :: x real(kind=default), intent(in) :: xmin, xmax, a, b real(kind=default) :: t, p, u, umin, umax, w <> <> do <> call rng%generate (u) if (w > u) exit end do end subroutine generate_beta @ %def generate_beta @ In fact, this algorithm works for~$0>= if (a >= 1 .or. b <= 1) then x = -1 print *, 'ERROR: beta-distribution expects a<1>= <> p = b*t / (b*t + a * (1 - t)**b) @ The dominating distributions can be generated by simple mappings \begin{align} \phi: [0,1] & \to [0,1] \\ u & \mapsto \begin{cases} t\left(\frac{u}{p}\right)^\frac{1}{a} &t\;\text{for}\;u>p \end{cases} \end{align} The beauty of the algorithm is that we can use a single uniform deviate~$u$ for both intervals: <>= call rng%generate (u) u = umin + (umax - umin) * u if (u <= p) then x = t * (u/p)**(1/a) w = (1 - x)**(b-1) else x = 1 - (1 - t) * ((1 - u)/(1 - p))**(1/b) w = (x/t)**(a-1) end if @ The weights that are derived by dividing the distribution by the dominating distributions are already normalized correctly: \begin{align} w: [0,1] & \to [0,1] \\ x & \mapsto \begin{cases} (1-x)^{b-1} &\in[(1-t)^{b-1},1]\;\text{for}\;x\le t\\ \left(\frac{x}{t}\right)^{a-1} &\in[t^{1-a},1] \;\text{for}\;x\ge t \end{cases} \end{align} @ To derive~$u_{\text{min},\text{max}}$ from~$x_{\text{min},\text{max}}$ we can use~$\phi^{-1}$: \begin{align} \phi^{-1}: [0,1] & \to [0,1] \\ x & \mapsto \begin{cases} p\left(\frac{x}{t}\right)^a &p\;\text{for}\;x>t \end{cases} \end{align} We start with~$u_{\text{min}}$. For efficiency, we handle the most common cases (small~$x_{\text{min}}$) first: <>= if (xmin <= 0) then umin = 0 elseif (xmin < t) then umin = p * (xmin/t)**a elseif (xmin == t) then umin = p elseif (xmin < 1) then umin = 1 - (1 - p) * ((1 - xmin)/(1 - t))**b else umin = 1 endif @ Same procedure for~$u_{\text{max}}$; again, handle the most common cases (large~$x_{\text{max}}$) first: <>= if (xmax >= 1) then umax = 1 elseif (xmax > t) then umax = 1 - (1 - p) * ((1 - xmax)/(1 - t))**b elseif (xmax == t) then umax = p elseif (xmax > 0) then umax = p * (xmax/t)**a else umax = 0 endif @ Check for absurd cases. <>= if (umax < umin) then x = -1 return endif @ It remains to choose he best value for~$t$. The rejection efficiency~$\epsilon$ of the algorithm is given by the ratio of the dominating distribution and the distribution \begin{equation} \frac{1}{\epsilon(t)} = \frac{B(a,b)}{ab} \left(bt^{a} + at^{a-1}(1-t)^b\right). \end{equation} It is maximized for \begin{equation} bt - bt(1-t)^{b-1} + (a-1)(1-t)^b = 0 \end{equation} This equation has a solution which can be determined numerically. While this determination is far too expensive compared to a moderate loss in efficiency, we could perform it once after fitting the coefficients~$a$, $b$. Nevertheless, it has been shown,\cite{Atkinson/Whittaker:1979:beta_distribution} that \begin{equation} t = \frac{1-a}{b+1-a} \end{equation} results in non-vanishing efficiency for all values~$1>= t = (1 - a) / (b + 1 - a) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsection{Sampling} <<[[circe2_moments.f90]]>>= module sampling use kinds implicit none private <<[[sampling]] declarations>> contains <<[[sampling]] implementation>> end module sampling @ <<[[sampling]] declarations>>= type sample integer :: n = 0 real(kind=default) :: w = 0 real(kind=default) :: w2 = 0 end type sample public :: sample @ <<[[sampling]] declarations>>= public :: reset, record @ <<[[sampling]] implementation>>= elemental subroutine reset (s) type(sample), intent(inout) :: s s%n = 0 s%w = 0 s%w2 = 0 end subroutine reset @ <<[[sampling]] implementation>>= elemental subroutine record (s, w) type(sample), intent(inout) :: s real(kind=default), intent(in), optional :: w s%n = s%n + 1 if (present (w)) then s%w = s%w + w s%w2 = s%w2 + w*w else s%w = s%w + 1 s%w2 = s%w2 + 1 endif end subroutine record @ <<[[sampling]] declarations>>= public :: mean, variance @ <<[[sampling]] implementation>>= elemental function mean (s) type(sample), intent(in) :: s real(kind=default) :: mean mean = s%w / s%n end function mean @ <<[[sampling]] implementation>>= elemental function variance (s) type(sample), intent(in) :: s real(kind=default) :: variance variance = (s%w2 / s%n - mean(s)**2) / s%n variance = max (variance, epsilon (variance)) end function variance @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsection{Moments} This would probably be a good place for inheritance <<[[circe2_moments_library]] declarations>>= type moment integer, dimension(2) :: n, m type(sample) :: sample = sample (0, 0.0_default, 0.0_default) end type moment public :: moment @ <<[[circe2_moments_library]] declarations>>= public :: init_moments @ <<[[circe2_moments_library]] implementation>>= subroutine init_moments (moments) type(moment), dimension(0:,0:,0:,0:), intent(inout) :: moments integer :: nx, mx, ny, my do nx = lbound(moments,1), ubound(moments,1) do mx = lbound(moments,2), ubound(moments,2) do ny = lbound(moments,3), ubound(moments,3) do my = lbound(moments,4), ubound(moments,4) moments(nx,mx,ny,my) = moment([nx,ny],[mx,my]) end do end do end do end do call reset_moment (moments) end subroutine init_moments @ <<[[circe2_moments_library]] declarations>>= public :: reset_moment, record_moment @ <<[[circe2_moments_library]] implementation>>= elemental subroutine reset_moment (m) type(moment), intent(inout) :: m call reset (m%sample) end subroutine reset_moment @ If we were pressed for time, we would compute the moments by iterative multiplications instead by powers, of course. In any case, we would like to combine [[x1]] and [[x2]] into an array. Unfortunately this is not possible for [[elemental]] procedures. NB: the NAG compiler appears to want a more careful evaluation of the powers. We enforce [[0.0**0 == 0]]. <<[[circe2_moments_library]] implementation>>= elemental subroutine record_moment (m, x1, x2, w) type(moment), intent(inout) :: m real(kind=default), intent(in) :: x1, x2 real(kind=default), intent(in), optional :: w real(kind=default) :: p p = pwr (x1, m%n(1)) * pwr (1-x1, m%m(1)) & * pwr (x2, m%n(2)) * pwr (1-x2, m%m(2)) if (present (w)) p = p*w call record (m%sample, p) contains pure function pwr (x, n) real(kind=default), intent(in) :: x integer, intent(in) :: n real(kind=default) :: pwr if (n == 0) then pwr = 1 else pwr = x**n end if end function pwr end subroutine record_moment @ <<[[circe2_moments_library]] declarations>>= public :: mean_moment, variance_moment @ <<[[circe2_moments_library]] implementation>>= elemental function mean_moment (m) type(moment), intent(in) :: m real(kind=default) :: mean_moment mean_moment = mean (m%sample) end function mean_moment @ <<[[circe2_moments_library]] implementation>>= elemental function variance_moment (m) type(moment), intent(in) :: m real(kind=default) :: variance_moment variance_moment = variance (m%sample) end function variance_moment @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsubsection{Moments of $\beta$-distributions} <<[[circe2_moments_library]] declarations>>= public :: beta_moment @ \begin{multline} M_{n,m}(a,b) = \int_0^1\!\dd x\, x^n(1-x)^m \beta_{0,1}^{a,b}(x) = \int_0^1\!\dd x\, x^n(1-x)^m \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} \\ = \frac{1}{B(a,b)} \int_0^1\!\dd x\, x^{n+a-1}(1-x)^{m+b-1} = \frac{B(n+a,m+b)}{B(a,b)} \\ = \frac{\Gamma(n+a)\Gamma(m+b)\Gamma(a+b)}% {\Gamma(n+a+m+b)\Gamma(a)\Gamma(b)} = \frac{\Gamma(n+a)}{\Gamma(a)} \frac{\Gamma(m+b)}{\Gamma(b)} \frac{\Gamma(n+m+a+b)}{\Gamma(a+b)} \\ = \frac{(a+n)(a+n-1)\cdots(a+1)a(b+m)(b+m-1)\cdots(b+1)b}% {(a+b+n+m)(a+b+n+m-1)\cdots(a+b+1)(a+b)} \end{multline} <<[[circe2_moments_library]] implementation>>= elemental function beta_moment (n, m, a, b) integer, intent(in) :: n, m real(kind=default), intent(in) :: a, b real(kind=default) :: beta_moment beta_moment = & gamma_ratio (a, n) * gamma_ratio (b, m) / gamma_ratio (a+b, n+m) end function beta_moment @ \begin{equation} \frac{\Gamma(x+n)}{\Gamma(x)} = (x+n)(x+n-1)\cdots(x+1)x \end{equation} <<[[circe2_moments_library]] implementation>>= elemental function gamma_ratio (x, n) real(kind=default), intent(in) :: x integer, intent(in) :: n real(kind=default) :: gamma_ratio integer :: i gamma_ratio = 1 do i = 0, n - 1 gamma_ratio = gamma_ratio * (x + i) end do end function gamma_ratio @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsubsection{Channels} <<[[circe2_moments_library]] declarations>>= type channel real(kind=default) :: w = 1 real(kind=default), dimension(2) :: a = 1, b = 1 logical, dimension(2) :: delta = .false. end type channel public :: channel @ <<[[circe2_moments_library]] declarations>>= public :: generate_beta_multi, beta_moments_multi @ <<[[circe2_moments_library]] implementation>>= subroutine generate_beta_multi (rng, x, channels) class(rng_type), intent(inout) :: rng real(kind=default), dimension(:), intent(out) :: x type(channel), dimension(:), intent(in) :: channels real(kind=default) :: u, accum integer :: i, n <>= call rng%generate (u) u = u * sum (channels%w) accum = 0 scan: do n = 1, size (channels) - 1 accum = accum + channels(n)%w if (accum >= u) exit scan end do scan @ <<[[circe2_moments_library]] implementation>>= pure function beta_moments_multi (n, m, channels) integer, intent(in), dimension(2) :: n, m type(channel), dimension(:), intent(in) :: channels real(kind=default) :: beta_moments_multi real(kind=default) :: w integer :: c, i beta_moments_multi = 0 do c = 1, size (channels) w = channels(c)%w do i = 1, 2 if (channels(c)%delta(i)) then if (m(i) > 0) w = 0 else w = w * beta_moment (n(i), m(i), channels(c)%a(i), channels(c)%b(i)) end if end do beta_moments_multi = beta_moments_multi + w end do beta_moments_multi = beta_moments_multi / sum (channels%w) end function beta_moments_multi @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsubsection{Selftest} @ <<[[circe2_moments_library]] declarations>>= public :: selftest @ <<[[circe2_moments_library]] implementation>>= subroutine selftest (rng, nevents) class(rng_type), intent(inout) :: rng integer, intent(in) :: nevents integer, parameter :: N = 1 type(moment), dimension(0:N,0:N,0:N,0:N) :: moments integer :: i real(kind=default), dimension(2) :: x type(channel), dimension(:), allocatable :: channels call read_channels (channels) call init_moments (moments) do i = 1, nevents call generate_beta_multi (rng, x, channels) call record_moment (moments, x(1), x(2)) end do call report_results (moments, channels) end subroutine selftest @ <<[[circe2_moments_library]] declarations>>= public :: random2_seed @ <<[[circe2_moments_library]] implementation>>= subroutine random2_seed (rng, seed) class(rng_tao), intent(inout) :: rng integer, intent(in), optional:: seed integer, dimension(8) :: date_time integer :: seed_value if (present (seed)) then seed_value = seed else call date_and_time (values = date_time) seed_value = product (date_time) endif call rng%init (seed_value) end subroutine random2_seed @ <<[[circe2_moments_library]] declarations>>= public :: read_channels @ <<[[circe2_moments_library]] implementation>>= subroutine read_channels (channels) type(channel), dimension(:), allocatable, intent(out) :: channels type(channel), dimension(100) :: buffer real(kind=default) :: w real(kind=default), dimension(2) :: a, b logical, dimension(2) :: delta integer :: n, status do n = 1, size (buffer) read (*, *, iostat = status) w, a(1), b(1), a(2), b(2), delta if (status == 0) then buffer(n) = channel (w, a, b, delta) else exit end if end do allocate (channels(n-1)) channels = buffer(1:n-1) end subroutine read_channels @ <<[[circe2_moments_library]] declarations>>= public :: report_results @ <<[[circe2_moments_library]] implementation>>= subroutine report_results (moments, channels) type(moment), dimension(0:,0:,0:,0:), intent(in) :: moments type(channel), dimension(:), intent(in) :: channels integer :: nx, mx, ny, my real(kind=default) :: truth, estimate, sigma, pull, eps do nx = lbound(moments,1), ubound(moments,1) do mx = lbound(moments,2), ubound(moments,2) do ny = lbound(moments,3), ubound(moments,3) do my = lbound(moments,4), ubound(moments,4) truth = beta_moments_multi ([nx, ny], [mx, my], channels) estimate = mean_moment (moments(nx,mx,ny,my)) sigma = sqrt (variance_moment (moments(nx,mx,ny,my))) pull = estimate - truth eps = pull / max (epsilon (1.0_default), epsilon (1.0_double)) if (sigma /= 0.0_default) pull = pull / sigma write (*, "(' x^', I1, ' (1-x)^', I1, & &' y^', I1, ' (1-y)^', I1, & &': ', F8.5, ': est = ', F8.5, & &' +/- ', F8.5,& &', pull = ', F8.2,& &', eps = ', F8.2)") & nx, mx, ny, my, truth, estimate, sigma, pull, eps end do end do end do end do end subroutine report_results @ <<[[circe2_moments_library]] declarations>>= public :: results_ok @ <<[[circe2_moments_library]] implementation>>= function results_ok (moments, channels, threshold, fraction) ! use, intrinsic :: ieee_arithmetic type(moment), dimension(0:,0:,0:,0:), intent(in) :: moments type(channel), dimension(:), intent(in) :: channels real(kind=default), intent(in), optional :: threshold, fraction logical :: results_ok integer :: nx, mx, ny, my, failures real(kind=default) :: thr, frac, eps real(kind=default) :: truth, estimate, sigma ! we mut not expect to measure zero better than the ! double precision used in the ocaml code: eps = 200 * max (epsilon (1.0_default), epsilon (1.0_double)) if (present(threshold)) then thr = threshold else thr = 5 end if if (present(fraction)) then frac = fraction else frac = 0.01_default end if failures = 0 do nx = lbound(moments,1), ubound(moments,1) do mx = lbound(moments,2), ubound(moments,2) do ny = lbound(moments,3), ubound(moments,3) do my = lbound(moments,4), ubound(moments,4) truth = beta_moments_multi ([nx, ny], [mx, my], channels) estimate = mean_moment (moments(nx,mx,ny,my)) sigma = sqrt (variance_moment (moments(nx,mx,ny,my))) if (.not. ( ieee_is_normal (truth) & .and. ieee_is_normal (estimate) & .and. ieee_is_normal (sigma)) & .or. abs (estimate - truth) > max (thr * sigma, eps)) then failures = failures + 1 end if end do end do end do end do if (failures >= frac * size (moments)) then results_ok = .false. else results_ok = .true. end if contains <> end function results_ok @ gfortran doesn't have the intrinsic [[ieee_arithmetic]] module yet \ldots <>= function ieee_is_normal (x) real(kind=default), intent(in) :: x logical :: ieee_is_normal ieee_is_normal = .not. (x /= x) end function ieee_is_normal @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsubsection{Generate Sample} @ <<[[circe2_moments_library]] declarations>>= public :: generate @ <<[[circe2_moments_library]] implementation>>= subroutine generate (rng, nevents) class(rng_type), intent(inout) :: rng integer, intent(in) :: nevents type(channel), dimension(:), allocatable :: channels real(kind=default), dimension(2) :: x integer :: i call read_channels (channels) do i = 1, nevents call generate_beta_multi (rng, x, channels) write (*, "(3(5x,F19.17))") x, 1.0_default end do end subroutine generate @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsubsection{List Moments} @ <<[[circe2_moments_library]] declarations>>= public :: compare @ <<[[circe2_moments_library]] implementation>>= subroutine compare (rng, nevents, file) class(rng_type), intent(inout) :: rng integer, intent(in) :: nevents character(len=*), intent(in) :: file type(channel), dimension(:), allocatable :: channels integer, parameter :: N = 1 type(moment), dimension(0:N,0:N,0:N,0:N) :: moments real(kind=default), dimension(2) :: x character(len=128) :: design real(kind=default) :: roots integer :: ierror integer, dimension(2) :: p, h integer :: i type(circe2_state) :: c2s call read_channels (channels) call init_moments (moments) design = "CIRCE2/TEST" roots = 42 p = [11, -11] h = 0 call circe2_load (c2s, trim(file), trim(design), roots, ierror) do i = 1, nevents call circe2_generate (c2s, rng, x, p, h) call record_moment (moments, x(1), x(2)) end do call report_results (moments, channels) end subroutine compare @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsubsection{Check Generator} @ <<[[circe2_moments_library]] declarations>>= public :: check @ <<[[circe2_moments_library]] implementation>>= subroutine check (rng, nevents, file, distributions, fail) class(rng_type), intent(inout) :: rng integer, intent(in) :: nevents character(len=*), intent(in) :: file logical, intent(in), optional :: distributions, fail type(channel), dimension(:), allocatable :: channels type(channel), dimension(1) :: unit_channel integer, parameter :: N = 1 type(moment), dimension(0:N,0:N,0:N,0:N) :: moments, unit_moments real(kind=default), dimension(2) :: x character(len=128) :: design real(kind=default) :: roots, weight integer :: ierror integer, dimension(2) :: p, h integer :: i logical :: generation_ok, distributions_ok logical :: check_distributions, expect_failure type(circe2_state) :: c2s if (present (distributions)) then check_distributions = distributions else check_distributions = .true. end if if (present (fail)) then expect_failure = fail else expect_failure = .false. end if call read_channels (channels) call init_moments (moments) if (check_distributions) call init_moments (unit_moments) design = "CIRCE2/TEST" roots = 42 p = [11, -11] h = 0 call circe2_load (c2s, trim(file), trim(design), roots, ierror) do i = 1, nevents call circe2_generate (c2s, rng, x, p, h) call record_moment (moments, x(1), x(2)) if (check_distributions) then weight = circe2_distribution (c2s, p, h, x) call record_moment (unit_moments, x(1), x(2), w = 1 / weight) end if end do generation_ok = results_ok (moments, channels) if (check_distributions) then distributions_ok = results_ok (unit_moments, unit_channel) else distributions_ok = .not. expect_failure end if if (expect_failure) then if (generation_ok .and. distributions_ok) then print *, "FAIL: unexpected success" else if (.not. generation_ok) then print *, "OK: expected failure in generation" end if if (.not. distributions_ok) then print *, "OK: expected failure in distributions" end if end if call report_results (moments, channels) else if (generation_ok .and. distributions_ok) then print *, "OK" else if (.not. generation_ok) then print *, "FAIL: generation" call report_results (moments, channels) end if if (.not. distributions_ok) then print *, "FAIL: distributions" call report_results (unit_moments, unit_channel) end if end if end if end subroutine check @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ \subsection{[[circe2_moments]]: Compare Moments of distributions} <
>= program circe2_moments use circe2 use circe2_moments_library !NODEP! use tao_random_objects !NODEP! implicit none type(rng_tao), save :: rng character(len=1024) :: mode, filename, buffer integer :: status, nevents, seed call get_command_argument (1, value = mode, status = status) if (status /= 0) mode = "" call get_command_argument (2, value = filename, status = status) if (status /= 0) filename = "" call get_command_argument (3, value = buffer, status = status) if (status == 0) then read (buffer, *, iostat = status) nevents if (status /= 0) nevents = 1000 else nevents = 1000 end if call get_command_argument (4, value = buffer, status = status) if (status == 0) then read (buffer, *, iostat = status) seed if (status == 0) then call random2_seed (rng, seed) else call random2_seed (rng) end if else call random2_seed (rng) end if select case (trim (mode)) case ("check") call check (rng, nevents, trim (filename)) case ("!check") call check (rng, nevents, trim (filename), fail = .true.) case ("check_generation") call check (rng, nevents, trim (filename), distributions = .false.) case ("!check_generation") call check (rng, nevents, trim (filename), fail = .true., & distributions = .false.) case ("compare") call compare (rng, nevents, trim (filename)) case ("generate") call generate (rng, nevents) case ("selftest") call selftest (rng, nevents) case default print *, & "usage: circe2_moments " // & "[check|check_generation|generate|selftest] " // & "filename [events] [seed]" end select end program circe2_moments @ <<[[circe2_moments.f90]]>>= module circe2_moments_library use kinds use tao_random_objects !NODEP! use sampling !NODEP! use circe2 implicit none private <<[[circe2_moments_library]] declarations>> contains <<[[circe2_moments_library]] implementation>> end module circe2_moments_library @ <<[[circe2_moments.f90]]>>= <
> @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{thebibliography}{10} \bibitem{Atkinson/Whittaker:1979:beta_distribution} A. Atkinson and J. Whittaker, Appl.\ Stat.\ {\bf 28}, 90 (1979). \bibitem{Devroye:1986:random_deviates} L. Devroye, {\em Non-uniform Random Variate Generation}, Springer, 1986. \end{thebibliography} Index: trunk/ChangeLog =================================================================== --- trunk/ChangeLog (revision 8850) +++ trunk/ChangeLog (revision 8851) @@ -1,2347 +1,2354 @@ ChangeLog -- Summary of changes to the WHIZARD package Use svn log to see detailed changes. - Version 3.0.3+ + Version 3.1.0 + +2022-12-14 + RELEASE: version 3.1.0 + +2022-12-12 + Bug fix Pythia8 interface: production vertices, shower history + O'Mega support for epsilon tensor color structures 2022-11-30 O'Mega support for general SU(N) color representations 2022-11-07 Modernize configure checks for Python versions v3.10+ 2022-10-21 General POWHEG matching with optional NLO real phase space partitioning 2022-09-26 Bug fix: accept negative scale values in SLHA block header 2022-08-08 Numerical stability of testsuite for Apple M1 processors 2022-08-07 Technically allow for muons as CIRCE2 beam spectra 2022-06-22 POWHEG matching for Drell-Yan and similar processes 2022-06-12 Add unit tests for Lorentz and phase-space modules 2022-05-09 Massive eikonals: Numeric robustness at ultrahigh energies 2022-04-20 Bug fix for VAMP2 event generation with indefinite samples ################################################################## 2022-04-06 RELEASE: version 3.0.3 2022-04-05 POWHEG matching for single flavor hadron collisions 2022-03-31 NLO EW processes with massless leptons and jets (i.e. jet clustering and photon recombination) supported NLO EW for massive initial leptons validated 2022-03-27 Complete implementation/validation of NLL electron PDFs 2022-02-22 Bug fix: correct normalization for CIRCE2+EPA+polarization 2022-02-21 WHIZARD core now uses Fortran modules and submodules 2022-01-27 Infrastructure for POWHEG matching for hadron collisions 2021-12-16 Event files can be written/read also for decay processes Implementation of running QED coupling alpha 2021-12-10 Independent variations of renormalization/factorization scale ################################################################## 2021-11-23 RELEASE: version 3.0.2 2021-11-19 Support for a wide class of mixed NLO QCD/EW processes 2021-11-18 Add pp processes for NLO EW corrections to testsuite 2021-11-11 Output numerically critical values with LCIO 2.17+ as double 2021-11-05 Minor refactoring on phase space points and kinematics 2021-10-21 NLO (QCD) differential distributions supported for full lepton collider setup: polarization, QED ISR, beamstrahlung 2021-10-15 SINDARIN now has a sum and product function of expressions, SINDARIN supports observables defined on full (sub)events First application: transverse mass Bug fix: 2HDM did not allow H+, H- as external particles 2021-10-14 CT18 PDFs included (NLO, NNLO) 2021-09-30 Bug fix: keep non-recombined photons in the event record 2021-09-13 Modular NLO event generation with real partition 2021-08-20 Bug fix: correctly reading in NLO fixed order events 2021-08-06 Generalize optional partitioning of the NLO real phase space ################################################################## 2021-07-08 RELEASE: version 3.0.1 2021-07-06 MPI parallelization now comes with two incarnations: - standard MPI parallelization ("simple", default) - MPI with load balancer ("load") 2021-07-05 Bug fix for C++17 default compilers w/ HepMC3/ROOT interface 2021-07-02 Improvement for POWHEG matching: - implement massless recoil case - enable reading in existing POWHEG grids - support kinematic cuts at generator level 2021-07-01 Distinguish different cases of photons in NLO EW corrections 2021-06-21 Option to keep negative PDF entries or set them zero 2021-05-31 Full LCIO MC production files can be properly recasted 2021-05-24 Use defaults for UFO models without propagators.py 2021-05-21 Bug fix: prevent invalid code for UFO models containing hyphens 2021-05-20 UFO files with scientific notation float constants allowed UFO files: max. n-arity of vertices bound by process multiplicity ################################################################## 2021-04-27 RELEASE: version 3.0.0 2021-04-20 Minimal required OCaml version is now 4.05.0. Bug fix for tau polarization from stau decays 2021-04-19 NLO EW splitting functions and collinear remnants completed Photon recombination implemented 2021-04-14 Bug fix for vertices/status codes with HepMC2/3 event format 2021-04-08 Correct Lorentz statistics for UFO model with Majorana fermions 2021-04-06 Bug fix for rare script failure in system_dependencies.f90.in Kappa factor for quartic Higgs coupling in SM_ac(_CKM) model 2021-04-04 Support for UFO extensions in SMEFTSim 3.0 2021-02-25 Enable VAMP and VAMP2 channel equivalences for NLO integrations 2021-02-04 Bug fix if user does not set a prefix at configuration 2020-12-10 Generalize NLO calculations to non-CMS lab frames 2020-12-08 Bug fix in expanded p-wave form factor for top threshold 2020-12-06 Patch for macOS Big Sur shared library handling due to libtool; the patch also demands gcc/gfortran 11.0/10.3/9.4/8.5 2020-12-04 O'Mega only inserts non-vanishing couplings from UFO models 2020-11-21 Bug fix for fractional hypercharges in UFO models 2020-11-11 Enable PYTHIA6 settings for eh collisions (enable-pythia6_eh) 2020-11-09 Correct flavor assignment for NLO fixed-order events 2020-11-05 Bug fix for ISR handler not working with unstable particles 2020-10-08 Bug fix in LHAPDF interface for photon PDFs 2020-10-07 Bug fix for structure function setup with asymmetric beams 2020-10-02 Python/Cython layer for WHIZARD API 2020-09-30 Allow mismatches of Python and name attributes in UFO models 2020-09-26 Support for negative PDG particles from certain UFO models 2020-09-24 Allow for QNUMBERS blocks in BSM SLHA files 2020-09-22 Full support for compilation with clang(++) on Darwin/macOS More documentation in the manual Minor clean-ups 2020-09-16 Bug fix enables reading LCIO events with LCIO v2.15+ ################################################################## 2020-09-16 RELEASE: version 2.8.5 2020-09-11 Bug fix for H->tau tau transverse polarization with PYTHIA6 (thanks to Junping Tian / Akiya Miyamoto) 2020-09-09 Fix a long standing bug (since 2.0) in the calculation of color factors when particles of different color were combined in a particle class. NB: O'Mega never produced a wrong number, it only declared all processes as invalid. 2020-09-08 Enable Openloops matrix element equivalences for optimization 2020-09-02 Compatibility fix for PYTHIA v8.301+ interface 2020-09-01 Support exclusive jet clustering in ee for Fastjet interface ################################################################## 2020-08-30 RELEASE: version 3.0.0_beta 2020-08-27 Major revision of NLO distributions and events for processes with structure functions: - Use parton momenta/flavors (instead of beams) for events - Bug fix for Lorentz boosts and Lorentz frames of momenta - Bug fix: apply cuts to virtual NLO component in correct frame - Correctly assign ISR radiation momenta in data structures - Refactoring on quantum numbers for NLO event data structures - Functional tests for hadron collider NLO distributions - many minor bug fixes regarding NLO hadron collider physics 2020-08-11 Bug fix for linking problem with OpenMPI 2020-08-07 New WHIZARD API: WHIZARD can be externally linked as a library, added examples for Fortran, C, C++ programs ################################################################## 2020-07-08 RELEASE: version 2.8.4 2020-07-07 Bug fix: steering of UFO Majorana models from WHIZARD ################################################################## 2020-07-06 Combined integration also for hadron collider processes at NLO 2020-07-05 Bug fix: correctly steer e+e- FastJet clustering algorithms Major revision of NLO differential distributions and events: - Correctly assign quantum numbers to NLO fixed-order events - Correctly assign weights to NLO fixed-order events for combined simulation - Cut all NLO fixed-order subevents in event groups individually - Only allow "sigma" normalization for NLO fixed-order events - Use correct PDF setup for NLO counter events - Several technical fixes and updates of the NLO testsuite ################################################################## 2020-07-03 RELEASE: version 2.8.3 2020-07-02 Feature-complete UFO implementation for Majorana fermions 2020-06-22 Running width scheme supported for O'Mega matrix elements 2020-06-20 Adding H-s-s coupling to SM_Higgs(_CKM) models 2020-06-17 Completion of ILC 2->6 fermion extended test suite 2020-06-15 Bug fix: PYTHIA6/Tauola, correctly assign tau spins for stau decays 2020-06-09 Bug fix: correctly update calls for additional VAMP/2 iterations Bug fix: correct assignment for tau spins from PYTHIA6 interface 2020-06-04 Bug fix: cascades2 tree merge with empty subtree(s) 2020-05-31 Switch $epa_mode for different EPA implementations 2020-05-26 Bug fix: spin information transferred for resonance histories 2020-04-13 HepMC: correct weighted events for non-xsec event normalizations 2020-04-04 Improved HepMC3 interface: HepMC3 Root/RootTree interface 2020-03-24 ISR: Fix on-shell kinematics for events with ?isr_handler=true (set ?isr_handler_keep_mass=false for old behavior) 2020-03-11 Beam masses are correctly passed to hard matrix element for CIRCE2 EPA with polarized beams: double-counting corrected ################################################################## 2020-03-03 RELEASE: version 3.0.0_alpha 2020-02-25 Bug fix: Scale and alphas can be retrieved from internal event format to external formats 2020-02-17 Bug fix: ?keep_failed_events now forces output of actual event data Bug fix: particle-set reconstruction (rescanning events w/o radiation) 2020-01-28 Bug fix for left-over EPA parameter epa_e_max (replaced by epa_q_max) 2020-01-23 Bug fix for real components of NLO QCD 2->1 processes 2020-01-22 Bug fix: correct random number sequencing during parallel MPI event generation with rng_stream 2020-01-21 Consistent distribution of events during parallel MPI event generation 2020-01-20 Bug fix for configure setup for automake v1.16+ 2020-01-18 General SLHA parameter files for UFO models supported 2020-01-08 Bug fix: correctly register RECOLA processes with flavor sums 2019-12-19 Support for UFO customized propagators O'Mega unit tests for fermion-number violating interactions 2019-12-10 For distribution building: check for graphviz/dot version 2.40 or newer 2019-11-21 Bug fix: alternate setups now work correctly Infrastructure for accessing alpha_QED event-by-event Guard against tiny numbers that break ASCII event output Enable inverse hyperbolic functions as SINDARIN observables Remove old compiler bug workarounds 2019-11-20 Allow quoted -e argument, implemented -f option 2019-11-19 Bug fix: resonance histories now work also with UFO models Fix in numerical precision of ASCII VAMP2 grids 2019-11-06 Add squared matrix elements to the LCIO event header 2019-11-05 Do not include RNG state in MD5 sum for CIRCE1/2 2019-11-04 Full CIRCE2 ILC 250 and 500 GeV beam spectra added Minor update on LCIO event header information 2019-10-30 NLO QCD for final states completed When using Openloops, v2.1.1+ mandatory 2019-10-25 Binary grid files for VAMP2 integrator ################################################################## 2019-10-24 RELEASE: version 2.8.2 2019-10-20 Bug fix for HepMC linker flags 2019-10-19 Support for spin-2 particles from UFO files 2019-09-27 LCIO event format allows rescan and alternate weights 2019-09-24 Compatibility fix for OCaml v4.08.0+ ################################################################## 2019-09-21 RELEASE: version 2.8.1 2019-09-19 Carriage return characters in UFO models can be parsed Mathematica symbols in UFO models possible Unused/undefined parameters in UFO models handled 2019-09-13 New extended NLO test suite for ee and pp processes 2019-09-09 Photon isolation (separation of perturbative and fragmentation part a la Frixione) 2019-09-05 Major progress on NLO QCD for hadron collisions: - correctly assign flavor structures for alpha regions - fix crossing of particles for initial state splittings - correct assignment for PDF factors for real subtractions - fix kinematics for collinear splittings - bug fix for integrated virtual subtraction terms 2019-09-03 b and c jet selection in cuts and analysis 2019-08-27 Support for Intel MPI 2019-08-20 Complete (preliminary) HepMC3 support (incl. backwards HepMC2 write/read mode) 2019-08-08 Bug fix: handle carriage returns in UFO files (non-Unix OS) ################################################################## 2019-08-07 RELEASE: version 2.8.0 2019-07-31 Complete WHIZARD UFO interface: - general Lorentz structures - matrix element support for general color factors - missing features: Majorana fermions and SLHA 2019-07-20 Make WHIZARD compatible with OCaml 4.08.0+ 2019-07-19 Fix version testing for LHAPDF 6.2.3 and newer Minimal required OCaml version is now 4.02.3. 2019-04-18 Correctly generate ordered FKS tuples for alpha regions from all possible underlying Born processes 2019-04-08 Extended O'Mega/Recola matrix element test suite 2019-03-29 Correct identical particle symmetry factors for FKS subtraction 2019-03-28 Correct assertion of spin-correlated matrix elements for hadron collisions 2019-03-27 Bug fix for cut-off parameter delta_i for collinear plus/minus regions ################################################################## 2019-03-27 RELEASE: version 2.7.1 2019-02-19 Further infrastructure for HepMC3 interface (v3.01.00) 2019-02-07 Explicit configure option for using debugging options Bug fix for performance by removing unnecessary debug operations 2019-01-29 Bug fix for DGLAP remnants with cut-off parameter delta_i 2019-01-24 Radiative decay neu2 -> neu1 A added to MSSM_Hgg model ################################################################## 2019-01-21 RELEASE: version 2.7.0 2018-12-18 Support RECOLA for integrated und unintegrated subtractions 2018-12-11 FCNC top-up sector in model SM_top_anom 2018-12-05 Use libtirpc instead of SunRPC on Arch Linux etc. 2018-11-30 Display rescaling factor for weighted event samples with cuts 2018-11-29 Reintroduce check against different masses in flavor sums Bug fix for wrong couplings in the Littlest Higgs model(s) 2018-11-22 Bug fix for rescanning events with beam structure 2018-11-09 Major refactoring of internal process data 2018-11-02 PYTHIA8 interface 2018-10-29 Flat phase space parametrization with RAMBO (on diet) implemented 2018-10-17 Revise extended test suite 2018-09-27 Process container for RECOLA processes 2018-09-15 Fixes by M. Berggren for PYTHIA6 interface 2018-09-14 First fixes after HepForge modernization ################################################################## 2018-08-23 RELEASE: version 2.6.4 2018-08-09 Infrastructure to check colored subevents 2018-07-10 Infrastructure for running WHIZARD in batch mode 2018-07-04 MPI available from distribution tarball 2018-06-03 Support Intel Fortran Compiler under MAC OS X 2018-05-07 FKS slicing parameter delta_i (initial state) implementend 2018-05-03 Refactor structure function assignment for NLO 2018-05-02 FKS slicing parameter xi_cut, delta_0 implemented 2018-04-20 Workspace subdirectory for process integration (grid/phs files) Packing/unpacking of files at job end/start Exporting integration results from scan loops 2018-04-13 Extended QCD NLO test suite 2018-04-09 Bug fix for Higgs Singlet Extension model 2018-04-06 Workspace subdirectory for process generation and compilation --job-id option for creating job-specific names 2018-03-20 Bug fix for color flow matching in hadron collisions with identical initial state quarks 2018-03-08 Structure functions quantum numbers correctly assigned for NLO 2018-02-24 Configure setup includes 'pgfortran' and 'flang' 2018-02-21 Include spin-correlated matrix elements in interactions 2018-02-15 Separate module for QED ISR structure functions ################################################################## 2018-02-10 RELEASE: version 2.6.3 2018-02-08 Improvements in memory management for PS generation 2018-01-31 Partial refactoring: quantum number assigment NLO Initial-state QCD splittings for hadron collisions 2018-01-25 Bug fix for weighted events with VAMP2 2018-01-17 Generalized interface for Recola versions 1.3+ and 2.1+ 2018-01-15 Channel equivalences also for VAMP2 integrator 2018-01-12 Fix for OCaml compiler 4.06 (and newer) 2017-12-19 RECOLA matrix elements with flavor sums can be integrated 2017-12-18 Bug fix for segmentation fault in empty resonance histories 2017-12-16 Fixing a bug in PYTHIA6 PYHEPC routine by omitting CMShowers from transferral between PYTHIA and WHIZARD event records 2017-12-15 Event index for multiple processes in event file correct ################################################################## 2017-12-13 RELEASE: version 2.6.2 2017-12-07 User can set offset in event numbers 2017-11-29 Possibility to have more than one RECOLA process in one file 2017-11-23 Transversal/mixed (and unitarized) dim-8 operators 2017-11-16 epa_q_max replaces epa_e_max (trivial factor 2) 2017-11-15 O'Mega matrix element compilation silent now 2017-11-14 Complete expanded P-wave form factor for top threshold 2017-11-10 Incoming particles can be accessed in SINDARIN 2017-11-08 Improved handling of resonance insertion, additional parameters 2017-11-04 Added Higgs-electron coupling (SM_Higgs) ################################################################## 2017-11-03 RELEASE: version 2.6.1 2017-10-20 More than 5 NLO components possible at same time 2017-10-19 Gaussian cutoff for shower resonance matching 2017-10-12 Alternative (more efficient) method to generate phase space file 2017-10-11 Bug fix for shower resonance histories for processes with multiple components 2017-09-25 Bug fix for process libraries in shower resonance histories 2017-09-21 Correctly generate pT distribution for EPA remnants 2017-09-20 Set branching ratios for unstable particles also by hand 2017-09-14 Correctly generate pT distribution for ISR photons ################################################################## 2017-09-08 RELEASE: version 2.6.0 2017-09-05 Bug fix for initial state NLO QCD flavor structures Real and virtual NLO QCD hadron collider processes work with internal interactions 2017-09-04 Fully validated MPI integration and event generation 2017-09-01 Resonance histories for shower: full support Bug fix in O'Mega model constraints O'Mega allows to output a parsable form of the DAG 2017-08-24 Resonance histories in events for transferral to parton shower (e.g. in ee -> jjjj) 2017-08-01 Alpha version of HepMC v3 interface (not yet really functional) 2017-07-31 Beta version for RECOLA OLP support 2017-07-06 Radiation generator fix for LHC processes 2017-06-30 Fix bug for NLO with structure functions and/or polarization 2017-06-23 Collinear limit for QED corrections works 2017-06-17 POWHEG grids generated already during integration 2017-06-12 Soft limit for QED corrections works 2017-05-16 Beta version of full MPI parallelization (VAMP2) Check consistency of POWHEG grid files Logfile config-summary.log for configure summary 2017-05-12 Allow polarization in top threshold 2017-05-09 Minimal demand automake 1.12.2 Silent rules for make procedures 2017-05-07 Major fix for POWHEG damping Correctly initialize FKS ISR phasespace ################################################################## 2017-05-06 RELEASE: version 2.5.0 2017-05-05 Full UFO support (SM-like models) Fixed-beam ISR FKS phase space 2017-04-26 QED splittings in radiation generator 2017-04-10 Retire deprecated O'Mega vertex cache files ################################################################## 2017-03-24 RELEASE: version 2.4.1 2017-03-16 Distinguish resonance charge in phase space channels Keep track of resonance histories in phase space Complex mass scheme default for OpenLoops amplitudes 2017-03-13 Fix helicities for polarized OpenLoops calculations 2017-03-09 Possibility to advance RNG state in rng_stream 2017-03-04 General setup for partitioning real emission phase space 2017-03-06 Bug fix on rescan command for converting event files 2017-02-27 Alternative multi-channel VEGAS implementation VAMP2: serial backbone for MPI setup Smoothstep top threshold matching 2017-02-25 Single-beam structure function with s-channel mapping supported Safeguard against invalid process libraries 2017-02-16 Radiation generator for photon emission 2017-02-10 Fixes for NLO QCD processes (color correlations) 2017-01-16 LCIO variable takes precedence over LCIO_DIR 2017-01-13 Alternative random number generator rng_stream (cf. L'Ecuyer et al.) 2017-01-01 Fix for multi-flavor BLHA tree matrix elements 2016-12-31 Grid path option for VAMP grids 2016-12-28 Alpha version of Recola OLP support 2016-12-27 Dalitz plots for FKS phase space 2016-12-14 NLO multi-flavor events possible 2016-12-09 LCIO event header information added 2016-12-02 Alpha version of RECOLA interface Bug fix for generator status in LCIO ################################################################## 2016-11-28 RELEASE: version 2.4.0 2016-11-24 Bug fix for OpenLoops interface: EW scheme is set by WHIZARD Bug fixes for top threshold implementation 2016-11-11 Refactoring of dispatching 2016-10-18 Bug fix for LCIO output 2016-10-10 First implementation for collinear soft terms 2016-10-06 First full WHIZARD models from UFO files 2016-10-05 WHIZARD does not support legacy gcc 4.7.4 any longer 2016-09-30 Major refactoring of process core and NLO components 2016-09-23 WHIZARD homogeneous entity: discarding subconfigures for CIRCE1/2, O'Mega, VAMP subpackages; these are reconstructable by script projectors 2016-09-06 Introduce main configure summary 2016-08-26 Fix memory leak in event generation ################################################################## 2016-08-25 RELEASE: version 2.3.1 2016-08-19 Bug fix for EW-scheme dependence of gluino propagators 2016-08-01 Beta version of complex mass scheme support 2016-07-26 Fix bug in POWHEG damping for the matching ################################################################## 2016-07-21 RELEASE: version 2.3.0 2016-07-20 UFO file support (alpha version) in O'Mega 2016-07-13 New (more) stable of WHIZARD GUI Support for EW schemes for OpenLoops Factorized NLO top decays for threshold model 2016-06-15 Passing factorization scale to PYTHIA6 Adding charge and neutral observables 2016-06-14 Correcting angular distribution/tweaked kinematics in non-collinear structure functions splittings 2016-05-10 Include (Fortran) TAUOLA/PHOTOS for tau decays via PYTHIA6 (backwards validation of LC CDR/TDR samples) 2016-04-27 Within OpenLoops virtuals: support for Collier library 2016-04-25 O'Mega vertex tables only loaded at first usage 2016-04-21 New CJ15 PDF parameterizations added 2016-04-21 Support for hadron collisions at NLO QCD 2016-04-05 Support for different (parameter) schemes in model files 2016-03-31 Correct transferral of lifetime/vertex from PYTHIA/TAUOLA into the event record 2016-03-21 New internal implementation of polarization via Bloch vectors, remove pointer constructions 2016-03-13 Extension of cascade syntax for processes: exclude propagators/vertices etc. possible 2016-02-24 Full support for OpenLoops QCD NLO matrix elements, inclusion in test suite 2016-02-12 Substantial progress on QCD NLO support 2016-02-02 Automated resonance mapping for FKS subtraction 2015-12-17 New BSM model WZW for diphoton resonances ################################################################## 2015-11-22 RELEASE: version 2.2.8 2015-11-21 Bug fix for fixed-order NLO events 2015-11-20 Anomalous FCNC top-charm vertices 2015-11-19 StdHEP output via HEPEVT/HEPEV4 supported 2015-11-18 Full set of electroweak dim-6 operators included 2015-10-22 Polarized one-loop amplitudes supported 2015-10-21 Fixes for event formats for showered events 2015-10-14 Callback mechanism for event output 2015-09-22 Bypass matrix elements in pure event sample rescans StdHep frozen final version v5.06.01 included internally 2015-09-21 configure option --with-precision to demand 64bit, 80bit, or 128bit Fortran and bind C precision types 2015-09-07 More extensive tests of NLO infrastructure and POWHEG matching 2015-09-01 NLO decay infrastructure User-defined squared matrix elements Inclusive FastJet algorithm plugin Numerical improvement for small boosts ################################################################## 2015-08-11 RELEASE: version 2.2.7 2015-08-10 Infrastructure for damped POWHEG Massive emitters in POWHEG Born matrix elements via BLHA GoSam filters via SINDARIN Minor running coupling bug fixes Fixed-order NLO events 2015-08-06 CT14 PDFs included (LO, NLO, NNLL) 2015-07-07 Revalidation of ILC WHIZARD-PYTHIA event chain Extended test suite for showered events Alpha version of massive FSR for POWHEG 2015-06-09 Fix memory leak in interaction for long cascades Catch mismatch between beam definition and CIRCE2 spectrum 2015-06-08 Automated POWHEG matching: beta version Infrastructure for GKS matching Alpha version of fixed-order NLO events CIRCE2 polarization averaged spectra with explicitly polarized beams 2015-05-12 Abstract matching type: OO structure for matching/merging 2015-05-07 Bug fix in event record WHIZARD-PYTHIA6 transferral Gaussian beam spectra for lepton colliders ################################################################## 2015-05-02 RELEASE: version 2.2.6 2015-05-01 Models for (unitarized) tensor resonances in VBS 2015-04-28 Bug fix in channel weights for event generation. 2015-04-18 Improved event record transfer WHIZARD/PYTHIA6 2015-03-19 POWHEG matching: alpha version ################################################################## 2015-02-27 RELEASE: version 2.2.5 2015-02-26 Abstract types for quantum numbers 2015-02-25 Read-in of StdHEP events, self-tests 2015-02-22 Bug fix for mother-daughter relations in showered/hadronized events 2015-02-20 Projection on polarization in intermediate states 2015-02-13 Correct treatment of beam remnants in event formats (also LC remnants) ################################################################## 2015-02-06 RELEASE: version 2.2.4 2015-02-06 Bug fix in event output 2015-02-05 LCIO event format supported 2015-01-30 Including state matrices in WHIZARD's internal IO Versioning for WHIZARD's internal IO Libtool update from 2.4.3 to 2.4.5 LCIO event output (beta version) 2015-01-27 Progress on NLO integration Fixing a bug for multiple processes in a single event file when using beam event files 2015-01-19 Bug fix for spin correlations evaluated in the rest frame of the mother particle 2015-01-17 Regression fix for statically linked processes from SARAH and FeynRules 2015-01-10 NLO: massive FKS emitters supported (experimental) 2015-01-06 MMHT2014 PDF sets included 2015-01-05 Handling mass degeneracies in auto_decays 2014-12-19 Fixing bug in rescan of event files ################################################################## 2014-11-30 RELEASE: version 2.2.3 2014-11-29 Beta version of LO continuum/NLL-threshold matched top threshold model for e+e- physics 2014-11-28 More internal refactoring: disentanglement of module dependencies 2014-11-21 OVM: O'Mega Virtual Machine, bytecode instructions instead of compiled Fortran code 2014-11-01 Higgs Singlet extension model included 2014-10-18 Internal restructuring of code; half-way WHIZARD main code file disassembled 2014-07-09 Alpha version of NLO infrastructure ################################################################## 2014-07-06 RELEASE: version 2.2.2 2014-07-05 CIRCE2: correlated LC beam spectra and GuineaPig Interface to LC machine parameters 2014-07-01 Reading LHEF for decayed/factorized/showered/ hadronized events 2014-06-25 Configure support for GoSAM/Ninja/Form/QGraf 2014-06-22 LHAPDF6 interface 2014-06-18 Module for automatic generation of radiation and loop infrastructure code 2014-06-11 Improved internal directory structure ################################################################## 2014-06-03 RELEASE: version 2.2.1 2014-05-30 Extensions of internal PDG arrays 2014-05-26 FastJet interface 2014-05-24 CJ12 PDFs included 2014-05-20 Regression fix for external models (via SARAH or FeynRules) ################################################################## 2014-05-18 RELEASE: version 2.2.0 2014-04-11 Multiple components: inclusive process definitions, syntax: process A + B + ... 2014-03-13 Improved PS mappings for e+e- ISR ILC TDR and CLIC spectra included in CIRCE1 2014-02-23 New models: AltH w\ Higgs for exclusion purposes, SM_rx for Dim 6-/Dim-8 operators, SSC for general strong interactions (w/ Higgs), and NoH_rx (w\ Higgs) 2014-02-14 Improved s-channel mapping, new on-shell production mapping (e.g. Drell-Yan) 2014-02-03 PRE-RELEASE: version 2.2.0_beta 2014-01-26 O'Mega: Feynman diagram generation possible (again) 2013-12-16 HOPPET interface for b parton matching 2013-11-15 PRE-RELEASE: version 2.2.0_alpha-4 2013-10-27 LHEF standards 1.0/2.0/3.0 implemented 2013-10-15 PRE-RELEASE: version 2.2.0_alpha-3 2013-10-02 PRE-RELEASE: version 2.2.0_alpha-2 2013-09-25 PRE-RELEASE: version 2.2.0_alpha-1 2013-09-12 PRE-RELEASE: version 2.2.0_alpha 2013-09-03 General 2HDM implemented 2013-08-18 Rescanning/recalculating events 2013-06-07 Reconstruction of complete event from 4-momenta possible 2013-05-06 Process library stacks 2013-05-02 Process stacks 2013-04-29 Single-particle phase space module 2013-04-26 Abstract interface for random number generator 2013-04-24 More object-orientation on modules Midpoint-rule integrator 2013-04-05 Object-oriented integration and event generation 2013-03-12 Processes recasted object-oriented: MEs, scales, structure functions First infrastructure for general Lorentz structures 2013-01-17 Object-orientated reworking of library and process core, more variable internal structure, unit tests 2012-12-14 Update Pythia version to 6.4.27 2012-12-04 Fix the phase in HAZ vertices 2012-11-21 First O'Mega unit tests, some infrastructure 2012-11-13 Bug fix in anom. HVV Lorentz structures ################################################################## 2012-09-18 RELEASE: version 2.1.1 2012-09-11 Model MSSM_Hgg with Hgg and HAA vertices 2012-09-10 First version of implementation of multiple interactions in WHIZARD 2012-09-05 Infrastructure for internal CKKW matching 2012-09-02 C, C++, Python API 2012-07-19 Fixing particle numbering in HepMC format ################################################################## 2012-06-15 RELEASE: version 2.1.0 2012-06-14 Analytical and kT-ordered shower officially released PYTHIA interface officially released 2012-05-09 Intrisince PDFs can be used for showering 2012-05-04 Anomalous Higgs couplings a la hep-ph/9902321 ################################################################## 2012-03-19 RELEASE: version 2.0.7 2012-03-15 Run IDs are available now More event variables in analysis Modified raw event format (compatibility mode exists) 2012-03-12 Bug fix in decay-integration order MLM matching steered completely internally now 2012-03-09 Special phase space mapping for narrow resonances decaying to 4-particle final states with far off-shell intermediate states Running alphas from PDF collaborations with builtin PDFs 2012-02-16 Bug fix in cascades decay infrastructure 2012-02-04 WHIZARD documentation compatible with TeXLive 2011 2012-02-01 Bug fix in FeynRules interface with --prefix flag 2012-01-29 Bug fix with name clash of O'Mega variable names 2012-01-27 Update internal PYTHIA to version 6.4.26 Bug fix in LHEF output 2012-01-21 Catching stricter automake 1.11.2 rules 2011-12-23 Bug fix in decay cascade setup 2011-12-20 Bug fix in helicity selection rules 2011-12-16 Accuracy goal reimplemented 2011-12-14 WHIZARD compatible with TeXLive 2011 2011-12-09 Option --user-target added ################################################################## 2011-12-07 RELEASE: version 2.0.6 2011-12-07 Bug fixes in SM_top_anom Added missing entries to HepMC format 2011-12-06 Allow to pass options to O'Mega Bug fix for HEPEVT block for showered/hadronized events 2011-12-01 Reenabled user plug-in for external code for cuts, structure functions, routines etc. 2011-11-29 Changed model SM_Higgs for Higgs phenomenology 2011-11-25 Supporting a Y, (B-L) Z' model 2011-11-23 Make WHIZARD compatible for MAC OS X Lion/XCode 4 2011-09-25 WHIZARD paper published: Eur.Phys.J. C71 (2011) 1742 2011-08-16 Model SM_QCD: QCD with one EW insertion 2011-07-19 Explicit output channel for dvips avoids printing 2011-07-10 Test suite for WHIZARD unit tests 2011-07-01 Commands for matrix element tests More OpenMP parallelization of kinematics Added unit tests 2011-06-23 Conversion of CIRCE2 from F77 to F90, major clean-up 2011-06-14 Conversion of CIRCE1 from F77 to F90 2011-06-10 OpenMP parallelization of channel kinematics (by Matthias Trudewind) 2011-05-31 RELEASE: version 1.97 2011-05-24 Minor bug fixes: update grids and elsif statement. ################################################################## 2011-05-10 RELEASE: version 2.0.5 2011-05-09 Fixed bug in final state flavor sums Minor improvements on phase-space setup 2011-05-05 Minor bug fixes 2011-04-15 WHIZARD as a precompiled 64-bit binary available 2011-04-06 Wall clock instead of cpu time for time estimates 2011-04-05 Major improvement on the phase space setup 2011-04-02 OpenMP parallelization for helicity loop in O'Mega matrix elements 2011-03-31 Tools for relocating WHIZARD and use in batch environments 2011-03-29 Completely static builds possible, profiling options 2011-03-28 Visualization of integration history 2011-03-27 Fixed broken K-matrix implementation 2011-03-23 Including the GAMELAN manual in the distribution 2011-01-26 WHIZARD analysis can handle hadronized event files 2011-01-17 MSTW2008 and CT10 PDF sets included 2010-12-23 Inclusion of NMSSM with Hgg couplings 2010-12-21 Advanced options for integration passes 2010-11-16 WHIZARD supports CTEQ6 and possibly other PDFs directly; data files included in the distribution ################################################################## 2010-10-26 RELEASE: version 2.0.4 2010-10-06 Bug fix in MSSM implementation 2010-10-01 Update to libtool 2.4 2010-09-29 Support for anomalous top couplings (form factors etc.) Bug fix for running gauge Yukawa SUSY couplings 2010-09-28 RELEASE: version 1.96 2010-09-21 Beam remnants and pT spectra for lepton collider re-enabled Restructuring subevt class 2010-09-16 Shower and matching are disabled by default PYTHIA as a conditional on these two options 2010-09-14 Possibility to read in beam spectra re-enabled (e.g. Guinea Pig) 2010-09-13 Energy scan as (pseudo-) structure functions re-implemented 2010-09-10 CIRCE2 included again in WHIZARD 2 and validated 2010-09-02 Re-implementation of asymmetric beam energies and collision angles, e-p collisions work, inclusion of a HERA DIS test case ################################################################## 2010-10-18 RELEASE: version 2.0.3 2010-08-08 Bug in CP-violating anomalous triple TGCs fixed 2010-08-06 Solving backwards compatibility problem with O'Caml 3.12.0 2010-07-12 Conserved quantum numbers speed up O'Mega code generation 2010-07-07 Attaching full ISR/FSR parton shower and MPI/ISR module Added SM model containing Hgg, HAA, HAZ vertices 2010-07-02 Matching output available as LHEF and STDHEP 2010-06-30 Various bug fixes, missing files, typos 2010-06-26 CIRCE1 completely re-enabled Chaining structure functions supported 2010-06-25 Partial support for conserved quantum numbers in O'Mega 2010-06-21 Major upgrade of the graphics package: error bars, smarter SINDARIN steering, documentation, and all that... 2010-06-17 MLM matching with PYTHIA shower included 2010-06-16 Added full CIRCE1 and CIRCE2 versions including full documentation and miscellanea to the trunk 2010-06-12 User file management supported, improved variable and command structure 2010-05-24 Improved handling of variables in local command lists 2010-05-20 PYTHIA interface re-enabled 2010-05-19 ASCII file formats for interfacing ROOT and gnuplot in data analysis ################################################################## 2010-05-18 RELEASE: version 2.0.2 2010-05-14 Reimplementation of visualization of phase space channels Minor bug fixes 2010-05-12 Improved phase space - elimination of redundancies 2010-05-08 Interface for polarization completed: polarized beams etc. 2010-05-06 Full quantum numbers appear in process log Integration results are usable as user variables Communication with external programs 2010-05-05 Split module commands into commands, integration, simulation modules 2010-05-04 FSR+ISR for the first time connected to the WHIZARD 2 core ################################################################## 2010-04-25 RELEASE: version 2.0.1 2010-04-23 Automatic compile and integrate if simulate is called Minor bug fixes in O'Mega 2010-04-21 Checkpointing for event generation Flush statements to use WHIZARD inside a pipe 2010-04-20 Reimplementation of signal handling in WGIZARD 2.0 2010-04-19 VAMP is now a separately configurable and installable unit of WHIZARD, included VAMP self-checks Support again compilation in quadruple precision 2010-04-06 Allow for logarithmic plots in GAMELAN, reimplement the possibility to set the number of bins 2010-04-15 Improvement on time estimates for event generation ################################################################## 2010-04-12 RELEASE: version 2.0.0 2010-04-09 Per default, the code for the amplitudes is subdivided to allow faster compiler optimization More advanced and unified and straightforward command language syntax Final bug fixes 2010-04-07 Improvement on SINDARIN syntax; printf, sprintf function thorugh a C interface 2010-04-05 Colorizing DAGs instead of model vertices: speed boost in colored code generation 2010-03-31 Generalized options for normalization of weighted and unweighted events Grid and weight histories added again to log files Weights can be used in analyses 2010-03-28 Cascade decays completely implemented including color and spin correlations 2010-03-07 Added new WHIZARD header with logo 2010-03-05 Removed conflict in O'Mega amplitudes between flavour sums and cascades StdHEP interface re-implemented 2010-03-03 RELEASE: version 2.0.0rc3 Several bug fixes for preventing abuse in input files OpenMP support for amplitudes Reimplementation of WHIZARD 1 HEPEVT ASCII event formats FeynRules interface successfully passed MSSM test 2010-02-26 Eliminating ghost gluons from multi-gluon amplitudes 2010-02-25 RELEASE: version 1.95 HEPEVT format from WHIZARD 1 re-implemented in WHIZARD 2 2010-02-23 Running alpha_s implemented in the FeynRules interface 2010-02-19 MSSM (semi-) automatized self-tests finalized 2010-02-17 RELEASE: version 1.94 2010-02-16 Closed memory corruption in WHIZARD 1 Fixed problems of old MadGraph and CompHep drivers with modern compilers Uncolored vertex selection rules for colored amplitudes in O'Mega 2010-02-15 Infrastructure for color correlation computation in O'Mega finished Forbidden processes are warned about, but treated as non-fatal 2010-02-14 Color correlation computation in O'Mega finalized 2010-02-10 Improving phase space mappings for identical particles in initial and final states Introduction of more extended multi-line error message 2010-02-08 First O'Caml code for computation of color correlations in O'Mega 2010-02-07 First MLM matching with e+ e- -> jets ################################################################## 2010-02-06 RELEASE: version 2.0.0rc2 2010-02-05 Reconsidered the Makefile structure and more extended tests Catch a crash between WHIZARD and O'Mega for forbidden processes Tensor products of arbitrary color structures in jet definitions 2010-02-04 Color correlation computation in O'Mega finalized ################################################################## 2010-02-03 RELEASE: version 2.0.0rc1 ################################################################## 2010-01-31 Reimplemented numerical helicity selection rules Phase space functionality of version 1 restored and improved 2009-12-05 NMSSM validated with FeynRules in WHIZARD 1 (Felix Braam) 2009-12-04 RELEASE: version 2.0.0alpha ################################################################## 2009-04-16 RELEASE: version 1.93 2009-04-15 Clean-up of Makefiles and configure scripts Reconfiguration of BSM model implementation extended supersymmetric models 2008-12-23 New model NMSSM (Felix Braam) SLHA2 added Bug in LHAPDF interface fixed 2008-08-16 Bug fixed in K matrix implementation Gravitino option in the MSSM added 2008-03-20 Improved color and flavor sums ################################################################## 2008-03-12 RELEASE: version 1.92 LHEF (Les Houches Event File) format added Fortran 2003 command-line interface (if supported by the compiler) Automated interface to colored models More bug fixes and workarounds for compiler compatibility ################################################################## 2008-03-06 RELEASE: version 1.91 New model K-matrix (resonances and anom. couplings in WW scattering) EWA spectrum Energy-scan pseudo spectrum Preliminary parton shower module (only from final-state quarks) Cleanup and improvements of configure process Improvements for O'Mega parameter files Quadruple precision works again More plotting options: lines, symbols, errors Documentation with PDF bookmarks enabled Various bug fixes 2007-11-29 New model UED ################################################################## 2007-11-23 RELEASE: version 1.90 O'Mega now part of the WHIZARD tree Madgraph/CompHEP disabled by default (but still usable) Support for LHAPDF (preliminary) Added new models: SMZprime, SM_km, Template Improved compiler recognition and compatibility Minor bug fixes ################################################################## 2006-06-15 RELEASE: version 1.51 Support for anomaly-type Higgs couplings (to gluon and photon/Z) Support for spin 3/2 and spin 2 New models: Little Higgs (4 versions), toy models for extra dimensions and gravitinos Fixes to the whizard.nw source documentation to run through LaTeX Intel 9.0 bug workaround (deallocation of some arrays) 2006-05-15 O'Mega RELEASE: version 0.11 merged JRR's O'Mega extensions ################################################################## 2006-02-07 RELEASE: version 1.50 To avoid confusion: Mention outdated manual example in BUGS file O'Mega becomes part of the WHIZARD generator 2006-02-02 [bug fix update] Bug fix: spurious error when writing event files for weighted events Bug fix: 'r' option for omega produced garbage for some particle names Workaround for ifort90 bug (crash when compiling whizard_event) Workaround for ifort90 bug (crash when compiling hepevt_common) 2006-01-27 Added process definition files for MSSM 2->2 processes Included beam recoil for EPA (T.Barklow) Updated STDHEP byte counts (for STDHEP 5.04.02) Fixed STDHEP compatibility (avoid linking of incomplete .so libs) Fixed issue with comphep requiring Xlibs on Opteron Fixed issue with ifort 8.x on Opteron (compiling 'signal' interface) Fixed color-flow code: was broken for omega with option 'c' and 'w' Workaround hacks for g95 compatibility 2005-11-07 O'Mega RELEASE: version 0.10 O'Mega, merged JRR's and WK's color hack for WHiZard O'Mega, EXPERIMENTAL: cache fusion tables (required for colors a la JRR/WK) O'Mega, make JRR's MSSM official ################################################################## 2005-10-25 RELEASE: version 1.43 Minor fixes in MSSM couplings (Higgs/3rd gen squarks). This should be final, since the MSSM results agree now completely with Madgraph and Sherpa User-defined lower and upper limits for split event file count Allow for counters (events, bytes) exceeding $2^{31}$ Revised checksum treatment and implementation (now MD5) Bug fix: missing process energy scale in raw event file ################################################################## 2005-09-30 RELEASE: version 1.42 Graphical display of integration history ('make history') Allow for switching off signals even if supported (configure option) 2005-09-29 Revised phase space generation code, in particular for flavor sums Negative cut and histogram codes use initial beams instead of initial parton momenta. This allows for computing, e.g., E_miss Support constant-width and zero-width options for O'Mega Width options now denoted by w:X (X=f,c,z). f option obsolescent Bug fix: colorized code: flipped indices could screw up result Bug fix: O'Mega with 'c' and 'w:f' option together (still some problem) Bug fix: dvips on systems where dvips defaults to lpr Bug fix: integer overflow if too many events are requested 2005-07-29 Allow for 2 -> 1 processes (if structure functions are on) 2005-07-26 Fixed and expanded the 'test' matrix element: Unit matrix element with option 'u' / default: normalized phase space ################################################################## 2005-07-15 RELEASE: version 1.41 Bug fix: no result for particle decay processes with width=0 Bug fix: line breaks in O'Mega files with color decomposition 2005-06-02 New self-tests (make test-QED / test-QCD / test-SM) check lists of 2->2 processes Bug fix: HELAS calling convention for wwwwxx and jwwwxx (4W-Vertex) 2005-05-25 Revised Makefile structure Eliminated obsolete references to ISAJET/SUSY (superseded by SLHA) 2005-05-19 Support for color in O'Mega (using color flow decomposition) New model QCD Parameter file changes that correspond to replaced SM module in O'Mega Bug fixes in MSSM (O'Mega) parameter file 2005-05-18 New event file formats, useful for LHC applications: ATHENA and Les Houches Accord (external fragmentation) Naive (i.e., leading 1/N) color factor now implemented both for incoming and outgoing partons 2005-01-26 include missing HELAS files for bundle pgf90 compatibility issues [note: still internal error in pgf90] ################################################################## 2004-12-13 RELEASE: version 1.40 compatibility fix: preprocessor marks in helas code now commented out minor bug fix: format string in madgraph source 2004-12-03 support for arbitray beam energies and directions allow for pT kick in structure functions bug fix: rounding error could result in zero cross section (compiler-dependent) 2004-10-07 simulate decay processes list fraction (of total width/cross section) instead of efficiency in process summary new cut/analysis parameters AA, AAD, CTA: absolute polar angle 2004-10-04 Replaced Madgraph I by Madgraph II. Main improvement: model no longer hardcoded introduced parameter reset_seed_each_process (useful for debugging) bug fix: color initialization for some processes was undefined 2004-09-21 don't compile unix_args module if it is not required ################################################################## 2004-09-20 RELEASE: version 1.30 g95 compatibility issues resolved some (irrelevant) memory leaks closed removed obsolete warning in circe1 manual update (essentially) finished 2004-08-03 O'Mega RELEASE: version 0.9 O'Mega, src/trie.mli, src/trie.ml: make interface compatible with the O'Caml 3.08 library (remains compatible with older versions). Implementation of unused functions still incomplete. 2004-07-26 minor fixes and improvements in make process 2004-06-29 workarounds for new Intel compiler bugs ... no rebuild of madgraph/comphep executables after 'make clean' bug fix in phase space routine: wrong energy for massive initial particles bug fix in (new) model interface: name checks for antiparticles pre-run checks for comphep improved ww-strong model file extended Model files particle name fixes, chep SM vertices included 2004-06-22 O'Mega RELEASE: version 0.8 O'Mega MSSM: sign of W+/W-/A and W+/W-/Z couplings 2004-05-05 Fixed bug in PDFLIB interface: p+pbar was initialized as p+p (ThO) NAG compiler: set number of continuation lines to 200 as default Extended format for cross section summary; appears now in whizard.out Fixed 'bundle' feature 2004-04-28 Fixed compatibility with revised O'Mega SM_ac model Fixed problem with x=0 or x=1 when calling PDFLIB (ThO) Fixed bug in comphep module: Vtb was overlooked ################################################################## 2004-04-15 RELEASE: version 1.28 Fixed bug: Color factor was missing for O'Mega processes with four quarks and more Manual partially updated 2004-04-08 Support for grid files in binary format New default value show_histories=F (reduce output file size) Revised phase space switches: removed annihilation_lines, removed s_channel_resonance, changed meaning of extra_off_shell_lines, added show_deleted_channels Bug fixed which lead to omission of some phase space channels Color flow guessed only if requested by guess_color_flow 2004-03-10 New model interface: Only one model name specified in whizard.prc All model-dependent files reside in conf/models (modellib removed) 2004-03-03 Support for input/output in SUSY Les Houches Accord format Split event files if requested Support for overall time limit Support for CIRCE and CIRCE2 generator mode Support for reading beam events from file 2004-02-05 Fixed compiler problems with Intel Fortran 7.1 and 8.0 Support for catching signals ################################################################## 2003-08-06 RELEASE: version 1.27 User-defined PDF libraries as an alternative to the standard PDFLIB 2003-07-23 Revised phase space module: improved mappings for massless particles, equivalences of phase space channels are exploited Improved mapping for PDF (hadron colliders) Madgraph module: increased max number of color flows from 250 to 1000 ################################################################## 2003-06-23 RELEASE: version 1.26 CIRCE2 support Fixed problem with 'TC' integer kind [Intel compiler complained] 2003-05-28 Support for drawing histograms of grids Bug fixes for MSSM definitions ################################################################## 2003-05-22 RELEASE: version 1.25 Experimental MSSM support with ISAJET interface Improved capabilities of generating/analyzing weighted events Optional drawing phase space diagrams using FeynMF ################################################################## 2003-01-31 RELEASE: version 1.24 A few more fixes and workarounds (Intel and Lahey compiler) 2003-01-15 Fixes and workarounds needed for WHIZARD to run with Intel compiler Command-line option interface for the Lahey compiler Bug fix: problem with reading whizard.phs ################################################################## 2002-12-10 RELEASE: version 1.23 Command-line options (on some systems) Allow for initial particles in the event record, ordered: [beams, initials] - [remnants] - outgoing partons Support for PYTHIA 6.2: Les Houches external process interface String pythia_parameters can be up to 1000 characters long Select color flow states in (internal) analysis Bug fix in color flow content of raw event files Support for transversal polarization of fermion beams Cut codes: PHI now for absolute azimuthal angle, DPHI for distance 'Test' matrix elements optionally respect polarization User-defined code can be inserted for spectra, structure functions and fragmentation Time limits can be specified for adaptation and simulation User-defined file names and file directory Initial weights in input file no longer supported Bug fix in MadGraph (wave function counter could overflow) Bug fix: Gamelan (graphical analysis) was not built if noweb absent ################################################################## 2002-03-16 RELEASE: version 1.22 Allow for beam remnants in the event record 2002-03-01 Handling of aliases in whizard.prc fixed (aliases are whole tokens) 2002-02-28 Optimized phase space handling routines (total execution time reduced by 20-60%, depending on process) ################################################################## 2002-02-26 RELEASE: version 1.21 Fixed ISR formula (ISR was underestimated in previous versions). New version includes ISR in leading-log approximation up to third order. Parameter ISR_sqrts renamed to ISR_scale. ################################################################## 2002-02-19 RELEASE: version 1.20 New process-generating method 'test' (dummy matrix element) Compatibility with autoconf 2.50 and current O'Mega version 2002-02-05 Prevent integration channels from being dropped (optionally) New internal mapping for structure functions improves performance Old whizard.phx file deleted after recompiling (could cause trouble) 2002-01-24 Support for user-defined cuts and matrix element reweighting STDHEP output now written by write_events_format=20 (was 3) 2002-01-16 Improved structure function handling; small changes in user interface: new parameter structured_beams in &process_input parameter fixed_energy in &beam_input removed Support for multiple initial states Eta-phi (cone) cut possible (hadron collider applications) Fixed bug: Whizard library was not always recompiled when necessary Fixed bug: Default cuts were insufficient in some cases Fixed bug: Unusable phase space mappings generated in some cases 2001-12-06 Reorganized document source 2001-12-05 Preliminary CIRCE2 support (no functionality yet) 2001-11-27 Intel compiler support (does not yet work because of compiler bugs) New cut and analysis mode cos-theta* and related Fixed circular jetset_interface dependency warning Some broadcast routines removed (parallel support disabled anyway) Minor shifts in cleanup targets (Makefiles) Modified library search, check for pdflib8* 2001-08-06 Fixed bug: I/O unit number could be undefined when reading phase space Fixed bug: Unitialized variable could cause segfault when event generation was disabled Fixed bug: Undefined subroutine in CIRCE replacement module Enabled feature: TGCs in O'Mega (not yet CompHEP!) matrix elements (CompHEP model sm-GF #5, O'Mega model SM_ac) Fixed portability issue: Makefile did rely on PWD environment variable Fixed portability issue: PYTHIA library search ambiguity resolved 2001-08-01 Default whizard.prc and whizard.in depend on activated modules Fixed bug: TEX=latex was not properly enabled when making plots 2001-07-20 Fixed output settings in PERL script calls Cache enabled in various configure checks 2001-07-13 Support for multiple processes in a single WHIZARD run. The integrations are kept separate, but the generated events are mixed The whizard.evx format has changed (incompatible), including now the color flow information for PYTHIA fragmentation Output files are now process-specific, except for the event file Phase space file whizard.phs (if present) is used only as input, program-generated phase space is now in whizard.phx 2001-07-10 Bug fix: Undefined parameters in parameters_SM_ac.f90 removed 2001-07-04 Bug fix: Compiler options for the case OMEGA is disabled Small inconsistencies in whizard.out format fixed 2001-07-01 Workaround for missing PDFLIB dummy routines in PYTHIA library ################################################################## 2001-06-30 RELEASE: version 1.13 Default path /cern/pro/lib in configure script 2001-06-20 New fragmentation option: Interface for PYTHIA with full color flow information, beam remnants etc. 2001-06-18 Severe bug fixed in madgraph interface: 3-gluon coupling was missing Enabled color flow information in madgraph 2001-06-11 VAMP interface module rewritten Revised output format: Multiple VAMP iterations count as one WHIZARD iteration in integration passes 1 and 3 Improved message and error handling Bug fix in VAMP: handle exceptional cases in rebinning_weights 2001-05-31 new parameters for grid adaptation: accuracy_goal and efficiency_goal ################################################################## 2001-05-29 RELEASE: version 1.12 bug fixes (compilation problems): deleted/modified unused functions 2001-05-16 diagram selection improved and documented 2001-05-06 allow for disabling packages during configuration 2001-05-03 slight changes in whizard.out format; manual extended ################################################################## 2001-04-20 RELEASE: version 1.11 fixed some configuration and compilation problems (PDFLIB etc.) 2001-04-18 linked PDFLIB: support for quark/gluon structure functions 2001-04-05 parameter interface written by PERL script SM_ac model file: fixed error in continuation line 2001-03-13 O'Mega, O'Caml 3.01: incompatible changes O'Mega, src/trie.mli: add covariance annotation to T.t This breaks O'Caml 3.00, but is required for O'Caml 3.01. O'Mega, many instances: replace `sig include Module.T end' by `Module.T', since the bug is fixed in O'Caml 3.01 2001-02-28 O'Mega, src/model.mli: new field Model.vertices required for model functors, will retire Model.fuse2, Model.fuse3, Model.fusen soon. ################################################################## 2001-03-27 RELEASE: version 1.10 reorganized the modules as libraries linked PYTHIA: support for parton fragmentation 2000-12-14 fixed some configuration problems (if noweb etc. are absent) ################################################################## 2000-12-01 RELEASE of first public version: version 1.00beta Index: trunk/configure.ac.in =================================================================== --- trunk/configure.ac.in (revision 8850) +++ trunk/configure.ac.in (revision 8851) @@ -1,1243 +1,1243 @@ dnl configure.ac -- Main configuration script for WHIZARD dnl dnl Process this file with autoconf to produce a configure script. dnl ************************************************************************ dnl configure.ac -- Main configuration script for WHIZARD dnl configure.ac -- WHIZARD configuration dnl dnl Copyright (C) 1999-2022 by dnl Wolfgang Kilian dnl Thorsten Ohl dnl Juergen Reuter dnl with contributions from dnl cf. main AUTHORS file dnl dnl WHIZARD is free software; you can redistribute it and/or modify it dnl under the terms of the GNU General Public License as published by dnl the Free Software Foundation; either version 2, or (at your option) dnl any later version. dnl dnl WHIZARD is distributed in the hope that it will be useful, but dnl WITHOUT ANY WARRANTY; without even the implied warranty of dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the dnl GNU General Public License for more details. dnl dnl You should have received a copy of the GNU General Public License dnl along with this program; if not, write to the Free Software dnl Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. dnl dnl *********************************************************************** dnl Environment variables that can be set by the user: dnl FC Fortran compiler dnl FCFLAGS Fortran compiler flags dnl *********************************************************************** dnl dnl Start configuration -AC_INIT([XXXWHIZARDXXX],[3.0.3+]) +AC_INIT([XXXWHIZARDXXX],[3.1.0]) AC_CONFIG_MACRO_DIR([m4]) AM_INIT_AUTOMAKE([1.12.2 color-tests parallel-tests]) AC_PREREQ([2.65]) AM_MAKE_INCLUDE dnl Make make less verbose to improve signal/noise AM_SILENT_RULES([yes]) ######################################################################## ### Package-specific initialization AC_MSG_NOTICE([**************************************************************]) WO_CONFIGURE_SECTION([Start of package configuration]) ### Further version information -PACKAGE_DATE="Apr 06 2022" -PACKAGE_STATUS="alpha" +PACKAGE_DATE="Dec 14 2022" +PACKAGE_STATUS="release" AC_SUBST(PACKAGE_DATE) AC_SUBST(PACKAGE_STATUS) AC_MSG_NOTICE([**************************************************************]) AC_MSG_NOTICE([Package name: AC_PACKAGE_NAME()]) AC_MSG_NOTICE([Version: AC_PACKAGE_VERSION()]) AC_MSG_NOTICE([Date: $PACKAGE_DATE]) AC_MSG_NOTICE([Status: $PACKAGE_STATUS]) AC_MSG_NOTICE([**************************************************************]) ######################################################################## ###--------------------------------------------------------------------- ### shared library versioning (not the same as the package version!) LIBRARY_VERSION="-version-info 2:2:0" AC_SUBST([LIBRARY_VERSION]) ######################################################################## ###--------------------------------------------------------------------- ### Define the main package variables ### Source directory, for testing purposes SRCDIR=`cd $srcdir && pwd` AC_SUBST([SRCDIR]) ### Build directory, for testing purposes BUILDDIR=`pwd` AC_SUBST([BUILDDIR]) ### Location of installed libraries and such eval BINDIR=$bindir case $BINDIR in NONE*) eval BINDIR=$prefix/bin ;; esac case $BINDIR in NONE*) BINDIR="\${prefix}/bin" ;; esac AC_SUBST([BINDIR]) eval INCLUDEDIR=$includedir case $INCLUDEDIR in NONE*) eval INCLUDEDIR=$prefix/include ;; esac case $INCLUDEDIR in NONE*) INCLUDEDIR="\${prefix}/include" ;; esac AC_SUBST([INCLUDEDIR]) eval LIBDIR=$libdir case $LIBDIR in NONE*) eval LIBDIR=$prefix/lib ;; esac case $LIBDIR in NONE*) eval LIBDIR=$ac_default_prefix/lib ;; esac AC_SUBST([LIBDIR]) ### Location of installed libraries and such eval PKGLIBDIR=$libdir/$PACKAGE case $PKGLIBDIR in NONE*) eval PKGLIBDIR=$prefix/lib/$PACKAGE ;; esac case $PKGLIBDIR in NONE*) PKGLIBDIR="\${prefix}/lib/$PACKAGE" ;; esac AC_SUBST([PKGLIBDIR]) ### Location of installed system-independent data eval PKGDATADIR=$datarootdir/$PACKAGE case $PKGDATADIR in NONE*) eval PKGDATADIR=$prefix/share/$PACKAGE ;; esac case $PKGDATADIR in NONE*) PKGDATADIR="\${prefix}/share/$PACKAGE" ;; esac AC_SUBST([PKGDATADIR]) ### Location of installed TeX files and such eval PKGTEXDIR=$datarootdir/texmf/$PACKAGE case $PKGTEXDIR in NONE*) eval PKGTEXDIR=$prefix/share/texmf/$PACKAGE ;; esac case $PKGTEXDIR in NONE*) PKGTEXDIR="\${prefix}/share/texmf/$PACKAGE" ;; esac AC_SUBST([PKGTEXDIR]) ### Parent location of installed .mod files ### To be used in Fortran source FMODDIR=$prefix/lib/mod case $FMODDIR in NONE*) FMODDIR="\${prefix}/lib/mod" ;; esac AC_SUBST([FMODDIR]) ### To be used in Makefile.am ### Don't use ${libdir} since lib may be changed to lib64 by configure fmoddir="\${prefix}/lib/mod" AC_SUBST([fmoddir]) ######################################################################## ###--------------------------------------------------------------------- ### Required programs and checks ### GNU Tools WO_CONFIGURE_SECTION([Generic tools]) ### Initialize LIBTOOL LT_INIT(dlopen) LT_PREREQ([2.4.1b]) AX_CHECK_GNU_MAKE() AC_PROG_GREP() AC_MSG_CHECKING([for the suffix of shared libraries]) case $host in *-darwin* | rhapsody*) SHRLIB_EXT="dylib" ;; cygwin* | mingw* | pw32* | cegcc* | os2*) SHRLIB_EXT="dll" ;; hpux9* | hpux10* | hpux11*) SHRLIB_EXT="sl" ;; *) SHRLIB_EXT="so" ;; esac if test "x$SHRLIB_EXT" != "x"; then SHRLIB_EXT=$SHRLIB_EXT else SHRLIB_EXT="so" fi AC_MSG_RESULT([.$SHRLIB_EXT]) AC_SUBST(SHRLIB_EXT) ### Export whether the C compiler is GNU AC_MSG_CHECKING([whether the C compiler is the GNU compiler]) if test "x$ac_cv_c_compiler_gnu" = "xyes"; then CC_IS_GNU=".true." else CC_IS_GNU=".false." fi AC_MSG_RESULT([$ac_cv_c_compiler_gnu]) AC_SUBST([CC_IS_GNU]) AC_CHECK_HEADERS([quadmath.h]) if test "x$ac_cv_header_quadmath_h" = "xyes"; then CC_HAS_QUADMATH=".true." else CC_HAS_QUADMATH=".false." fi AC_SUBST([CC_HAS_QUADMATH]) ######################################################################## ###--------------------------------------------------------------------- ### Host system MAC OS X check for XCode case $host in *-darwin*) WO_HLINE() AC_MSG_NOTICE([Host is $host, checking for XCode]) AC_PATH_PROG(XCODE_SELECT, xcode-select) # locate currently selected Xcode path if test "x$XCODE_SELECT" != "x"; then AC_MSG_CHECKING(Xcode location) DEVELOPER_DIR=`$XCODE_SELECT -print-path` AC_MSG_RESULT([$DEVELOPER_DIR]) else DEVELOPER_DIR=/Developer fi AC_SUBST(DEVELOPER_DIR) XCODEPLIST=$DEVELOPER_DIR/Applications/Xcode.app/Contents/version.plist if test -r "$XCODEPLIST"; then AC_MSG_CHECKING(Xcode version) if test "x$DEFAULTS" != "x"; then XCODE_VERSION=`$DEFAULTS read $DEVELOPER_DIR/Applications/Xcode.app/Contents/version CFBundleShortVersionString` else XCODE_VERSION=`tr -d '\r\n' < $XCODEPLIST | sed -e 's/.*CFBundleShortVersionString<\/key>.\([[0-9.]]*\)<\/string>.*/\1/'` fi AC_MSG_RESULT([$XCODE_VERSION]) AC_SUBST(XCODE_VERSION) fi AC_MSG_NOTICE([checking for Security Integrity Protocol (SIP)]) AC_PATH_PROG(CSRUTIL, csrutil) if test "x$CSRUTIL" != "x"; then SIP_CHECK=`$CSRUTIL status | $SED "s/System Integrity Protection status: //"` if test "$SIP_CHECK" = "enabled."; then SIP_ACTIVE="yes" else SIP_ACTIVE="no" fi else SIP_ACTIVE="no" fi AC_MSG_CHECKING([Checking whether MAC OS X SIP is activated]) AC_MSG_RESULT([$SIP_ACTIVE]) AC_SUBST([SIP_ACTIVE]) WO_HLINE() ;; *) ;; esac ######################################################################## ###--------------------------------------------------------------------- ### Enable the distribution tools ### (default: disabled, to speed up compilation) AC_ARG_ENABLE([distribution], [AS_HELP_STRING([--enable-distribution], [build the distribution incl. all docu (developers only) [[no]]])]) AC_CACHE_CHECK([whether we want to build the distribution], [wo_cv_distribution], [dnl if test "$enable_distribution" = "yes"; then wo_cv_distribution=yes else wo_cv_distribution=no fi]) AM_CONDITIONAL([DISTRIBUTION], [test "$enable_distribution" = "yes"]) ### ONLY_FULL {{{ ######################################################################## ###--------------------------------------------------------------------- if test "$enable_shared" = no; then AC_MSG_ERROR([you've used --disable-shared which will not produce a working Whizard.]) fi ### ONLY_FULL }}} ######################################################################## ###--------------------------------------------------------------------- ### We include the m4 macro tool here AC_PATH_PROG(M4,m4,false) if test "$M4" = false; then AM_CONDITIONAL([M4_AVAILABLE],[false]) else AM_CONDITIONAL([M4_AVAILABLE],[true]) fi ######################################################################## ###--------------------------------------------------------------------- ### Dynamic runtime linking WO_CONFIGURE_SECTION([Dynamic runtime linking]) ### Look for libdl (should provide 'dlopen' and friends) AC_PROG_CC() WO_PROG_DL() ### Define the conditional for static builds if test "$enable_static" = yes; then AM_CONDITIONAL([STATIC_AVAILABLE],[true]) else AM_CONDITIONAL([STATIC_AVAILABLE],[false]) fi ######################################################################## ###--------------------------------------------------------------------- ### Noweb WO_CONFIGURE_SECTION([Checks for 'noweb' system]) ### Enable/disable noweb and determine locations of notangle, cpif, noweave WO_PROG_NOWEB() ######################################################################## ###--------------------------------------------------------------------- ### LaTeX WO_CONFIGURE_SECTION([Checks for 'LaTeX' system]) ### Determine whether LaTeX is present AC_PROG_LATEX() AC_PROG_DVIPS() AC_PROG_PDFLATEX() AC_PROG_MAKEINDEX() AC_PROG_PS2PDF() AC_PROG_EPSPDF() AC_PROG_EPSTOPDF() if test "$EPSPDF" = "no" -a "$EPSTOPDF" = "no"; then AC_MSG_NOTICE([*********************************************************]) AC_MSG_NOTICE([WARNING: eps(to)pdf n/a; O'Mega documentation will crash!]) AC_MSG_NOTICE([WARNING: this applies only to the svn developer version!]) AC_MSG_NOTICE([*********************************************************]) fi AC_PROG_SUPP_PDF() AC_PROG_GZIP() AC_PATH_PROG(ACROREAD,acroread,false) AC_PATH_PROG(GHOSTVIEW,gv ghostview,false) AC_PROG_DOT() ### Determine whether Metapost is present and whether event display is possible AC_PROG_MPOST() WO_CHECK_EVENT_ANALYSIS_METHODS() ### We put here the check for HEVEA components as well WO_PROG_HEVEA() ######################################################################## ###--------------------------------------------------------------------- ### Fortran compiler WO_CONFIGURE_SECTION([Fortran compiler checks]) ### Determine default compiler to use user_FCFLAGS="${FCFLAGS}" AC_PROG_FC() ### Choose FC standard for PYTHIA6 F77 files AC_PROG_F77([$FC]) ### Determine compiler vendor and version WO_FC_GET_VENDOR_AND_VERSION() ### Veto against old gfortran 4 versions WO_FC_VETO_GFORTRAN_4() ### Veto against buggy gfortran 6.5.0 version WO_FC_VETO_GFORTRAN_65() ### Veto against ifort 15/16/17/18 WO_FC_VETO_IFORT_15_18() ### Veto against ifort 19.0.0/1/2 WO_FC_VETO_IFORT_190012() ### Veto against ifort 21.0/1/2 WO_FC_VETO_IFORT_21012() ### Require extension '.f90' for all compiler checks AC_FC_SRCEXT([f90]) ### Determine flags and extensions WO_FC_PARAMETERS() ### Determine flags for linking the Fortran runtime library WO_FC_LIBRARY_LDFLAGS() ### Check for Fortran 95 features WO_FC_CHECK_F95() ### Check for allocatable subobjects (TR15581) WO_FC_CHECK_TR15581() ### Check for allocatable scalars WO_FC_CHECK_ALLOCATABLE_SCALARS() ### Check for ISO C binding support WO_FC_CHECK_C_BINDING() ### Check for procedures pointers and abstract interfaces WO_FC_CHECK_PROCEDURE_POINTERS() ### Check for type extension and further OO features WO_FC_CHECK_OO_FEATURES() ### Check for submodules (not yet used) WO_FC_CHECK_TR19767() ### Check for F2003 command-line interface WO_FC_CHECK_CMDLINE() ### Check for F2003-style access to environment variables WO_FC_CHECK_ENVVAR() ### Check for the flush statement WO_FC_CHECK_FLUSH() ### Check for iso_fortran_env WO_FC_CHECK_ISO_FORTRAN_ENV() WO_FC_CHECK_ISO_FORTRAN_ENV_2008() ### Turn on/off master switch for debugging features WO_FC_SET_DEBUG() ### OpenMP threading activated upon request AC_OPENMP() WO_FC_SET_OPENMP() ### Profiling compilation enforced upon request WO_FC_SET_PROFILING() ### Impure subroutines enforced upon request WO_FC_SET_OMEGA_IMPURE() ### Find the extension of Fortran module files WO_FC_MODULE_FILE([FC_MODULE_NAME], [FCMOD], [$FC], [f90]) ###--------------------------------------------------------------------- ### Check for the requested precision WO_FC_CONFIGURE_KINDS([src/basics/kinds.f90]) ### ONLY_FULL {{{ AC_PROG_INSTALL() ${INSTALL} -d circe1/src cp -a src/basics/kinds.f90 circe1/src ${INSTALL} -d circe2/src cp -a src/basics/kinds.f90 circe2/src ${INSTALL} -d omega/src cp -a src/basics/kinds.f90 omega/src ${INSTALL} -d vamp/src cp -a src/basics/kinds.f90 vamp/src ### ONLY_FULL }}} ### ONLY_VAMP_AND_FULL {{{ ######################################################################## # VAMP Fortran options for the configure script ######################################################################## WO_FC_SET_MPI() ### ONLY_VAMP_AND_FULL }}} ######################################################################## ###--------------------------------------------------------------------- ### OCaml WO_CONFIGURE_SECTION([Objective Caml checks]) ### Check for ocamlc and its relatives AC_PROG_OCAML() if test "$enable_ocaml" != "no"; then AC_OCAML_VERSION_CHECK(405000) AC_PROG_OCAMLLEX() AC_PROG_OCAMLYACC() AC_PROG_OCAMLCP() AC_OCAML_BIGARRAY_MODULE() ### Ocamlweb is required to be newer than v0.9 AC_PROG_OCAMLWEB(009000) AC_PROG_OCAML_LABLGTK() AC_PATH_PROGS([OCAMLDOT],[ocamldot],[no]) AM_CONDITIONAL([OCAMLDOT_AVAILABLE],[test "$OCAMLDOT" != "no"]) AC_PATH_PROGS([OCAMLDEP],[ocamldep],[no]) AM_CONDITIONAL([OCAMLDEP_AVAILABLE],[test "$OCAMLDEP" != "no"]) AC_PATH_PROGS([OCAMLDEFUN],[ocamldefun],[no]) else AC_MSG_NOTICE([WARNING: OCaml and O'Mega matrix elements disabled by request!]) AM_CONDITIONAL([OCAMLWEB_AVAILABLE],[false]) AM_CONDITIONAL([OCAMLDOT_AVAILABLE],[false]) AM_CONDITIONAL([OCAMLDEP_AVAILABLE],[false]) fi ######################################################################## ###--------------------------------------------------------------------- ### C++ WO_CONFIGURE_SECTION([C++ compiler checks]) AC_PROG_CXX() AC_CXX_LIBRARY_LDFLAGS() ######################################################################## ###--------------------------------------------------------------------- ### Checks for external interfaces WO_CONFIGURE_SECTION([Checking for PYTHON / PYTHON API]) AX_PYTHON_DEVEL([>= '3.5']) WO_PROG_PYTHON_API() ### ONLY_OMEGA_AND_FULL {{{ ######################################################################## # O'Mega options for the configure script ######################################################################## ######################################################################## ###--------------------------------------------------------------------- ### O'Mega UFO file paths WO_CONFIGURE_SECTION([O'Mega UFO file paths]) AC_ARG_ENABLE([default-UFO-dir], [ --enable-default-UFO-dir=directory Read precomputed model tables from this directory, which will be populated by an administrator at install time [[default=$datadir/UFO, enabled]].], [case "$enableval" in no) OMEGA_DEFAULT_UFO_DIR="." ;; *) OMEGA_DEFAULT_UFO_DIR="$enableval" ;; esac], [### use eval b/c $datadir defaults to unexpanded ${datarootdir} case "$OMEGA_DEFAULT_UFO_DIR" in "") OMEGA_DEFAULT_UFO_DIR="${prefix}/omega/share/UFO" ;; *) eval OMEGA_DEFAULT_UFO_DIR="$datadir/UFO" ;; esac]) AC_SUBST([OMEGA_DEFAULT_UFO_DIR]) case "$OMEGA_DEFAULT_UFO_DIR" in .|""|NONE*) OMEGA_DEFAULT_UFO_DIR="." ;; *) AC_MSG_NOTICE([Creating default UFO directory $OMEGA_DEFAULT_UFO_DIR]) $MKDIR_P "$OMEGA_DEFAULT_UFO_DIR" 2>/dev/null chmod u+w "$OMEGA_DEFAULT_UFO_DIR" 2>/dev/null ;; esac ###--------------------------------------------------------------------- ### Recola WO_CONFIGURE_SECTION([RECOLA]) WO_PROG_RECOLA() ### ONLY_OMEGA_AND_FULL }}} ### ONLY_FULL {{{ ######################################################################## ###--------------------------------------------------------------------- ### Libraries ###--------------------------------------------------------------------- ### LHAPDF WO_CONFIGURE_SECTION([LHAPDF]) WO_PROG_LHAPDF() ###--------------------------------------------------------------------- ### ROOT WO_CONFIGURE_SECTION([ROOT]) WO_ROOT_PATH(,[ AC_DEFINE([HAVE_ROOT],,[Root library]) AC_CHECK_LIB([dl],[dlopen],[],AC_MSG_WARN([Root libraries not linking properly])) ],AC_MSG_RESULT([The ROOT support of HepMC might not be working properly])) ###--------------------------------------------------------------------- ### HepMC WO_CONFIGURE_SECTION([HepMC]) WO_PROG_HEPMC() ###--------------------------------------------------------------------- ### STDHEP WO_CONFIGURE_SECTION([STDHEP]) WO_PROG_TIRPC() AC_MSG_NOTICE([StdHEP v5.06.01 is included internally]) ###--------------------------------------------------------------------- ### LCIO WO_CONFIGURE_SECTION([LCIO]) WO_PROG_LCIO() ###--------------------------------------------------------------------- ### HDF5 (for events, grids etc.) WO_CONFIGURE_SECTION([HDF5]) WO_PROG_HDF5(1.8.0,no) ###--------------------------------------------------------------------- ### PYTHIA6, PYTHIA8 etc WO_CONFIGURE_SECTION([SHOWERS PYTHIA6 PYTHIA8 MPI]) WO_PROG_QCD() WO_PROG_PYTHIA8() ###--------------------------------------------------------------------- ### HOPPET WO_CONFIGURE_SECTION([HOPPET]) WO_PROG_HOPPET() ###--------------------------------------------------------------------- ### FASTJET WO_CONFIGURE_SECTION([FASTJET]) WO_PROG_FASTJET() ###--------------------------------------------------------------------- ### GoSam WO_CONFIGURE_SECTION([GOSAM]) WO_PROG_GOSAM() ###--------------------------------------------------------------------- ### OpenLoops WO_CONFIGURE_SECTION([OPENLOOPS]) WO_PROG_OPENLOOPS() ###--------------------------------------------------------------------- ### LoopTools WO_CONFIGURE_SECTION([LOOPTOOLS]) WO_PROG_LOOPTOOLS() ### ONLY_FULL }}} ######################################################################## ###--------------------------------------------------------------------- ### Extra flags for helping the linker finding libraries WO_CONFIGURE_SECTION([Handle linking with C++ libraries]) WO_PROG_STDCPP() ### ONLY_FULL {{{ ######################################################################## ###--------------------------------------------------------------------- ### Miscellaneous WO_CONFIGURE_SECTION([Numerical checks]) ### Disable irrelevant optimization for parameter files ### (default: disabled, to speed up compilation) AC_ARG_ENABLE([optimization-for-parameter-files], [AS_HELP_STRING([--enable-optimization-for-parameter-files], [enable (useless) optimization for parameter files [[no]]])]) AC_CACHE_CHECK([whether we want optimization for parameter files], [wo_cv_optimization_for_parfiles], [dnl if test "$enable_optimization_for_parameter_files" = "yes"; then wo_cv_optimization_for_parfiles=yes else wo_cv_optimization_for_parfiles=no fi]) AM_CONDITIONAL([OPTIMIZATION_FOR_PARFILES], [test "$enable_optimization_for_parameter_files" = "yes"]) ### ONLY_FULL }}} ######################################################################## ###--------------------------------------------------------------------- ### Wrapup WO_CONFIGURE_SECTION([Finalize configuration]) ### Main directory AC_CONFIG_FILES([Makefile]) ### ONLY_FULL {{{ ###--------------------------------------------------------------------- ### Subdirectory src AC_CONFIG_FILES([src/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory python: WHIZARD's PYTHON/CYTHON interface AC_CONFIG_FILES([python/Makefile]) AC_CONFIG_FILES([python/setup.py], [chmod u+x python/setup.py]) AC_CONFIG_LINKS([python/whizard_python.pyx:python/whizard_python.pyx]) AC_CONFIG_LINKS([python/cwhizard.pxd:python/cwhizard.pxd]) ###--------------------------------------------------------------------- ### Subdirectory src/hepmc AC_CONFIG_FILES([src/hepmc/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/lcio AC_CONFIG_FILES([src/lcio/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory pythia6: WHIZARD's internal PYTHIA6 version AC_CONFIG_FILES([pythia6/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory tauola: WHIZARD's internal TAUOLA version AC_CONFIG_FILES([tauola/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory stdhep: WHIZARD's internal StdHep version AC_CONFIG_FILES([mcfio/Makefile]) AC_CONFIG_FILES([stdhep/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/muli: multiple interactions AC_CONFIG_FILES([src/muli/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/lhapdf5: dummy library as LHAPDF5 replacement AC_CONFIG_FILES([src/lhapdf5/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/lhapdf: LHAPDF v6 AC_CONFIG_FILES([src/lhapdf/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/pdf_builtin: Builtin PDFs AC_CONFIG_FILES([src/pdf_builtin/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/pdf_builtin: Electron PDFs AC_CONFIG_FILES([src/qed_pdf/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/tauola AC_CONFIG_FILES([src/tauola/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/xdr: XDR reader AC_CONFIG_FILES([src/xdr/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/hoppet AC_CONFIG_FILES([src/hoppet/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/fastjet AC_CONFIG_FILES([src/fastjet/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/looptools AC_CONFIG_FILES([src/looptools/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/shower: shower and all that AC_CONFIG_FILES([src/pythia8/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/shower: shower and all that AC_CONFIG_FILES([src/shower/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/noweb-frame: frame for whizard Noweb sources AC_CONFIG_FILES([src/noweb-frame/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/basics: numeric kinds, strings AC_CONFIG_FILES([src/basics/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/utilities: simple utilities AC_CONFIG_FILES([src/utilities/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/testing: unit-test support AC_CONFIG_FILES([src/testing/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/system: modules related to local setup and OS issues AC_CONFIG_FILES([src/system/Makefile]) AC_CONFIG_FILES([src/system/system_dependencies.f90], [ # Be cautious: Special handling of brackets due to M4! # 1. Configure lines containing @VARIABLE@ must be indented by exactly 7 spaces # to be split (^[[[:space:]]]\{7\}), the first non-space character has to # be an double-quote (\"). and the line has to have at least 110 characters where the # 111th must not be a double quote, a whitespace, a slash or an ampersand ([^\" \/&]). # 2. Appeand each 110-wide character block (\(.\{110\}[[^\"]]\), refer to a block as \1) # (without a trailing double-quote) with an ampersand, a literal newline character, # seven white-spaces and another ampersand. Repeat with remaining pattern space (be greedy). # Note: The greedy options also allows us to parse the line beginning from each character # again with the search pattern. $SED "/^[[[:space:]]]\{7\}\".\{110,\}[[^\"]]/ s/\(.\{110\}[[^\" \/&]]\)/\1\&\\n \&/g" \ < src/system/system_dependencies.f90 \ > src/system/system_dependencies.tmp mv -f src/system/system_dependencies.tmp src/system/system_dependencies.f90 ]) AC_CONFIG_FILES([src/system/debug_master.f90]) ###--------------------------------------------------------------------- ### Subdirectory src/combinatorics: standard algorithms AC_CONFIG_FILES([src/combinatorics/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/parsing: text-handling and parsing AC_CONFIG_FILES([src/parsing/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/rng: random-number generation AC_CONFIG_FILES([src/rng/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/expr_base: abstract expressions AC_CONFIG_FILES([src/expr_base/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/physics: particle-physics related functions AC_CONFIG_FILES([src/physics/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/qft: quantum (field) theory concepts as data types AC_CONFIG_FILES([src/qft/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/types: HEP and other types for common use AC_CONFIG_FILES([src/types/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/matrix_elements: process code and libraries AC_CONFIG_FILES([src/matrix_elements/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/me_methods: specific process code and interface AC_CONFIG_FILES([src/me_methods/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/particles: particle objects AC_CONFIG_FILES([src/particles/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/beams: beams and beam structure AC_CONFIG_FILES([src/beams/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/events: generic events and event I/O AC_CONFIG_FILES([src/events/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/vegas: VEGAS Monte Carlo adaptive integration AC_CONFIG_FILES([src/vegas/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/mci: multi-channel integration and event generation AC_CONFIG_FILES([src/mci/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/phase_space: parameterization and evaluation AC_CONFIG_FILES([src/phase_space/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/blha: BLHA support (NLO data record) AC_CONFIG_FILES([src/blha/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/gosam: GoSAM support (NLO amplitudes) AC_CONFIG_FILES([src/gosam/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/openloops: OpenLoops support (NLO amplitudes) AC_CONFIG_FILES([src/openloops/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/recola: Recola support (NLO amplitudes) AC_CONFIG_FILES([src/recola/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/fks: FKS subtraction algorithm AC_CONFIG_FILES([src/fks/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/matching: matching algorithms AC_CONFIG_FILES([src/matching/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/variables: Implementation of variable lists AC_CONFIG_FILES([src/variables/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/model_features: Model access and methods AC_CONFIG_FILES([src/model_features/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/models: Model-specific code AC_CONFIG_FILES([src/models/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/threshold AC_CONFIG_FILES([src/threshold/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/models/threeshl_bundle AC_CONFIG_FILES([src/models/threeshl_bundle/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/process_integration AC_CONFIG_FILES([src/process_integration/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/transforms: event transforms and event API AC_CONFIG_FILES([src/transforms/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/whizard-core AC_CONFIG_FILES([src/whizard-core/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/api AC_CONFIG_FILES([src/api/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/main AC_CONFIG_FILES([src/main/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/prebuilt AC_CONFIG_FILES([src/prebuilt/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/feynmf AC_CONFIG_FILES([src/feynmf/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory src/gamelan: WHIZARD graphics package AC_CONFIG_FILES([src/gamelan/Makefile]) AC_CONFIG_FILES([src/gamelan/whizard-gml], [chmod u+x src/gamelan/whizard-gml]) ###--------------------------------------------------------------------- ### Subdirectory share AC_CONFIG_FILES([share/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/doc AC_CONFIG_FILES([share/doc/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/models AC_CONFIG_FILES([share/models/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/cuts AC_CONFIG_FILES([share/cuts/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/beam-sim AC_CONFIG_FILES([share/beam-sim/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/susy AC_CONFIG_FILES([share/susy/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/examples AC_CONFIG_FILES([share/examples/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/tests AC_CONFIG_FILES([share/tests/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/muli AC_CONFIG_FILES([share/muli/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/SM_tt_threshold_data AC_CONFIG_FILES([share/SM_tt_threshold_data/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory share/gui AC_CONFIG_FILES([share/gui/Makefile]) ###--------------------------------------------------------------------- ### Subdirectory tests AC_CONFIG_FILES([tests/Makefile]) AC_CONFIG_FILES([tests/models/Makefile]) AC_CONFIG_FILES([tests/models/UFO/Makefile]) AC_CONFIG_FILES([tests/models/UFO/SM/Makefile]) AC_CONFIG_FILES([tests/models/UFO/MSSM/Makefile]) ##_CONFIG_FILES([tests/models/UFO/SMEFTsim_top_alphaScheme/Makefile]) AC_CONFIG_FILES([tests/unit_tests/Makefile]) AC_CONFIG_FILES([tests/functional_tests/Makefile]) AC_CONFIG_FILES([tests/ext_tests_mssm/Makefile]) AC_CONFIG_FILES([tests/ext_tests_nmssm/Makefile]) AC_CONFIG_FILES([tests/ext_tests_ilc/Makefile]) AC_CONFIG_FILES([tests/ext_tests_shower/Makefile]) AC_CONFIG_FILES([tests/ext_tests_nlo/Makefile]) AC_CONFIG_FILES([tests/ext_tests_nlo_add/Makefile]) AC_CONFIG_FILES([tests/unit_tests/run_whizard_ut.sh], [chmod u+x tests/unit_tests/run_whizard_ut.sh]) AC_CONFIG_FILES([tests/unit_tests/run_whizard_ut_c.sh], [chmod u+x tests/unit_tests/run_whizard_ut_c.sh]) AC_CONFIG_FILES([tests/unit_tests/run_whizard_ut_cc.sh], [chmod u+x tests/unit_tests/run_whizard_ut_cc.sh]) AC_CONFIG_FILES([tests/functional_tests/run_whizard.sh], [chmod u+x tests/functional_tests/run_whizard.sh]) AC_CONFIG_FILES([tests/ext_tests_mssm/run_whizard.sh], [chmod u+x tests/ext_tests_mssm/run_whizard.sh]) AC_CONFIG_FILES([tests/ext_tests_nmssm/run_whizard.sh], [chmod u+x tests/ext_tests_nmssm/run_whizard.sh]) AC_CONFIG_FILES([tests/ext_tests_ilc/run_whizard.sh], [chmod u+x tests/ext_tests_ilc/run_whizard.sh]) AC_CONFIG_FILES([tests/ext_tests_shower/run_whizard.sh], [chmod u+x tests/ext_tests_shower/run_whizard.sh]) AC_CONFIG_FILES([tests/ext_tests_nlo/run_whizard.sh], [chmod u+x tests/ext_tests_nlo/run_whizard.sh]) AC_CONFIG_FILES([tests/ext_tests_nlo_add/run_whizard.sh], [chmod u+x tests/ext_tests_nlo_add/run_whizard.sh]) ###-------------------------------------------------------------------- ### Subdirectory scripts AC_CONFIG_FILES([scripts/Makefile]) AC_CONFIG_FILES([scripts/whizard-config], [chmod u+x scripts/whizard-config]) AC_CONFIG_FILES([scripts/whizard-setup.sh], [chmod u+x scripts/whizard-setup.sh]) AC_CONFIG_FILES([scripts/whizard-setup.csh], [chmod u+x scripts/whizard-setup.csh]) ### ONLY_FULL }}} ### ONLY_CIRCE1_AND_FULL {{{ ###-------------------------------------------------------------------- ### CIRCE1 subdirectory files AC_CONFIG_FILES([circe1/Makefile]) AC_CONFIG_FILES([circe1/src/Makefile]) AC_CONFIG_FILES([circe1/minuit/Makefile]) AC_CONFIG_FILES([circe1/tools/Makefile]) AC_CONFIG_FILES([circe1/share/Makefile]) AC_CONFIG_FILES([circe1/share/data/Makefile]) AC_CONFIG_FILES([circe1/share/doc/Makefile]) ### ONLY_CIRCE1_AND_FULL }}} ### ONLY_CIRCE2_AND_FULL {{{ ###-------------------------------------------------------------------- ### CIRCE2 subdirectory files AC_CONFIG_FILES([circe2/Makefile]) AC_CONFIG_FILES([circe2/src/Makefile]) AC_CONFIG_FILES([circe2/share/Makefile]) AC_CONFIG_FILES([circe2/share/doc/Makefile]) AC_CONFIG_FILES([circe2/share/examples/Makefile]) AC_CONFIG_FILES([circe2/share/data/Makefile]) AC_CONFIG_FILES([circe2/share/tests/Makefile]) AC_CONFIG_FILES([circe2/tests/Makefile]) AC_CONFIG_FILES([circe2/tests/test_wrapper.sh], [chmod u+x circe2/tests/test_wrapper.sh]) AC_CONFIG_FILES([circe2/tests/circe2_tool.sh], [chmod u+x circe2/tests/circe2_tool.sh]) AC_CONFIG_FILES([circe2/tests/generate.sh], [chmod u+x circe2/tests/generate.sh]) ### ONLY_CIRCE2_AND_FULL }}} ### ONLY_OMEGA_AND_FULL {{{ ###-------------------------------------------------------------------- ### OMEGA subdirectory files AC_CONFIG_FILES([omega/Makefile]) AC_CONFIG_FILES([omega/bin/Makefile]) AC_CONFIG_FILES([omega/lib/Makefile]) AC_CONFIG_FILES([omega/models/Makefile]) AC_CONFIG_FILES([omega/src/Makefile]) AC_CONFIG_FILES([omega/share/Makefile]) AC_CONFIG_FILES([omega/share/doc/Makefile]) AC_CONFIG_FILES([omega/extensions/Makefile]) AC_CONFIG_FILES([omega/extensions/people/Makefile]) AC_CONFIG_FILES([omega/extensions/people/jr/Makefile]) AC_CONFIG_FILES([omega/extensions/people/tho/Makefile]) AC_CONFIG_FILES([omega/tests/Makefile]) AC_CONFIG_FILES([omega/tests/UFO/Makefile]) AC_CONFIG_FILES([omega/tests/UFO/SM/Makefile]) AC_CONFIG_FILES([omega/tests/UFO/MSSM/Makefile]) AC_CONFIG_FILES([omega/tests/UFO/SMEFTsim_top_alphaScheme/Makefile]) AC_CONFIG_FILES([omega/tools/Makefile]) AC_CONFIG_FILES([omega/scripts/Makefile]) AC_CONFIG_FILES([omega/scripts/omega-config], [chmod u+x omega/scripts/omega-config]) AC_CONFIG_FILES([omega/scripts/ufo-sanitizer], [chmod u+x omega/scripts/ufo-sanitizer]) # Copy config.mli to the build directory (otherwise ocamlc and/or # ocamlopt would create one on their own). ###-------------------------------------------------------------------- AC_CONFIG_FILES([omega/src/config.ml]) case "$srcdir" in .) ;; *) $MKDIR_P ./omega/src rm -f ./omega/src/config.mli cp $srcdir/omega/src/config.mli ./omega/src/config.mli 1>/dev/null 2>&1;; esac ###-------------------------------------------------------------------- ### ONLY_OMEGA_AND_FULL }}} ### ONLY_VAMP_AND_FULL {{{ ###-------------------------------------------------------------------- ### VAMP subdirectory files AC_CONFIG_FILES([vamp/Makefile]) AC_CONFIG_FILES([vamp/src/Makefile]) AC_CONFIG_FILES([vamp/share/Makefile]) AC_CONFIG_FILES([vamp/share/doc/Makefile]) AC_CONFIG_FILES([vamp/tests/Makefile]) ### ONLY_VAMP_AND_FULL }}} ######################################################################## ###--------------------------------------------------------------------- ### Final output AC_OUTPUT() ### ONLY_FULL {{{ ######################################################################## ###--------------------------------------------------------------------- ### Final output WO_SUMMARY() ### ONLY_FULL }}} ######################################################################## Index: trunk/NEWS =================================================================== --- trunk/NEWS (revision 8850) +++ trunk/NEWS (revision 8851) @@ -1,7 +1,7 @@ NEWS -- User-visible changes for the WHIZARD package (for NEWS on the O'Mega matrix element generator cf. its corresponding NEWS file) -version 3.0.3+ +version 3.1.0 for details cf. the ChangeLog file Index: trunk/synchronize.sh =================================================================== --- trunk/synchronize.sh (revision 8850) +++ trunk/synchronize.sh (revision 8851) @@ -1,60 +1,60 @@ #!/bin/sh ### Consider it safer to explicitly mention all files that contain ### email addresses or copyright tags. OLD_YEAR="Copyright (C) 1999-2021"; NEW_YEAR="Copyright (C) 1999-2022"; OLD_YEAR2="Copyright (C) 2001-2021"; NEW_YEAR2="Copyright (C) 2001-2022"; OLD_YEAR3="Copyright (C) 2019-2021"; NEW_YEAR3="Copyright (C) 2019-2022"; # OLD_ADDRESS="Soyoung Shim " # NEW_ADDRESS="So Young Shim " OLD_ADDRESS="Soyoung Shim" NEW_ADDRESS="So Young Shim" -OLD_DATE="Nov 23 2021" -NEW_DATE="Apr 06 2022" -OLD_VERSION="3.0.3" -NEW_VERSION="3.0.3+" +OLD_DATE="Apr 06 2022" +NEW_DATE="Dec 14 2022" +OLD_VERSION="3.0.3+" +NEW_VERSION="3.1.0" #OLD_STATUS="PACKAGE_STATUS=\"alpha\"" #NEW_STATUS="PACKAGE_STATUS=\"beta\"" -OLD_STATUS="PACKAGE_STATUS=\"release\"" +OLD_STATUS="PACKAGE_STATUS=\"alpha\"" #NEW_STATUS="PACKAGE_STATUS=\"rc1\"" -NEW_STATUS="PACKAGE_STATUS=\"alpha\"" +NEW_STATUS="PACKAGE_STATUS=\"release\"" ## We should add an option to add an author here. ## share/doc/manual.tex should be changed manually ## We have to discuss the entries in gamelan/manual ## We have to discuss the entries in src/shower MAIN_FILES="AUTHORS BUGS Makefile.am.in README build_master.sh tests/Makefile.am tests/models/Makefile.am tests/models/UFO/Makefile.am tests/models/UFO/SM/Makefile.am tests/models/UFO/MSSM/Makefile.am tests/functional_tests/Makefile.am tests/ext_tests_mssm/Makefile.am tests/ext_tests_nmssm/Makefile.am tests/ext_tests_ilc/Makefile.am tests/ext_tests_nlo/Makefile.am tests/ext_tests_nlo_add/Makefile.am tests/ext_tests_shower/Makefile.am tests/unit_tests/Makefile.am" CONFIGURE_FILES="configure.ac.in src/noweb-frame/whizard-prelude.nw" VERSION_FILES="NEWS circe2/src/circe2.nw" SCRIPTS_FILES="scripts/Makefile.am scripts/whizard-config.in scripts/whizard-setup.csh.in scripts/whizard-setup.sh.in" SHARE_FILES="share/Makefile.am share/doc/Makefile.am share/doc/custom.hva share/examples/NLO_eettbar_GoSam.sin share/examples/NLO_eettbar_OpenLoops.sin share/examples/HERA_DIS.sin share/examples/LEP_cc10.sin share/examples/LEP_higgs.sin share/examples/W-endpoint.sin share/examples/Z-lineshape.sin share/examples/Zprime.sin share/examples/casc_dec.sin share/examples/circe1.sin share/examples/eeww_polarized.sin share/examples/DrellYanMatchingP.sin share/examples/DrellYanMatchingW.sin share/examples/DrellYanNoMatchingP.sin share/examples/DrellYanNoMatchingW.sin share/examples/EEMatching2P.sin share/examples/EEMatching2W.sin share/examples/EEMatching3P.sin share/examples/EEMatching3W.sin share/examples/EEMatching4P.sin share/examples/EEMatching4W.sin share/examples/EEMatching5P.sin share/examples/EEMatching5W.sin share/examples/EENoMatchingP.sin share/examples/EENoMatchingW.sin share/examples/LHC_VBS_likesign.sin share/tests/Makefile.am" SRC_FILES="src/Makefile.am src/feynmf/Makefile.am src/hepmc/Makefile.am src/hepmc/HepMCWrap_dummy.f90 src/lcio/Makefile.am src/lcio/LCIOWrap_dummy.f90 src/tauola/Makefile.am src/lhapdf/Makefile.am src/lhapdf/lhapdf.f90 src/lhapdf5/Makefile.am src/pdf_builtin/Makefile.am src/pdf_builtin/pdf_builtin.f90 src/pdf_builtin/pdf_builtin_sub.f90 src/qed_pdf/Makefile.am src/qed_pdf/qed_pdf.nw src/fastjet/Makefile.am src/fastjet/cpp_strings.f90 src/fastjet/cpp_strings_sub.f90 src/fastjet/fastjet.f90 src/fastjet/Makefile.am src/hoppet/Makefile.am src/hoppet/hoppet.f90 pythia6/Makefile.am tauola/Makefile.am mcfio/Makefile.am stdhep/Makefile.am src/noweb-frame/Makefile.am src/noweb-frame/whizard-prelude.nw src/noweb-frame/whizard-postlude.nw src/utilities/Makefile.am src/matrix_elements/Makefile.am src/matrix_elements/matrix_elements.nw src/mci/Makefile.am src/vegas/Makefile.am src/vegas/vegas.nw src/mci/mci.nw src/utilities/utilities.nw src/testing/Makefile.am src/testing/testing.nw src/system/Makefile.am src/system/system.nw src/system/system_dependencies.f90.in src/system/debug_master.f90.in src/combinatorics/Makefile.am src/combinatorics/combinatorics.nw src/parsing/Makefile.am src/parsing/parsing.nw src/particles/Makefile.am src/particles/particles.nw src/phase_space/Makefile.am src/phase_space/phase_space.nw src/physics/Makefile.am src/physics/physics.nw src/beams/Makefile.am src/beams/beams.nw src/qft/Makefile.am src/qft/qft.nw src/rng/Makefile.am src/rng/rng.nw src/types/Makefile.am src/types/types.nw src/whizard-core/Makefile.am src/whizard-core/whizard.nw src/pythia8/Makefile.am src/shower/Makefile.am src/shower/shower.nw src/muli/Makefile.am src/muli/muli.nw src/model_features/model_features.nw src/model_features/Makefile.am src/me_methods/Makefile.am src/me_methods/me_methods.nw src/gosam/Makefile.am src/gosam/gosam.nw src/fks/Makefile.am src/fks/fks.nw src/expr_base/Makefile.am src/expr_base/expr_base.nw src/events/Makefile.am src/events/events.nw src/blha/Makefile.am src/blha/blha.nw src/variables/Makefile.am src/variables/variables.nw src/xdr/Makefile.am src/xdr/xdr_wo_stdhep.f90 src/looptools/Makefile.am src/process_integration/Makefile.am src/process_integration/process_integration.nw src/matching/Makefile.am src/matching/matching.nw src/openloops/Makefile.am src/openloops/openloops.nw src/recola/Makefile.am src/recola/recola.nw src/transforms/Makefile.am src/transforms/transforms.nw src/threshold/Makefile.am src/threshold/threshold.nw src/api/Makefile.am src/api/api.nw src/main/Makefile.am src/main/main.nw" CIRCE1_FILES="circe1/Makefile.am circe1/share/Makefile.am circe1/share/doc/Makefile.am circe1/src/Makefile.am circe1/src/circe1.nw circe1/minuit/Makefile.am circe1/src/minuit.nw circe1/tools/Makefile.am" CIRCE2_FILES="circe2/Makefile.am circe2/share/Makefile.am circe2/share/doc/Makefile.am circe2/src/Makefile.am circe2/src/Makefile.ocaml circe2/src/circe2.nw circe2/src/Makefile.sources circe2/src/postlude.nw circe2/tests/Makefile.am circe2/src/circe2_tool.ml circe2/src/commands.ml circe2/src/commands.mli circe2/src/diffmap.ml circe2/src/diffmap.mli circe2/src/diffmaps.ml circe2/src/diffmaps.mli circe2/src/division.ml circe2/src/division.mli circe2/src/events.ml circe2/src/events.mli circe2/src/filter.ml circe2/src/filter.mli circe2/src/float.ml circe2/src/float.mli circe2/src/grid.ml circe2/src/grid.mli circe2/src/histogram.mli circe2/src/histogram.ml circe2/src/syntax.ml circe2/src/syntax.mli circe2/src/thoArray.ml circe2/src/thoArray.mli circe2/src/thoMatrix.ml circe2/src/thoMatrix.mli circe2/src/bigarray_module.ml circe2/src/bigarray_library.ml circe2/src/bigarray_compat.mli" SRC_GAMELAN_FILES="src/gamelan/Makefile.am src/gamelan/whizard-gml.in" SRC_BASICS_FILES="src/basics/constants.f90 src/basics/io_units.f90 src/basics/Makefile.am" SRC_MODELS_FILES="src/models/threeshl_bundle/Makefile.am src/models/threeshl_bundle/threeshl_bundle.f90 src/models/threeshl_bundle/threeshl_bundle_lt.f90 src/models/external.Test.f90 src/models/external.Threeshl.f90 src/models/external.SM_tt_threshold.f90 src/models/Makefile.am src/models/parameters.THDM.f90 src/models/parameters.GravTest.f90 src/models/parameters.Littlest.f90 src/models/parameters.Littlest_Eta.f90 src/models/parameters.Littlest_Tpar.f90 src/models/parameters.MSSM.f90 src/models/parameters.MSSM_4.f90 src/models/parameters.MSSM_CKM.f90 src/models/parameters.MSSM_Grav.f90 src/models/parameters.MSSM_Hgg.f90 src/models/parameters.NMSSM.f90 src/models/parameters.NMSSM_CKM.f90 src/models/parameters.NMSSM_Hgg.f90 src/models/parameters.PSSSM.f90 src/models/parameters.QCD.f90 src/models/parameters.QED.f90 src/models/parameters.SM.f90 src/models/parameters.SM_CKM.f90 src/models/parameters.SM_ac.f90 src/models/parameters.SM_ac_CKM.f90 src/models/parameters.SM_dim6.f90 src/models/parameters.SM_rx.f90 src/models/parameters.SM_ul.f90 src/models/parameters.NoH_rx.f90 src/models/parameters.AltH.f90 src/models/parameters.SSC.f90 src/models/parameters.SSC_2.f90 src/models/parameters.SSC_AltT.f90 src/models/parameters.SM_top.f90 src/models/parameters.SM_top_anom.f90 src/models/parameters.SM_Higgs.f90 src/models/parameters.SM_Higgs_CKM.f90 src/models/parameters.SM_tt_threshold.f90 src/models/parameters.Simplest.f90 src/models/parameters.Simplest_univ.f90 src/models/parameters.Template.f90 src/models/parameters.HSExt.f90 src/models/parameters.Test.f90 src/models/parameters.Threeshl.f90 src/models/parameters.UED.f90 src/models/parameters.Xdim.f90 src/models/parameters.Zprime.f90 src/models/parameters.WZW.f90" OMEGA_FILES="omega/Makefile.am omega/share/Makefile.am omega/share/doc/Makefile.am omega/src/Makefile.am omega/src/Makefile.ocaml omega/src/Makefile.sources omega/bin/Makefile.am omega/extensions/Makefile.am omega/extensions/people/Makefile.am omega/extensions/people/jr/Makefile.am omega/extensions/people/jr/f90_SAGT.ml omega/extensions/people/jr/f90_SQED.ml omega/extensions/people/jr/f90_WZ.ml omega/extensions/people/tho/Makefile.am omega/extensions/people/tho/f90_O2.ml omega/lib/Makefile.am omega/models/Makefile.am omega/scripts/Makefile.am omega/scripts/omega-config.in omega/tools/Makefile.am omega/tests/parameters_QED.f90 omega/tests/parameters_QCD.f90 omega/tests/parameters_SM.f90 omega/tests/parameters_SM_CKM.f90 omega/tests/parameters_SM_Higgs.f90 omega/tests/parameters_SM_from_UFO.f90 omega/tests/parameters_SYM.f90 omega/tests/parameters_SM_top_anom.f90 omega/tests/parameters_HSExt.f90 omega/tests/parameters_THDM.f90 omega/tests/parameters_THDM_CKM.f90 omega/tests/parameters_Zprime.f90 omega/tests/test_openmp.f90 omega/tests/tao_random_numbers.f90 omega/tests/test_qed_eemm.f90 omega/tests/Makefile.am omega/tests/benchmark.f90 omega/tests/color_test_lib.f90 omega/tests/omega_interface.f90 omega/tests/ward_lib.f90 omega/tests/omega_unit.ml omega/tests/compare_lib.f90 omega/tests/compare_lib_recola.f90 omega/tests/benchmark_UFO_SM.f90 omega/tests/benchmark_UFO_SMEFT.f90 omega/tests/keystones_omegalib_generate.ml omega/tests/keystones_UFO_generate.ml omega/tests/keystones_omegalib_bispinors_generate.ml omega/tests/keystones_UFO_bispinors_generate.ml omega/tests/keystones.ml omega/tests/keystones.mli omega/tests/keystones_tools.f90 omega/tests/fermi_lib.f90 omega/tests/parameters_SM_Higgs_recola.f90 omega/tests/parameters_MSSM.f90 omega/tests/keystones.mli" OMEGA_SRC_FILES="omega/src/algebra.ml omega/src/algebra.mli omega/src/bundle.ml omega/src/bundle.mli omega/src/cache.ml omega/src/cache.mli omega/src/cascade.ml omega/src/cascade.mli omega/src/cascade_lexer.mll omega/src/cascade_parser.mly omega/src/cascade_syntax.ml omega/src/cascade_syntax.mli omega/src/charges.ml omega/src/charges.mli omega/src/color.ml omega/src/color.mli omega/src/colorize.ml omega/src/colorize.mli omega/src/combinatorics.ml omega/src/combinatorics.mli omega/src/complex.ml omega/src/complex.mli omega/src/config.ml.in omega/src/config.mli omega/src/count.ml omega/src/coupling.mli omega/src/DAG.ml omega/src/DAG.mli omega/src/fusion.ml omega/src/fusion_vintage.ml omega/src/fusion.mli omega/src/fusion_vintage.mli omega/src/linalg.ml omega/src/linalg.mli omega/src/model.mli omega/src/modellib_BSM.ml omega/src/modellib_NoH.ml omega/src/modellib_NoH.mli omega/src/modellib_BSM.mli omega/src/modellib_MSSM.ml omega/src/modellib_MSSM.mli omega/src/modellib_NMSSM.ml omega/src/modellib_NMSSM.mli omega/src/modellib_PSSSM.ml omega/src/modellib_PSSSM.mli omega/src/modellib_SM.ml omega/src/modellib_SM.mli omega/src/modellib_Zprime.mli omega/src/modellib_Zprime.ml omega/src/modellib_WZW.mli omega/src/modellib_WZW.ml omega/src/UFO.ml omega/src/UFO.mli omega/src/UFO_targets.ml omega/src/UFO_Lorentz.ml omega/src/UFO_syntax.ml omega/src/UFO_syntax.mli omega/src/UFOx.ml omega/src/UFOx.mli omega/src/UFO_lexer.mll omega/src/UFO_parser.mly omega/src/UFOx_syntax.ml omega/src/UFOx_syntax.mli omega/src/UFOx_lexer.mll omega/src/UFOx_parser.mly omega/src/omega_UFO.ml omega/src/modeltools.ml omega/src/modeltools.mli omega/src/momentum.ml omega/src/momentum.mli omega/src/OVM.ml omega/src/OVM.mli omega/src/ogiga.ml omega/src/omega.ml omega/src/omega.mli omega/src/omega_THDM.ml omega/src/omega_THDM_VM.ml omega/src/omega_THDM_CKM.ml omega/src/omega_THDM_CKM_VM.ml omega/src/omega_CQED.ml omega/src/omega_GravTest.ml omega/src/omega_Littlest.ml omega/src/omega_Littlest_Eta.ml omega/src/omega_Littlest_Tpar.ml omega/src/omega_Littlest_Zprime.ml omega/src/omega_MSSM.ml omega/src/omega_MSSM_CKM.ml omega/src/omega_MSSM_Grav.ml omega/src/omega_MSSM_Hgg.ml omega/src/omega_NMSSM.ml omega/src/omega_NMSSM_CKM.ml omega/src/omega_NMSSM_Hgg.ml omega/src/omega_PSSSM.ml omega/src/omega_Phi3.ml omega/src/omega_Phi3h.ml omega/src/omega_Phi4.ml omega/src/omega_Phi4h.ml omega/src/omega_QCD.ml omega/src/omega_QCD_VM.ml omega/src/omega_QED.ml omega/src/omega_QED_VM.ml omega/src/omega_SM.ml omega/src/omega_SM_tt_threshold.ml omega/src/omega_SM_VM.ml omega/src/omega_SM_CKM.ml omega/src/omega_SM_CKM_VM.ml omega/src/ovm_SM.ml omega/src/process.ml omega/src/process.mli omega/src/thoFilename.ml omega/src/thoFilename.mli omega/src/omega_SM_Higgs.ml omega/src/omega_SM_Higgs_CKM.ml omega/src/omega_SM_Higgs_VM.ml omega/src/omega_SM_Higgs_CKM_VM.ml omega/src/omega_SM_Rxi.ml omega/src/omega_SM_ac.ml omega/src/omega_SM_ac_CKM.ml omega/src/omega_SM_clones.ml omega/src/omega_SM_rx.ml omega/src/omega_SM_ul.ml omega/src/omega_SM_Majorana_legacy.ml omega/src/omega_SM_Majorana.ml omega/src/omega_NoH_rx.ml omega/src/omega_AltH.ml omega/src/omega_SSC.ml omega/src/omega_SSC_2.ml omega/src/omega_SM_top.ml omega/src/omega_SM_top_anom.ml omega/src/omega_SMh.ml omega/src/omega_SYM.ml omega/src/omega_Simplest.ml omega/src/omega_Simplest_univ.ml omega/src/omega_Template.ml omega/src/omega_HSExt.ml omega/src/omega_HSExt_VM.ml omega/src/omega_Threeshl.ml omega/src/omega_Threeshl_nohf.ml omega/src/omega_UED.ml omega/src/omega_Xdim.ml omega/src/omega_Zprime.ml omega/src/omega_Zprime_VM.ml omega/src/omega_logo.mp omega/src/omega_parameters_tool.nw omega/src/omegalib.nw omega/src/options.ml omega/src/options.mli omega/src/partition.ml omega/src/partition.mli omega/src/phasespace.ml omega/src/phasespace.mli omega/src/pmap.ml omega/src/pmap.mli omega/src/powSet.ml omega/src/powSet.mli omega/src/product.ml omega/src/product.mli omega/src/progress.ml omega/src/progress.mli omega/src/permutation.ml omega/src/permutation.mli omega/src/target.mli omega/src/targets.ml omega/src/targets.mli omega/src/targets_Kmatrix.ml omega/src/targets_Kmatrix.mli omega/src/test_linalg.ml omega/src/thoArray.ml omega/src/thoFilename.ml omega/src/thoArray.mli omega/src/thoGButton.ml omega/src/thoGButton.mli omega/src/thoGDraw.ml omega/src/thoGDraw.mli omega/src/thoGMenu.ml omega/src/thoGMenu.mli omega/src/thoGWindow.ml omega/src/thoGWindow.mli omega/src/thoList.ml omega/src/thoList.mli omega/src/thoString.ml omega/src/thoString.mli omega/src/topology.ml omega/src/topology.mli omega/src/tree.ml omega/src/tree.mli omega/src/tree2.ml omega/src/tree2.mli omega/src/trie.ml omega/src/trie.mli omega/src/tuple.ml omega/src/tuple.mli omega/src/vertex.ml omega/src/vertex.mli omega/src/vertex_lexer.mll omega/src/vertex_parser.mly omega/src/vertex_syntax.ml omega/src/vertex_syntax.mli omega/src/whizard.ml omega/src/whizard.mli omega/src/whizard_tool.ml omega/src/constants.f90 omega/src/sets.mli omega/src/sets.ml omega/src/UFO_tools.ml omega/src/UFO_tools.mli omega/src/fortran_unit.ml omega/src/format_Fortran.ml omega/src/format_Fortran.mli omega/src/omega_UFO_Majorana.ml omega/src/omega_UFO_Dirac.ml omega/src/young.mli omega/src/young.ml" SRC_PDF_BUILTIN_FILES="src/pdf_builtin/pdf_builtin.f90" VAMP_FILES="vamp/Makefile.am vamp/share/Makefile.am vamp/share/doc/Makefile.am vamp/src/Makefile.am vamp/tests/Makefile.am" FILES="$MAIN_FILES $CONFIGURE_FILES $VERSION_FILES $SHARE_FILES $OMEGA_FILES $SCRIPTS_FILES $SRC_FILES $CIRCE1_FILES $CIRCE2_FILES $SRC_GAMELAN_FILES $SRC_PDF_BUILTIN_FILES $VAMP_FILES $SRC_BASICS_FILES $SRC_MODELS_FILES $OMEGA_SRC_FILES" for f in $FILES; do sed -e "s/$OLD_YEAR/$NEW_YEAR/g" -e "s/$OLD_YEAR2/$NEW_YEAR2/g" -e "s/$OLD_YEAR3/$NEW_YEAR3/g" $f > $f.tmp; cp -f $f.tmp $f; rm -f $f.tmp; done CHANGE_FILES="$CONFIGURE_FILES $VERSION_FILES" for f in $CHANGE_FILES; do sed -e "s/$OLD_DATE/$NEW_DATE/g" -e "s/$OLD_VERSION/$NEW_VERSION/g" -e "s/$OLD_STATUS/$NEW_STATUS/g" $f > $f.tmp; cp -f $f.tmp $f; rm -f $f.tmp; done Index: trunk/AUTHORS =================================================================== --- trunk/AUTHORS (revision 8850) +++ trunk/AUTHORS (revision 8851) @@ -1,38 +1,38 @@ WHIZARD Main Authors: contact Wolfgang Kilian Thorsten Ohl Juergen Reuter WHIZARD Contributors: Timothy Barklow Mikael Berggren -Simon Brass +Simon Brass Pia Bredt Bijan Chokoufe Nejad Nils Kreher -Krzysztof Mekala +Krzysztof Mekala Akiya Miyamoto Vincent Rothe Christian Speckner Pascal Stienemeier Tobias Striegl Christian Weiss Former WHIZARD team members: Fabian Bach Vincent Bettaque Hans-Werner Boschmann Felix Braam Christian Fleper Daniel Gordo Gomez Sebastian Schmidt Christian Schwinn Marco Sekulla So Young Shim Florian Staub Manuel Utsch Daniel Wiesler Zhijie Zhao Index: trunk/src/particles/particles.nw =================================================================== --- trunk/src/particles/particles.nw (revision 8850) +++ trunk/src/particles/particles.nw (revision 8851) @@ -1,9692 +1,9697 @@ %% -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*- % WHIZARD code as NOWEB source: particle objects %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Particles} \includemodulegraph{particles} This chapter collects modules that implement particle objects, for use in event records. While within interactions, all correlations are manifest, a particle array is derived by selecting a particular quantum number set. This involves tracing over all other particles, as far as polarization is concerned. Thus, a particle has definite flavor, color, and a single-particle density matrix for polarization. \begin{description} \item[su\_algebra] We make use of $su(N)$ generators as the basis for representing polarization matrices. This module defines the basis and provides the necessary transformation routines. \item[bloch\_vectors] This defines polarization objects in Bloch representation. The object describes the spin density matrix of a particle, currently restricted to spin $0\ldots 2$. \item[polarizations] This extends the basic polarization object such that it supports properties of physical particles and appropriate constructors. \item[particles] Particle objects and particle lists, as the base of event records. \end{description} \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{$su(N)$ Algebra} We need a specific choice of basis for a well-defined component representation. The matrix elements of $T^a$ are ordered as $m=\ell,\ell-1,\ldots -\ell$, i.e., from highest down to lowest weight, for both row and column. We list first the generators of the $su(2)$ subalgebras which leave $|m|$ invariant ($|m|\neq 0$): \begin{equation} T^{b+1,b+2,b+3} \equiv \sigma^{1,2,3} \end{equation} acting on the respective subspace $|m|=\ell,\ell-1,\ldots$ for $b=0,1,\ldots$. This defines generators $T^a$ for $a=1,\ldots 3N/2$ ($\ldots 3(N-1)/2$) for $N$ even (odd), respectively. The following generators successively extend this to $su(4)$, $su(6)$, \ldots until $su(N)$ by adding first the missing off-diagonal and then diagonal generators. The phase conventions are analogous. (It should be possible to code these conventions for generic spin, but in the current implementation we restrict ourselves to $s\leq 2$, i.e., $N\leq 5$.) <<[[su_algebra.f90]]>>= <> module su_algebra <> <> <> interface <> end interface end module su_algebra @ %def su_algebra @ <<[[su_algebra_sub.f90]]>>= <> submodule (su_algebra) su_algebra_s use physics_defs, only: SCALAR, SPINOR, VECTOR, VECTORSPINOR, TENSOR implicit none contains <> end submodule su_algebra_s @ %def su_algbra_s @ \subsection{$su(N)$ fundamental representation} The dimension of the basis for a given spin type. consecutively, starting at [[SCALAR=1]]. <>= public :: algebra_dimension <>= module function algebra_dimension (s) result (n) integer :: n integer, intent(in) :: s end function algebra_dimension <>= module function algebra_dimension (s) result (n) integer :: n integer, intent(in) :: s n = fundamental_dimension (s) ** 2 - 1 end function algebra_dimension @ %def algebra_dimension @ The dimension of the fundamental (defining) representation that we use. This implementation assumes that the spin type is numerically equal to the fundamental dimension. <>= public :: fundamental_dimension <>= module function fundamental_dimension (s) result (d) integer :: d integer, intent(in) :: s end function fundamental_dimension <>= module function fundamental_dimension (s) result (d) integer :: d integer, intent(in) :: s d = s end function fundamental_dimension @ %def fundamental_dimension @ \subsection{Mapping between helicity and matrix index} Return the helicity that corresponds to a particular entry in the polarization matrix representation. Helicities are counted downwards, in integers, and zero helicity is included (omitted) for odd (even) spin, respectively. <>= public :: helicity_value <>= module function helicity_value (s, i) result (h) integer :: h integer, intent(in) :: s, i end function helicity_value <>= module function helicity_value (s, i) result (h) integer :: h integer, intent(in) :: s, i integer, dimension(1), parameter :: hh1 = [0] integer, dimension(2), parameter :: hh2 = [1, -1] integer, dimension(3), parameter :: hh3 = [1, 0, -1] integer, dimension(4), parameter :: hh4 = [2, 1, -1, -2] integer, dimension(5), parameter :: hh5 = [2, 1, 0, -1, -2] h = 0 select case (s) case (SCALAR) select case (i) case (1:1); h = hh1(i) end select case (SPINOR) select case (i) case (1:2); h = hh2(i) end select case (VECTOR) select case (i) case (1:3); h = hh3(i) end select case (VECTORSPINOR) select case (i) case (1:4); h = hh4(i) end select case (TENSOR) select case (i) case (1:5); h = hh5(i) end select end select end function helicity_value @ %def helicity_value @ Inverse: return the index that corresponds to a certain helicity value in the chosen representation. <>= public :: helicity_index <>= module function helicity_index (s, h) result (i) integer, intent(in) :: s, h integer :: i end function helicity_index <>= module function helicity_index (s, h) result (i) integer, intent(in) :: s, h integer :: i integer, dimension(0:0), parameter :: hi1 = [1] integer, dimension(-1:1), parameter :: hi2 = [2, 0, 1] integer, dimension(-1:1), parameter :: hi3 = [3, 2, 1] integer, dimension(-2:2), parameter :: hi4 = [4, 3, 0, 2, 1] integer, dimension(-2:2), parameter :: hi5 = [5, 4, 3, 2, 1] select case (s) case (SCALAR) i = hi1(h) case (SPINOR) i = hi2(h) case (VECTOR) i = hi3(h) case (VECTORSPINOR) i = hi4(h) case (TENSOR) i = hi5(h) end select end function helicity_index @ %def helicity_index @ \subsection{Generator Basis: Cartan Generators} For each supported spin type, we return specific properties of the set of generators via inquiry functions. This is equivalent to using explicit representations of the generators. For easy access, the properties are hard-coded and selected via case expressions. Return true if the generator \#[[i]] is in the Cartan subalgebra, i.e., a diagonal matrix for spin type [[s]]. <>= public :: is_cartan_generator <>= elemental module function is_cartan_generator (s, i) result (cartan) logical :: cartan integer, intent(in) :: s, i end function is_cartan_generator <>= elemental module function is_cartan_generator (s, i) result (cartan) logical :: cartan integer, intent(in) :: s, i select case (s) case (SCALAR) case (SPINOR) select case (i) case (3); cartan = .true. case default cartan = .false. end select case (VECTOR) select case (i) case (3,8); cartan = .true. case default cartan = .false. end select case (VECTORSPINOR) select case (i) case (3,6,15); cartan = .true. case default cartan = .false. end select case (TENSOR) select case (i) case (3,6,15,24); cartan = .true. case default cartan = .false. end select case default cartan = .false. end select end function is_cartan_generator @ %def is_cartan_generator @ Return the index of Cartan generator \#[[k]] in the chosen representation. This has to conform to [[cartan]] above. <>= public :: cartan_index <>= elemental module function cartan_index (s, k) result (ci) integer :: ci integer, intent(in) :: s, k end function cartan_index <>= elemental module function cartan_index (s, k) result (ci) integer :: ci integer, intent(in) :: s, k integer, dimension(1), parameter :: ci2 = [3] integer, dimension(2), parameter :: ci3 = [3,8] integer, dimension(3), parameter :: ci4 = [3,6,15] integer, dimension(4), parameter :: ci5 = [3,6,15,24] select case (s) case (SPINOR) ci = ci2(k) case (VECTOR) ci = ci3(k) case (VECTORSPINOR) ci = ci4(k) case (TENSOR) ci = ci5(k) case default ci = 0 end select end function cartan_index @ %def cartan_index @ The element \#[[k]] of the result vector [[a]] is equal to the $(h,h)$ diagonal entry of the generator matrix $T^k$. That is, evaluating this for all allowed values of [[h]], we recover the set of Cartan generator matrices. <>= public :: cartan_element <>= module function cartan_element (s, h) result (a) real(default), dimension(:), allocatable :: a integer, intent(in) :: s, h end function cartan_element <>= module function cartan_element (s, h) result (a) real(default), dimension(:), allocatable :: a integer, intent(in) :: s, h real(default), parameter :: sqrt2 = sqrt (2._default) real(default), parameter :: sqrt3 = sqrt (3._default) real(default), parameter :: sqrt10 = sqrt (10._default) allocate (a (algebra_dimension (s)), source = 0._default) select case (s) case (SCALAR) case (SPINOR) select case (h) case (1) a(3) = 1._default / 2 case (-1) a(3) = -1._default / 2 end select case (VECTOR) select case (h) case (1) a(3) = 1._default / 2 a(8) = 1._default / (2 * sqrt3) case (-1) a(3) = -1._default / 2 a(8) = 1._default / (2 * sqrt3) case (0) a(8) = -1._default / sqrt3 end select case (VECTORSPINOR) select case (h) case (2) a(3) = 1._default / 2 a(15) = 1._default / (2 * sqrt2) case (-2) a(3) = -1._default / 2 a(15) = 1._default / (2 * sqrt2) case (1) a(6) = 1._default / 2 a(15) = -1._default / (2 * sqrt2) case (-1) a(6) = -1._default / 2 a(15) = -1._default / (2 * sqrt2) end select case (TENSOR) select case (h) case (2) a(3) = 1._default / 2 a(15) = 1._default / (2 * sqrt2) a(24) = 1._default / (2 * sqrt10) case (-2) a(3) = -1._default / 2 a(15) = 1._default / (2 * sqrt2) a(24) = 1._default / (2 * sqrt10) case (1) a(6) = 1._default / 2 a(15) = -1._default / (2 * sqrt2) a(24) = 1._default / (2 * sqrt10) case (-1) a(6) = -1._default / 2 a(15) = -1._default / (2 * sqrt2) a(24) = 1._default / (2 * sqrt10) case (0) a(24) = -4._default / (2 * sqrt10) end select end select end function cartan_element @ %def cartan_element @ Given an array of diagonal matrix elements [[rd]] of a generator, compute the array [[a]] of basis coefficients. The array must be ordered as defined by [[helicity_value]], i.e., highest weight first. The calculation is organized such that the trace of the generator, i.e., the sum of [[rd]] values, drops out. The result array [[a]] has coefficients for all basis generators, but only Cartan generators can get a nonzero coefficient. <>= public :: cartan_coeff <>= module function cartan_coeff (s, rd) result (a) real(default), dimension(:), allocatable :: a integer, intent(in) :: s real(default), dimension(:), intent(in) :: rd end function cartan_coeff <>= module function cartan_coeff (s, rd) result (a) real(default), dimension(:), allocatable :: a integer, intent(in) :: s real(default), dimension(:), intent(in) :: rd real(default), parameter :: sqrt2 = sqrt (2._default) real(default), parameter :: sqrt3 = sqrt (3._default) real(default), parameter :: sqrt10 = sqrt (10._default) integer :: n n = algebra_dimension (s) allocate (a (n), source = 0._default) select case (s) case (SPINOR) a(3) = rd(1) - rd(2) case (VECTOR) a(3) = rd(1) - rd(3) a(8) = (rd(1) - 2 * rd(2) + rd(3)) / sqrt3 case (VECTORSPINOR) a(3) = rd(1) - rd(4) a(6) = rd(2) - rd(3) a(15) = (rd(1) - rd(2) - rd(3) + rd(4)) / sqrt2 case (TENSOR) a(3) = rd(1) - rd(5) a(6) = rd(2) - rd(4) a(15) = (rd(1) - rd(2) - rd(4) + rd(5)) / sqrt2 a(24) = (rd(1) + rd(2) - 4 * rd(3) + rd(4) + rd(5)) / sqrt10 end select end function cartan_coeff @ %def cartan_coeff @ \subsection{Roots (Off-Diagonal Generators)} Return the appropriate generator index for a given off-diagonal helicity combination. We require $h_1>h_2$. We return the index of the appropriate real-valued generator if [[r]] is true, else the complex-valued one. This is separate from the [[cartan_coeff]] function above. The reason is that the off-diagonal generators have only a single nonzero matrix element, so there is a one-to-one correspondence of helicity and index. <>= public :: root_index <>= module function root_index (s, h1, h2, r) result (ai) integer :: ai integer, intent(in) :: s, h1, h2 logical :: r end function root_index <>= module function root_index (s, h1, h2, r) result (ai) integer :: ai integer, intent(in) :: s, h1, h2 logical :: r ai = 0 select case (s) case (SCALAR) case (SPINOR) select case (h1) case (1) select case (h2) case (-1); ai = 1 end select end select case (VECTOR) select case (h1) case (1) select case (h2) case (-1); ai = 1 case (0); ai = 4 end select case (0) select case (h2) case (-1); ai = 6 end select end select case (VECTORSPINOR) select case (h1) case (2) select case (h2) case (-2); ai = 1 case (1); ai = 7 case (-1); ai = 11 end select case (1) select case (h2) case (-1); ai = 4 case (-2); ai = 13 end select case (-1) select case (h2) case (-2); ai = 9 end select end select case (TENSOR) select case (h1) case (2) select case (h2) case (-2); ai = 1 case (1); ai = 7 case (-1); ai = 11 case (0); ai = 16 end select case (1) select case (h2) case (-1); ai = 4 case (-2); ai = 13 case (0); ai = 20 end select case (-1) select case (h2) case (-2); ai = 9 end select case (0) select case (h2) case (-2); ai = 18 case (-1); ai = 22 end select end select end select if (ai /= 0 .and. .not. r) ai = ai + 1 end function root_index @ %def root_index @ Inverse: return the helicity values ($h_2>h_1$) for an off-diagonal generator. The flag [[r]] tells whether this is a real or diagonal generator. The others are Cartan generators. <>= public :: root_helicity <>= module subroutine root_helicity (s, i, h1, h2, r) integer, intent(in) :: s, i integer, intent(out) :: h1, h2 logical, intent(out) :: r end subroutine root_helicity <>= module subroutine root_helicity (s, i, h1, h2, r) integer, intent(in) :: s, i integer, intent(out) :: h1, h2 logical, intent(out) :: r h1 = 0 h2 = 0 r = .false. select case (s) case (SCALAR) case (SPINOR) select case (i) case ( 1, 2); h1 = 1; h2 = -1; r = i == 1 end select case (VECTOR) select case (i) case ( 1, 2); h1 = 1; h2 = -1; r = i == 1 case ( 4, 5); h1 = 1; h2 = 0; r = i == 4 case ( 6, 7); h1 = 0; h2 = -1; r = i == 6 end select case (VECTORSPINOR) select case (i) case ( 1, 2); h1 = 2; h2 = -2; r = i == 1 case ( 4, 5); h1 = 1; h2 = -1; r = i == 4 case ( 7, 8); h1 = 2; h2 = 1; r = i == 7 case ( 9,10); h1 = -1; h2 = -2; r = i == 9 case (11,12); h1 = 2; h2 = -1; r = i ==11 case (13,14); h1 = 1; h2 = -2; r = i ==13 end select case (TENSOR) select case (i) case ( 1, 2); h1 = 2; h2 = -2; r = i == 1 case ( 4, 5); h1 = 1; h2 = -1; r = i == 4 case ( 7, 8); h1 = 2; h2 = 1; r = i == 7 case ( 9,10); h1 = -1; h2 = -2; r = i == 9 case (11,12); h1 = 2; h2 = -1; r = i ==11 case (13,14); h1 = 1; h2 = -2; r = i ==13 case (16,17); h1 = 2; h2 = 0; r = i ==16 case (18,19); h1 = 0; h2 = -2; r = i ==18 case (20,21); h1 = 1; h2 = 0; r = i ==20 case (22,23); h1 = 0; h2 = -1; r = i ==22 end select end select end subroutine root_helicity @ %def root_helicity @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[su_algebra_ut.f90]]>>= <> module su_algebra_ut use unit_tests use su_algebra_uti <> <> contains <> end module su_algebra_ut @ %def su_algebra_ut @ <<[[su_algebra_uti.f90]]>>= <> module su_algebra_uti <> use physics_defs, only: SCALAR, SPINOR, VECTOR, VECTORSPINOR, TENSOR use su_algebra <> <> contains <> end module su_algebra_uti @ %def su_algebra_ut @ API: driver for the unit tests below. <>= public :: su_algebra_test <>= subroutine su_algebra_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine su_algebra_test @ %def su_algebra_test @ \subsubsection{Generator Ordering} Show the position of Cartan generators in the sequence of basis generators. <>= call test (su_algebra_1, "su_algebra_1", & "generator ordering", & u, results) <>= public :: su_algebra_1 <>= subroutine su_algebra_1 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: su_algebra_1" write (u, "(A)") "* Purpose: test su(N) algebra implementation" write (u, "(A)") write (u, "(A)") "* su(N) generators: & &list and mark Cartan subalgebra" write (u, "(A)") write (u, "(A)") "* s = 0" call cartan_check (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call cartan_check (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call cartan_check (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call cartan_check (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call cartan_check (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: su_algebra_1" contains subroutine cartan_check (s) integer, intent(in) :: s integer :: i write (u, *) do i = 1, algebra_dimension (s) write (u, "(1x,L1)", advance="no") is_cartan_generator (s, i) end do write (u, *) end subroutine cartan_check end subroutine su_algebra_1 @ %def su_algebra_1 @ \subsubsection{Cartan Generator Basis} Show the explicit matrix representation for all Cartan generators and check their traces and Killing products. Also test helicity index mappings. <>= call test (su_algebra_2, "su_algebra_2", & "Cartan generator representation", & u, results) <>= public :: su_algebra_2 <>= subroutine su_algebra_2 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: su_algebra_2" write (u, "(A)") "* Purpose: test su(N) algebra implementation" write (u, "(A)") write (u, "(A)") "* diagonal su(N) generators: & &show explicit representation" write (u, "(A)") "* and check trace and Killing form" write (u, "(A)") write (u, "(A)") "* s = 1/2" call cartan_show (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call cartan_show (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call cartan_show (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call cartan_show (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: su_algebra_2" contains subroutine cartan_show (s) integer, intent(in) :: s real(default), dimension(:,:), allocatable :: rd integer, dimension(:), allocatable :: ci integer :: n, d, h, i, j, k, l n = algebra_dimension (s) d = fundamental_dimension (s) write (u, *) write (u, "(A2,5X)", advance="no") "h:" do i = 1, d j = helicity_index (s, helicity_value (s, i)) write (u, "(1x,I2,5X)", advance="no") helicity_value (s, j) end do write (u, "(8X)", advance="no") write (u, "(1X,A)") "tr" allocate (rd (n,d), source = 0._default) do i = 1, d h = helicity_value (s, i) rd(:,i) = cartan_element (s, h) end do allocate (ci (d-1), source = 0) do k = 1, d-1 ci(k) = cartan_index (s, k) end do write (u, *) do k = 1, d-1 write (u, "('T',I2,':',1X)", advance="no") ci(k) do i = 1, d write (u, 1, advance="no") rd(ci(k),i) end do write (u, "(8X)", advance="no") write (u, 1) sum (rd(ci(k),:)) end do write (u, *) write (u, "(6X)", advance="no") do k = 1, d-1 write (u, "(2X,'T',I2,3X)", advance="no") ci(k) end do write (u, *) do k = 1, d-1 write (u, "('T',I2,2X)", advance="no") ci(k) do l = 1, d-1 write (u, 1, advance="no") dot_product (rd(ci(k),:), rd(ci(l),:)) end do write (u, *) end do 1 format (1x,F7.4) end subroutine cartan_show end subroutine su_algebra_2 @ %def su_algebra_2 @ \subsubsection{Bloch Representation: Cartan Generators} Transform from Bloch vectors to matrix and back, considering Cartan generators only. <>= call test (su_algebra_3, "su_algebra_3", & "Cartan generator mapping", & u, results) <>= public :: su_algebra_3 <>= subroutine su_algebra_3 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: su_algebra_3" write (u, "(A)") "* Purpose: test su(N) algebra implementation" write (u, "(A)") write (u, "(A)") "* diagonal su(N) generators: & &transform to matrix and back" write (u, "(A)") write (u, "(A)") "* s = 1/2" call cartan_expand (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call cartan_expand (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call cartan_expand (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call cartan_expand (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: su_algebra_3" contains subroutine cartan_expand (s) integer, intent(in) :: s real(default), dimension(:,:), allocatable :: rd integer, dimension(:), allocatable :: ci real(default), dimension(:), allocatable :: a logical, dimension(:), allocatable :: mask integer :: n, d, h, i, k, l n = algebra_dimension (s) d = fundamental_dimension (s) allocate (rd (n,d), source = 0._default) do i = 1, d h = helicity_value (s, i) rd(:,i) = cartan_element (s, h) end do allocate (ci (d-1), source = 0) do k = 1, d-1 ci(k) = cartan_index (s, k) end do allocate (a (n)) write (u, *) do k = 1, d-1 a(:) = cartan_coeff (s, rd(ci(k),:)) write (u, "('T',I2,':',1X)", advance="no") ci(k) do i = 1, n if (is_cartan_generator (s, i)) then write (u, 1, advance="no") a(i) else if (a(i) /= 0) then ! this should not happen (nonzero non-Cartan entry) write (u, "(1X,':',I2,':',3X)", advance="no") i end if end do write (u, *) end do 1 format (1X,F7.4) end subroutine cartan_expand end subroutine su_algebra_3 @ %def su_algebra_3 @ \subsubsection{Bloch Representation: Roots} List the mapping between helicity transitions and (real) off-diagonal generators. <>= call test (su_algebra_4, "su_algebra_4", & "Root-helicity mapping", & u, results) <>= public :: su_algebra_4 <>= subroutine su_algebra_4 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: su_algebra_4" write (u, "(A)") "* Purpose: test su(N) algebra implementation" write (u, "(A)") write (u, "(A)") "* off-diagonal su(N) generators: & &mapping from/to helicity pair" write (u, "(A)") write (u, "(A)") "* s = 1/2" call root_expand (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call root_expand (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call root_expand (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call root_expand (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: su_algebra_4" contains subroutine root_expand (s) integer, intent(in) :: s integer :: n, d, i, j, h1, h2 logical :: r n = algebra_dimension (s) write (u, *) do i = 1, n if (is_cartan_generator (s, i)) cycle call root_helicity (s, i, h1, h2, r) j = root_index (s, h1, h2, r) write (u, "('T',I2,':')", advance="no") j write (u, "(2(1x,I2))", advance="no") h1, h2 if (r) then write (u, *) else write (u, "('*')") end if end do end subroutine root_expand end subroutine su_algebra_4 @ %def su_algebra_4 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Bloch Representation} Particle polarization is determined by a particular quantum state which has just helicity information. Physically, this is the spin density matrix $\rho$, where we do not restrict ourselves to pure states. We adopt the phase convention for a spin-1/2 particle that \begin{equation} \rho = \tfrac12(1 + \vec\alpha\cdot\vec\sigma) \end{equation} with the polarization axis $\vec\alpha$. For a particle with arbitrary spin $s$, and thus $N=2s+1$ spin states, we extend the above definition to generalized Bloch form \begin{equation} \rho = \frac1N\left(1 + \sqrt{2N(N-1)}\alpha^aT^a\right) \end{equation} where the $T^a$ ($a=1,\ldots N^2-1$) are a basis of $su(N)$ algebra generators. These $N\times N$ matrices are hermitean, traceless, and orthogonal via \begin{equation} \mathop{\rm Tr}T^aT^b = \frac12 \delta^{ab} \end{equation} In the spin-1/2 case, this reduces to the above (standard Bloch) representation since $T^a = \sigma^a/2$, $a=1,2,3$. For the spin-1 case, we could use $T^a = \lambda^a/2$ with the Gell-Mann matrices, \begin{equation} \rho = \frac13\left(1 + \sqrt{3}\alpha^a\lambda^a\right), \end{equation} The normalization is chosen that $|alpha|\leq 1$ for allowed density matrix, where $|\alpha|=1$ is a necessary, but not sufficient, condition for a pure state. We need a specific choice of basis for a well-defined component representation. The matrix elements of $T^a$ are ordered as $m=\ell,\ell-1,\ldots -\ell$, i.e., from highest down to lowest weight, for both row and column. We list first the generators of the $su(2)$ subalgebras which leave $|m|$ invariant ($|m|\neq 0$): \begin{equation} T^{b+1,b+2,b+3} \equiv \sigma^{1,2,3} \end{equation} acting on the respective subspace $|m|=\ell,\ell-1,\ldots$ for $b=0,1,\ldots$. This defines generators $T^a$ for $a=1,\ldots 3N/2$ ($\ldots 3(N-1)/2$) for $N$ even (odd), respectively. The following generators successively extend this to $su(4)$, $su(6)$, \ldots until $su(N)$ by adding first the missing off-diagonal and then diagonal generators. The phase conventions are analogous. (It should be possible to code these conventions for generic spin, but in the current implementation we restrict ourselves to $s\leq 2$, i.e., $N\leq 5$.) Particle polarization is determined by a particular quantum state which has just helicity information. Physically, this is the spin density matrix $\rho$, where we do not restrict ourselves to pure states. We adopt the phase convention for a spin-1/2 particle that \begin{equation} \rho = \tfrac12(1 + \vec\alpha\cdot\vec\sigma) \end{equation} with the polarization axis $\vec\alpha$. For a particle with arbitrary spin $s$, and thus $N=2s+1$ spin states, we extend the above definition to generalized Bloch form \begin{equation} \rho = \frac1N\left(1 + \sqrt{2N(N-1)}\alpha^aT^a\right) \end{equation} where the $T^a$ ($a=1,\ldots N^2-1$) are a basis of $su(N)$ algebra generators. These $N\times N$ matrices are hermitean, traceless, and orthogonal via \begin{equation} \mathop{\rm Tr}T^aT^b = \frac12 \delta^{ab} \end{equation} In the spin-1/2 case, this reduces to the above (standard Bloch) representation since $T^a = \sigma^a/2$, $a=1,2,3$. For the spin-1 case, we could use $T^a = \lambda^a/2$ with the Gell-Mann matrices, \begin{equation} \rho = \frac13\left(1 + \sqrt{3}\alpha^a\lambda^a\right), \end{equation} The normalization is chosen that $|alpha|\leq 1$ for allowed density matrix, where $|\alpha|=1$ is a necessary, but not sufficient, condition for a pure state. <<[[bloch_vectors.f90]]>>= <> module bloch_vectors <> use physics_defs, only: UNKNOWN <> <> <> interface <> end interface end module bloch_vectors @ %def bloch_vectors @ <<[[bloch_vectors_sub.f90]]>>= <> submodule (bloch_vectors) bloch_vectors_s use physics_defs, only: SCALAR, SPINOR, VECTOR, VECTORSPINOR, TENSOR use su_algebra implicit none contains <> end submodule bloch_vectors_s @ %def bloch_vectors_s @ \subsection{Preliminaries} The normalization factor $\sqrt{2N(N-1)}/N$ that enters the Bloch representation. <>= function bloch_factor (s) result (f) real(default) :: f integer, intent(in) :: s select case (s) case (SCALAR) f = 0 case (SPINOR) f = 1 case (VECTOR) f = 2 * sqrt (3._default) / 3 case (VECTORSPINOR) f = 2 * sqrt (6._default) / 4 case (TENSOR) f = 2 * sqrt (10._default) / 5 case default f = 0 end select end function bloch_factor @ %def bloch_factor @ \subsection{The basic polarization type} The basic polarization object holds just the entries of the Bloch vector as an allocatable array. Bloch is active whenever the coefficient array is allocated. For convenience, we store the spin type ($2s$) and the multiplicity ($N$) together with the coefficient array ($\alpha$). We have to allow for the massless case where $s$ is arbitrary $>0$ but $N=2$, and furthermore the chiral massless case where $N=1$. In the latter case, the array remains deallocated but the chirality is set to $\pm 1$. In the Bloch vector implementation, we do not distinguish between particle and antiparticle. If the distinction applies, it must be made by the caller when transforming between density matrix and Bloch vector. <>= public :: bloch_vector_t <>= type :: bloch_vector_t private integer :: spin_type = UNKNOWN real(default), dimension(:), allocatable :: a contains <> end type bloch_vector_t @ %def bloch_vector_t @ \subsection{Direct Access} This basic initializer just sets the spin type, leaving the Bloch vector unallocated. The object therefore does not support nonzero polarization. <>= procedure :: init_unpolarized => bloch_vector_init_unpolarized <>= module subroutine bloch_vector_init_unpolarized (pol, spin_type) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type end subroutine bloch_vector_init_unpolarized <>= module subroutine bloch_vector_init_unpolarized (pol, spin_type) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type pol%spin_type = spin_type end subroutine bloch_vector_init_unpolarized @ %def bloch_vector_init_unpolarized @ The standard initializer allocates the Bloch vector and initializes with zeros, so we can define a polarization later. We make sure that this works only for the supported spin type. Initializing with [[UNKNOWN]] spin type resets the Bloch vector to undefined, i.e., unpolarized state. <>= generic :: init => bloch_vector_init procedure, private :: bloch_vector_init <>= module subroutine bloch_vector_init (pol, spin_type) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type end subroutine bloch_vector_init <>= module subroutine bloch_vector_init (pol, spin_type) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type pol%spin_type = spin_type select case (spin_type) case (SCALAR,SPINOR,VECTOR,VECTORSPINOR,TENSOR) allocate (pol%a (algebra_dimension (spin_type)), source = 0._default) end select end subroutine bloch_vector_init @ %def bloch_vector_init @ Fill the Bloch vector from an array, no change of normalization. No initialization and no check, we assume that the shapes do match. <>= procedure :: from_array => bloch_vector_from_array <>= module subroutine bloch_vector_from_array (pol, a) class(bloch_vector_t), intent(inout) :: pol real(default), dimension(:), allocatable, intent(in) :: a end subroutine bloch_vector_from_array <>= module subroutine bloch_vector_from_array (pol, a) class(bloch_vector_t), intent(inout) :: pol real(default), dimension(:), allocatable, intent(in) :: a pol%a(:) = a end subroutine bloch_vector_from_array @ %def bloch_vector_from_array @ Transform to an array of reals, i.e., extract the Bloch vector as-is. <>= procedure :: to_array => bloch_vector_to_array <>= module subroutine bloch_vector_to_array (pol, a) class(bloch_vector_t), intent(in) :: pol real(default), dimension(:), allocatable, intent(out) :: a end subroutine bloch_vector_to_array <>= module subroutine bloch_vector_to_array (pol, a) class(bloch_vector_t), intent(in) :: pol real(default), dimension(:), allocatable, intent(out) :: a if (pol%is_defined ()) allocate (a (size (pol%a)), source = pol%a) end subroutine bloch_vector_to_array @ %def bloch_vector_to_array @ \subsection{Raw I/O} <>= procedure :: write_raw => bloch_vector_write_raw procedure :: read_raw => bloch_vector_read_raw <>= module subroutine bloch_vector_write_raw (pol, u) class(bloch_vector_t), intent(in) :: pol integer, intent(in) :: u end subroutine bloch_vector_write_raw module subroutine bloch_vector_read_raw (pol, u, iostat) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: u integer, intent(out) :: iostat end subroutine bloch_vector_read_raw <>= module subroutine bloch_vector_write_raw (pol, u) class(bloch_vector_t), intent(in) :: pol integer, intent(in) :: u write (u) pol%spin_type write (u) allocated (pol%a) if (allocated (pol%a)) then write (u) pol%a end if end subroutine bloch_vector_write_raw module subroutine bloch_vector_read_raw (pol, u, iostat) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: u integer, intent(out) :: iostat integer :: s logical :: polarized read (u, iostat=iostat) s read (u, iostat=iostat) polarized if (iostat /= 0) return if (polarized) then call pol%init (s) read (u, iostat=iostat) pol%a else call pol%init_unpolarized (s) end if end subroutine bloch_vector_read_raw @ %def bloch_vector_write_raw @ %def bloch_vector_read_raw @ \subsection{Properties} Re-export algebra functions that depend on the spin type. These functions do not depend on the Bloch vector being allocated. <>= procedure :: get_n_states procedure :: get_length procedure :: hel_index => bv_helicity_index procedure :: hel_value => bv_helicity_value procedure :: bloch_factor => bv_factor <>= module function get_n_states (pol) result (n) class(bloch_vector_t), intent(in) :: pol integer :: n end function get_n_states module function get_length (pol) result (n) class(bloch_vector_t), intent(in) :: pol integer :: n end function get_length module function bv_helicity_index (pol, h) result (i) class(bloch_vector_t), intent(in) :: pol integer, intent(in) :: h integer :: i end function bv_helicity_index module function bv_helicity_value (pol, i) result (h) class(bloch_vector_t), intent(in) :: pol integer, intent(in) :: i integer :: h end function bv_helicity_value module function bv_factor (pol) result (f) class(bloch_vector_t), intent(in) :: pol real(default) :: f end function bv_factor <>= module function get_n_states (pol) result (n) class(bloch_vector_t), intent(in) :: pol integer :: n n = fundamental_dimension (pol%spin_type) end function get_n_states module function get_length (pol) result (n) class(bloch_vector_t), intent(in) :: pol integer :: n n = algebra_dimension (pol%spin_type) end function get_length module function bv_helicity_index (pol, h) result (i) class(bloch_vector_t), intent(in) :: pol integer, intent(in) :: h integer :: i i = helicity_index (pol%spin_type, h) end function bv_helicity_index module function bv_helicity_value (pol, i) result (h) class(bloch_vector_t), intent(in) :: pol integer, intent(in) :: i integer :: h h = helicity_value (pol%spin_type, i) end function bv_helicity_value module function bv_factor (pol) result (f) class(bloch_vector_t), intent(in) :: pol real(default) :: f f = bloch_factor (pol%spin_type) end function bv_factor @ %def get_n_states @ %def helicity_index @ %def helicity_value @ If the Bloch vector object is defined, the spin type is anything else but [[UNKNOWN]]. This allows us the provide the representation-specific functions above. <>= procedure :: is_defined => bloch_vector_is_defined <>= module function bloch_vector_is_defined (pol) result (flag) class(bloch_vector_t), intent(in) :: pol logical :: flag end function bloch_vector_is_defined <>= module function bloch_vector_is_defined (pol) result (flag) class(bloch_vector_t), intent(in) :: pol logical :: flag flag = pol%spin_type /= UNKNOWN end function bloch_vector_is_defined @ %def bloch_vector_is_defined @ If the Bloch vector object is (technically) polarized, it is defined, and the vector coefficient array has been allocated. However, the vector value may be zero. <>= procedure :: is_polarized => bloch_vector_is_polarized <>= module function bloch_vector_is_polarized (pol) result (flag) class(bloch_vector_t), intent(in) :: pol logical :: flag end function bloch_vector_is_polarized <>= module function bloch_vector_is_polarized (pol) result (flag) class(bloch_vector_t), intent(in) :: pol logical :: flag flag = allocated (pol%a) end function bloch_vector_is_polarized @ %def bloch_vector_is_polarized @ Return true if the polarization is diagonal, i.e., all entries in the density matrix are on the diagonal. This is equivalent to requiring that only Cartan generator coefficients are nonzero in the Bloch vector. <>= procedure :: is_diagonal => bloch_vector_is_diagonal <>= module function bloch_vector_is_diagonal (pol) result (diagonal) class(bloch_vector_t), intent(in) :: pol logical :: diagonal end function bloch_vector_is_diagonal <>= module function bloch_vector_is_diagonal (pol) result (diagonal) class(bloch_vector_t), intent(in) :: pol logical :: diagonal integer :: s, i s = pol%spin_type diagonal = .true. if (pol%is_polarized ()) then do i = 1, size (pol%a) if (is_cartan_generator (s, i)) cycle if (pol%a(i) /= 0) then diagonal = .false. return end if end do end if end function bloch_vector_is_diagonal @ %def bloch_vector_is_diagonal @ Return the Euclidean norm of the Bloch vector. This is equal to the Killing form value of the corresponding algebra generator. We assume that the polarization object has been initialized. For a pure state, the norm is unity. All other allowed states have a norm less than unity. (For $s\geq 1$, this is a necessary but not sufficient condition.) <>= procedure :: get_norm => bloch_vector_get_norm <>= module function bloch_vector_get_norm (pol) result (norm) class(bloch_vector_t), intent(in) :: pol real(default) :: norm end function bloch_vector_get_norm <>= module function bloch_vector_get_norm (pol) result (norm) class(bloch_vector_t), intent(in) :: pol real(default) :: norm select case (pol%spin_type) case (SPINOR,VECTOR,VECTORSPINOR,TENSOR) norm = sqrt (dot_product (pol%a, pol%a)) case default norm = 1 end select end function bloch_vector_get_norm @ %def bloch_vector_get_norm @ \subsection{Diagonal density matrix} This initializer takes a diagonal density matrix, represented by a real-valued array. We assume that the trace is unity, and that the array has the correct shape for the given [[spin_type]]. The [[bloch_factor]] renormalization is necessary such that a pure state maps to a Bloch vector with unit norm. <>= generic :: init => bloch_vector_init_diagonal procedure, private :: bloch_vector_init_diagonal <>= module subroutine bloch_vector_init_diagonal (pol, spin_type, rd) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type real(default), dimension(:), intent(in) :: rd end subroutine bloch_vector_init_diagonal <>= module subroutine bloch_vector_init_diagonal (pol, spin_type, rd) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type real(default), dimension(:), intent(in) :: rd call pol%init (spin_type) call pol%set (rd) end subroutine bloch_vector_init_diagonal @ %def bloch_vector_init_diagonal @ Set a Bloch vector, given a diagonal density matrix as a real array. The Bloch vector must be initialized with correct characteristics. <>= generic :: set => bloch_vector_set_diagonal procedure, private :: bloch_vector_set_diagonal <>= module subroutine bloch_vector_set_diagonal (pol, rd) class(bloch_vector_t), intent(inout) :: pol real(default), dimension(:), intent(in) :: rd end subroutine bloch_vector_set_diagonal <>= module subroutine bloch_vector_set_diagonal (pol, rd) class(bloch_vector_t), intent(inout) :: pol real(default), dimension(:), intent(in) :: rd integer :: s s = pol%spin_type select case (s) case (SCALAR,SPINOR,VECTOR,VECTORSPINOR,TENSOR) pol%a(:) = cartan_coeff (s, rd) / bloch_factor (s) end select end subroutine bloch_vector_set_diagonal @ %def bloch_vector_set_diagonal @ @ \subsection{Massless density matrix} This is a specific variant which initializes an equipartition for the maximum helicity, corresponding to an unpolarized massless particle. <>= procedure :: init_max_weight => bloch_vector_init_max_weight <>= module subroutine bloch_vector_init_max_weight (pol, spin_type) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type end subroutine bloch_vector_init_max_weight <>= module subroutine bloch_vector_init_max_weight (pol, spin_type) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type call pol%init (spin_type) select case (spin_type) case (VECTOR) call pol%set ([0.5_default, 0._default, 0.5_default]) case (VECTORSPINOR) call pol%set ([0.5_default, 0._default, 0._default, 0.5_default]) case (TENSOR) call pol%set ([0.5_default, 0._default, 0._default, 0._default, 0.5_default]) end select end subroutine bloch_vector_init_max_weight @ %def bloch_vector_init_max_weight @ Initialize the maximum-weight submatrix with a three-component Bloch vector. This is not as trivial as it seems because we need the above initialization for the generalized Bloch in order to remove the lower weights from the density matrix. <>= procedure :: init_vector => bloch_vector_init_vector procedure :: to_vector => bloch_vector_to_vector <>= module subroutine bloch_vector_init_vector (pol, s, a) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: s real(default), dimension(3), intent(in) :: a end subroutine bloch_vector_init_vector module subroutine bloch_vector_to_vector (pol, a) class(bloch_vector_t), intent(in) :: pol real(default), dimension(3), intent(out) :: a end subroutine bloch_vector_to_vector <>= module subroutine bloch_vector_init_vector (pol, s, a) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: s real(default), dimension(3), intent(in) :: a call pol%init_max_weight (s) select case (s) case (SPINOR, VECTOR, VECTORSPINOR, TENSOR) pol%a(1:3) = a / bloch_factor (s) end select end subroutine bloch_vector_init_vector module subroutine bloch_vector_to_vector (pol, a) class(bloch_vector_t), intent(in) :: pol real(default), dimension(3), intent(out) :: a integer :: s s = pol%spin_type select case (s) case (SPINOR, VECTOR, VECTORSPINOR, TENSOR) a = pol%a(1:3) * bloch_factor (s) case default a = 0 end select end subroutine bloch_vector_to_vector @ %def bloch_vector_init_vector @ %def bloch_vector_to_vector @ \subsection{Arbitrary density matrix} Initialize the Bloch vector from a density matrix. We assume that the density is valid. In particular, the shape should match, the matrix should be hermitian, and the trace should be unity. We first fill the diagonal, then add the off-diagonal parts. <>= generic :: init => bloch_vector_init_matrix procedure, private :: bloch_vector_init_matrix <>= module subroutine bloch_vector_init_matrix (pol, spin_type, r) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type complex(default), dimension(:,:), intent(in) :: r end subroutine bloch_vector_init_matrix <>= module subroutine bloch_vector_init_matrix (pol, spin_type, r) class(bloch_vector_t), intent(out) :: pol integer, intent(in) :: spin_type complex(default), dimension(:,:), intent(in) :: r select case (spin_type) case (SCALAR,SPINOR,VECTOR,VECTORSPINOR,TENSOR) call pol%init (spin_type) call pol%set (r) case default call pol%init (UNKNOWN) end select end subroutine bloch_vector_init_matrix @ %def bloch_vector_init_matrix @ Set a Bloch vector, given an arbitrary density matrix as a real array. The Bloch vector must be initialized with correct characteristics. <>= generic :: set => bloch_vector_set_matrix procedure, private :: bloch_vector_set_matrix <>= module subroutine bloch_vector_set_matrix (pol, r) class(bloch_vector_t), intent(inout) :: pol complex(default), dimension(:,:), intent(in) :: r end subroutine bloch_vector_set_matrix <>= module subroutine bloch_vector_set_matrix (pol, r) class(bloch_vector_t), intent(inout) :: pol complex(default), dimension(:,:), intent(in) :: r real(default), dimension(:), allocatable :: rd integer :: s, d, i, j, h1, h2, ir, ii s = pol%spin_type select case (s) case (SCALAR,SPINOR,VECTOR,VECTORSPINOR,TENSOR) d = fundamental_dimension (s) allocate (rd (d)) do i = 1, d rd(i) = r(i,i) end do call pol%set (rd) do i = 1, d h1 = helicity_value (s, i) do j = i+1, d h2 = helicity_value (s, j) ir = root_index (s, h1, h2, .true.) ii = root_index (s, h1, h2, .false.) pol%a(ir) = real (r(j,i) + r(i,j)) / bloch_factor (s) pol%a(ii) = aimag (r(j,i) - r(i,j)) / bloch_factor (s) end do end do end select end subroutine bloch_vector_set_matrix @ %def bloch_vector_set_matrix @ Allocate and fill the density matrix [[r]] (with the index ordering as defined in [[su_algebra]]) that corresponds to a given Bloch vector. If the optional [[only_max_weight]] is set, the resulting matrix has entries only for $\pm h_\text{max}$, as appropriate for a massless particle (for spin $\geq 1$). Note that we always add the unit matrix, as this is part of the Bloch-vector definition. <>= procedure :: to_matrix => bloch_vector_to_matrix <>= module subroutine bloch_vector_to_matrix (pol, r, only_max_weight) class(bloch_vector_t), intent(in) :: pol complex(default), dimension(:,:), intent(out), allocatable :: r logical, intent(in), optional :: only_max_weight end subroutine bloch_vector_to_matrix <>= module subroutine bloch_vector_to_matrix (pol, r, only_max_weight) class(bloch_vector_t), intent(in) :: pol complex(default), dimension(:,:), intent(out), allocatable :: r logical, intent(in), optional :: only_max_weight integer :: d, s, h0, ng, ai, h, h1, h2, i, j logical :: is_real, only_max complex(default) :: val if (.not. pol%is_polarized ()) return s = pol%spin_type only_max = .false. select case (s) case (VECTOR, VECTORSPINOR, TENSOR) if (present (only_max_weight)) only_max = only_max_weight end select if (only_max) then ng = 2 h0 = helicity_value (s, 1) else ng = algebra_dimension (s) h0 = 0 end if d = fundamental_dimension (s) allocate (r (d, d), source = (0._default, 0._default)) do i = 1, d h = helicity_value (s, i) if (abs (h) < h0) cycle r(i,i) = 1._default / d & + dot_product (cartan_element (s, h), pol%a) * bloch_factor (s) end do do ai = 1, ng if (is_cartan_generator (s, ai)) cycle call root_helicity (s, ai, h1, h2, is_real) i = helicity_index (s, h1) j = helicity_index (s, h2) if (is_real) then val = cmplx (pol%a(ai) / 2 * bloch_factor (s), 0._default, & kind=default) r(i,j) = r(i,j) + val r(j,i) = r(j,i) + val else val = cmplx (0._default, pol%a(ai) / 2 * bloch_factor (s), & kind=default) r(i,j) = r(i,j) - val r(j,i) = r(j,i) + val end if end do end subroutine bloch_vector_to_matrix @ %def bloch_vector_to_matrix @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[bloch_vectors_ut.f90]]>>= <> module bloch_vectors_ut use unit_tests use bloch_vectors_uti <> <> contains <> end module bloch_vectors_ut @ %def bloch_vectors_ut @ <<[[bloch_vectors_uti.f90]]>>= <> module bloch_vectors_uti <> use physics_defs, only: UNKNOWN, SCALAR, SPINOR, VECTOR, VECTORSPINOR, TENSOR use su_algebra, only: algebra_dimension, fundamental_dimension, helicity_value use bloch_vectors <> <> contains <> end module bloch_vectors_uti @ %def bloch_vectors_ut @ API: driver for the unit tests below. <>= public :: bloch_vectors_test <>= subroutine bloch_vectors_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine bloch_vectors_test @ %def bloch_vectors_test @ \subsubsection{Initialization} Initialize the Bloch vector for any spin type. First as unpolarized (no array), then as polarized but with zero polarization. <>= call test (bloch_vectors_1, "bloch_vectors_1", & "initialization", & u, results) <>= public :: bloch_vectors_1 <>= subroutine bloch_vectors_1 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_1" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Initialization (unpolarized)" write (u, "(A)") write (u, "(A)") "* unknown" call bloch_init (UNKNOWN) write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_init (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_init (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_init (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_init (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_init (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_1" contains subroutine bloch_init (s) integer, intent(in) :: s type(bloch_vector_t) :: pol real(default), dimension(:), allocatable :: a integer :: i write (u, *) write (u, "(1X,L1,L1)", advance="no") & pol%is_defined (), pol%is_polarized () call pol%init_unpolarized (s) write (u, "(1X,L1,L1)", advance="no") & pol%is_defined (), pol%is_polarized () call pol%init (s) write (u, "(1X,L1,L1)", advance="no") & pol%is_defined (), pol%is_polarized () write (u, *) call pol%to_array (a) if (allocated (a)) then write (u, "(*(F7.4))") a a(:) = [(real (mod (i, 10), kind=default), i = 1, size (a))] call pol%from_array (a) call pol%to_array (a) write (u, "(*(F7.4))") a else write (u, *) write (u, *) end if end subroutine bloch_init end subroutine bloch_vectors_1 @ %def bloch_vectors_1 @ \subsubsection{Pure state (diagonal)} Initialize the Bloch vector with a pure state of definite helicity and check the normalization. <>= call test (bloch_vectors_2, "bloch_vectors_2", & "pure state (diagonal)", & u, results) <>= public :: bloch_vectors_2 <>= subroutine bloch_vectors_2 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_2" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Initialization (polarized, diagonal): & &display vector and norm" write (u, "(A)") "* transform back" write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_diagonal (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_diagonal (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_diagonal (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_diagonal (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_diagonal (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_2" contains subroutine bloch_diagonal (s) integer, intent(in) :: s type(bloch_vector_t) :: pol real(default), dimension(:), allocatable :: a real(default), dimension(:), allocatable :: rd complex(default), dimension(:,:), allocatable :: r integer :: i, j, d real(default) :: rj real, parameter :: tolerance = 1.E-14_default d = fundamental_dimension (s) do i = 1, d allocate (rd (d), source = 0._default) rd(i) = 1 call pol%init (s, rd) call pol%to_array (a) write (u, *) write (u, "(A,1X,I2)") "h:", helicity_value (s, i) write (u, 1, advance="no") a write (u, "(1X,L1)") pol%is_diagonal () write (u, 1) pol%get_norm () call pol%to_matrix (r) do j = 1, d rj = real (r(j,j)) if (abs (rj) < tolerance) rj = 0 write (u, 1, advance="no") rj end do write (u, "(1X,L1)") matrix_is_diagonal (r) deallocate (a, rd, r) end do 1 format (99(1X,F7.4,:)) end subroutine bloch_diagonal function matrix_is_diagonal (r) result (diagonal) complex(default), dimension(:,:), intent(in) :: r logical :: diagonal integer :: i, j diagonal = .true. do j = 1, size (r, 2) do i = 1, size (r, 1) if (i == j) cycle if (r(i,j) /= 0) then diagonal = .false. return end if end do end do end function matrix_is_diagonal end subroutine bloch_vectors_2 @ %def bloch_vectors_2 @ \subsubsection{Pure state (arbitrary)} Initialize the Bloch vector with an arbitrarily chosen pure state, check the normalization, and transform back to the density matrix. <>= call test (bloch_vectors_3, "bloch_vectors_3", & "pure state (arbitrary)", & u, results) <>= public :: bloch_vectors_3 <>= subroutine bloch_vectors_3 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_3" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Initialization (pure polarized, arbitrary):" write (u, "(A)") "* input matrix, transform, display norm, transform back" write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_arbitrary (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_arbitrary (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_arbitrary (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_arbitrary (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_arbitrary (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_3" contains subroutine bloch_arbitrary (s) integer, intent(in) :: s type(bloch_vector_t) :: pol complex(default), dimension(:,:), allocatable :: r integer :: d d = fundamental_dimension (s) write (u, *) call init_matrix (d, r) where (abs (aimag (r)) < 1.e-14_default) & r = cmplx (real(r, kind=default), 0._default, kind=default) call write_matrix (d, r) call pol%init (s, r) write (u, *) write (u, 2) pol%get_norm (), pol%is_diagonal () write (u, *) call pol%to_matrix (r) call write_matrix (d, r) 2 format (1X,F7.4,1X,L1) end subroutine bloch_arbitrary subroutine init_matrix (d, r) integer, intent(in) :: d complex(default), dimension(:,:), allocatable, intent(out) :: r complex(default), dimension(:), allocatable :: a real(default) :: norm integer :: i, j allocate (a (d)) norm = 0 do i = 1, d a(i) = cmplx (2*i-1, 2*i, kind=default) norm = norm + conjg (a(i)) * a(i) end do a = a / sqrt (norm) allocate (r (d,d)) do i = 1, d do j = 1, d r(i,j) = conjg (a(i)) * a(j) end do end do end subroutine init_matrix subroutine write_matrix (d, r) integer, intent(in) :: d complex(default), dimension(:,:), intent(in) :: r integer :: i, j do i = 1, d do j = 1, d write (u, 1, advance="no") r(i,j) end do write (u, *) end do 1 format (99(1X,'(',F7.4,',',F7.4,')',:)) end subroutine write_matrix end subroutine bloch_vectors_3 @ %def bloch_vectors_3 @ \subsubsection{Raw I/O} Check correct input/output in raw format. <>= call test (bloch_vectors_4, "bloch_vectors_4", & "raw I/O", & u, results) <>= public :: bloch_vectors_4 <>= subroutine bloch_vectors_4 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_4" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Raw I/O" write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_io (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_io (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_io (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_io (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_io (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_4" contains subroutine bloch_io (s) integer, intent(in) :: s type(bloch_vector_t) :: pol real(default), dimension(:), allocatable :: a integer :: n, i, utmp, iostat n = algebra_dimension (s) allocate (a (n)) a(:) = [(real (mod (i, 10), kind=default), i = 1, size (a))] write (u, *) write (u, "(*(F7.4))") a call pol%init (s) call pol%from_array (a) open (newunit = utmp, status = "scratch", action = "readwrite", & form = "unformatted") call pol%write_raw (utmp) rewind (utmp) call pol%read_raw (utmp, iostat=iostat) close (utmp) call pol%to_array (a) write (u, "(*(F7.4))") a end subroutine bloch_io end subroutine bloch_vectors_4 @ %def bloch_vectors_4 @ \subsubsection{Convenience Methods} Check some further TBP that are called by the [[polarizations]] module. <>= call test (bloch_vectors_5, "bloch_vectors_5", & "massless state (unpolarized)", & u, results) <>= public :: bloch_vectors_5 <>= subroutine bloch_vectors_5 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_5" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Massless states: equipartition" write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_massless_unpol (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_massless_unpol (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_massless_unpol (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_massless_unpol (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_massless_unpol (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_5" contains subroutine bloch_massless_unpol (s) integer, intent(in) :: s type(bloch_vector_t) :: pol complex(default), dimension(:,:), allocatable :: r real(default), dimension(:), allocatable :: a integer :: d d = fundamental_dimension (s) call pol%init_max_weight (s) call pol%to_matrix (r, only_max_weight = .false.) write (u, *) where (abs (r) < 1.e-14_default) r = 0 call write_matrix (d, r) call pol%to_matrix (r, only_max_weight = .true.) write (u, *) call write_matrix (d, r) end subroutine bloch_massless_unpol subroutine write_matrix (d, r) integer, intent(in) :: d complex(default), dimension(:,:), intent(in) :: r integer :: i, j do i = 1, d do j = 1, d write (u, 1, advance="no") r(i,j) end do write (u, *) end do 1 format (99(1X,'(',F7.4,',',F7.4,')',:)) end subroutine write_matrix end subroutine bloch_vectors_5 @ %def bloch_vectors_5 @ \subsubsection{Massless state (arbitrary)} Initialize the Bloch vector with an arbitrarily chosen pure state which consists only of highest-weight components. Transform back to the density matrix. <>= call test (bloch_vectors_6, "bloch_vectors_6", & "massless state (arbitrary)", & u, results) <>= public :: bloch_vectors_6 <>= subroutine bloch_vectors_6 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_6" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Initialization (pure polarized massless, arbitrary):" write (u, "(A)") "* input matrix, transform, display norm, transform back" write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_massless (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_massless (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_massless (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_massless (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_massless (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_6" contains subroutine bloch_massless (s) integer, intent(in) :: s type(bloch_vector_t) :: pol complex(default), dimension(:,:), allocatable :: r integer :: d d = fundamental_dimension (s) write (u, *) call init_matrix (d, r) where (abs (aimag (r)) < 1.e-14_default) & r = cmplx (real(r, kind=default), 0._default, kind=default) call write_matrix (d, r) call pol%init (s, r) write (u, *) write (u, 2) pol%get_norm (), pol%is_diagonal () write (u, *) call pol%to_matrix (r, only_max_weight = .true.) call write_matrix (d, r) 2 format (1X,F7.4,1X,L1) end subroutine bloch_massless subroutine init_matrix (d, r) integer, intent(in) :: d complex(default), dimension(:,:), allocatable, intent(out) :: r complex(default), dimension(:), allocatable :: a real(default) :: norm integer :: i, j allocate (a (d), source = (0._default, 0._default)) norm = 0 do i = 1, d, max (d-1, 1) a(i) = cmplx (2*i-1, 2*i, kind=default) norm = norm + conjg (a(i)) * a(i) end do a = a / sqrt (norm) allocate (r (d,d), source = (0._default, 0._default)) do i = 1, d, max (d-1, 1) do j = 1, d, max (d-1, 1) r(i,j) = conjg (a(i)) * a(j) end do end do end subroutine init_matrix subroutine write_matrix (d, r) integer, intent(in) :: d complex(default), dimension(:,:), intent(in) :: r integer :: i, j do i = 1, d do j = 1, d write (u, 1, advance="no") r(i,j) end do write (u, *) end do 1 format (99(1X,'(',F7.4,',',F7.4,')',:)) end subroutine write_matrix end subroutine bloch_vectors_6 @ %def bloch_vectors_6 @ \subsubsection{Massless state (Bloch vector)} Initialize the (generalized) Bloch vector with an ordinary three-component Bloch vector that applies to the highest-weight part only. <>= call test (bloch_vectors_7, "bloch_vectors_7", & "massless state (vector)", & u, results) <>= public :: bloch_vectors_7 <>= subroutine bloch_vectors_7 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: bloch_vectors_7" write (u, "(A)") "* Purpose: test Bloch-vector & &polarization implementation" write (u, "(A)") write (u, "(A)") "* Initialization & &(pure polarized massless, arbitrary Bloch vector):" write (u, "(A)") "* input vector, transform, display norm, & &transform back" write (u, "(A)") write (u, "(A)") "* s = 0" call bloch_massless_vector (SCALAR) write (u, "(A)") write (u, "(A)") "* s = 1/2" call bloch_massless_vector (SPINOR) write (u, "(A)") write (u, "(A)") "* s = 1" call bloch_massless_vector (VECTOR) write (u, "(A)") write (u, "(A)") "* s = 3/2" call bloch_massless_vector (VECTORSPINOR) write (u, "(A)") write (u, "(A)") "* s = 2" call bloch_massless_vector (TENSOR) write (u, "(A)") write (u, "(A)") "* Test output end: bloch_vectors_7" contains subroutine bloch_massless_vector (s) integer, intent(in) :: s type(bloch_vector_t) :: pol real(default), dimension(3) :: a complex(default), dimension(:,:), allocatable :: r write (u, *) a = [1._default, 2._default, 4._default] a = a / sqrt (sum (a ** 2)) write (u, 2) a call pol%init_vector (s, a) write (u, 2) pol%get_norm () call pol%to_vector (a) write (u, 2) a call pol%to_matrix (r, only_max_weight = .false.) write (u, *) where (abs (r) < 1.e-14_default) r = 0 call write_matrix (r) call pol%to_matrix (r, only_max_weight = .true.) write (u, *) call write_matrix (r) 2 format (99(1X,F7.4,:)) end subroutine bloch_massless_vector subroutine write_matrix (r) complex(default), dimension(:,:), intent(in) :: r integer :: i, j do i = 1, size (r, 1) do j = 1, size (r, 2) write (u, 1, advance="no") r(i,j) end do write (u, *) end do 1 format (99(1X,'(',F7.4,',',F7.4,')',:)) end subroutine write_matrix end subroutine bloch_vectors_7 @ %def bloch_vectors_7 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Polarization} Using generalized Bloch vectors and the $su(N)$ algebra (see above) for the internal representation, we can define various modes of polarization. For spin-1/2, and analogously for massless spin-$s$ particles, we introduce \begin{enumerate} \item Trivial polarization: $\vec\alpha=0$. [This is unpolarized, but distinct from the particular undefined polarization matrix which has the same meaning.] \item Circular polarization: $\vec\alpha$ points in $\pm z$ direction. \item Transversal polarization: $\vec\alpha$ points orthogonal to the $z$ direction, with a phase $\phi$ that is $0$ for the $x$ axis, and $\pi/2=90^\circ$ for the $y$ axis. For antiparticles, the phase switches sign, corresponding to complex conjugation. \item Axis polarization, where we explicitly give $\vec\alpha$. \end{enumerate} For higher spin, we retain this definition, but apply it to the two components with maximum and minimum weight. In effect, we concentrate on the first three entries in the $\alpha^a$ array. For massless particles, this is sufficient. For massive particles, we then add the possibilities: \begin{enumerate}\setcounter{enumi}{4} \item Longitudinal polarization: Only the 0-component is set. This is possible only for bosons. \item Diagonal polarization: Explicitly specify all components in the helicity basis. The $su(N)$ representation consists of diagonal generators only, the Cartan subalgebra. \end{enumerate} Obviously, this does not exhaust the possible density matrices for higher spin, but it should cover practical applications. <<[[polarizations.f90]]>>= <> module polarizations <> use physics_defs, only: SCALAR, SPINOR, VECTOR, VECTORSPINOR, TENSOR use flavors use quantum_numbers use state_matrices use bloch_vectors <> <> <> <> interface <> end interface end module polarizations @ %def polarizations @ <<[[polarizations_sub.f90]]>>= <> submodule (polarizations) polarizations_s use io_units use format_defs, only: FMT_19 use diagnostics use helicities implicit none contains <> end submodule polarizations_s @ %def polarizations_s @ \subsection{The polarization type} Polarization is active whenever the coefficient array is allocated. For convenience, we store the spin type ($2s$) and the multiplicity ($N$) together with the coefficient array ($\alpha$). We have to allow for the massless case where $s$ is arbitrary $>0$ but $N=2$, and furthermore the chiral massless case where $N=1$. In the latter case, the array remains deallocated but the chirality is set to $\pm 1$. There is a convention that an antiparticle transforms according to the complex conjugate representation. We apply this only when transforming from/to polarization defined by a three-vector. For antiparticles, the two-component flips sign in that case. When transforming from/to a state matrix or [[pmatrix]] representation, we do not apply this sign flip. <>= public :: polarization_t <>= type :: polarization_t private integer :: spin_type = SCALAR integer :: multiplicity = 1 integer :: chirality = 0 logical :: anti = .false. type(bloch_vector_t) :: bv contains <> end type polarization_t @ %def polarization_t @ \subsection{Basic initializer and finalizer} We need the particle flavor for determining the allowed helicity values. The Bloch vector is left undefined, so this initializer (in two versions) creates an unpolarized particle. Exception: a chiral particle is always polarized with definite helicity, it doesn't need a Bloch vector. This is private. <>= generic, private :: init => polarization_init, polarization_init_flv procedure, private :: polarization_init procedure, private :: polarization_init_flv <>= module subroutine polarization_init (pol, spin_type, multiplicity, & anti, left_handed, right_handed) class(polarization_t), intent(out) :: pol integer, intent(in) :: spin_type integer, intent(in) :: multiplicity logical, intent(in) :: anti logical, intent(in) :: left_handed logical, intent(in) :: right_handed end subroutine polarization_init module subroutine polarization_init_flv (pol, flv) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv end subroutine polarization_init_flv <>= module subroutine polarization_init (pol, spin_type, multiplicity, & anti, left_handed, right_handed) class(polarization_t), intent(out) :: pol integer, intent(in) :: spin_type integer, intent(in) :: multiplicity logical, intent(in) :: anti logical, intent(in) :: left_handed logical, intent(in) :: right_handed pol%spin_type = spin_type pol%multiplicity = multiplicity pol%anti = anti select case (pol%multiplicity) case (1) if (left_handed) then pol%chirality = -1 else if (right_handed) then pol%chirality = 1 end if end select select case (pol%chirality) case (0) call pol%bv%init_unpolarized (spin_type) end select end subroutine polarization_init module subroutine polarization_init_flv (pol, flv) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv call pol%init ( & spin_type = flv%get_spin_type (), & multiplicity = flv%get_multiplicity (), & anti = flv%is_antiparticle (), & left_handed = flv%is_left_handed (), & right_handed = flv%is_right_handed ()) end subroutine polarization_init_flv @ %def polarization_init polarization_init_flv @ Generic polarization: as before, but create a polarized particle (Bloch vector defined) with initial polarization zero. <>= generic :: init_generic => & polarization_init_generic, & polarization_init_generic_flv procedure, private :: polarization_init_generic procedure, private :: polarization_init_generic_flv <>= module subroutine polarization_init_generic (pol, spin_type, multiplicity, & anti, left_handed, right_handed) class(polarization_t), intent(out) :: pol integer, intent(in) :: spin_type integer, intent(in) :: multiplicity logical, intent(in) :: anti logical, intent(in) :: left_handed logical, intent(in) :: right_handed end subroutine polarization_init_generic module subroutine polarization_init_generic_flv (pol, flv) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv end subroutine polarization_init_generic_flv <>= module subroutine polarization_init_generic (pol, spin_type, multiplicity, & anti, left_handed, right_handed) class(polarization_t), intent(out) :: pol integer, intent(in) :: spin_type integer, intent(in) :: multiplicity logical, intent(in) :: anti logical, intent(in) :: left_handed logical, intent(in) :: right_handed call pol%init (spin_type, multiplicity, & anti, left_handed, right_handed) select case (pol%chirality) case (0) if (pol%multiplicity == pol%bv%get_n_states ()) then call pol%bv%init (spin_type) else call pol%bv%init_max_weight (spin_type) end if end select end subroutine polarization_init_generic module subroutine polarization_init_generic_flv (pol, flv) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv call pol%init_generic ( & spin_type = flv%get_spin_type (), & multiplicity = flv%get_multiplicity (), & anti = flv%is_antiparticle (), & left_handed = flv%is_left_handed (), & right_handed = flv%is_right_handed ()) end subroutine polarization_init_generic_flv @ %def polarization_init_generic @ A finalizer is no longer necessary. \subsection{I/O} The default setting produces a tabular output of the polarization vector entries. Optionally, we can create a state matrix and write its contents, emulating the obsolete original implementation. If [[all_states]] is true (default), we generate all helity combinations regardless of the matrix-element value. Otherwise, skip helicities with zero entry, or absolute value less than [[tolerance]], if also given. <>= procedure :: write => polarization_write <>= module subroutine polarization_write (pol, unit, state_matrix, all_states, tolerance) class(polarization_t), intent(in) :: pol integer, intent(in), optional :: unit logical, intent(in), optional :: state_matrix, all_states real(default), intent(in), optional :: tolerance end subroutine polarization_write <>= module subroutine polarization_write (pol, unit, state_matrix, all_states, tolerance) class(polarization_t), intent(in) :: pol integer, intent(in), optional :: unit logical, intent(in), optional :: state_matrix, all_states real(default), intent(in), optional :: tolerance logical :: state_m type(state_matrix_t) :: state real(default), dimension(:), allocatable :: a integer :: u, i u = given_output_unit (unit); if (u < 0) return state_m = .false.; if (present (state_matrix)) state_m = state_matrix if (pol%anti) then write (u, "(1x,A,I1,A,I1,A,L1,A)") & "Polarization: [spin_type = ", pol%spin_type, & ", mult = ", pol%multiplicity, ", anti = ", pol%anti, "]" else write (u, "(1x,A,I1,A,I1,A)") & "Polarization: [spin_type = ", pol%spin_type, & ", mult = ", pol%multiplicity, "]" end if if (state_m) then call pol%to_state (state, all_states, tolerance) call state%write (unit=unit) call state%final () else if (pol%chirality == 1) then write (u, "(1x,A)") "chirality = +" else if (pol%chirality == -1) then write (u, "(1x,A)") "chirality = -" else if (pol%bv%is_polarized ()) then call pol%bv%to_array (a) do i = 1, size (a) write (u, "(1x,I2,':',1x,F10.7)") i, a(i) end do else write (u, "(1x,A)") "[unpolarized]" end if end subroutine polarization_write @ %def polarization_write @ Binary I/O. <>= procedure :: write_raw => polarization_write_raw procedure :: read_raw => polarization_read_raw <>= module subroutine polarization_write_raw (pol, u) class(polarization_t), intent(in) :: pol integer, intent(in) :: u end subroutine polarization_write_raw module subroutine polarization_read_raw (pol, u, iostat) class(polarization_t), intent(out) :: pol integer, intent(in) :: u integer, intent(out), optional :: iostat end subroutine polarization_read_raw <>= module subroutine polarization_write_raw (pol, u) class(polarization_t), intent(in) :: pol integer, intent(in) :: u write (u) pol%spin_type write (u) pol%multiplicity write (u) pol%chirality write (u) pol%anti call pol%bv%write_raw (u) end subroutine polarization_write_raw module subroutine polarization_read_raw (pol, u, iostat) class(polarization_t), intent(out) :: pol integer, intent(in) :: u integer, intent(out), optional :: iostat read (u, iostat=iostat) pol%spin_type read (u, iostat=iostat) pol%multiplicity read (u, iostat=iostat) pol%chirality read (u, iostat=iostat) pol%anti call pol%bv%read_raw (u, iostat) end subroutine polarization_read_raw @ %def polarization_read_raw @ \subsection{Accessing contents} Return true if the particle is technically polarized. The particle is either chiral, or its Bloch vector has been defined. The function returns true even if the Bloch vector is zero or the particle is scalar. <>= procedure :: is_polarized => polarization_is_polarized <>= module function polarization_is_polarized (pol) result (polarized) class(polarization_t), intent(in) :: pol logical :: polarized end function polarization_is_polarized <>= module function polarization_is_polarized (pol) result (polarized) class(polarization_t), intent(in) :: pol logical :: polarized polarized = pol%chirality /= 0 .or. pol%bv%is_polarized () end function polarization_is_polarized @ %def polarization_is_polarized @ Return true if the polarization is diagonal, i.e., all entries in the density matrix are diagonal. For an unpolarized particle, we also return [[.true.]] since the density matrix is proportional to the unit matrix. <>= procedure :: is_diagonal => polarization_is_diagonal <>= module function polarization_is_diagonal (pol) result (diagonal) class(polarization_t), intent(in) :: pol logical :: diagonal end function polarization_is_diagonal <>= module function polarization_is_diagonal (pol) result (diagonal) class(polarization_t), intent(in) :: pol logical :: diagonal select case (pol%chirality) case (0) diagonal = pol%bv%is_diagonal () case default diagonal = .true. end select end function polarization_is_diagonal @ %def polarization_is_diagonal @ \subsection{Mapping between polarization and state matrix} Create the polarization object that corresponds to a state matrix. The state matrix is not necessarily normalized. The result will be either unpolarized, or a generalized Bloch vector that we compute in terms of the appropriate spin generator basis. To this end, we first construct the complete density matrix, then set the Bloch vector with this input. For a naturally chiral particle (i.e., neutrino), we do not set the polarization vector, it is implied. Therefore, we cannot account for any sign flip and transform as-is. <>= procedure :: init_state_matrix => polarization_init_state_matrix <>= module subroutine polarization_init_state_matrix (pol, state) class(polarization_t), intent(out) :: pol type(state_matrix_t), intent(in), target :: state end subroutine polarization_init_state_matrix <>= module subroutine polarization_init_state_matrix (pol, state) class(polarization_t), intent(out) :: pol type(state_matrix_t), intent(in), target :: state type(state_iterator_t) :: it type(flavor_t) :: flv type(helicity_t) :: hel integer :: d, h1, h2, i, j complex(default), dimension(:,:), allocatable :: r complex(default) :: me real(default) :: trace call it%init (state) flv = it%get_flavor (1) hel = it%get_helicity (1) if (hel%is_defined ()) then call pol%init_generic (flv) select case (pol%chirality) case (0) trace = 0 d = pol%bv%get_n_states () allocate (r (d, d), source = (0._default, 0._default)) do while (it%is_valid ()) hel = it%get_helicity (1) call hel%get_indices (h1, h2) i = pol%bv%hel_index (h1) j = pol%bv%hel_index (h2) me = it%get_matrix_element () r(i,j) = me if (i == j) trace = trace + real (me) call it%advance () end do if (trace /= 0) call pol%bv%set (r / trace) end select else call pol%init (flv) end if end subroutine polarization_init_state_matrix @ %def polarization_init_state_matrix @ Create the state matrix that corresponds to a given polarization. We make use of the polarization iterator as defined below, which should iterate according to the canonical helicity ordering. <>= procedure :: to_state => polarization_to_state_matrix <>= module subroutine polarization_to_state_matrix (pol, state, all_states, tolerance) class(polarization_t), intent(in), target :: pol type(state_matrix_t), intent(out) :: state logical, intent(in), optional :: all_states real(default), intent(in), optional :: tolerance end subroutine polarization_to_state_matrix <>= module subroutine polarization_to_state_matrix (pol, state, all_states, tolerance) class(polarization_t), intent(in), target :: pol type(state_matrix_t), intent(out) :: state logical, intent(in), optional :: all_states real(default), intent(in), optional :: tolerance type(polarization_iterator_t) :: it type(quantum_numbers_t), dimension(1) :: qn complex(default) :: value call it%init (pol, all_states, tolerance) call state%init (store_values = .true.) do while (it%is_valid ()) value = it%get_value () qn(1) = it%get_quantum_numbers () call state%add_state (qn, value = value) call it%advance () end do call state%freeze () end subroutine polarization_to_state_matrix @ %def polarization_to_state_matrix @ \subsection{Specific initializers} Unpolarized particle, no nontrivial entries in the density matrix. This is the default initialization mode. <>= procedure :: init_unpolarized => polarization_init_unpolarized <>= module subroutine polarization_init_unpolarized (pol, flv) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv end subroutine polarization_init_unpolarized <>= module subroutine polarization_init_unpolarized (pol, flv) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv call pol%init (flv) end subroutine polarization_init_unpolarized @ %def polarization_init_unpolarized @ The following three modes are useful mainly for spin-1/2 particle and massless particles of any nonzero spin. Only the highest-weight components are filled. Circular polarization: The density matrix of the two highest-weight states is \begin{equation*} \rho(f) = \frac{1-|f|}{2}\mathbf{1} + |f| \times \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, & f > 0; \\[6pt] \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, & f < 0, \end{cases} \end{equation*} In the generalized Bloch representation, this is an entry for the $T^3$ generator only, regardless of the spin representation. A chiral particle is not affected. <>= procedure :: init_circular => polarization_init_circular <>= module subroutine polarization_init_circular (pol, flv, f) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: f end subroutine polarization_init_circular <>= module subroutine polarization_init_circular (pol, flv, f) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: f call pol%init (flv) select case (pol%chirality) case (0) call pol%bv%init_vector (pol%spin_type, & [0._default, 0._default, f]) end select end subroutine polarization_init_circular @ %def polarization_init_circular @ Transversal polarization is analogous to circular, but we get a density matrix \begin{equation*} \rho(f,\phi) = \frac{1-|f|}{2}\mathbf{1} + \frac{|f|}{2} \begin{pmatrix} 1 & e^{-i\phi} \\ e^{i\phi} & 1 \end{pmatrix}. \end{equation*} for the highest-weight subspace. The lower weights are unaffected. The phase is $\phi=0$ for the $x$-axis, $\phi=90^\circ$ for the $y$ axis as polarization vector. For an antiparticle, the phase switches sign, and for $f<0$, the off-diagonal elements switch sign. A chiral particle is not affected. <>= procedure :: init_transversal => polarization_init_transversal <>= module subroutine polarization_init_transversal (pol, flv, phi, f) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: phi, f end subroutine polarization_init_transversal <>= module subroutine polarization_init_transversal (pol, flv, phi, f) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: phi, f call pol%init (flv) select case (pol%chirality) case (0) if (pol%anti) then call pol%bv%init_vector (pol%spin_type, & [f * cos (phi), f * sin (phi), 0._default]) else call pol%bv%init_vector (pol%spin_type, & [f * cos (phi),-f * sin (phi), 0._default]) end if end select end subroutine polarization_init_transversal @ %def polarization_init_transversal @ For axis polarization, we again set only the entries with maximum weight, which for spin $1/2$ means \begin{equation*} \rho(f,\phi) = \frac{1}{2} \begin{pmatrix} 1 + \alpha_3 & \alpha_1 - i\alpha_2 \\ \alpha_1 + i\alpha_2 & 1 - \alpha_3 \end{pmatrix}. \end{equation*} For an antiparticle, the imaginary part proportional to $\alpha_2$ switches sign (complex conjugate). A chiral particle is not affected. In the generalized Bloch representation, this translates into coefficients for $T^{1,2,3}$, all others stay zero. <>= procedure :: init_axis => polarization_init_axis <>= module subroutine polarization_init_axis (pol, flv, alpha) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), dimension(3), intent(in) :: alpha end subroutine polarization_init_axis <>= module subroutine polarization_init_axis (pol, flv, alpha) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), dimension(3), intent(in) :: alpha call pol%init (flv) select case (pol%chirality) case (0) if (pol%anti) then call pol%bv%init_vector (pol%spin_type, & [alpha(1), alpha(2), alpha(3)]) else call pol%bv%init_vector (pol%spin_type, & [alpha(1),-alpha(2), alpha(3)]) end if end select end subroutine polarization_init_axis @ %def polarization_init_axis @ This version specifies the polarization axis in terms of $r$ (polarization degree) and $\theta,\phi$ (polar and azimuthal angles). If one of the angles is a nonzero multiple of $\pi$, roundoff errors typically will result in tiny contributions to unwanted components. Therefore, include a catch for small numbers. <>= procedure :: init_angles => polarization_init_angles <>= module subroutine polarization_init_angles (pol, flv, r, theta, phi) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: r, theta, phi end subroutine polarization_init_angles <>= module subroutine polarization_init_angles (pol, flv, r, theta, phi) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: r, theta, phi real(default), dimension(3) :: alpha real(default), parameter :: eps = 10 * epsilon (1._default) alpha(1) = r * sin (theta) * cos (phi) alpha(2) = r * sin (theta) * sin (phi) alpha(3) = r * cos (theta) where (abs (alpha) < eps) alpha = 0 call pol%init_axis (flv, alpha) end subroutine polarization_init_angles @ %def polarization_init_angles @ Longitudinal polarization is defined only for massive bosons. Only the zero component is filled. Otherwise, unpolarized. In the generalized Bloch representation, the zero component corresponds to a linear combination of all diagonal (Cartan) generators. <>= procedure :: init_longitudinal => polarization_init_longitudinal <>= module subroutine polarization_init_longitudinal (pol, flv, f) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: f end subroutine polarization_init_longitudinal <>= module subroutine polarization_init_longitudinal (pol, flv, f) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), intent(in) :: f real(default), dimension(:), allocatable :: rd integer :: s, d s = flv%get_spin_type () select case (s) case (VECTOR, TENSOR) call pol%init_generic (flv) if (pol%bv%is_polarized ()) then d = pol%bv%get_n_states () allocate (rd (d), source = 0._default) rd(pol%bv%hel_index (0)) = f call pol%bv%set (rd) end if case default call pol%init_unpolarized (flv) end select end subroutine polarization_init_longitudinal @ %def polarization_init_longitudinal @ This is diagonal polarization: we specify all components explicitly. [[rd]] is the array of diagonal elements of the density matrix. We assume that the length of [[rd]] is equal to the particle multiplicity. <>= procedure :: init_diagonal => polarization_init_diagonal <>= module subroutine polarization_init_diagonal (pol, flv, rd) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), dimension(:), intent(in) :: rd end subroutine polarization_init_diagonal <>= module subroutine polarization_init_diagonal (pol, flv, rd) class(polarization_t), intent(out) :: pol type(flavor_t), intent(in) :: flv real(default), dimension(:), intent(in) :: rd real(default) :: trace call pol%init_generic (flv) if (pol%bv%is_polarized ()) then trace = sum (rd) if (trace /= 0) call pol%bv%set (rd / trace) end if end subroutine polarization_init_diagonal @ %def polarization_init_diagonal @ \subsection{Operations} Combine polarization states by computing the outer product of the state matrices. <>= public :: combine_polarization_states <>= module subroutine combine_polarization_states (pol, state) type(polarization_t), dimension(:), intent(in), target :: pol type(state_matrix_t), intent(out) :: state end subroutine combine_polarization_states <>= module subroutine combine_polarization_states (pol, state) type(polarization_t), dimension(:), intent(in), target :: pol type(state_matrix_t), intent(out) :: state type(state_matrix_t), dimension(size(pol)), target :: pol_state integer :: i do i = 1, size (pol) call pol(i)%to_state (pol_state(i)) end do call outer_multiply (pol_state, state) do i = 1, size (pol) call pol_state(i)%final () end do end subroutine combine_polarization_states @ %def combine_polarization_states @ Transform a polarization density matrix into a polarization vector. This is possible without information loss only for spin-1/2 and for massless particles. To get a unique answer in all cases, we consider only the components with highest weight. Obviously, this loses the longitudinal component of a massive vector, for instance. The norm of the returned axis is the polarization fraction for the highest-weight subspace. For a scalar particle, we return a zero vector. The same result applies if the highest-weight component vanishes. This is the inverse operation of [[polarization_init_axis]] above, where the polarization fraction is set to unity. For an antiparticle, the [[alpha(2)]] coefficient flips sign. <>= procedure :: get_axis => polarization_get_axis <>= module function polarization_get_axis (pol) result (alpha) class(polarization_t), intent(in), target :: pol real(default), dimension(3) :: alpha end function polarization_get_axis <>= module function polarization_get_axis (pol) result (alpha) class(polarization_t), intent(in), target :: pol real(default), dimension(3) :: alpha select case (pol%chirality) case (0) call pol%bv%to_vector (alpha) if (.not. pol%anti) alpha(2) = - alpha(2) case (-1) alpha = [0._default, 0._default, -1._default] case (1) alpha = [0._default, 0._default, 1._default] end select end function polarization_get_axis @ %def polarization_get_axis @ This function returns polarization degree and polar and azimuthal angles ($\theta,\phi$) of the polarization axis. The same restrictions apply as above. Since we call the [[get_axis]] method, the phase flips sign for an antiparticle. <>= procedure :: to_angles => polarization_to_angles <>= module subroutine polarization_to_angles (pol, r, theta, phi) class(polarization_t), intent(in) :: pol real(default), intent(out) :: r, theta, phi end subroutine polarization_to_angles <>= module subroutine polarization_to_angles (pol, r, theta, phi) class(polarization_t), intent(in) :: pol real(default), intent(out) :: r, theta, phi real(default), dimension(3) :: alpha real(default) :: norm, r12 alpha = pol%get_axis () norm = sum (alpha**2) r = sqrt (norm) if (norm > 0) then r12 = sqrt (alpha(1)**2 + alpha(2)**2) theta = atan2 (r12, alpha(3)) if (any (alpha(1:2) /= 0)) then phi = atan2 (alpha(2), alpha(1)) else phi = 0 end if else theta = 0 phi = 0 end if end subroutine polarization_to_angles @ %def polarization_to_angles @ \subsection{Polarization Iterator} The iterator acts like a state matrix iterator, i.e., it points to one helicity combination at a time and can return the corresponding helicity object and matrix-element value. Since the polarization is stored as a Bloch vector, we recover the whole density matrix explicitly upon initialization, store it inside the iterator object, and then just return its elements one at a time. For an unpolarized particle, the iterator returns a single state with undefined helicity. The value is the value of any diagonal density matrix element, $1/n$ where $n$ is the multiplicity. <>= public :: polarization_iterator_t <>= type :: polarization_iterator_t private type(polarization_t), pointer :: pol => null () logical :: polarized = .false. integer :: h1 = 0 integer :: h2 = 0 integer :: i = 0 integer :: j = 0 complex(default), dimension(:,:), allocatable :: r complex(default) :: value = 1._default real(default) :: tolerance = -1._default logical :: valid = .false. contains <> end type polarization_iterator_t @ %def polarization_iterator_t @ Output for debugging purposes only, therefore no format for real/complex. <>= procedure :: write => polarization_iterator_write <>= module subroutine polarization_iterator_write (it, unit) class(polarization_iterator_t), intent(in) :: it integer, intent(in), optional :: unit end subroutine polarization_iterator_write <>= module subroutine polarization_iterator_write (it, unit) class(polarization_iterator_t), intent(in) :: it integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) write (u, "(1X,A)") "Polarization iterator:" write (u, "(3X,A,L1)") "assigned = ", associated (it%pol) write (u, "(3X,A,L1)") "valid = ", it%valid if (it%valid) then write (u, "(3X,A,2(1X,I2))") "i, j = ", it%i, it%j write (u, "(3X,A,2(1X,I2))") "h1, h2 = ", it%h1, it%h2 write (u, "(3X,A)", advance="no") "value = " write (u, *) it%value if (allocated (it%r)) then do i = 1, size (it%r, 2) write (u, *) it%r(i,:) end do end if end if end subroutine polarization_iterator_write @ %def polarization_iterator_write @ Initialize, i.e., (virtually) point to the first helicity state supported by the polarization object. If the density matrix is nontrivial, we calculate it here. Following the older state-matrix conventions, the iterator sequence starts at the lowest helicity value. In the current internal representation, this corresponds to the highest index value. If the current matrix-element value is zero, advance the iterator. Advancing will stop at a nonzero value or if the iterator becomes invalid. If [[tolerance]] is given, any state matrix entry less or equal will be treated as zero, causing the iterator to skip an entry. By default, the value is negative, so no entry is skipped. <>= procedure :: init => polarization_iterator_init <>= module subroutine polarization_iterator_init (it, pol, all_states, tolerance) class(polarization_iterator_t), intent(out) :: it type(polarization_t), intent(in), target :: pol logical, intent(in), optional :: all_states real(default), intent(in), optional :: tolerance end subroutine polarization_iterator_init <>= module subroutine polarization_iterator_init (it, pol, all_states, tolerance) class(polarization_iterator_t), intent(out) :: it type(polarization_t), intent(in), target :: pol logical, intent(in), optional :: all_states real(default), intent(in), optional :: tolerance integer :: d logical :: only_max_weight it%pol => pol if (present (all_states)) then if (.not. all_states) then if (present (tolerance)) then it%tolerance = tolerance else it%tolerance = 0 end if end if end if select case (pol%chirality) case (0) d = pol%bv%get_n_states () only_max_weight = pol%multiplicity < d it%polarized = pol%bv%is_polarized () if (it%polarized) then it%i = d it%j = it%i it%h1 = pol%bv%hel_value (it%i) it%h2 = it%h1 call pol%bv%to_matrix (it%r, only_max_weight) it%value = it%r(it%i, it%j) else it%value = 1._default / d end if it%valid = .true. case (1,-1) it%polarized = .true. select case (pol%spin_type) case (SPINOR) it%h1 = pol%chirality case (VECTORSPINOR) it%h1 = 2 * pol%chirality end select it%h2 = it%h1 it%valid = .true. end select if (it%valid .and. abs (it%value) <= it%tolerance) call it%advance () end subroutine polarization_iterator_init @ %def polarization_iterator_init @ Advance to the next valid helicity state. Repeat if the returned value is zero. For an unpolarized object, we iterate through the diagonal helicity states with a constant value. <>= procedure :: advance => polarization_iterator_advance <>= recursive module subroutine polarization_iterator_advance (it) class(polarization_iterator_t), intent(inout) :: it end subroutine polarization_iterator_advance <>= recursive module subroutine polarization_iterator_advance (it) class(polarization_iterator_t), intent(inout) :: it if (it%valid) then select case (it%pol%chirality) case (0) if (it%polarized) then if (it%j > 1) then it%j = it%j - 1 it%h2 = it%pol%bv%hel_value (it%j) it%value = it%r(it%i, it%j) else if (it%i > 1) then it%j = it%pol%bv%get_n_states () it%h2 = it%pol%bv%hel_value (it%j) it%i = it%i - 1 it%h1 = it%pol%bv%hel_value (it%i) it%value = it%r(it%i, it%j) else it%valid = .false. end if else it%valid = .false. end if case default it%valid = .false. end select if (it%valid .and. abs (it%value) <= it%tolerance) call it%advance () end if end subroutine polarization_iterator_advance @ %def polarization_iterator_advance @ This is true as long as the iterator points to a valid helicity state. <>= procedure :: is_valid => polarization_iterator_is_valid <>= module function polarization_iterator_is_valid (it) result (is_valid) logical :: is_valid class(polarization_iterator_t), intent(in) :: it end function polarization_iterator_is_valid <>= module function polarization_iterator_is_valid (it) result (is_valid) logical :: is_valid class(polarization_iterator_t), intent(in) :: it is_valid = it%valid end function polarization_iterator_is_valid @ %def polarization_iterator_is_valid @ Return the matrix element value for the helicity that we are currently pointing at. <>= procedure :: get_value => polarization_iterator_get_value <>= module function polarization_iterator_get_value (it) result (value) complex(default) :: value class(polarization_iterator_t), intent(in) :: it end function polarization_iterator_get_value <>= module function polarization_iterator_get_value (it) result (value) complex(default) :: value class(polarization_iterator_t), intent(in) :: it if (it%valid) then value = it%value else value = 0 end if end function polarization_iterator_get_value @ %def polarization_iterator_get_value @ Return a quantum number object for the helicity that we are currently pointing at. This is a single quantum number object, not an array. Note that the [[init]] method of the helicity object has the order reversed. <>= procedure :: get_quantum_numbers => polarization_iterator_get_quantum_numbers <>= module function polarization_iterator_get_quantum_numbers (it) result (qn) class(polarization_iterator_t), intent(in) :: it type(quantum_numbers_t) :: qn end function polarization_iterator_get_quantum_numbers <>= module function polarization_iterator_get_quantum_numbers (it) result (qn) class(polarization_iterator_t), intent(in) :: it type(helicity_t) :: hel type(quantum_numbers_t) :: qn if (it%polarized) then call hel%init (it%h2, it%h1) end if call qn%init (hel) end function polarization_iterator_get_quantum_numbers @ %def polarization_iterator_get_quantum_numbers @ \subsection{Sparse Matrix} We introduce a simple implementation of a sparse matrix that can represent polarization (or similar concepts) for transfer to I/O within the program. It consists of an integer array that represents the index values, and a complex array that represents the nonvanishing entries. The number of nonvanishing entries must be known for initialization, but the entries are filled one at a time. Here is a base type without the special properties of a spin-density matrix. <>= public :: smatrix_t <>= type :: smatrix_t private integer :: dim = 0 integer :: n_entry = 0 integer, dimension(:,:), allocatable :: index complex(default), dimension(:), allocatable :: value contains <> end type smatrix_t @ %def smatrix_t @ Output. <>= procedure :: write => smatrix_write <>= module subroutine smatrix_write (object, unit, indent) class(smatrix_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine smatrix_write <>= module subroutine smatrix_write (object, unit, indent) class(smatrix_t), intent(in) :: object integer, intent(in), optional :: unit, indent integer :: u, i, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent if (allocated (object%value)) then if (size (object%value) > 0) then do i = 1, object%n_entry write (u, "(1x,A,'@(')", advance="no") repeat (" ", ind) write (u, "(SP,9999(I2.1,':',1x))", advance="no") & object%index(:,i) write (u, "('('," // FMT_19 // ",','," // FMT_19 // & ",'))')") object%value(i) end do else write (u, "(1x,A)", advance="no") repeat (" ", ind) write (u, "(A)") "[empty matrix]" end if else write (u, "(1x,A)", advance="no") repeat (" ", ind) write (u, "(A)") "[undefined matrix]" end if end subroutine smatrix_write @ %def smatrix_write @ Initialization: allocate arrays to the correct size. We specify both the dimension of the matrix (if different from two, this is rather a generic tensor) and the number of nonvanishing entries. <>= procedure :: init => smatrix_init <>= module subroutine smatrix_init (smatrix, dim, n_entry) class(smatrix_t), intent(out) :: smatrix integer, intent(in) :: dim integer, intent(in) :: n_entry end subroutine smatrix_init <>= module subroutine smatrix_init (smatrix, dim, n_entry) class(smatrix_t), intent(out) :: smatrix integer, intent(in) :: dim integer, intent(in) :: n_entry smatrix%dim = dim smatrix%n_entry = n_entry allocate (smatrix%index (dim, n_entry)) allocate (smatrix%value (n_entry)) end subroutine smatrix_init @ %def smatrix_init @ Fill: one entry at a time. <>= procedure :: set_entry => smatrix_set_entry <>= module subroutine smatrix_set_entry (smatrix, i, index, value) class(smatrix_t), intent(inout) :: smatrix integer, intent(in) :: i integer, dimension(:), intent(in) :: index complex(default), intent(in) :: value end subroutine smatrix_set_entry <>= module subroutine smatrix_set_entry (smatrix, i, index, value) class(smatrix_t), intent(inout) :: smatrix integer, intent(in) :: i integer, dimension(:), intent(in) :: index complex(default), intent(in) :: value smatrix%index(:,i) = index smatrix%value(i) = value end subroutine smatrix_set_entry @ %def smatrix_set_entry @ <>= procedure :: exists => smatrix_exists <>= elemental module function smatrix_exists (smatrix) result (exist) logical :: exist class(smatrix_t), intent(in) :: smatrix end function smatrix_exists <>= elemental module function smatrix_exists (smatrix) result (exist) logical :: exist class(smatrix_t), intent(in) :: smatrix exist = .not. all (smatrix%value == 0) end function smatrix_exists @ %def smatrix_exists @ \subsection{Polarization Matrix} As an extension of the more generic [[smatrix]] type, we implement a proper spin-density matrix. After the matrix has been filled, we can fix spin type and multiplicity for a particle, check the matrix for consistency, and normalize it if necessary. This implementation does not have an antiparticle flag, just like the state matrix object. We therefore cannot account for sign flips when using this object. TODO: The [[pure]] flag is for informational purposes only, and it only represents a necessary condition if spin is greater than $1/2$. We may either check purity for all spins or drop this. <>= public :: pmatrix_t <>= type, extends (smatrix_t) :: pmatrix_t private integer :: spin_type = 0 integer :: multiplicity = 0 logical :: massive = .true. integer :: chirality = 0 real(default) :: degree = 1 logical :: pure = .false. contains <> end type pmatrix_t @ %def pmatrix_t @ Output, including extra data. (The [[indent]] argument is ignored.) <>= procedure :: write => pmatrix_write <>= module subroutine pmatrix_write (object, unit, indent) class(pmatrix_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine pmatrix_write <>= module subroutine pmatrix_write (object, unit, indent) class(pmatrix_t), intent(in) :: object integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Polarization: spin density matrix" write (u, "(3x,A,I0)") "spin type = ", object%spin_type write (u, "(3x,A,I0)") "multiplicity = ", object%multiplicity write (u, "(3x,A,L1)") "massive = ", object%massive write (u, "(3x,A,I0)") "chirality = ", object%chirality write (u, "(3x,A,F10.7)") "pol.degree =", object%degree write (u, "(3x,A,L1)") "pure state = ", object%pure call object%smatrix_t%write (u, 1) end subroutine pmatrix_write @ %def pmatrix_write @ This assignment is trivial, but must be coded explicitly. <>= generic :: assignment(=) => pmatrix_assign_from_smatrix procedure, private :: pmatrix_assign_from_smatrix <>= module subroutine pmatrix_assign_from_smatrix (pmatrix, smatrix) class(pmatrix_t), intent(out) :: pmatrix type(smatrix_t), intent(in) :: smatrix end subroutine pmatrix_assign_from_smatrix <>= module subroutine pmatrix_assign_from_smatrix (pmatrix, smatrix) class(pmatrix_t), intent(out) :: pmatrix type(smatrix_t), intent(in) :: smatrix pmatrix%smatrix_t = smatrix end subroutine pmatrix_assign_from_smatrix @ %def pmatrix_assign_from_smatrix @ Declare spin, multiplicity, and polarization degree. Check whether all entries fit, and whether this is a valid matrix. The required properties are: \begin{enumerate} \item all entries apply to the given spin and mass type \item the diagonal is real \item only the upper of corresponding off-diagonal elements is specified, i.e., the row index is less than the column index \item the trace is nonnegative and equal to the polarization degree (the remainder, proportional to the unit matrix, is understood to be present) \item the trace of the matrix square is positive and less or equal to the trace of the matrix itself, which is the polarization degree. \item If the trace of the matrix square and the trace of the matrix are unity, we may have a pure state. (For spin up to $1/2$, this is actually sufficient.) \end{enumerate} <>= procedure :: normalize => pmatrix_normalize <>= module subroutine pmatrix_normalize (pmatrix, flv, degree, tolerance) class(pmatrix_t), intent(inout) :: pmatrix type(flavor_t), intent(in) :: flv real(default), intent(in), optional :: degree real(default), intent(in), optional :: tolerance end subroutine pmatrix_normalize <>= module subroutine pmatrix_normalize (pmatrix, flv, degree, tolerance) class(pmatrix_t), intent(inout) :: pmatrix type(flavor_t), intent(in) :: flv real(default), intent(in), optional :: degree real(default), intent(in), optional :: tolerance integer :: i, hmax logical :: fermion, ok real(default) :: trace, trace_sq real(default) :: tol tol = 0; if (present (tolerance)) tol = tolerance pmatrix%spin_type = flv%get_spin_type () pmatrix%massive = flv%get_mass () /= 0 if (.not. pmatrix%massive) then if (flv%is_left_handed ()) then pmatrix%chirality = -1 else if (flv%is_right_handed ()) then pmatrix%chirality = +1 end if end if if (pmatrix%spin_type == SCALAR) then pmatrix%multiplicity = 1 else if (pmatrix%massive) then pmatrix%multiplicity = pmatrix%spin_type else if (pmatrix%chirality == 0) then pmatrix%multiplicity = 2 else pmatrix%multiplicity = 1 end if if (present (degree)) then if (degree < 0 .or. degree > 1) & call msg_error ("polarization degree must be between 0 and 1") pmatrix%degree = degree end if if (size (pmatrix%index, 1) /= 2) call error ("wrong array rank") fermion = mod (pmatrix%spin_type, 2) == 0 hmax = pmatrix%spin_type / 2 if (pmatrix%n_entry > 0) then if (fermion) then if (pmatrix%massive) then ok = all (pmatrix%index /= 0) & .and. all (abs (pmatrix%index) <= hmax) else if (pmatrix%chirality == -1) then ok = all (pmatrix%index == -hmax) else if (pmatrix%chirality == +1) then ok = all (pmatrix%index == +hmax) else ok = all (abs (pmatrix%index) == hmax) end if else if (pmatrix%massive) then ok = all (abs (pmatrix%index) <= hmax) else ok = all (abs (pmatrix%index) == hmax) end if end if if (.not. ok) call error ("illegal index value") else pmatrix%degree = 0 pmatrix%pure = pmatrix%multiplicity == 1 return end if trace = 0 do i = 1, pmatrix%n_entry associate (index => pmatrix%index(:,i), value => pmatrix%value(i)) if (index(1) == index(2)) then if (abs (aimag (value)) > tol) call error ("diagonal must be real") value = real (value, kind=default) trace = trace + value else if (any (pmatrix%index(1,:) == index(2) & .and. pmatrix%index(2,:) == index(1))) then call error ("redundant off-diagonal entry") else if (index(2) < index (1)) then index = index([2,1]) value = conjg (value) end if end associate end do if (abs (trace) <= tol) call error ("trace must not vanish") trace = real (trace, kind=default) pmatrix%value = pmatrix%value / trace * pmatrix%degree trace_sq = (1 - pmatrix%degree ** 2) / pmatrix%multiplicity do i = 1, pmatrix%n_entry associate (index => pmatrix%index(:,i), value => pmatrix%value(i)) if (index(1) == index(2)) then trace_sq = trace_sq + abs (value) ** 2 else trace_sq = trace_sq + 2 * abs (value) ** 2 end if end associate end do if (pmatrix%multiplicity == 1) then pmatrix%pure = .true. else if (abs (trace_sq - 1) <= tol) then pmatrix%pure = .true. else if (trace_sq - 1 > tol .or. trace_sq < -tol) then print *, "Trace of matrix square = ", trace_sq call error ("not permissible as density matrix") end if contains subroutine error (msg) character(*), intent(in) :: msg call pmatrix%write () call msg_fatal ("Spin density matrix: " // msg) end subroutine error end subroutine pmatrix_normalize @ %def pmatrix_normalize @ A polarized matrix is defined as one with a positive polarization degree, even if the actual matrix is trivial. <>= procedure :: is_polarized => pmatrix_is_polarized <>= elemental module function pmatrix_is_polarized (pmatrix) result (flag) class(pmatrix_t), intent(in) :: pmatrix logical :: flag end function pmatrix_is_polarized <>= elemental module function pmatrix_is_polarized (pmatrix) result (flag) class(pmatrix_t), intent(in) :: pmatrix logical :: flag flag = pmatrix%degree > 0 end function pmatrix_is_polarized @ %def pmatrix_is_polarized @ Check if there are only diagonal entries. <>= procedure :: is_diagonal => pmatrix_is_diagonal <>= elemental module function pmatrix_is_diagonal (pmatrix) result (flag) class(pmatrix_t), intent(in) :: pmatrix logical :: flag end function pmatrix_is_diagonal <>= elemental module function pmatrix_is_diagonal (pmatrix) result (flag) class(pmatrix_t), intent(in) :: pmatrix logical :: flag flag = all (pmatrix%index(1,:) == pmatrix%index(2,:)) end function pmatrix_is_diagonal @ %def pmatrix_is_diagonal @ Check if there are only diagonal entries. <>= procedure :: get_simple_pol => pmatrix_get_simple_pol <>= elemental module function pmatrix_get_simple_pol (pmatrix) result (pol) class(pmatrix_t), intent(in) :: pmatrix real(default) :: pol end function pmatrix_get_simple_pol <>= elemental module function pmatrix_get_simple_pol (pmatrix) result (pol) class(pmatrix_t), intent(in) :: pmatrix real(default) :: pol if (pmatrix%is_polarized ()) then select case (size (pmatrix%value)) case (0) pol = 0 case (1) pol = pmatrix%index (1,1) * pmatrix%degree case (2) pol = 42 end select else pol = 0 end if end function pmatrix_get_simple_pol @ %def pmatrix_get_simple_pol @ \subsection{Data Transformation} Create a [[polarization_t]] object from the contents of a normalized [[pmatrix_t]] object. We scan the entries as present in [[pmatrix]] and transform them into a density matrix, if necessary. The density matrix then initializes the Bloch vector. This is analogous to [[polarization_init_state_matrix]]. There is a subtlety associated with massless particles. Since the [[pmatrix]] doesn't contain the full density matrix but just the nontrivial part, we have to initialize the polarization object with the massless equipartion, which contains nonzero entries for the Cartan generators. The [[set]] method therefore should not erase those initial contents. This is a constraint for the implementation of [[set]], as applied to the Bloch vector. As mentioned above, [[pmatrix_t]] does not support an antiparticle flag. <>= procedure :: init_pmatrix => polarization_init_pmatrix <>= module subroutine polarization_init_pmatrix (pol, pmatrix) class(polarization_t), intent(out) :: pol type(pmatrix_t), intent(in) :: pmatrix end subroutine polarization_init_pmatrix <>= module subroutine polarization_init_pmatrix (pol, pmatrix) class(polarization_t), intent(out) :: pol type(pmatrix_t), intent(in) :: pmatrix integer :: d, i, j, k, h1, h2 complex(default), dimension(:,:), allocatable :: r call pol%init_generic ( & spin_type = pmatrix%spin_type, & multiplicity = pmatrix%multiplicity, & anti = .false., & !!! SUFFICIENT? left_handed = pmatrix%chirality < 0, & right_handed = pmatrix%chirality > 0) if (pol%bv%is_polarized ()) then d = pol%bv%get_n_states () allocate (r (d, d), source = (0._default, 0._default)) if (d == pmatrix%multiplicity) then do i = 1, d r(i,i) = (1 - pmatrix%degree) / d end do else if (d > pmatrix%multiplicity) then r(1,1) = (1 - pmatrix%degree) / 2 r(d,d) = r(1,1) end if do k = 1, size (pmatrix%value) h1 = pmatrix%index(1,k) h2 = pmatrix%index(2,k) i = pol%bv%hel_index (h1) j = pol%bv%hel_index (h2) r(i,j) = r(i,j) + pmatrix%value(k) r(j,i) = conjg (r(i,j)) end do call pol%bv%set (r) end if end subroutine polarization_init_pmatrix @ %def polarization_init_pmatrix @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[polarizations_ut.f90]]>>= <> module polarizations_ut use unit_tests use polarizations_uti <> <> contains <> end module polarizations_ut @ %def polarizations_ut @ <<[[polarizations_uti.f90]]>>= <> module polarizations_uti <> use flavors use model_data use polarizations <> <> contains <> end module polarizations_uti @ %def polarizations_ut @ API: driver for the unit tests below. <>= public :: polarizations_test <>= subroutine polarizations_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine polarizations_test @ %def polarizations_test @ \subsubsection{Polarization type} Checking the setup for polarization. <>= call test (polarization_1, "polarization_1", & "check polarization setup", & u, results) <>= public :: polarization_1 <>= subroutine polarization_1 (u) use os_interface integer, intent(in) :: u type(model_data_t), target :: model type(polarization_t) :: pol type(flavor_t) :: flv real(default), dimension(3) :: alpha real(default) :: r, theta, phi real(default), parameter :: tolerance = 1.E-14_default write (u, "(A)") "* Test output: polarization_1" write (u, "(A)") "* Purpose: test polarization setup" write (u, "(A)") write (u, "(A)") "* Reading model file" write (u, "(A)") call model%init_sm_test () write (u, "(A)") "* Unpolarized fermion" write (u, "(A)") call flv%init (1, model) call pol%init_unpolarized (flv) call pol%write (u, state_matrix = .true.) write (u, "(A,L1)") " diagonal =", pol%is_diagonal () write (u, "(A)") write (u, "(A)") "* Unpolarized fermion" write (u, "(A)") call pol%init_circular (flv, 0._default) call pol%write (u, state_matrix = .true., all_states = .false.) write (u, "(A)") write (u, "(A)") "* Transversally polarized fermion, phi=0" write (u, "(A)") call pol%init_transversal (flv, 0._default, 1._default) call pol%write (u, state_matrix = .true.) write (u, "(A,L1)") " diagonal =", pol%is_diagonal () write (u, "(A)") write (u, "(A)") "* Transversally polarized fermion, phi=0.9, frac=0.8" write (u, "(A)") call pol%init_transversal (flv, 0.9_default, 0.8_default) call pol%write (u, state_matrix = .true.) write (u, "(A,L1)") " diagonal =", pol%is_diagonal () write (u, "(A)") write (u, "(A)") "* All polarization directions of a fermion" write (u, "(A)") call pol%init_generic (flv) call pol%write (u, state_matrix = .true.) call flv%init (21, model) write (u, "(A)") write (u, "(A)") "* Circularly polarized gluon, frac=0.3" write (u, "(A)") call pol%init_circular (flv, 0.3_default) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) call flv%init (23, model) write (u, "(A)") write (u, "(A)") "* Circularly polarized massive vector, frac=-0.7" write (u, "(A)") call pol%init_circular (flv, -0.7_default) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(A)") "* Circularly polarized massive vector" write (u, "(A)") call pol%init_circular (flv, 1._default) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(A)") "* Longitudinally polarized massive vector, frac=0.4" write (u, "(A)") call pol%init_longitudinal (flv, 0.4_default) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(A)") "* Longitudinally polarized massive vector" write (u, "(A)") call pol%init_longitudinal (flv, 1._default) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(A)") "* Diagonally polarized massive vector" write (u, "(A)") call pol%init_diagonal & (flv, [2._default, 1._default, 0._default]) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(A)") "* All polarization directions of a massive vector" write (u, "(A)") call pol%init_generic (flv) call pol%write (u, state_matrix = .true.) call flv%init (21, model) write (u, "(A)") write (u, "(A)") "* Axis polarization (0.2, 0.4, 0.6)" write (u, "(A)") alpha = [0.2_default, 0.4_default, 0.6_default] call pol%init_axis (flv, alpha) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(1X,A)") "Recovered axis:" alpha = pol%get_axis () write (u, "(3(1X,F10.7))") alpha write (u, "(A)") write (u, "(A)") "* Angle polarization (0.5, 0.6, -1)" r = 0.5_default theta = 0.6_default phi = -1._default call pol%init_angles (flv, r, theta, phi) write (u, "(A)") call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) write (u, "(A)") write (u, "(1X,A)") "Recovered parameters (r, theta, phi):" call pol%to_angles (r, theta, phi) write (u, "(3(1x,F10.7))") r, theta, phi call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: polarization_1" end subroutine polarization_1 @ %def polarization_1 @ \subsubsection{Sparse-Matrix type} Use a sparse density matrix universally as the input for setting up polarization. <>= call test (polarization_2, "polarization_2", & "matrix polarization setup", & u, results) <>= public :: polarization_2 <>= subroutine polarization_2 (u) use os_interface integer, intent(in) :: u type(model_data_t), target :: model type(flavor_t) :: flv type(polarization_t) :: pol real(default), dimension(3) :: alpha type(pmatrix_t) :: pmatrix real(default), parameter :: tolerance = 1e-8_default write (u, "(A)") "* Test output: polarization_2" write (u, "(A)") "* Purpose: matrix polarization setup" write (u, "(A)") write (u, "(A)") "* Reading model file" write (u, "(A)") call model%init_sm_test () write (u, "(A)") "* Unpolarized fermion" write (u, "(A)") call flv%init (1, model) call pmatrix%init (2, 0) call pmatrix%normalize (flv, 0._default, tolerance) call pmatrix%write (u) write (u, *) write (u, "(1x,A,L1)") "polarized = ", pmatrix%is_polarized () write (u, "(1x,A,L1)") "diagonal = ", pmatrix%is_diagonal () write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Transversally polarized fermion, phi=0" write (u, "(A)") call pmatrix%init (2, 3) call pmatrix%set_entry (1, [-1,-1], (1._default, 0._default)) call pmatrix%set_entry (2, [+1,+1], (1._default, 0._default)) call pmatrix%set_entry (3, [-1,+1], (1._default, 0._default)) call pmatrix%normalize (flv, 1._default, tolerance) call pmatrix%write (u) write (u, *) write (u, "(1x,A,L1)") "polarized = ", pmatrix%is_polarized () write (u, "(1x,A,L1)") "diagonal = ", pmatrix%is_diagonal () write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Transversally polarized fermion, phi=0.9, frac=0.8" write (u, "(A)") call pmatrix%init (2, 3) call pmatrix%set_entry (1, [-1,-1], (1._default, 0._default)) call pmatrix%set_entry (2, [+1,+1], (1._default, 0._default)) call pmatrix%set_entry (3, [-1,+1], exp ((0._default, -0.9_default))) call pmatrix%normalize (flv, 0.8_default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true.) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Left-handed massive fermion, frac=1" write (u, "(A)") call flv%init (11, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [-1,-1], (1._default, 0._default)) call pmatrix%normalize (flv, 1._default, tolerance) call pmatrix%write (u) write (u, *) write (u, "(1x,A,L1)") "polarized = ", pmatrix%is_polarized () write (u, "(1x,A,L1)") "diagonal = ", pmatrix%is_diagonal () write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Left-handed massive fermion, frac=0.8" write (u, "(A)") call flv%init (11, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [-1,-1], (1._default, 0._default)) call pmatrix%normalize (flv, 0.8_default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Left-handed massless fermion" write (u, "(A)") call flv%init (12, model) call pmatrix%init (2, 0) call pmatrix%normalize (flv, 1._default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true.) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Right-handed massless fermion, frac=0.5" write (u, "(A)") call flv%init (-12, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [1,1], (1._default, 0._default)) call pmatrix%normalize (flv, 0.5_default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true.) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Circularly polarized gluon, frac=0.3" write (u, "(A)") call flv%init (21, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [1,1], (1._default, 0._default)) call pmatrix%normalize (flv, 0.3_default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Circularly polarized massive vector, frac=0.7" write (u, "(A)") call flv%init (23, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [1,1], (1._default, 0._default)) call pmatrix%normalize (flv, 0.7_default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Circularly polarized massive vector" write (u, "(A)") call flv%init (23, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [1,1], (1._default, 0._default)) call pmatrix%normalize (flv, 1._default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Longitudinally polarized massive vector, frac=0.4" write (u, "(A)") call flv%init (23, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [0,0], (1._default, 0._default)) call pmatrix%normalize (flv, 0.4_default, tolerance) call pmatrix%write (u) write (u, *) write (u, "(1x,A,L1)") "polarized = ", pmatrix%is_polarized () write (u, "(1x,A,L1)") "diagonal = ", pmatrix%is_diagonal () write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Longitudinally polarized massive vector" write (u, "(A)") call flv%init (23, model) call pmatrix%init (2, 1) call pmatrix%set_entry (1, [0,0], (1._default, 0._default)) call pmatrix%normalize (flv, 1._default, tolerance) call pmatrix%write (u) write (u, *) write (u, "(1x,A,L1)") "polarized = ", pmatrix%is_polarized () write (u, "(1x,A,L1)") "diagonal = ", pmatrix%is_diagonal () write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true., & all_states = .false., tolerance = tolerance) ! call pol%final () write (u, "(A)") write (u, "(A)") "* Axis polarization (0.2, 0.4, 0.6)" write (u, "(A)") call flv%init (11, model) alpha = [0.2_default, 0.4_default, 0.6_default] alpha = alpha / sqrt (sum (alpha**2)) call pmatrix%init (2, 3) call pmatrix%set_entry (1, [-1,-1], cmplx (1 - alpha(3), kind=default)) call pmatrix%set_entry (2, [1,-1], & cmplx (alpha(1),-alpha(2), kind=default)) call pmatrix%set_entry (3, [1,1], cmplx (1 + alpha(3), kind=default)) call pmatrix%normalize (flv, 1._default, tolerance) call pmatrix%write (u) write (u, *) call pol%init_pmatrix (pmatrix) call pol%write (u, state_matrix = .true.) ! call pol%final () call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: polarization_2" end subroutine polarization_2 @ %def polarization_2 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Particles} This module defines the [[particle_t]] object type, and the methods and operations that deal with it. <<[[particles.f90]]>>= <> module particles <> <> <> use lorentz use phs_points, only: phs_point_t, assignment(=) use model_data use flavors use colors use helicities use quantum_numbers use state_matrices use interactions use subevents use polarizations <> <> <> <> <> interface <> end interface end module particles @ %def particles @ <<[[particles_sub.f90]]>>= <> submodule (particles) particles_s use io_units use format_utils, only: write_compressed_integer_array, write_separator use format_utils, only: pac_fmt use format_defs, only: FMT_16, FMT_19 use numeric_utils use diagnostics use pdg_arrays, only: is_quark, is_gluon implicit none contains <> end submodule particles_s @ %def particles_s @ \subsection{The particle type} \subsubsection{Particle status codes} The overall status codes (incoming/outgoing etc.) are inherited from the module [[subevents]]. Polarization status: <>= integer, parameter, public :: PRT_UNPOLARIZED = 0 integer, parameter, public :: PRT_DEFINITE_HELICITY = 1 integer, parameter, public :: PRT_GENERIC_POLARIZATION = 2 @ %def PRT_UNPOLARIZED PRT_DEFINITE_HELICITY PRT_GENERIC_POLARIZATION @ \subsubsection{Definition} The quantum numbers are flavor (from which invariant particle properties can be derived), color, and polarization. The particle may be unpolarized. In this case, [[hel]] and [[pol]] are unspecified. If it has a definite helicity, the [[hel]] component is defined. If it has a generic polarization, the [[pol]] component is defined. For each particle we store the four-momentum and the invariant mass squared, i.e., the squared norm of the four-momentum. There is also an optional list of parent and child particles, for bookkeeping in physical events. The [[vertex]] is an optional component that consists of a Lorentz 4-vector, denoting the position and time of the vertex (displaced vertex/time). [[lifetime]] is an optional component that accounts for the finite lifetime $\tau$ of a decaying particle. In case there is no magnetic field etc., the true decay vertex of a particle in the detector would be $\vec{v}^\prime = \vec{v} + \tau \times \vec{p}/p^0$, where $p^0$ and $\vec{p}$ are the energy and 3-momentum of the particle. <>= public :: particle_t <>= type :: particle_t !private integer :: status = PRT_UNDEFINED integer :: polarization = PRT_UNPOLARIZED type(flavor_t) :: flv type(color_t) :: col type(helicity_t) :: hel type(polarization_t) :: pol type(vector4_t) :: p = vector4_null real(default) :: p2 = 0 type(vector4_t), allocatable :: vertex real(default), allocatable :: lifetime integer, dimension(:), allocatable :: parent integer, dimension(:), allocatable :: child contains <> end type particle_t @ %def particle_t @ Copy a particle. (Deep copy) This excludes the parent-child relations. <>= generic :: init => init_particle procedure :: init_particle => particle_init_particle <>= module subroutine particle_init_particle (prt_out, prt_in) class(particle_t), intent(out) :: prt_out type(particle_t), intent(in) :: prt_in end subroutine particle_init_particle <>= module subroutine particle_init_particle (prt_out, prt_in) class(particle_t), intent(out) :: prt_out type(particle_t), intent(in) :: prt_in prt_out%status = prt_in%status prt_out%polarization = prt_in%polarization prt_out%flv = prt_in%flv prt_out%col = prt_in%col prt_out%hel = prt_in%hel prt_out%pol = prt_in%pol prt_out%p = prt_in%p prt_out%p2 = prt_in%p2 if (allocated (prt_in%vertex)) & allocate (prt_out%vertex, source=prt_in%vertex) if (allocated (prt_in%lifetime)) & allocate (prt_out%lifetime, source=prt_in%lifetime) end subroutine particle_init_particle @ %def particle_init_particle @ Initialize a particle using external information. <>= generic :: init => init_external procedure :: init_external => particle_init_external <>= module subroutine particle_init_external & (particle, status, pdg, model, col, anti_col, mom) class(particle_t), intent(out) :: particle integer, intent(in) :: status, pdg, col, anti_col class(model_data_t), pointer, intent(in) :: model type(vector4_t), intent(in) :: mom end subroutine particle_init_external <>= module subroutine particle_init_external & (particle, status, pdg, model, col, anti_col, mom) class(particle_t), intent(out) :: particle integer, intent(in) :: status, pdg, col, anti_col class(model_data_t), pointer, intent(in) :: model type(vector4_t), intent(in) :: mom type(flavor_t) :: flavor type(color_t) :: color call flavor%init (pdg, model) call particle%set_flavor (flavor) call color%init_col_acl (col, anti_col) call particle%set_color (color) call particle%set_status (status) call particle%set_momentum (mom) end subroutine particle_init_external @ %def particle_init_external @ Initialize a particle using a single-particle state matrix which determines flavor, color, and polarization. The state matrix must have unique flavor and color. The factorization mode determines whether the particle is unpolarized, has definite helicity, or generic polarization. This mode is translated into the polarization status. <>= generic :: init => init_state procedure :: init_state => particle_init_state <>= module subroutine particle_init_state (prt, state, status, mode) class(particle_t), intent(out) :: prt type(state_matrix_t), intent(in), target :: state integer, intent(in) :: status, mode end subroutine particle_init_state <>= module subroutine particle_init_state (prt, state, status, mode) class(particle_t), intent(out) :: prt type(state_matrix_t), intent(in), target :: state integer, intent(in) :: status, mode type(state_iterator_t) :: it prt%status = status call it%init (state) prt%flv = it%get_flavor (1) if (prt%flv%is_radiated ()) prt%status = PRT_BEAM_REMNANT prt%col = it%get_color (1) select case (mode) case (FM_SELECT_HELICITY) prt%hel = it%get_helicity (1) if (prt%hel%is_defined ()) then prt%polarization = PRT_DEFINITE_HELICITY end if case (FM_FACTOR_HELICITY) call prt%pol%init_state_matrix (state) prt%polarization = PRT_GENERIC_POLARIZATION end select end subroutine particle_init_state @ %def particle_init_state @ Finalizer. <>= procedure :: final => particle_final <>= module subroutine particle_final (prt) class(particle_t), intent(inout) :: prt end subroutine particle_final <>= module subroutine particle_final (prt) class(particle_t), intent(inout) :: prt if (allocated (prt%vertex)) deallocate (prt%vertex) if (allocated (prt%lifetime)) deallocate (prt%lifetime) end subroutine particle_final @ %def particle_final @ \subsubsection{I/O} <>= procedure :: write => particle_write <>= module subroutine particle_write (prt, unit, testflag, compressed, polarization) class(particle_t), intent(in) :: prt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag, compressed, polarization end subroutine particle_write <>= module subroutine particle_write (prt, unit, testflag, compressed, polarization) class(particle_t), intent(in) :: prt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag, compressed, polarization logical :: comp, pacified, pol integer :: u, h1, h2 real(default) :: pp2 character(len=7) :: fmt character(len=20) :: buffer comp = .false.; if (present (compressed)) comp = compressed pacified = .false.; if (present (testflag)) pacified = testflag pol = .true.; if (present (polarization)) pol = polarization call pac_fmt (fmt, FMT_19, FMT_16, testflag) u = given_output_unit (unit); if (u < 0) return pp2 = prt%p2 if (pacified) call pacify (pp2, tolerance = 1E-10_default) select case (prt%status) case (PRT_UNDEFINED); write (u, "(1x, A)", advance="no") "[-]" case (PRT_BEAM); write (u, "(1x, A)", advance="no") "[b]" case (PRT_INCOMING); write (u, "(1x, A)", advance="no") "[i]" case (PRT_OUTGOING); write (u, "(1x, A)", advance="no") "[o]" case (PRT_VIRTUAL); write (u, "(1x, A)", advance="no") "[v]" case (PRT_RESONANT); write (u, "(1x, A)", advance="no") "[r]" case (PRT_BEAM_REMNANT); write (u, "(1x, A)", advance="no") "[x]" end select write (u, "(1x)", advance="no") if (comp) then write (u, "(A7,1X)", advance="no") char (prt%flv%get_name ()) if (pol) then select case (prt%polarization) case (PRT_DEFINITE_HELICITY) ! Integer helicity, assumed diagonal call prt%hel%get_indices (h1, h2) write (u, "(I2,1X)", advance="no") h1 case (PRT_GENERIC_POLARIZATION) ! No space for full density matrix here write (u, "(A2,1X)", advance="no") "*" case default ! Blank entry if helicity is undefined write (u, "(A2,1X)", advance="no") " " end select end if write (u, "(2(I4,1X))", advance="no") & prt%col%get_col (), prt%col%get_acl () call write_compressed_integer_array (buffer, prt%parent) write (u, "(A,1X)", advance="no") buffer call write_compressed_integer_array (buffer, prt%child) write (u, "(A,1X)", advance="no") buffer call prt%p%write(u, testflag = testflag, compressed = comp) write (u, "(F12.3)") pp2 else call prt%flv%write (unit) if (prt%col%is_nonzero ()) then call color_write (prt%col, unit) end if if (pol) then select case (prt%polarization) case (PRT_DEFINITE_HELICITY) call prt%hel%write (unit) write (u, *) case (PRT_GENERIC_POLARIZATION) write (u, *) call prt%pol%write (unit, state_matrix = .true.) case default write (u, *) end select else write (u, *) end if call prt%p%write (unit, testflag = testflag) write (u, "(1x,A,1x," // fmt // ")") "T = ", pp2 if (allocated (prt%parent)) then if (size (prt%parent) /= 0) then write (u, "(1x,A,40(1x,I0))") "Parents: ", prt%parent end if end if if (allocated (prt%child)) then if (size (prt%child) /= 0) then write (u, "(1x,A,40(1x,I0))") "Children:", prt%child end if end if if (allocated (prt%vertex)) then write (u, "(1x,A,1x," // fmt // ")") "Vtx t = ", prt%vertex%p(0) write (u, "(1x,A,1x," // fmt // ")") "Vtx x = ", prt%vertex%p(1) write (u, "(1x,A,1x," // fmt // ")") "Vtx y = ", prt%vertex%p(2) write (u, "(1x,A,1x," // fmt // ")") "Vtx z = ", prt%vertex%p(3) end if if (allocated (prt%lifetime)) then write (u, "(1x,A,1x," // fmt // ")") "Lifetime = ", & prt%lifetime end if end if end subroutine particle_write @ %def particle_write @ Binary I/O: <>= procedure :: write_raw => particle_write_raw procedure :: read_raw => particle_read_raw <>= module subroutine particle_write_raw (prt, u) class(particle_t), intent(in) :: prt integer, intent(in) :: u end subroutine particle_write_raw module subroutine particle_read_raw (prt, u, iostat) class(particle_t), intent(out) :: prt integer, intent(in) :: u integer, intent(out) :: iostat end subroutine particle_read_raw <>= module subroutine particle_write_raw (prt, u) class(particle_t), intent(in) :: prt integer, intent(in) :: u write (u) prt%status, prt%polarization call prt%flv%write_raw (u) call prt%col%write_raw (u) select case (prt%polarization) case (PRT_DEFINITE_HELICITY) call prt%hel%write_raw (u) case (PRT_GENERIC_POLARIZATION) call prt%pol%write_raw (u) end select call vector4_write_raw (prt%p, u) write (u) prt%p2 write (u) allocated (prt%parent) if (allocated (prt%parent)) then write (u) size (prt%parent) write (u) prt%parent end if write (u) allocated (prt%child) if (allocated (prt%child)) then write (u) size (prt%child) write (u) prt%child end if write (u) allocated (prt%vertex) if (allocated (prt%vertex)) then call vector4_write_raw (prt%vertex, u) end if write (u) allocated (prt%lifetime) if (allocated (prt%lifetime)) then write (u) prt%lifetime end if end subroutine particle_write_raw module subroutine particle_read_raw (prt, u, iostat) class(particle_t), intent(out) :: prt integer, intent(in) :: u integer, intent(out) :: iostat logical :: allocated_parent, allocated_child logical :: allocated_vertex, allocated_lifetime integer :: size_parent, size_child read (u, iostat=iostat) prt%status, prt%polarization call prt%flv%read_raw (u, iostat=iostat) call prt%col%read_raw (u, iostat=iostat) select case (prt%polarization) case (PRT_DEFINITE_HELICITY) call prt%hel%read_raw (u, iostat=iostat) case (PRT_GENERIC_POLARIZATION) call prt%pol%read_raw (u, iostat=iostat) end select call vector4_read_raw (prt%p, u, iostat=iostat) read (u, iostat=iostat) prt%p2 read (u, iostat=iostat) allocated_parent if (allocated_parent) then read (u, iostat=iostat) size_parent allocate (prt%parent (size_parent)) read (u, iostat=iostat) prt%parent end if read (u, iostat=iostat) allocated_child if (allocated_child) then read (u, iostat=iostat) size_child allocate (prt%child (size_child)) read (u, iostat=iostat) prt%child end if read (u, iostat=iostat) allocated_vertex if (allocated_vertex) then allocate (prt%vertex) read (u, iostat=iostat) prt%vertex%p end if read (u, iostat=iostat) allocated_lifetime if (allocated_lifetime) then allocate (prt%lifetime) read (u, iostat=iostat) prt%lifetime end if end subroutine particle_read_raw @ %def particle_write_raw particle_read_raw @ \subsubsection{Setting contents} Reset the status code. Where applicable, set $p^2$ assuming that the particle is on-shell. <>= procedure :: reset_status => particle_reset_status <>= elemental module subroutine particle_reset_status (prt, status) class(particle_t), intent(inout) :: prt integer, intent(in) :: status end subroutine particle_reset_status <>= elemental module subroutine particle_reset_status (prt, status) class(particle_t), intent(inout) :: prt integer, intent(in) :: status prt%status = status select case (status) case (PRT_BEAM, PRT_INCOMING, PRT_OUTGOING) prt%p2 = prt%flv%get_mass () ** 2 end select end subroutine particle_reset_status @ %def particle_reset_status @ The color can be given explicitly. <>= procedure :: set_color => particle_set_color <>= elemental module subroutine particle_set_color (prt, col) class(particle_t), intent(inout) :: prt type(color_t), intent(in) :: col end subroutine particle_set_color <>= elemental module subroutine particle_set_color (prt, col) class(particle_t), intent(inout) :: prt type(color_t), intent(in) :: col prt%col = col end subroutine particle_set_color @ %def particle_set_color @ The flavor can be given explicitly. <>= procedure :: set_flavor => particle_set_flavor <>= module subroutine particle_set_flavor (prt, flv) class(particle_t), intent(inout) :: prt type(flavor_t), intent(in) :: flv end subroutine particle_set_flavor <>= module subroutine particle_set_flavor (prt, flv) class(particle_t), intent(inout) :: prt type(flavor_t), intent(in) :: flv prt%flv = flv end subroutine particle_set_flavor @ %def particle_set_flavor @ As can the helicity. <>= procedure :: set_helicity => particle_set_helicity <>= module subroutine particle_set_helicity (prt, hel) class(particle_t), intent(inout) :: prt type(helicity_t), intent(in) :: hel end subroutine particle_set_helicity <>= module subroutine particle_set_helicity (prt, hel) class(particle_t), intent(inout) :: prt type(helicity_t), intent(in) :: hel prt%hel = hel end subroutine particle_set_helicity @ %def particle_set_helicity @ And the polarization. <>= procedure :: set_pol => particle_set_pol <>= module subroutine particle_set_pol (prt, pol) class(particle_t), intent(inout) :: prt type(polarization_t), intent(in) :: pol end subroutine particle_set_pol <>= module subroutine particle_set_pol (prt, pol) class(particle_t), intent(inout) :: prt type(polarization_t), intent(in) :: pol prt%pol = pol end subroutine particle_set_pol @ %def particle_set_pol @ Manually set the model for the particle flavor. This is required, e.g., if the particle has been read from file. <>= procedure :: set_model => particle_set_model <>= module subroutine particle_set_model (prt, model) class(particle_t), intent(inout) :: prt class(model_data_t), intent(in), target :: model end subroutine particle_set_model <>= module subroutine particle_set_model (prt, model) class(particle_t), intent(inout) :: prt class(model_data_t), intent(in), target :: model call prt%flv%set_model (model) end subroutine particle_set_model @ %def particle_set_model @ The momentum is set independent of the quantum numbers. <>= procedure :: set_momentum => particle_set_momentum <>= elemental module subroutine particle_set_momentum (prt, p, p2, on_shell) class(particle_t), intent(inout) :: prt type(vector4_t), intent(in) :: p real(default), intent(in), optional :: p2 logical, intent(in), optional :: on_shell end subroutine particle_set_momentum <>= elemental module subroutine particle_set_momentum (prt, p, p2, on_shell) class(particle_t), intent(inout) :: prt type(vector4_t), intent(in) :: p real(default), intent(in), optional :: p2 logical, intent(in), optional :: on_shell prt%p = p if (present (on_shell)) then if (on_shell) then if (prt%flv%is_associated ()) then prt%p2 = prt%flv%get_mass () ** 2 return end if end if end if if (present (p2)) then prt%p2 = p2 else prt%p2 = p ** 2 end if end subroutine particle_set_momentum @ %def particle_set_momentum @ Set resonance information. This should be done after momentum assignment, because we need to know wheter the particle is spacelike or timelike. The resonance flag is defined only for virtual particles. -<>= +<>= procedure :: set_resonance_flag => particle_set_resonance_flag +<>= + elemental module subroutine particle_set_resonance_flag (prt, resonant) + class(particle_t), intent(inout) :: prt + logical, intent(in) :: resonant + end subroutine particle_set_resonance_flag <>= - elemental subroutine particle_set_resonance_flag (prt, resonant) + elemental module subroutine particle_set_resonance_flag (prt, resonant) class(particle_t), intent(inout) :: prt logical, intent(in) :: resonant select case (prt%status) case (PRT_VIRTUAL) if (resonant) prt%status = PRT_RESONANT end select end subroutine particle_set_resonance_flag @ %def particle_set_resonance_flag @ Set children and parents information. <>= procedure :: set_children => particle_set_children procedure :: set_parents => particle_set_parents <>= module subroutine particle_set_children (prt, idx) class(particle_t), intent(inout) :: prt integer, dimension(:), intent(in) :: idx end subroutine particle_set_children module subroutine particle_set_parents (prt, idx) class(particle_t), intent(inout) :: prt integer, dimension(:), intent(in) :: idx end subroutine particle_set_parents <>= module subroutine particle_set_children (prt, idx) class(particle_t), intent(inout) :: prt integer, dimension(:), intent(in) :: idx if (allocated (prt%child)) deallocate (prt%child) allocate (prt%child (count (idx /= 0))) prt%child = pack (idx, idx /= 0) end subroutine particle_set_children module subroutine particle_set_parents (prt, idx) class(particle_t), intent(inout) :: prt integer, dimension(:), intent(in) :: idx if (allocated (prt%parent)) deallocate (prt%parent) allocate (prt%parent (count (idx /= 0))) prt%parent = pack (idx, idx /= 0) end subroutine particle_set_parents @ %def particle_set_children particle_set_parents @ <>= procedure :: add_child => particle_add_child <>= module subroutine particle_add_child (prt, new_child) class(particle_t), intent(inout) :: prt integer, intent(in) :: new_child end subroutine particle_add_child <>= module subroutine particle_add_child (prt, new_child) class(particle_t), intent(inout) :: prt integer, intent(in) :: new_child integer, dimension(:), allocatable :: idx integer :: n, i n = prt%get_n_children() if (n == 0) then call prt%set_children ([new_child]) else do i = 1, n if (prt%child(i) == new_child) then return end if end do allocate (idx (1:n+1)) idx(1:n) = prt%get_children () idx(n+1) = new_child call prt%set_children (idx) end if end subroutine particle_add_child @ %def particle_add_child @ <>= procedure :: add_children => particle_add_children <>= module subroutine particle_add_children (prt, new_child) class(particle_t), intent(inout) :: prt integer, dimension(:), intent(in) :: new_child end subroutine particle_add_children <>= module subroutine particle_add_children (prt, new_child) class(particle_t), intent(inout) :: prt integer, dimension(:), intent(in) :: new_child integer, dimension(:), allocatable :: idx integer :: n n = prt%get_n_children() if (n == 0) then call prt%set_children (new_child) else allocate (idx (1:n+size(new_child))) idx(1:n) = prt%get_children () idx(n+1:n+size(new_child)) = new_child call prt%set_children (idx) end if end subroutine particle_add_children @ %def particle_add_children @ <>= procedure :: set_status => particle_set_status <>= elemental module subroutine particle_set_status (prt, status) class(particle_t), intent(inout) :: prt integer, intent(in) :: status end subroutine particle_set_status <>= elemental module subroutine particle_set_status (prt, status) class(particle_t), intent(inout) :: prt integer, intent(in) :: status prt%status = status end subroutine particle_set_status @ %def particle_set_status @ <>= procedure :: set_polarization => particle_set_polarization <>= module subroutine particle_set_polarization (prt, polarization) class(particle_t), intent(inout) :: prt integer, intent(in) :: polarization end subroutine particle_set_polarization <>= module subroutine particle_set_polarization (prt, polarization) class(particle_t), intent(inout) :: prt integer, intent(in) :: polarization prt%polarization = polarization end subroutine particle_set_polarization @ %def particle_set_polarization @ <>= generic :: set_vertex => set_vertex_from_vector3, set_vertex_from_xyz, & set_vertex_from_vector4, set_vertex_from_xyzt procedure :: set_vertex_from_vector4 => particle_set_vertex_from_vector4 procedure :: set_vertex_from_vector3 => particle_set_vertex_from_vector3 procedure :: set_vertex_from_xyzt => particle_set_vertex_from_xyzt procedure :: set_vertex_from_xyz => particle_set_vertex_from_xyz <>= module subroutine particle_set_vertex_from_vector4 (prt, vertex) class(particle_t), intent(inout) :: prt type(vector4_t), intent(in) :: vertex end subroutine particle_set_vertex_from_vector4 module subroutine particle_set_vertex_from_vector3 (prt, vertex) class(particle_t), intent(inout) :: prt type(vector3_t), intent(in) :: vertex end subroutine particle_set_vertex_from_vector3 module subroutine particle_set_vertex_from_xyzt (prt, vx, vy, vz, t) class(particle_t), intent(inout) :: prt real(default), intent(in) :: vx, vy, vz, t end subroutine particle_set_vertex_from_xyzt module subroutine particle_set_vertex_from_xyz (prt, vx, vy, vz) class(particle_t), intent(inout) :: prt real(default), intent(in) :: vx, vy, vz end subroutine particle_set_vertex_from_xyz <>= module subroutine particle_set_vertex_from_vector4 (prt, vertex) class(particle_t), intent(inout) :: prt type(vector4_t), intent(in) :: vertex if (allocated (prt%vertex)) deallocate (prt%vertex) allocate (prt%vertex, source=vertex) end subroutine particle_set_vertex_from_vector4 module subroutine particle_set_vertex_from_vector3 (prt, vertex) class(particle_t), intent(inout) :: prt type(vector3_t), intent(in) :: vertex type(vector4_t) :: vtx vtx = vector4_moving (0._default, vertex) if (allocated (prt%vertex)) deallocate (prt%vertex) allocate (prt%vertex, source=vtx) end subroutine particle_set_vertex_from_vector3 module subroutine particle_set_vertex_from_xyzt (prt, vx, vy, vz, t) class(particle_t), intent(inout) :: prt real(default), intent(in) :: vx, vy, vz, t type(vector4_t) :: vertex if (allocated (prt%vertex)) deallocate (prt%vertex) vertex = vector4_moving (t, vector3_moving ([vx, vy, vz])) allocate (prt%vertex, source=vertex) end subroutine particle_set_vertex_from_xyzt module subroutine particle_set_vertex_from_xyz (prt, vx, vy, vz) class(particle_t), intent(inout) :: prt real(default), intent(in) :: vx, vy, vz type(vector4_t) :: vertex if (allocated (prt%vertex)) deallocate (prt%vertex) vertex = vector4_moving (0._default, vector3_moving ([vx, vy, vz])) allocate (prt%vertex, source=vertex) end subroutine particle_set_vertex_from_xyz @ %def particle_set_vertex_from_vector3 @ %def particle_set_vertex_from_vector4 @ %def particle_set_vertex_from_xyz @ %def particle_set_vertex_from_xyzt @ Set the lifetime of a particle. <>= procedure :: set_lifetime => particle_set_lifetime <>= elemental module subroutine particle_set_lifetime (prt, lifetime) class(particle_t), intent(inout) :: prt real(default), intent(in) :: lifetime end subroutine particle_set_lifetime <>= elemental module subroutine particle_set_lifetime (prt, lifetime) class(particle_t), intent(inout) :: prt real(default), intent(in) :: lifetime if (allocated (prt%lifetime)) deallocate (prt%lifetime) allocate (prt%lifetime, source=lifetime) end subroutine particle_set_lifetime @ %def particle_set_lifetime @ \subsubsection{Accessing contents} The status code. <>= procedure :: get_status => particle_get_status <>= elemental module function particle_get_status (prt) result (status) integer :: status class(particle_t), intent(in) :: prt end function particle_get_status <>= elemental module function particle_get_status (prt) result (status) integer :: status class(particle_t), intent(in) :: prt status = prt%status end function particle_get_status @ %def particle_get_status @ Return true if the status is either [[INCOMING]], [[OUTGOING]] or [[RESONANT]]. [[BEAM]] is kept, if [[keep_beams]] is set true. <>= procedure :: is_real => particle_is_real <>= elemental module function particle_is_real (prt, keep_beams) result (flag) logical :: flag, kb class(particle_t), intent(in) :: prt logical, intent(in), optional :: keep_beams end function particle_is_real <>= elemental module function particle_is_real (prt, keep_beams) result (flag) logical :: flag, kb class(particle_t), intent(in) :: prt logical, intent(in), optional :: keep_beams kb = .false. if (present (keep_beams)) kb = keep_beams select case (prt%status) case (PRT_INCOMING, PRT_OUTGOING, PRT_RESONANT) flag = .true. case (PRT_BEAM) flag = kb case default flag = .false. end select end function particle_is_real @ %def particle_is_real @ <>= procedure :: is_colored => particle_is_colored <>= elemental module function particle_is_colored (particle) result (flag) logical :: flag class(particle_t), intent(in) :: particle end function particle_is_colored <>= elemental module function particle_is_colored (particle) result (flag) logical :: flag class(particle_t), intent(in) :: particle flag = particle%col%is_nonzero () end function particle_is_colored @ %def particle_is_colored @ $[90,100]$ hopefully catches all of them and not too many. <>= procedure :: is_hadronic_beam_remnant => particle_is_hadronic_beam_remnant <>= elemental module function particle_is_hadronic_beam_remnant (particle) result (flag) class(particle_t), intent(in) :: particle logical :: flag end function particle_is_hadronic_beam_remnant <>= elemental module function particle_is_hadronic_beam_remnant (particle) result (flag) class(particle_t), intent(in) :: particle logical :: flag integer :: pdg pdg = particle%flv%get_pdg () flag = particle%status == PRT_BEAM_REMNANT .and. & abs(pdg) >= 90 .and. abs(pdg) <= 100 end function particle_is_hadronic_beam_remnant @ %def particle_is_hadronic_beam_remnant @ <>= procedure :: is_beam_remnant => particle_is_beam_remnant <>= elemental module function particle_is_beam_remnant (particle) result (flag) class(particle_t), intent(in) :: particle logical :: flag end function particle_is_beam_remnant <>= elemental module function particle_is_beam_remnant (particle) result (flag) class(particle_t), intent(in) :: particle logical :: flag flag = particle%status == PRT_BEAM_REMNANT end function particle_is_beam_remnant @ %def particle_is_beam_remnant @ Polarization status. <>= procedure :: get_polarization_status => particle_get_polarization_status <>= elemental module function particle_get_polarization_status (prt) result (status) integer :: status class(particle_t), intent(in) :: prt end function particle_get_polarization_status <>= elemental module function particle_get_polarization_status (prt) result (status) integer :: status class(particle_t), intent(in) :: prt status = prt%polarization end function particle_get_polarization_status @ %def particle_get_polarization_status @ Return the PDG code from the flavor component directly. <>= procedure :: get_pdg => particle_get_pdg <>= elemental module function particle_get_pdg (prt) result (pdg) integer :: pdg class(particle_t), intent(in) :: prt end function particle_get_pdg <>= elemental module function particle_get_pdg (prt) result (pdg) integer :: pdg class(particle_t), intent(in) :: prt pdg = prt%flv%get_pdg () end function particle_get_pdg @ %def particle_get_pdg @ Return the color and anticolor quantum numbers. <>= procedure :: get_color => particle_get_color <>= pure module function particle_get_color (prt) result (col) integer, dimension(2) :: col class(particle_t), intent(in) :: prt end function particle_get_color <>= pure module function particle_get_color (prt) result (col) integer, dimension(2) :: col class(particle_t), intent(in) :: prt col(1) = prt%col%get_col () col(2) = prt%col%get_acl () end function particle_get_color @ %def particle_get_color @ Return a copy of the polarization density matrix. <>= procedure :: get_polarization => particle_get_polarization <>= module function particle_get_polarization (prt) result (pol) class(particle_t), intent(in) :: prt type(polarization_t) :: pol end function particle_get_polarization <>= module function particle_get_polarization (prt) result (pol) class(particle_t), intent(in) :: prt type(polarization_t) :: pol pol = prt%pol end function particle_get_polarization @ %def particle_get_polarization @ Return the flavor, color and helicity. <>= procedure :: get_flv => particle_get_flv procedure :: get_col => particle_get_col procedure :: get_hel => particle_get_hel <>= module function particle_get_flv (prt) result (flv) class(particle_t), intent(in) :: prt type(flavor_t) :: flv end function particle_get_flv module function particle_get_col (prt) result (col) class(particle_t), intent(in) :: prt type(color_t) :: col end function particle_get_col module function particle_get_hel (prt) result (hel) class(particle_t), intent(in) :: prt type(helicity_t) :: hel end function particle_get_hel <>= module function particle_get_flv (prt) result (flv) class(particle_t), intent(in) :: prt type(flavor_t) :: flv flv = prt%flv end function particle_get_flv module function particle_get_col (prt) result (col) class(particle_t), intent(in) :: prt type(color_t) :: col col = prt%col end function particle_get_col module function particle_get_hel (prt) result (hel) class(particle_t), intent(in) :: prt type(helicity_t) :: hel hel = prt%hel end function particle_get_hel @ %def particle_get_flv particle_get_col particle_get_hel @ Return the helicity (if defined and diagonal). <>= procedure :: get_helicity => particle_get_helicity <>= elemental module function particle_get_helicity (prt) result (hel) integer :: hel class(particle_t), intent(in) :: prt end function particle_get_helicity <>= elemental module function particle_get_helicity (prt) result (hel) integer :: hel integer, dimension(2) :: hel_arr class(particle_t), intent(in) :: prt hel = 0 if (prt%hel%is_defined () .and. prt%hel%is_diagonal ()) then hel_arr = prt%hel%to_pair () hel = hel_arr (1) end if end function particle_get_helicity @ %def particle_get_helicity @ Return the number of children/parents <>= procedure :: get_n_parents => particle_get_n_parents procedure :: get_n_children => particle_get_n_children <>= elemental module function particle_get_n_parents (prt) result (n) integer :: n class(particle_t), intent(in) :: prt end function particle_get_n_parents elemental module function particle_get_n_children (prt) result (n) integer :: n class(particle_t), intent(in) :: prt end function particle_get_n_children <>= elemental module function particle_get_n_parents (prt) result (n) integer :: n class(particle_t), intent(in) :: prt if (allocated (prt%parent)) then n = size (prt%parent) else n = 0 end if end function particle_get_n_parents elemental module function particle_get_n_children (prt) result (n) integer :: n class(particle_t), intent(in) :: prt if (allocated (prt%child)) then n = size (prt%child) else n = 0 end if end function particle_get_n_children @ %def particle_get_n_parents particle_get_n_children @ Return the array of parents/children. <>= procedure :: get_parents => particle_get_parents procedure :: get_children => particle_get_children <>= module function particle_get_parents (prt) result (parent) class(particle_t), intent(in) :: prt integer, dimension(:), allocatable :: parent end function particle_get_parents module function particle_get_children (prt) result (child) class(particle_t), intent(in) :: prt integer, dimension(:), allocatable :: child end function particle_get_children <>= module function particle_get_parents (prt) result (parent) class(particle_t), intent(in) :: prt integer, dimension(:), allocatable :: parent if (allocated (prt%parent)) then allocate (parent (size (prt%parent))) parent = prt%parent else allocate (parent (0)) end if end function particle_get_parents module function particle_get_children (prt) result (child) class(particle_t), intent(in) :: prt integer, dimension(:), allocatable :: child if (allocated (prt%child)) then allocate (child (size (prt%child))) child = prt%child else allocate (child (0)) end if end function particle_get_children @ %def particle_get_children @ <>= procedure :: has_children => particle_has_children <>= elemental module function particle_has_children (prt) result (has_children) logical :: has_children class(particle_t), intent(in) :: prt end function particle_has_children <>= elemental module function particle_has_children (prt) result (has_children) logical :: has_children class(particle_t), intent(in) :: prt has_children = .false. if (allocated (prt%child)) then has_children = size (prt%child) > 0 end if end function particle_has_children @ %def particle_has_children @ <>= procedure :: has_parents => particle_has_parents <>= elemental module function particle_has_parents (prt) result (has_parents) logical :: has_parents class(particle_t), intent(in) :: prt end function particle_has_parents <>= elemental module function particle_has_parents (prt) result (has_parents) logical :: has_parents class(particle_t), intent(in) :: prt has_parents = .false. if (allocated (prt%parent)) then has_parents = size (prt%parent) > 0 end if end function particle_has_parents @ %def particle_has_parents @ Return momentum and momentum squared. <>= procedure :: get_momentum => particle_get_momentum procedure :: get_p2 => particle_get_p2 <>= elemental module function particle_get_momentum (prt) result (p) type(vector4_t) :: p class(particle_t), intent(in) :: prt end function particle_get_momentum elemental module function particle_get_p2 (prt) result (p2) real(default) :: p2 class(particle_t), intent(in) :: prt end function particle_get_p2 <>= elemental module function particle_get_momentum (prt) result (p) type(vector4_t) :: p class(particle_t), intent(in) :: prt p = prt%p end function particle_get_momentum elemental module function particle_get_p2 (prt) result (p2) real(default) :: p2 class(particle_t), intent(in) :: prt p2 = prt%p2 end function particle_get_p2 @ %def particle_get_momentum particle_get_p2 @ Return the particle vertex, if allocated. <>= procedure :: get_vertex => particle_get_vertex <>= elemental module function particle_get_vertex (prt) result (vtx) type(vector4_t) :: vtx class(particle_t), intent(in) :: prt end function particle_get_vertex <>= elemental module function particle_get_vertex (prt) result (vtx) type(vector4_t) :: vtx class(particle_t), intent(in) :: prt if (allocated (prt%vertex)) then vtx = prt%vertex else vtx = vector4_null end if end function particle_get_vertex @ %def particle_get_vertex @ Return the lifetime of a particle. <>= procedure :: get_lifetime => particle_get_lifetime <>= elemental module function particle_get_lifetime (prt) result (lifetime) real(default) :: lifetime class(particle_t), intent(in) :: prt end function particle_get_lifetime <>= elemental module function particle_get_lifetime (prt) result (lifetime) real(default) :: lifetime class(particle_t), intent(in) :: prt if (allocated (prt%lifetime)) then lifetime = prt%lifetime else lifetime = 0 end if end function particle_get_lifetime @ %def particle_get_lifetime @ <>= procedure :: momentum_to_pythia6 => particle_momentum_to_pythia6 <>= pure module function particle_momentum_to_pythia6 (prt) result (p) real(double), dimension(1:5) :: p class(particle_t), intent(in) :: prt end function particle_momentum_to_pythia6 <>= pure module function particle_momentum_to_pythia6 (prt) result (p) real(double), dimension(1:5) :: p class(particle_t), intent(in) :: prt p = prt%p%to_pythia6 (sqrt (prt%p2)) end function particle_momentum_to_pythia6 @ %def particle_momentum_to_pythia6 @ \subsection{Particle sets} A particle set is what is usually called an event: an array of particles. The individual particle entries carry momentum, quantum numbers, polarization, and optionally connections. There is (also optionally) a correlated state-density matrix that maintains spin correlations that are lost in the individual particle entries. <>= public :: particle_set_t <>= type :: particle_set_t ! private !!! integer :: n_beam = 0 integer :: n_in = 0 integer :: n_vir = 0 integer :: n_out = 0 integer :: n_tot = 0 integer :: factorization_mode = FM_IGNORE_HELICITY type(particle_t), dimension(:), allocatable :: prt type(state_matrix_t) :: correlated_state contains <> end type particle_set_t @ %def particle_set_t @ A particle set can be initialized from an interaction or from a HepMC event record. <>= generic :: init => init_interaction procedure :: init_interaction => particle_set_init_interaction @ When a particle set is initialized from a given interaction, we have to determine the branch within the original state matrix that fixes the particle quantum numbers. This is done with the appropriate probabilities, based on a random number [[x]]. The [[mode]] determines whether the individual particles become unpolarized, or take a definite (diagonal) helicity, or acquire single-particle polarization matrices. The flag [[keep_correlations]] tells whether the spin-correlation matrix is to be calculated and stored in addition to the particles. The flag [[keep_virtual]] tells whether virtual particles should be dropped. Note that if virtual particles are dropped, the spin-correlation matrix makes no sense, and parent-child relations are not set. For a correct disentangling of color and flavor (in the presence of helicity), we consider two interactions. [[int]] has no color information, and is used to select a flavor state. Consequently, we trace over helicities here. [[int_flows]] contains color-flow and potentially helicity information, but is useful only after the flavor combination has been chosen. So this interaction is used to select helicity and color, but restricted to the selected flavor combination. [[int]] and [[int_flows]] may be identical if there is only a single (or no) color flow. If there is just a single flavor combination, [[x(1)]] can be set to zero. The current algorithm of evaluator convolution requires that the beam particles are assumed outgoing (in the beam interaction) and become virtual in all derived interactions. In the particle set they should be re-identified as incoming. The optional integer [[n_incoming]] can be used to perform this correction. The flag [[is_valid]] is false if factorization of the state is not possible, in particular if the squared matrix element is zero. <>= module subroutine particle_set_init_interaction & (particle_set, is_valid, int, int_flows, mode, x, & keep_correlations, keep_virtual, n_incoming, qn_select) class(particle_set_t), intent(out) :: particle_set logical, intent(out) :: is_valid type(interaction_t), intent(in), target :: int, int_flows integer, intent(in) :: mode real(default), dimension(2), intent(in) :: x logical, intent(in) :: keep_correlations, keep_virtual integer, intent(in), optional :: n_incoming type(quantum_numbers_t), dimension(:), intent(in), optional :: qn_select end subroutine particle_set_init_interaction <>= module subroutine particle_set_init_interaction & (particle_set, is_valid, int, int_flows, mode, x, & keep_correlations, keep_virtual, n_incoming, qn_select) class(particle_set_t), intent(out) :: particle_set logical, intent(out) :: is_valid type(interaction_t), intent(in), target :: int, int_flows integer, intent(in) :: mode real(default), dimension(2), intent(in) :: x logical, intent(in) :: keep_correlations, keep_virtual integer, intent(in), optional :: n_incoming type(quantum_numbers_t), dimension(:), intent(in), optional :: qn_select type(state_matrix_t), dimension(:), allocatable, target :: flavor_state type(state_matrix_t), dimension(:), allocatable, target :: single_state integer :: n_in, n_vir, n_out, n_tot type(quantum_numbers_t), dimension(:,:), allocatable :: qn logical :: ok integer :: i, j if (present (n_incoming)) then n_in = n_incoming n_vir = int%get_n_vir () - n_incoming else n_in = int%get_n_in () n_vir = int%get_n_vir () end if n_out = int%get_n_out () n_tot = int%get_n_tot () particle_set%n_in = n_in particle_set%n_out = n_out if (keep_virtual) then particle_set%n_vir = n_vir particle_set%n_tot = n_tot else particle_set%n_vir = 0 particle_set%n_tot = n_in + n_out end if particle_set%factorization_mode = mode allocate (qn (n_tot, 1)) if (.not. present (qn_select)) then call int%factorize & (FM_IGNORE_HELICITY, x(1), is_valid, flavor_state) do i = 1, n_tot qn(i,:) = flavor_state(i)%get_quantum_number (1) end do else do i = 1, n_tot qn(i,:) = qn_select(i) end do is_valid = .true. end if if (keep_correlations .and. keep_virtual) then call particle_set%correlated_state%final () call int_flows%factorize (mode, x(2), ok, & single_state, particle_set%correlated_state, qn(:,1)) else call int_flows%factorize (mode, x(2), ok, & single_state, qn_in=qn(:,1)) end if is_valid = is_valid .and. ok allocate (particle_set%prt (particle_set%n_tot)) j = 1 do i = 1, n_tot if (i <= n_in) then call particle_set%prt(j)%init (single_state(i), PRT_INCOMING, mode) call particle_set%prt(j)%set_momentum (int%get_momentum (i)) else if (i <= n_in + n_vir) then if (.not. keep_virtual) cycle call particle_set%prt(j)%init & (single_state(i), PRT_VIRTUAL, mode) call particle_set%prt(j)%set_momentum (int%get_momentum (i)) else call particle_set%prt(j)%init (single_state(i), PRT_OUTGOING, mode) call particle_set%prt(j)%set_momentum & (int%get_momentum (i), on_shell = .true.) end if if (keep_virtual) then call particle_set%prt(j)%set_children (int%get_children (i)) call particle_set%prt(j)%set_parents (int%get_parents (i)) end if j = j + 1 end do if (keep_virtual) then call particle_set_resonance_flag & (particle_set%prt, int%get_resonance_flags ()) end if if (allocated (flavor_state)) then do i = 1, size(flavor_state) call flavor_state(i)%final () end do end if do i = 1, size(single_state) call single_state(i)%final () end do end subroutine particle_set_init_interaction @ %def particle_set_init_interaction @ Duplicate generic binding, to make sure that assignment works as it should. <>= generic :: assignment(=) => init_particle_set generic :: init => init_particle_set procedure :: init_particle_set => particle_set_init_particle_set <>= module subroutine particle_set_init_particle_set (pset_out, pset_in) class(particle_set_t), intent(out) :: pset_out type(particle_set_t), intent(in) :: pset_in end subroutine particle_set_init_particle_set <>= module subroutine particle_set_init_particle_set (pset_out, pset_in) class(particle_set_t), intent(out) :: pset_out type(particle_set_t), intent(in) :: pset_in integer :: i pset_out%n_beam = pset_in%n_beam pset_out%n_in = pset_in%n_in pset_out%n_vir = pset_in%n_vir pset_out%n_out = pset_in%n_out pset_out%n_tot = pset_in%n_tot pset_out%factorization_mode = pset_in%factorization_mode if (allocated (pset_in%prt)) then allocate (pset_out%prt (size (pset_in%prt))) do i = 1, size (pset_in%prt) pset_out%prt(i) = pset_in%prt(i) end do end if pset_out%correlated_state = pset_in%correlated_state end subroutine particle_set_init_particle_set @ %def particle_set_init_particle_set @ Manually set the model for the stored particles. <>= procedure :: set_model => particle_set_set_model <>= module subroutine particle_set_set_model (particle_set, model) class(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model end subroutine particle_set_set_model <>= module subroutine particle_set_set_model (particle_set, model) class(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model integer :: i do i = 1, particle_set%n_tot call particle_set%prt(i)%set_model (model) end do call particle_set%correlated_state%set_model (model) end subroutine particle_set_set_model @ %def particle_set_set_model @ Pointer components are hidden inside the particle polarization, and in the correlated state matrix. <>= procedure :: final => particle_set_final <>= module subroutine particle_set_final (particle_set) class(particle_set_t), intent(inout) :: particle_set end subroutine particle_set_final <>= module subroutine particle_set_final (particle_set) class(particle_set_t), intent(inout) :: particle_set integer :: i if (allocated (particle_set%prt)) then do i = 1, size(particle_set%prt) call particle_set%prt(i)%final () end do deallocate (particle_set%prt) end if call particle_set%correlated_state%final () end subroutine particle_set_final @ %def particle_set_final @ \subsection{Manual build} Basic initialization. Just allocate with a given number of beam, incoming, virtual, and outgoing particles. <>= procedure :: basic_init => particle_set_basic_init <>= module subroutine particle_set_basic_init (particle_set, n_beam, n_in, n_vir, n_out) class(particle_set_t), intent(out) :: particle_set integer, intent(in) :: n_beam, n_in, n_vir, n_out end subroutine particle_set_basic_init <>= module subroutine particle_set_basic_init (particle_set, n_beam, n_in, n_vir, n_out) class(particle_set_t), intent(out) :: particle_set integer, intent(in) :: n_beam, n_in, n_vir, n_out particle_set%n_beam = n_beam particle_set%n_in = n_in particle_set%n_vir = n_vir particle_set%n_out = n_out particle_set%n_tot = n_beam + n_in + n_vir + n_out allocate (particle_set%prt (particle_set%n_tot)) end subroutine particle_set_basic_init @ %def particle_set_basic_init @ Build a particle set from scratch. This is used for testing purposes. The ordering of particles in the result is beam-incoming-remnant-virtual-outgoing. Parent-child relations: \begin{itemize} \item Beams are parents of incoming and beam remnants. The assignment is alternating (first beam, second beam). \item Incoming are parents of virtual and outgoing, collectively. \end{itemize} More specific settings, such as resonance histories, cannot be set this way. Beam-remnant particles are counted as virtual, but have a different status code. We assume that the [[pdg]] array has the correct size. <>= procedure :: init_direct => particle_set_init_direct <>= module subroutine particle_set_init_direct (particle_set, & n_beam, n_in, n_rem, n_vir, n_out, pdg, model) class(particle_set_t), intent(out) :: particle_set integer, intent(in) :: n_beam integer, intent(in) :: n_in integer, intent(in) :: n_rem integer, intent(in) :: n_vir integer, intent(in) :: n_out integer, dimension(:), intent(in) :: pdg class(model_data_t), intent(in), target :: model end subroutine particle_set_init_direct <>= module subroutine particle_set_init_direct (particle_set, & n_beam, n_in, n_rem, n_vir, n_out, pdg, model) class(particle_set_t), intent(out) :: particle_set integer, intent(in) :: n_beam integer, intent(in) :: n_in integer, intent(in) :: n_rem integer, intent(in) :: n_vir integer, intent(in) :: n_out integer, dimension(:), intent(in) :: pdg class(model_data_t), intent(in), target :: model type(flavor_t), dimension(:), allocatable :: flv integer :: i, k, n call particle_set%basic_init (n_beam, n_in, n_rem+n_vir, n_out) n = 0 call particle_set%prt(n+1:n+n_beam)%reset_status (PRT_BEAM) do i = n+1, n+n_beam call particle_set%prt(i)%set_children & ([(k, k=i+n_beam, n+n_beam+n_in+n_rem, 2)]) end do n = n + n_beam call particle_set%prt(n+1:n+n_in)%reset_status (PRT_INCOMING) do i = n+1, n+n_in if (n_beam > 0) then call particle_set%prt(i)%set_parents & ([i-n_beam]) end if call particle_set%prt(i)%set_children & ([(k, k=n+n_in+n_rem+1, n+n_in+n_rem+n_vir+n_out)]) end do n = n + n_in call particle_set%prt(n+1:n+n_rem)%reset_status (PRT_BEAM_REMNANT) do i = n+1, n+n_rem if (n_beam > 0) then call particle_set%prt(i)%set_parents & ([i-n_in-n_beam]) end if end do n = n + n_rem call particle_set%prt(n+1:n+n_vir)%reset_status (PRT_VIRTUAL) do i = n+1, n+n_vir call particle_set%prt(i)%set_parents & ([(k, k=n-n_rem-n_in+1, n-n_rem)]) end do n = n + n_vir call particle_set%prt(n+1:n+n_out)%reset_status (PRT_OUTGOING) do i = n+1, n+n_out call particle_set%prt(i)%set_parents & ([(k, k=n-n_vir-n_rem-n_in+1, n-n_vir-n_rem)]) end do allocate (flv (particle_set%n_tot)) call flv%init (pdg, model) do k = n_beam+n_in+1, n_beam+n_in+n_rem call flv(k)%tag_radiated () end do do i = 1, particle_set%n_tot call particle_set%prt(i)%set_flavor (flv(i)) end do end subroutine particle_set_init_direct @ %def particle_set_init_direct @ Copy a particle set into a new, extended one. Use the mapping array to determine the new positions of particles. The new set contains [[n_new]] additional entries. Count the new, undefined particles as virtual. <>= procedure :: transfer => particle_set_transfer <>= module subroutine particle_set_transfer (pset, source, n_new, map) class(particle_set_t), intent(out) :: pset class(particle_set_t), intent(in) :: source integer, intent(in) :: n_new integer, dimension(:), intent(in) :: map end subroutine particle_set_transfer <>= module subroutine particle_set_transfer (pset, source, n_new, map) class(particle_set_t), intent(out) :: pset class(particle_set_t), intent(in) :: source integer, intent(in) :: n_new integer, dimension(:), intent(in) :: map integer :: i call pset%basic_init & (source%n_beam, source%n_in, source%n_vir + n_new, source%n_out) pset%factorization_mode = source%factorization_mode do i = 1, source%n_tot call pset%prt(map(i))%reset_status (source%prt(i)%get_status ()) call pset%prt(map(i))%set_flavor (source%prt(i)%get_flv ()) call pset%prt(map(i))%set_color (source%prt(i)%get_col ()) call pset%prt(map(i))%set_parents (map (source%prt(i)%get_parents ())) call pset%prt(map(i))%set_children (map (source%prt(i)%get_children ())) call pset%prt(map(i))%set_polarization & (source%prt(i)%get_polarization_status ()) select case (source%prt(i)%get_polarization_status ()) case (PRT_DEFINITE_HELICITY) call pset%prt(map(i))%set_helicity (source%prt(i)%get_hel ()) case (PRT_GENERIC_POLARIZATION) call pset%prt(map(i))%set_pol (source%prt(i)%get_polarization ()) end select end do end subroutine particle_set_transfer @ %def particle_set_transfer @ Insert a new particle as an intermediate into a previously empty position. Flavor and status are just set. Color is not set (but see below). The complicated part is reassigning parent-child relations. The inserted particle comes with an array [[child]] of its children which are supposed to be existing particles. We first scan all particles that come before the new insertion. Whenever a particle has children that coincide with the children of the new particle, those child entries are removed. (a) If the new particle has no parent entry yet, those child entries are replaced by the index of the new particle and simultaneously, the particle is registered as a parent of the new particle. (b) If the current particle already has a parent entry, those child entries are removed. When this is done, the new particle is registered as the (only) parent of its children. <>= procedure :: insert => particle_set_insert <>= module subroutine particle_set_insert (pset, i, status, flv, child) class(particle_set_t), intent(inout) :: pset integer, intent(in) :: i integer, intent(in) :: status type(flavor_t), intent(in) :: flv integer, dimension(:), intent(in) :: child end subroutine particle_set_insert <>= module subroutine particle_set_insert (pset, i, status, flv, child) class(particle_set_t), intent(inout) :: pset integer, intent(in) :: i integer, intent(in) :: status type(flavor_t), intent(in) :: flv integer, dimension(:), intent(in) :: child integer, dimension(:), allocatable :: p_child, parent integer :: j, k, c, n_parent logical :: no_match call pset%prt(i)%reset_status (status) call pset%prt(i)%set_flavor (flv) call pset%prt(i)%set_children (child) n_parent = pset%prt(i)%get_n_parents () do j = 1, i - 1 p_child = pset%prt(j)%get_children () no_match = .true. do k = 1, size (p_child) if (any (p_child(k) == child)) then if (n_parent == 0 .and. no_match) then if (.not. allocated (parent)) then parent = [j] else parent = [parent, j] end if p_child(k) = i else p_child(k) = 0 end if no_match = .false. end if end do if (.not. no_match) then p_child = pack (p_child, p_child /= 0) call pset%prt(j)%set_children (p_child) end if end do if (n_parent == 0) then call pset%prt(i)%set_parents (parent) end if do j = 1, size (child) c = child(j) call pset%prt(c)%set_parents ([i]) end do end subroutine particle_set_insert @ %def particle_set_insert @ This should be done after completing all insertions: recover color assignments for the inserted particles, working backwards from children to parents. A single call to the routine recovers the color and anticolor line indices for a single particle. <>= procedure :: recover_color => particle_set_recover_color <>= module subroutine particle_set_recover_color (pset, i) class(particle_set_t), intent(inout) :: pset integer, intent(in) :: i end subroutine particle_set_recover_color <>= module subroutine particle_set_recover_color (pset, i) class(particle_set_t), intent(inout) :: pset integer, intent(in) :: i type(color_t) :: col integer, dimension(:), allocatable :: child integer :: j child = pset%prt(i)%get_children () if (size (child) > 0) then col = pset%prt(child(1))%get_col () do j = 2, size (child) col = col .fuse. pset%prt(child(j))%get_col () end do call pset%prt(i)%set_color (col) end if end subroutine particle_set_recover_color @ %def particle_set_recover_color @ \subsection{Extract/modify contents} <>= generic :: get_color => get_color_all generic :: get_color => get_color_indices procedure :: get_color_all => particle_set_get_color_all procedure :: get_color_indices => particle_set_get_color_indices <>= module function particle_set_get_color_all (particle_set) result (col) class(particle_set_t), intent(in) :: particle_set type(color_t), dimension(:), allocatable :: col end function particle_set_get_color_all <>= module function particle_set_get_color_all (particle_set) result (col) class(particle_set_t), intent(in) :: particle_set type(color_t), dimension(:), allocatable :: col allocate (col (size (particle_set%prt))) col = particle_set%prt%col end function particle_set_get_color_all @ %def particle_set_get_color_all @ <>= module function particle_set_get_color_indices (particle_set, indices) result (col) type(color_t), dimension(:), allocatable :: col class(particle_set_t), intent(in) :: particle_set integer, intent(in), dimension(:), allocatable :: indices end function particle_set_get_color_indices <>= module function particle_set_get_color_indices (particle_set, indices) result (col) type(color_t), dimension(:), allocatable :: col class(particle_set_t), intent(in) :: particle_set integer, intent(in), dimension(:), allocatable :: indices integer :: i allocate (col (size (indices))) do i = 1, size (indices) col(i) = particle_set%prt(indices(i))%col end do end function particle_set_get_color_indices @ %def particle_set_get_color_indices @ Set a single or all color components. This is a wrapper around the corresponding [[particle_t]] method, with the same options. We assume that the particle array is allocated. <>= generic :: set_color => set_color_single generic :: set_color => set_color_indices generic :: set_color => set_color_all procedure :: set_color_single => particle_set_set_color_single procedure :: set_color_indices => particle_set_set_color_indices procedure :: set_color_all => particle_set_set_color_all <>= module subroutine particle_set_set_color_single (particle_set, i, col) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: i type(color_t), intent(in) :: col end subroutine particle_set_set_color_single module subroutine particle_set_set_color_indices (particle_set, indices, col) class(particle_set_t), intent(inout) :: particle_set integer, dimension(:), intent(in) :: indices type(color_t), dimension(:), intent(in) :: col end subroutine particle_set_set_color_indices module subroutine particle_set_set_color_all (particle_set, col) class(particle_set_t), intent(inout) :: particle_set type(color_t), dimension(:), intent(in) :: col end subroutine particle_set_set_color_all <>= module subroutine particle_set_set_color_single (particle_set, i, col) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: i type(color_t), intent(in) :: col call particle_set%prt(i)%set_color (col) end subroutine particle_set_set_color_single module subroutine particle_set_set_color_indices (particle_set, indices, col) class(particle_set_t), intent(inout) :: particle_set integer, dimension(:), intent(in) :: indices type(color_t), dimension(:), intent(in) :: col integer :: i do i = 1, size (indices) call particle_set%prt(indices(i))%set_color (col(i)) end do end subroutine particle_set_set_color_indices module subroutine particle_set_set_color_all (particle_set, col) class(particle_set_t), intent(inout) :: particle_set type(color_t), dimension(:), intent(in) :: col call particle_set%prt%set_color (col) end subroutine particle_set_set_color_all @ %def particle_set_set_color @ Assigning particles manually may result in color mismatches. This is checked here for all particles in the set. The color object is compared against the color type that belongs to the flavor object. The return value is an allocatable array which consists of the particles with invalid color assignments. If the array size is zero, all is fine. <>= procedure :: find_prt_invalid_color => particle_set_find_prt_invalid_color <>= module subroutine particle_set_find_prt_invalid_color (particle_set, index, prt) class(particle_set_t), intent(in) :: particle_set integer, dimension(:), allocatable, intent(out) :: index type(particle_t), dimension(:), allocatable, intent(out), optional :: prt end subroutine particle_set_find_prt_invalid_color <>= module subroutine particle_set_find_prt_invalid_color (particle_set, index, prt) class(particle_set_t), intent(in) :: particle_set integer, dimension(:), allocatable, intent(out) :: index type(particle_t), dimension(:), allocatable, intent(out), optional :: prt type(flavor_t) :: flv type(color_t) :: col logical, dimension(:), allocatable :: mask integer :: i, n, n_invalid n = size (particle_set%prt) allocate (mask (n)) do i = 1, n associate (prt => particle_set%prt(i)) flv = prt%get_flv () col = prt%get_col () mask(i) = flv%get_color_type () /= col%get_type () end associate end do index = pack ([(i, i = 1, n)], mask) if (present (prt)) prt = pack (particle_set%prt, mask) end subroutine particle_set_find_prt_invalid_color @ %def particle_set_find_prt_invalid_color @ <>= generic :: get_momenta => get_momenta_all generic :: get_momenta => get_momenta_indices procedure :: get_momenta_all => particle_set_get_momenta_all procedure :: get_momenta_indices => particle_set_get_momenta_indices <>= module function particle_set_get_momenta_all (particle_set) result (p) class(particle_set_t), intent(in) :: particle_set type(vector4_t), dimension(:), allocatable :: p end function particle_set_get_momenta_all <>= module function particle_set_get_momenta_all (particle_set) result (p) class(particle_set_t), intent(in) :: particle_set type(vector4_t), dimension(:), allocatable :: p allocate (p (size (particle_set%prt))) p = particle_set%prt%p end function particle_set_get_momenta_all @ %def particle_set_get_momenta_all @ <>= module function particle_set_get_momenta_indices (particle_set, indices) result (p) type(vector4_t), dimension(:), allocatable :: p class(particle_set_t), intent(in) :: particle_set integer, intent(in), dimension(:), allocatable :: indices end function particle_set_get_momenta_indices <>= module function particle_set_get_momenta_indices (particle_set, indices) result (p) type(vector4_t), dimension(:), allocatable :: p class(particle_set_t), intent(in) :: particle_set integer, intent(in), dimension(:), allocatable :: indices integer :: i allocate (p (size (indices))) do i = 1, size (indices) p(i) = particle_set%prt(indices(i))%p end do end function particle_set_get_momenta_indices @ %def particle_set_get_momenta_indices @ Replace a single or all momenta. This is a wrapper around the corresponding [[particle_t]] method, with the same options. We assume that the particle array is allocated. <>= generic :: set_momentum => set_momentum_single generic :: set_momentum => set_momentum_indices generic :: set_momentum => set_momentum_all procedure :: set_momentum_single => particle_set_set_momentum_single procedure :: set_momentum_indices => particle_set_set_momentum_indices procedure :: set_momentum_all => particle_set_set_momentum_all <>= module subroutine particle_set_set_momentum_single & (particle_set, i, p, p2, on_shell) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: i type(vector4_t), intent(in) :: p real(default), intent(in), optional :: p2 logical, intent(in), optional :: on_shell end subroutine particle_set_set_momentum_single module subroutine particle_set_set_momentum_indices & (particle_set, indices, p, p2, on_shell) class(particle_set_t), intent(inout) :: particle_set integer, dimension(:), intent(in) :: indices type(vector4_t), dimension(:), intent(in) :: p real(default), dimension(:), intent(in), optional :: p2 logical, intent(in), optional :: on_shell end subroutine particle_set_set_momentum_indices module subroutine particle_set_set_momentum_all (particle_set, p, p2, on_shell) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), dimension(:), intent(in) :: p real(default), dimension(:), intent(in), optional :: p2 logical, intent(in), optional :: on_shell end subroutine particle_set_set_momentum_all <>= module subroutine particle_set_set_momentum_single & (particle_set, i, p, p2, on_shell) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: i type(vector4_t), intent(in) :: p real(default), intent(in), optional :: p2 logical, intent(in), optional :: on_shell call particle_set%prt(i)%set_momentum (p, p2, on_shell) end subroutine particle_set_set_momentum_single module subroutine particle_set_set_momentum_indices & (particle_set, indices, p, p2, on_shell) class(particle_set_t), intent(inout) :: particle_set integer, dimension(:), intent(in) :: indices type(vector4_t), dimension(:), intent(in) :: p real(default), dimension(:), intent(in), optional :: p2 logical, intent(in), optional :: on_shell integer :: i if (present (p2)) then do i = 1, size (indices) call particle_set%prt(indices(i))%set_momentum (p(i), p2(i), on_shell) end do else do i = 1, size (indices) call particle_set%prt(indices(i))%set_momentum & (p(i), on_shell=on_shell) end do end if end subroutine particle_set_set_momentum_indices module subroutine particle_set_set_momentum_all (particle_set, p, p2, on_shell) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), dimension(:), intent(in) :: p real(default), dimension(:), intent(in), optional :: p2 logical, intent(in), optional :: on_shell call particle_set%prt%set_momentum (p, p2, on_shell) end subroutine particle_set_set_momentum_all @ %def particle_set_set_momentum @ Recover a momentum by recombining from children, assuming that this is possible. The reconstructed momentum is not projected on-shell. <>= procedure :: recover_momentum => particle_set_recover_momentum <>= module subroutine particle_set_recover_momentum (particle_set, i) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: i end subroutine particle_set_recover_momentum <>= module subroutine particle_set_recover_momentum (particle_set, i) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: i type(vector4_t), dimension(:), allocatable :: p integer, dimension(:), allocatable :: index index = particle_set%prt(i)%get_children () p = particle_set%get_momenta (index) call particle_set%set_momentum (i, sum (p)) end subroutine particle_set_recover_momentum @ %def particle_set_recover_momentum @ <>= procedure :: replace_incoming_momenta => particle_set_replace_incoming_momenta <>= module subroutine particle_set_replace_incoming_momenta (particle_set, p) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), intent(in), dimension(:) :: p end subroutine particle_set_replace_incoming_momenta <>= module subroutine particle_set_replace_incoming_momenta (particle_set, p) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), intent(in), dimension(:) :: p integer :: i, j i = 1 do j = 1, particle_set%get_n_tot () if (particle_set%prt(j)%get_status () == PRT_INCOMING) then particle_set%prt(j)%p = p(i) i = i + 1 if (i > particle_set%n_in) exit end if end do end subroutine particle_set_replace_incoming_momenta @ %def particle_set_replace_incoming_momenta @ <>= procedure :: replace_outgoing_momenta => particle_set_replace_outgoing_momenta <>= module subroutine particle_set_replace_outgoing_momenta (particle_set, p) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), intent(in), dimension(:) :: p end subroutine particle_set_replace_outgoing_momenta <>= module subroutine particle_set_replace_outgoing_momenta (particle_set, p) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), intent(in), dimension(:) :: p integer :: i, j i = particle_set%n_in + 1 do j = 1, particle_set%n_tot if (particle_set%prt(j)%get_status () == PRT_OUTGOING) then particle_set%prt(j)%p = p(i) i = i + 1 end if end do end subroutine particle_set_replace_outgoing_momenta @ %def particle_set_replace_outgoing_momenta @ <>= procedure :: get_outgoing_momenta => particle_set_get_outgoing_momenta <>= module function particle_set_get_outgoing_momenta (particle_set) result (p) class(particle_set_t), intent(in) :: particle_set type(vector4_t), dimension(:), allocatable :: p end function particle_set_get_outgoing_momenta <>= module function particle_set_get_outgoing_momenta (particle_set) result (p) class(particle_set_t), intent(in) :: particle_set type(vector4_t), dimension(:), allocatable :: p integer :: i, k allocate (p (count (particle_set%prt%get_status () == PRT_OUTGOING))) k = 0 do i = 1, size (particle_set%prt) if (particle_set%prt(i)%get_status () == PRT_OUTGOING) then k = k + 1 p(k) = particle_set%prt(i)%get_momentum () end if end do end function particle_set_get_outgoing_momenta @ %def particle_set_get_outgoing_momenta @ <>= procedure :: parent_add_child => particle_set_parent_add_child <>= module subroutine particle_set_parent_add_child (particle_set, parent, child) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: parent, child end subroutine particle_set_parent_add_child <>= module subroutine particle_set_parent_add_child (particle_set, parent, child) class(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: parent, child call particle_set%prt(child)%set_parents ([parent]) call particle_set%prt(parent)%add_child (child) end subroutine particle_set_parent_add_child @ %def particle_set_parent_add_child @ Given the [[particle_set]] before radiation, the new momenta [[p_radiated]], the [[emitter]] and the [[flv_radiated]] as well as the [[model]] and a random number [[r_color]] for chosing a color in ambiguous cases, we update the [[particle_set]]. The reference for this procedure is [0709.2092], Sec. 4.5.1. We do not (yet) account for helicities and polarisations here nor do we update the beam remnant color and momenta. <>= procedure :: build_radiation => particle_set_build_radiation <>= module subroutine particle_set_build_radiation (particle_set, p_radiated, & emitter, flv_radiated, model, r_color) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), intent(in), dimension(:) :: p_radiated integer, intent(in) :: emitter integer, intent(in), dimension(:) :: flv_radiated class(model_data_t), intent(in), target :: model real(default), intent(in) :: r_color end subroutine particle_set_build_radiation <>= module subroutine particle_set_build_radiation (particle_set, p_radiated, & emitter, flv_radiated, model, r_color) class(particle_set_t), intent(inout) :: particle_set type(vector4_t), intent(in), dimension(:) :: p_radiated integer, intent(in) :: emitter integer, intent(in), dimension(:) :: flv_radiated class(model_data_t), intent(in), target :: model real(default), intent(in) :: r_color type(particle_set_t) :: new_particle_set type(particle_t) :: new_particle integer :: i, j, pdg_index_emitter, pdg_index_radiation, new_color_index integer, dimension(:), allocatable :: parents, children type(vector4_t) :: mom_sum_children type(flavor_t) :: new_flv, real_emitter_flavor logical, dimension(:), allocatable :: status_mask integer, dimension(:), allocatable :: & i_in1, i_beam1, i_remnant1, i_virt1, i_res1, i_out1 integer, dimension(:), allocatable :: & i_in2, i_beam2, i_remnant2, i_virt2, i_res2, i_out2 integer :: n_in1, n_beam1, n_remnant1, n_virt1, n_res1, n_out1 integer :: n_in2, n_beam2, n_remnant2, n_virt2, n_res2, n_out2 integer :: n, n_tot, i_emitter logical :: is_fsr n = particle_set%get_n_tot () allocate (status_mask (n)) do i = 1, n status_mask(i) = particle_set%prt(i)%get_status () == PRT_INCOMING end do n_in1 = count (status_mask) allocate (i_in1 (n_in1)) i_in1 = particle_set%get_indices (status_mask) do i = 1, n status_mask(i) = particle_set%prt(i)%get_status () == PRT_BEAM end do n_beam1 = count (status_mask) allocate (i_beam1 (n_beam1)) i_beam1 = particle_set%get_indices (status_mask) do i = 1, n status_mask(i) = particle_set%prt(i)%get_status () == PRT_BEAM_REMNANT end do n_remnant1 = count (status_mask) allocate (i_remnant1 (n_remnant1)) i_remnant1 = particle_set%get_indices (status_mask) do i = 1, n status_mask(i) = particle_set%prt(i)%get_status () == PRT_VIRTUAL end do n_virt1 = count (status_mask) allocate (i_virt1 (n_virt1)) i_virt1 = particle_set%get_indices (status_mask) do i = 1, n status_mask(i) = particle_set%prt(i)%get_status () == PRT_RESONANT end do n_res1 = count (status_mask) allocate (i_res1 (n_res1)) i_res1 = particle_set%get_indices (status_mask) do i = 1, n status_mask(i) = particle_set%prt(i)%get_status () == PRT_OUTGOING end do n_out1 = count (status_mask) allocate (i_out1 (n_out1)) i_out1 = particle_set%get_indices (status_mask) n_in2 = n_in1; n_beam2 = n_beam1; n_remnant2 = n_remnant1; n_res2 = n_res1 n_virt2 = n_virt1 n_out2 = n_out1 + 1 n_tot = n_in2 + n_beam2 + n_remnant2 + n_virt2 + n_res2 + n_out2 allocate (i_in2 (n_in2), i_beam2 (n_beam2), i_remnant2 (n_remnant2), i_res2 (n_res2)) i_in2 = i_in1; i_beam2 = i_beam1; i_remnant2 = i_remnant1; i_res2 = i_res1 allocate (i_virt2 (n_virt2)) i_virt2(1 : n_virt1) = i_virt1 allocate (i_out2 (n_out2)) i_out2(1 : n_out1) = i_out1(1 : n_out1) i_out2(n_out2) = n_tot new_particle_set%n_beam = n_beam2 new_particle_set%n_in = n_in2 new_particle_set%n_vir = n_virt2 + n_res2 new_particle_set%n_out = n_out2 new_particle_set%n_tot = n_tot new_particle_set%correlated_state = particle_set%correlated_state allocate (new_particle_set%prt (n_tot)) if (size (i_beam1) > 0) new_particle_set%prt(i_beam2) = particle_set%prt(i_beam1) if (size (i_remnant1) > 0) new_particle_set%prt(i_remnant2) = particle_set%prt(i_remnant1) if (size (i_res1) > 0) new_particle_set%prt(i_res2) = particle_set%prt(i_res1) do i = 1, n_virt1 new_particle_set%prt(i_virt2(i)) = particle_set%prt(i_virt1(i)) end do do i = 1, n_in2 new_particle_set%prt(i_in2(i)) = particle_set%prt(i_in1(i)) new_particle_set%prt(i_in2(i))%p = p_radiated (i) end do do i = 1, n_out2 - 1 new_particle_set%prt(i_out2(i)) = particle_set%prt(i_out1(i)) new_particle_set%prt(i_out2(i))%p = p_radiated(i + n_in2) call new_particle_set%prt(i_out2(i))%reset_status (PRT_OUTGOING) end do call new_particle%reset_status (PRT_OUTGOING) call new_particle%set_momentum (p_radiated (n_in2 + n_out2)) !!! Helicity and polarization handling is missing at this point !!! Also, no helicities or polarizations yet pdg_index_emitter = flv_radiated (emitter) pdg_index_radiation = flv_radiated (n_in2 + n_out2) call new_flv%init (pdg_index_radiation, model) is_fsr = emitter > n_in1 if (is_fsr) then i_emitter = emitter + n_virt2 + n_res2 + n_remnant2 + n_beam2 else i_emitter = emitter + n_beam2 end if call real_emitter_flavor%init (pdg_index_emitter, model) call new_particle_set%prt(i_emitter)%set_flavor(real_emitter_flavor) new_color_index = 0 do i = 1, n_tot - 1 new_color_index = max(maxval(abs(particle_set%prt(i)%get_color())), new_color_index) end do new_color_index = new_color_index + 1 call reassign_colors (new_particle, new_particle_set%prt(i_emitter), & pdg_index_radiation, pdg_index_emitter, new_color_index, is_fsr, r_color) call new_particle%set_flavor (new_flv) new_particle_set%prt(n_tot) = new_particle !!! Set proper parents for outgoing particles if (is_fsr) then call new_particle_set%prt(n_tot)%set_parents ( & new_particle_set%prt(i_emitter)%get_parents ()) else call new_particle_set%prt(n_tot)%set_parents (i_in2) end if do i = n_in2 + n_beam2 + n_remnant2 + n_virt1 + 1, & n_in2 + n_beam2 + n_remnant2 + n_virt2 + n_res2 allocate(children(0)) mom_sum_children = vector4_null do j = n_in2 + n_beam2 + n_remnant2, n_tot if (any(new_particle_set%prt(j)%get_parents() == i)) then children = [children, j] if (new_particle_set%prt(j)%get_status () == PRT_OUTGOING) then mom_sum_children = mom_sum_children & + new_particle_set%prt(j)%get_momentum () end if end if end do call new_particle_set%prt(i)%set_children (children) if (mom_sum_children /= vector4_null) then call new_particle_set%set_momentum (i, mom_sum_children) end if deallocate(children) end do call particle_set%init (new_particle_set) contains <> subroutine reassign_colors (prt_radiated, prt_emitter, flv_rad, flv_em, & new_color_index, is_fsr, r_col) type(particle_t), intent(inout) :: prt_radiated, prt_emitter integer, intent(in) :: flv_rad, flv_em, new_color_index logical, intent(in) :: is_fsr real(default), intent(in) :: r_col type(color_t) :: col_rad, col_em if (is_fsr) then if (is_quark (flv_em) .and. is_gluon (flv_rad)) then call reassign_colors_q_to_qg_fsr (prt_emitter, new_color_index, col_rad, col_em) else if (is_gluon (flv_em) .and. is_gluon (flv_rad)) then call reassign_colors_g_to_gg_fsr (prt_emitter, r_col, new_color_index, col_rad, col_em) else if (is_quark (flv_em) .and. is_quark (flv_rad)) then call reassign_colors_g_to_qq_fsr (prt_emitter, flv_em, col_rad, col_em) else call msg_fatal ("reassign_colors: invalid splitting") end if else if (is_quark (flv_em) .and. is_gluon (flv_rad)) then call reassign_colors_q_to_qg_isr (prt_emitter, new_color_index, col_rad, col_em) else if (is_quark (flv_em) .and. is_quark (flv_rad)) then call reassign_colors_g_to_qq_isr (prt_emitter, flv_rad, col_rad, col_em) else if (is_gluon (flv_em) .and. is_quark (flv_rad)) then call reassign_colors_q_to_gq_isr (prt_emitter, flv_rad, new_color_index, col_rad, col_em) else if (is_gluon (flv_em) .and. is_gluon (flv_rad)) then call reassign_colors_g_to_gg_isr (prt_emitter, r_col, new_color_index, col_rad, col_em) else call msg_fatal ("reassign_colors: invalid splitting") end if end if call prt_emitter%set_color (col_em) call prt_radiated%set_color (col_rad) end subroutine reassign_colors subroutine reassign_colors_q_to_qg_fsr (prt_emitter, new_color_index, & col_rad, col_em) type(particle_t), intent(in) :: prt_emitter integer, intent(in) :: new_color_index type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 logical :: is_anti_quark color_em = prt_emitter%get_color () i1 = 1; i2 = 2 is_anti_quark = color_em(2) /= 0 if (is_anti_quark) then i1 = 2; i2 = 1 end if color_rad(i1) = color_em(i1) color_rad(i2) = new_color_index color_em(i1) = new_color_index call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_q_to_qg_fsr subroutine reassign_colors_g_to_gg_fsr (prt_emitter, random, new_color_index, & col_rad, col_em) type(particle_t), intent(in) :: prt_emitter real(default), intent(in) :: random integer, intent(in) :: new_color_index type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 color_em = prt_emitter%get_color () i1 = 1; i2 = 2 if (random < 0.5) then i1 = 2; i2 = 1 end if color_rad(i1) = new_color_index color_rad(i2) = color_em(i2) color_em(i2) = new_color_index call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_g_to_gg_fsr subroutine reassign_colors_g_to_qq_fsr (prt_emitter, pdg_emitter, col_rad, col_em) type(particle_t), intent(in) :: prt_emitter integer, intent(in) :: pdg_emitter type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 logical :: is_anti_quark color_em = prt_emitter%get_color () i1 = 1; i2 = 2 is_anti_quark = pdg_emitter < 0 if (is_anti_quark) then i1 = 2; i1 = 1 end if color_em(i2) = 0 color_rad(i1) = 0 color_rad(i2) = color_em(i1) call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_g_to_qq_fsr subroutine reassign_colors_q_to_qg_isr (prt_emitter, new_color_index, & col_rad, col_em) type(particle_t), intent(in) :: prt_emitter integer, intent(in) :: new_color_index type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 logical :: is_anti_quark color_em = prt_emitter%get_color () i1 = 1; i2 = 2 is_anti_quark = color_em(2) /= 0 if (is_anti_quark) then i1 = 2; i2 = 1 end if color_rad(i2) = color_em(i1) color_rad(i1) = new_color_index color_em(i1) = new_color_index call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_q_to_qg_isr subroutine reassign_colors_g_to_qq_isr (prt_emitter, pdg_rad, col_rad, col_em) type(particle_t), intent(in) :: prt_emitter integer, intent(in) :: pdg_rad type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 logical :: is_anti_quark color_em = prt_emitter%get_color () i1 = 1; i2 = 2 is_anti_quark = pdg_rad < 0 if (is_anti_quark) then i1 = 2; i2 = 1 end if color_rad(i1) = color_em(i2) color_rad(i2) = 0 color_em(i2) = 0 call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_g_to_qq_isr subroutine reassign_colors_q_to_gq_isr (prt_emitter, pdg_rad, new_color_index, & col_rad, col_em) type(particle_t), intent(in) :: prt_emitter integer, intent(in) :: pdg_rad, new_color_index type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 logical :: rad_is_quark color_em = prt_emitter%get_color () i1 = 1; i2 = 2 rad_is_quark = pdg_rad > 0 if (rad_is_quark) then i1 = 2; i2 = 1 end if color_rad(i1) = 0 color_rad(i2) = new_color_index color_em(i2) = new_color_index call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_q_to_gq_isr subroutine reassign_colors_g_to_gg_isr (prt_emitter, random, new_color_index, & col_rad, col_em) type(particle_t), intent(in) :: prt_emitter real(default), intent(in) :: random integer, intent(in) :: new_color_index type(color_t), intent(out) :: col_rad, col_em integer, dimension(2) :: color_rad, color_em integer :: i1, i2 color_em = prt_emitter%get_color () i1 = 1; i2 = 2 if (random < 0.5) then i1 = 2; i2 = 1 end if color_rad(i2) = new_color_index color_rad(i1) = color_em(i2) color_em(i2) = new_color_index call col_em%init_col_acl (color_em(1), color_em(2)) call col_rad%init_col_acl (color_rad(1), color_rad(2)) end subroutine reassign_colors_g_to_gg_isr end subroutine particle_set_build_radiation @ %def particle_set_build_radiation @ Increments the color indices of all particles by their maximal value to distinguish them from the record-keeping Born particles in the LHE-output if the virtual entries are kept. <>= subroutine set_color_offset (particle_set) type(particle_set_t), intent(inout) :: particle_set integer, dimension(2) :: color integer :: i, i_color_max type(color_t) :: new_color i_color_max = 0 do i = 1, size (particle_set%prt) associate (prt => particle_set%prt(i)) if (prt%get_status () <= PRT_INCOMING) cycle color = prt%get_color () i_color_max = maxval([i_color_max, color(1), color(2)]) end associate end do do i = 1, size (particle_set%prt) associate (prt => particle_set%prt(i)) if (prt%get_status () /= PRT_OUTGOING) cycle color = prt%get_color () where (color /= 0) color = color + i_color_max call new_color%init_col_acl (color(1), color(2)) call prt%set_color (new_color) end associate end do end subroutine set_color_offset @ %def set_color_offset @ Output (default format) <>= procedure :: write => particle_set_write <>= module subroutine particle_set_write & (particle_set, unit, testflag, summary, compressed) class(particle_set_t), intent(in) :: particle_set integer, intent(in), optional :: unit logical, intent(in), optional :: testflag, summary, compressed end subroutine particle_set_write <>= module subroutine particle_set_write & (particle_set, unit, testflag, summary, compressed) class(particle_set_t), intent(in) :: particle_set integer, intent(in), optional :: unit logical, intent(in), optional :: testflag, summary, compressed logical :: summ, comp, pol type(vector4_t) :: sum_vec integer :: u, i u = given_output_unit (unit); if (u < 0) return summ = .false.; if (present (summary)) summ = summary comp = .false.; if (present (compressed)) comp = compressed pol = particle_set%factorization_mode /= FM_IGNORE_HELICITY write (u, "(1x,A)") "Particle set:" call write_separator (u) if (comp) then if (pol) then write (u, & "((A4,1X),(A6,1X),(A7,1X),(A3),2(A4,1X),2(A20,1X),5(A12,1X))") & "Nr", "Status", "Flavor", "Hel", "Col", "ACol", & "Parents", "Children", & "P(0)", "P(1)", "P(2)", "P(3)", "P^2" else write (u, & "((A4,1X),(A6,1X),(A7,1X),2(A4,1X),2(A20,1X),5(A12,1X))") & "Nr", "Status", "Flavor", "Col", "ACol", & "Parents", "Children", & "P(0)", "P(1)", "P(2)", "P(3)", "P^2" end if end if if (particle_set%n_tot /= 0) then do i = 1, particle_set%n_tot if (comp) then write (u, "(I4,1X,2X)", advance="no") i else write (u, "(1x,A,1x,I0)", advance="no") "Particle", i end if call particle_set%prt(i)%write (u, testflag = testflag, & compressed = comp, polarization = pol) end do if (particle_set%correlated_state%is_defined ()) then call write_separator (u) write (u, *) "Correlated state density matrix:" call particle_set%correlated_state%write (u) end if if (summ) then call write_separator (u) write (u, "(A)", advance="no") & "Sum of incoming momenta: p(0:3) = " sum_vec = sum (particle_set%prt%p, & mask=particle_set%prt%get_status () == PRT_INCOMING) call pacify (sum_vec, tolerance = 1E-3_default) call sum_vec%write (u, compressed=.true.) write (u, *) write (u, "(A)", advance="no") & "Sum of beam remnant momenta: p(0:3) = " sum_vec = sum (particle_set%prt%p, & mask=particle_set%prt%get_status () == PRT_BEAM_REMNANT) call pacify (sum_vec, tolerance = 1E-3_default) call sum_vec%write (u, compressed=.true.) write (u, *) write (u, "(A)", advance="no") & "Sum of outgoing momenta: p(0:3) = " sum_vec = sum (particle_set%prt%p, & mask=particle_set%prt%get_status () == PRT_OUTGOING) call pacify (sum_vec, tolerance = 1E-3_default) call sum_vec%write (u, compressed=.true.) write (u, "(A)") "" end if else write (u, "(3x,A)") "[empty]" end if end subroutine particle_set_write @ %def particle_set_write @ \subsection{I/O formats} Here, we define input/output of particle sets in various formats. This is the right place since particle sets contain most of the event information. All write/read routines take as first argument the object, as second argument the I/O unit which in this case is a mandatory argument. Then follow further event data. \subsubsection{Internal binary format} This format is supposed to contain the complete information, so the particle data set can be fully reconstructed. The exception is the model part of the particle flavors; this is unassigned for the flavor values read from file. <>= procedure :: write_raw => particle_set_write_raw procedure :: read_raw => particle_set_read_raw <>= module subroutine particle_set_write_raw (particle_set, u) class(particle_set_t), intent(in) :: particle_set integer, intent(in) :: u end subroutine particle_set_write_raw module subroutine particle_set_read_raw (particle_set, u, iostat) class(particle_set_t), intent(out) :: particle_set integer, intent(in) :: u integer, intent(out) :: iostat end subroutine particle_set_read_raw <>= module subroutine particle_set_write_raw (particle_set, u) class(particle_set_t), intent(in) :: particle_set integer, intent(in) :: u integer :: i write (u) & particle_set%n_beam, particle_set%n_in, & particle_set%n_vir, particle_set%n_out write (u) particle_set%factorization_mode write (u) particle_set%n_tot do i = 1, particle_set%n_tot call particle_set%prt(i)%write_raw (u) end do call particle_set%correlated_state%write_raw (u) end subroutine particle_set_write_raw module subroutine particle_set_read_raw (particle_set, u, iostat) class(particle_set_t), intent(out) :: particle_set integer, intent(in) :: u integer, intent(out) :: iostat integer :: i read (u, iostat=iostat) & particle_set%n_beam, particle_set%n_in, & particle_set%n_vir, particle_set%n_out read (u, iostat=iostat) particle_set%factorization_mode read (u, iostat=iostat) particle_set%n_tot allocate (particle_set%prt (particle_set%n_tot)) do i = 1, size (particle_set%prt) call particle_set%prt(i)%read_raw (u, iostat=iostat) end do call particle_set%correlated_state%read_raw (u, iostat=iostat) end subroutine particle_set_read_raw @ %def particle_set_write_raw particle_set_read_raw @ \subsubsection{Get contents} Find parents/children of a particular particle recursively; the search terminates if a parent/child has status [[BEAM]], [[INCOMING]], [[OUTGOING]] or [[RESONANT]]. <>= procedure :: get_real_parents => particle_set_get_real_parents procedure :: get_real_children => particle_set_get_real_children <>= module function particle_set_get_real_parents (pset, i, keep_beams) result (parent) integer, dimension(:), allocatable :: parent class(particle_set_t), intent(in) :: pset integer, intent(in) :: i logical, intent(in), optional :: keep_beams end function particle_set_get_real_parents module function particle_set_get_real_children (pset, i, keep_beams) result (child) integer, dimension(:), allocatable :: child class(particle_set_t), intent(in) :: pset integer, intent(in) :: i logical, intent(in), optional :: keep_beams end function particle_set_get_real_children <>= module function particle_set_get_real_parents (pset, i, keep_beams) result (parent) integer, dimension(:), allocatable :: parent class(particle_set_t), intent(in) :: pset integer, intent(in) :: i logical, intent(in), optional :: keep_beams logical, dimension(:), allocatable :: is_real logical, dimension(:), allocatable :: is_parent, is_real_parent logical :: kb integer :: j, k kb = .false. if (present (keep_beams)) kb = keep_beams allocate (is_real (pset%n_tot)) is_real = pset%prt%is_real (kb) allocate (is_parent (pset%n_tot), is_real_parent (pset%n_tot)) is_real_parent = .false. is_parent = .false. is_parent(pset%prt(i)%get_parents()) = .true. do while (any (is_parent)) where (is_real .and. is_parent) is_real_parent = .true. is_parent = .false. end where mark_next_parent: do j = size (is_parent), 1, -1 if (is_parent(j)) then is_parent(pset%prt(j)%get_parents()) = .true. is_parent(j) = .false. exit mark_next_parent end if end do mark_next_parent end do allocate (parent (count (is_real_parent))) j = 0 do k = 1, size (is_parent) if (is_real_parent(k)) then j = j + 1 parent(j) = k end if end do end function particle_set_get_real_parents module function particle_set_get_real_children (pset, i, keep_beams) result (child) integer, dimension(:), allocatable :: child class(particle_set_t), intent(in) :: pset integer, intent(in) :: i logical, dimension(:), allocatable :: is_real logical, dimension(:), allocatable :: is_child, is_real_child logical, intent(in), optional :: keep_beams integer :: j, k logical :: kb kb = .false. if (present (keep_beams)) kb = keep_beams allocate (is_real (pset%n_tot)) is_real = pset%prt%is_real (kb) is_real = pset%prt%is_real (kb) allocate (is_child (pset%n_tot), is_real_child (pset%n_tot)) is_real_child = .false. is_child = .false. is_child(pset%prt(i)%get_children()) = .true. do while (any (is_child)) where (is_real .and. is_child) is_real_child = .true. is_child = .false. end where mark_next_child: do j = 1, size (is_child) if (is_child(j)) then is_child(pset%prt(j)%get_children()) = .true. is_child(j) = .false. exit mark_next_child end if end do mark_next_child end do allocate (child (count (is_real_child))) j = 0 do k = 1, size (is_child) if (is_real_child(k)) then j = j + 1 child(j) = k end if end do end function particle_set_get_real_children @ %def particle_set_get_real_parents @ %def particle_set_get_real_children @ Get the [[n_tot]], [[n_in]], and [[n_out]] values out of the particle set. <>= procedure :: get_n_beam => particle_set_get_n_beam procedure :: get_n_in => particle_set_get_n_in procedure :: get_n_vir => particle_set_get_n_vir procedure :: get_n_out => particle_set_get_n_out procedure :: get_n_tot => particle_set_get_n_tot procedure :: get_n_remnants => particle_set_get_n_remnants <>= module function particle_set_get_n_beam (pset) result (n_beam) class(particle_set_t), intent(in) :: pset integer :: n_beam end function particle_set_get_n_beam module function particle_set_get_n_in (pset) result (n_in) class(particle_set_t), intent(in) :: pset integer :: n_in end function particle_set_get_n_in module function particle_set_get_n_vir (pset) result (n_vir) class(particle_set_t), intent(in) :: pset integer :: n_vir end function particle_set_get_n_vir module function particle_set_get_n_out (pset) result (n_out) class(particle_set_t), intent(in) :: pset integer :: n_out end function particle_set_get_n_out module function particle_set_get_n_tot (pset) result (n_tot) class(particle_set_t), intent(in) :: pset integer :: n_tot end function particle_set_get_n_tot module function particle_set_get_n_remnants (pset) result (n_remn) class(particle_set_t), intent(in) :: pset integer :: n_remn end function particle_set_get_n_remnants <>= module function particle_set_get_n_beam (pset) result (n_beam) class(particle_set_t), intent(in) :: pset integer :: n_beam n_beam = pset%n_beam end function particle_set_get_n_beam module function particle_set_get_n_in (pset) result (n_in) class(particle_set_t), intent(in) :: pset integer :: n_in n_in = pset%n_in end function particle_set_get_n_in module function particle_set_get_n_vir (pset) result (n_vir) class(particle_set_t), intent(in) :: pset integer :: n_vir n_vir = pset%n_vir end function particle_set_get_n_vir module function particle_set_get_n_out (pset) result (n_out) class(particle_set_t), intent(in) :: pset integer :: n_out n_out = pset%n_out end function particle_set_get_n_out module function particle_set_get_n_tot (pset) result (n_tot) class(particle_set_t), intent(in) :: pset integer :: n_tot n_tot = pset%n_tot end function particle_set_get_n_tot module function particle_set_get_n_remnants (pset) result (n_remn) class(particle_set_t), intent(in) :: pset integer :: n_remn if (allocated (pset%prt)) then n_remn = count (pset%prt%get_status () == PRT_BEAM_REMNANT) else n_remn = 0 end if end function particle_set_get_n_remnants @ %def particle_set_get_n_beam @ %def particle_set_get_n_in @ %def particle_set_get_n_vir @ %def particle_set_get_n_out @ %def particle_set_get_n_tot @ %def particle_set_get_n_remnants @ Return a pointer to the particle corresponding to the number <>= procedure :: get_particle => particle_set_get_particle <>= module function particle_set_get_particle (pset, index) result (particle) class(particle_set_t), intent(in) :: pset integer, intent(in) :: index type(particle_t) :: particle end function particle_set_get_particle <>= module function particle_set_get_particle (pset, index) result (particle) class(particle_set_t), intent(in) :: pset integer, intent(in) :: index type(particle_t) :: particle particle = pset%prt(index) end function particle_set_get_particle @ %def particle_set_get_particle @ <>= procedure :: get_indices => particle_set_get_indices <>= pure module function particle_set_get_indices (pset, mask) result (finals) integer, dimension(:), allocatable :: finals class(particle_set_t), intent(in) :: pset logical, dimension(:), intent(in) :: mask end function particle_set_get_indices <>= pure module function particle_set_get_indices (pset, mask) result (finals) integer, dimension(:), allocatable :: finals class(particle_set_t), intent(in) :: pset logical, dimension(:), intent(in) :: mask integer, dimension(size(mask)) :: indices integer :: i allocate (finals (count (mask))) indices = [(i, i=1, pset%n_tot)] finals = pack (indices, mask) end function particle_set_get_indices @ %def particle_set_get_indices @ Copy the subset of physical momenta to a [[phs_point]] container. <>= procedure :: get_in_and_out_momenta => particle_set_get_in_and_out_momenta <>= module function particle_set_get_in_and_out_momenta (pset) result (phs_point) type(phs_point_t) :: phs_point class(particle_set_t), intent(in) :: pset end function particle_set_get_in_and_out_momenta <>= module function particle_set_get_in_and_out_momenta (pset) result (phs_point) type(phs_point_t) :: phs_point class(particle_set_t), intent(in) :: pset logical, dimension(:), allocatable :: mask integer, dimension(:), allocatable :: indices type(vector4_t), dimension(:), allocatable :: p allocate (mask (pset%get_n_tot ())) allocate (p (size (pset%prt))) mask = pset%prt%status == PRT_INCOMING .or. & pset%prt%status == PRT_OUTGOING allocate (indices (count (mask))) indices = pset%get_indices (mask) phs_point = pset%get_momenta (indices) end function particle_set_get_in_and_out_momenta @ %def particle_set_get_in_and_out_momenta @ \subsubsection{Tools} Build a new particles array without hadronic remnants but with [[n_extra]] additional spots. We also update the mother-daughter relations assuming the ordering [[b]], [[i]], [[r]], [[x]], [[o]]. <>= procedure :: without_hadronic_remnants => & particle_set_without_hadronic_remnants <>= module subroutine particle_set_without_hadronic_remnants & (particle_set, particles, n_particles, n_extra) class(particle_set_t), intent(inout) :: particle_set type(particle_t), dimension(:), allocatable, intent(out) :: particles integer, intent(out) :: n_particles integer, intent(in) :: n_extra end subroutine particle_set_without_hadronic_remnants <>= module subroutine particle_set_without_hadronic_remnants & (particle_set, particles, n_particles, n_extra) class(particle_set_t), intent(inout) :: particle_set type(particle_t), dimension(:), allocatable, intent(out) :: particles integer, intent(out) :: n_particles integer, intent(in) :: n_extra logical, dimension(:), allocatable :: no_hadronic_remnants, & no_hadronic_children integer, dimension(:), allocatable :: children, new_children integer :: i, j, k, first_remnant first_remnant = particle_set%n_tot do i = 1, particle_set%n_tot if (particle_set%prt(i)%is_hadronic_beam_remnant ()) then first_remnant = i exit end if end do n_particles = count (.not. particle_set%prt%is_hadronic_beam_remnant ()) allocate (no_hadronic_remnants (particle_set%n_tot)) no_hadronic_remnants = .not. particle_set%prt%is_hadronic_beam_remnant () allocate (particles (n_particles + n_extra)) k = 1 do i = 1, particle_set%n_tot if (no_hadronic_remnants(i)) then particles(k) = particle_set%prt(i) k = k + 1 end if end do if (n_particles /= particle_set%n_tot) then do i = 1, n_particles select case (particles(i)%get_status ()) case (PRT_BEAM) if (allocated (children)) deallocate (children) allocate (children (particles(i)%get_n_children ())) children = particles(i)%get_children () if (allocated (no_hadronic_children)) & deallocate (no_hadronic_children) allocate (no_hadronic_children (particles(i)%get_n_children ())) no_hadronic_children = .not. & particle_set%prt(children)%is_hadronic_beam_remnant () if (allocated (new_children)) deallocate (new_children) allocate (new_children (count (no_hadronic_children))) new_children = pack (children, no_hadronic_children) call particles(i)%set_children (new_children) case (PRT_INCOMING, PRT_RESONANT) <> case (PRT_OUTGOING, PRT_BEAM_REMNANT) case default end select end do end if end subroutine particle_set_without_hadronic_remnants @ %def particle_set_without_hadronic_remnants <>= if (allocated (children)) deallocate (children) allocate (children (particles(i)%get_n_children ())) children = particles(i)%get_children () do j = 1, size (children) if (children(j) > first_remnant) then children(j) = children (j) - & (particle_set%n_tot - n_particles) end if end do call particles(i)%set_children (children) @ Build a new particles array without remnants but with [[n_extra]] additional spots. We also update the mother-daughter relations assuming the ordering [[b]], [[i]], [[r]], [[x]], [[o]]. <>= procedure :: without_remnants => particle_set_without_remnants <>= module subroutine particle_set_without_remnants & (particle_set, particles, n_particles, n_extra) class(particle_set_t), intent(inout) :: particle_set type(particle_t), dimension(:), allocatable, intent(out) :: particles integer, intent(in) :: n_extra integer, intent(out) :: n_particles end subroutine particle_set_without_remnants <>= module subroutine particle_set_without_remnants & (particle_set, particles, n_particles, n_extra) class(particle_set_t), intent(inout) :: particle_set type(particle_t), dimension(:), allocatable, intent(out) :: particles integer, intent(in) :: n_extra integer, intent(out) :: n_particles logical, dimension(:), allocatable :: no_remnants, no_children integer, dimension(:), allocatable :: children, new_children integer :: i,j, k, first_remnant first_remnant = particle_set%n_tot do i = 1, particle_set%n_tot if (particle_set%prt(i)%is_beam_remnant ()) then first_remnant = i exit end if end do allocate (no_remnants (particle_set%n_tot)) no_remnants = .not. (particle_set%prt%is_beam_remnant ()) n_particles = count (no_remnants) allocate (particles (n_particles + n_extra)) k = 1 do i = 1, particle_set%n_tot if (no_remnants(i)) then particles(k) = particle_set%prt(i) k = k + 1 end if end do if (n_particles /= particle_set%n_tot) then do i = 1, n_particles select case (particles(i)%get_status ()) case (PRT_BEAM) if (allocated (children)) deallocate (children) allocate (children (particles(i)%get_n_children ())) children = particles(i)%get_children () if (allocated (no_children)) deallocate (no_children) allocate (no_children (particles(i)%get_n_children ())) no_children = .not. (particle_set%prt(children)%is_beam_remnant ()) if (allocated (new_children)) deallocate (new_children) allocate (new_children (count (no_children))) new_children = pack (children, no_children) call particles(i)%set_children (new_children) case (PRT_INCOMING, PRT_RESONANT) <> case (PRT_OUTGOING, PRT_BEAM_REMNANT) case default end select end do end if end subroutine particle_set_without_remnants @ %def particle_set_without_remnants @ <>= procedure :: find_particle => particle_set_find_particle <>= pure module function particle_set_find_particle (particle_set, pdg, & momentum, abs_smallness, rel_smallness) result (idx) integer :: idx class(particle_set_t), intent(in) :: particle_set integer, intent(in) :: pdg type(vector4_t), intent(in) :: momentum real(default), intent(in), optional :: abs_smallness, rel_smallness end function particle_set_find_particle <>= pure module function particle_set_find_particle (particle_set, pdg, & momentum, abs_smallness, rel_smallness) result (idx) integer :: idx class(particle_set_t), intent(in) :: particle_set integer, intent(in) :: pdg type(vector4_t), intent(in) :: momentum real(default), intent(in), optional :: abs_smallness, rel_smallness integer :: i logical, dimension(0:3) :: equals idx = 0 do i = 1, size (particle_set%prt) if (particle_set%prt(i)%flv%get_pdg () == pdg) then equals = nearly_equal (particle_set%prt(i)%p%p, momentum%p, & abs_smallness, rel_smallness) if (all (equals)) then idx = i return end if end if end do end function particle_set_find_particle @ %def particle_set_find_particle <>= procedure :: reverse_find_particle => particle_set_reverse_find_particle <>= pure module function particle_set_reverse_find_particle & (particle_set, pdg, momentum, abs_smallness, rel_smallness) result (idx) integer :: idx class(particle_set_t), intent(in) :: particle_set integer, intent(in) :: pdg type(vector4_t), intent(in) :: momentum real(default), intent(in), optional :: abs_smallness, rel_smallness end function particle_set_reverse_find_particle <>= pure module function particle_set_reverse_find_particle & (particle_set, pdg, momentum, abs_smallness, rel_smallness) result (idx) integer :: idx class(particle_set_t), intent(in) :: particle_set integer, intent(in) :: pdg type(vector4_t), intent(in) :: momentum real(default), intent(in), optional :: abs_smallness, rel_smallness integer :: i idx = 0 do i = size (particle_set%prt), 1, -1 if (particle_set%prt(i)%flv%get_pdg () == pdg) then if (all (nearly_equal (particle_set%prt(i)%p%p, momentum%p, & abs_smallness, rel_smallness))) then idx = i return end if end if end do end function particle_set_reverse_find_particle @ %def particle_set_reverse_find_particle @ This connects broken links of the form $\text{something} \to i \to \text{none or} j$ and $\text{none} \to j \to \text{something or none}$ where the particles $i$ and $j$ are \emph{identical}. It also works if $i \to j$, directly, and thus removes duplicates. We are removing $j$ and connect the possible daughters to $i$. <>= procedure :: remove_duplicates => particle_set_remove_duplicates <>= module subroutine particle_set_remove_duplicates (particle_set, smallness) class(particle_set_t), intent(inout) :: particle_set real(default), intent(in) :: smallness end subroutine particle_set_remove_duplicates <>= module subroutine particle_set_remove_duplicates (particle_set, smallness) class(particle_set_t), intent(inout) :: particle_set real(default), intent(in) :: smallness integer :: n_removals integer, dimension(particle_set%n_tot) :: to_remove type(particle_t), dimension(:), allocatable :: particles type(vector4_t) :: p_i integer, dimension(:), allocatable :: map to_remove = 0 call find_duplicates () n_removals = count (to_remove > 0) if (n_removals > 0) then call strip_duplicates (particles) call particle_set%replace (particles) end if contains <> end subroutine particle_set_remove_duplicates @ %def particle_set_remove_duplicates @ This does not catch all cases. Missing are splittings of the type $i \to \text{something and} j$. <>= subroutine find_duplicates () integer :: pdg_i, child_i, i, j OUTER: do i = 1, particle_set%n_tot if (particle_set%prt(i)%status == PRT_OUTGOING .or. & particle_set%prt(i)%status == PRT_VIRTUAL .or. & particle_set%prt(i)%status == PRT_RESONANT) then if (allocated (particle_set%prt(i)%child)) then if (size (particle_set%prt(i)%child) > 1) cycle OUTER if (size (particle_set%prt(i)%child) == 1) then child_i = particle_set%prt(i)%child(1) else child_i = 0 end if else child_i = 0 end if pdg_i = particle_set%prt(i)%flv%get_pdg () p_i = particle_set%prt(i)%p do j = i + 1, particle_set%n_tot if (pdg_i == particle_set%prt(j)%flv%get_pdg ()) then if (all (nearly_equal (particle_set%prt(j)%p%p, p_i%p, & abs_smallness = smallness, & rel_smallness = 1E4_default * smallness))) then if (child_i == 0 .or. j == child_i) then to_remove(j) = i if (debug_on) call msg_debug2 (D_PARTICLES, & "Particles: Will remove duplicate of i", i) if (debug_on) call msg_debug2 (D_PARTICLES, & "Particles: j", j) end if cycle OUTER end if end if end do end if end do OUTER end subroutine find_duplicates @ <>= recursive function get_alive_index (try) result (alive) integer :: alive integer :: try if (map(try) > 0) then alive = map(try) else alive = get_alive_index (to_remove(try)) end if end function get_alive_index @ <>= subroutine strip_duplicates (particles) type(particle_t), dimension(:), allocatable, intent(out) :: particles integer :: kept, removed, i, j integer, dimension(:), allocatable :: old_children logical, dimension(:), allocatable :: parent_set if (debug_on) call msg_debug (D_PARTICLES, "Particles: Removing duplicates") if (debug_on) call msg_debug (D_PARTICLES, "Particles: n_removals", n_removals) if (debug2_active (D_PARTICLES)) then call msg_debug2 (D_PARTICLES, "Particles: Given set before removing:") call particle_set%write (summary=.true., compressed=.true.) end if allocate (particles (particle_set%n_tot - n_removals)) allocate (map (particle_set%n_tot)) allocate (parent_set (particle_set%n_tot)) parent_set = .false. map = 0 j = 0 do i = 1, particle_set%n_tot if (to_remove(i) == 0) then j = j + 1 map(i) = j call particles(j)%init (particle_set%prt(i)) end if end do do i = 1, particle_set%n_tot if (map(i) /= 0) then if (.not. parent_set(map(i))) then call particles(map(i))%set_parents & (map (particle_set%prt(i)%get_parents ())) end if call particles(map(i))%set_children & (map (particle_set%prt(i)%get_children ())) else removed = i kept = to_remove(i) if (particle_set%prt(removed)%has_children ()) then old_children = particle_set%prt(removed)%get_children () do j = 1, size (old_children) if (map(old_children(j)) > 0) then call particles(map(old_children(j)))%set_parents & ([get_alive_index (kept)]) parent_set(map(old_children(j))) = .true. call particles(get_alive_index (kept))%add_child & (map(old_children(j))) end if end do particles(get_alive_index (kept))%status = PRT_RESONANT else particles(get_alive_index (kept))%status = PRT_OUTGOING end if end if end do end subroutine strip_duplicates @ Given a subevent, reset status codes. If the new status is beam, incoming, or outgoing, we also make sure that the stored $p^2$ value is equal to the on-shell mass squared. <>= procedure :: reset_status => particle_set_reset_status <>= module subroutine particle_set_reset_status (particle_set, index, status) class(particle_set_t), intent(inout) :: particle_set integer, dimension(:), intent(in) :: index integer, intent(in) :: status end subroutine particle_set_reset_status <>= module subroutine particle_set_reset_status (particle_set, index, status) class(particle_set_t), intent(inout) :: particle_set integer, dimension(:), intent(in) :: index integer, intent(in) :: status integer :: i if (allocated (particle_set%prt)) then do i = 1, size (index) call particle_set%prt(index(i))%reset_status (status) end do end if particle_set%n_beam = & count (particle_set%prt%get_status () == PRT_BEAM) particle_set%n_in = & count (particle_set%prt%get_status () == PRT_INCOMING) particle_set%n_out = & count (particle_set%prt%get_status () == PRT_OUTGOING) particle_set%n_vir = particle_set%n_tot & - particle_set%n_beam - particle_set%n_in - particle_set%n_out end subroutine particle_set_reset_status @ %def particle_set_reset_status @ Reduce a particle set to the essential entries. The entries kept are those with status [[INCOMING]], [[OUTGOING]] or [[RESONANT]]. [[BEAM]] is kept if [[keep_beams]] is true. Other entries are skipped. The correlated state matrix, if any, is also ignored. <>= procedure :: reduce => particle_set_reduce <>= module subroutine particle_set_reduce (pset_in, pset_out, keep_beams) class(particle_set_t), intent(in) :: pset_in type(particle_set_t), intent(out) :: pset_out logical, intent(in), optional :: keep_beams end subroutine particle_set_reduce <>= module subroutine particle_set_reduce (pset_in, pset_out, keep_beams) class(particle_set_t), intent(in) :: pset_in type(particle_set_t), intent(out) :: pset_out logical, intent(in), optional :: keep_beams integer, dimension(:), allocatable :: status, map integer :: i, j logical :: kb kb = .false.; if (present (keep_beams)) kb = keep_beams allocate (status (pset_in%n_tot)) pset_out%factorization_mode = pset_in%factorization_mode status = pset_in%prt%get_status () if (kb) pset_out%n_beam = count (status == PRT_BEAM) pset_out%n_in = count (status == PRT_INCOMING) pset_out%n_vir = count (status == PRT_RESONANT) pset_out%n_out = count (status == PRT_OUTGOING) pset_out%n_tot = & pset_out%n_beam + pset_out%n_in + pset_out%n_vir + pset_out%n_out allocate (pset_out%prt (pset_out%n_tot)) allocate (map (pset_in%n_tot)) map = 0 j = 0 if (kb) call copy_particles (PRT_BEAM) call copy_particles (PRT_INCOMING) call copy_particles (PRT_RESONANT) call copy_particles (PRT_OUTGOING) do i = 1, pset_in%n_tot if (map(i) == 0) cycle call pset_out%prt(map(i))%set_parents & (pset_in%get_real_parents (i, kb)) call pset_out%prt(map(i))%set_parents & (map (pset_out%prt(map(i))%parent)) call pset_out%prt(map(i))%set_children & (pset_in%get_real_children (i, kb)) call pset_out%prt(map(i))%set_children & (map (pset_out%prt(map(i))%child)) end do contains subroutine copy_particles (stat) integer, intent(in) :: stat integer :: i do i = 1, pset_in%n_tot if (status(i) == stat) then j = j + 1 map(i) = j call particle_init_particle (pset_out%prt(j), pset_in%prt(i)) end if end do end subroutine copy_particles end subroutine particle_set_reduce @ %def particles_set_reduce @ Remove the beam particles and beam remnants from the particle set if the keep beams flag is false. If keep beams is not given, the beam particles and the beam remnants are removed. The correlated state matrix, if any, is also ignored. <>= procedure :: filter_particles => particle_set_filter_particles <>= module subroutine particle_set_filter_particles & (pset_in, pset_out, keep_beams, real_parents, keep_virtuals) class(particle_set_t), intent(in) :: pset_in type(particle_set_t), intent(out) :: pset_out logical, intent(in), optional :: keep_beams, real_parents, keep_virtuals end subroutine particle_set_filter_particles <>= module subroutine particle_set_filter_particles & (pset_in, pset_out, keep_beams, real_parents, keep_virtuals) class(particle_set_t), intent(in) :: pset_in type(particle_set_t), intent(out) :: pset_out logical, intent(in), optional :: keep_beams, real_parents, keep_virtuals integer, dimension(:), allocatable :: status, map logical, dimension(:), allocatable :: filter integer :: i, j logical :: kb, rp, kv kb = .false.; if (present (keep_beams)) kb = keep_beams rp = .false.; if (present (real_parents)) rp = real_parents kv = .true.; if (present (keep_virtuals)) kv = keep_virtuals if (debug_on) call msg_debug (D_PARTICLES, "filter_particles") if (debug2_active (D_PARTICLES)) then print *, 'keep_beams = ', kb print *, 'real_parents = ', rp print *, 'keep_virtuals = ', kv print *, '>>> pset_in : ' call pset_in%write(compressed=.true.) end if call count_and_allocate() map = 0 j = 0 filter = .false. if (.not. kb) filter = status == PRT_BEAM .or. status == PRT_BEAM_REMNANT if (.not. kv) filter = filter .or. status == PRT_VIRTUAL call copy_particles () do i = 1, pset_in%n_tot if (map(i) == 0) cycle if (rp) then call pset_out%prt(map(i))%set_parents & (map (pset_in%get_real_parents (i, kb))) call pset_out%prt(map(i))%set_children & (map (pset_in%get_real_children (i, kb))) else call pset_out%prt(map(i))%set_parents & (map (pset_in%prt(i)%get_parents ())) call pset_out%prt(map(i))%set_children & (map (pset_in%prt(i)%get_children ())) end if end do if (debug2_active (D_PARTICLES)) then print *, '>>> pset_out : ' call pset_out%write(compressed=.true.) end if contains <> end subroutine particle_set_filter_particles @ %def particles_set_filter_particles <>= subroutine copy_particles () integer :: i do i = 1, pset_in%n_tot if (.not. filter(i)) then j = j + 1 map(i) = j call particle_init_particle (pset_out%prt(j), pset_in%prt(i)) end if end do end subroutine copy_particles <>= subroutine count_and_allocate allocate (status (pset_in%n_tot)) status = particle_get_status (pset_in%prt) if (kb) pset_out%n_beam = count (status == PRT_BEAM) pset_out%n_in = count (status == PRT_INCOMING) if (kb .and. kv) then pset_out%n_vir = count (status == PRT_VIRTUAL) + & count (status == PRT_RESONANT) + & count (status == PRT_BEAM_REMNANT) else if (kb .and. .not. kv) then pset_out%n_vir = count (status == PRT_RESONANT) + & count (status == PRT_BEAM_REMNANT) else if (.not. kb .and. kv) then pset_out%n_vir = count (status == PRT_VIRTUAL) + & count (status == PRT_RESONANT) else pset_out%n_vir = count (status == PRT_RESONANT) end if pset_out%n_out = count (status == PRT_OUTGOING) pset_out%n_tot = & pset_out%n_beam + pset_out%n_in + pset_out%n_vir + pset_out%n_out allocate (pset_out%prt (pset_out%n_tot)) allocate (map (pset_in%n_tot)) allocate (filter (pset_in%n_tot)) end subroutine count_and_allocate @ Transform a particle set into HEPEVT-compatible form. In this form, for each particle, the parents and the children are contiguous in the particle array. Usually, this requires to clone some particles. We do not know in advance how many particles the canonical form will have. To be on the safe side, allocate four times the original size. <>= type :: particle_entry_t integer :: src = 0 integer :: status = 0 integer :: orig = 0 integer :: copy = 0 end type particle_entry_t <>= procedure :: to_hepevt_form => particle_set_to_hepevt_form <>= module subroutine particle_set_to_hepevt_form (pset_in, pset_out) class(particle_set_t), intent(in) :: pset_in type(particle_set_t), intent(out) :: pset_out end subroutine particle_set_to_hepevt_form <>= module subroutine particle_set_to_hepevt_form (pset_in, pset_out) class(particle_set_t), intent(in) :: pset_in type(particle_set_t), intent(out) :: pset_out type(particle_entry_t), dimension(:), allocatable :: prt integer, dimension(:), allocatable :: map1, map2 integer, dimension(:), allocatable :: parent, child integer :: n_tot, n_parents, n_children, i, j, c, n n_tot = pset_in%n_tot allocate (prt (4 * n_tot)) allocate (map1(4 * n_tot)) allocate (map2(4 * n_tot)) map1 = 0 map2 = 0 allocate (child (n_tot)) allocate (parent (n_tot)) n = 0 do i = 1, n_tot if (pset_in%prt(i)%get_n_parents () == 0) then call append (i) end if end do do i = 1, n_tot n_children = pset_in%prt(i)%get_n_children () if (n_children > 0) then child(1:n_children) = pset_in%prt(i)%get_children () c = child(1) if (map1(c) == 0) then n_parents = pset_in%prt(c)%get_n_parents () if (n_parents > 1) then parent(1:n_parents) = pset_in%prt(c)%get_parents () if (i == parent(1) .and. & any( [(map1(i)+j-1, j=1,n_parents)] /= & map1(parent(1:n_parents)))) then do j = 1, n_parents call append (parent(j)) end do end if else if (map1(i) == 0) then call append (i) end if do j = 1, n_children call append (child(j)) end do end if else if (map1(i) == 0) then call append (i) end if end do do i = n, 1, -1 if (prt(i)%status /= PRT_OUTGOING) then do j = 1, i-1 if (prt(j)%status == PRT_OUTGOING) then call append(prt(j)%src) end if end do exit end if end do pset_out%n_beam = count (prt(1:n)%status == PRT_BEAM) pset_out%n_in = count (prt(1:n)%status == PRT_INCOMING) pset_out%n_vir = count (prt(1:n)%status == PRT_RESONANT) pset_out%n_out = count (prt(1:n)%status == PRT_OUTGOING) pset_out%n_tot = n allocate (pset_out%prt (n)) do i = 1, n call particle_init_particle (pset_out%prt(i), pset_in%prt(prt(i)%src)) call pset_out%prt(i)%reset_status (prt(i)%status) if (prt(i)%orig == 0) then call pset_out%prt(i)%set_parents & (map2 (pset_in%prt(prt(i)%src)%get_parents ())) else call pset_out%prt(i)%set_parents ([ prt(i)%orig ]) end if if (prt(i)%copy == 0) then call pset_out%prt(i)%set_children & (map1 (pset_in%prt(prt(i)%src)%get_children ())) else call pset_out%prt(i)%set_children ([ prt(i)%copy ]) end if end do contains subroutine append (i) integer, intent(in) :: i n = n + 1 if (n > size (prt)) & call msg_bug ("Particle set transform to HEPEVT: insufficient space") prt(n)%src = i prt(n)%status = pset_in%prt(i)%get_status () if (map1(i) == 0) then map1(i) = n else prt(map2(i))%status = PRT_VIRTUAL prt(map2(i))%copy = n prt(n)%orig = map2(i) end if map2(i) = n end subroutine append end subroutine particle_set_to_hepevt_form @ %def particle_set_to_hepevt_form @ This procedure aims at reconstructing the momenta of an interaction, given a particle set. The main task is to find the original hard process, by following the event history. In-state: take those particles which are flagged as [[PRT_INCOMING]] Out-state: try to be smart by checking the immediate children of the incoming particles. If the [[state_flv]] table is present, check any [[PRT_RESONANT]] particles that we get this way, whether they are potential out-particles by their PDG codes. If not, replace them by their children, recursively. (Resonances may have been inserted by the corresponding event transform.) [WK 21-02-16] Revised the algorithm for the case [[recover_beams]] = false, i.e., the particle set contains beams and radiation. This does not mean that the particle set contains the complete radiation history. To make up for missing information, we follow the history in the interaction one step backwards and do a bit of guesswork to match this to the possibly incomplete history in the particle set. [The current implementation allows only for one stage of radiation; this could be improved by iterating the procedure!] [WK 21-03-21] Amended the [[find_hard_process_in_pset]] algorithm as follows: Occasionally, PYTHIA adds a stepchild to the decay of a resonance that WHIZARD has inserted, a shower object that also has other particles in the event as parents. Such objects must not enter the hard-process record. Therefore, resonance child particle objects are ignored if they have more than one parent. <>= procedure :: fill_interaction => particle_set_fill_interaction <>= module subroutine particle_set_fill_interaction & (pset, int, n_in, recover_beams, check_match, state_flv, success) class(particle_set_t), intent(in) :: pset type(interaction_t), intent(inout) :: int integer, intent(in) :: n_in logical, intent(in), optional :: recover_beams, check_match type(state_flv_content_t), intent(in), optional :: state_flv logical, intent(out), optional :: success end subroutine particle_set_fill_interaction <>= module subroutine particle_set_fill_interaction & (pset, int, n_in, recover_beams, check_match, state_flv, success) class(particle_set_t), intent(in) :: pset type(interaction_t), intent(inout) :: int integer, intent(in) :: n_in logical, intent(in), optional :: recover_beams, check_match type(state_flv_content_t), intent(in), optional :: state_flv logical, intent(out), optional :: success integer, dimension(:), allocatable :: map, pdg integer, dimension(:), allocatable :: i_in, i_out, p_in, p_out logical, dimension(:), allocatable :: i_set integer :: n_out, i, p logical :: r_beams, check r_beams = .false.; if (present (recover_beams)) r_beams = recover_beams check = .true.; if (present (check_match)) check = check_match if (check) then call find_hard_process_in_int (i_in, i_out) call find_hard_process_in_pset (p_in, p_out, state_flv, success) if (present (success)) then if (size (i_in) /= n_in) success = .false. if (size (p_in) /= n_in) success = .false. if (size (p_out) /= n_out) success = .false. if (.not. success) return else if (size (i_in) /= n_in) call err_int_n_in if (size (p_in) /= n_in) call err_pset_n_in if (size (p_out) /= n_out) call err_pset_n_out end if call extract_hard_process_from_pset (pdg) call determine_map_for_hard_process (map, state_flv, success) if (present (success)) then if (.not. success) return end if call map_handle_duplicates (map) if (.not. r_beams) then call determine_map_for_beams (map) call map_handle_duplicates (map) call determine_map_for_radiation (map, i_in, p_in) call map_handle_duplicates (map) end if else allocate (map (int%get_n_tot ())) map = [(i, i = 1, size (map))] r_beams = .false. end if allocate (i_set (int%get_n_tot ()), source = .false.) do p = 1, size (map) if (map(p) /= 0) then if (.not. i_set(map(p))) then call int%set_momentum (pset%prt(p)%get_momentum (), map(p)) i_set(map(p)) = .true. end if end if end do if (r_beams) then do i = 1, n_in call reconstruct_beam_and_radiation (i, i_set) end do else do i = int%get_n_tot (), 1, -1 if (.not. i_set(i)) call reconstruct_missing (i, i_set) end do end if if (any (.not. i_set)) then if (present (success)) then success = .false. else call err_map end if end if contains subroutine find_hard_process_in_int (i_in, i_out) integer, dimension(:), allocatable, intent(out) :: i_in, i_out integer :: n_in_i integer :: i i = int%get_n_tot () n_in_i = int%get_n_parents (i) if (n_in_i /= n_in) call err_int_n_in allocate (i_in (n_in)) i_in = int%get_parents (i) i = i_in(1) n_out = int%get_n_children (i) allocate (i_out (n_out)) i_out = int%get_children (i) end subroutine find_hard_process_in_int subroutine find_hard_process_in_pset (p_in, p_out, state_flv, success) integer, dimension(:), allocatable, intent(out) :: p_in, p_out type(state_flv_content_t), intent(in), optional :: state_flv logical, intent(out), optional :: success integer, dimension(:), allocatable :: p_status, p_idx, p_child integer :: n_out_p, n_child, n_shift integer :: i, k, c allocate (p_status (pset%n_tot), p_idx (pset%n_tot), p_child (pset%n_tot)) p_status = pset%prt%get_status () p_idx = [(i, i = 1, pset%n_tot)] allocate (p_in (n_in)) p_in = pack (p_idx, p_status == PRT_INCOMING) if (size (p_in) == 0) call err_pset_hard i = p_in(1) allocate (p_out (n_out)) n_out_p = pset%prt(i)%get_n_children () p_out(1:n_out_p) = particle_get_children (pset%prt(i)) do k = 1, size (p_out) i = p_out(k) if (present (state_flv)) then do while (pset%prt(i)%get_status () == PRT_RESONANT) if (state_flv%contains (pset%prt(i)%get_pdg ())) exit n_child = pset%prt(i)%get_n_children () p_child(1:n_child) = particle_get_children (pset%prt(i)) n_shift = -1 do c = 1, n_child if (pset%prt(p_child(c))%get_n_parents () == 1) then n_shift = n_shift + 1 else p_child(c) = 0 end if end do if (n_shift < 0) then if (present (success)) then success = .false. return else call err_mismatch end if end if p_out(k+1+n_shift:n_out_p+n_shift) = p_out(k+1:n_out_p) n_out_p = n_out_p + n_shift do c = 1, n_child if (p_child(c) /= 0) then p_out(k+c-1) = p_child(c) end if end do i = p_out(k) end do end if end do if (present (success)) success = .true. end subroutine find_hard_process_in_pset subroutine extract_hard_process_from_pset (pdg) integer, dimension(:), allocatable, intent(out) :: pdg integer, dimension(:), allocatable :: pdg_p logical, dimension(:), allocatable :: mask_p integer :: i allocate (pdg_p (pset%n_tot)) pdg_p = pset%prt%get_pdg () allocate (mask_p (pset%n_tot), source = .false.) mask_p (p_in) = .true. mask_p (p_out) = .true. allocate (pdg (n_in + n_out)) pdg = pack (pdg_p, mask_p) end subroutine extract_hard_process_from_pset subroutine determine_map_for_hard_process (map, state_flv, success) integer, dimension(:), allocatable, intent(out) :: map type(state_flv_content_t), intent(in), optional :: state_flv logical, intent(out), optional :: success integer, dimension(:), allocatable :: pdg_i, map_i integer :: n_tot logical, dimension(:), allocatable :: mask_i, mask_p logical :: match n_tot = int%get_n_tot () if (present (state_flv)) then allocate (mask_i (n_tot), source = .false.) mask_i (i_in) = .true. mask_i (i_out) = .true. allocate (pdg_i (n_tot), map_i (n_tot)) pdg_i = unpack (pdg, mask_i, 0) call state_flv%match (pdg_i, match, map_i) if (present (success)) then success = match end if if (.not. match) then if (present (success)) then return else call err_mismatch end if end if allocate (mask_p (pset%n_tot), source = .false.) mask_p (p_in) = .true. mask_p (p_out) = .true. allocate (map (size (mask_p)), & source = unpack (pack (map_i, mask_i), mask_p, 0)) else allocate (map (n_tot), source = 0) map(p_in) = i_in map(p_out) = i_out end if end subroutine determine_map_for_hard_process subroutine map_handle_duplicates (map) integer, dimension(:), intent(inout) :: map integer, dimension(1) :: p_parent, p_child integer :: p do p = 1, pset%n_tot if (map(p) == 0) then if (pset%prt(p)%get_n_parents () == 1) then p_parent = pset%prt(p)%get_parents () if (map(p_parent(1)) /= 0) then if (pset%prt(p_parent(1))%get_n_children () == 1) then map(p) = map(p_parent(1)) end if end if end if end if end do do p = pset%n_tot, 1, -1 if (map(p) == 0) then if (pset%prt(p)%get_n_children () == 1) then p_child = pset%prt(p)%get_children () if (map(p_child(1)) /= 0) then if (pset%prt(p_child(1))%get_n_parents () == 1) then map(p) = map(p_child(1)) end if end if end if end if end do end subroutine map_handle_duplicates subroutine determine_map_for_beams (map) integer, dimension(:), intent(inout) :: map select case (n_in) case (1); map(1) = 1 case (2); map(1:2) = [1,2] end select end subroutine determine_map_for_beams subroutine determine_map_for_radiation (map, i_in, p_in) integer, dimension(:), intent(inout) :: map integer, dimension(:), intent(in) :: i_in integer, dimension(:), intent(in) :: p_in integer, dimension(:), allocatable :: i_cur, p_cur integer, dimension(:), allocatable :: i_par, p_par, i_rad, p_rad integer :: i, p integer :: b, r i_cur = i_in p_cur = p_in do b = 1, n_in i = i_cur(b) p = p_cur(b) i_par = int%get_parents (i) p_par = pset%prt(p)%get_parents () if (size (i_par) == 0 .or. size (p_par) == 0) cycle if (size (p_par) == 1) then if (pset%prt(p_par(1))%get_n_children () == 1) then p_par = pset%prt(p_par(1))%get_parents () ! copy of entry end if end if i_rad = int%get_children (i_par(1)) p_rad = pset%prt(p_par(1))%get_children () do r = 1, size (i_rad) if (any (map == i_rad(r))) i_rad(r) = 0 end do i_rad = pack (i_rad, i_rad /= 0) do r = 1, size (p_rad) if (map(p_rad(r)) /= 0) p_rad(r) = 0 end do p_rad = pack (p_rad, p_rad /= 0) do r = 1, min (size (i_rad), size (p_rad)) map(p_rad(r)) = i_rad(r) end do end do do b = 1, min (size (p_par), size (i_par)) if (map(p_par(b)) == 0 .and. all (map /= i_par(b))) then map(p_par(b)) = i_par(b) end if end do end subroutine determine_map_for_radiation subroutine reconstruct_beam_and_radiation (k, i_set) integer, intent(in) :: k logical, dimension(:), intent(inout) :: i_set integer :: k_src, k_pre, k_in, k_rad type(interaction_t), pointer :: int_src integer, dimension(2) :: i_child logical, dimension(2) :: is_final integer :: i call int%find_source (k, int_src, k_src) k_pre = 0 k_in = k do while (.not. i_set (k_in)) if (k_pre == 0) then call int%set_momentum (int_src%get_momentum (k_src), k_in) else call int%set_momentum (int%get_momentum (k_pre), k_in) end if i_set(k_in) = .true. if (n_in == 2) then k_pre = k_in i_child = int%get_children (k_pre) do i = 1, 2 is_final(i) = int%get_n_children (i_child(i)) == 0 end do if (all (.not. is_final)) then k_in = i_child(k); k_rad = 0 else if (is_final(2)) then k_in = i_child(1); k_rad = i_child(2) else if (is_final(1)) then k_in = i_child(2); k_rad = i_child(1) else call err_beams end if if (k_rad /= 0) then if (i_set (k_in)) then call int%set_momentum & (int%get_momentum (k) - int%get_momentum (k_in), k_rad) i_set(k_rad) = .true. else call err_beams_norad end if end if end if end do end subroutine reconstruct_beam_and_radiation subroutine reconstruct_missing (i, i_set) integer, intent(in) :: i logical, dimension(:), intent(inout) :: i_set integer, dimension(:), allocatable :: i_child, i_parent, i_sibling integer :: s i_child = int%get_children (i) i_parent = int%get_parents (i) if (size (i_child) > 0 .and. all (i_set(i_child))) then call int%set_momentum (sum (int%get_momenta (i_child)), i) else if (size (i_parent) > 0 .and. all (i_set(i_parent))) then i_sibling = int%get_children (i_parent(1)) call int%set_momentum (sum (int%get_momenta (i_parent)), i) do s = 1, size (i_sibling) if (i_sibling(s) == i) cycle if (i_set(i_sibling(s))) then call int%set_momentum (int%get_momentum (i) & - int%get_momentum (i_sibling(s)), i) else call err_beams_norad end if end do else call err_beams_norad end if i_set(i) = .true. end subroutine reconstruct_missing subroutine err_pset_hard call msg_fatal ("Reading particle set: no particles marked as incoming") end subroutine err_pset_hard subroutine err_int_n_in integer :: n if (allocated (i_in)) then n = size (i_in) else n = 0 end if write (msg_buffer, "(A,I0,A,I0)") & "Filling hard process from particle set: expect ", n_in, & " incoming particle(s), found ", n call msg_bug end subroutine err_int_n_in subroutine err_pset_n_in write (msg_buffer, "(A,I0,A,I0)") & "Reading hard-process particle set: should contain ", n_in, & " incoming particle(s), found ", size (p_in) call msg_fatal end subroutine err_pset_n_in subroutine err_pset_n_out write (msg_buffer, "(A,I0,A,I0)") & "Reading hard-process particle set: should contain ", n_out, & " outgoing particle(s), found ", size (p_out) call msg_fatal end subroutine err_pset_n_out subroutine err_mismatch call pset%write () call state_flv%write () call msg_fatal ("Reading particle set: Flavor combination " & // "does not match requested process") end subroutine err_mismatch subroutine err_map call pset%write () call int%basic_write () call msg_fatal ("Reading hard-process particle set: " & // "Incomplete mapping from particle set to interaction") end subroutine err_map subroutine err_beams call pset%write () call int%basic_write () call msg_fatal ("Reading particle set: Beam structure " & // "does not match requested process") end subroutine err_beams subroutine err_beams_norad call pset%write () call int%basic_write () call msg_fatal ("Reading particle set: Beam structure " & // "cannot be reconstructed for this configuration") end subroutine err_beams_norad subroutine err_radiation call int%basic_write () call msg_bug ("Reading particle set: Interaction " & // "contains inconsistent radiation pattern.") end subroutine err_radiation end subroutine particle_set_fill_interaction @ %def particle_set_fill_interaction @ This procedure reconstructs an array of vertex indices from the parent-child information in the particle entries, according to the HepMC scheme. For each particle, we determine which vertex it comes from and which vertex it goes to. We return the two arrays and the maximum vertex index. For each particle in the list, we first check its parents. If for any parent the vertex where it goes to is already known, this vertex index is assigned as the current 'from' vertex. Otherwise, a new index is created, assigned as the current 'from' vertex, and as the 'to' vertex for all parents. Then, the analogous procedure is done for the children. Furthermore, we assign to each vertex the vertex position from the parent(s). We check that these vertex positions coincide, and if not return a null vector. <>= procedure :: assign_vertices => particle_set_assign_vertices <>= module subroutine particle_set_assign_vertices & (particle_set, v_from, v_to, n_vertices) class(particle_set_t), intent(in) :: particle_set integer, dimension(:), intent(out) :: v_from, v_to integer, intent(out) :: n_vertices end subroutine particle_set_assign_vertices <>= module subroutine particle_set_assign_vertices & (particle_set, v_from, v_to, n_vertices) class(particle_set_t), intent(in) :: particle_set integer, dimension(:), intent(out) :: v_from, v_to integer, intent(out) :: n_vertices integer, dimension(:), allocatable :: parent, child integer :: n_parents, n_children, vf, vt integer :: i, j, v v_from = 0 v_to = 0 vf = 0 vt = 0 do i = 1, particle_set%n_tot n_parents = particle_set%prt(i)%get_n_parents () if (n_parents /= 0) then allocate (parent (n_parents)) parent = particle_set%prt(i)%get_parents () SCAN_PARENTS: do j = 1, size (parent) v = v_to(parent(j)) if (v /= 0) then v_from(i) = v; exit SCAN_PARENTS end if end do SCAN_PARENTS if (v_from(i) == 0) then vf = vf + 1; v_from(i) = vf v_to(parent) = vf end if deallocate (parent) end if n_children = particle_set%prt(i)%get_n_children () if (n_children /= 0) then allocate (child (n_children)) child = particle_set%prt(i)%get_children () SCAN_CHILDREN: do j = 1, size (child) v = v_from(child(j)) if (v /= 0) then v_to(i) = v; exit SCAN_CHILDREN end if end do SCAN_CHILDREN if (v_to(i) == 0) then vt = vt + 1; v_to(i) = vt v_from(child) = vt end if deallocate (child) end if end do n_vertices = max (vf, vt) end subroutine particle_set_assign_vertices @ %def particle_set_assign_vertices @ \subsection{Expression interface} This converts a [[particle_set]] object as defined here to a more concise [[subevt]] object that can be used as the event root of an expression. In particular, the latter lacks virtual particles, spin correlations and parent-child relations. We keep beam particles, incoming partons, and outgoing partons. Furthermore, we keep radiated particles (a.k.a.\ beam remnants) if they have no children in the current particle set, and mark them as outgoing particles. If [[colorize]] is set and true, mark all particles in the subevent as colorized, and set color/anticolor flow indices where they are defined. Colorless particles do not get indices but are still marked as colorized, for consistency. <>= procedure :: to_subevt => particle_set_to_subevt <>= module subroutine particle_set_to_subevt (particle_set, subevt, colorize) class(particle_set_t), intent(in) :: particle_set type(subevt_t), intent(out) :: subevt logical, intent(in), optional :: colorize end subroutine particle_set_to_subevt <>= module subroutine particle_set_to_subevt (particle_set, subevt, colorize) class(particle_set_t), intent(in) :: particle_set type(subevt_t), intent(out) :: subevt logical, intent(in), optional :: colorize integer :: n_tot, n_beam, n_in, n_out, n_rad integer :: i, k, n_active integer, dimension(2) :: hel logical :: keep n_tot = particle_set_get_n_tot (particle_set) n_beam = particle_set_get_n_beam (particle_set) n_in = particle_set_get_n_in (particle_set) n_out = particle_set_get_n_out (particle_set) n_rad = particle_set_get_n_remnants (particle_set) call subevt_init (subevt, n_beam + n_rad + n_in + n_out) k = 0 do i = 1, n_tot associate (prt => particle_set%prt(i)) keep = .false. select case (particle_get_status (prt)) case (PRT_BEAM) k = k + 1 call subevt%set_beam (k, & particle_get_pdg (prt), & particle_get_momentum (prt), & particle_get_p2 (prt)) keep = .true. case (PRT_INCOMING) k = k + 1 call subevt%set_incoming (k, & particle_get_pdg (prt), & particle_get_momentum (prt), & particle_get_p2 (prt)) keep = .true. case (PRT_OUTGOING) k = k + 1 call subevt%set_outgoing (k, & particle_get_pdg (prt), & particle_get_momentum (prt), & particle_get_p2 (prt)) keep = .true. case (PRT_BEAM_REMNANT) if (prt%get_n_children () == 0) then k = k + 1 call subevt%set_outgoing (k, & particle_get_pdg (prt), & particle_get_momentum (prt), & particle_get_p2 (prt)) keep = .true. end if end select if (keep) then if (prt%polarization == PRT_DEFINITE_HELICITY) then if (prt%hel%is_diagonal ()) then hel = prt%hel%to_pair () call subevt_polarize (subevt, k, hel(1)) end if end if end if if (present (colorize)) then if (colorize) then call subevt_colorize & (subevt, i, prt%col%get_col (), prt%col%get_acl ()) end if end if end associate n_active = k end do call subevt%reset (n_active) end subroutine particle_set_to_subevt @ %def particle_set_to_subevt @ This replaces the [[particle\_set\%prt array]] with a given array of particles <>= procedure :: replace => particle_set_replace <>= module subroutine particle_set_replace (particle_set, newprt) class(particle_set_t), intent(inout) :: particle_set type(particle_t), intent(in), dimension(:), allocatable :: newprt end subroutine particle_set_replace <>= module subroutine particle_set_replace (particle_set, newprt) class(particle_set_t), intent(inout) :: particle_set type(particle_t), intent(in), dimension(:), allocatable :: newprt if (allocated (particle_set%prt)) deallocate (particle_set%prt) allocate (particle_set%prt(size (newprt))) particle_set%prt = newprt particle_set%n_tot = size (newprt) particle_set%n_beam = count (particle_get_status (newprt) == PRT_BEAM) particle_set%n_in = count (particle_get_status (newprt) == PRT_INCOMING) particle_set%n_out = count (particle_get_status (newprt) == PRT_OUTGOING) particle_set%n_vir = particle_set%n_tot & - particle_set%n_beam - particle_set%n_in - particle_set%n_out end subroutine particle_set_replace @ %def particle_set_replace @ This routines orders the outgoing particles into clusters of colorless particles and such of particles ordered corresponding to the indices of the color lines. All outgoing particles in the ordered set appear as child of the corresponding outgoing particle in the unordered set, including colored beam remnants. We always start continue via the anti-color line, such that color flows within each Lund string system is always continued from the anticolor of one particle to the identical color index of another particle. <>= procedure :: order_color_lines => particle_set_order_color_lines <>= module subroutine particle_set_order_color_lines (pset_out, pset_in) class(particle_set_t), intent(inout) :: pset_out type(particle_set_t), intent(in) :: pset_in end subroutine particle_set_order_color_lines <>= module subroutine particle_set_order_color_lines (pset_out, pset_in) class(particle_set_t), intent(inout) :: pset_out type(particle_set_t), intent(in) :: pset_in integer :: i, n, n_col_rem n_col_rem = 0 do i = 1, pset_in%n_tot if (pset_in%prt(i)%get_status () == PRT_BEAM_REMNANT .and. & any (pset_in%prt(i)%get_color () /= 0)) then n_col_rem = n_col_rem + 1 end if end do pset_out%n_beam = pset_in%n_beam pset_out%n_in = pset_in%n_in pset_out%n_vir = pset_in%n_vir + pset_in%n_out + n_col_rem pset_out%n_out = pset_in%n_out pset_out%n_tot = pset_in%n_tot + pset_in%n_out + n_col_rem pset_out%correlated_state = pset_in%correlated_state pset_out%factorization_mode = pset_in%factorization_mode allocate (pset_out%prt (pset_out%n_tot)) do i = 1, pset_in%n_tot call pset_out%prt(i)%init (pset_in%prt(i)) call pset_out%prt(i)%set_children (pset_in%prt(i)%child) call pset_out%prt(i)%set_parents (pset_in%prt(i)%parent) end do n = pset_in%n_tot do i = 1, pset_in%n_tot if (pset_out%prt(i)%get_status () == PRT_OUTGOING .and. & all (pset_out%prt(i)%get_color () == 0) .and. & .not. pset_out%prt(i)%has_children ()) then n = n + 1 call pset_out%prt(n)%init (pset_out%prt(i)) call pset_out%prt(i)%reset_status (PRT_VIRTUAL) call pset_out%prt(i)%add_child (n) call pset_out%prt(i)%set_parents ([i]) end if end do if (n_col_rem > 0) then do i = 1, n_col_rem end do end if end subroutine particle_set_order_color_lines @ %def particle_set_order_color_lines @ Eliminate numerical noise <>= public :: pacify <>= interface pacify module procedure pacify_particle module procedure pacify_particle_set end interface pacify <>= module subroutine pacify_particle (prt) class(particle_t), intent(inout) :: prt end subroutine pacify_particle module subroutine pacify_particle_set (pset) class(particle_set_t), intent(inout) :: pset end subroutine pacify_particle_set <>= module subroutine pacify_particle (prt) class(particle_t), intent(inout) :: prt real(default) :: e e = epsilon (1._default) * energy (prt%p) call pacify (prt%p, 10 * e) call pacify (prt%p2, 1e4 * e) end subroutine pacify_particle module subroutine pacify_particle_set (pset) class(particle_set_t), intent(inout) :: pset integer :: i do i = 1, pset%n_tot call pacify (pset%prt(i)) end do end subroutine pacify_particle_set @ %def pacify @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[particles_ut.f90]]>>= <> module particles_ut use unit_tests use particles_uti <> <> contains <> end module particles_ut @ %def particles_ut @ <<[[particles_uti.f90]]>>= <> module particles_uti <> use io_units use numeric_utils use constants, only: one, tiny_07 use lorentz use flavors use colors use helicities use quantum_numbers use state_matrices use interactions use evaluators use model_data use subevents use particles <> <> contains <> <> end module particles_uti @ %def particles_ut @ API: driver for the unit tests below. <>= public :: particles_test <>= subroutine particles_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine particles_test @ %def particles_test @ Check the basic setup of the [[particle_set_t]] type: Set up a chain of production and decay and factorize the result into particles. The process is $d\bar d \to Z \to q\bar q$. <>= call test (particles_1, "particles_1", & "check particle_set routines", & u, results) <>= public :: particles_1 <>= subroutine particles_1 (u) use os_interface integer, intent(in) :: u type(model_data_t), target :: model type(flavor_t), dimension(3) :: flv type(color_t), dimension(3) :: col type(helicity_t), dimension(3) :: hel type(quantum_numbers_t), dimension(3) :: qn type(vector4_t), dimension(3) :: p type(interaction_t), target :: int1, int2 type(quantum_numbers_mask_t) :: qn_mask_conn type(evaluator_t), target :: eval type(interaction_t) :: int type(particle_set_t) :: particle_set1, particle_set2 type(particle_set_t) :: particle_set3, particle_set4 type(subevt_t) :: subevt logical :: ok integer :: unit, iostat write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: test particle_set routines" write (u, "(A)") write (u, "(A)") "* Reading model file" call model%init_sm_test () write (u, "(A)") write (u, "(A)") "* Initializing production process" call int1%basic_init (2, 0, 1, set_relations=.true.) call flv%init ([1, -1, 23], model) call col%init_col_acl ([0, 0, 0], [0, 0, 0]) call hel(3)%init (1, 1) call qn%init (flv, col, hel) call int1%add_state (qn, value=(0.25_default, 0._default)) call hel(3)%init (1,-1) call qn%init (flv, col, hel) call int1%add_state (qn, value=(0._default, 0.25_default)) call hel(3)%init (-1, 1) call qn%init (flv, col, hel) call int1%add_state (qn, value=(0._default,-0.25_default)) call hel(3)%init (-1,-1) call qn%init (flv, col, hel) call int1%add_state (qn, value=(0.25_default, 0._default)) call hel(3)%init (0, 0) call qn%init (flv, col, hel) call int1%add_state (qn, value=(0.5_default, 0._default)) call int1%freeze () p(1) = vector4_moving (45._default, 45._default, 3) p(2) = vector4_moving (45._default,-45._default, 3) p(3) = p(1) + p(2) call int1%set_momenta (p) write (u, "(A)") write (u, "(A)") "* Setup decay process" call int2%basic_init (1, 0, 2, set_relations=.true.) call flv%init ([23, 1, -1], model) call col%init_col_acl ([0, 501, 0], [0, 0, 501]) call hel%init ([1, 1, 1], [1, 1, 1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(1._default, 0._default)) call hel%init ([1, 1, 1], [-1,-1,-1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(0._default, 0.1_default)) call hel%init ([-1,-1,-1], [1, 1, 1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(0._default,-0.1_default)) call hel%init ([-1,-1,-1], [-1,-1,-1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(1._default, 0._default)) call hel%init ([0, 1,-1], [0, 1,-1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(4._default, 0._default)) call hel%init ([0,-1, 1], [0, 1,-1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(2._default, 0._default)) call hel%init ([0, 1,-1], [0,-1, 1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(2._default, 0._default)) call hel%init ([0,-1, 1], [0,-1, 1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(4._default, 0._default)) call flv%init ([23, 2, -2], model) call hel%init ([0, 1,-1], [0, 1,-1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(0.5_default, 0._default)) call hel%init ([0,-1, 1], [0,-1, 1]) call qn%init (flv, col, hel) call int2%add_state (qn, value=(0.5_default, 0._default)) call int2%freeze () p(2) = vector4_moving (45._default, 45._default, 2) p(3) = vector4_moving (45._default,-45._default, 2) call int2%set_momenta (p) call int2%set_source_link (1, int1, 3) call int1%basic_write (u) call int2%basic_write (u) write (u, "(A)") write (u, "(A)") "* Concatenate production and decay" call eval%init_product (int1, int2, qn_mask_conn, & connections_are_resonant=.true.) call eval%receive_momenta () call eval%evaluate () call eval%write (u) write (u, "(A)") write (u, "(A)") "* Factorize as subevent (complete, polarized)" write (u, "(A)") int = eval%interaction_t call particle_set1%init & (ok, int, int, FM_FACTOR_HELICITY, & [0.2_default, 0.2_default], .false., .true.) call particle_set1%write (u) write (u, "(A)") write (u, "(A)") "* Factorize as subevent (in/out only, selected helicity)" write (u, "(A)") int = eval%interaction_t call particle_set2%init & (ok, int, int, FM_SELECT_HELICITY, & [0.9_default, 0.9_default], .false., .false.) call particle_set2%write (u) call particle_set2%final () write (u, "(A)") write (u, "(A)") "* Factorize as subevent (complete, selected helicity)" write (u, "(A)") int = eval%interaction_t call particle_set2%init & (ok, int, int, FM_SELECT_HELICITY, & [0.7_default, 0.7_default], .false., .true.) call particle_set2%write (u) write (u, "(A)") write (u, "(A)") & "* Factorize (complete, polarized, correlated); write and read again" write (u, "(A)") int = eval%interaction_t call particle_set3%init & (ok, int, int, FM_FACTOR_HELICITY, & [0.7_default, 0.7_default], .true., .true.) call particle_set3%write (u) unit = free_unit () open (unit, action="readwrite", form="unformatted", status="scratch") call particle_set3%write_raw (unit) rewind (unit) call particle_set4%read_raw (unit, iostat=iostat) call particle_set4%set_model (model) close (unit) write (u, "(A)") write (u, "(A)") "* Result from reading" write (u, "(A)") call particle_set4%write (u) write (u, "(A)") write (u, "(A)") "* Transform to a subevt object" write (u, "(A)") call particle_set4%to_subevt (subevt) call subevt%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call particle_set1%final () call particle_set2%final () call particle_set3%final () call particle_set4%final () call eval%final () call int1%final () call int2%final () call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_1" end subroutine particles_1 @ %def particles_1 @ Reconstruct a hard interaction from a particle set. <>= call test (particles_2, "particles_2", & "reconstruct hard interaction", & u, results) <>= public :: particles_2 <>= subroutine particles_2 (u) integer, intent(in) :: u type(interaction_t) :: int type(state_flv_content_t) :: state_flv type(particle_set_t) :: pset type(flavor_t), dimension(:), allocatable :: flv type(quantum_numbers_t), dimension(:), allocatable :: qn integer :: i, j write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: reconstruct simple interaction" write (u, "(A)") write (u, "(A)") "* Set up a 2 -> 3 interaction" write (u, "(A)") " + incoming partons marked as virtual" write (u, "(A)") " + no quantum numbers" write (u, "(A)") call reset_interaction_counter () call int%basic_init (0, 2, 3) do i = 1, 2 do j = 3, 5 call int%relate (i, j) end do end do allocate (qn (5)) call int%add_state (qn) call int%freeze () call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Manually set up a flavor-content record" write (u, "(A)") call state_flv%init (1, & mask = [.false., .false., .true., .true., .true.]) call state_flv%set_entry (1, & pdg = [11, 12, 3, 4, 5], & map = [1, 2, 3, 4, 5]) call state_flv%write (u) write (u, "(A)") write (u, "(A)") "* Manually create a matching particle set" write (u, "(A)") pset%n_beam = 0 pset%n_in = 2 pset%n_vir = 0 pset%n_out = 3 pset%n_tot = 5 allocate (pset%prt (pset%n_tot)) do i = 1, 2 call pset%prt(i)%reset_status (PRT_INCOMING) call pset%prt(i)%set_children ([3,4,5]) end do do i = 3, 5 call pset%prt(i)%reset_status (PRT_OUTGOING) call pset%prt(i)%set_parents ([1,2]) end do call pset%prt(1)%set_momentum (vector4_at_rest (1._default)) call pset%prt(2)%set_momentum (vector4_at_rest (2._default)) call pset%prt(3)%set_momentum (vector4_at_rest (5._default)) call pset%prt(4)%set_momentum (vector4_at_rest (4._default)) call pset%prt(5)%set_momentum (vector4_at_rest (3._default)) allocate (flv (5)) call flv%init ([11,12,5,4,3]) do i = 1, 5 call pset%prt(i)%set_flavor (flv(i)) end do call pset%write (u) write (u, "(A)") write (u, "(A)") "* Fill interaction from particle set" write (u, "(A)") call pset%fill_interaction (int, 2, state_flv=state_flv) call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call int%final () call pset%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_2" end subroutine particles_2 @ %def particles_2 @ Reconstruct an interaction with beam structure, e.g., a hadronic interaction, from a particle set. <>= call test (particles_3, "particles_3", & "reconstruct interaction with beam structure", & u, results) <>= public :: particles_3 <>= subroutine particles_3 (u) integer, intent(in) :: u type(interaction_t) :: int type(state_flv_content_t) :: state_flv type(particle_set_t) :: pset type(quantum_numbers_t), dimension(:), allocatable :: qn integer :: i, j write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: reconstruct simple interaction" write (u, "(A)") write (u, "(A)") "* Set up a 2 -> 2 -> 3 interaction with radiation" write (u, "(A)") " + no quantum numbers" write (u, "(A)") call reset_interaction_counter () call int%basic_init (0, 6, 3) call int%relate (1, 3) call int%relate (1, 4) call int%relate (2, 5) call int%relate (2, 6) do i = 4, 6, 2 do j = 7, 9 call int%relate (i, j) end do end do allocate (qn (9)) call int%add_state (qn) call int%freeze () call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Manually set up a flavor-content record" write (u, "(A)") call state_flv%init (1, & mask = [.false., .false., .false., .false., .false., .false., & .true., .true., .true.]) call state_flv%set_entry (1, & pdg = [2011, 2012, 91, 11, 92, 12, 3, 4, 5], & map = [1, 2, 3, 4, 5, 6, 7, 8, 9]) call state_flv%write (u) write (u, "(A)") write (u, "(A)") "* Manually create a matching particle set" write (u, "(A)") call create_test_particle_set_1 (pset) call pset%write (u) write (u, "(A)") write (u, "(A)") "* Fill interaction from particle set" write (u, "(A)") call pset%fill_interaction (int, 2, state_flv=state_flv) call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call int%final () call pset%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_3" end subroutine particles_3 @ %def particles_3 @ <>= subroutine create_test_particle_set_1 (pset) type(particle_set_t), intent(out) :: pset type(flavor_t), dimension(:), allocatable :: flv integer :: i pset%n_beam = 2 pset%n_in = 2 pset%n_vir = 2 pset%n_out = 3 pset%n_tot = 9 allocate (pset%prt (pset%n_tot)) call pset%prt(1)%reset_status (PRT_BEAM) call pset%prt(2)%reset_status (PRT_BEAM) call pset%prt(3)%reset_status (PRT_INCOMING) call pset%prt(4)%reset_status (PRT_INCOMING) call pset%prt(5)%reset_status (PRT_BEAM_REMNANT) call pset%prt(6)%reset_status (PRT_BEAM_REMNANT) call pset%prt(7)%reset_status (PRT_OUTGOING) call pset%prt(8)%reset_status (PRT_OUTGOING) call pset%prt(9)%reset_status (PRT_OUTGOING) call pset%prt(1)%set_children ([3,5]) call pset%prt(2)%set_children ([4,6]) call pset%prt(3)%set_children ([7,8,9]) call pset%prt(4)%set_children ([7,8,9]) call pset%prt(3)%set_parents ([1]) call pset%prt(4)%set_parents ([2]) call pset%prt(5)%set_parents ([1]) call pset%prt(6)%set_parents ([2]) call pset%prt(7)%set_parents ([3,4]) call pset%prt(8)%set_parents ([3,4]) call pset%prt(9)%set_parents ([3,4]) call pset%prt(1)%set_momentum (vector4_at_rest (1._default)) call pset%prt(2)%set_momentum (vector4_at_rest (2._default)) call pset%prt(3)%set_momentum (vector4_at_rest (4._default)) call pset%prt(4)%set_momentum (vector4_at_rest (6._default)) call pset%prt(5)%set_momentum (vector4_at_rest (3._default)) call pset%prt(6)%set_momentum (vector4_at_rest (5._default)) call pset%prt(7)%set_momentum (vector4_at_rest (7._default)) call pset%prt(8)%set_momentum (vector4_at_rest (8._default)) call pset%prt(9)%set_momentum (vector4_at_rest (9._default)) allocate (flv (9)) call flv%init ([2011, 2012, 11, 12, 91, 92, 3, 4, 5]) do i = 1, 9 call pset%prt(i)%set_flavor (flv(i)) end do end subroutine create_test_particle_set_1 @ %def create_test_particle_set_1 @ Reconstruct an interaction with beam structure, e.g., a hadronic interaction, from a particle set that is missing the beam information. <>= call test (particles_4, "particles_4", & "reconstruct interaction with missing beams", & u, results) <>= public :: particles_4 <>= subroutine particles_4 (u) integer, intent(in) :: u type(interaction_t) :: int type(interaction_t), target :: int_beams type(state_flv_content_t) :: state_flv type(particle_set_t) :: pset type(flavor_t), dimension(:), allocatable :: flv type(quantum_numbers_t), dimension(:), allocatable :: qn integer :: i, j write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: reconstruct beams" write (u, "(A)") call reset_interaction_counter () write (u, "(A)") "* Set up an interaction that contains beams only" write (u, "(A)") call int_beams%basic_init (0, 0, 2) call int_beams%set_momentum (vector4_at_rest (1._default), 1) call int_beams%set_momentum (vector4_at_rest (2._default), 2) allocate (qn (2)) call int_beams%add_state (qn) call int_beams%freeze () call int_beams%basic_write (u) write (u, "(A)") write (u, "(A)") "* Set up a 2 -> 2 -> 3 interaction with radiation" write (u, "(A)") " + no quantum numbers" write (u, "(A)") call int%basic_init (0, 6, 3) call int%relate (1, 3) call int%relate (1, 4) call int%relate (2, 5) call int%relate (2, 6) do i = 4, 6, 2 do j = 7, 9 call int%relate (i, j) end do end do do i = 1, 2 call int%set_source_link (i, int_beams, i) end do deallocate (qn) allocate (qn (9)) call int%add_state (qn) call int%freeze () call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Manually set up a flavor-content record" write (u, "(A)") call state_flv%init (1, & mask = [.false., .false., .false., .false., .false., .false., & .true., .true., .true.]) call state_flv%set_entry (1, & pdg = [2011, 2012, 91, 11, 92, 12, 3, 4, 5], & map = [1, 2, 3, 4, 5, 6, 7, 8, 9]) call state_flv%write (u) write (u, "(A)") write (u, "(A)") "* Manually create a matching particle set" write (u, "(A)") pset%n_beam = 0 pset%n_in = 2 pset%n_vir = 0 pset%n_out = 3 pset%n_tot = 5 allocate (pset%prt (pset%n_tot)) call pset%prt(1)%reset_status (PRT_INCOMING) call pset%prt(2)%reset_status (PRT_INCOMING) call pset%prt(3)%reset_status (PRT_OUTGOING) call pset%prt(4)%reset_status (PRT_OUTGOING) call pset%prt(5)%reset_status (PRT_OUTGOING) call pset%prt(1)%set_children ([3,4,5]) call pset%prt(2)%set_children ([3,4,5]) call pset%prt(3)%set_parents ([1,2]) call pset%prt(4)%set_parents ([1,2]) call pset%prt(5)%set_parents ([1,2]) call pset%prt(1)%set_momentum (vector4_at_rest (6._default)) call pset%prt(2)%set_momentum (vector4_at_rest (6._default)) call pset%prt(3)%set_momentum (vector4_at_rest (3._default)) call pset%prt(4)%set_momentum (vector4_at_rest (4._default)) call pset%prt(5)%set_momentum (vector4_at_rest (5._default)) allocate (flv (5)) call flv%init ([11, 12, 3, 4, 5]) do i = 1, 5 call pset%prt(i)%set_flavor (flv(i)) end do call pset%write (u) write (u, "(A)") write (u, "(A)") "* Fill interaction from particle set" write (u, "(A)") call pset%fill_interaction (int, 2, state_flv=state_flv, & recover_beams = .true.) call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call int%final () call pset%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_4" end subroutine particles_4 @ %def particles_4 @ Reconstruct an interaction with beam structure and cloned particles (radiated particles repeated in the event record, to maintain some canonical ordering). <>= call test (particles_5, "particles_5", & "reconstruct interaction with beams and duplicate entries", & u, results) <>= public :: particles_5 <>= subroutine particles_5 (u) integer, intent(in) :: u type(interaction_t) :: int type(state_flv_content_t) :: state_flv type(particle_set_t) :: pset type(flavor_t), dimension(:), allocatable :: flv type(quantum_numbers_t), dimension(:), allocatable :: qn integer :: i, j write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: reconstruct event with duplicate entries" write (u, "(A)") write (u, "(A)") "* Set up a 2 -> 2 -> 3 interaction with radiation" write (u, "(A)") " + no quantum numbers" write (u, "(A)") call reset_interaction_counter () call int%basic_init (0, 6, 3) call int%relate (1, 3) call int%relate (1, 4) call int%relate (2, 5) call int%relate (2, 6) do i = 4, 6, 2 do j = 7, 9 call int%relate (i, j) end do end do allocate (qn (9)) call int%add_state (qn) call int%freeze () call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Manually set up a flavor-content record" write (u, "(A)") call state_flv%init (1, & mask = [.false., .false., .false., .false., .false., .false., & .true., .true., .true.]) call state_flv%set_entry (1, & pdg = [2011, 2012, 91, 11, 92, 12, 3, 4, 5], & map = [1, 2, 3, 4, 5, 6, 7, 8, 9]) call state_flv%write (u) write (u, "(A)") write (u, "(A)") "* Manually create a matching particle set" write (u, "(A)") pset%n_beam = 2 pset%n_in = 2 pset%n_vir = 4 pset%n_out = 5 pset%n_tot = 13 allocate (pset%prt (pset%n_tot)) call pset%prt(1)%reset_status (PRT_BEAM) call pset%prt(2)%reset_status (PRT_BEAM) call pset%prt(3)%reset_status (PRT_VIRTUAL) call pset%prt(4)%reset_status (PRT_VIRTUAL) call pset%prt(5)%reset_status (PRT_VIRTUAL) call pset%prt(6)%reset_status (PRT_VIRTUAL) call pset%prt(7)%reset_status (PRT_INCOMING) call pset%prt(8)%reset_status (PRT_INCOMING) call pset%prt( 9)%reset_status (PRT_OUTGOING) call pset%prt(10)%reset_status (PRT_OUTGOING) call pset%prt(11)%reset_status (PRT_OUTGOING) call pset%prt(12)%reset_status (PRT_OUTGOING) call pset%prt(13)%reset_status (PRT_OUTGOING) call pset%prt(1)%set_children ([3,4]) call pset%prt(2)%set_children ([5,6]) call pset%prt(3)%set_children ([ 7]) call pset%prt(4)%set_children ([ 9]) call pset%prt(5)%set_children ([ 8]) call pset%prt(6)%set_children ([10]) call pset%prt(7)%set_children ([11,12,13]) call pset%prt(8)%set_children ([11,12,13]) call pset%prt(3)%set_parents ([1]) call pset%prt(4)%set_parents ([1]) call pset%prt(5)%set_parents ([2]) call pset%prt(6)%set_parents ([2]) call pset%prt( 7)%set_parents ([3]) call pset%prt( 8)%set_parents ([5]) call pset%prt( 9)%set_parents ([4]) call pset%prt(10)%set_parents ([6]) call pset%prt(11)%set_parents ([7,8]) call pset%prt(12)%set_parents ([7,8]) call pset%prt(13)%set_parents ([7,8]) call pset%prt(1)%set_momentum (vector4_at_rest (1._default)) call pset%prt(2)%set_momentum (vector4_at_rest (2._default)) call pset%prt(3)%set_momentum (vector4_at_rest (4._default)) call pset%prt(4)%set_momentum (vector4_at_rest (3._default)) call pset%prt(5)%set_momentum (vector4_at_rest (6._default)) call pset%prt(6)%set_momentum (vector4_at_rest (5._default)) call pset%prt(7)%set_momentum (vector4_at_rest (4._default)) call pset%prt(8)%set_momentum (vector4_at_rest (6._default)) call pset%prt( 9)%set_momentum (vector4_at_rest (3._default)) call pset%prt(10)%set_momentum (vector4_at_rest (5._default)) call pset%prt(11)%set_momentum (vector4_at_rest (7._default)) call pset%prt(12)%set_momentum (vector4_at_rest (8._default)) call pset%prt(13)%set_momentum (vector4_at_rest (9._default)) allocate (flv (13)) call flv%init ([2011, 2012, 11, 91, 12, 92, 11, 12, 91, 92, 3, 4, 5]) do i = 1, 13 call pset%prt(i)%set_flavor (flv(i)) end do call pset%write (u) write (u, "(A)") write (u, "(A)") "* Fill interaction from particle set" write (u, "(A)") call pset%fill_interaction (int, 2, state_flv=state_flv) call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call int%final () call pset%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_5" end subroutine particles_5 @ %def particles_5 @ Reconstruct an interaction with pair spectrum, e.g., beamstrahlung from a particle set. <>= call test (particles_6, "particles_6", & "reconstruct interaction with pair spectrum", & u, results) <>= public :: particles_6 <>= subroutine particles_6 (u) integer, intent(in) :: u type(interaction_t) :: int type(state_flv_content_t) :: state_flv type(particle_set_t) :: pset type(flavor_t), dimension(:), allocatable :: flv type(quantum_numbers_t), dimension(:), allocatable :: qn integer :: i, j write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: reconstruct interaction with pair spectrum" write (u, "(A)") write (u, "(A)") "* Set up a 2 -> 2 -> 3 interaction with radiation" write (u, "(A)") " + no quantum numbers" write (u, "(A)") call reset_interaction_counter () call int%basic_init (0, 6, 3) do i = 1, 2 do j = 3, 6 call int%relate (i, j) end do end do do i = 5, 6 do j = 7, 9 call int%relate (i, j) end do end do allocate (qn (9)) call int%add_state (qn) call int%freeze () call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Manually set up a flavor-content record" write (u, "(A)") call state_flv%init (1, & mask = [.false., .false., .false., .false., .false., .false., & .true., .true., .true.]) call state_flv%set_entry (1, & pdg = [1011, 1012, 21, 22, 11, 12, 3, 4, 5], & map = [1, 2, 3, 4, 5, 6, 7, 8, 9]) call state_flv%write (u) write (u, "(A)") write (u, "(A)") "* Manually create a matching particle set" write (u, "(A)") pset%n_beam = 2 pset%n_in = 2 pset%n_vir = 2 pset%n_out = 3 pset%n_tot = 9 allocate (pset%prt (pset%n_tot)) call pset%prt(1)%reset_status (PRT_BEAM) call pset%prt(2)%reset_status (PRT_BEAM) call pset%prt(3)%reset_status (PRT_INCOMING) call pset%prt(4)%reset_status (PRT_INCOMING) call pset%prt(5)%reset_status (PRT_OUTGOING) call pset%prt(6)%reset_status (PRT_OUTGOING) call pset%prt(7)%reset_status (PRT_OUTGOING) call pset%prt(8)%reset_status (PRT_OUTGOING) call pset%prt(9)%reset_status (PRT_OUTGOING) call pset%prt(1)%set_children ([3,4,5,6]) call pset%prt(2)%set_children ([3,4,5,6]) call pset%prt(3)%set_children ([7,8,9]) call pset%prt(4)%set_children ([7,8,9]) call pset%prt(3)%set_parents ([1,2]) call pset%prt(4)%set_parents ([1,2]) call pset%prt(5)%set_parents ([1,2]) call pset%prt(6)%set_parents ([1,2]) call pset%prt(7)%set_parents ([3,4]) call pset%prt(8)%set_parents ([3,4]) call pset%prt(9)%set_parents ([3,4]) call pset%prt(1)%set_momentum (vector4_at_rest (1._default)) call pset%prt(2)%set_momentum (vector4_at_rest (2._default)) call pset%prt(3)%set_momentum (vector4_at_rest (5._default)) call pset%prt(4)%set_momentum (vector4_at_rest (6._default)) call pset%prt(5)%set_momentum (vector4_at_rest (3._default)) call pset%prt(6)%set_momentum (vector4_at_rest (4._default)) call pset%prt(7)%set_momentum (vector4_at_rest (7._default)) call pset%prt(8)%set_momentum (vector4_at_rest (8._default)) call pset%prt(9)%set_momentum (vector4_at_rest (9._default)) allocate (flv (9)) call flv%init ([1011, 1012, 11, 12, 21, 22, 3, 4, 5]) do i = 1, 9 call pset%prt(i)%set_flavor (flv(i)) end do call pset%write (u) write (u, "(A)") write (u, "(A)") "* Fill interaction from particle set" write (u, "(A)") call pset%fill_interaction (int, 2, state_flv=state_flv) call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call int%final () call pset%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_6" end subroutine particles_6 @ %def particles_6 @ Reconstruct a hard decay interaction from a shuffled particle set. <>= call test (particles_7, "particles_7", & "reconstruct decay interaction with reordering", & u, results) <>= public :: particles_7 <>= subroutine particles_7 (u) integer, intent(in) :: u type(interaction_t) :: int type(state_flv_content_t) :: state_flv type(particle_set_t) :: pset type(flavor_t), dimension(:), allocatable :: flv type(quantum_numbers_t), dimension(:), allocatable :: qn integer :: i, j write (u, "(A)") "* Test output: Particles" write (u, "(A)") "* Purpose: reconstruct decay interaction with reordering" write (u, "(A)") write (u, "(A)") "* Set up a 1 -> 3 interaction" write (u, "(A)") " + no quantum numbers" write (u, "(A)") call reset_interaction_counter () call int%basic_init (0, 1, 3) do j = 2, 4 call int%relate (1, j) end do allocate (qn (4)) call int%add_state (qn) call int%freeze () call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Manually set up a flavor-content record" write (u, "(A)") "* assumed interaction: 6 12 5 -11" write (u, "(A)") call state_flv%init (1, & mask = [.false., .true., .true., .true.]) call state_flv%set_entry (1, & pdg = [6, 5, -11, 12], & map = [1, 4, 2, 3]) call state_flv%write (u) write (u, "(A)") write (u, "(A)") "* Manually create a matching particle set" write (u, "(A)") pset%n_beam = 0 pset%n_in = 1 pset%n_vir = 0 pset%n_out = 3 pset%n_tot = 4 allocate (pset%prt (pset%n_tot)) do i = 1, 1 call pset%prt(i)%reset_status (PRT_INCOMING) call pset%prt(i)%set_children ([2,3,4]) end do do i = 2, 4 call pset%prt(i)%reset_status (PRT_OUTGOING) call pset%prt(i)%set_parents ([1]) end do call pset%prt(1)%set_momentum (vector4_at_rest (1._default)) call pset%prt(2)%set_momentum (vector4_at_rest (3._default)) call pset%prt(3)%set_momentum (vector4_at_rest (2._default)) call pset%prt(4)%set_momentum (vector4_at_rest (4._default)) allocate (flv (4)) call flv%init ([6,5,12,-11]) do i = 1, 4 call pset%prt(i)%set_flavor (flv(i)) end do call pset%write (u) write (u, "(A)") write (u, "(A)") "* Fill interaction from particle set" write (u, "(A)") call pset%fill_interaction (int, 1, state_flv=state_flv) call int%basic_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call int%final () call pset%final () write (u, "(A)") write (u, "(A)") "* Test output end: particles_7" end subroutine particles_7 @ %def particles_7 @ <>= call test (particles_8, "particles_8", & "Test functions on particle sets", u, results) <>= public :: particles_8 <>= subroutine particles_8 (u) integer, intent(in) :: u type(particle_set_t) :: particle_set type(particle_t), dimension(:), allocatable :: particles integer, allocatable, dimension(:) :: children, parents integer :: n_particles, i write (u, "(A)") "* Test output: particles_8" write (u, "(A)") "* Purpose: Test functions on particle sets" write (u, "(A)") call create_test_particle_set_1 (particle_set) call particle_set%write (u) call assert_equal (u, particle_set%n_tot, 9) call assert_equal (u, particle_set%n_beam, 2) allocate (children (particle_set%prt(3)%get_n_children ())) children = particle_set%prt(3)%get_children() call assert_equal (u, particle_set%prt(children(1))%get_pdg (), 3) call assert_equal (u, size (particle_set%prt(1)%get_children ()), 2) call assert_equal (u, size (particle_set%prt(2)%get_children ()), 2) call particle_set%without_hadronic_remnants & (particles, n_particles, 3) call particle_set%replace (particles) write (u, "(A)") call particle_set%write (u) call assert_equal (u, n_particles, 7) call assert_equal (u, size(particles), 10) call assert_equal (u, particle_set%n_tot, 10) call assert_equal (u, particle_set%n_beam, 2) do i = 3, 4 if (allocated (children)) deallocate (children) allocate (children (particle_set%prt(i)%get_n_children ())) children = particle_set%prt(i)%get_children() call assert_equal (u, particle_set%prt(children(1))%get_pdg (), 3) call assert_equal (u, particle_set%prt(children(2))%get_pdg (), 4) call assert_equal (u, particle_set%prt(children(3))%get_pdg (), 5) end do do i = 5, 7 if (allocated (parents)) deallocate (parents) allocate (parents (particle_set%prt(i)%get_n_parents ())) parents = particle_set%prt(i)%get_parents() call assert_equal (u, particle_set%prt(parents(1))%get_pdg (), 11) call assert_equal (u, particle_set%prt(parents(2))%get_pdg (), 12) end do call assert_equal (u, size (particle_set%prt(1)%get_children ()), & 1, "get children of 1") call assert_equal (u, size (particle_set%prt(2)%get_children ()), & 1, "get children of 2") call assert_equal (u, particle_set%find_particle & (particle_set%prt(1)%get_pdg (), particle_set%prt(1)%p), & 1, "find 1st particle") call assert_equal (u, particle_set%find_particle & (particle_set%prt(2)%get_pdg (), particle_set%prt(2)%p * & (one + tiny_07), rel_smallness=1.0E-6_default), & 2, "find 2nd particle fuzzy") write (u, "(A)") write (u, "(A)") "* Test output end: particles_8" end subroutine particles_8 @ %def particles_8 @ Order color lines into Lund string systems, without colored beam remnants first. <>= call test (particles_9, "particles_9", & "order into Lund strings, uncolored beam remnants", & u, results) <>= public :: particles_9 <>= subroutine particles_9 (u) integer, intent(in) :: u write (u, "(A)") "* Test output: particles_9" write (u, "(A)") "* Purpose: Order into Lund strings, " write (u, "(A)") "* uncolored beam remnants" write (u, "(A)") end subroutine particles_9 @ %def particles_9 Index: trunk/src/transforms/transforms.nw =================================================================== --- trunk/src/transforms/transforms.nw (revision 8850) +++ trunk/src/transforms/transforms.nw (revision 8851) @@ -1,16345 +1,16344 @@ % -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*- % WHIZARD event transforms and event API %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Event Implementation} \includemodulegraph{transforms} With a process object and the associated methods at hand, we can generate events for elementary processes and, by subsequent transformation, for complete physical processes. We have the following modules: \begin{description} \item[event\_transforms] Abstract base type for transforming a physical process with process instance and included evaluators, etc., into a new object. The following modules extend this base type. \item[resonance\_insertion] Insert a resonance history into an event record, based on kinematical and matrix-element information. \item[recoil\_kinematics] Common kinematics routines for the ISR and EPA handlers. \item[isr\_photon\_handler] Transform collinear kinematics, as it results from applying ISR radiation, to non-collinear kinematics with a reasonable transverse-momentum distribution of the radiated photons, and also of the recoiling partonic event. \item[epa\_beam\_handler] For photon-initiated processes where the effective photon approximation is used in integration, to add in beam-particle recoil. Analogous to the ISR handler. \item[decays] Combine the elementary process with elementary decay processes and thus transform the elementary event into a decayed event, still at the parton level. \item[showers] Create QED/QCD showers out of the partons that are emitted by elementary processes. This should be interleaved with showering of radiated particles (structure functions) and multiple interactions. \item[hadrons] (not implemented yet) Apply hadronization to the partonic events, interleaved with hadron decays. (The current setup relies on hadronizing partonic events externally.) \item[tau\_decays] (not implemented yet) Let $\tau$ leptons decay taking full spin correlations into account. \item[evt\_nlo] Handler for fixed-order NLO events. \item[events] Combine all pieces to generate full events. \item[eio\_raw] Raw I/O for complete events. \end{description} @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Abstract Event Transforms} <<[[event_transforms.f90]]>>= <> module event_transforms <> <> use quantum_numbers, only: quantum_numbers_t use interactions use particles use model_data use rng_base use process, only: process_t use instances, only: process_instance_t use process_stacks <> <> <> <> interface <> end interface end module event_transforms @ %def event_transforms @ <<[[event_transforms_sub.f90]]>>= <> submodule (event_transforms) event_transforms_s use io_units use format_utils, only: write_separator use diagnostics use subevents implicit none contains <> end submodule event_transforms_s @ %def event_transforms_s @ \subsection{Abstract base type} Essentially, all methods are abstract, but some get minimal base versions. We know that there will be a random-number generator at top level, and that we will relate to an elementary process. The model is stored separately. It may contain modified settings that differ from the model instance stored in the process object. Each event transform contains a particle set that it can fill for further use. There is a flag that indicates this. We will collect event transforms in a list, therefore we include [[previous]] and [[next]] pointers. <>= public :: evt_t <>= type, abstract :: evt_t type(process_t), pointer :: process => null () type(process_instance_t), pointer :: process_instance => null () class(model_data_t), pointer :: model => null () class(rng_t), allocatable :: rng integer :: rejection_count = 0 logical :: particle_set_exists = .false. type(particle_set_t) :: particle_set class(evt_t), pointer :: previous => null () class(evt_t), pointer :: next => null () logical :: only_weighted_events = .false. contains <> end type evt_t @ %def evt_t @ Finalizer. In any case, we finalize the r.n.g. The process instance is a pointer and should not be finalized here. <>= procedure :: final => evt_final procedure :: base_final => evt_final <>= module subroutine evt_final (evt) class(evt_t), intent(inout) :: evt end subroutine evt_final <>= module subroutine evt_final (evt) class(evt_t), intent(inout) :: evt if (allocated (evt%rng)) call evt%rng%final () if (evt%particle_set_exists) & call evt%particle_set%final () end subroutine evt_final @ %def evt_final @ Print out the type of the [[evt]]. <>= procedure (evt_write_name), deferred :: write_name <>= abstract interface subroutine evt_write_name (evt, unit) import class(evt_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_write_name end interface @ %def evt_write_name @ <>= procedure (evt_write), deferred :: write <>= abstract interface subroutine evt_write (evt, unit, verbose, more_verbose, testflag) import class(evt_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_write end interface @ %def evt_write @ Output. We can print r.n.g. info. <>= procedure :: base_write => evt_base_write <>= module subroutine evt_base_write (evt, unit, testflag, show_set) class(evt_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag, show_set end subroutine evt_base_write <>= module subroutine evt_base_write (evt, unit, testflag, show_set) class(evt_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag, show_set integer :: u logical :: show u = given_output_unit (unit) show = .true.; if (present (show_set)) show = show_set if (associated (evt%process)) then write (u, "(3x,A,A,A)") "Associated process: '", & char (evt%process%get_id ()), "'" end if if (allocated (evt%rng)) then call evt%rng%write (u, 1) write (u, "(3x,A,I0)") "Number of tries = ", evt%rejection_count end if if (show) then if (evt%particle_set_exists) then call write_separator (u) call evt%particle_set%write (u, testflag = testflag) end if end if end subroutine evt_base_write @ %def evt_base_write @ Connect the transform with a process instance (and thus with the associated process). Use this to allocate the master random-number generator. This is not an initializer; we may initialize the transform by implementation-specific methods. <>= procedure :: connect => evt_connect procedure :: base_connect => evt_connect <>= module subroutine evt_connect (evt, process_instance, model, process_stack) class(evt_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack end subroutine evt_connect <>= module subroutine evt_connect (evt, process_instance, model, process_stack) class(evt_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack evt%process => process_instance%process evt%process_instance => process_instance evt%model => model call evt%process%make_rng (evt%rng) end subroutine evt_connect @ %def evt_connect @ Reset internal state. <>= procedure :: reset => evt_reset procedure :: base_reset => evt_reset <>= module subroutine evt_reset (evt) class(evt_t), intent(inout) :: evt end subroutine evt_reset <>= module subroutine evt_reset (evt) class(evt_t), intent(inout) :: evt evt%rejection_count = 0 call evt%particle_set%final () evt%particle_set_exists = .false. end subroutine evt_reset @ %def evt_reset @ Prepare for a new event: reset internal state, if necessary. We provide MCI and term index of the parent process. <>= procedure (evt_prepare_new_event), deferred :: prepare_new_event <>= interface subroutine evt_prepare_new_event (evt, i_mci, i_term) import class(evt_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_prepare_new_event end interface @ %def evt_prepare_new_event @ Generate a weighted event, using a valid initiator event in the process instance, and the random-number generator. The returned event probability should be a number between zero and one that we can use for rejection. <>= procedure (evt_generate_weighted), deferred :: generate_weighted <>= abstract interface subroutine evt_generate_weighted (evt, probability) import class(evt_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_generate_weighted end interface @ %def evt_generate_weighted @ The unweighted event generation routine is actually implemented. It uses the random-number generator for simple rejection. Of course, the implementation may override this and implement a different way of generating an unweighted event. <>= procedure :: generate_unweighted => evt_generate_unweighted procedure :: base_generate_unweighted => evt_generate_unweighted <>= module subroutine evt_generate_unweighted (evt) class(evt_t), intent(inout) :: evt end subroutine evt_generate_unweighted <>= module subroutine evt_generate_unweighted (evt) class(evt_t), intent(inout) :: evt real(default) :: p, x evt%rejection_count = 0 REJECTION: do evt%rejection_count = evt%rejection_count + 1 call evt%generate_weighted (p) if (signal_is_pending ()) return call evt%rng%generate (x) if (x < p) exit REJECTION end do REJECTION end subroutine evt_generate_unweighted @ %def evt_generate_unweighted @ Make a particle set. This should take the most recent evaluator (or whatever stores the event), factorize the density matrix if necessary, and store as a particle set. If applicable, the factorization should make use of the [[factorization_mode]] and [[keep_correlations]] settings. The values [[r]], if set, should control the factorization in more detail, e.g., bypassing the random-number generator. <>= procedure (evt_make_particle_set), deferred :: make_particle_set <>= interface subroutine evt_make_particle_set & (evt, factorization_mode, keep_correlations, r) import class(evt_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_make_particle_set end interface @ %def evt_make_particle_set @ Copy an existing particle set into the event record. This bypasses all methods to evaluate the internal state, but may be sufficient for further processing. <>= procedure :: set_particle_set => evt_set_particle_set <>= module subroutine evt_set_particle_set (evt, particle_set, i_mci, i_term) class(evt_t), intent(inout) :: evt type(particle_set_t), intent(in) :: particle_set integer, intent(in) :: i_term, i_mci end subroutine evt_set_particle_set <>= module subroutine evt_set_particle_set (evt, particle_set, i_mci, i_term) class(evt_t), intent(inout) :: evt type(particle_set_t), intent(in) :: particle_set integer, intent(in) :: i_term, i_mci call evt%prepare_new_event (i_mci, i_term) evt%particle_set = particle_set evt%particle_set_exists = .true. end subroutine evt_set_particle_set @ %def evt_set_particle_set @ This procedure can help in the previous task, if the particles are available in the form of an interaction object. We need two interactions, one with color summed over, the [[int_matrix]], and one with the probability distributed among flows, the [[int_flows]]. We use the two values from the random number generator saved in [[r]] for factorizing the state. For testing purposes, we can provide those numbers explicitly. The optional [[qn_select]] allows to limit the number of quantum numbers to choose from when factorizing. If only a single set of quantum numbers is given, it effectively dictates the quantum numbers chosen for the event. <>= procedure :: factorize_interactions => evt_factorize_interactions <>= module subroutine evt_factorize_interactions & (evt, int_matrix, int_flows, factorization_mode, & keep_correlations, r, qn_select) class(evt_t), intent(inout) :: evt type(interaction_t), intent(in), target :: int_matrix, int_flows integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r type(quantum_numbers_t), dimension(:), intent(in), optional :: qn_select end subroutine evt_factorize_interactions <>= module subroutine evt_factorize_interactions & (evt, int_matrix, int_flows, factorization_mode, & keep_correlations, r, qn_select) class(evt_t), intent(inout) :: evt type(interaction_t), intent(in), target :: int_matrix, int_flows integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r type(quantum_numbers_t), dimension(:), intent(in), optional :: qn_select real(default), dimension(2) :: x if (present (r)) then if (size (r) == 2) then x = r else call msg_bug ("event factorization: size of r array must be 2") end if else call evt%rng%generate (x) end if call evt%particle_set%init (evt%particle_set_exists, & int_matrix, int_flows, factorization_mode, x, & keep_correlations, keep_virtual=.true., qn_select = qn_select) evt%particle_set_exists = .true. end subroutine evt_factorize_interactions @ %def evt_factorize_interactions @ <>= public :: make_factorized_particle_set <>= module subroutine make_factorized_particle_set (evt, factorization_mode, & keep_correlations, r, ii_term, qn_select) class(evt_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r integer, intent(in), optional :: ii_term type(quantum_numbers_t), dimension(:), intent(in), optional :: qn_select end subroutine make_factorized_particle_set <>= module subroutine make_factorized_particle_set (evt, factorization_mode, & keep_correlations, r, ii_term, qn_select) class(evt_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r integer, intent(in), optional :: ii_term type(quantum_numbers_t), dimension(:), intent(in), optional :: qn_select integer :: i_term type(interaction_t), pointer :: int_matrix, int_flows if (evt%process_instance%is_complete_event ()) then if (present (ii_term)) then i_term = ii_term else i_term = evt%process_instance%select_i_term () end if int_matrix => evt%process_instance%get_matrix_int_ptr (i_term) int_flows => evt%process_instance%get_flows_int_ptr (i_term) call evt%factorize_interactions (int_matrix, int_flows, & factorization_mode, keep_correlations, r, qn_select) call evt%tag_incoming () else call msg_bug ("Event factorization: event is incomplete") end if end subroutine make_factorized_particle_set @ %def make_factorized_particle_set @ Mark the incoming particles as incoming in the particle set. This is necessary because in the interaction objects they are usually marked as virtual. In the inquiry functions we set the term index to one; the indices of beams and incoming particles should be identical for all process terms. We use the initial elementary process for obtaining the indices. Thus, we implicitly assume that the beam and incoming indices stay the same across event transforms. If this is not true for a transform (say, MPI), it should override this method. <>= procedure :: tag_incoming => evt_tag_incoming <>= module subroutine evt_tag_incoming (evt) class(evt_t), intent(inout) :: evt end subroutine evt_tag_incoming <>= module subroutine evt_tag_incoming (evt) class(evt_t), intent(inout) :: evt integer :: i_term, n_in integer, dimension(:), allocatable :: beam_index, in_index n_in = evt%process%get_n_in () i_term = 1 allocate (beam_index (n_in)) call evt%process_instance%get_beam_index (i_term, beam_index) call evt%particle_set%reset_status (beam_index, PRT_BEAM) allocate (in_index (n_in)) call evt%process_instance%get_in_index (i_term, in_index) call evt%particle_set%reset_status (in_index, PRT_INCOMING) end subroutine evt_tag_incoming @ %def evt_tag_incoming @ \subsection{Implementation: Trivial transform} This transform contains just a pointer to process and process instance. The [[generate]] methods do nothing. <>= public :: evt_trivial_t <>= type, extends (evt_t) :: evt_trivial_t contains <> end type evt_trivial_t @ %def evt_trivial_t @ <>= procedure :: write_name => evt_trivial_write_name <>= module subroutine evt_trivial_write_name (evt, unit) class(evt_trivial_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_trivial_write_name <>= module subroutine evt_trivial_write_name (evt, unit) class(evt_trivial_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: trivial (hard process)" end subroutine evt_trivial_write_name @ %def evt_trivial_write_name @ The finalizer is trivial. Some output: <>= procedure :: write => evt_trivial_write <>= module subroutine evt_trivial_write & (evt, unit, verbose, more_verbose, testflag) class(evt_trivial_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_trivial_write <>= module subroutine evt_trivial_write & (evt, unit, verbose, more_verbose, testflag) class(evt_trivial_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag integer :: u u = given_output_unit (unit) call write_separator (u, 2) call evt%write_name (u) call write_separator (u) call evt%base_write (u, testflag = testflag) !!! More readable but wider output; in line with evt_resonance_write ! if (verbose .and. evt%particle_set_exists) then ! call evt%particle_set%write & ! (u, summary = .true., compressed = .true., testflag = testflag) ! call write_separator (u) ! end if end subroutine evt_trivial_write @ %def evt_trivial_write @ Nothing to do here: <>= procedure :: prepare_new_event => evt_trivial_prepare_new_event <>= module subroutine evt_trivial_prepare_new_event (evt, i_mci, i_term) class(evt_trivial_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_trivial_prepare_new_event <>= module subroutine evt_trivial_prepare_new_event (evt, i_mci, i_term) class(evt_trivial_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term call evt%reset () end subroutine evt_trivial_prepare_new_event @ %def evt_trivial_prepare_new_event @ The weighted generator is, surprisingly, trivial. <>= procedure :: generate_weighted => evt_trivial_generate_weighted <>= module subroutine evt_trivial_generate_weighted (evt, probability) class(evt_trivial_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_trivial_generate_weighted <>= module subroutine evt_trivial_generate_weighted (evt, probability) class(evt_trivial_t), intent(inout) :: evt real(default), intent(inout) :: probability probability = 1 end subroutine evt_trivial_generate_weighted @ %def evt_trivial_generate_weighted @ This routine makes a particle set, using the associated process instance as-is. Note that it is a potential risk to tolerate a non-existent particle set at this point. We should remove it once the flavors are determined correctly in all cases. It is currently neccessary if we are keeping failed events [[?keep_failed_events = .true.]]. For these events, we do not compute the matrix elements, so the factorization fails trying to determine the quantum numbers. Additionally, it is necessary for the trivial event transformation preceeding the event transformations required for POWHEG matching. <>= procedure :: make_particle_set => evt_trivial_make_particle_set <>= module subroutine evt_trivial_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_trivial_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_trivial_make_particle_set <>= module subroutine evt_trivial_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_trivial_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r call make_factorized_particle_set (evt, factorization_mode, & keep_correlations, r) evt%particle_set_exists = .true. end subroutine evt_trivial_make_particle_set @ %def event_trivial_make_particle_set @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[event_transforms_ut.f90]]>>= <> module event_transforms_ut use unit_tests use event_transforms_uti <> <> contains <> end module event_transforms_ut @ %def event_transforms_ut @ <<[[event_transforms_uti.f90]]>>= <> module event_transforms_uti <> <> use format_utils, only: write_separator use os_interface use sm_qcd use models use state_matrices, only: FM_IGNORE_HELICITY use interactions, only: reset_interaction_counter use process_libraries use rng_base use mci_base use mci_midpoint use phs_base use phs_single use prc_core use prc_test, only: prc_test_create_library use process, only: process_t use instances, only: process_instance_t use event_transforms use rng_base_ut, only: rng_test_factory_t <> <> contains <> <> end module event_transforms_uti @ %def event_transforms_uti @ API: driver for the unit tests below. <>= public :: event_transforms_test <>= subroutine event_transforms_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine event_transforms_test @ %def event_transforms_test @ \subsubsection{Test trivial event transform} The trivial transform, as an instance of the abstract transform, does nothing but to trigger event generation for an elementary process. <>= call test (event_transforms_1, "event_transforms_1", & "trivial event transform", & u, results) <>= public :: event_transforms_1 <>= subroutine event_transforms_1 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(model_t), target :: model type(process_library_t), target :: lib type(string_t) :: libname, procname1 class(phs_config_t), allocatable :: phs_config_template real(default) :: sqrts type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance class(evt_t), allocatable :: evt integer :: factorization_mode logical :: keep_correlations write (u, "(A)") "* Test output: event_transforms_1" write (u, "(A)") "* Purpose: handle trivial transform" write (u, "(A)") write (u, "(A)") "* Initialize environment and parent process" write (u, "(A)") call os_data%init () libname = "event_transforms_1_lib" procname1 = "event_transforms_1_p" call prc_test_create_library (libname, lib, & scattering = .true., procname1 = procname1) call reset_interaction_counter () call model%init_test () allocate (process) call process%init (procname1, lib, os_data, model) call process%setup_test_cores () allocate (phs_single_config_t :: phs_config_template) call process%init_components (phs_config_template) sqrts = 1000 call process%setup_beams_sqrts (sqrts, i_core = 1) call process%configure_phs () call process%setup_mci (dispatch_mci_test_midpoint) call process%setup_terms () allocate (process_instance) call process_instance%init (process) call process_instance%integrate (1, n_it=1, n_calls=100) call process%final_integration (1) call process_instance%final () deallocate (process_instance) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () call process_instance%init_simulation (1) write (u, "(A)") "* Initialize trivial event transform" write (u, "(A)") allocate (evt_trivial_t :: evt) call evt%connect (process_instance, process%get_model_ptr ()) write (u, "(A)") "* Generate event and subsequent transform" write (u, "(A)") call process_instance%generate_unweighted_event (1) call process_instance%evaluate_event_data () call evt%prepare_new_event (1, 1) call evt%generate_unweighted () call write_separator (u, 2) call evt%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Obtain particle set" write (u, "(A)") factorization_mode = FM_IGNORE_HELICITY keep_correlations = .false. call evt%make_particle_set (factorization_mode, keep_correlations) call write_separator (u, 2) call evt%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Cleanup" call evt%final () call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Test output end: event_transforms_1" end subroutine event_transforms_1 @ %def event_transforms_1 @ MCI record prepared for midpoint integrator. <>= subroutine dispatch_mci_test_midpoint (mci, var_list, process_id, is_nlo) use variables, only: var_list_t class(mci_t), allocatable, intent(out) :: mci type(var_list_t), intent(in) :: var_list type(string_t), intent(in) :: process_id logical, intent(in), optional :: is_nlo allocate (mci_midpoint_t :: mci) end subroutine dispatch_mci_test_midpoint @ %def dispatch_mci_test_midpoint @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Hadronization interface} <<[[hadrons.f90]]>>= <> module hadrons <> <> use event_transforms use lorentz use model_data use models use particles use physics_defs use process, only: process_t use instances, only: process_instance_t use process_stacks use whizard_lha use pythia8 use rng_base, only: rng_t use shower_base use shower_pythia6 use sm_qcd use variables <> <> <> <> <> interface <> end interface end module hadrons @ %def hadrons @ <<[[hadrons_sub.f90]]>>= <> submodule (hadrons) hadrons_s <> use constants use diagnostics use format_utils, only: write_separator use helicities use hep_common use io_units use numeric_utils, only: vanishes use subevents implicit none contains <> end submodule hadrons_s @ %def hadrons_s @ \subsection{Hadronization implementations} <>= public :: HADRONS_UNDEFINED, HADRONS_WHIZARD, HADRONS_PYTHIA6, HADRONS_PYTHIA8 <>= integer, parameter :: HADRONS_UNDEFINED = 0 integer, parameter :: HADRONS_WHIZARD = 1 integer, parameter :: HADRONS_PYTHIA6 = 2 integer, parameter :: HADRONS_PYTHIA8 = 3 @ %def HADRONS_UNDEFINED HADRONS_WHIZARD HADRONS_PYTHIA6 HADRONS_PYTHIA8 @ A dictionary <>= public :: hadrons_method <>= interface hadrons_method module procedure hadrons_method_of_string module procedure hadrons_method_to_string end interface <>= elemental module function hadrons_method_of_string (string) result (i) integer :: i type(string_t), intent(in) :: string end function hadrons_method_of_string elemental module function hadrons_method_to_string (i) result (string) type(string_t) :: string integer, intent(in) :: i end function hadrons_method_to_string <>= elemental module function hadrons_method_of_string (string) result (i) integer :: i type(string_t), intent(in) :: string select case (char(string)) case ("WHIZARD") i = HADRONS_WHIZARD case ("PYTHIA6") i = HADRONS_PYTHIA6 case ("PYTHIA8") i = HADRONS_PYTHIA8 case default i = HADRONS_UNDEFINED end select end function hadrons_method_of_string elemental module function hadrons_method_to_string (i) result (string) type(string_t) :: string integer, intent(in) :: i select case (i) case (HADRONS_WHIZARD) string = "WHIZARD" case (HADRONS_PYTHIA6) string = "PYTHIA6" case (HADRONS_PYTHIA8) string = "PYTHIA8" case default string = "UNDEFINED" end select end function hadrons_method_to_string @ %def hadrons_method @ \subsection{Hadronization settings} These are the general settings and parameters for the different shower methods. <>= public :: hadron_settings_t <>= type :: hadron_settings_t logical :: active = .false. integer :: method = HADRONS_UNDEFINED real(default) :: enhanced_fraction = 0 real(default) :: enhanced_width = 0 contains <> end type hadron_settings_t @ %def hadron_settings_t @ Read in the hadronization settings. <>= procedure :: init => hadron_settings_init <>= module subroutine hadron_settings_init (hadron_settings, var_list) class(hadron_settings_t), intent(out) :: hadron_settings type(var_list_t), intent(in) :: var_list end subroutine hadron_settings_init <>= module subroutine hadron_settings_init (hadron_settings, var_list) class(hadron_settings_t), intent(out) :: hadron_settings type(var_list_t), intent(in) :: var_list hadron_settings%active = & var_list%get_lval (var_str ("?hadronization_active")) hadron_settings%method = hadrons_method_of_string ( & var_list%get_sval (var_str ("$hadronization_method"))) hadron_settings%enhanced_fraction = & var_list%get_rval (var_str ("hadron_enhanced_fraction")) hadron_settings%enhanced_width = & var_list%get_rval (var_str ("hadron_enhanced_width")) end subroutine hadron_settings_init @ %def hadron_settings_init @ <>= procedure :: write => hadron_settings_write <>= module subroutine hadron_settings_write (settings, unit) class(hadron_settings_t), intent(in) :: settings integer, intent(in), optional :: unit end subroutine hadron_settings_write <>= module subroutine hadron_settings_write (settings, unit) class(hadron_settings_t), intent(in) :: settings integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit); if (u < 0) return write (u, "(1x,A)") "Hadronization settings:" call write_separator (u) write (u, "(1x,A)") "Master switches:" write (u, "(3x,A,1x,L1)") & "active = ", settings%active write (u, "(1x,A)") "General settings:" if (settings%active) then write (u, "(3x,A)") & "hadron_method = " // & char (hadrons_method_to_string (settings%method)) else write (u, "(3x,A)") " [Hadronization off]" end if write (u, "(1x,A)") "pT generation parameters" write (u, "(3x,A,1x,ES19.12)") & "enhanced_fraction = ", settings%enhanced_fraction write (u, "(3x,A,1x,ES19.12)") & "enhanced_width = ", settings%enhanced_width end subroutine hadron_settings_write @ %def hadron_settings_write @ \subsection{Abstract Hadronization Type} The [[model]] is the fallback model including all hadrons <>= type, abstract :: hadrons_t class(rng_t), allocatable :: rng type(shower_settings_t) :: shower_settings type(hadron_settings_t) :: hadron_settings type(model_t), pointer :: model => null() contains <> end type hadrons_t @ %def hadrons_t @ <>= procedure (hadrons_init), deferred :: init <>= abstract interface subroutine hadrons_init & (hadrons, shower_settings, hadron_settings, model_hadrons) import class(hadrons_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), target, intent(in) :: model_hadrons end subroutine hadrons_init end interface @ %def hadrons_init @ <>= procedure (hadrons_hadronize), deferred :: hadronize <>= abstract interface subroutine hadrons_hadronize (hadrons, particle_set, valid) import class(hadrons_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid end subroutine hadrons_hadronize end interface @ %def hadrons_hadronize @ <>= procedure (hadrons_make_particle_set), deferred :: make_particle_set <>= abstract interface subroutine hadrons_make_particle_set (hadrons, particle_set, & model, valid) import class(hadrons_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid end subroutine hadrons_make_particle_set end interface @ %def hadrons_make_particle_set @ <>= procedure :: import_rng => hadrons_import_rng <>= pure module subroutine hadrons_import_rng (hadrons, rng) class(hadrons_t), intent(inout) :: hadrons class(rng_t), intent(inout), allocatable :: rng end subroutine hadrons_import_rng <>= pure module subroutine hadrons_import_rng (hadrons, rng) class(hadrons_t), intent(inout) :: hadrons class(rng_t), intent(inout), allocatable :: rng call move_alloc (from = rng, to = hadrons%rng) end subroutine hadrons_import_rng @ %def hadrons_import_rng @ \subsection{[[WHIZARD]] Hadronization Type} Hadronization can be (incompletely) performed through \whizard's internal routine. <>= public :: hadrons_hadrons_t <>= type, extends (hadrons_t) :: hadrons_hadrons_t contains <> end type hadrons_hadrons_t @ %def hadrons_hadrons_t @ <>= procedure :: init => hadrons_hadrons_init <>= module subroutine hadrons_hadrons_init & (hadrons, shower_settings, hadron_settings, model_hadrons) class(hadrons_hadrons_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), intent(in), target :: model_hadrons end subroutine hadrons_hadrons_init <>= module subroutine hadrons_hadrons_init & (hadrons, shower_settings, hadron_settings, model_hadrons) class(hadrons_hadrons_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), intent(in), target :: model_hadrons hadrons%model => model_hadrons hadrons%shower_settings = shower_settings hadrons%hadron_settings = hadron_settings call msg_message & ("Hadronization: WHIZARD model for hadronization and decays") end subroutine hadrons_hadrons_init @ %def hadrons_hadrons_init @ <>= procedure :: hadronize => hadrons_hadrons_hadronize <>= module subroutine hadrons_hadrons_hadronize (hadrons, particle_set, valid) class(hadrons_hadrons_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid end subroutine hadrons_hadrons_hadronize <>= module subroutine hadrons_hadrons_hadronize (hadrons, particle_set, valid) class(hadrons_hadrons_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid integer, dimension(:), allocatable :: cols, acols, octs integer :: n if (signal_is_pending ()) return if (debug_on) call msg_debug (D_TRANSFORMS, "hadrons_hadrons_hadronize") call particle_set%write (6, compressed=.true.) n = particle_set%get_n_tot () allocate (cols (n), acols (n), octs (n)) call extract_color_systems (particle_set, cols, acols, octs) print *, "size(cols) = ", size (cols) if (size(cols) > 0) then print *, "cols = ", cols end if print *, "size(acols) = ", size(acols) if (size(acols) > 0) then print *, "acols = ", acols end if print *, "size(octs) = ", size(octs) if (size (octs) > 0) then print *, "octs = ", octs end if !!! if all arrays are empty, i.e. zero particles found, nothing to do end subroutine hadrons_hadrons_hadronize @ %def hadrons_hadrons_hadronize @ This type contains a flavor selector for the creation of hadrons, including parameters for the special handling of baryons. <>= public :: had_flav_t <>= type had_flav_t end type had_flav_t @ %def had_flav_t @ This is the type for the ends of Lund strings. <>= public :: lund_end <>= type lund_end logical :: from_pos integer :: i_end integer :: i_max integer :: id_had integer :: i_pos_old integer :: i_neg_old integer :: i_pos_new integer :: i_neg_new real(default) :: px_old real(default) :: py_old real(default) :: px_new real(default) :: py_new real(default) :: px_had real(default) :: py_had real(default) :: m_had real(default) :: mT2_had real(default) :: z_had real(default) :: gamma_old real(default) :: gamma_new real(default) :: x_pos_old real(default) :: x_pos_new real(default) :: x_pos_had real(default) :: x_neg_old real(default) :: x_neg_new real(default) :: x_neg_had type(had_flav_t) :: old_flav type(had_flav_t) :: new_flav type(vector4_t) :: p_had type(vector4_t) :: p_pre end type lund_end @ %def lund_end @ Generator for transverse momentum for the fragmentation. <>= public :: lund_pt_t <>= type lund_pt_t real(default) :: sigma_min real(default) :: sigma_q real(default) :: enhanced_frac real(default) :: enhanced_width real(default) :: sigma_to_had class(rng_t), allocatable :: rng contains <> end type lund_pt_t @ %def lund_pt <>= procedure :: init => lund_pt_init <>= module subroutine lund_pt_init (lund_pt, settings) class (lund_pt_t), intent(out) :: lund_pt type(hadron_settings_t), intent(in) :: settings end subroutine lund_pt_init <>= module subroutine lund_pt_init (lund_pt, settings) class (lund_pt_t), intent(out) :: lund_pt type(hadron_settings_t), intent(in) :: settings end subroutine lund_pt_init @ %def lund_pt_init @ <>= procedure :: make_particle_set => hadrons_hadrons_make_particle_set <>= module subroutine hadrons_hadrons_make_particle_set & (hadrons, particle_set, model, valid) class(hadrons_hadrons_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid end subroutine hadrons_hadrons_make_particle_set <>= module subroutine hadrons_hadrons_make_particle_set & (hadrons, particle_set, model, valid) class(hadrons_hadrons_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid if (signal_is_pending ()) return valid = .false. if (valid) then else call msg_fatal ("WHIZARD hadronization not yet implemented") end if end subroutine hadrons_hadrons_make_particle_set @ %def hadrons_hadrons_make_particle_set @ <>= subroutine extract_color_systems (p_set, cols, acols, octs) type(particle_set_t), intent(in) :: p_set integer, dimension(:), allocatable, intent(out) :: cols, acols, octs logical, dimension(:), allocatable :: mask integer :: i, n, n_cols, n_acols, n_octs n = p_set%get_n_tot () allocate (mask (n)) do i = 1, n mask(i) = p_set%prt(i)%col%get_col () /= 0 .and. & p_set%prt(i)%col%get_acl () == 0 .and. & p_set%prt(i)%get_status () == PRT_OUTGOING end do n_cols = count (mask) allocate (cols (n_cols)) cols = p_set%get_indices (mask) do i = 1, n mask(i) = p_set%prt(i)%col%get_col () == 0 .and. & p_set%prt(i)%col%get_acl () /= 0 .and. & p_set%prt(i)%get_status () == PRT_OUTGOING end do n_acols = count (mask) allocate (acols (n_acols)) acols = p_set%get_indices (mask) do i = 1, n mask(i) = p_set%prt(i)%col%get_col () /= 0 .and. & p_set%prt(i)%col%get_acl () /= 0 .and. & p_set%prt(i)%get_status () == PRT_OUTGOING end do n_octs = count (mask) allocate (octs (n_octs)) octs = p_set%get_indices (mask) end subroutine extract_color_systems @ %def extract_color_systems @ \subsection{[[PYTHIA6]] Hadronization Type} Hadronization via [[PYTHIA6]] is at another option for hadronization within \whizard. <>= public :: hadrons_pythia6_t <>= type, extends (hadrons_t) :: hadrons_pythia6_t contains <> end type hadrons_pythia6_t @ %def hadrons_pythia6_t <>= procedure :: init => hadrons_pythia6_init <>= module subroutine hadrons_pythia6_init & (hadrons, shower_settings, hadron_settings, model_hadrons) class(hadrons_pythia6_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), intent(in), target :: model_hadrons end subroutine hadrons_pythia6_init <>= module subroutine hadrons_pythia6_init & (hadrons, shower_settings, hadron_settings, model_hadrons) class(hadrons_pythia6_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), intent(in), target :: model_hadrons logical :: pygive_not_set_by_shower hadrons%model => model_hadrons hadrons%shower_settings = shower_settings hadrons%hadron_settings = hadron_settings pygive_not_set_by_shower = .not. (shower_settings%method == PS_PYTHIA6 & .and. (shower_settings%isr_active .or. shower_settings%fsr_active)) if (pygive_not_set_by_shower) then call pythia6_set_verbose (shower_settings%verbose) call pythia6_set_config (shower_settings%pythia6_pygive) end if call msg_message & ("Hadronization: Using PYTHIA6 interface for hadronization and decays") end subroutine hadrons_pythia6_init @ %def hadrons_pythia6_init @ Assume that the event record is still in the PYTHIA COMMON BLOCKS transferred there by the WHIZARD or PYTHIA6 shower routines. <>= procedure :: hadronize => hadrons_pythia6_hadronize <>= module subroutine hadrons_pythia6_hadronize (hadrons, particle_set, valid) class(hadrons_pythia6_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid end subroutine hadrons_pythia6_hadronize <>= module subroutine hadrons_pythia6_hadronize (hadrons, particle_set, valid) class(hadrons_pythia6_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid integer :: N, NPAD, K real(double) :: P, V common /PYJETS/ N, NPAD, K(4000,5), P(4000,5), V(4000,5) save /PYJETS/ if (signal_is_pending ()) return if (debug_on) call msg_debug (D_TRANSFORMS, "hadrons_pythia6_hadronize") call pygive ("MSTP(111)=1") !!! Switch on hadronization and decays call pygive ("MSTJ(1)=1") !!! String fragmentation call pygive ("MSTJ(21)=2") !!! String fragmentation keeping resonance momentum call pygive ("MSTJ(28)=0") !!! Switch off tau decays if (debug_active (D_TRANSFORMS)) then call msg_debug (D_TRANSFORMS, "N", N) call pylist(2) print *, ' line 7 : ', k(7,1:5), p(7,1:5) end if call pyedit (12) call pythia6_set_last_treated_line (N) call pyexec () call pyedit (12) valid = .true. end subroutine hadrons_pythia6_hadronize @ %def hadrons_pythia6_hadronize @ <>= procedure :: make_particle_set => hadrons_pythia6_make_particle_set <>= module subroutine hadrons_pythia6_make_particle_set & (hadrons, particle_set, model, valid) class(hadrons_pythia6_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid end subroutine hadrons_pythia6_make_particle_set <>= module subroutine hadrons_pythia6_make_particle_set & (hadrons, particle_set, model, valid) class(hadrons_pythia6_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid if (signal_is_pending ()) return valid = pythia6_handle_errors () if (valid) then call pythia6_combine_with_particle_set & (particle_set, model, hadrons%model, hadrons%shower_settings) end if end subroutine hadrons_pythia6_make_particle_set @ %def hadrons_pythia6_make_particle_set @ \subsection{[[PYTHIA8]] Hadronization} @ <>= public :: hadrons_pythia8_t <>= type, extends (hadrons_t) :: hadrons_pythia8_t type(pythia8_t) :: pythia type(whizard_lha_t) :: lhaup logical :: user_process_set = .false. logical :: pythia_initialized = .false., & lhaup_initialized = .false. contains <> end type hadrons_pythia8_t @ %def hadrons_pythia8_t @ <>= procedure :: init => hadrons_pythia8_init <>= module subroutine hadrons_pythia8_init & (hadrons, shower_settings, hadron_settings, model_hadrons) class(hadrons_pythia8_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), intent(in), target :: model_hadrons end subroutine hadrons_pythia8_init <>= module subroutine hadrons_pythia8_init & (hadrons, shower_settings, hadron_settings, model_hadrons) class(hadrons_pythia8_t), intent(out) :: hadrons type(shower_settings_t), intent(in) :: shower_settings type(hadron_settings_t), intent(in) :: hadron_settings type(model_t), intent(in), target :: model_hadrons hadrons%model => model_hadrons hadrons%shower_settings = shower_settings hadrons%hadron_settings = hadron_settings call msg_message ("Hadronization: Using PYTHIA8 interface " // & "for hadronization and decays.") ! TODO sbrass which verbose? call hadrons%pythia%init (verbose = shower_settings%verbose) call hadrons%lhaup%init () end subroutine hadrons_pythia8_init @ %def hadrons_pythia8_init @ Transfer hadron settings to [[PYTHIA8]]. <>= procedure, private :: transfer_settings => hadrons_pythia8_transfer_settings <>= module subroutine hadrons_pythia8_transfer_settings (hadrons) class(hadrons_pythia8_t), intent(inout), target :: hadrons end subroutine hadrons_pythia8_transfer_settings <>= module subroutine hadrons_pythia8_transfer_settings (hadrons) class(hadrons_pythia8_t), intent(inout), target :: hadrons real(default) :: r if (debug_on) call msg_debug & (D_TRANSFORMS, "hadrons_pythia8_transfer_settings") if (debug_on) call msg_debug2 & (D_TRANSFORMS, "pythia_initialized", hadrons%pythia_initialized) if (hadrons%pythia_initialized) return call hadrons%pythia%import_rng (hadrons%rng) call hadrons%pythia%parse_and_set_config & (hadrons%shower_settings%pythia8_config) if (len (hadrons%shower_settings%pythia8_config_file) > 0) & call hadrons%pythia%read_file & (hadrons%shower_settings%pythia8_config_file) call hadrons%pythia%read_string (var_str ("Beams:frameType = 5")) call hadrons%pythia%read_string (var_str ("ProcessLevel:all = off")) if (.not. hadrons%shower_settings%verbose) then call hadrons%pythia%read_string (var_str ("Print:quiet = on")) end if call hadrons%pythia%set_lhaup_ptr (hadrons%lhaup) call hadrons%pythia%init_pythia () hadrons%pythia_initialized = .true. end subroutine hadrons_pythia8_transfer_settings @ %def hadrons_pythia8_transfer_settings @ Set user process for the LHA interface. <>= procedure, private :: set_user_process => hadrons_pythia8_set_user_process <>= module subroutine hadrons_pythia8_set_user_process (hadrons, pset) class(hadrons_pythia8_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: pset end subroutine hadrons_pythia8_set_user_process <>= module subroutine hadrons_pythia8_set_user_process (hadrons, pset) class(hadrons_pythia8_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: pset integer, dimension(2) :: beam_pdg real(default), dimension(2) :: beam_energy integer, parameter :: process_id = 0, n_processes = 0 if (debug_on) call msg_debug & (D_TRANSFORMS, "hadrons_pythia8_set_user_process") beam_pdg = [pset%prt(1)%get_pdg (), pset%prt(2)%get_pdg ()] beam_energy = [energy(pset%prt(1)%p), energy(pset%prt(2)%p)] call hadrons%lhaup%set_init (beam_pdg, beam_energy, & n_processes, unweighted = .false., negative_weights = .false.) call hadrons%lhaup%set_process_parameters (process_id = process_id, & cross_section = one, error = one) end subroutine hadrons_pythia8_set_user_process @ %def hadrons_pythia8_set_user_process @ Import particle set. <>= procedure, private :: import_particle_set => & hadrons_pythia8_import_particle_set <>= module subroutine hadrons_pythia8_import_particle_set & (hadrons, particle_set) class(hadrons_pythia8_t), target, intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set end subroutine hadrons_pythia8_import_particle_set <>= module subroutine hadrons_pythia8_import_particle_set (hadrons, particle_set) class(hadrons_pythia8_t), target, intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set - type(particle_set_t) :: pset_reduced integer, parameter :: PROCESS_ID = 1 if (debug_on) call msg_debug & (D_TRANSFORMS, "hadrons_pythia8_import_particle_set") if (.not. hadrons%user_process_set) then call hadrons%set_user_process (particle_set) hadrons%user_process_set = .true. end if call hadrons%lhaup%set_event_process (process_id = PROCESS_ID, & scale = -one, alpha_qcd = -one, alpha_qed = -one, weight = -one) call hadrons%lhaup%set_event (process_id = PROCESS_ID, & particle_set = particle_set, polarization = .true.) if (debug_active (D_TRANSFORMS)) then call hadrons%lhaup%list_init () end if end subroutine hadrons_pythia8_import_particle_set @ %def hadrons_pythia8_import_particle_set @ <>= procedure :: hadronize => hadrons_pythia8_hadronize <>= module subroutine hadrons_pythia8_hadronize (hadrons, particle_set, valid) class(hadrons_pythia8_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid end subroutine hadrons_pythia8_hadronize <>= module subroutine hadrons_pythia8_hadronize (hadrons, particle_set, valid) class(hadrons_pythia8_t), intent(inout) :: hadrons type(particle_set_t), intent(in) :: particle_set logical, intent(out) :: valid if (signal_is_pending ()) return call hadrons%import_particle_set (particle_set) if (.not. hadrons%pythia_initialized) & call hadrons%transfer_settings () call hadrons%pythia%next (valid) if (debug_active (D_TRANSFORMS)) then call hadrons%pythia%list_event () call particle_set%write (summary=.true., compressed=.true.) end if end subroutine hadrons_pythia8_hadronize @ %def hadrons_pythia8_hadronize @ <>= procedure :: make_particle_set => hadrons_pythia8_make_particle_set <>= module subroutine hadrons_pythia8_make_particle_set & (hadrons, particle_set, model, valid) class(hadrons_pythia8_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid end subroutine hadrons_pythia8_make_particle_set <>= module subroutine hadrons_pythia8_make_particle_set & (hadrons, particle_set, model, valid) class(hadrons_pythia8_t), intent(in) :: hadrons type(particle_set_t), intent(inout) :: particle_set class(model_data_t), intent(in), target :: model logical, intent(out) :: valid type(particle_t), dimension(:), allocatable :: beam if (debug_on) call msg_debug & (D_TRANSFORMS, "hadrons_pythia8_make_particle_set") if (signal_is_pending ()) return associate (settings => hadrons%shower_settings) if (debug_active (D_TRANSFORMS)) then call msg_debug (D_TRANSFORMS, 'Combine PYTHIA8 with particle set') call msg_debug (D_TRANSFORMS, 'Particle set before replacing') call particle_set%write (summary=.true., compressed=.true.) call hadrons%pythia%list_event () call msg_debug (D_TRANSFORMS, string = "settings%hadron_collision", & value = settings%hadron_collision) end if call hadrons%pythia%get_hadron_particles (& model, hadrons%model, particle_set, & helicity = PRT_DEFINITE_HELICITY) end associate if (debug_active (D_TRANSFORMS)) then print *, 'Particle set after replacing' call particle_set%write (summary=.true., compressed=.true.) end if valid = .true. end subroutine hadrons_pythia8_make_particle_set @ %def hadrons_pythia8_make_particle_set @ \subsection{Hadronization Event Transform} This is the type for the hadronization event transform. It does not depend on the specific hadronization implementation of [[hadrons_t]]. <>= public :: evt_hadrons_t <>= type, extends (evt_t) :: evt_hadrons_t class(hadrons_t), allocatable :: hadrons type(model_t), pointer :: model_hadrons => null() type(qcd_t) :: qcd logical :: is_first_event contains <> end type evt_hadrons_t @ %def evt_hadrons_t @ Initialize the parameters. The [[model_hadrons]] is supposed to be the SM variant that contains all hadrons that may be generated in the shower. <>= procedure :: init => evt_hadrons_init <>= module subroutine evt_hadrons_init (evt, model_hadrons) class(evt_hadrons_t), intent(out) :: evt type(model_t), intent(in), target :: model_hadrons end subroutine evt_hadrons_init <>= module subroutine evt_hadrons_init (evt, model_hadrons) class(evt_hadrons_t), intent(out) :: evt type(model_t), intent(in), target :: model_hadrons evt%model_hadrons => model_hadrons evt%is_first_event = .true. end subroutine evt_hadrons_init @ %def evt_hadrons_init @ <>= procedure :: write_name => evt_hadrons_write_name <>= module subroutine evt_hadrons_write_name (evt, unit) class(evt_hadrons_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_hadrons_write_name <>= module subroutine evt_hadrons_write_name (evt, unit) class(evt_hadrons_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: hadronization" end subroutine evt_hadrons_write_name @ %def evt_hadrons_write_name @ Output. <>= procedure :: write => evt_hadrons_write <>= module subroutine evt_hadrons_write & (evt, unit, verbose, more_verbose, testflag) class(evt_hadrons_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_hadrons_write <>= module subroutine evt_hadrons_write & (evt, unit, verbose, more_verbose, testflag) class(evt_hadrons_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag integer :: u u = given_output_unit (unit) call write_separator (u, 2) call evt%write_name (u) call write_separator (u) call evt%base_write (u, testflag = testflag, show_set = .false.) if (evt%particle_set_exists) & call evt%particle_set%write & (u, summary = .true., compressed = .true., testflag = testflag) call write_separator (u) call evt%hadrons%shower_settings%write (u) call write_separator (u) call evt%hadrons%hadron_settings%write (u) end subroutine evt_hadrons_write @ %def evt_hadrons_write @ <>= procedure :: first_event => evt_hadrons_first_event <>= module subroutine evt_hadrons_first_event (evt) class(evt_hadrons_t), intent(inout) :: evt end subroutine evt_hadrons_first_event <>= module subroutine evt_hadrons_first_event (evt) class(evt_hadrons_t), intent(inout) :: evt if (debug_on) call msg_debug (D_TRANSFORMS, "evt_hadrons_first_event") associate (settings => evt%hadrons%shower_settings) settings%hadron_collision = .false. if (all (evt%particle_set%prt(1:2)%flv%get_pdg_abs () <= 39)) then settings%hadron_collision = .false. else if (all (evt%particle_set%prt(1:2)%flv%get_pdg_abs () >= 100)) then settings%hadron_collision = .true. else call msg_fatal ("evt_hadrons didn't recognize beams setup") end if if (debug_on) call msg_debug & (D_TRANSFORMS, "hadron_collision", settings%hadron_collision) if (.not. (settings%isr_active .or. settings%fsr_active)) then call msg_fatal ("Hadronization without shower is not supported") end if end associate evt%is_first_event = .false. end subroutine evt_hadrons_first_event @ %def evt_hadrons_first_event @ Here we take the particle set from the previous event transform and apply the hadronization. The result is stored in the [[evt%hadrons]] object. We always return a probability of unity as we don't have the analytic weight of the hadronization. Invalid events have to be discarded by the caller which is why we mark the particle set as invalid. <>= procedure :: generate_weighted => evt_hadrons_generate_weighted <>= module subroutine evt_hadrons_generate_weighted (evt, probability) class(evt_hadrons_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_hadrons_generate_weighted <>= module subroutine evt_hadrons_generate_weighted (evt, probability) class(evt_hadrons_t), intent(inout) :: evt real(default), intent(inout) :: probability logical :: valid if (signal_is_pending ()) return evt%particle_set = evt%previous%particle_set if (evt%is_first_event) then call evt%first_event () end if call evt%hadrons%hadronize (evt%particle_set, valid) probability = 1 evt%particle_set_exists = valid end subroutine evt_hadrons_generate_weighted @ %def evt_hadrons_generate_weighted @ The factorization parameters are irrelevant. <>= procedure :: make_particle_set => evt_hadrons_make_particle_set <>= module subroutine evt_hadrons_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_hadrons_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_hadrons_make_particle_set <>= module subroutine evt_hadrons_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_hadrons_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r logical :: valid call evt%hadrons%make_particle_set (evt%particle_set, evt%model, valid) evt%particle_set_exists = evt%particle_set_exists .and. valid end subroutine evt_hadrons_make_particle_set @ %def event_hadrons_make_particle_set @ Connect the process with the hadrons object. <>= procedure :: connect => evt_hadrons_connect <>= module subroutine evt_hadrons_connect & (evt, process_instance, model, process_stack) class(evt_hadrons_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack end subroutine evt_hadrons_connect <>= module subroutine evt_hadrons_connect & (evt, process_instance, model, process_stack) class(evt_hadrons_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack call evt%base_connect (process_instance, model, process_stack) call evt%make_rng (evt%process) end subroutine evt_hadrons_connect @ %def evt_hadrons_connect @ Create RNG instances, spawned by the process object. <>= procedure :: make_rng => evt_hadrons_make_rng <>= module subroutine evt_hadrons_make_rng (evt, process) class(evt_hadrons_t), intent(inout) :: evt type(process_t), intent(inout) :: process class(rng_t), allocatable :: rng end subroutine evt_hadrons_make_rng <>= module subroutine evt_hadrons_make_rng (evt, process) class(evt_hadrons_t), intent(inout) :: evt type(process_t), intent(inout) :: process class(rng_t), allocatable :: rng call process%make_rng (rng) call evt%hadrons%import_rng (rng) end subroutine evt_hadrons_make_rng @ %def evt_hadrons_make_rng @ <>= procedure :: prepare_new_event => evt_hadrons_prepare_new_event <>= module subroutine evt_hadrons_prepare_new_event (evt, i_mci, i_term) class(evt_hadrons_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_hadrons_prepare_new_event <>= module subroutine evt_hadrons_prepare_new_event (evt, i_mci, i_term) class(evt_hadrons_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term call evt%reset () end subroutine evt_hadrons_prepare_new_event @ %def evt_hadrons_prepare_new_event @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Resonance Insertion} <<[[resonance_insertion.f90]]>>= <> module resonance_insertion <> <> use rng_base, only: rng_t use selectors, only: selector_t use particles, only: particle_t, particle_set_t use resonances, only: resonance_history_set_t use resonances, only: resonance_tree_t use instances, only: process_instance_ptr_t use event_transforms <> <> <> interface <> end interface end module resonance_insertion @ %def resonance_insertion @ <<[[resonance_insertion_sub.f90]]>>= <> submodule (resonance_insertion) resonance_insertion_s use io_units use format_utils, only: write_separator use format_defs, only: FMT_12 use interactions, only: interaction_t use subevents, only: PRT_RESONANT implicit none contains <> end submodule resonance_insertion_s @ %def resonance_insertion_s @ \subsection{Resonance-Insertion Event Transform} This is the type for the event transform that applies resonance insertion. The resonance history set describe the resonance histories that we may consider. There is a process library with process objects that correspond to the resonance histories. Library creation, compilation etc.\ is done outside the scope of this module. <>= public :: evt_resonance_t <>= type, extends (evt_t) :: evt_resonance_t type(resonance_history_set_t), dimension(:), allocatable :: res_history_set integer, dimension(:), allocatable :: index_offset integer :: selected_component = 0 type(string_t) :: libname type(string_t), dimension(:), allocatable :: proc_id real(default) :: on_shell_limit = 0 real(default) :: on_shell_turnoff = 0 real(default) :: background_factor = 1 logical :: selector_active = .false. type(selector_t) :: selector integer :: selected_history = 0 type(process_instance_ptr_t), dimension(:), allocatable :: instance contains <> end type evt_resonance_t @ %def evt_resonance_t <>= procedure :: write_name => evt_resonance_write_name <>= module subroutine evt_resonance_write_name (evt, unit) class(evt_resonance_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_resonance_write_name <>= module subroutine evt_resonance_write_name (evt, unit) class(evt_resonance_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: resonance insertion" end subroutine evt_resonance_write_name @ %def evt_resonance_write_name @ Output. <>= procedure :: write => evt_resonance_write <>= module subroutine evt_resonance_write & (evt, unit, verbose, more_verbose, testflag) class(evt_resonance_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_resonance_write <>= module subroutine evt_resonance_write & (evt, unit, verbose, more_verbose, testflag) class(evt_resonance_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag integer :: u, i u = given_output_unit (unit) call write_separator (u, 2) call evt%write_name (u) call write_separator (u, 2) write (u, "(1x,A,A,A)") "Process library = '", char (evt%libname), "'" if (allocated (evt%res_history_set)) then do i = 1, size (evt%res_history_set) if (i == evt%selected_component) then write (u, "(1x,A,I0,A)") "Component #", i, ": *" else write (u, "(1x,A,I0,A)") "Component #", i, ":" end if call evt%res_history_set(i)%write (u, indent=1) end do end if call write_separator (u) if (allocated (evt%instance)) then write (u, "(1x,A)") "Subprocess instances: allocated" else write (u, "(1x,A)") "Subprocess instances: not allocated" end if if (evt%particle_set_exists) then if (evt%selected_history > 0) then write (u, "(1x,A,I0)") "Selected: resonance history #", & evt%selected_history else write (u, "(1x,A)") "Selected: no resonance history" end if else write (u, "(1x,A)") "Selected: [none]" end if write (u, "(1x,A,1x," // FMT_12 // ")") & "On-shell limit =", evt%on_shell_limit write (u, "(1x,A,1x," // FMT_12 // ")") & "On-shell turnoff =", evt%on_shell_turnoff write (u, "(1x,A,1x," // FMT_12 // ")") & "Background factor =", evt%background_factor call write_separator (u) if (evt%selector_active) then write (u, "(2x)", advance="no") call evt%selector%write (u, testflag=testflag) call write_separator (u) end if call evt%base_write (u, testflag = testflag, show_set = .false.) call write_separator (u) if (evt%particle_set_exists) then call evt%particle_set%write & (u, summary = .true., compressed = .true., testflag = testflag) call write_separator (u) end if end subroutine evt_resonance_write @ %def evt_resonance_write @ \subsection{Set contained data} Insert the resonance data, in form of a pre-generated resonance history set. Accumulate the number of histories for each set, to initialize an array of index offsets for lookup. <>= procedure :: set_resonance_data => evt_resonance_set_resonance_data <>= module subroutine evt_resonance_set_resonance_data (evt, res_history_set) class(evt_resonance_t), intent(inout) :: evt type(resonance_history_set_t), dimension(:), intent(in) :: res_history_set end subroutine evt_resonance_set_resonance_data <>= module subroutine evt_resonance_set_resonance_data (evt, res_history_set) class(evt_resonance_t), intent(inout) :: evt type(resonance_history_set_t), dimension(:), intent(in) :: res_history_set integer :: i evt%res_history_set = res_history_set allocate (evt%index_offset (size (evt%res_history_set)), source = 0) do i = 2, size (evt%res_history_set) evt%index_offset(i) = & evt%index_offset(i-1) + evt%res_history_set(i-1)%get_n_history () end do end subroutine evt_resonance_set_resonance_data @ %def evt_resonance_set_resonance_data @ Set the library that contains the resonant subprocesses. <>= procedure :: set_library => evt_resonance_set_library <>= module subroutine evt_resonance_set_library (evt, libname) class(evt_resonance_t), intent(inout) :: evt type(string_t), intent(in) :: libname end subroutine evt_resonance_set_library <>= module subroutine evt_resonance_set_library (evt, libname) class(evt_resonance_t), intent(inout) :: evt type(string_t), intent(in) :: libname evt%libname = libname end subroutine evt_resonance_set_library @ %def evt_resonance_set_library @ Assign pointers to subprocess instances. Once a subprocess has been selected, the instance is used for generating the particle set with valid quantum-number assignments, ready for resonance insertion. <>= procedure :: set_subprocess_instances & => evt_resonance_set_subprocess_instances <>= module subroutine evt_resonance_set_subprocess_instances (evt, instance) class(evt_resonance_t), intent(inout) :: evt type(process_instance_ptr_t), dimension(:), intent(in) :: instance end subroutine evt_resonance_set_subprocess_instances <>= module subroutine evt_resonance_set_subprocess_instances (evt, instance) class(evt_resonance_t), intent(inout) :: evt type(process_instance_ptr_t), dimension(:), intent(in) :: instance evt%instance = instance end subroutine evt_resonance_set_subprocess_instances @ %def evt_resonance_set_subprocess_instances @ Set the on-shell limit, the relative distance from a resonance that is still considered to be on-shell. The probability for being considered on-shell can be reduced by the turnoff parameter below. For details, see the [[resonances]] module. <>= procedure :: set_on_shell_limit => evt_resonance_set_on_shell_limit <>= module subroutine evt_resonance_set_on_shell_limit (evt, on_shell_limit) class(evt_resonance_t), intent(inout) :: evt real(default), intent(in) :: on_shell_limit end subroutine evt_resonance_set_on_shell_limit <>= module subroutine evt_resonance_set_on_shell_limit (evt, on_shell_limit) class(evt_resonance_t), intent(inout) :: evt real(default), intent(in) :: on_shell_limit evt%on_shell_limit = on_shell_limit end subroutine evt_resonance_set_on_shell_limit @ %def evt_resonance_set_on_shell_limit @ Set the Gaussian on-shell turnoff parameter, the width of the weighting factor for the resonance squared matrix element. If the resonance is off shell, this factor reduces the weight of the matrix element in the selector, such that the probability for considered resonant is reduced. The factor is applied only if the offshellness is less than the [[on_shell_limit]] above. For details, see the [[resonances]] module. <>= procedure :: set_on_shell_turnoff => evt_resonance_set_on_shell_turnoff <>= module subroutine evt_resonance_set_on_shell_turnoff (evt, on_shell_turnoff) class(evt_resonance_t), intent(inout) :: evt real(default), intent(in) :: on_shell_turnoff end subroutine evt_resonance_set_on_shell_turnoff <>= module subroutine evt_resonance_set_on_shell_turnoff (evt, on_shell_turnoff) class(evt_resonance_t), intent(inout) :: evt real(default), intent(in) :: on_shell_turnoff evt%on_shell_turnoff = on_shell_turnoff end subroutine evt_resonance_set_on_shell_turnoff @ %def evt_resonance_set_on_shell_turnoff @ Reweight (suppress) the background contribution if there is a resonance history that applies. The event will be registered as background if there is no applicable resonance history, or if the background configuration has been selected based on (reweighted) squared matrix elements. <>= procedure :: set_background_factor => evt_resonance_set_background_factor <>= module subroutine evt_resonance_set_background_factor & (evt, background_factor) class(evt_resonance_t), intent(inout) :: evt real(default), intent(in) :: background_factor end subroutine evt_resonance_set_background_factor <>= module subroutine evt_resonance_set_background_factor (evt, background_factor) class(evt_resonance_t), intent(inout) :: evt real(default), intent(in) :: background_factor evt%background_factor = background_factor end subroutine evt_resonance_set_background_factor @ %def evt_resonance_set_background_factor @ \subsection{Selector} Manually import a random-number generator object. This should be done only for testing purposes. The standard procedure is to [[connect]] a process to an event transform; this will create an appropriate [[rng]] from the RNG factory in the process object. <>= procedure :: import_rng => evt_resonance_import_rng <>= module subroutine evt_resonance_import_rng (evt, rng) class(evt_resonance_t), intent(inout) :: evt class(rng_t), allocatable, intent(inout) :: rng end subroutine evt_resonance_import_rng <>= module subroutine evt_resonance_import_rng (evt, rng) class(evt_resonance_t), intent(inout) :: evt class(rng_t), allocatable, intent(inout) :: rng call move_alloc (from = rng, to = evt%rng) end subroutine evt_resonance_import_rng @ %def evt_resonance_import_rng @ We use a standard selector object to choose from the available resonance histories. If the selector is inactive, we do not insert resonances. <>= procedure :: write_selector => evt_resonance_write_selector <>= module subroutine evt_resonance_write_selector (evt, unit, testflag) class(evt_resonance_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag end subroutine evt_resonance_write_selector <>= module subroutine evt_resonance_write_selector (evt, unit, testflag) class(evt_resonance_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag integer :: u u = given_output_unit (unit) if (evt%selector_active) then call evt%selector%write (u, testflag) else write (u, "(1x,A)") "Selector: [inactive]" end if end subroutine evt_resonance_write_selector @ %def evt_resonance_write_selector @ The selector is initialized with relative weights of histories which need not be normalized. Channels with weight zero are ignored. The [[offset]] will normally be $-1$, so we count from zero, and zero is a valid result from the selector. Selecting the zero entry implies no resonance insertion. However, this behavior is not hard-coded here (without offset, no resonance is not possible as a result). <>= procedure :: init_selector => evt_resonance_init_selector <>= module subroutine evt_resonance_init_selector (evt, weight, offset) class(evt_resonance_t), intent(inout) :: evt real(default), dimension(:), intent(in) :: weight integer, intent(in), optional :: offset end subroutine evt_resonance_init_selector <>= module subroutine evt_resonance_init_selector (evt, weight, offset) class(evt_resonance_t), intent(inout) :: evt real(default), dimension(:), intent(in) :: weight integer, intent(in), optional :: offset if (any (weight > 0)) then call evt%selector%init (weight, offset = offset) evt%selector_active = .true. else evt%selector_active = .false. end if end subroutine evt_resonance_init_selector @ %def evt_resonance_init_selector @ Return all selector weights, for inspection. Note that the index counts from zero. <>= procedure :: get_selector_weights => evt_resonance_get_selector_weights <>= module subroutine evt_resonance_get_selector_weights (evt, weight) class(evt_resonance_t), intent(in) :: evt real(default), dimension(0:), intent(out) :: weight end subroutine evt_resonance_get_selector_weights <>= module subroutine evt_resonance_get_selector_weights (evt, weight) class(evt_resonance_t), intent(in) :: evt real(default), dimension(0:), intent(out) :: weight integer :: i do i = 0, ubound (weight,1) weight(i) = evt%selector%get_weight (i) end do end subroutine evt_resonance_get_selector_weights @ %def evt_resonance_get_selector_weights @ \subsection{Runtime calculations} Use the associated master process instance and the subprocess instances to distribute the current momentum set, then compute the squared matrix elements weights for all subprocesses. NOTE: Procedures in this subsection are not covered by unit tests in this module, but by unit tests of the [[restricted_subprocesses]] module. Fill the particle set, so the momentum configuration can be used by the subprocess instances. The standard workflow is to copy from the previous particle set. <>= procedure :: fill_momenta => evt_resonance_fill_momenta <>= module subroutine evt_resonance_fill_momenta (evt) class(evt_resonance_t), intent(inout) :: evt end subroutine evt_resonance_fill_momenta <>= module subroutine evt_resonance_fill_momenta (evt) class(evt_resonance_t), intent(inout) :: evt integer :: i, n if (associated (evt%previous)) then evt%particle_set = evt%previous%particle_set else if (associated (evt%process_instance)) then ! this branch only for unit test call evt%process_instance%get_trace & (evt%particle_set, i_term=1, n_incoming=evt%process%get_n_in ()) end if end subroutine evt_resonance_fill_momenta @ %def evt_resonance_fill_momenta @ Return the indices of those subprocesses which can be considered on-shell. The result depends on the stored particle set (outgoing momenta) and on the on-shell limit value. The index [[evt%selected_component]] identifies the particular history set that corresponds to the given process component. Recall that process components may have different external particles, so they have distinct history sets. <>= procedure :: determine_on_shell_histories & => evt_resonance_determine_on_shell_histories <>= module subroutine evt_resonance_determine_on_shell_histories & (evt, index_array) class(evt_resonance_t), intent(in) :: evt integer, dimension(:), allocatable, intent(out) :: index_array end subroutine evt_resonance_determine_on_shell_histories <>= module subroutine evt_resonance_determine_on_shell_histories & (evt, index_array) class(evt_resonance_t), intent(in) :: evt integer, dimension(:), allocatable, intent(out) :: index_array integer :: i i = evt%selected_component call evt%res_history_set(i)%determine_on_shell_histories & (evt%particle_set%get_outgoing_momenta (), & evt%on_shell_limit, & index_array) end subroutine evt_resonance_determine_on_shell_histories @ %def evt_resonance_determine_on_shell_histories @ Evaluate selected subprocesses. (In actual operation, the ones that have been tagged as on-shell.) We assume that the MCI, term, and channel indices for the subprocesses can all be set to 1. <>= procedure :: evaluate_subprocess => evt_resonance_evaluate_subprocess <>= module subroutine evt_resonance_evaluate_subprocess (evt, index_array) class(evt_resonance_t), intent(inout) :: evt integer, dimension(:), intent(in) :: index_array end subroutine evt_resonance_evaluate_subprocess <>= module subroutine evt_resonance_evaluate_subprocess (evt, index_array) class(evt_resonance_t), intent(inout) :: evt integer, dimension(:), intent(in) :: index_array integer :: k, i if (allocated (evt%instance)) then do k = 1, size (index_array) i = index_array(k) associate (instance => evt%instance(i)%p) call instance%choose_mci (1) call instance%set_trace (evt%particle_set, 1, check_match=.false.) call instance%recover (channel = 1, i_term = 1, & update_sqme = .true., recover_phs = .false.) end associate end do end if end subroutine evt_resonance_evaluate_subprocess @ %def evt_resonance_evaluate_subprocess @ Return the current squared matrix-element value of the master process, and of the selected resonant subprocesses, respectively. <>= procedure :: get_master_sqme => evt_resonance_get_master_sqme procedure :: get_subprocess_sqme => evt_resonance_get_subprocess_sqme <>= module function evt_resonance_get_master_sqme (evt) result (sqme) class(evt_resonance_t), intent(in) :: evt real(default) :: sqme end function evt_resonance_get_master_sqme module subroutine evt_resonance_get_subprocess_sqme (evt, sqme, index_array) class(evt_resonance_t), intent(in) :: evt real(default), dimension(:), intent(out) :: sqme integer, dimension(:), intent(in), optional :: index_array end subroutine evt_resonance_get_subprocess_sqme <>= module function evt_resonance_get_master_sqme (evt) result (sqme) class(evt_resonance_t), intent(in) :: evt real(default) :: sqme sqme = evt%process_instance%get_sqme () end function evt_resonance_get_master_sqme module subroutine evt_resonance_get_subprocess_sqme (evt, sqme, index_array) class(evt_resonance_t), intent(in) :: evt real(default), dimension(:), intent(out) :: sqme integer, dimension(:), intent(in), optional :: index_array integer :: k, i if (present (index_array)) then sqme = 0 do k = 1, size (index_array) call get_sqme (index_array(k)) end do else do i = 1, size (evt%instance) call get_sqme (i) end do end if contains subroutine get_sqme (i) integer, intent(in) :: i associate (instance => evt%instance(i)%p) sqme(i) = instance%get_sqme () end associate end subroutine get_sqme end subroutine evt_resonance_get_subprocess_sqme @ %def evt_resonance_get_master_sqme @ %def evt_resonance_get_subprocess_sqme @ Apply a turnoff factor for off-shell kinematics to the [[sqme]] values. The [[sqme]] array indices are offset from the resonance history set entries. <>= procedure :: apply_turnoff_factor => evt_resonance_apply_turnoff_factor <>= module subroutine evt_resonance_apply_turnoff_factor & (evt, sqme, index_array) class(evt_resonance_t), intent(in) :: evt real(default), dimension(:), intent(inout) :: sqme integer, dimension(:), intent(in) :: index_array end subroutine evt_resonance_apply_turnoff_factor <>= module subroutine evt_resonance_apply_turnoff_factor (evt, sqme, index_array) class(evt_resonance_t), intent(in) :: evt real(default), dimension(:), intent(inout) :: sqme integer, dimension(:), intent(in) :: index_array integer :: k, i_res, i_prc do k = 1, size (index_array) i_res = evt%selected_component i_prc = index_array(k) + evt%index_offset(i_res) sqme(i_prc) = sqme(i_prc) & * evt%res_history_set(i_res)%evaluate_gaussian & & (evt%particle_set%get_outgoing_momenta (), & & evt%on_shell_turnoff, index_array(k)) end do end subroutine evt_resonance_apply_turnoff_factor @ %def evt_resonance_apply_turnoff_factor @ We use the calculations of resonant matrix elements to determine probabilities for all applicable resonance configurations. This method combines the steps implemented above. First, we determine the selected process component. TODO: the version below selects the first component which is found active. This make sense only for standard LO process components, where exactly one component corresponds to a MCI set. For the selected process component, we query the kinematics and determine the applicable resonance histories. We collect squared matrix elements for those resonance histories and compare them to the master-process squared matrix element. The result is the probability for each resonance history together with the probability for non-resonant background (zeroth entry). The latter is defined as the difference between the complete process result and the sum of the resonances, ignoring the possibility for interference. If the complete process result is actually undershooting the sum of resonances, we nevertheless count the background with positive probability. When looking up the subprocess sqme, we must add the [[index_offset]] to the resulting array, since the indices returned by the individual history set all count from one, while the subprocess instances that belong to process components are collected in one flat array. After determining matrix elements and background, we may reduce the weight of the matrix elements in the selector by applying a turnoff factor. The factor [[background_factor]] indicates whether to include the background contribution at all, as long as there is a nonvanishing resonance contribution. Note that instead of setting background to zero, we just multiply it by a very small number. This ensures that indices are assigned correctly, and that background will eventually be selected if smooth turnoff is chosen. <>= procedure :: compute_probabilities => evt_resonance_compute_probabilities <>= module subroutine evt_resonance_compute_probabilities (evt) class(evt_resonance_t), intent(inout) :: evt end subroutine evt_resonance_compute_probabilities <>= module subroutine evt_resonance_compute_probabilities (evt) class(evt_resonance_t), intent(inout) :: evt integer, dimension(:), allocatable :: index_array real(default) :: sqme_master, sqme_sum, sqme_bg real(default), dimension(:), allocatable :: sqme_res integer :: n, ic if (.not. associated (evt%process_instance)) return n = size (evt%instance) call evt%select_component (0) FIND_ACTIVE_COMPONENT: do ic = 1, evt%process%get_n_components () if (evt%process%component_is_selected (ic)) then call evt%select_component (ic) exit FIND_ACTIVE_COMPONENT end if end do FIND_ACTIVE_COMPONENT if (evt%selected_component > 0) then call evt%determine_on_shell_histories (index_array) else allocate (index_array (0)) end if call evt%evaluate_subprocess & (index_array + evt%index_offset(evt%selected_component)) allocate (sqme_res (n), source = 0._default) call evt%get_subprocess_sqme & (sqme_res, index_array + evt%index_offset(evt%selected_component)) sqme_master = evt%get_master_sqme () sqme_sum = sum (sqme_res) sqme_bg = abs (sqme_master - sqme_sum) if (evt%on_shell_turnoff > 0) then call evt%apply_turnoff_factor (sqme_res, index_array) end if if (any (sqme_res > 0)) then sqme_bg = sqme_bg * evt%background_factor end if call evt%init_selector ([sqme_bg, sqme_res], offset = -1) end subroutine evt_resonance_compute_probabilities @ %def evt_resonance_compute_probabilities @ Set the selected component (unit tests). <>= procedure :: select_component => evt_resonance_select_component <>= module subroutine evt_resonance_select_component (evt, i_component) class(evt_resonance_t), intent(inout) :: evt integer, intent(in) :: i_component end subroutine evt_resonance_select_component <>= module subroutine evt_resonance_select_component (evt, i_component) class(evt_resonance_t), intent(inout) :: evt integer, intent(in) :: i_component evt%selected_component = i_component end subroutine evt_resonance_select_component @ %def evt_resonance_select_component @ \subsection{Sanity check} Check the color assignment, which may be wrong for the inserted resonances. Delegated to the particle-set component. Return offending particle indices and, optionally, particles as arrays. This is done in a unit test. The current algorithm, i.e., selecting the color assignment from the resonant-subprocess instance, should not generate invalid color assignments. <>= procedure :: find_prt_invalid_color => evt_resonance_find_prt_invalid_color <>= module subroutine evt_resonance_find_prt_invalid_color (evt, index, prt) class(evt_resonance_t), intent(in) :: evt integer, dimension(:), allocatable, intent(out) :: index type(particle_t), dimension(:), allocatable, intent(out), optional :: prt end subroutine evt_resonance_find_prt_invalid_color <>= module subroutine evt_resonance_find_prt_invalid_color (evt, index, prt) class(evt_resonance_t), intent(in) :: evt integer, dimension(:), allocatable, intent(out) :: index type(particle_t), dimension(:), allocatable, intent(out), optional :: prt if (evt%particle_set_exists) then call evt%particle_set%find_prt_invalid_color (index, prt) else allocate (prt (0)) end if end subroutine evt_resonance_find_prt_invalid_color @ %def evt_resonance_find_prt_invalid_color @ \subsection{API implementation} <>= procedure :: prepare_new_event => evt_resonance_prepare_new_event <>= module subroutine evt_resonance_prepare_new_event (evt, i_mci, i_term) class(evt_resonance_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_resonance_prepare_new_event <>= module subroutine evt_resonance_prepare_new_event (evt, i_mci, i_term) class(evt_resonance_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term call evt%reset () end subroutine evt_resonance_prepare_new_event @ %def evt_resonance_prepare_new_event @ Select one of the histories, based on the momentum array from the current particle set. Compute the probabilities for all resonant subprocesses and initialize the selector accordingly. Then select one resonance history, or none. <>= procedure :: generate_weighted => evt_resonance_generate_weighted <>= module subroutine evt_resonance_generate_weighted (evt, probability) class(evt_resonance_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_resonance_generate_weighted <>= module subroutine evt_resonance_generate_weighted (evt, probability) class(evt_resonance_t), intent(inout) :: evt real(default), intent(inout) :: probability integer :: i_term call evt%fill_momenta () call evt%compute_probabilities () if (associated (evt%process_instance)) then i_term = evt%process_instance%get_first_active_i_term () if (evt%process_instance%term(i_term)%passed) then call evt%selector%generate (evt%rng, evt%selected_history) end if else call evt%selector%generate (evt%rng, evt%selected_history) end if probability = 1 end subroutine evt_resonance_generate_weighted @ %def evt_resonance_generate_weighted @ Here take the current particle set and insert resonance intermediate states if applicable. The resonance history has already been chosen by the generator above. If no resonance history applies, just retain the particle set. If a resonance history applies, we factorize the exclusive interaction of the selected (resonance-process) process instance. With a temporary particle set [[prt_set]] as workspace, we the insert the resonances, reinstate parent-child relations and set colors and momenta for the resonances. The temporary is then copied back. Taking the event data from the resonant subprocess instead of the master process, guarantees that all flavor, helicity, and color assignments are valid for the selected resonance history. Note that the transform may thus choose a quantum-number combination that is different from the one chosen by the master process. The [[i_term]] value for the selected subprocess instance is always 1. We support only LO process. For those, the master process may have several terms (= components) that correspond to different external states. The subprocesses are distinct, each one corresponds to a definite master component, and by itself it consists of a single component/term. However, if the selector chooses resonance history \#0, i.e., no resonance, we just copy the particle set from the previous (i.e., trivial) event transform and ignore all subprocess data. <>= procedure :: make_particle_set => evt_resonance_make_particle_set <>= module subroutine evt_resonance_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_resonance_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_resonance_make_particle_set <>= module subroutine evt_resonance_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_resonance_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r type(particle_set_t), target :: prt_set type(particle_t), dimension(:), allocatable :: prt integer :: n_beam, n_in, n_vir, n_res, n_out, i, i_res, i_term, i_tree type(interaction_t), pointer :: int_matrix, int_flows integer, dimension(:), allocatable :: map type(resonance_tree_t) :: res_tree if (associated (evt%previous)) then if (evt%previous%particle_set_exists) then if (evt%selected_history > 0) then if (allocated (evt%instance)) then associate (instance => evt%instance(evt%selected_history)%p) call instance%evaluate_event_data (weight = 1._default) i_term = 1 int_matrix => instance%get_matrix_int_ptr (i_term) int_flows => instance%get_flows_int_ptr (i_term) call evt%factorize_interactions (int_matrix, int_flows, & factorization_mode, keep_correlations, r) call evt%tag_incoming () end associate else ! this branch only for unit test evt%particle_set = evt%previous%particle_set end if i_tree = evt%selected_history & - evt%index_offset(evt%selected_component) call evt%res_history_set(evt%selected_component)%get_tree & (i_tree, res_tree) n_beam = evt%particle_set%get_n_beam () n_in = evt%particle_set%get_n_in () n_vir = evt%particle_set%get_n_vir () n_out = evt%particle_set%get_n_out () n_res = res_tree%get_n_resonances () allocate (map (n_beam + n_in + n_vir + n_out)) map(1:n_beam+n_in+n_vir) & = [(i, i = 1, n_beam+n_in+n_vir)] map(n_beam+n_in+n_vir+1:n_beam+n_in+n_vir+n_out) & = [(i + n_res, & & i = n_beam+n_in+n_vir+1, & & n_beam+n_in+n_vir+n_out)] call prt_set%transfer (evt%particle_set, n_res, map) do i = 1, n_res i_res = n_beam + n_in + n_vir + i call prt_set%insert (i_res, & PRT_RESONANT, & res_tree%get_flv (i), & res_tree%get_children (i, & & n_beam+n_in+n_vir, n_beam+n_in+n_vir+n_res)) end do do i = n_res, 1, -1 i_res = n_beam + n_in + n_vir + i call prt_set%recover_color (i_res) end do call prt_set%set_momentum & (map(:), evt%particle_set%get_momenta (), on_shell = .true.) do i = n_res, 1, -1 i_res = n_beam + n_in + n_vir + i call prt_set%recover_momentum (i_res) end do call evt%particle_set%final () evt%particle_set = prt_set call prt_set%final () evt%particle_set_exists = .true. else ! retain particle set, as copied from previous evt evt%particle_set_exists = .true. end if else evt%particle_set_exists = .false. end if else evt%particle_set_exists = .false. end if end subroutine evt_resonance_make_particle_set @ %def event_resonance_make_particle_set @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[resonance_insertion_ut.f90]]>>= <> module resonance_insertion_ut use unit_tests use resonance_insertion_uti <> <> contains <> end module resonance_insertion_ut @ %def resonance_insertion_ut @ <<[[resonance_insertion_uti.f90]]>>= <> module resonance_insertion_uti <> <> use format_utils, only: write_separator use os_interface use lorentz use rng_base, only: rng_t use flavors, only: flavor_t use colors, only: color_t use models, only: syntax_model_file_init, syntax_model_file_final use models, only: model_list_t, model_t use particles, only: particle_t, particle_set_t use resonances, only: resonance_info_t use resonances, only: resonance_history_t use resonances, only: resonance_history_set_t use event_transforms use resonance_insertion use rng_base_ut, only: rng_test_t <> <> contains <> end module resonance_insertion_uti @ %def resonance_insertion_uti @ API: driver for the unit tests below. <>= public :: resonance_insertion_test <>= subroutine resonance_insertion_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine resonance_insertion_test @ %def resonance_insertion_test @ \subsubsection{Test resonance insertion as event transform} Insert a resonance (W boson) into an event with momentum assignment. <>= call test (resonance_insertion_1, "resonance_insertion_1", & "simple resonance insertion", & u, results) <>= public :: resonance_insertion_1 <>= subroutine resonance_insertion_1 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(resonance_history_set_t), dimension(1) :: res_history_set type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance type(flavor_t) :: fw type(color_t) :: col real(default) :: mw, ew, pw type(vector4_t), dimension(5) :: p class(rng_t), allocatable :: rng real(default) :: probability integer, dimension(:), allocatable :: i_invalid type(particle_t), dimension(:), allocatable :: prt_invalid integer :: i write (u, "(A)") "* Test output: resonance_insertion_1" write (u, "(A)") "* Purpose: apply simple resonance insertion" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) ! reset slightly in order to avoid a rounding ambiguity call model%set_real (var_str ("mW"), 80.418_default) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 0, n_in = 2, n_rem = 0, n_vir = 0, n_out = 3, & pdg = [1, -1, 1, -2, 24], model = model) call fw%init (24, model) mw = fw%get_mass () ew = 200._default pw = sqrt (ew**2 - mw**2) p(1) = vector4_moving (ew, ew, 3) p(2) = vector4_moving (ew,-ew, 3) p(3) = vector4_moving (ew/2, vector3_moving ([pw/2, mw/2, 0._default])) p(4) = vector4_moving (ew/2, vector3_moving ([pw/2,-mw/2, 0._default])) p(5) = vector4_moving (ew, vector3_moving ([-pw, 0._default, 0._default])) call pset%set_momentum (p, on_shell = .true.) call col%init_col_acl (1,0) call pset%set_color (1, col) call col%init_col_acl (0,1) call pset%set_color (2, col) call col%init_col_acl (2,0) call pset%set_color (3, col) call col%init_col_acl (0,2) call pset%set_color (4, col) call col%init_col_acl (0,0) call pset%set_color (5, col) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Prepare resonance history set" write (u, "(A)") call res_history_set(1)%init () call res_info%init (3, -24, model, 2) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_history_set(1)%freeze () write (u, "(A)") "* Initialize resonance insertion transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial allocate (rng_test_t :: rng) call evt_resonance%import_rng (rng) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Fill resonance insertion transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%init_selector ([1._default]) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (0, .false.) call evt_resonance%write (u) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") call evt_resonance%find_prt_invalid_color (i_invalid, prt_invalid) write (u, "(A)") "Particles with invalid color:" select case (size (prt_invalid)) case (0) write (u, "(2x,A)") "[none]" case default do i = 1, size (prt_invalid) write (u, "(1x,A,1x,I0)", advance="no") "Particle", i_invalid(i) call prt_invalid(i)%write (u) end do end select write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_resonance%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: resonance_insertion_1" end subroutine resonance_insertion_1 @ %def resonance_insertion_1 @ \subsubsection{Resonance insertion with color mismatch} Same as previous test (but no momenta); resonance insertion should fail because of color mismatch: W boson is color-neutral. <>= call test (resonance_insertion_2, "resonance_insertion_2", & "resonance color mismatch", & u, results) <>= public :: resonance_insertion_2 <>= subroutine resonance_insertion_2 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(resonance_history_set_t), dimension(1) :: res_history_set type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance type(color_t) :: col class(rng_t), allocatable :: rng real(default) :: probability type(particle_t), dimension(:), allocatable :: prt_invalid integer, dimension(:), allocatable :: i_invalid integer :: i write (u, "(A)") "* Test output: resonance_insertion_2" write (u, "(A)") "* Purpose: resonance insertion with color mismatch" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 0, n_in = 2, n_rem = 0, n_vir = 0, n_out = 3, & pdg = [1, -1, 1, -2, 24], model = model) call col%init_col_acl (1,0) call pset%set_color (1, col) call col%init_col_acl (0,2) call pset%set_color (2, col) call col%init_col_acl (1,0) call pset%set_color (3, col) call col%init_col_acl (0,2) call pset%set_color (4, col) call col%init_col_acl (0,0) call pset%set_color (5, col) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Prepare resonance history set" write (u, "(A)") call res_history_set(1)%init () call res_info%init (3, -24, model, 2) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_history_set(1)%freeze () write (u, "(A)") "* Initialize resonance insertion transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial allocate (rng_test_t :: rng) call evt_resonance%import_rng (rng) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Fill resonance insertion transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%init_selector ([1._default]) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (0, .false.) call evt_resonance%write (u) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") call evt_resonance%find_prt_invalid_color (i_invalid, prt_invalid) write (u, "(A)") "Particles with invalid color:" select case (size (prt_invalid)) case (0) write (u, "(2x,A)") "[none]" case default do i = 1, size (prt_invalid) write (u, "(1x,A,1x,I0)", advance="no") "Particle", i_invalid(i) call prt_invalid(i)%write (u) end do end select write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_resonance%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: resonance_insertion_2" end subroutine resonance_insertion_2 @ %def resonance_insertion_2 @ \subsubsection{Complex resonance history} This is the resonance history $u\bar u \to (t\to W^+ b) + (\bar t\to (h \to b\bar b) + (\bar t^\ast \to W^-\bar b))$. <>= call test (resonance_insertion_3, "resonance_insertion_3", & "complex resonance history", & u, results) <>= public :: resonance_insertion_3 <>= subroutine resonance_insertion_3 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(resonance_history_set_t), dimension(1) :: res_history_set type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance type(color_t) :: col class(rng_t), allocatable :: rng real(default) :: probability type(particle_t), dimension(:), allocatable :: prt_invalid integer, dimension(:), allocatable :: i_invalid integer :: i write (u, "(A)") "* Test output: resonance_insertion_3" write (u, "(A)") "* Purpose: resonance insertion with color mismatch" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 0, n_in = 2, n_rem = 0, n_vir = 0, n_out = 6, & pdg = [2, -2, 24, 5, 5, -5, -24, -5], model = model) call col%init_col_acl (1,0) call pset%set_color (1, col) call col%init_col_acl (0,2) call pset%set_color (2, col) call col%init_col_acl (0,0) call pset%set_color (3, col) call col%init_col_acl (1,0) call pset%set_color (4, col) call col%init_col_acl (3,0) call pset%set_color (5, col) call col%init_col_acl (0,3) call pset%set_color (6, col) call col%init_col_acl (0,0) call pset%set_color (7, col) call col%init_col_acl (0,2) call pset%set_color (8, col) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Prepare resonance history set" write (u, "(A)") call res_history_set(1)%init () call res_info%init (3, 6, model, 6) call res_history%add_resonance (res_info) call res_info%init (12, 25, model, 6) call res_history%add_resonance (res_info) call res_info%init (60, -6, model, 6) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_history_set(1)%freeze () write (u, "(A)") "* Initialize resonance insertion transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial allocate (rng_test_t :: rng) call evt_resonance%import_rng (rng) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Fill resonance insertion transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%init_selector ([1._default]) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (0, .false.) call evt_resonance%write (u) write (u, "(A)") call evt_resonance%find_prt_invalid_color (i_invalid, prt_invalid) write (u, "(A)") "Particles with invalid color:" select case (size (prt_invalid)) case (0) write (u, "(2x,A)") "[none]" case default do i = 1, size (prt_invalid) write (u, "(1x,A,1x,I0)", advance="no") "Particle", i_invalid(i) call prt_invalid(i)%write (u) end do end select write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_resonance%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: resonance_insertion_3" end subroutine resonance_insertion_3 @ %def resonance_insertion_3 @ \subsubsection{Resonance history selection} Another test with zero momenta: select one of several resonant channels using the selector component. <>= call test (resonance_insertion_4, "resonance_insertion_4", & "resonance history selection", & u, results) <>= public :: resonance_insertion_4 <>= subroutine resonance_insertion_4 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(resonance_history_set_t), dimension(1) :: res_history_set type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance type(color_t) :: col class(rng_t), allocatable :: rng real(default) :: probability integer :: i write (u, "(A)") "* Test output: resonance_insertion_4" write (u, "(A)") "* Purpose: resonance history selection" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 0, n_in = 2, n_rem = 0, n_vir = 0, n_out = 4, & pdg = [1, -1, 1, -2, -3, 4], model = model) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Prepare resonance history set" write (u, "(A)") call res_history_set(1)%init () call res_info%init (3, -24, model, 4) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_info%init (12, 24, model, 4) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_info%init (12, 24, model, 4) call res_history%add_resonance (res_info) call res_info%init (15, 25, model, 4) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_history_set(1)%freeze () write (u, "(A)") "* Initialize resonance insertion transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial allocate (rng_test_t :: rng) call evt_resonance%import_rng (rng) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Fill resonance insertion transform" write (u, "(A)") do i = 1, 6 write (u, "(A,1x,I0)") "* Event #", i write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%init_selector ([1._default, 2._default, 1._default]) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (0, .false.) call evt_resonance%write (u) write (u, "(A)") end do write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_resonance%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: resonance_insertion_4" end subroutine resonance_insertion_4 @ %def resonance_insertion_4 @ \subsubsection{Resonance history selection} Another test with zero momenta: select either a resonant channel or no resonance. <>= call test (resonance_insertion_5, "resonance_insertion_5", & "resonance history on/off", & u, results) <>= public :: resonance_insertion_5 <>= subroutine resonance_insertion_5 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(resonance_history_set_t), dimension(1) :: res_history_set type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance type(color_t) :: col class(rng_t), allocatable :: rng real(default) :: probability integer :: i write (u, "(A)") "* Test output: resonance_insertion_5" write (u, "(A)") "* Purpose: resonance history selection including no resonance" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 0, n_in = 2, n_rem = 0, n_vir = 0, n_out = 4, & pdg = [1, -1, 1, -2, -3, 4], model = model) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) write (u, "(A)") "* Prepare resonance history set" write (u, "(A)") call res_history_set(1)%init () call res_info%init (3, -24, model, 4) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_history_set(1)%freeze () write (u, "(A)") "* Initialize resonance insertion transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial allocate (rng_test_t :: rng) call evt_resonance%import_rng (rng) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) write (u, "(A)") "* Fill resonance insertion transform" write (u, "(A)") do i = 1, 2 write (u, "(A,1x,I0)") "* Event #", i write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%init_selector ([1._default, 3._default], offset = -1) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (0, .false.) call evt_resonance%write (u) write (u, "(A)") end do write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_resonance%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: resonance_insertion_5" end subroutine resonance_insertion_5 @ %def resonance_insertion_5 @ \subsubsection{Resonance insertion with structured beams} Insert a resonance (W boson) into an event with beam and virtual particles. <>= call test (resonance_insertion_6, "resonance_insertion_6", & "resonance insertion with beam structure", & u, results) <>= public :: resonance_insertion_6 <>= subroutine resonance_insertion_6 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(model_list_t) :: model_list type(particle_set_t) :: pset type(model_t), pointer :: model type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(resonance_history_set_t), dimension(1) :: res_history_set type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance class(rng_t), allocatable :: rng real(default) :: probability write (u, "(A)") "* Test output: resonance_insertion_6" write (u, "(A)") "* Purpose: resonance insertion with structured beams" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 11, -11, 22, 22, 13, -13], model = model) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Prepare resonance history set" write (u, "(A)") call res_history_set(1)%init () call res_info%init (3, 23, model, 2) call res_history%add_resonance (res_info) call res_history_set(1)%enter (res_history) call res_history%clear () call res_history_set(1)%freeze () write (u, "(A)") "* Initialize resonance insertion transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial allocate (rng_test_t :: rng) call evt_resonance%import_rng (rng) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Fill resonance insertion transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%init_selector ([1._default]) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (0, .false.) call evt_resonance%write (u) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_resonance%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: resonance_insertion_6" end subroutine resonance_insertion_6 @ %def resonance_insertion_6 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Recoil kinematics} <<[[recoil_kinematics.f90]]>>= <> module recoil_kinematics <> use lorentz, only: vector4_t use lorentz, only: vector4_null use lorentz, only: vector4_moving use lorentz, only: vector3_moving use lorentz, only: transverse_part use lorentz, only: lorentz_transformation_t use lorentz, only: inverse use lorentz, only: boost use lorentz, only: transformation use lorentz, only: operator(+) use lorentz, only: operator(-) use lorentz, only: operator(*) use lorentz, only: operator(**) use lorentz, only: lambda <> <> <> <> interface <> end interface end module recoil_kinematics @ %def recoil_kinematics @ <<[[recoil_kinematics_sub.f90]]>>= <> submodule (recoil_kinematics) recoil_kinematics_s use constants, only: twopi implicit none contains <> end submodule recoil_kinematics_s @ %def recoil_kinematics_s @ \subsection{$\phi$ sampler} This is trivial. Generate an azimuthal angle, given a $(0,1)$ RNG parameter. <>= elemental subroutine generate_phi_recoil (r, phi) real(default), intent(in) :: r real(default), intent(out) :: phi phi = r * twopi end subroutine generate_phi_recoil @ %def generate_phi_recoil @ \subsection{$Q^2$ sampler} The dynamics of factorization suggests to generate a flat $Q^2$ distribution from a (random) number, event by event. At the lowest momentum transfer values, the particle (electron) mass sets a smooth cutoff. The formula can produce $Q$ values below the electron mass, down to zero, but with a power distribution that eventually evolves into the expected logarithmic distribution for $Q^2 > m^2$. We are talking about the absolute value here, so all $Q^2$ values are positive. For the actual momentum transfer, $q^2=-Q^2$. <>= public :: generate_q2_recoil <>= elemental module subroutine generate_q2_recoil (s, x_bar, q2_max, m2, r, q2) real(default), intent(in) :: s real(default), intent(in) :: q2_max real(default), intent(in) :: x_bar real(default), intent(in) :: m2 real(default), intent(in) :: r real(default), intent(out) :: q2 end subroutine generate_q2_recoil <>= elemental module subroutine generate_q2_recoil (s, x_bar, q2_max, m2, r, q2) real(default), intent(in) :: s real(default), intent(in) :: q2_max real(default), intent(in) :: x_bar real(default), intent(in) :: m2 real(default), intent(in) :: r real(default), intent(out) :: q2 real(default) :: q2_max_evt q2_max_evt = q2_max_event (s, x_bar, q2_max) q2 = m2 * (exp (r * log (1 + (q2_max_evt / m2))) - 1) end subroutine generate_q2_recoil @ %def generate_q_recoil @ The $Q$ distribution is cut off from above by the kinematic limit, which depends on the energy that is available for the radiated photon, or by a user-defined cutoff -- whichever is less. The kinematic limit fits the formulas for recoil momenta (see below), and it also implicitly enters the ISR collinear structure function, so the normalization of the distribution should be correct. <>= elemental function q2_max_event (s, x_bar, q2_max) result (q2) real(default), intent(in) :: s real(default), intent(in) :: x_bar real(default), intent(in) :: q2_max real(default) :: q2 q2 = min (x_bar * s, q2_max) end function q2_max_event @ %def q2_max_event @ \subsection{Kinematics functions} Given values for energies, $Q_{1,2}^2$, azimuthal angle, compute the matching polar angle of the radiating particle. The subroutine returns $\sin\theta$ and $\cos\theta$. <>= subroutine polar_angles (s, xb, rho, ee, q2, sin_th, cos_th, ok) real(default), intent(in) :: s real(default), intent(in) :: xb real(default), intent(in) :: rho real(default), dimension(2), intent(in) :: ee real(default), dimension(2), intent(in) :: q2 real(default), dimension(2), intent(out) :: sin_th real(default), dimension(2), intent(out) :: cos_th logical, intent(out) :: ok real(default), dimension(2) :: sin2_th_2 sin2_th_2 = q2 / (ee * rho * xb * s) if (all (sin2_th_2 <= 1)) then sin_th = 2 * sqrt (sin2_th_2 * (1 - sin2_th_2)) cos_th = 1 - 2 * sin2_th_2 ok = .true. else sin_th = 0 cos_th = 1 ok = .false. end if end subroutine polar_angles @ %def polar_angles @ Compute the acollinearity parameter $\lambda$ from azimuthal and polar angles. The result is a number between $0$ and $1$. <>= function lambda_factor (sin_th, cos_th, cphi) result (lambda) real(default), dimension(2), intent(in) :: sin_th real(default), dimension(2), intent(in) :: cos_th real(default), intent(in) :: cphi real(default) :: lambda lambda = (1 - cos_th(1) * cos_th(2) - cphi * sin_th(1) * sin_th(2)) / 2 end function lambda_factor @ %def lambda_factor @ Compute the factor that rescales photon energies, such that the radiation angles match the kinematics parameters. For small values of $\bar x/\cosh\eta$, we have to use the Taylor expansion if we do not want to lose precision. The optional argument allows for a unit test that compares exact and approximate. <>= function scale_factor (che, lambda, xb0, approximate) result (rho) real(default), intent(in) :: che real(default), intent(in) :: lambda real(default), intent(in) :: xb0 logical, intent(in), optional :: approximate real(default) :: rho real(default), parameter :: & e0 = (100 * epsilon (1._default)) ** (0.3_default) logical :: approx if (present (approximate)) then approx = approximate else approx = (xb0/che) < e0 end if if (approx) then rho = 1 - lambda * (xb0/(2*che)) * (1 + (1-lambda) * (xb0/che)) else rho = (che / ((1-lambda)*xb0)) & * (1 - sqrt (1 - 2 * (1-lambda) * (xb0/che) & & + (1-lambda) * (xb0 / che)**2)) end if end function scale_factor @ %def scale_factor @ The code snippet below is not used anywhere, but may be manually inserted in a unit test to numerically verify the approximation above. <>= write (u, "(A)") write (u, "(A)") "*** Table: scale factor calculation" write (u, "(A)") lambda = 0.25_default write (u, FMT1) "lambda =", lambda che = 4._default write (u, FMT1) "che =", che write (u, "(A)") " x0 rho(exact) rho(approx) rho(chosen)" xb0 = 1._default do i = 1, 30 xb0 = xb0 / 10 write (u, FMT4) xb0, & scale_factor (che, lambda, xb0, approximate=.false.), & scale_factor (che, lambda, xb0, approximate=.true.), & scale_factor (che, lambda, xb0) end do @ Compute the current values for the $x_{1,2}$ parameters, given the updated scale factor $\rho$ and the collinear parameters. <>= subroutine scaled_x (rho, ee, xb0, x, xb) real(default), intent(in) :: rho real(default), dimension(2), intent(in) :: ee real(default), intent(in) :: xb0 real(default), dimension(2), intent(out) :: x real(default), dimension(2), intent(out) :: xb xb = rho * ee * xb0 x = 1 - xb end subroutine scaled_x @ %def scaled_x @ \subsection{Iterative solution of kinematics constraints} Find a solution of the kinematics constraints. We know the parameters appropriate for collinear kinematics $\sqrt{s}$, $x^c_{1,2}$. We have picked values vor the momentum transfer $Q_{1,2}$ and the azimuthal angles $\phi_{1,2}$. The solution consists of modified energy fractions $x_{1,2}$ and polar angles $\theta_{1,2}$. If the computation fails, which can happen for large momentum transfer, the flag [[ok]] will indicate this. <>= public :: solve_recoil <>= module subroutine solve_recoil & (sqrts, xc, xcb, phi, q2, x, xb, cos_th, sin_th, ok) real(default), intent(in) :: sqrts real(default), dimension(2), intent(in) :: xc real(default), dimension(2), intent(in) :: xcb real(default), dimension(2), intent(in) :: phi real(default), dimension(2), intent(in) :: q2 real(default), dimension(2), intent(out) :: x real(default), dimension(2), intent(out) :: xb real(default), dimension(2), intent(out) :: cos_th real(default), dimension(2), intent(out) :: sin_th logical, intent(out) :: ok end subroutine solve_recoil <>= module subroutine solve_recoil & (sqrts, xc, xcb, phi, q2, x, xb, cos_th, sin_th, ok) real(default), intent(in) :: sqrts real(default), dimension(2), intent(in) :: xc real(default), dimension(2), intent(in) :: xcb real(default), dimension(2), intent(in) :: phi real(default), dimension(2), intent(in) :: q2 real(default), dimension(2), intent(out) :: x real(default), dimension(2), intent(out) :: xb real(default), dimension(2), intent(out) :: cos_th real(default), dimension(2), intent(out) :: sin_th logical, intent(out) :: ok real(default) :: s real(default), dimension(2) :: ee real(default), dimension(2) :: th real(default) :: xb0, cphi real(default) :: che, lambda real(default) :: rho_new, rho, rho_old real(default) :: dr_old, dr_new real(default), parameter :: dr_limit = 100 * epsilon (1._default) integer, parameter :: n_it_max = 20 integer :: i ok = .true. s = sqrts**2 ee = sqrt ([xcb(1)/xcb(2), xcb(2)/xcb(1)]) che = sum (ee) / 2 xb0 = sqrt (xcb(1) * xcb(2)) cphi = cos (phi(1) - phi(2)) rho_old = 10 rho = 1 th = 0 sin_th = sin (th) cos_th = cos (th) lambda = lambda_factor (sin_th, cos_th, cphi) call scaled_x (rho, ee, xb0, x, xb) iterate_loop: do i = 1, n_it_max call polar_angles (s, xb0, rho, ee, q2, sin_th, cos_th, ok) if (.not. ok) return th = atan2 (sin_th, cos_th) lambda = lambda_factor (sin_th, cos_th, cphi) rho_new = scale_factor (che, lambda, xb0) call scaled_x (rho_new, ee, xb0, x, xb) dr_old = abs (rho - rho_old) dr_new = abs (rho_new - rho) rho_old = rho rho = rho_new if (dr_new < dr_limit .or. dr_new >= dr_old) exit iterate_loop end do iterate_loop end subroutine solve_recoil @ %def solve_recoil @ With all kinematics parameters known, construct actual four-vectors for the recoil momenta, the off-shell (spacelike) parton momenta, and on-shell projected parton momenta. <>= public :: recoil_momenta <>= module subroutine recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, & km, qm, qo, ok) real(default), intent(in) :: sqrts real(default), dimension(2), intent(in) :: xc real(default), dimension(2), intent(in) :: xb real(default), dimension(2), intent(in) :: cos_th real(default), dimension(2), intent(in) :: sin_th real(default), dimension(2), intent(in) :: phi real(default), dimension(2), intent(in) :: mo type(vector4_t), dimension(2), intent(out) :: km type(vector4_t), dimension(2), intent(out) :: qm type(vector4_t), dimension(2), intent(out) :: qo logical, intent(out) :: ok end subroutine recoil_momenta <>= module subroutine recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, & km, qm, qo, ok) real(default), intent(in) :: sqrts real(default), dimension(2), intent(in) :: xc real(default), dimension(2), intent(in) :: xb real(default), dimension(2), intent(in) :: cos_th real(default), dimension(2), intent(in) :: sin_th real(default), dimension(2), intent(in) :: phi real(default), dimension(2), intent(in) :: mo type(vector4_t), dimension(2), intent(out) :: km type(vector4_t), dimension(2), intent(out) :: qm type(vector4_t), dimension(2), intent(out) :: qo logical, intent(out) :: ok type(vector4_t), dimension(2) :: pm type(lorentz_transformation_t) :: lt real(default) :: sqsh real(default) :: po4, po2 real(default), dimension(2) :: p0, p3 pm(1) = & vector4_moving (sqrts/2, & vector3_moving ([0._default, 0._default, sqrts/2])) pm(2) = & vector4_moving (sqrts/2, & vector3_moving ([0._default, 0._default,-sqrts/2])) km(1) = xb(1) * (sqrts/2) * vector4_moving ( & 1._default, & vector3_moving ([ & & sin_th(1) * cos (phi(1)), & & sin_th(1) * sin (phi(1)), & & cos_th(1)]) & ) km(2) = xb(2) * (sqrts/2) * vector4_moving ( & 1._default, & vector3_moving ([ & & -sin_th(2) * cos (phi(2)), & & -sin_th(2) * sin (phi(2)), & & -cos_th(2)]) & ) qm(1) = pm(1) - km(1) qm(2) = pm(2) - km(2) sqsh = sqrt (xc(1)*xc(2)) * sqrts lt = transformation (3, qm(1), qm(2), sqsh) po4 = lambda (sqsh**2, mo(1)**2, mo(2)**2) ok = po4 > 0 if (ok) then po2 = sqrt (po4)/4 p0 = sqrt (po2 + mo**2) p3 = [sqrt (po2), -sqrt (po2)] qo = lt * vector4_moving (p0, p3, 3) else qo = vector4_null end if end subroutine recoil_momenta @ %def recoil_momenta @ Compute the Lorentz transformation that we can use to transform any outgoing momenta into the new c.m.\ system of the incoming partons. Not relying on the previous calculations, we determine the transformation that transforms the original collinear partons into their c.m.\ system, and then transform this to the new c.m.\ system. <>= public :: recoil_transformation <>= module subroutine recoil_transformation (sqrts, xc, qo, lt) real(default), intent(in) :: sqrts real(default), dimension(2), intent(in) :: xc type(vector4_t), dimension(2), intent(in) :: qo type(lorentz_transformation_t), intent(out) :: lt end subroutine recoil_transformation <>= module subroutine recoil_transformation (sqrts, xc, qo, lt) real(default), intent(in) :: sqrts real(default), dimension(2), intent(in) :: xc type(vector4_t), dimension(2), intent(in) :: qo type(lorentz_transformation_t), intent(out) :: lt real(default) :: sqsh type(vector4_t), dimension(2) :: qc type(lorentz_transformation_t) :: ltc, lto qc(1) = xc(1) * vector4_moving (sqrts/2, sqrts/2, 3) qc(2) = xc(2) * vector4_moving (sqrts/2,-sqrts/2, 3) sqsh = sqrt (xc(1) * xc(2)) * sqrts ltc = transformation (3, qc(1), qc(2), sqsh) lto = transformation (3, qo(1), qo(2), sqsh) lt = lto * inverse (ltc) end subroutine recoil_transformation @ %def recoil_transformation @ Compute the Lorentz boost that transforms the c.m.\ frame of the momenta into the lab frame where they are given. Also return their common invariant mass, $\sqrt{s}$. If the initial momenta are not collinear, [[ok]] is set false. <>= public :: initial_transformation <>= module subroutine initial_transformation (p, sqrts, lt, ok) type(vector4_t), dimension(2), intent(in) :: p real(default), intent(out) :: sqrts type(lorentz_transformation_t), intent(out) :: lt logical, intent(out) :: ok end subroutine initial_transformation <>= module subroutine initial_transformation (p, sqrts, lt, ok) type(vector4_t), dimension(2), intent(in) :: p real(default), intent(out) :: sqrts type(lorentz_transformation_t), intent(out) :: lt logical, intent(out) :: ok ok = all (transverse_part (p) == 0) sqrts = (p(1) + p(2)) ** 1 lt = boost (p(1) + p(2), sqrts) end subroutine initial_transformation @ %def initial_transformation @ \subsection{Generate recoil event} Combine the above kinematics calculations. First generate azimuthal angles and momentum transfer, solve kinematics and compute momenta for the radiated photons and the on-shell projected, recoiling partons. The [[mo]] masses are used for the on-shell projection of the partons after radiation. They may be equal to [[m]], or set to zero. If [[ok]] is false, the data point has failed and we should repeat the procedure for a new set of RNG parameters [[r]]. <>= public :: generate_recoil <>= module subroutine generate_recoil & (sqrts, q_max, m, mo, xc, xcb, r, km, qm, qo, ok) real(default), intent(in) :: sqrts real(default), intent(in), dimension(2) :: q_max real(default), intent(in), dimension(2) :: m real(default), intent(in), dimension(2) :: mo real(default), intent(in), dimension(2) :: xc real(default), intent(in), dimension(2) :: xcb real(default), intent(in), dimension(4) :: r type(vector4_t), dimension(2), intent(out) :: km type(vector4_t), dimension(2), intent(out) :: qm type(vector4_t), dimension(2), intent(out) :: qo logical, intent(out) :: ok end subroutine generate_recoil <>= module subroutine generate_recoil & (sqrts, q_max, m, mo, xc, xcb, r, km, qm, qo, ok) real(default), intent(in) :: sqrts real(default), intent(in), dimension(2) :: q_max real(default), intent(in), dimension(2) :: m real(default), intent(in), dimension(2) :: mo real(default), intent(in), dimension(2) :: xc real(default), intent(in), dimension(2) :: xcb real(default), intent(in), dimension(4) :: r type(vector4_t), dimension(2), intent(out) :: km type(vector4_t), dimension(2), intent(out) :: qm type(vector4_t), dimension(2), intent(out) :: qo logical, intent(out) :: ok real(default), dimension(2) :: q2 real(default), dimension(2) :: phi real(default), dimension(2) :: x real(default), dimension(2) :: xb real(default), dimension(2) :: cos_th real(default), dimension(2) :: sin_th call generate_q2_recoil (sqrts**2, xcb, q_max**2, m**2, r(1:2), q2) call generate_phi_recoil (r(3:4), phi) call solve_recoil (sqrts, xc, xcb, phi, q2, x, xb, cos_th, sin_th, ok) if (ok) then call recoil_momenta & (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) end if end subroutine generate_recoil @ %def generate_recoil @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[recoil_kinematics_ut.f90]]>>= <> module recoil_kinematics_ut use unit_tests use recoil_kinematics_uti <> <> contains <> end module recoil_kinematics_ut @ %def recoil_kinematics_ut @ <<[[recoil_kinematics_uti.f90]]>>= <> module recoil_kinematics_uti <> use constants, only: twopi use constants, only: degree use lorentz, only: vector4_t use lorentz, only: vector4_moving use lorentz, only: lorentz_transformation_t use lorentz, only: inverse use lorentz, only: operator(+) use lorentz, only: operator(*) use lorentz, only: operator(**) use lorentz, only: pacify use recoil_kinematics, only: solve_recoil use recoil_kinematics, only: recoil_momenta use recoil_kinematics, only: recoil_transformation use recoil_kinematics, only: initial_transformation use recoil_kinematics, only: generate_q2_recoil use recoil_kinematics, only: generate_recoil <> <> contains <> end module recoil_kinematics_uti @ %def recoil_kinematics_uti @ API: driver for the unit tests below. <>= public :: recoil_kinematics_test <>= subroutine recoil_kinematics_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine recoil_kinematics_test @ %def recoil_kinematics_test @ \subsubsection{Recoil kinematics} For a set of input data, solve the kinematics constraints and generate momenta accordingly. <>= call test (recoil_kinematics_1, "recoil_kinematics_1", & "iterative solution of non-collinear kinematics", & u, results) <>= public :: recoil_kinematics_1 <>= subroutine recoil_kinematics_1 (u) integer, intent(in) :: u real(default) :: sqrts real(default), dimension(2) :: xc, xcb real(default), dimension(2) :: q real(default), dimension(2) :: phi real(default), dimension(2) :: mo real(default), dimension(2) :: cos_th, sin_th real(default), dimension(2) :: x real(default), dimension(2) :: xb type(vector4_t), dimension(2) :: km type(vector4_t), dimension(2) :: qm type(vector4_t), dimension(2) :: qo integer :: i logical :: ok character(*), parameter :: FMT1 = "(1x,A,9(1x,F15.10))" character(*), parameter :: FMT2 = "(1x,A,9(1x,F10.5))" character(*), parameter :: FMT4 = "(3x,ES8.1,9(1x,ES19.12))" write (u, "(A)") "* Test output: recoil_kinematics_1" write (u, "(A)") "* Purpose: compute kinematics for various input data" write (u, "(A)") sqrts = 100 write (u, FMT1) "sqrts =", sqrts write (u, "(A)") write (u, "(A)") "*** collinear data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc phi = [0.1_default, 0.2_default] * twopi q = 0 mo = 0 call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call show_results call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** moderate data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc phi = [0.1_default, 0.2_default] * twopi q = [0.2_default, 0.05_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call show_results call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** semi-soft data set" write (u, "(A)") xcb= [0.1_default, 0.0001_default] xc = 1 - xcb phi = [0.1_default, 0.2_default] * twopi q = [0.2_default, 0.00001_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call show_results call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** hard-soft data set" write (u, "(A)") xcb= [0.1_default, 1.e-30_default] xc = 1 - xcb phi = [0.1_default, 0.2_default] * twopi q = [0.2_default, 1.e-35_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call show_results call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** hard data set" write (u, "(A)") xc = [0.2_default, 0.4_default] xcb = 1 - xc phi = [0.1_default, 0.8_default] * twopi q = [0.74_default, 0.3_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call show_results call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** failing data set" write (u, "(A)") xc = [0.2_default, 0.4_default] xcb = 1 - xc phi = [0.1_default, 0.8_default] * twopi q = [0.9_default, 0.3_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) if (.not. ok) then write (u, "(A)") write (u, "(A)") "Failed as expected." end if write (u, "(A)") write (u, "(A)") "* Test output end: recoil_kinematics_1" contains subroutine show_data write (u, FMT1) "sqs_h =", sqrt (xc(1) * xc(2)) * sqrts write (u, FMT1) "xc =", xc write (u, FMT1) "xcb =", xcb write (u, FMT1) "Q =", Q write (u, FMT1) "phi/D =", phi / degree end subroutine show_data subroutine show_results write (u, "(A)") write (u, "(A)") "Result:" write (u, FMT1) "th/D =", atan2 (sin_th, cos_th) / degree write (u, FMT1) "x =", x write (u, "(A)") end subroutine show_results subroutine show_momenta type(vector4_t) :: qm0, qo0 real(default), parameter :: tol = 1.e-7_default call pacify (km, tol) call pacify (qm, tol) call pacify (qo, tol) write (u, "(A)") "Momenta: k" call km(1)%write (u, testflag=.true.) call km(2)%write (u, testflag=.true.) write (u, FMT1) "k^2 =", abs (km(1)**2), abs (km(2)**2) write (u, "(A)") write (u, "(A)") "Momenta: q" call qm(1)%write (u, testflag=.true.) call qm(2)%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "Momenta: q(os)" call qo(1)%write (u, testflag=.true.) call qo(2)%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "Check: parton momentum sum: q vs q(os)" qm0 = qm(1) + qm(2) call qm0%write (u, testflag=.true.) qo0 = qo(1) + qo(2) call qo0%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Check: momentum transfer (off-shell/on-shell)" write (u, FMT2) "|q| =", abs (qm(1)**1), abs (qm(2)**1) write (u, FMT2) "Q =", q write (u, FMT2) "|qo|=", abs (qo(1)**1), abs (qo(2)**1) write (u, "(A)") write (u, "(A)") "* Check: sqrts, sqrts_hat" write (u, FMT1) "|p| =", (km(1)+km(2)+qm(1)+qm(2))**1, (qm(1)+qm(2))**1 write (u, FMT1) "sqs =", sqrts, sqrt (product (xc)) * sqrts write (u, FMT1) "|po|=", abs ((km(1)+km(2)+qo(1)+qo(2))**1), abs ((qo(1)+qo(2))**1) end subroutine show_momenta end subroutine recoil_kinematics_1 @ %def recoil_kinematics_1 @ \subsubsection{Recoil $Q$ distribution} Sample the $Q$ distribution for equidistant bins in the input variable. <>= call test (recoil_kinematics_2, "recoil_kinematics_2", & "Q distribution", & u, results) <>= public :: recoil_kinematics_2 <>= subroutine recoil_kinematics_2 (u) integer, intent(in) :: u real(default) :: sqrts real(default) :: q_max real(default) :: m real(default) :: x_bar real(default) :: r real(default) :: q2, q2_old integer :: i integer :: n_bin character(*), parameter :: FMT1 = "(1x,A,9(1x,F15.10))" character(*), parameter :: FMT3 = "(2x,9(1x,F10.5))" write (u, "(A)") "* Test output: recoil_kinematics_2" write (u, "(A)") "* Purpose: compute Q distribution" write (u, "(A)") n_bin = 20 write (u, "(A)") "* No Q cutoff, xbar = 1" write (u, "(A)") sqrts = 100 q_max = sqrts m = 0.511e-3_default x_bar = 1._default call show_table write (u, "(A)") write (u, "(A)") "* With Q cutoff, xbar = 1" write (u, "(A)") q_max = 10 call show_table write (u, "(A)") write (u, "(A)") "* No Q cutoff, xbar = 0.01" write (u, "(A)") q_max = sqrts x_bar = 0.01_default call show_table write (u, "(A)") write (u, "(A)") "* Test output end: recoil_kinematics_2" contains subroutine show_table write (u, FMT1) "sqrts =", sqrts write (u, FMT1) "q_max =", q_max write (u, FMT1) "m =", m write (u, FMT1) "x_bar =", x_bar write (u, "(A)") write (u, "(1x,A)") "Table: r |Q| |Q_i/Q_(i-1)|" q2_old = 0 do i = 0, n_bin r = real (i, default) / n_bin call generate_q2_recoil (sqrts**2, x_bar, q_max**2, m**2, r, q2) if (q2_old > 0) then write (u, FMT3) r, sqrt (q2), sqrt (q2 / q2_old) else write (u, FMT3) r, sqrt (q2) end if q2_old = q2 end do end subroutine show_table end subroutine recoil_kinematics_2 @ %def recoil_kinematics_2 @ \subsubsection{Generate recoil event} Combine $Q^2$ sampling with momentum generation. <>= call test (recoil_kinematics_3, "recoil_kinematics_3", & "generate recoil event", & u, results) <>= public :: recoil_kinematics_3 <>= subroutine recoil_kinematics_3 (u) integer, intent(in) :: u real(default) :: sqrts real(default), dimension(2) :: q_max real(default), dimension(2) :: m, mo real(default), dimension(2) :: xc, xcb real(default), dimension(4) :: r type(vector4_t), dimension(2) :: km type(vector4_t), dimension(2) :: qm type(vector4_t), dimension(2) :: qo logical :: ok character(*), parameter :: FMT1 = "(1x,A,9(1x,F15.10))" character(*), parameter :: FMT2 = "(1x,A,9(1x,F10.5))" write (u, "(A)") "* Test output: recoil_kinematics_3" write (u, "(A)") "* Purpose: generate momenta from RNG parameters" write (u, "(A)") write (u, "(A)") "*** collinear data set" write (u, "(A)") sqrts = 100 q_max = sqrts m = 0.511e-3_default mo = 0 xc = [0.6_default, 0.9_default] xcb = 1 - xc r = [0._default, 0._default, 0._default, 0._default] call show_data call generate_recoil (sqrts, q_max, m, mo, xc, xcb, r, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** moderate data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc r = [0.8_default, 0.2_default, 0.1_default, 0.2_default] call show_data call generate_recoil (sqrts, q_max, m, mo, xc, xcb, r, km, qm, qo, ok) call show_momenta write (u, "(A)") write (u, "(A)") "*** failing data set" write (u, "(A)") xc = [0.2_default, 0.4_default] xcb = 1 - xc r = [0.9999_default, 0.3_default, 0.1_default, 0.8_default] call show_data call generate_recoil (sqrts, q_max, m, mo, xc, xcb, r, km, qm, qo, ok) if (.not. ok) then write (u, "(A)") write (u, "(A)") "Failed as expected." else call show_momenta end if contains subroutine show_data write (u, FMT1) "sqrts =", sqrts write (u, FMT1) "q_max =", q_max write (u, FMT1) "m =", m write (u, FMT1) "xc =", xc write (u, FMT1) "xcb =", xcb write (u, FMT1) "r =", r end subroutine show_data subroutine show_momenta real(default), parameter :: tol = 1.e-7_default call pacify (km, tol) call pacify (qo, tol) write (u, "(A)") write (u, "(A)") "* Momenta: k" call km(1)%write (u, testflag=.true.) call km(2)%write (u, testflag=.true.) write (u, FMT1) "k^2 =", abs (km(1)**2), abs (km(2)**2) write (u, "(A)") write (u, "(A)") "* Momenta: q(os)" call qo(1)%write (u, testflag=.true.) call qo(2)%write (u, testflag=.true.) write (u, FMT1) "q^2 =", abs (qo(1)**2), abs (qo(2)**2) write (u, "(A)") write (u, "(A)") "* Check: momentum transfer (off-shell/on-shell)" write (u, FMT2) "Q =", q_check (1), q_check (2) write (u, FMT2) "|q| =", abs (qm(1)**1), abs (qm(2)**1) write (u, "(A)") write (u, "(A)") "* Check: sqrts, sqrts_hat" write (u, FMT1) "sqs =", sqrts, sqrt (product (xc)) * sqrts write (u, FMT1) "|po|=", abs ((km(1)+km(2)+qo(1)+qo(2))**1), abs ((qo(1)+qo(2))**1) end subroutine show_momenta function q_check (i) result (q) integer, intent(in) :: i real(default) :: q real(default) :: q2 call generate_q2_recoil (sqrts**2, xcb(i), q_max(i)**2, m(i)**2, r(i), q2) q = sqrt (q2) end function q_check end subroutine recoil_kinematics_3 @ %def recoil_kinematics_3 @ \subsubsection{Transformation after recoil} Given a solution to recoil kinematics, compute the Lorentz transformation that transforms the old collinear parton momenta into the new parton momenta. <>= call test (recoil_kinematics_4, "recoil_kinematics_4", & "reference frame", & u, results) <>= public :: recoil_kinematics_4 <>= subroutine recoil_kinematics_4 (u) integer, intent(in) :: u real(default) :: sqrts real(default), dimension(2) :: xc, xcb real(default), dimension(2) :: q real(default), dimension(2) :: phi real(default), dimension(2) :: cos_th, sin_th real(default), dimension(2) :: mo real(default), dimension(2) :: x real(default), dimension(2) :: xb type(vector4_t), dimension(2) :: km type(vector4_t), dimension(2) :: qm type(vector4_t), dimension(2) :: qo type(lorentz_transformation_t) :: lt logical :: ok character(*), parameter :: FMT1 = "(1x,A,9(1x,F15.10))" character(*), parameter :: FMT2 = "(1x,A,9(1x,F10.5))" write (u, "(A)") "* Test output: recoil_kinematics_4" write (u, "(A)") "* Purpose: check Lorentz transformation for recoil" write (u, "(A)") sqrts = 100 write (u, FMT1) "sqrts =", sqrts write (u, "(A)") write (u, "(A)") "*** collinear data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc phi = [0.1_default, 0.2_default] * twopi q = 0 mo = 0 call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call recoil_transformation (sqrts, xc, qo, lt) call show_transformation write (u, "(A)") write (u, "(A)") "*** moderate data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc phi = [0.1_default, 0.2_default] * twopi q = [0.2_default, 0.05_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call recoil_transformation (sqrts, xc, qo, lt) call show_transformation write (u, "(A)") write (u, "(A)") "* Test output end: recoil_kinematics_4" contains subroutine show_data write (u, FMT1) "sqs_h =", sqrt (xc(1) * xc(2)) * sqrts write (u, FMT1) "xc =", xc write (u, FMT1) "xcb =", xcb write (u, FMT1) "Q =", Q write (u, FMT1) "phi/D =", phi / degree end subroutine show_data subroutine show_transformation type(vector4_t), dimension(2) :: qc type(vector4_t), dimension(2) :: qct real(default), parameter :: tol = 1.e-7_default qc(1) = xc(1) * vector4_moving (sqrts/2, sqrts/2, 3) qc(2) = xc(2) * vector4_moving (sqrts/2,-sqrts/2, 3) qct = lt * qc call pacify (qct, tol) write (u, "(A)") write (u, "(A)") "Momenta: q(os)" call qo(1)%write (u, testflag=.true.) call qo(2)%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "Momenta: LT * qc" call qct(1)%write (u, testflag=.true.) call qct(2)%write (u, testflag=.true.) end subroutine show_transformation end subroutine recoil_kinematics_4 @ %def recoil_kinematics_4 @ \subsubsection{Transformation before recoil} Given a pair of incoming `beam' partons (i.e., before ISR splitting), compute the transformation that transforms their common c.m.\ frame into the lab frame. <>= call test (recoil_kinematics_5, "recoil_kinematics_5", & "initial reference frame", & u, results) <>= public :: recoil_kinematics_5 <>= subroutine recoil_kinematics_5 (u) integer, intent(in) :: u real(default) :: sqrts real(default) :: sqrtsi real(default), dimension(2) :: x type(vector4_t), dimension(2) :: p type(vector4_t), dimension(2) :: pi type(vector4_t), dimension(2) :: p0 type(lorentz_transformation_t) :: lt logical :: ok character(*), parameter :: FMT1 = "(1x,A,9(1x,F15.10))" character(*), parameter :: FMT2 = "(1x,A,9(1x,F10.5))" write (u, "(A)") "* Test output: recoil_kinematics_5" write (u, "(A)") "* Purpose: determine initial Lorentz transformation" write (u, "(A)") sqrts = 100 write (u, FMT1) "sqrts =", sqrts x = [0.6_default, 0.9_default] p(1) = x(1) * vector4_moving (sqrts/2, sqrts/2, 3) p(2) = x(2) * vector4_moving (sqrts/2,-sqrts/2, 3) call show_data call initial_transformation (p, sqrtsi, lt, ok) pi(1) = vector4_moving (sqrtsi/2, sqrtsi/2, 3) pi(2) = vector4_moving (sqrtsi/2,-sqrtsi/2, 3) p0 = inverse (lt) * p call show_momenta write (u, "(A)") write (u, "(A)") "* Test output end: recoil_kinematics_5" contains subroutine show_data write (u, FMT1) "sqrts =", sqrts write (u, FMT1) "x =", x end subroutine show_data subroutine show_momenta real(default), parameter :: tol = 1.e-7_default write (u, "(A)") write (u, "(A)") "* Momenta: p_in(c.m.)" call pi(1)%write (u, testflag=.true.) call pi(2)%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Momenta: inv(LT) * p_in(lab)" call p0(1)%write (u, testflag=.true.) call p0(2)%write (u, testflag=.true.) end subroutine show_momenta end subroutine recoil_kinematics_5 @ %def recoil_kinematics_5 @ \subsubsection{Transformation after recoil with on-shell momenta} Given a solution to recoil kinematics, compute the Lorentz transformation that transforms the old collinear parton momenta into the new parton momenta. Compare the results for massless and massive on-shell projection. <>= call test (recoil_kinematics_6, "recoil_kinematics_6", & "massless/massive on-shell projection", & u, results) <>= public :: recoil_kinematics_6 <>= subroutine recoil_kinematics_6 (u) integer, intent(in) :: u real(default) :: sqrts real(default), dimension(2) :: xc, xcb real(default), dimension(2) :: q real(default), dimension(2) :: phi real(default), dimension(2) :: cos_th, sin_th real(default), dimension(2) :: x real(default), dimension(2) :: xb real(default), dimension(2) :: mo, z type(vector4_t), dimension(2) :: km type(vector4_t), dimension(2) :: qm type(vector4_t), dimension(2) :: qo type(lorentz_transformation_t) :: lt logical :: ok character(*), parameter :: FMT1 = "(1x,A,9(1x,F15.10))" character(*), parameter :: FMT2 = "(1x,A,9(1x,F11.6))" write (u, "(A)") "* Test output: recoil_kinematics_6" write (u, "(A)") "* Purpose: check effect of mass in on-shell projection" write (u, "(A)") sqrts = 10 write (u, FMT1) "sqrts =", sqrts z = 0 mo = 0.511e-3 write (u, FMT1) "mass =", mo write (u, "(A)") write (u, "(A)") "*** collinear data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc phi = [0.1_default, 0.2_default] * twopi q = 0 call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, z, km, qm, qo, ok) call recoil_transformation (sqrts, xc, qo, lt) write (u, "(A)") write (u, "(A)") "Massless projection:" call show_momenta call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call recoil_transformation (sqrts, xc, qo, lt) write (u, "(A)") write (u, "(A)") "Massive projection:" call show_momenta write (u, "(A)") write (u, "(A)") "*** moderate data set" write (u, "(A)") xc = [0.6_default, 0.9_default] xcb = 1 - xc phi = [0.1_default, 0.2_default] * twopi q = [0.2_default, 0.05_default] * sqrts call show_data call solve_recoil (sqrts, xc, xcb, phi, q**2, x, xb, cos_th, sin_th, ok) call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, z, km, qm, qo, ok) call recoil_transformation (sqrts, xc, qo, lt) write (u, "(A)") write (u, "(A)") "Massless projection:" call show_momenta call recoil_momenta (sqrts, xc, xb, cos_th, sin_th, phi, mo, km, qm, qo, ok) call recoil_transformation (sqrts, xc, qo, lt) write (u, "(A)") write (u, "(A)") "Massive projection:" call show_momenta write (u, "(A)") write (u, "(A)") "* Test output end: recoil_kinematics_6" contains subroutine show_data write (u, FMT1) "sqs_h =", sqrt (xc(1) * xc(2)) * sqrts write (u, FMT1) "xc =", xc write (u, FMT1) "xcb =", xcb write (u, FMT1) "Q =", Q write (u, FMT1) "phi/D =", phi / degree end subroutine show_data subroutine show_momenta write (u, "(A)") "Momenta: q(os)" call qo(1)%write (u, testflag=.true.) write (u, FMT2) "m = ", abs (qo(1)**1) call qo(2)%write (u, testflag=.true.) write (u, FMT2) "m = ", abs (qo(2)**1) end subroutine show_momenta end subroutine recoil_kinematics_6 @ %def recoil_kinematics_6 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Transverse momentum for the ISR and EPA approximations} The ISR and EPA handler takes an event with a single radiated collinear particle (photon for ISR, beam particle for EPA) for each beam, respectively, and inserts transverse momentum for both. The four-particle kinematics allows us to generate $Q^2$ and azimuthal angles independently, without violating energy-momentum conservation. The $Q^2$ distribution is logarithmic, as required by the effective particle approximation, and reflected in the inclusive ISR/EPA structure functions. We also conserve the invariant mass of the partonic systm after radiation. The total transverse-momentum kick is applied in form of a Lorentz transformation to the elementary process, both in- and out-particles. In fact, the incoming partons (beam particle for ISR, photon for EPA) which would be virtual space-like in the exact kinematics configuration, are replaced by on-shell incoming partons, such that energy, momentum, and invariant mass $\sqrt{\hat s}$ are conserved. Regarding kinematics, we treat all particles as massless. The beam-particle mass only appears as the parameter [[isr_mass]] or [[epa_mass]], respectively, and cuts off the logarithmic distribution. The upper cutoff is [[isr_q_max]] ([[epa_q_max]]), which defaults to the available energy $\sqrt{s}$. The only differences between ISR and EPA, in this context, are the particle types, and an extra $\bar x$ factor in the lower cutoff for EPA, see below. <<[[isr_epa_handler.f90]]>>= <> module isr_epa_handler <> <> use lorentz, only: vector4_t use lorentz, only: energy use lorentz, only: lorentz_transformation_t use lorentz, only: identity use lorentz, only: inverse use lorentz, only: operator(*) use flavors, only: flavor_t use particles, only: particle_t use rng_base, only: rng_t use event_transforms <> <> <> <> interface <> end interface end module isr_epa_handler @ %def isr_epa_handler @ <<[[isr_epa_handler_sub.f90]]>>= <> submodule (isr_epa_handler) isr_epa_handler_s use diagnostics, only: msg_fatal use diagnostics, only: msg_bug use io_units use format_defs, only: FMT_12, FMT_19 use format_utils, only: write_separator use format_utils, only: pac_fmt use physics_defs, only: PHOTON use recoil_kinematics, only: initial_transformation use recoil_kinematics, only: generate_recoil use recoil_kinematics, only: recoil_transformation implicit none contains <> end submodule isr_epa_handler_s @ %def isr_epa_handler_s @ \subsection{Event transform type} Convention: [[beam]] are the incoming partons before ISR -- not necessarily the actual beams, need not be in c.m.\ frame. [[radiated]] are the radiated particles (photon for ISR), and [[parton]] are the remainders which initiate the elementary process. These particles are copied verbatim from the event record, and must be collinear. The kinematical parameters are [[sqrts]] = invariant mass of the [[beam]] particles, [[q_max]] and [[m]] determining the $Q^2$ distribution, and [[xc]]/[[xcb]] as the energy fraction (complement) of the partons, relative to the beams. Transformations: [[lti]] is the Lorentz transformation that would boosts [[pi]] (c.m. frame) back to the original [[beam]] momenta (lab frame). [[lto]] is the recoil transformation, transforming the partons after ISR from the collinear frame to the recoiling frame. [[lt]] is the combination of both, which is to be applied to all particles after the hard interaction. Momenta: [[pi]] are the beams transformed to their common c.m.\ frame. [[ki]] and [[qi]] are the photon/parton momenta in the [[pi]] c.m.\ frame. [[km]] and [[qm]] are the photon/parton momenta with the $Q$ distribution applied, and finally [[qo]] are the partons [[qm]] projected on-shell. <>= public :: evt_isr_epa_t <>= type, extends (evt_t) :: evt_isr_epa_t private integer :: mode = ISR_TRIVIAL_COLLINEAR logical :: isr_active = .false. logical :: epa_active = .false. real(default) :: isr_q_max = 0 real(default) :: epa_q_max = 0 real(default) :: isr_mass = 0 real(default) :: epa_mass = 0 logical :: isr_keep_mass = .true. real(default) :: sqrts = 0 integer, dimension(2) :: rad_mode = BEAM_RAD_NONE real(default), dimension(2) :: q_max = 0 real(default), dimension(2) :: m = 0 real(default), dimension(2) :: xc = 0 real(default), dimension(2) :: xcb = 0 type(lorentz_transformation_t) :: lti = identity type(lorentz_transformation_t) :: lto = identity type(lorentz_transformation_t) :: lt = identity integer, dimension(2) :: i_beam = 0 type(particle_t), dimension(2) :: beam type(vector4_t), dimension(2) :: pi integer, dimension(2) :: i_radiated = 0 type(particle_t), dimension(2) :: radiated type(vector4_t), dimension(2) :: ki type(vector4_t), dimension(2) :: km integer, dimension(2) :: i_parton = 0 type(particle_t), dimension(2) :: parton type(vector4_t), dimension(2) :: qi type(vector4_t), dimension(2) :: qm type(vector4_t), dimension(2) :: qo contains <> end type evt_isr_epa_t @ %def evt_isr_epa_t @ \subsection{ISR/EPA distinction} <>= integer, parameter, public :: BEAM_RAD_NONE = 0 integer, parameter, public :: BEAM_RAD_ISR = 1 integer, parameter, public :: BEAM_RAD_EPA = 2 @ %def BEAM_RAD_NONE @ %def BEAM_RAD_ISR @ %def BEAM_RAD_EPA <>= function rad_mode_string (mode) result (string) type(string_t) :: string integer, intent(in) :: mode select case (mode) case (BEAM_RAD_NONE); string = "---" case (BEAM_RAD_ISR); string = "ISR" case (BEAM_RAD_EPA); string = "EPA" case default; string = "???" end select end function rad_mode_string @ %def rad_mode_string @ \subsection{Photon insertion modes} <>= integer, parameter, public :: ISR_TRIVIAL_COLLINEAR = 0 integer, parameter, public :: ISR_PAIR_RECOIL = 1 @ %def ISR_TRIVIAL_COLLINEAR ISR_PAIR_RECOIL @ <>= procedure :: get_mode_string => evt_isr_epa_get_mode_string <>= module function evt_isr_epa_get_mode_string (evt) result (string) type(string_t) :: string class(evt_isr_epa_t), intent(in) :: evt end function evt_isr_epa_get_mode_string <>= module function evt_isr_epa_get_mode_string (evt) result (string) type(string_t) :: string class(evt_isr_epa_t), intent(in) :: evt select case (evt%mode) case (ISR_TRIVIAL_COLLINEAR) string = "trivial, collinear" case (ISR_PAIR_RECOIL) string = "pair recoil" case default string = "[undefined]" end select end function evt_isr_epa_get_mode_string @ %def evt_isr_epa_get_mode_string @ Set the numerical mode ID from a user-level string representation. <>= procedure :: set_mode_string => evt_isr_epa_set_mode_string <>= module subroutine evt_isr_epa_set_mode_string (evt, string) class(evt_isr_epa_t), intent(inout) :: evt type(string_t), intent(in) :: string end subroutine evt_isr_epa_set_mode_string <>= module subroutine evt_isr_epa_set_mode_string (evt, string) class(evt_isr_epa_t), intent(inout) :: evt type(string_t), intent(in) :: string select case (char (string)) case ("trivial") evt%mode = ISR_TRIVIAL_COLLINEAR case ("recoil") evt%mode = ISR_PAIR_RECOIL case default call msg_fatal ("ISR handler: mode '" // char (string) & // "' is undefined") end select end subroutine evt_isr_epa_set_mode_string @ %def evt_isr_epa_set_mode_string @ \subsection{Output} <>= procedure :: write_name => evt_isr_epa_write_name <>= module subroutine evt_isr_epa_write_name (evt, unit) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_isr_epa_write_name <>= module subroutine evt_isr_epa_write_name (evt, unit) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: ISR/EPA handler" end subroutine evt_isr_epa_write_name @ %def evt_isr_epa_write_name @ The overall recoil-handling mode. <>= procedure :: write_mode => evt_isr_epa_write_mode <>= module subroutine evt_isr_epa_write_mode (evt, unit) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_isr_epa_write_mode <>= module subroutine evt_isr_epa_write_mode (evt, unit) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A,1x,I0,':',1x,A)") "Insertion mode =", evt%mode, & char (evt%get_mode_string ()) end subroutine evt_isr_epa_write_mode @ %def evt_isr_epa_write_mode @ The input data for ISR and EPA, respectively. <>= procedure :: write_input => evt_isr_epa_write_input <>= module subroutine evt_isr_epa_write_input (evt, unit, testflag) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag end subroutine evt_isr_epa_write_input <>= module subroutine evt_isr_epa_write_input (evt, unit, testflag) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag character(len=7) :: fmt integer :: u u = given_output_unit (unit) call pac_fmt (fmt, FMT_19, FMT_12, testflag) if (evt%isr_active) then write (u, "(3x,A,1x," // fmt // ")") "ISR: Q_max =", evt%isr_q_max write (u, "(3x,A,1x," // fmt // ")") " m =", evt%isr_mass write (u, "(3x,A,1x,L1)") " keep m=", evt%isr_keep_mass else write (u, "(3x,A)") "ISR: [inactive]" end if if (evt%epa_active) then write (u, "(3x,A,1x," // fmt // ")") "EPA: Q_max =", evt%epa_q_max write (u, "(3x,A,1x," // fmt // ")") " m =", evt%epa_mass else write (u, "(3x,A)") "EPA: [inactive]" end if end subroutine evt_isr_epa_write_input @ %def evt_isr_epa_write_input @ The trivial mode does not depend on any data, since it does nothing to the event. <>= procedure :: write_data => evt_isr_epa_write_data <>= module subroutine evt_isr_epa_write_data (evt, unit, testflag) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag end subroutine evt_isr_epa_write_data <>= module subroutine evt_isr_epa_write_data (evt, unit, testflag) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: testflag character(len=7), parameter :: FMTL_19 = "A3,16x" character(len=7), parameter :: FMTL_12 = "A3,9x" character(len=7) :: fmt, fmtl integer :: u u = given_output_unit (unit) call pac_fmt (fmt, FMT_19, FMT_12, testflag) call pac_fmt (fmtl, FMTL_19, FMTL_12, testflag) select case (evt%mode) case (ISR_PAIR_RECOIL) write (u, "(1x,A)") "Event:" write (u, "(3x,A,2(1x," // fmtl // "))") & "mode = ", & char (rad_mode_string (evt%rad_mode(1))), & char (rad_mode_string (evt%rad_mode(2))) write (u, "(3x,A,2(1x," // fmt // "))") "Q_max =", evt%q_max write (u, "(3x,A,2(1x," // fmt // "))") "m =", evt%m write (u, "(3x,A,2(1x," // fmt // "))") "x =", evt%xc write (u, "(3x,A,2(1x," // fmt // "))") "xb =", evt%xcb write (u, "(3x,A,1x," // fmt // ")") "sqrts =", evt%sqrts call write_separator (u) write (u, "(A)") "Lorentz boost (partons before radiation & &c.m. -> lab) =" call evt%lti%write (u, testflag) write (u, "(A)") "Lorentz transformation (collinear partons & &-> partons with recoil in c.m.) =" call evt%lto%write (u, testflag) write (u, "(A)") "Combined transformation (partons & &-> partons with recoil in lab frame) =" call evt%lt%write (u, testflag) end select end subroutine evt_isr_epa_write_data @ %def evt_isr_epa_write_data @ Output method. <>= procedure :: write => evt_isr_epa_write <>= module subroutine evt_isr_epa_write & (evt, unit, verbose, more_verbose, testflag) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_isr_epa_write <>= module subroutine evt_isr_epa_write & (evt, unit, verbose, more_verbose, testflag) class(evt_isr_epa_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag logical :: show_mass integer :: u, i u = given_output_unit (unit) if (present (testflag)) then show_mass = .not. testflag else show_mass = .true. end if call write_separator (u, 2) call evt%write_name (u) call write_separator (u, 2) call evt%write_mode (u) call evt%write_input (u, testflag=testflag) call evt%write_data (u, testflag=testflag) call write_separator (u) call evt%base_write (u, testflag = testflag, show_set = .false.) if (all (evt%i_beam > 0)) then call write_separator (u) write (u, "(A,2(1x,I0))") "Partons before radiation:", evt%i_beam do i = 1, 2 call evt%beam(i)%write (u, testflag=testflag) end do call write_separator (u) write (u, "(A)") "... boosted to c.m.:" do i = 1, 2 call evt%pi(i)%write (u, show_mass=show_mass, testflag=testflag) end do end if if (all (evt%i_radiated > 0)) then call write_separator (u) write (u, "(A,2(1x,I0))") "Radiated particles, collinear:", & evt%i_radiated do i = 1, 2 call evt%radiated(i)%write (u, testflag=testflag) end do call write_separator (u) write (u, "(A)") "... boosted to c.m.:" do i = 1, 2 call evt%ki(i)%write (u, show_mass=show_mass, testflag=testflag) end do call write_separator (u) write (u, "(A)") "... with kT:" do i = 1, 2 call evt%km(i)%write (u, show_mass=show_mass, testflag=testflag) end do end if if (all (evt%i_parton > 0)) then call write_separator (u) write (u, "(A,2(1x,I0))") "Partons after radiation, collinear:", & evt%i_parton do i = 1, 2 call evt%parton(i)%write (u, testflag=testflag) end do call write_separator (u) write (u, "(A)") "... boosted to c.m.:" do i = 1, 2 call evt%qi(i)%write (u, show_mass=show_mass, testflag=testflag) end do call write_separator (u) write (u, "(A)") "... with qT, off-shell:" do i = 1, 2 call evt%qm(i)%write (u, show_mass=show_mass, testflag=testflag) end do call write_separator (u) write (u, "(A)") "... projected on-shell:" do i = 1, 2 call evt%qo(i)%write (u, show_mass=show_mass, testflag=testflag) end do call write_separator (u) end if if (evt%particle_set_exists) & call evt%particle_set%write & (u, summary = .true., compressed = .true., testflag = testflag) call write_separator (u) end subroutine evt_isr_epa_write @ %def evt_isr_epa_write @ \subsection{Initialization} Manually import a random-number generator object. This should be done only for testing purposes. The standard procedure is to [[connect]] a process to an event transform; this will create an appropriate [[rng]] from the RNG factory in the process object. <>= procedure :: import_rng => evt_isr_epa_import_rng <>= module subroutine evt_isr_epa_import_rng (evt, rng) class(evt_isr_epa_t), intent(inout) :: evt class(rng_t), allocatable, intent(inout) :: rng end subroutine evt_isr_epa_import_rng <>= module subroutine evt_isr_epa_import_rng (evt, rng) class(evt_isr_epa_t), intent(inout) :: evt class(rng_t), allocatable, intent(inout) :: rng call move_alloc (from = rng, to = evt%rng) end subroutine evt_isr_epa_import_rng @ %def evt_isr_epa_import_rng @ Set constant kinematics limits and initialize for ISR. Note that [[sqrts]] is used only as the fallback value for [[q_max]]. The actual [[sqrts]] value for the transform object is inferred from the incoming particles, event by event. <>= procedure :: set_data_isr => evt_isr_epa_set_data_isr <>= module subroutine evt_isr_epa_set_data_isr (evt, sqrts, q_max, m, keep_mass) class(evt_isr_epa_t), intent(inout) :: evt real(default), intent(in) :: sqrts real(default), intent(in) :: q_max real(default), intent(in) :: m logical, intent(in) :: keep_mass end subroutine evt_isr_epa_set_data_isr <>= module subroutine evt_isr_epa_set_data_isr (evt, sqrts, q_max, m, keep_mass) class(evt_isr_epa_t), intent(inout) :: evt real(default), intent(in) :: sqrts real(default), intent(in) :: q_max real(default), intent(in) :: m logical, intent(in) :: keep_mass if (sqrts <= 0) then call msg_fatal ("ISR handler: sqrts value must be positive") end if if (q_max <= 0 .or. q_max > sqrts) then evt%isr_q_max = sqrts else evt%isr_q_max = q_max end if if (m > 0) then evt%isr_mass = m else call msg_fatal ("ISR handler: ISR_mass value must be positive") end if evt%isr_active = .true. evt%isr_keep_mass = keep_mass end subroutine evt_isr_epa_set_data_isr @ %def evt_isr_epa_set_data_isr @ Set constant kinematics limits and initialize for EPA. Note that [[sqrts]] is used only as the fallback value for [[q_max]]. The actual [[sqrts]] value for the transform object is inferred from the incoming particles, event by event. <>= procedure :: set_data_epa => evt_isr_epa_set_data_epa <>= module subroutine evt_isr_epa_set_data_epa (evt, sqrts, q_max, m) class(evt_isr_epa_t), intent(inout) :: evt real(default), intent(in) :: sqrts real(default), intent(in) :: q_max real(default), intent(in) :: m end subroutine evt_isr_epa_set_data_epa <>= module subroutine evt_isr_epa_set_data_epa (evt, sqrts, q_max, m) class(evt_isr_epa_t), intent(inout) :: evt real(default), intent(in) :: sqrts real(default), intent(in) :: q_max real(default), intent(in) :: m if (sqrts <= 0) then call msg_fatal ("EPA handler: sqrts value must be positive") end if if (q_max <= 0 .or. q_max > sqrts) then evt%epa_q_max = sqrts else evt%epa_q_max = q_max end if if (m > 0) then evt%epa_mass = m else call msg_fatal ("EPA handler: EPA_mass value must be positive") end if evt%epa_active = .true. end subroutine evt_isr_epa_set_data_epa @ %def evt_isr_epa_set_data_epa @ \subsection{Fetch event data} Identify the radiated particles and the recoil momenta in the particle set. Without much sophistication, start from the end and find particles with the ``remnant'' status. Their parents should point to the recoiling parton. If successful, set the particle indices in the [[evt]] object, for further processing. <>= procedure, private :: identify_radiated <>= module subroutine identify_radiated (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine identify_radiated <>= module subroutine identify_radiated (evt) class(evt_isr_epa_t), intent(inout) :: evt integer :: i, k k = 2 FIND_LAST_RADIATED: do i = evt%particle_set%get_n_tot (), 1, -1 associate (prt => evt%particle_set%prt(i)) if (prt%is_beam_remnant ()) then evt%i_radiated(k) = i evt%radiated(k) = prt k = k - 1 if (k == 0) exit FIND_LAST_RADIATED end if end associate end do FIND_LAST_RADIATED if (k /= 0) call err_count contains subroutine err_count call evt%particle_set%write () call msg_fatal ("ISR/EPA handler: & &event does not contain two radiated particles") end subroutine err_count end subroutine identify_radiated @ %def identify_radiated @ When the radiated particles are known, we can fetch their parent particles and ask for the other child, the incoming parton. <>= procedure, private :: identify_partons <>= module subroutine identify_partons (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine identify_partons <>= module subroutine identify_partons (evt) class(evt_isr_epa_t), intent(inout) :: evt integer, dimension(:), allocatable :: parent, child integer :: i, j if (all (evt%i_radiated > 0)) then do i = 1, 2 parent = evt%radiated(i)%get_parents () if (size (parent) /= 1) call err_mismatch evt%i_beam(i) = parent(1) evt%beam(i) = evt%particle_set%prt(parent(1)) associate (prt => evt%beam(i)) child = prt%get_children () if (size (child) /= 2) call err_mismatch do j = 1, 2 if (child(j) /= evt%i_radiated(i)) then evt%i_parton(i) = child(j) evt%parton(i) = evt%particle_set%prt(child(j)) end if end do end associate end do end if contains subroutine err_mismatch call evt%particle_set%write () call msg_bug ("ISR/EPA handler: mismatch in parent-child relations") end subroutine err_mismatch end subroutine identify_partons @ %def identify_partons @ Check whether the radiated particle is a photon, or the incoming parton is a photon. Then set the ISR/EPA switch appropriately, for each beam. <>= procedure :: check_radiation => evt_isr_epa_check_radiation <>= module subroutine evt_isr_epa_check_radiation (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine evt_isr_epa_check_radiation <>= module subroutine evt_isr_epa_check_radiation (evt) class(evt_isr_epa_t), intent(inout) :: evt type(flavor_t) :: flv integer :: i do i = 1, 2 flv = evt%radiated(i)%get_flv () if (flv%get_pdg () == PHOTON) then if (evt%isr_active) then evt%rad_mode(i) = BEAM_RAD_ISR else call err_isr_init end if else flv = evt%parton(i)%get_flv () if (flv%get_pdg () == PHOTON) then if (evt%epa_active) then evt%rad_mode(i) = BEAM_RAD_EPA else call err_epa_init end if else call err_no_photon end if end if end do contains subroutine err_isr_init call evt%particle_set%write () call msg_fatal ("ISR/EPA handler: & &event contains radiated photon, but ISR is not initialized") end subroutine err_isr_init subroutine err_epa_init call evt%particle_set%write () call msg_fatal ("ISR/EPA handler: & &event contains incoming photon, but EPA is not initialized") end subroutine err_epa_init subroutine err_no_photon call evt%particle_set%write () call msg_fatal ("ISR/EPA handler: & &event does not appear to be ISR or EPA - missing photon") end subroutine err_no_photon end subroutine evt_isr_epa_check_radiation @ %def evt_isr_epa_check_radiation @ Internally set the appropriate parameters (ISR/EPA) for the two beams in the recoil mode. <>= procedure :: set_recoil_parameters => evt_isr_epa_set_recoil_parameters <>= module subroutine evt_isr_epa_set_recoil_parameters (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine evt_isr_epa_set_recoil_parameters <>= module subroutine evt_isr_epa_set_recoil_parameters (evt) class(evt_isr_epa_t), intent(inout) :: evt integer :: i do i = 1, 2 select case (evt%rad_mode(i)) case (BEAM_RAD_ISR) evt%q_max(i) = evt%isr_q_max evt%m(i) = evt%isr_mass case (BEAM_RAD_EPA) evt%q_max(i) = evt%epa_q_max evt%m(i) = evt%epa_mass end select end do end subroutine evt_isr_epa_set_recoil_parameters @ %def evt_isr_epa_set_recoil_parameters @ Boost the particles that participate in ISR to their proper c.m.\ frame, copying the momenta to [[pi]], [[ki]], [[qi]]. Also assign [[sqrts]] properly. <>= procedure, private :: boost_to_cm <>= module subroutine boost_to_cm (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine boost_to_cm <>= module subroutine boost_to_cm (evt) class(evt_isr_epa_t), intent(inout) :: evt type(vector4_t), dimension(2) :: p type(vector4_t), dimension(2) :: k type(vector4_t), dimension(2) :: q logical :: ok p = evt%beam%get_momentum () k = evt%radiated%get_momentum () q = evt%parton%get_momentum () call initial_transformation (p, evt%sqrts, evt%lti, ok) if (.not. ok) call err_non_collinear evt%pi = inverse (evt%lti) * p evt%ki = inverse (evt%lti) * k evt%qi = inverse (evt%lti) * q contains subroutine err_non_collinear call evt%particle_set%write () call msg_fatal ("ISR/EPA handler: & &partons before radiation are not collinear") end subroutine err_non_collinear end subroutine boost_to_cm @ %def boost_to_cm @ We can infer the $x$ and $\bar x$ values of the event by looking at the energy fractions of the radiated particles and incoming partons, respectively, relative to their parents. Of course, we must assume that they are all collinear, and that energy is conserved. <>= procedure, private :: infer_x <>= module subroutine infer_x (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine infer_x <>= module subroutine infer_x (evt) class(evt_isr_epa_t), intent(inout) :: evt real(default) :: E_parent, E_radiated, E_parton integer :: i if (all (evt%i_radiated > 0)) then do i = 1, 2 E_parent = energy (evt%pi(i)) E_radiated = energy (evt%ki(i)) E_parton = energy (evt%qi(i)) if (E_parent > 0) then evt%xc(i) = E_parton / E_parent evt%xcb(i)= E_radiated / E_parent else call err_energy end if end do end if contains subroutine err_energy call evt%particle_set%write () call msg_bug ("ISR/EPA handler: non-positive energy in splitting") end subroutine err_energy end subroutine infer_x @ %def infer_x @ \subsection{Two-parton recoil} For transforming partons into recoil momenta, we make use of the routines in the [[recoil_kinematics]] module. In addition to the collinear momenta, we use the $x$ energy fractions, and four numbers from the RNG. There is one subtle difference w.r.t.\ ISR case: the EPA mass parameter is multiplied by the energy fraction $x$, separately for each beam. This is the effective lower $Q$ cutoff. For certain kinematics, close to the $Q_\text{max}$ endpoint, this may fail, and [[ok]] is set to false. In that case, we should generate new recoil momenta for the same event. This is handled by the generic unweighting procedure. <>= procedure, private :: generate_recoil => evt_generate_recoil <>= module subroutine evt_generate_recoil (evt, ok) class(evt_isr_epa_t), intent(inout) :: evt logical, intent(out) :: ok end subroutine evt_generate_recoil <>= module subroutine evt_generate_recoil (evt, ok) class(evt_isr_epa_t), intent(inout) :: evt logical, intent(out) :: ok real(default), dimension(4) :: r real(default), dimension(2) :: m, mo integer :: i call evt%rng%generate (r) m = 0 mo = 0 do i = 1, 2 select case (evt%rad_mode(i)) case (BEAM_RAD_ISR) m(i) = evt%m(i) if (evt%isr_keep_mass) mo(i) = m(i) case (BEAM_RAD_EPA) m(i) = evt%xc(i) * evt%m(i) end select end do call generate_recoil (evt%sqrts, evt%q_max, m, mo, evt%xc, evt%xcb, r, & evt%km, evt%qm, evt%qo, ok) end subroutine evt_generate_recoil @ %def evt_generate_recoil @ Replace the collinear radiated (incoming) parton momenta by the momenta that we have generated, respectively. Recall that the recoil has been applied in the c.m.\ system of the partons before ISR, so we apply the stored Lorentz transformation to boost them to the lab frame. <>= procedure, private :: replace_radiated procedure, private :: replace_partons <>= module subroutine replace_radiated (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine replace_radiated module subroutine replace_partons (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine replace_partons <>= module subroutine replace_radiated (evt) class(evt_isr_epa_t), intent(inout) :: evt integer :: i do i = 1, 2 associate (prt => evt%particle_set%prt(evt%i_radiated(i))) call prt%set_momentum (evt%lti * evt%km(i)) end associate end do end subroutine replace_radiated module subroutine replace_partons (evt) class(evt_isr_epa_t), intent(inout) :: evt integer :: i do i = 1, 2 associate (prt => evt%particle_set%prt(evt%i_parton(i))) call prt%set_momentum (evt%lti * evt%qo(i)) end associate end do end subroutine replace_partons @ %def replace_radiated @ %def replace_partons @ \subsection{Transform the event} Knowing the new incoming partons for the elementary process, we can make use of another procedure in [[recoil_kinematics]] to determine the Lorentz transformation that transforms the collinear frame into the frame with transverse momentum. We apply this transformation, recursively, to all particles that originate from those incoming partons in the original particle set. We have to allow for the pre-ISR partons being not in their common c.m.\ frame. Taking into account non-commutativity, we actually have to first transform the outgoing particles to that c.m.\ frame, then apply the recoil transformation, then boost back to the lab frame. The [[mask]] keep track of particles that we transform, just in case the parent-child tree is multiply connected. <>= procedure :: transform_outgoing => evt_transform_outgoing <>= module subroutine evt_transform_outgoing (evt) class(evt_isr_epa_t), intent(inout) :: evt end subroutine evt_transform_outgoing <>= module subroutine evt_transform_outgoing (evt) class(evt_isr_epa_t), intent(inout) :: evt logical, dimension(:), allocatable :: mask call recoil_transformation (evt%sqrts, evt%xc, evt%qo, evt%lto) evt%lt = evt%lti * evt%lto * inverse (evt%lti) allocate (mask (evt%particle_set%get_n_tot ()), source=.false.) call transform_children (evt%i_parton(1)) contains recursive subroutine transform_children (i) integer, intent(in) :: i integer :: j, n_child, c integer, dimension(:), allocatable :: child child = evt%particle_set%prt(i)%get_children () do j = 1, size (child) c = child(j) if (.not. mask(c)) then associate (prt => evt%particle_set%prt(c)) call prt%set_momentum (evt%lt * prt%get_momentum ()) mask(c) = .true. call transform_children (c) end associate end if end do end subroutine transform_children end subroutine evt_transform_outgoing @ %def evt_transform_outgoing @ \subsection{Implemented methods} Here we take the particle set from the previous event transform and copy it, then generate the transverse momentum for the radiated particles and for the incoming partons. If this fails (rarely, for large $p_T$), return zero for the probability, to trigger another try. NOTE: The boost for the initial partonic system, if not in the c.m.\ frame, has not been implemented yet. <>= procedure :: generate_weighted => & evt_isr_epa_generate_weighted <>= module subroutine evt_isr_epa_generate_weighted (evt, probability) class(evt_isr_epa_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_isr_epa_generate_weighted <>= module subroutine evt_isr_epa_generate_weighted (evt, probability) class(evt_isr_epa_t), intent(inout) :: evt real(default), intent(inout) :: probability logical :: valid call evt%particle_set%final () evt%particle_set = evt%previous%particle_set evt%particle_set_exists = .true. select case (evt%mode) case (ISR_TRIVIAL_COLLINEAR) probability = 1 valid = .true. case (ISR_PAIR_RECOIL) call evt%identify_radiated () call evt%identify_partons () call evt%check_radiation () call evt%set_recoil_parameters () call evt%boost_to_cm () call evt%infer_x () call evt%generate_recoil (valid) if (valid) then probability = 1 else probability = 0 end if case default call msg_bug ("ISR/EPA handler: generate weighted: unsupported mode") end select evt%particle_set_exists = .false. end subroutine evt_isr_epa_generate_weighted @ %def evt_isr_epa_generate_weighted @ Insert the generated radiated particles and incoming partons with $p_T$ in their respective places. The factorization parameters are irrelevant. <>= procedure :: make_particle_set => & evt_isr_epa_make_particle_set <>= module subroutine evt_isr_epa_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_isr_epa_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_isr_epa_make_particle_set <>= module subroutine evt_isr_epa_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_isr_epa_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r select case (evt%mode) case (ISR_TRIVIAL_COLLINEAR) case (ISR_PAIR_RECOIL) call evt%replace_radiated () call evt%replace_partons () call evt%transform_outgoing () case default call msg_bug ("ISR/EPA handler: make particle set: unsupported mode") end select evt%particle_set_exists = .true. end subroutine evt_isr_epa_make_particle_set @ %def event_isr_epa_handler_make_particle_set @ <>= procedure :: prepare_new_event => & evt_isr_epa_prepare_new_event <>= module subroutine evt_isr_epa_prepare_new_event (evt, i_mci, i_term) class(evt_isr_epa_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_isr_epa_prepare_new_event <>= module subroutine evt_isr_epa_prepare_new_event (evt, i_mci, i_term) class(evt_isr_epa_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term call evt%reset () end subroutine evt_isr_epa_prepare_new_event @ %def evt_isr_epa_prepare_new_event @ \subsection{Unit tests: ISR} Test module, followed by the corresponding implementation module. This test module differs from most of the other test modules, since it contains two test subroutines: one for ISR and one for EPA below. <<[[isr_epa_handler_ut.f90]]>>= <> module isr_epa_handler_ut use unit_tests use isr_epa_handler_uti <> <> contains <> end module isr_epa_handler_ut @ %def isr_epa_handler_ut @ <<[[isr_epa_handler_uti.f90]]>>= <> module isr_epa_handler_uti <> <> use format_utils, only: write_separator use os_interface use lorentz, only: vector4_t, vector4_moving, operator(*) use rng_base, only: rng_t use models, only: syntax_model_file_init, syntax_model_file_final use models, only: model_list_t, model_t use particles, only: particle_set_t, pacify use event_transforms use isr_epa_handler, only: evt_isr_epa_t use rng_base_ut, only: rng_test_t <> <> contains <> end module isr_epa_handler_uti @ %def isr_epa_handler_uti @ API: driver for the unit tests below. <>= public :: isr_handler_test <>= subroutine isr_handler_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine isr_handler_test @ %def isr_handler_test @ \subsubsection{Trivial case} Handle photons resulting from ISR radiation. This test is for the trivial case where the event is kept collinear. <>= call test (isr_handler_1, "isr_handler_1", & "collinear case, no modification", & u, results) <>= public :: isr_handler_1 <>= subroutine isr_handler_1 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(evt_trivial_t), target :: evt_trivial type(evt_isr_epa_t), target :: evt_isr_epa type(vector4_t), dimension(8) :: p real(default) :: sqrts real(default), dimension(2) :: x, xb real(default) :: probability write (u, "(A)") "* Test output: isr_handler_1" write (u, "(A)") "* Purpose: apply photon handler trivially (no-op)" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 11, -11, 22, 22, 13, -13], model = model) sqrts = 100._default x = [0.6_default, 0.9_default] xb= 1 - x p(1) = vector4_moving (sqrts/2, sqrts/2, 3) p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) p(3:4) = x * p(1:2) p(5:6) = xb * p(1:2) p(7:8) = p(3:4) call pset%set_momentum (p, on_shell = .false.) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call pacify (evt_trivial%particle_set) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Initialize ISR handler transform" write (u, "(A)") evt_trivial%next => evt_isr_epa evt_isr_epa%previous => evt_trivial call evt_isr_epa%write (u) write (u, "(A)") write (u, "(A)") "* Fill ISR handler transform" write (u, "(A)") call evt_isr_epa%prepare_new_event (1, 1) call evt_isr_epa%generate_weighted (probability) call evt_isr_epa%make_particle_set (0, .false.) call evt_isr_epa%write (u) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_isr_epa%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: isr_handler_1" end subroutine isr_handler_1 @ %def isr_handler_1 @ \subsubsection{Photon pair with recoil} Handle photons resulting from ISR radiation. This test invokes the two-photon recoil mechanism. Both photons acquire transverse momentum, the parton momenta recoil, such that total energy-momentum is conserved, and all outgoing photons and partons are on-shell (massless). <>= call test (isr_handler_2, "isr_handler_2", & "two-photon recoil", & u, results) <>= public :: isr_handler_2 <>= subroutine isr_handler_2 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(evt_trivial_t), target :: evt_trivial type(evt_isr_epa_t), target :: evt_isr_epa type(vector4_t), dimension(8) :: p real(default) :: sqrts real(default), dimension(2) :: x, xb class(rng_t), allocatable :: rng real(default) :: probability write (u, "(A)") "* Test output: isr_handler_2" write (u, "(A)") "* Purpose: apply photon handler with two-photon recoil" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 11, -11, 22, 22, 13, -13], model = model) sqrts = 100._default x = [0.6_default, 0.9_default] xb= 1 - x p(1) = vector4_moving (sqrts/2, sqrts/2, 3) p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) p(3:4) = x * p(1:2) p(5:6) = xb * p(1:2) p(7:8) = p(3:4) call pset%set_momentum (p, on_shell = .false.) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call pacify (evt_trivial%particle_set) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Initialize ISR handler transform" write (u, "(A)") evt_trivial%next => evt_isr_epa evt_isr_epa%previous => evt_trivial call evt_isr_epa%set_mode_string (var_str ("recoil")) call evt_isr_epa%set_data_isr ( & sqrts = sqrts, & q_max = sqrts, & m = 511.e-3_default, & keep_mass = .false. & ) allocate (rng_test_t :: rng) call rng%init (3) ! default would produce pi for azimuthal angle call evt_isr_epa%import_rng (rng) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Fill ISR handler transform" write (u, "(A)") call evt_isr_epa%prepare_new_event (1, 1) call evt_isr_epa%generate_weighted (probability) call evt_isr_epa%make_particle_set (0, .false.) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_isr_epa%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: isr_handler_2" end subroutine isr_handler_2 @ %def isr_handler_2 @ \subsubsection{Boosted beams} Handle photons resulting from ISR radiation. This test invokes the two-photon recoil mechanism, in the case that the partons before ISR are not in their c.m.\ frame (but collinear). <>= call test (isr_handler_3, "isr_handler_3", & "two-photon recoil with boost", & u, results) <>= public :: isr_handler_3 <>= subroutine isr_handler_3 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(evt_trivial_t), target :: evt_trivial type(evt_isr_epa_t), target :: evt_isr_epa type(vector4_t), dimension(8) :: p real(default) :: sqrts real(default), dimension(2) :: x0 real(default), dimension(2) :: x, xb class(rng_t), allocatable :: rng real(default) :: probability write (u, "(A)") "* Test output: isr_handler_3" write (u, "(A)") "* Purpose: apply photon handler for boosted beams & &and two-photon recoil" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 11, -11, 22, 22, 13, -13], model = model) write (u, "(A)") "* Event data" write (u, "(A)") sqrts = 100._default write (u, "(A,2(1x,F12.7))") "sqrts =", sqrts x0 = [0.9_default, 0.4_default] write (u, "(A,2(1x,F12.7))") "x0 =", x0 write (u, "(A)") write (u, "(A,2(1x,F12.7))") "sqs_hat =", sqrts * sqrt (product (x0)) x = [0.6_default, 0.9_default] xb= 1 - x write (u, "(A,2(1x,F12.7))") "x =", x write (u, "(A)") write (u, "(A,2(1x,F12.7))") "x0 * x =", x0 * x p(1) = x0(1) * vector4_moving (sqrts/2, sqrts/2, 3) p(2) = x0(2) * vector4_moving (sqrts/2,-sqrts/2, 3) p(3:4) = x * p(1:2) p(5:6) = xb * p(1:2) p(7:8) = p(3:4) call pset%set_momentum (p, on_shell = .false.) write (u, "(A)") write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call pacify (evt_trivial%particle_set) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Initialize ISR handler transform" write (u, "(A)") evt_trivial%next => evt_isr_epa evt_isr_epa%previous => evt_trivial call evt_isr_epa%set_mode_string (var_str ("recoil")) call evt_isr_epa%set_data_isr ( & sqrts = sqrts, & q_max = sqrts, & m = 511.e-3_default, & keep_mass = .false. & ) allocate (rng_test_t :: rng) call rng%init (3) ! default would produce pi for azimuthal angle call evt_isr_epa%import_rng (rng) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Fill ISR handler transform" write (u, "(A)") call evt_isr_epa%prepare_new_event (1, 1) call evt_isr_epa%generate_weighted (probability) call evt_isr_epa%make_particle_set (0, .false.) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_isr_epa%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: isr_handler_3" end subroutine isr_handler_3 @ %def isr_handler_3 @ \subsection{Unit tests: EPA} API: Extra driver for the unit tests below. <>= public :: epa_handler_test <>= subroutine epa_handler_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine epa_handler_test @ %def epa_handler_test @ \subsubsection{Trivial case} Handle events resulting from the EPA approximation. This test is for the trivial case where the event is kept collinear. <>= call test (epa_handler_1, "epa_handler_1", & "collinear case, no modification", & u, results) <>= public :: epa_handler_1 <>= subroutine epa_handler_1 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(evt_trivial_t), target :: evt_trivial type(evt_isr_epa_t), target :: evt_isr_epa type(vector4_t), dimension(8) :: p real(default) :: sqrts real(default), dimension(2) :: x, xb real(default) :: probability write (u, "(A)") "* Test output: epa_handler_1" write (u, "(A)") "* Purpose: apply beam handler trivially (no-op)" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct & (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 22, 22, 11, -11, 13, -13], & model = model) sqrts = 100._default x = [0.6_default, 0.9_default] xb= 1 - x p(1) = vector4_moving (sqrts/2, sqrts/2, 3) p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) p(3:4) = x * p(1:2) p(5:6) = xb * p(1:2) p(7:8) = p(3:4) call pset%set_momentum (p, on_shell = .false.) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call pacify (evt_trivial%particle_set) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Initialize EPA handler transform" write (u, "(A)") evt_trivial%next => evt_isr_epa evt_isr_epa%previous => evt_trivial call evt_isr_epa%write (u) write (u, "(A)") write (u, "(A)") "* Fill EPA handler transform" write (u, "(A)") call evt_isr_epa%prepare_new_event (1, 1) call evt_isr_epa%generate_weighted (probability) call evt_isr_epa%make_particle_set (0, .false.) call evt_isr_epa%write (u) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_isr_epa%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: epa_handler_1" end subroutine epa_handler_1 @ %def epa_handler_1 @ \subsubsection{Beam pair with recoil} Handle beams resulting from the EPA approximation. This test invokes the two-beam recoil mechanism. Both beam remnants acquire transverse momentum, the photon momenta recoil, such that total energy-momentum is conserved, and all outgoing beam remnants and photons are on-shell (massless). <>= call test (epa_handler_2, "epa_handler_2", & "two-beam recoil", & u, results) <>= public :: epa_handler_2 <>= subroutine epa_handler_2 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(evt_trivial_t), target :: evt_trivial type(evt_isr_epa_t), target :: evt_isr_epa type(vector4_t), dimension(8) :: p real(default) :: sqrts real(default), dimension(2) :: x, xb class(rng_t), allocatable :: rng real(default) :: probability write (u, "(A)") "* Test output: epa_handler_2" write (u, "(A)") "* Purpose: apply beam handler with two-beam recoil" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 22, 22, 11, -11, 13, -13], model = model) sqrts = 100._default x = [0.6_default, 0.9_default] xb= 1 - x p(1) = vector4_moving (sqrts/2, sqrts/2, 3) p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) p(3:4) = x * p(1:2) p(5:6) = xb * p(1:2) p(7:8) = p(3:4) call pset%set_momentum (p, on_shell = .false.) write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call pacify (evt_trivial%particle_set) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Initialize EPA handler transform" write (u, "(A)") evt_trivial%next => evt_isr_epa evt_isr_epa%previous => evt_trivial call evt_isr_epa%set_mode_string (var_str ("recoil")) call evt_isr_epa%set_data_epa ( & sqrts = sqrts, & q_max = sqrts, & m = 511.e-3_default & ) allocate (rng_test_t :: rng) call rng%init (3) ! default would produce pi for azimuthal angle call evt_isr_epa%import_rng (rng) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Fill EPA handler transform" write (u, "(A)") call evt_isr_epa%prepare_new_event (1, 1) call evt_isr_epa%generate_weighted (probability) call evt_isr_epa%make_particle_set (0, .false.) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_isr_epa%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: epa_handler_2" end subroutine epa_handler_2 @ %def epa_handler_2 @ \subsubsection{Boosted beams} Handle radiated beam remnants resulting from EPA radiation. This test invokes the two-beam recoil mechanism, in the case that the partons before EPA are not in their c.m.\ frame (but collinear). <>= call test (epa_handler_3, "epa_handler_3", & "two-beam recoil with boost", & u, results) <>= public :: epa_handler_3 <>= subroutine epa_handler_3 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(particle_set_t) :: pset type(model_list_t) :: model_list type(model_t), pointer :: model type(evt_trivial_t), target :: evt_trivial type(evt_isr_epa_t), target :: evt_isr_epa type(vector4_t), dimension(8) :: p real(default) :: sqrts real(default), dimension(2) :: x0 real(default), dimension(2) :: x, xb class(rng_t), allocatable :: rng real(default) :: probability write (u, "(A)") "* Test output: epa_handler_3" write (u, "(A)") "* Purpose: apply beam handler for boosted beams & &and two-beam recoil" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM"), var_str ("SM.mdl"), & os_data, model) write (u, "(A)") "* Initialize particle set" write (u, "(A)") call pset%init_direct (n_beam = 2, n_in = 2, n_rem = 2, n_vir = 0, n_out = 2, & pdg = [11, -11, 22, 22, 11, -11, 13, -13], model = model) write (u, "(A)") "* Event data" write (u, "(A)") sqrts = 100._default write (u, "(A,2(1x,F12.7))") "sqrts =", sqrts x0 = [0.9_default, 0.4_default] write (u, "(A,2(1x,F12.7))") "x0 =", x0 write (u, "(A)") write (u, "(A,2(1x,F12.7))") "sqs_hat =", sqrts * sqrt (product (x0)) x = [0.6_default, 0.9_default] xb= 1 - x write (u, "(A,2(1x,F12.7))") "x =", x write (u, "(A)") write (u, "(A,2(1x,F12.7))") "x0 * x =", x0 * x p(1) = x0(1) * vector4_moving (sqrts/2, sqrts/2, 3) p(2) = x0(2) * vector4_moving (sqrts/2,-sqrts/2, 3) p(3:4) = x * p(1:2) p(5:6) = xb * p(1:2) p(7:8) = p(3:4) call pset%set_momentum (p, on_shell = .false.) write (u, "(A)") write (u, "(A)") "* Fill trivial event transform" write (u, "(A)") call evt_trivial%reset () call evt_trivial%set_particle_set (pset, 1, 1) call pacify (evt_trivial%particle_set) call evt_trivial%write (u) call write_separator (u, 2) write (u, "(A)") write (u, "(A)") "* Initialize EPA handler transform" write (u, "(A)") evt_trivial%next => evt_isr_epa evt_isr_epa%previous => evt_trivial call evt_isr_epa%set_mode_string (var_str ("recoil")) call evt_isr_epa%set_data_epa ( & sqrts = sqrts, & q_max = sqrts, & m = 511.e-3_default & ) allocate (rng_test_t :: rng) call rng%init (3) ! default would produce pi for azimuthal angle call evt_isr_epa%import_rng (rng) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Fill EPA handler transform" write (u, "(A)") call evt_isr_epa%prepare_new_event (1, 1) call evt_isr_epa%generate_weighted (probability) call evt_isr_epa%make_particle_set (0, .false.) call evt_isr_epa%write (u, testflag=.true.) write (u, "(A)") write (u, "(A,1x,F8.5)") "Event probability =", probability write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_isr_epa%final () call evt_trivial%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: epa_handler_3" end subroutine epa_handler_3 @ %def epa_handler_3 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Decays} <<[[decays.f90]]>>= <> module decays <> <> use diagnostics use flavors use interactions use evaluators use variables, only: var_list_t use model_data use rng_base use selectors use parton_states use process, only: process_t use instances, only: process_instance_t, pacify use process_stacks use event_transforms <> <> <> <> interface <> end interface contains <> end module decays @ %def decays @ <<[[decays_sub.f90]]>>= <> submodule (decays) decays_s use io_units use format_utils, only: write_indent, write_separator use format_defs, only: FMT_15 use numeric_utils use helicities use quantum_numbers implicit none contains <> end submodule decays_s @ %def decays_s @ \subsection{Final-State Particle Configuration} A final-state particle may be either stable or unstable. Here is an empty abstract type as the parent of both, with holds just the flavor information. <>= type, abstract :: any_config_t private contains <> end type any_config_t @ %def any_config_t @ Finalizer, depends on the implementation. <>= procedure (any_config_final), deferred :: final <>= interface subroutine any_config_final (object) import class(any_config_t), intent(inout) :: object end subroutine any_config_final end interface @ %def any_config_final @ The output is also deferred: <>= procedure (any_config_write), deferred :: write <>= interface subroutine any_config_write (object, unit, indent, verbose) import class(any_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine any_config_write end interface @ %def any_config_write @ This is a container for a stable or unstable particle configurator. We need this wrapper for preparing arrays that mix stable and unstable particles. <>= type :: particle_config_t private class(any_config_t), allocatable :: c end type particle_config_t @ %def particle_config_t @ \subsection{Final-State Particle} In theory, for the particle instance we only need to consider the unstable case. However, it is more straightforward to treat configuration and instance on the same footing, and to introduce a wrapper for particle objects as above. <>= type, abstract :: any_t private contains <> end type any_t @ %def any_t @ Finalizer, depends on the implementation. <>= procedure (any_final), deferred :: final <>= interface subroutine any_final (object) import class(any_t), intent(inout) :: object end subroutine any_final end interface @ %def any_final @ The output is also deferred: <>= procedure (any_write), deferred :: write <>= interface subroutine any_write (object, unit, indent) import class(any_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine any_write end interface @ %def any_write @ This is a container for a stable or unstable outgoing particle. We need this wrapper for preparing arrays that mix stable and unstable particles. <>= type :: particle_out_t private class(any_t), allocatable :: c end type particle_out_t @ %def particle_config_t @ \subsection{Decay Term Configuration} A decay term is a distinct final state, corresponding to a process term. Each decay process may give rise to several terms with, possibly, differing flavor content. <>= type :: decay_term_config_t private type(particle_config_t), dimension(:), allocatable :: prt contains <> end type decay_term_config_t @ %def decay_term_config_t @ Finalizer, recursive. <>= procedure :: final => decay_term_config_final <>= recursive module subroutine decay_term_config_final (object) class(decay_term_config_t), intent(inout) :: object end subroutine decay_term_config_final <>= recursive module subroutine decay_term_config_final (object) class(decay_term_config_t), intent(inout) :: object integer :: i if (allocated (object%prt)) then do i = 1, size (object%prt) if (allocated (object%prt(i)%c)) call object%prt(i)%c%final () end do end if end subroutine decay_term_config_final @ %def decay_term_config_final @ Output, with optional indentation <>= procedure :: write => decay_term_config_write <>= recursive module subroutine decay_term_config_write & (object, unit, indent, verbose) class(decay_term_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine decay_term_config_write <>= recursive module subroutine decay_term_config_write & (object, unit, indent, verbose) class(decay_term_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose integer :: i, j, u, ind logical :: verb u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent verb = .true.; if (present (verbose)) verb = verbose call write_indent (u, ind) write (u, "(1x,A)", advance="no") "Final state:" do i = 1, size (object%prt) select type (prt_config => object%prt(i)%c) type is (stable_config_t) write (u, "(1x,A)", advance="no") & char (prt_config%flv(1)%get_name ()) do j = 2, size (prt_config%flv) write (u, "(':',A)", advance="no") & char (prt_config%flv(j)%get_name ()) end do type is (unstable_config_t) write (u, "(1x,A)", advance="no") & char (prt_config%flv%get_name ()) end select end do write (u, *) if (verb) then do i = 1, size (object%prt) call object%prt(i)%c%write (u, ind) end do end if end subroutine decay_term_config_write @ %def decay_term_config_write @ Initialize, given a set of flavors. For each flavor, we must indicate whether the particle is stable. The second index of the flavor array runs over alternatives for each decay product; alternatives are allowed only if the decay product is itself stable. Gfortran 7/8/9 bug, has to remain in the main module: <>= procedure :: init => decay_term_config_init <>= recursive subroutine decay_term_config_init & (term, flv, stable, model, process_stack, var_list) class(decay_term_config_t), intent(out) :: term type(flavor_t), dimension(:,:), intent(in) :: flv logical, dimension(:), intent(in) :: stable class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(var_list_t), intent(in), optional :: var_list type(string_t), dimension(:), allocatable :: decay integer :: i allocate (term%prt (size (flv, 1))) do i = 1, size (flv, 1) associate (prt => term%prt(i)) if (stable(i)) then allocate (stable_config_t :: prt%c) else allocate (unstable_config_t :: prt%c) end if select type (prt_config => prt%c) type is (stable_config_t) call prt_config%init (flv(i,:)) type is (unstable_config_t) if (all (flv(i,:) == flv(i,1))) then call prt_config%init (flv(i,1)) call flv(i,1)%get_decays (decay) call prt_config%init_decays & (decay, model, process_stack, var_list) else call prt_config%write () call msg_fatal ("Decay configuration: & &unstable product must be unique") end if end select end associate end do end subroutine decay_term_config_init @ %def decay_term_config_init @ Recursively compute widths and branching ratios for all unstable particles. <>= procedure :: compute => decay_term_config_compute <>= recursive module subroutine decay_term_config_compute (term) class(decay_term_config_t), intent(inout) :: term end subroutine decay_term_config_compute <>= recursive module subroutine decay_term_config_compute (term) class(decay_term_config_t), intent(inout) :: term integer :: i do i = 1, size (term%prt) select type (unstable_config => term%prt(i)%c) type is (unstable_config_t) call unstable_config%compute () end select end do end subroutine decay_term_config_compute @ %def decay_term_config_compute @ \subsection{Decay Term} A decay term instance is selected when we generate an event for the associated process instance. When evaluated, it triggers further decays down the chain. Only unstable products are allocated as child particles. <>= type :: decay_term_t private type(decay_term_config_t), pointer :: config => null () type(particle_out_t), dimension(:), allocatable :: particle_out contains <> end type decay_term_t @ %def decay_term_t @ Finalizer. <>= procedure :: final => decay_term_final <>= recursive module subroutine decay_term_final (object) class(decay_term_t), intent(inout) :: object end subroutine decay_term_final <>= recursive module subroutine decay_term_final (object) class(decay_term_t), intent(inout) :: object integer :: i if (allocated (object%particle_out)) then do i = 1, size (object%particle_out) call object%particle_out(i)%c%final () end do end if end subroutine decay_term_final @ %def decay_term_final @ Output. <>= procedure :: write => decay_term_write <>= recursive module subroutine decay_term_write (object, unit, indent) class(decay_term_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine decay_term_write <>= recursive module subroutine decay_term_write (object, unit, indent) class(decay_term_t), intent(in) :: object integer, intent(in), optional :: unit, indent integer :: i, u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call object%config%write (u, ind, verbose = .false.) do i = 1, size (object%particle_out) call object%particle_out(i)%c%write (u, ind) end do end subroutine decay_term_write @ %def decay_term_write @ Recursively write the embedded process instances. <>= procedure :: write_process_instances => decay_term_write_process_instances <>= recursive module subroutine decay_term_write_process_instances & (term, unit, verbose) class(decay_term_t), intent(in) :: term integer, intent(in), optional :: unit logical, intent(in), optional :: verbose end subroutine decay_term_write_process_instances <>= recursive module subroutine decay_term_write_process_instances & (term, unit, verbose) class(decay_term_t), intent(in) :: term integer, intent(in), optional :: unit logical, intent(in), optional :: verbose integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t) call unstable%write_process_instances (unit, verbose) end select end do end subroutine decay_term_write_process_instances @ %def decay_term_write_process_instances @ Initialization, using the configuration object. We allocate particle objects in parallel to the particle configuration objects which we use to initialize them, one at a time. Gfortran 7/8/9 bug, has to remain in the main module: <>= procedure :: init => decay_term_init <>= recursive subroutine decay_term_init (term, config) class(decay_term_t), intent(out) :: term type(decay_term_config_t), intent(in), target :: config integer :: i term%config => config allocate (term%particle_out (size (config%prt))) do i = 1, size (config%prt) select type (prt_config => config%prt(i)%c) type is (stable_config_t) allocate (stable_t :: term%particle_out(i)%c) select type (stable => term%particle_out(i)%c) type is (stable_t) call stable%init (prt_config) end select type is (unstable_config_t) allocate (unstable_t :: term%particle_out(i)%c) select type (unstable => term%particle_out(i)%c) type is (unstable_t) call unstable%init (prt_config) end select end select end do end subroutine decay_term_init @ %def decay_term_init @ Implement a RNG instance, spawned by the process object. <>= procedure :: make_rng => decay_term_make_rng <>= module subroutine decay_term_make_rng (term, process) class(decay_term_t), intent(inout) :: term type(process_t), intent(inout) :: process class(rng_t), allocatable :: rng end subroutine decay_term_make_rng <>= module subroutine decay_term_make_rng (term, process) class(decay_term_t), intent(inout) :: term type(process_t), intent(inout) :: process class(rng_t), allocatable :: rng integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t) call process%make_rng (rng) call unstable%import_rng (rng) end select end do end subroutine decay_term_make_rng @ %def decay_term_make_rng @ Link the interactions for unstable decay products to the interaction of the parent process. <>= procedure :: link_interactions => decay_term_link_interactions <>= recursive module subroutine decay_term_link_interactions (term, trace) class(decay_term_t), intent(inout) :: term type(interaction_t), intent(in), target :: trace end subroutine decay_term_link_interactions <>= recursive module subroutine decay_term_link_interactions (term, trace) class(decay_term_t), intent(inout) :: term type(interaction_t), intent(in), target :: trace integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t) call unstable%link_interactions (i, trace) end select end do end subroutine decay_term_link_interactions @ %def decay_term_link_interactions @ Recursively generate a decay chain, for each of the unstable particles in the final state. <>= procedure :: select_chain => decay_term_select_chain <>= recursive module subroutine decay_term_select_chain (term) class(decay_term_t), intent(inout) :: term end subroutine decay_term_select_chain <>= recursive module subroutine decay_term_select_chain (term) class(decay_term_t), intent(inout) :: term integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t) call unstable%select_chain () end select end do end subroutine decay_term_select_chain @ %def decay_term_select_chain @ Recursively generate a decay event, for each of the unstable particles in the final state. <>= procedure :: generate => decay_term_generate <>= recursive module subroutine decay_term_generate (term) class(decay_term_t), intent(inout) :: term end subroutine decay_term_generate <>= recursive module subroutine decay_term_generate (term) class(decay_term_t), intent(inout) :: term integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t) call unstable%generate () end select end do end subroutine decay_term_generate @ %def decay_term_generate @ \subsection{Decay Root Configuration} At the root of a decay chain, there is a parent process. The decay root stores a pointer to the parent process and the set of decay configurations. <>= public :: decay_root_config_t <>= type :: decay_root_config_t private type(string_t) :: process_id type(process_t), pointer :: process => null () class(model_data_t), pointer :: model => null () type(decay_term_config_t), dimension(:), allocatable :: term_config contains <> end type decay_root_config_t @ %def decay_root_config_t @ The finalizer is recursive since there may be cascade decays. <>= procedure :: final => decay_root_config_final <>= recursive module subroutine decay_root_config_final (object) class(decay_root_config_t), intent(inout) :: object end subroutine decay_root_config_final <>= recursive module subroutine decay_root_config_final (object) class(decay_root_config_t), intent(inout) :: object integer :: i if (allocated (object%term_config)) then do i = 1, size (object%term_config) call object%term_config(i)%final () end do end if end subroutine decay_root_config_final @ %def decay_root_config_final @ The output routine is also recursive, and it contains an adjustable indentation. <>= procedure :: write => decay_root_config_write procedure :: write_header => decay_root_config_write_header procedure :: write_terms => decay_root_config_write_terms <>= recursive module subroutine decay_root_config_write & (object, unit, indent, verbose) class(decay_root_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine decay_root_config_write module subroutine decay_root_config_write_header (object, unit, indent) class(decay_root_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine decay_root_config_write_header module recursive subroutine decay_root_config_write_terms & (object, unit, indent, verbose) class(decay_root_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine decay_root_config_write_terms <>= recursive module subroutine decay_root_config_write & (object, unit, indent, verbose) class(decay_root_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose integer :: u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call write_indent (u, ind) write (u, "(1x,A)") "Final-state decay tree:" call object%write_header (unit, indent) call object%write_terms (unit, indent, verbose) end subroutine decay_root_config_write module subroutine decay_root_config_write_header (object, unit, indent) class(decay_root_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent integer :: u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call write_indent (u, ind) if (associated (object%process)) then write (u, 3) "process ID =", char (object%process_id), "*" else write (u, 3) "process ID =", char (object%process_id) end if 3 format (3x,A,2(1x,A)) end subroutine decay_root_config_write_header module recursive subroutine decay_root_config_write_terms & (object, unit, indent, verbose) class(decay_root_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose integer :: i, u, ind logical :: verb u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent verb = .true.; if (present (verbose)) verb = verbose if (verb .and. allocated (object%term_config)) then do i = 1, size (object%term_config) call object%term_config(i)%write (u, ind + 1) end do end if end subroutine decay_root_config_write_terms @ %def decay_root_config_write @ Initialize for a named process and (optionally) a pre-determined number of terms. <>= procedure :: init => decay_root_config_init <>= module subroutine decay_root_config_init (decay, model, process_id, n_terms) class(decay_root_config_t), intent(out) :: decay class(model_data_t), intent(in), target :: model type(string_t), intent(in) :: process_id integer, intent(in), optional :: n_terms end subroutine decay_root_config_init <>= module subroutine decay_root_config_init (decay, model, process_id, n_terms) class(decay_root_config_t), intent(out) :: decay class(model_data_t), intent(in), target :: model type(string_t), intent(in) :: process_id integer, intent(in), optional :: n_terms decay%model => model decay%process_id = process_id if (present (n_terms)) then allocate (decay%term_config (n_terms)) end if end subroutine decay_root_config_init @ %def decay_root_config_init @ Declare a decay term, given an array of flavors. <>= procedure :: init_term => decay_root_config_init_term <>= recursive module subroutine decay_root_config_init_term & (decay, i, flv, stable, model, process_stack, var_list) class(decay_root_config_t), intent(inout) :: decay integer, intent(in) :: i type(flavor_t), dimension(:,:), intent(in) :: flv logical, dimension(:), intent(in) :: stable class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(var_list_t), intent(in), optional, target :: var_list end subroutine decay_root_config_init_term <>= recursive module subroutine decay_root_config_init_term & (decay, i, flv, stable, model, process_stack, var_list) class(decay_root_config_t), intent(inout) :: decay integer, intent(in) :: i type(flavor_t), dimension(:,:), intent(in) :: flv logical, dimension(:), intent(in) :: stable class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(var_list_t), intent(in), optional, target :: var_list call decay%term_config(i)%init (flv, stable, model, process_stack, var_list) end subroutine decay_root_config_init_term @ %def decay_root_config_init_term @ Connect the decay root configuration with a process object (which should represent the parent process). This includes initialization, therefore intent(out). The flavor state is retrieved from the process term object. However, we have to be careful: the flavor object points to the model instance that is stored in the process object. This model instance may not contain the current setting for unstable particles and decay. Therefore, we assign the model directly. If the [[process_instance]] argument is provided, we use this for the flavor state. This applies to the decay root only, where the process can be entangled with a beam setup, and the latter contains beam remnants as further outgoing particles. These must be included in the set of outgoing flavors, since the decay application is also done on the connected state. Infer stability from the particle properties, using the first row in the set of flavor states. For unstable particles, we look for decays, recursively, available from the process stack (if present). For the unstable particles, we have to check whether their masses match between the production and the decay. Fortunately, both versions are available for comparison. The optional [[var_list]] argument may override integral/error values for decay processes. <>= procedure :: connect => decay_root_config_connect <>= recursive module subroutine decay_root_config_connect & (decay, process, model, process_stack, process_instance, var_list) class(decay_root_config_t), intent(out) :: decay type(process_t), intent(in), target :: process class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(process_instance_t), intent(in), optional, target :: process_instance type(var_list_t), intent(in), optional, target :: var_list end subroutine decay_root_config_connect <>= recursive module subroutine decay_root_config_connect & (decay, process, model, process_stack, process_instance, var_list) class(decay_root_config_t), intent(out) :: decay type(process_t), intent(in), target :: process class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(process_instance_t), intent(in), optional, target :: process_instance type(var_list_t), intent(in), optional, target :: var_list type(connected_state_t), pointer :: connected_state type(interaction_t), pointer :: int type(flavor_t), dimension(:,:), allocatable :: flv logical, dimension(:), allocatable :: stable real(default), dimension(:), allocatable :: m_prod, m_dec integer :: i call decay%init (model, process%get_id (), process%get_n_terms ()) do i = 1, size (decay%term_config) if (present (process_instance)) then connected_state => process_instance%get_connected_state_ptr (i) int => connected_state%get_matrix_int_ptr () call int%get_flv_out (flv) else call process%get_term_flv_out (i, flv) end if allocate (m_prod (size (flv(:,1)%get_mass ()))) m_prod = flv(:,1)%get_mass () call flv%set_model (model) allocate (m_dec (size (flv(:,1)%get_mass ()))) m_dec = flv(:,1)%get_mass () allocate (stable (size (flv, 1))) stable = flv(:,1)%is_stable () call check_masses () call decay%init_term (i, flv, stable, model, process_stack, var_list) deallocate (flv, stable, m_prod, m_dec) end do decay%process => process contains subroutine check_masses () integer :: i logical :: ok ok = .true. do i = 1, size (m_prod) if (.not. stable(i)) then if (.not. nearly_equal (m_prod(i), m_dec(i))) then write (msg_buffer, "(A,A,A)") "particle '", & char (flv(i,1)%get_name ()), "':" call msg_message write (msg_buffer, & "(2x,A,1x," // FMT_15 // ",3x,A,1x," // FMT_15 // ")") & "m_prod =", m_prod(i), "m_dec =", m_dec(i) call msg_message ok = .false. end if end if end do if (.not. ok) call msg_fatal & ("Particle mass mismatch between production and decay") end subroutine check_masses end subroutine decay_root_config_connect @ %def decay_root_config_connect @ Recursively compute widths, errors, and branching ratios. <>= procedure :: compute => decay_root_config_compute <>= recursive module subroutine decay_root_config_compute (decay) class(decay_root_config_t), intent(inout) :: decay end subroutine decay_root_config_compute <>= recursive module subroutine decay_root_config_compute (decay) class(decay_root_config_t), intent(inout) :: decay integer :: i do i = 1, size (decay%term_config) call decay%term_config(i)%compute () end do end subroutine decay_root_config_compute @ %def decay_root_config_compute @ \subsection{Decay Root Instance} This is the common parent type for decay and decay root. The process instance points to the parent process. The model pointer is separate because particle settings may be updated w.r.t.\ the parent process object. <>= type, abstract :: decay_gen_t private type(decay_term_t), dimension(:), allocatable :: term type(process_instance_t), pointer :: process_instance => null () integer :: selected_mci = 0 integer :: selected_term = 0 contains <> end type decay_gen_t @ %def decay_gen_t @ The decay root represents the parent process. When an event is generated, the generator selects the term to which the decay chain applies (if possible). The process instance is just a pointer. <>= public :: decay_root_t <>= type, extends (decay_gen_t) :: decay_root_t private type(decay_root_config_t), pointer :: config => null () contains <> end type decay_root_t @ %def decay_root_t @ The finalizer has to recursively finalize the terms, but we can skip the process instance which is not explicitly allocated. <>= procedure :: base_final => decay_gen_final <>= recursive module subroutine decay_gen_final (object) class(decay_gen_t), intent(inout) :: object end subroutine decay_gen_final <>= recursive module subroutine decay_gen_final (object) class(decay_gen_t), intent(inout) :: object integer :: i if (allocated (object%term)) then do i = 1, size (object%term) call object%term(i)%final () end do end if end subroutine decay_gen_final @ %def decay_gen_final @ No extra finalization for the decay root. <>= procedure :: final => decay_root_final <>= module subroutine decay_root_final (object) class(decay_root_t), intent(inout) :: object end subroutine decay_root_final <>= module subroutine decay_root_final (object) class(decay_root_t), intent(inout) :: object call object%base_final () end subroutine decay_root_final @ %def decay_gen_final @ Output. <>= procedure :: write => decay_root_write <>= module subroutine decay_root_write (object, unit) class(decay_root_t), intent(in) :: object integer, intent(in), optional :: unit end subroutine decay_root_write <>= module subroutine decay_root_write (object, unit) class(decay_root_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) if (associated (object%config)) then call object%config%write (unit, verbose = .false.) else write (u, "(1x,A)") "Final-state decay tree: [not configured]" end if if (object%selected_mci > 0) then write (u, "(3x,A,I0)") "Selected MCI = ", object%selected_mci else write (u, "(3x,A)") "Selected MCI = [undefined]" end if if (object%selected_term > 0) then write (u, "(3x,A,I0)") "Selected term = ", object%selected_term call object%term(object%selected_term)%write (u, 1) else write (u, "(3x,A)") "Selected term = [undefined]" end if end subroutine decay_root_write @ %def decay_root_write @ Write the process instances, recursively. <>= procedure :: write_process_instances => decay_gen_write_process_instances <>= recursive module subroutine decay_gen_write_process_instances & (decay, unit, verbose) class(decay_gen_t), intent(in) :: decay integer, intent(in), optional :: unit logical, intent(in), optional :: verbose end subroutine decay_gen_write_process_instances <>= recursive module subroutine decay_gen_write_process_instances & (decay, unit, verbose) class(decay_gen_t), intent(in) :: decay integer, intent(in), optional :: unit logical, intent(in), optional :: verbose logical :: verb verb = .true.; if (present (verbose)) verb = verbose if (associated (decay%process_instance)) then if (verb) then call decay%process_instance%write (unit) else call decay%process_instance%write_header (unit) end if end if if (decay%selected_term > 0) then call decay%term(decay%selected_term)%write_process_instances (unit, verb) end if end subroutine decay_gen_write_process_instances @ %def decay_gen_write_process_instances @ Generic initializer. All can be done recursively. <>= procedure :: base_init => decay_gen_init <>= recursive module subroutine decay_gen_init (decay, term_config) class(decay_gen_t), intent(out) :: decay type(decay_term_config_t), dimension(:), intent(in), target :: term_config end subroutine decay_gen_init <>= recursive module subroutine decay_gen_init (decay, term_config) class(decay_gen_t), intent(out) :: decay type(decay_term_config_t), dimension(:), intent(in), target :: term_config integer :: i allocate (decay%term (size (term_config))) do i = 1, size (decay%term) call decay%term(i)%init (term_config(i)) end do end subroutine decay_gen_init @ %def decay_gen_init @ Specific initializer. We assign the configuration object, which should correspond to a completely initialized decay configuration tree. We also connect to an existing process instance. Then, we recursively link the child interactions to the parent process. <>= procedure :: init => decay_root_init <>= module subroutine decay_root_init (decay_root, config, process_instance) class(decay_root_t), intent(out) :: decay_root type(decay_root_config_t), intent(in), target :: config type(process_instance_t), intent(in), target :: process_instance end subroutine decay_root_init <>= module subroutine decay_root_init (decay_root, config, process_instance) class(decay_root_t), intent(out) :: decay_root type(decay_root_config_t), intent(in), target :: config type(process_instance_t), intent(in), target :: process_instance call decay_root%base_init (config%term_config) decay_root%config => config decay_root%process_instance => process_instance call decay_root%make_term_rng (config%process) call decay_root%link_term_interactions () end subroutine decay_root_init @ %def decay_root_init @ Explicitly set/get mci and term indices. (Used in unit test.) <>= procedure :: set_mci => decay_gen_set_mci procedure :: set_term => decay_gen_set_term procedure :: get_mci => decay_gen_get_mci procedure :: get_term => decay_gen_get_term <>= module subroutine decay_gen_set_mci (decay, i) class(decay_gen_t), intent(inout) :: decay integer, intent(in) :: i end subroutine decay_gen_set_mci module subroutine decay_gen_set_term (decay, i) class(decay_gen_t), intent(inout) :: decay integer, intent(in) :: i end subroutine decay_gen_set_term module function decay_gen_get_mci (decay) result (i) class(decay_gen_t), intent(inout) :: decay integer :: i end function decay_gen_get_mci module function decay_gen_get_term (decay) result (i) class(decay_gen_t), intent(inout) :: decay integer :: i end function decay_gen_get_term <>= module subroutine decay_gen_set_mci (decay, i) class(decay_gen_t), intent(inout) :: decay integer, intent(in) :: i decay%selected_mci = i end subroutine decay_gen_set_mci module subroutine decay_gen_set_term (decay, i) class(decay_gen_t), intent(inout) :: decay integer, intent(in) :: i decay%selected_term = i end subroutine decay_gen_set_term module function decay_gen_get_mci (decay) result (i) class(decay_gen_t), intent(inout) :: decay integer :: i i = decay%selected_mci end function decay_gen_get_mci module function decay_gen_get_term (decay) result (i) class(decay_gen_t), intent(inout) :: decay integer :: i i = decay%selected_term end function decay_gen_get_term @ %def decay_gen_set_mci @ %def decay_gen_set_term @ %def decay_gen_get_mci @ %def decay_gen_get_term @ Implement random-number generators for unstable decay selection in all terms. This is not recursive. We also make use of the fact that [[process]] is a pointer; the (state of the RNG factory inside the) target process will be modified by the rng-spawning method, but not the pointer. <>= procedure :: make_term_rng => decay_gen_make_term_rng <>= module subroutine decay_gen_make_term_rng (decay, process) class(decay_gen_t), intent(inout) :: decay type(process_t), intent(in), pointer :: process end subroutine decay_gen_make_term_rng <>= module subroutine decay_gen_make_term_rng (decay, process) class(decay_gen_t), intent(inout) :: decay type(process_t), intent(in), pointer :: process integer :: i do i = 1, size (decay%term) call decay%term(i)%make_rng (process) end do end subroutine decay_gen_make_term_rng @ %def decay_gen_make_term_rng @ Recursively link interactions of the enclosed decay terms to the corresponding terms in the current process instance. <>= procedure :: link_term_interactions => decay_gen_link_term_interactions <>= recursive module subroutine decay_gen_link_term_interactions (decay) class(decay_gen_t), intent(inout) :: decay end subroutine decay_gen_link_term_interactions <>= recursive module subroutine decay_gen_link_term_interactions (decay) class(decay_gen_t), intent(inout) :: decay integer :: i type(interaction_t), pointer :: trace associate (instance => decay%process_instance) do i = 1, size (decay%term) trace => instance%get_trace_int_ptr (i) call decay%term(i)%link_interactions (trace) end do end associate end subroutine decay_gen_link_term_interactions @ %def decay_gen_link_term_interactions @ Select a decay chain: decay modes and process components. <>= procedure :: select_chain => decay_root_select_chain <>= module subroutine decay_root_select_chain (decay_root) class(decay_root_t), intent(inout) :: decay_root end subroutine decay_root_select_chain <>= module subroutine decay_root_select_chain (decay_root) class(decay_root_t), intent(inout) :: decay_root if (decay_root%selected_term > 0) then call decay_root%term(decay_root%selected_term)%select_chain () else call msg_bug ("Decays: no term selected for parent process") end if end subroutine decay_root_select_chain @ %def decay_root_select_chain @ Generate a decay tree, i.e., for the selected term in the parent process, recursively generate a decay event for all unstable particles. Factor out the trace of the connected state of the parent process. This trace should not be taken into account for unweighting the decay chain, since it was already used for unweighting the parent event, or it determines the overall event weight. <>= procedure :: generate => decay_root_generate <>= module subroutine decay_root_generate (decay_root) class(decay_root_t), intent(inout) :: decay_root end subroutine decay_root_generate <>= module subroutine decay_root_generate (decay_root) class(decay_root_t), intent(inout) :: decay_root type(connected_state_t), pointer :: connected_state if (decay_root%selected_term > 0) then connected_state => decay_root%process_instance%get_connected_state_ptr & (decay_root%selected_term) call connected_state%normalize_matrix_by_trace () call decay_root%term(decay_root%selected_term)%generate () else call msg_bug ("Decays: no term selected for parent process") end if end subroutine decay_root_generate @ %def decay_root_generate @ \subsection{Decay Configuration} A decay configuration describes a distinct decay mode of a particle. Each decay mode may include several terms, which correspond to the terms in the associated process. In addition to the base type, the decay configuration object contains the integral of the parent process and the selector for the MCI group inside this process. The flavor component should be identical to the flavor component of the parent particle ([[unstable]] object). <>= type, extends (decay_root_config_t) :: decay_config_t private type(flavor_t) :: flv real(default) :: weight = 0 real(default) :: integral = 0 real(default) :: abs_error = 0 real(default) :: rel_error = 0 type(selector_t) :: mci_selector contains <> end type decay_config_t @ %def decay_config_t @ The output routine extends the decay-root writer by listing numerical component values. <>= procedure :: write => decay_config_write <>= recursive module subroutine decay_config_write & (object, unit, indent, verbose) class(decay_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine decay_config_write <>= recursive module subroutine decay_config_write (object, unit, indent, verbose) class(decay_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose integer :: u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call write_indent (u, ind) write (u, "(1x,A)") "Decay:" call object%write_header (unit, indent) call write_indent (u, ind) write (u, 2) "branching ratio =", object%weight * 100 call write_indent (u, ind) write (u, 1) "partial width =", object%integral call write_indent (u, ind) write (u, 1) "error (abs) =", object%abs_error call write_indent (u, ind) write (u, 1) "error (rel) =", object%rel_error 1 format (3x,A,ES19.12) 2 format (3x,A,F11.6,1x,'%') call object%write_terms (unit, indent, verbose) end subroutine decay_config_write @ %def decay_config_write @ Connect a decay configuration with a process object (which should represent the decay). This includes initialization, therefore intent(out). We first connect the process itself, then do initializations that are specific for this decay. Infer stability from the particle properties, using the first row in the set of flavor states. Once we can deal with predetermined decay chains, they should be used instead. If there is an optional [[var_list]], check if the stored values for the decay partial width and error have been overridden there. <>= procedure :: connect => decay_config_connect <>= recursive module subroutine decay_config_connect & (decay, process, model, process_stack, process_instance, var_list) class(decay_config_t), intent(out) :: decay type(process_t), intent(in), target :: process class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(process_instance_t), intent(in), optional, target :: process_instance type(var_list_t), intent(in), optional, target :: var_list end subroutine decay_config_connect <>= recursive module subroutine decay_config_connect & (decay, process, model, process_stack, process_instance, var_list) class(decay_config_t), intent(out) :: decay type(process_t), intent(in), target :: process class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(process_instance_t), intent(in), optional, target :: process_instance type(var_list_t), intent(in), optional, target :: var_list real(default), dimension(:), allocatable :: integral_mci type(string_t) :: process_id integer :: i, n_mci call decay%decay_root_config_t%connect & (process, model, process_stack, var_list=var_list) process_id = process%get_id () if (process%lab_is_cm ()) then call msg_fatal ("Decay process " // char (process_id) & // ": unusable because rest frame is fixed.") end if decay%integral = process%get_integral () decay%abs_error = process%get_error () if (present (var_list)) then call update (decay%integral, "integral(" // process_id // ")") call update (decay%abs_error, "error(" // process_id // ")") end if n_mci = process%get_n_mci () allocate (integral_mci (n_mci)) do i = 1, n_mci integral_mci(i) = process%get_integral_mci (i) end do call decay%mci_selector%init (integral_mci) contains subroutine update (var, var_name) real(default), intent(inout) :: var type(string_t), intent(in) :: var_name if (var_list%contains (var_name)) then var = var_list%get_rval (var_name) end if end subroutine update end subroutine decay_config_connect @ %def decay_config_connect @ Set the flavor entry, which repeats the flavor of the parent unstable particle. <>= procedure :: set_flv => decay_config_set_flv <>= module subroutine decay_config_set_flv (decay, flv) class(decay_config_t), intent(inout) :: decay type(flavor_t), intent(in) :: flv end subroutine decay_config_set_flv <>= module subroutine decay_config_set_flv (decay, flv) class(decay_config_t), intent(inout) :: decay type(flavor_t), intent(in) :: flv decay%flv = flv end subroutine decay_config_set_flv @ %def decay_config_set_flv @ Compute embedded branchings and the relative error. This method does not apply to the decay root. <>= procedure :: compute => decay_config_compute <>= recursive module subroutine decay_config_compute (decay) class(decay_config_t), intent(inout) :: decay end subroutine decay_config_compute <>= recursive module subroutine decay_config_compute (decay) class(decay_config_t), intent(inout) :: decay call decay%decay_root_config_t%compute () if (.not. vanishes (decay%integral)) then decay%rel_error = decay%abs_error / decay%integral else decay%rel_error = 0 end if end subroutine decay_config_compute @ %def decay_config_compute @ \subsection{Decay Instance} The decay contains a collection of terms. One of them is selected when the decay is evaluated. This is similar to the decay root, but we implement it independently. The process instance object is allocated via a pointer, so it automatically behaves as a target. <>= type, extends (decay_gen_t) :: decay_t private type(decay_config_t), pointer :: config => null () class(rng_t), allocatable :: rng contains <> end type decay_t @ %def decay_t @ The finalizer is recursive. <>= procedure :: final => decay_final <>= recursive module subroutine decay_final (object) class(decay_t), intent(inout) :: object end subroutine decay_final <>= recursive module subroutine decay_final (object) class(decay_t), intent(inout) :: object integer :: i call object%base_final () do i = 1, object%config%process%get_n_mci () call object%process_instance%final_simulation (i) end do call object%process_instance%final () deallocate (object%process_instance) end subroutine decay_final @ %def decay_final @ Output. <>= procedure :: write => decay_write <>= recursive module subroutine decay_write (object, unit, indent, recursive) class(decay_t), intent(in) :: object integer, intent(in), optional :: unit, indent, recursive end subroutine decay_write <>= recursive module subroutine decay_write (object, unit, indent, recursive) class(decay_t), intent(in) :: object integer, intent(in), optional :: unit, indent, recursive integer :: u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call object%config%write (unit, indent, verbose = .false.) if (allocated (object%rng)) then call object%rng%write (u, ind + 1) end if call write_indent (u, ind) if (object%selected_mci > 0) then write (u, "(3x,A,I0)") "Selected MCI = ", object%selected_mci else write (u, "(3x,A)") "Selected MCI = [undefined]" end if call write_indent (u, ind) if (object%selected_term > 0) then write (u, "(3x,A,I0)") "Selected term = ", object%selected_term call object%term(object%selected_term)%write (u, ind + 1) else write (u, "(3x,A)") "Selected term = [undefined]" end if end subroutine decay_write @ %def decay_write @ Initializer. Base initialization is done recursively. Then, we prepare the current process instance and allocate a random-number generator for term selection. For all unstable particles, we also allocate a r.n.g. as spawned by the current process. <>= procedure :: init => decay_init <>= recursive module subroutine decay_init (decay, config) class(decay_t), intent(out) :: decay type(decay_config_t), intent(in), target :: config end subroutine decay_init <>= recursive module subroutine decay_init (decay, config) class(decay_t), intent(out) :: decay type(decay_config_t), intent(in), target :: config integer :: i call decay%base_init (config%term_config) decay%config => config allocate (decay%process_instance) call decay%process_instance%init (decay%config%process) call decay%process_instance%setup_event_data (decay%config%model) do i = 1, decay%config%process%get_n_mci () call decay%process_instance%init_simulation (i) end do call decay%config%process%make_rng (decay%rng) call decay%make_term_rng (decay%config%process) end subroutine decay_init @ %def decay_init @ Link interactions to the parent process. [[i_prt]] is the index of the current outgoing particle in the parent interaction, for which we take the trace evaluator. We link it to the beam particle in the beam interaction of the decay process instance. Then, repeat the procedure for the outgoing particles. <>= procedure :: link_interactions => decay_link_interactions <>= recursive module subroutine decay_link_interactions (decay, i_prt, trace) class(decay_t), intent(inout) :: decay integer, intent(in) :: i_prt type(interaction_t), intent(in), target :: trace end subroutine decay_link_interactions <>= recursive module subroutine decay_link_interactions (decay, i_prt, trace) class(decay_t), intent(inout) :: decay integer, intent(in) :: i_prt type(interaction_t), intent(in), target :: trace type(interaction_t), pointer :: beam_int integer :: n_in, n_vir beam_int => decay%process_instance%get_beam_int_ptr () n_in = trace%get_n_in () n_vir = trace%get_n_vir () call beam_int%set_source_link (1, trace, & n_in + n_vir + i_prt) call decay%link_term_interactions () end subroutine decay_link_interactions @ %def decay_link_interactions @ Determine a decay chain. For each unstable particle we select one of the possible decay modes, and for each decay process we select one of the possible decay MCI components, calling the random-number generators. We do not generate momenta, yet. <>= procedure :: select_chain => decay_select_chain <>= recursive module subroutine decay_select_chain (decay) class(decay_t), intent(inout) :: decay end subroutine decay_select_chain <>= recursive module subroutine decay_select_chain (decay) class(decay_t), intent(inout) :: decay real(default) :: x integer :: i call decay%rng%generate (x) decay%selected_mci = decay%config%mci_selector%select (x) call decay%process_instance%choose_mci (decay%selected_mci) decay%selected_term = decay%process_instance%select_i_term () do i = 1, size (decay%term) call decay%term(i)%select_chain () end do end subroutine decay_select_chain @ %def decay_select_chain @ Generate a decay. We first receive the beam momenta from the parent process (assuming that this is properly linked), then call the associated process object for a new event. Factor out the trace of the helicity density matrix of the isolated state (the one that will be used for the decay chain). The trace is taken into account for unweighting the individual decay event and should therefore be ignored for unweighting the correlated decay chain afterwards. <>= procedure :: generate => decay_generate <>= recursive module subroutine decay_generate (decay) class(decay_t), intent(inout) :: decay end subroutine decay_generate <>= recursive module subroutine decay_generate (decay) class(decay_t), intent(inout) :: decay type(isolated_state_t), pointer :: isolated_state integer :: i call decay%process_instance%receive_beam_momenta () call decay%process_instance%generate_unweighted_event (decay%selected_mci) if (signal_is_pending ()) return call decay%process_instance%evaluate_event_data () isolated_state => & decay%process_instance%get_isolated_state_ptr (decay%selected_term) call isolated_state%normalize_matrix_by_trace () do i = 1, size (decay%term) call decay%term(i)%generate () if (signal_is_pending ()) return end do end subroutine decay_generate @ %def decay_generate @ \subsection{Stable Particles} This is a stable particle. The flavor can be ambiguous (e.g., partons). <>= type, extends (any_config_t) :: stable_config_t private type(flavor_t), dimension(:), allocatable :: flv contains <> end type stable_config_t @ %def stable_config_t @ The finalizer is empty: <>= procedure :: final => stable_config_final <>= module subroutine stable_config_final (object) class(stable_config_t), intent(inout) :: object end subroutine stable_config_final <>= module subroutine stable_config_final (object) class(stable_config_t), intent(inout) :: object end subroutine stable_config_final @ %def stable_config_final @ Output. <>= procedure :: write => stable_config_write <>= recursive module subroutine stable_config_write & (object, unit, indent, verbose) class(stable_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine stable_config_write <>= recursive module subroutine stable_config_write & (object, unit, indent, verbose) class(stable_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose integer :: u, i, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call write_indent (u, ind) write (u, "(1x,'+',1x,A)", advance = "no") "Stable:" write (u, "(1x,A)", advance = "no") char (object%flv(1)%get_name ()) do i = 2, size (object%flv) write (u, "(':',A)", advance = "no") & char (object%flv(i)%get_name ()) end do write (u, *) end subroutine stable_config_write @ %def stable_config_write @ Initializer. We are presented with an array of flavors, but there may be double entries which we remove, so we store only the distinct flavors. <>= procedure :: init => stable_config_init <>= module subroutine stable_config_init (config, flv) class(stable_config_t), intent(out) :: config type(flavor_t), dimension(:), intent(in) :: flv end subroutine stable_config_init <>= module subroutine stable_config_init (config, flv) class(stable_config_t), intent(out) :: config type(flavor_t), dimension(:), intent(in) :: flv integer, dimension (size (flv)) :: pdg logical, dimension (size (flv)) :: mask integer :: i pdg = flv%get_pdg () mask(1) = .true. forall (i = 2 : size (pdg)) mask(i) = all (pdg(i) /= pdg(1:i-1)) end forall allocate (config%flv (count (mask))) config%flv = pack (flv, mask) end subroutine stable_config_init @ %def stable_config_init @ Here is the corresponding object instance. Except for the pointer to the configuration, there is no content. <>= type, extends (any_t) :: stable_t private type(stable_config_t), pointer :: config => null () contains <> end type stable_t @ %def stable_t @ The finalizer does nothing. <>= procedure :: final => stable_final <>= module subroutine stable_final (object) class(stable_t), intent(inout) :: object end subroutine stable_final <>= module subroutine stable_final (object) class(stable_t), intent(inout) :: object end subroutine stable_final @ %def stable_final @ We can delegate output to the configuration object. <>= procedure :: write => stable_write <>= module subroutine stable_write (object, unit, indent) class(stable_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine stable_write <>= module subroutine stable_write (object, unit, indent) class(stable_t), intent(in) :: object integer, intent(in), optional :: unit, indent call object%config%write (unit, indent) end subroutine stable_write @ %def stable_write @ Initializer: just assign the configuration. <>= procedure :: init => stable_init <>= module subroutine stable_init (stable, config) class(stable_t), intent(out) :: stable type(stable_config_t), intent(in), target :: config end subroutine stable_init <>= module subroutine stable_init (stable, config) class(stable_t), intent(out) :: stable type(stable_config_t), intent(in), target :: config stable%config => config end subroutine stable_init @ %def stable_init @ \subsection{Unstable Particles} A branching configuration enables us to select among distinct decay modes of a particle. We store the particle flavor (with its implicit link to a model), an array of decay configurations, and a selector object. The total width, absolute and relative error are stored as [[integral]], [[abs_error]], and [[rel_error]], respectively. The flavor must be unique in this case. <>= public :: unstable_config_t <>= type, extends (any_config_t) :: unstable_config_t private type(flavor_t) :: flv real(default) :: integral = 0 real(default) :: abs_error = 0 real(default) :: rel_error = 0 type(selector_t) :: selector type(decay_config_t), dimension(:), allocatable :: decay_config contains <> end type unstable_config_t @ %def unstable_config_t @ Finalizer. The branching configuration can be a recursive structure. <>= procedure :: final => unstable_config_final <>= recursive module subroutine unstable_config_final (object) class(unstable_config_t), intent(inout) :: object end subroutine unstable_config_final <>= recursive module subroutine unstable_config_final (object) class(unstable_config_t), intent(inout) :: object integer :: i if (allocated (object%decay_config)) then do i = 1, size (object%decay_config) call object%decay_config(i)%final () end do end if end subroutine unstable_config_final @ %def unstable_config_final @ Output. Since this may be recursive, we include indentation. <>= procedure :: write => unstable_config_write <>= recursive module subroutine unstable_config_write & (object, unit, indent, verbose) class(unstable_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose end subroutine unstable_config_write <>= recursive module subroutine unstable_config_write & (object, unit, indent, verbose) class(unstable_config_t), intent(in) :: object integer, intent(in), optional :: unit, indent logical, intent(in), optional :: verbose integer :: u, i, ind logical :: verb u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent verb = .true.; if (present (verbose)) verb = verbose call write_indent (u, ind) write (u, "(1x,'+',1x,A,1x,A)") "Unstable:", & char (object%flv%get_name ()) call write_indent (u, ind) write (u, 1) "total width =", object%integral call write_indent (u, ind) write (u, 1) "error (abs) =", object%abs_error call write_indent (u, ind) write (u, 1) "error (rel) =", object%rel_error 1 format (5x,A,ES19.12) if (verb .and. allocated (object%decay_config)) then do i = 1, size (object%decay_config) call object%decay_config(i)%write (u, ind + 1) end do end if end subroutine unstable_config_write @ %def unstable_config_write @ Initializer. For the unstable particle, the flavor is unique. <>= procedure :: init => unstable_config_init <>= module subroutine unstable_config_init (unstable, flv, set_decays, model) class(unstable_config_t), intent(out) :: unstable type(flavor_t), intent(in) :: flv logical, intent(in), optional :: set_decays class(model_data_t), intent(in), optional, target :: model end subroutine unstable_config_init <>= module subroutine unstable_config_init (unstable, flv, set_decays, model) class(unstable_config_t), intent(out) :: unstable type(flavor_t), intent(in) :: flv logical, intent(in), optional :: set_decays class(model_data_t), intent(in), optional, target :: model type(string_t), dimension(:), allocatable :: decay unstable%flv = flv if (present (set_decays)) then call unstable%flv%get_decays (decay) call unstable%init_decays (decay, model) end if end subroutine unstable_config_init @ %def unstable_config_init @ Further initialization: determine the number of decay modes. We can assume that the flavor of the particle has been set already. If the process stack is given, we can delve recursively into actually assigning decay processes. Otherwise, we just initialize with decay process names. <>= procedure :: init_decays => unstable_config_init_decays <>= recursive module subroutine unstable_config_init_decays & (unstable, decay_id, model, process_stack, var_list) class(unstable_config_t), intent(inout) :: unstable type(string_t), dimension(:), intent(in) :: decay_id class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(var_list_t), intent(in), optional :: var_list end subroutine unstable_config_init_decays <>= recursive module subroutine unstable_config_init_decays & (unstable, decay_id, model, process_stack, var_list) class(unstable_config_t), intent(inout) :: unstable type(string_t), dimension(:), intent(in) :: decay_id class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(var_list_t), intent(in), optional :: var_list integer :: i allocate (unstable%decay_config (size (decay_id))) do i = 1, size (decay_id) associate (decay => unstable%decay_config(i)) if (present (process_stack)) then call decay%connect (process_stack%get_process_ptr (decay_id(i)), & model, process_stack, var_list=var_list) else call decay%init (model, decay_id(i)) end if call decay%set_flv (unstable%flv) end associate end do end subroutine unstable_config_init_decays @ %def unstable_config_init_decays @ Explicitly connect a specific decay with a process. This is used only in unit tests. <>= procedure :: connect_decay => unstable_config_connect_decay <>= module subroutine unstable_config_connect_decay & (unstable, i, process, model) class(unstable_config_t), intent(inout) :: unstable integer, intent(in) :: i type(process_t), intent(in), target :: process class(model_data_t), intent(in), target :: model end subroutine unstable_config_connect_decay <>= module subroutine unstable_config_connect_decay (unstable, i, process, model) class(unstable_config_t), intent(inout) :: unstable integer, intent(in) :: i type(process_t), intent(in), target :: process class(model_data_t), intent(in), target :: model associate (decay => unstable%decay_config(i)) call decay%connect (process, model) end associate end subroutine unstable_config_connect_decay @ %def unstable_config_connect_decay @ Compute the total width and branching ratios, initializing the decay selector. <>= procedure :: compute => unstable_config_compute <>= recursive module subroutine unstable_config_compute (unstable) class(unstable_config_t), intent(inout) :: unstable end subroutine unstable_config_compute <>= recursive module subroutine unstable_config_compute (unstable) class(unstable_config_t), intent(inout) :: unstable integer :: i do i = 1, size (unstable%decay_config) call unstable%decay_config(i)%compute () end do unstable%integral = sum (unstable%decay_config%integral) if (unstable%integral <= 0) then call unstable%write () call msg_fatal ("Decay configuration: computed total width is zero") end if unstable%abs_error = sqrt (sum (unstable%decay_config%abs_error ** 2)) unstable%rel_error = unstable%abs_error / unstable%integral call unstable%selector%init (unstable%decay_config%integral) do i = 1, size (unstable%decay_config) unstable%decay_config(i)%weight & = unstable%selector%get_weight (i) end do end subroutine unstable_config_compute @ %def unstable_config_compute @ Now we define the instance of an unstable particle. <>= public :: unstable_t <>= type, extends (any_t) :: unstable_t private type(unstable_config_t), pointer :: config => null () class(rng_t), allocatable :: rng integer :: selected_decay = 0 type(decay_t), dimension(:), allocatable :: decay contains <> end type unstable_t @ %def unstable_t @ Recursive finalizer. <>= procedure :: final => unstable_final <>= recursive module subroutine unstable_final (object) class(unstable_t), intent(inout) :: object end subroutine unstable_final <>= recursive module subroutine unstable_final (object) class(unstable_t), intent(inout) :: object integer :: i if (allocated (object%decay)) then do i = 1, size (object%decay) call object%decay(i)%final () end do end if end subroutine unstable_final @ %def unstable_final @ Output. <>= procedure :: write => unstable_write <>= recursive module subroutine unstable_write (object, unit, indent) class(unstable_t), intent(in) :: object integer, intent(in), optional :: unit, indent end subroutine unstable_write <>= recursive module subroutine unstable_write (object, unit, indent) class(unstable_t), intent(in) :: object integer, intent(in), optional :: unit, indent integer :: u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call object%config%write (u, ind, verbose=.false.) if (allocated (object%rng)) then call object%rng%write (u, ind + 2) end if call write_indent (u, ind) if (object%selected_decay > 0) then write (u, "(5x,A,I0)") "Sel. decay = ", object%selected_decay call object%decay(object%selected_decay)%write (u, ind + 1) else write (u, "(5x,A)") "Sel. decay = [undefined]" end if end subroutine unstable_write @ %def unstable_write @ Write the embedded process instances. <>= procedure :: write_process_instances => unstable_write_process_instances <>= recursive module subroutine unstable_write_process_instances & (unstable, unit, verbose) class(unstable_t), intent(in) :: unstable integer, intent(in), optional :: unit logical, intent(in), optional :: verbose end subroutine unstable_write_process_instances <>= recursive module subroutine unstable_write_process_instances & (unstable, unit, verbose) class(unstable_t), intent(in) :: unstable integer, intent(in), optional :: unit logical, intent(in), optional :: verbose if (unstable%selected_decay > 0) then call unstable%decay(unstable%selected_decay)% & write_process_instances (unit, verbose) end if end subroutine unstable_write_process_instances @ %def unstable_write_process_instances @ Initialization, using the configuration object. <>= procedure :: init => unstable_init <>= recursive module subroutine unstable_init (unstable, config) class(unstable_t), intent(out) :: unstable type(unstable_config_t), intent(in), target :: config end subroutine unstable_init <>= recursive module subroutine unstable_init (unstable, config) class(unstable_t), intent(out) :: unstable type(unstable_config_t), intent(in), target :: config integer :: i unstable%config => config allocate (unstable%decay (size (config%decay_config))) do i = 1, size (config%decay_config) call unstable%decay(i)%init (config%decay_config(i)) end do end subroutine unstable_init @ %def unstable_init @ Recursively link interactions to the parent process. [[i_prt]] is the index of the current outgoing particle in the parent interaction. <>= procedure :: link_interactions => unstable_link_interactions <>= recursive module subroutine unstable_link_interactions & (unstable, i_prt, trace) class(unstable_t), intent(inout) :: unstable integer, intent(in) :: i_prt type(interaction_t), intent(in), target :: trace end subroutine unstable_link_interactions <>= recursive module subroutine unstable_link_interactions & (unstable, i_prt, trace) class(unstable_t), intent(inout) :: unstable integer, intent(in) :: i_prt type(interaction_t), intent(in), target :: trace integer :: i do i = 1, size (unstable%decay) call unstable%decay(i)%link_interactions (i_prt, trace) end do end subroutine unstable_link_interactions @ %def unstable_link_interactions @ Import the random-number generator state. <>= procedure :: import_rng => unstable_import_rng <>= module subroutine unstable_import_rng (unstable, rng) class(unstable_t), intent(inout) :: unstable class(rng_t), intent(inout), allocatable :: rng end subroutine unstable_import_rng <>= module subroutine unstable_import_rng (unstable, rng) class(unstable_t), intent(inout) :: unstable class(rng_t), intent(inout), allocatable :: rng call move_alloc (from = rng, to = unstable%rng) end subroutine unstable_import_rng @ %def unstable_import_rng @ Generate a decay chain. First select a decay mode, then call the [[select_chain]] method of the selected mode. <>= procedure :: select_chain => unstable_select_chain <>= recursive module subroutine unstable_select_chain (unstable) class(unstable_t), intent(inout) :: unstable end subroutine unstable_select_chain <>= recursive module subroutine unstable_select_chain (unstable) class(unstable_t), intent(inout) :: unstable real(default) :: x call unstable%rng%generate (x) unstable%selected_decay = unstable%config%selector%select (x) call unstable%decay(unstable%selected_decay)%select_chain () end subroutine unstable_select_chain @ %def unstable_select_chain @ Generate a decay event. <>= procedure :: generate => unstable_generate <>= recursive module subroutine unstable_generate (unstable) class(unstable_t), intent(inout) :: unstable end subroutine unstable_generate <>= recursive module subroutine unstable_generate (unstable) class(unstable_t), intent(inout) :: unstable call unstable%decay(unstable%selected_decay)%generate () end subroutine unstable_generate @ %def unstable_generate @ \subsection{Decay Chain} While the decay configuration tree and the decay tree are static entities (during a simulation run), the decay chain is dynamically generated for each event. The reason is that with the possibility of several decay modes for each particle, and several terms for each process, the total number of distinct decay chains is not under control. Each entry in the decay chain is a connected parton state. The origin of the chain is a connected state in the parent process (not part of the chain itself). For each decay, mode and term chosen, we convolute this with the isolated (!) state of the current decay, to generate a new connected state. We accumulate this chain by recursively traversing the allocated decay tree. Whenever a particle decays, it becomes virtual and is replaced by its decay product, while all other particles stay in the parton state as spectators. Technically, we implement the decay chain as a stack structure and include information from the associated decay object for easier debugging. This is a decay chain entry: <>= type, extends (connected_state_t) :: decay_chain_entry_t private integer :: index = 0 type(decay_config_t), pointer :: config => null () integer :: selected_mci = 0 integer :: selected_term = 0 type(decay_chain_entry_t), pointer :: previous => null () end type decay_chain_entry_t @ %def decay_chain_entry_t @ This is the complete chain; we need just a pointer to the last entry. We also include a pointer to the master process instance, which serves as the seed for the decay chain. The evaluator [[correlated_trace]] traces over all quantum numbers for the final spin-correlated (but color-summed) evaluator of the decay chain. This allows us to compute the probability for a momentum configuration, given that all individual density matrices (of the initial process and the subsequent decays) have been normalized to one. Note: This trace is summed over color, so color is treated exactly when computing spin correlations. However, we do not keep non-diagonal color correlations. When an event is accepted, we compute probabilities for all color states and can choose one of them. <>= public :: decay_chain_t <>= type :: decay_chain_t private type(process_instance_t), pointer :: process_instance => null () integer :: selected_term = 0 type(evaluator_t) :: correlated_trace type(decay_chain_entry_t), pointer :: last => null () contains <> end type decay_chain_t @ %def decay_chain_t @ The finalizer recursively deletes and deallocates the entries. <>= procedure :: final => decay_chain_final <>= module subroutine decay_chain_final (object) class(decay_chain_t), intent(inout) :: object end subroutine decay_chain_final <>= module subroutine decay_chain_final (object) class(decay_chain_t), intent(inout) :: object type(decay_chain_entry_t), pointer :: entry do while (associated (object%last)) entry => object%last object%last => entry%previous call entry%final () deallocate (entry) end do call object%correlated_trace%final () end subroutine decay_chain_final @ %def decay_chain_final @ Doing output recursively allows us to display the chain in chronological order. <>= procedure :: write => decay_chain_write <>= module subroutine decay_chain_write (object, unit) class(decay_chain_t), intent(in) :: object integer, intent(in), optional :: unit end subroutine decay_chain_write <>= module subroutine decay_chain_write (object, unit) class(decay_chain_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) call write_separator (u, 2) write (u, "(1x,A)") "Decay chain:" call write_entries (object%last) call write_separator (u, 2) write (u, "(1x,A)") "Evaluator (correlated trace of the decay chain):" call write_separator (u) call object%correlated_trace%write (u) call write_separator (u, 2) contains recursive subroutine write_entries (entry) type(decay_chain_entry_t), intent(in), pointer :: entry if (associated (entry)) then call write_entries (entry%previous) call write_separator (u, 2) write (u, "(1x,A,I0)") "Decay #", entry%index call entry%config%write_header (u) write (u, "(3x,A,I0)") "Selected MCI = ", entry%selected_mci write (u, "(3x,A,I0)") "Selected term = ", entry%selected_term call entry%config%term_config(entry%selected_term)%write (u, indent=1) call entry%write (u) end if end subroutine write_entries end subroutine decay_chain_write @ %def decay_chain_write @ Build a decay chain, recursively following the selected decays and terms in a decay tree. Before start, we finalize the chain, deleting any previous contents. <>= procedure :: build => decay_chain_build <>= module subroutine decay_chain_build (chain, decay_root) class(decay_chain_t), intent(inout), target :: chain type(decay_root_t), intent(in) :: decay_root end subroutine decay_chain_build <>= module subroutine decay_chain_build (chain, decay_root) class(decay_chain_t), intent(inout), target :: chain type(decay_root_t), intent(in) :: decay_root type(quantum_numbers_mask_t), dimension(:), allocatable :: qn_mask type(interaction_t), pointer :: int_last_decay call chain%final () if (decay_root%selected_term > 0) then chain%process_instance => decay_root%process_instance chain%selected_term = decay_root%selected_term call chain%build_term_entries (decay_root%term(decay_root%selected_term)) end if int_last_decay => chain%last%get_matrix_int_ptr () allocate (qn_mask (int_last_decay%get_n_tot ())) call qn_mask%init (mask_f = .true., mask_c = .true., mask_h = .true.) call chain%correlated_trace%init_qn_sum (int_last_decay, qn_mask) end subroutine decay_chain_build @ %def decay_chain_build @ Build the entries that correspond to a decay term. We have to scan all unstable particles. <>= procedure :: build_term_entries => decay_chain_build_term_entries <>= recursive module subroutine decay_chain_build_term_entries (chain, term) class(decay_chain_t), intent(inout) :: chain type(decay_term_t), intent(in) :: term end subroutine decay_chain_build_term_entries <>= recursive module subroutine decay_chain_build_term_entries (chain, term) class(decay_chain_t), intent(inout) :: chain type(decay_term_t), intent(in) :: term integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t) if (unstable%selected_decay > 0) then call chain%build_decay_entries & (unstable%decay(unstable%selected_decay)) end if end select end do end subroutine decay_chain_build_term_entries @ %def decay_chain_build_term_entries @ Build the entries that correspond to a specific decay. The decay term should have been determined, so we allocate a decay chain entry and fill it, then proceed to child decays. For the first entry, we convolute the connected state of the parent process instance with the isolated state of the current decay (which does not contain an extra beam entry for the parent). For subsequent entries, we take the previous entry as first factor. In principle, each chain entry (as a parton state) is capable of holding a subevent object and associated expressions. We currently do not make use of that feature. Before generating the decays, factor out the trace of the helicity density matrix of the parent parton state. This trace has been used for unweighting the original event (unweighted case) or it determines the overall weight, so it should not be taken into account in the decay chain generation. <>= procedure :: build_decay_entries => decay_chain_build_decay_entries <>= recursive module subroutine decay_chain_build_decay_entries (chain, decay) class(decay_chain_t), intent(inout) :: chain type(decay_t), intent(in) :: decay end subroutine decay_chain_build_decay_entries <>= recursive module subroutine decay_chain_build_decay_entries (chain, decay) class(decay_chain_t), intent(inout) :: chain type(decay_t), intent(in) :: decay type(decay_chain_entry_t), pointer :: entry type(connected_state_t), pointer :: previous_state type(isolated_state_t), pointer :: current_decay type(helicity_t) :: hel type(quantum_numbers_t) :: qn_filter_conn allocate (entry) if (associated (chain%last)) then entry%previous => chain%last entry%index = entry%previous%index + 1 previous_state => entry%previous%connected_state_t else entry%index = 1 previous_state => & chain%process_instance%get_connected_state_ptr (chain%selected_term) end if entry%config => decay%config entry%selected_mci = decay%selected_mci entry%selected_term = decay%selected_term current_decay => decay%process_instance%get_isolated_state_ptr & (decay%selected_term) call entry%setup_connected_trace & (current_decay, previous_state%get_trace_int_ptr (), resonant=.true.) if (entry%config%flv%has_decay_helicity ()) then call hel%init (entry%config%flv%get_decay_helicity ()) call qn_filter_conn%init (hel) call entry%setup_connected_matrix & (current_decay, previous_state%get_matrix_int_ptr (), & resonant=.true., qn_filter_conn = qn_filter_conn) call entry%setup_connected_flows & (current_decay, previous_state%get_flows_int_ptr (), & resonant=.true., qn_filter_conn = qn_filter_conn) else call entry%setup_connected_matrix & (current_decay, previous_state%get_matrix_int_ptr (), & resonant=.true.) call entry%setup_connected_flows & (current_decay, previous_state%get_flows_int_ptr (), & resonant=.true.) end if chain%last => entry call chain%build_term_entries (decay%term(decay%selected_term)) end subroutine decay_chain_build_decay_entries @ %def decay_chain_build_decay_entries @ Recursively fill the decay chain with momenta and evaluate the matrix elements. Since all evaluators should have correct source entries at this point, momenta are automatically retrieved from the appropriate process instance. Like we did above for the parent process, factor out the trace for each subsequent decay (the helicity density matrix in the isolated state, which is taken for the convolution). <>= procedure :: evaluate => decay_chain_evaluate <>= module subroutine decay_chain_evaluate (chain) class(decay_chain_t), intent(inout) :: chain end subroutine decay_chain_evaluate <>= module subroutine decay_chain_evaluate (chain) class(decay_chain_t), intent(inout) :: chain call evaluate (chain%last) call chain%correlated_trace%receive_momenta () call chain%correlated_trace%evaluate () contains recursive subroutine evaluate (entry) type(decay_chain_entry_t), intent(inout), pointer :: entry if (associated (entry)) then call evaluate (entry%previous) call entry%receive_kinematics () call entry%evaluate_trace () call entry%evaluate_event_data () end if end subroutine evaluate end subroutine decay_chain_evaluate @ %def decay_chain_evaluate @ Return the probability of a decay chain. This is given as the trace of the density matrix with intermediate helicity correlations, normalized by the product of the uncorrelated density matrix traces. This works only if an event has been evaluated and the [[correlated_trace]] evaluator is filled. By definition, this evaluator has only one matrix element, and this must be real. <>= procedure :: get_probability => decay_chain_get_probability <>= module function decay_chain_get_probability (chain) result (x) class(decay_chain_t), intent(in) :: chain real(default) :: x end function decay_chain_get_probability <>= module function decay_chain_get_probability (chain) result (x) class(decay_chain_t), intent(in) :: chain real(default) :: x x = real (chain%correlated_trace%get_matrix_element (1)) end function decay_chain_get_probability @ %def decay_chain_get_probability @ \subsection{Decay as Event Transform} The [[evt_decay]] object combines decay configuration, decay tree, and chain in a single object, as an implementation of the [[evt]] (event transform) abstract type. The [[var_list]] may be a pointer to the user variable list, which could contain overridden parameters for the decay processes. <>= public :: evt_decay_t <>= type, extends (evt_t) :: evt_decay_t private type(decay_root_config_t) :: decay_root_config type(decay_root_t) :: decay_root type(decay_chain_t) :: decay_chain type(var_list_t), pointer :: var_list => null () contains <> end type evt_decay_t @ %def evt_decay_t @ <>= procedure :: write_name => evt_decay_write_name <>= module subroutine evt_decay_write_name (evt, unit) class(evt_decay_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_decay_write_name <>= module subroutine evt_decay_write_name (evt, unit) class(evt_decay_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: partonic decays" end subroutine evt_decay_write_name @ %def evt_decay_write_name @ Output. We display the currently selected decay tree, which includes configuration data, and the decay chain, i.e., the evaluators. <>= procedure :: write => evt_decay_write <>= module subroutine evt_decay_write & (evt, unit, verbose, more_verbose, testflag) class(evt_decay_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_decay_write <>= module subroutine evt_decay_write (evt, unit, verbose, more_verbose, testflag) class(evt_decay_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag logical :: verb, verb2 integer :: u u = given_output_unit (unit) verb = .true.; if (present (verbose)) verb = verbose verb2 = .false.; if (present (more_verbose)) verb2 = more_verbose call write_separator (u, 2) call evt%write_name (u) call write_separator (u, 2) call evt%base_write (u, testflag = testflag) if (associated (evt%var_list)) then call write_separator (u) write (u, "(1x,A)") "Variable list for simulation: & &[associated, not shown]" end if if (verb) then call write_separator (u) call evt%decay_root%write (u) if (verb2) then call evt%decay_chain%write (u) call evt%decay_root%write_process_instances (u, verb) end if else call write_separator (u, 2) end if end subroutine evt_decay_write @ %def evt_decay_write @ Set the pointer to a user variable list. <>= procedure :: set_var_list => evt_decay_set_var_list <>= module subroutine evt_decay_set_var_list (evt, var_list) class(evt_decay_t), intent(inout) :: evt type(var_list_t), intent(in), target :: var_list end subroutine evt_decay_set_var_list <>= module subroutine evt_decay_set_var_list (evt, var_list) class(evt_decay_t), intent(inout) :: evt type(var_list_t), intent(in), target :: var_list evt%var_list => var_list end subroutine evt_decay_set_var_list @ %def evt_decay_set_var_list @ Connect with a process instance and process. This initializes the decay configuration. The process stack is used to look for process objects that implement daughter decays. When all processes are assigned, configure the decay tree instance, using the decay tree configuration. First obtain the branching ratios, then allocate the decay tree. This is done once for all events. <>= procedure :: connect => evt_decay_connect <>= module subroutine evt_decay_connect & (evt, process_instance, model, process_stack) class(evt_decay_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack end subroutine evt_decay_connect <>= module subroutine evt_decay_connect & (evt, process_instance, model, process_stack) class(evt_decay_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack call evt%base_connect (process_instance, model) if (associated (evt%var_list)) then call evt%decay_root_config%connect (process_instance%process, & model, process_stack, process_instance, evt%var_list) else call evt%decay_root_config%connect (process_instance%process, & model, process_stack, process_instance) end if call evt%decay_root_config%compute () call evt%decay_root%init (evt%decay_root_config, evt%process_instance) end subroutine evt_decay_connect @ %def evt_decay_connect @ Prepare a new event: Select a decay chain and build the corresponding chain object. <>= procedure :: prepare_new_event => evt_decay_prepare_new_event <>= module subroutine evt_decay_prepare_new_event (evt, i_mci, i_term) class(evt_decay_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_decay_prepare_new_event <>= module subroutine evt_decay_prepare_new_event (evt, i_mci, i_term) class(evt_decay_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term call evt%reset () evt%decay_root%selected_mci = i_mci evt%decay_root%selected_term = i_term call evt%decay_root%select_chain () call evt%decay_chain%build (evt%decay_root) end subroutine evt_decay_prepare_new_event @ %def evt_decay_prepare_new_event @ Generate a weighted event and assign the resulting weight (probability). We use a chain initialized by the preceding subroutine, fill it with momenta and evaluate. <>= procedure :: generate_weighted => evt_decay_generate_weighted <>= module subroutine evt_decay_generate_weighted (evt, probability) class(evt_decay_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_decay_generate_weighted <>= module subroutine evt_decay_generate_weighted (evt, probability) class(evt_decay_t), intent(inout) :: evt real(default), intent(inout) :: probability call evt%decay_root%generate () if (signal_is_pending ()) return call evt%decay_chain%evaluate () probability = evt%decay_chain%get_probability () end subroutine evt_decay_generate_weighted @ %def evt_decay_generate_weighted @ To create a usable event, we have to transform the interaction into a particle set; this requires factorization for the correlated density matrix, according to the factorization mode. <>= procedure :: make_particle_set => evt_decay_make_particle_set <>= module subroutine evt_decay_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_decay_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_decay_make_particle_set <>= module subroutine evt_decay_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_decay_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r type(interaction_t), pointer :: int_matrix, int_flows type(decay_chain_entry_t), pointer :: last_entry last_entry => evt%decay_chain%last int_matrix => last_entry%get_matrix_int_ptr () int_flows => last_entry%get_flows_int_ptr () call evt%factorize_interactions (int_matrix, int_flows, & factorization_mode, keep_correlations, r) call evt%tag_incoming () end subroutine evt_decay_make_particle_set @ %def event_decay_make_particle_set @ \subsubsection{Auxiliary} Eliminate numerical noise for the associated process instances. <>= public :: pacify <>= interface pacify module procedure pacify_decay module procedure pacify_decay_gen module procedure pacify_term module procedure pacify_unstable end interface pacify <>= module subroutine pacify_decay (evt) class(evt_decay_t), intent(inout) :: evt end subroutine pacify_decay recursive module subroutine pacify_decay_gen (decay) class(decay_gen_t), intent(inout) :: decay end subroutine pacify_decay_gen recursive module subroutine pacify_term (term) class(decay_term_t), intent(inout) :: term end subroutine pacify_term recursive module subroutine pacify_unstable (unstable) class(unstable_t), intent(inout) :: unstable end subroutine pacify_unstable <>= module subroutine pacify_decay (evt) class(evt_decay_t), intent(inout) :: evt call pacify_decay_gen (evt%decay_root) end subroutine pacify_decay recursive module subroutine pacify_decay_gen (decay) class(decay_gen_t), intent(inout) :: decay if (associated (decay%process_instance)) then call pacify (decay%process_instance) end if if (decay%selected_term > 0) then call pacify_term (decay%term(decay%selected_term)) end if end subroutine pacify_decay_gen recursive module subroutine pacify_term (term) class(decay_term_t), intent(inout) :: term integer :: i do i = 1, size (term%particle_out) select type (unstable => term%particle_out(i)%c) type is (unstable_t); call pacify_unstable (unstable) end select end do end subroutine pacify_term recursive module subroutine pacify_unstable (unstable) class(unstable_t), intent(inout) :: unstable if (unstable%selected_decay > 0) then call pacify_decay_gen (unstable%decay(unstable%selected_decay)) end if end subroutine pacify_unstable @ %def pacify @ Prepare specific configurations for use in unit tests. <>= procedure :: init_test_case1 procedure :: init_test_case2 <>= module subroutine init_test_case1 & (unstable, i, flv, integral, relerr, model) class(unstable_config_t), intent(inout) :: unstable integer, intent(in) :: i type(flavor_t), dimension(:,:), intent(in) :: flv real(default), intent(in) :: integral real(default), intent(in) :: relerr class(model_data_t), intent(in), target :: model end subroutine init_test_case1 module subroutine init_test_case2 (unstable, flv1, flv21, flv22, model) class(unstable_config_t), intent(inout) :: unstable type(flavor_t), dimension(:,:), intent(in) :: flv1, flv21, flv22 class(model_data_t), intent(in), target :: model end subroutine init_test_case2 <>= module subroutine init_test_case1 (unstable, i, flv, integral, relerr, model) class(unstable_config_t), intent(inout) :: unstable integer, intent(in) :: i type(flavor_t), dimension(:,:), intent(in) :: flv real(default), intent(in) :: integral real(default), intent(in) :: relerr class(model_data_t), intent(in), target :: model associate (decay => unstable%decay_config(i)) allocate (decay%term_config (1)) call decay%init_term (1, flv, stable = [.true., .true.], model=model) decay%integral = integral decay%abs_error = integral * relerr end associate end subroutine init_test_case1 module subroutine init_test_case2 (unstable, flv1, flv21, flv22, model) class(unstable_config_t), intent(inout) :: unstable type(flavor_t), dimension(:,:), intent(in) :: flv1, flv21, flv22 class(model_data_t), intent(in), target :: model associate (decay => unstable%decay_config(1)) decay%integral = 1.e-3_default decay%abs_error = decay%integral * .01_default allocate (decay%term_config (1)) call decay%init_term (1, flv1, stable = [.false., .true.], model=model) select type (w => decay%term_config(1)%prt(1)%c) type is (unstable_config_t) associate (w_decay => w%decay_config(1)) w_decay%integral = 2._default allocate (w_decay%term_config (1)) call w_decay%init_term (1, flv21, stable = [.true., .true.], & model=model) end associate associate (w_decay => w%decay_config(2)) w_decay%integral = 1._default allocate (w_decay%term_config (1)) call w_decay%init_term (1, flv22, stable = [.true., .true.], & model=model) end associate call w%compute () end select end associate end subroutine init_test_case2 @ %def init_test_case1 @ %def init_test_case2 @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[decays_ut.f90]]>>= <> module decays_ut use unit_tests use decays_uti <> <> <> contains <> end module decays_ut @ %def decays_ut @ <<[[decays_uti.f90]]>>= <> module decays_uti <> <> use os_interface use sm_qcd use model_data use models use state_matrices, only: FM_IGNORE_HELICITY use interactions, only: reset_interaction_counter use flavors use process_libraries use rng_base use mci_base use mci_midpoint use phs_base use phs_single use prc_core use prc_test, only: prc_test_create_library use process, only: process_t use instances, only: process_instance_t use process_stacks use decays use rng_base_ut, only: rng_test_t, rng_test_factory_t <> <> <> contains <> <> end module decays_uti @ %def decays_uti @ API: driver for the unit tests below. <>= public :: decays_test <>= subroutine decays_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine decays_test @ %def decays_test @ \subsubsection{Testbed} As a variation of the [[prepare_test_process]] routine used elsewhere, we define here a routine that creates two processes (scattering $ss\to ss$ and decay $s\to f\bar f$), compiles and integrates them and prepares for event generation. <>= public :: prepare_testbed <>= subroutine prepare_testbed & (lib, process_stack, prefix, os_data, & scattering, decay, decay_rest_frame) type(process_library_t), intent(out), target :: lib type(process_stack_t), intent(out) :: process_stack type(string_t), intent(in) :: prefix type(os_data_t), intent(in) :: os_data logical, intent(in) :: scattering, decay logical, intent(in), optional :: decay_rest_frame type(model_t), target :: model type(model_t), target :: model_copy type(string_t) :: libname, procname1, procname2 type(process_entry_t), pointer :: process type(process_instance_t), allocatable, target :: process_instance class(phs_config_t), allocatable :: phs_config_template type(field_data_t), pointer :: field_data real(default) :: sqrts libname = prefix // "_lib" procname1 = prefix // "_p" procname2 = prefix // "_d" call model%init_test () call model%set_par (var_str ("ff"), 0.4_default) call model%set_par (var_str ("mf"), & model%get_real (var_str ("ff")) * model%get_real (var_str ("ms"))) if (scattering .and. decay) then field_data => model%get_field_ptr (25) call field_data%set (p_is_stable = .false.) end if call prc_test_create_library (libname, lib, & scattering = .true., decay = .true., & procname1 = procname1, procname2 = procname2) call reset_interaction_counter () allocate (phs_single_config_t :: phs_config_template) if (scattering) then call model_copy%init (model%get_name (), & model%get_n_real (), & model%get_n_complex (), & model%get_n_field (), & model%get_n_vtx ()) call model_copy%copy_from (model) allocate (process) call process%init (procname1, lib, os_data, model_copy) call process%setup_test_cores () call process%init_components (phs_config_template) sqrts = 1000 call process%setup_beams_sqrts (sqrts, i_core = 1) call process%configure_phs () call process%setup_mci (dispatch_mci_test_midpoint) call process%setup_terms () allocate (process_instance) call process_instance%init (process%process_t) call process_instance%integrate (1, n_it = 1, n_calls = 100) call process%final_integration (1) call process_instance%final () deallocate (process_instance) call process%prepare_simulation (1) call process_stack%push (process) end if if (decay) then call model_copy%init (model%get_name (), & model%get_n_real (), & model%get_n_complex (), & model%get_n_field (), & model%get_n_vtx ()) call model_copy%copy_from (model) allocate (process) call process%init (procname2, lib, os_data, model_copy) call process%setup_test_cores () call process%init_components (phs_config_template) if (present (decay_rest_frame)) then call process%setup_beams_decay (rest_frame = decay_rest_frame, i_core = 1) else call process%setup_beams_decay (rest_frame = .not. scattering, i_core = 1) end if call process%configure_phs () call process%setup_mci (dispatch_mci_test_midpoint) call process%setup_terms () allocate (process_instance) call process_instance%init (process%process_t) call process_instance%integrate (1, n_it=1, n_calls=100) call process%final_integration (1) call process_instance%final () deallocate (process_instance) call process%prepare_simulation (1) call process_stack%push (process) end if call model%final () call model_copy%final () end subroutine prepare_testbed @ %def prepare_testbed @ MCI record prepared for midpoint integrator. <>= subroutine dispatch_mci_test_midpoint (mci, var_list, process_id, is_nlo) use variables, only: var_list_t class(mci_t), allocatable, intent(out) :: mci type(var_list_t), intent(in) :: var_list type(string_t), intent(in) :: process_id logical, intent(in), optional :: is_nlo allocate (mci_midpoint_t :: mci) end subroutine dispatch_mci_test_midpoint @ %def dispatch_mci_test_midpoint @ \subsubsection{Simple decay configuration} We define a branching configuration with two decay modes. We set the integral values by hand, so we do not need to evaluate processes, yet. <>= call test (decays_1, "decays_1", & "branching and decay configuration", & u, results) <>= public :: decays_1 <>= subroutine decays_1 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(model_data_t), target :: model type(flavor_t) :: flv_h type(flavor_t), dimension(2,1) :: flv_hbb, flv_hgg type(unstable_config_t), allocatable :: unstable write (u, "(A)") "* Test output: decays_1" write (u, "(A)") "* Purpose: Set up branching and decay configuration" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call os_data%init () call model%init_sm_test () call flv_h%init (25, model) call flv_hbb(:,1)%init ([5, -5], model) call flv_hgg(:,1)%init ([22, 22], model) write (u, "(A)") "* Set up branching and decay" write (u, "(A)") allocate (unstable) call unstable%init (flv_h) call unstable%init_decays ([var_str ("h_bb"), var_str ("h_gg")], model) call unstable%init_test_case1 & (1, flv_hbb, 1.234e-3_default, .02_default, model) call unstable%init_test_case1 & (2, flv_hgg, 3.085e-4_default, .08_default, model) call unstable%compute () call unstable%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call unstable%final () call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: decays_1" end subroutine decays_1 @ %def decays_1 @ \subsubsection{Cascade decay configuration} We define a branching configuration with one decay, which is followed by another branching. <>= call test (decays_2, "decays_2", & "cascade decay configuration", & u, results) <>= public :: decays_2 <>= subroutine decays_2 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(model_data_t), target :: model type(flavor_t) :: flv_h, flv_wp, flv_wm type(flavor_t), dimension(2,1) :: flv_hww, flv_wud, flv_wen type(unstable_config_t), allocatable :: unstable write (u, "(A)") "* Test output: decays_2" write (u, "(A)") "* Purpose: Set up cascade branching" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call os_data%init () call model%init_sm_test () call model%set_unstable (25, [var_str ("h_ww")]) call model%set_unstable (24, [var_str ("w_ud"), var_str ("w_en")]) call flv_h%init (25, model) call flv_hww(:,1)%init ([24, -24], model) call flv_wp%init (24, model) call flv_wm%init (-24, model) call flv_wud(:,1)%init ([2, -1], model) call flv_wen(:,1)%init ([-11, 12], model) write (u, "(A)") "* Set up branching and decay" write (u, "(A)") allocate (unstable) call unstable%init (flv_h, set_decays=.true., model=model) call unstable%init_test_case2 (flv_hww, flv_wud, flv_wen, model) call unstable%compute () call unstable%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call unstable%final () call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: decays_2" end subroutine decays_2 @ %def decays_2 @ \subsubsection{Decay and Process Object} We define a branching configuration with one decay and connect this with an actual process object. <>= call test (decays_3, "decays_3", & "associate process", & u, results) <>= public :: decays_3 <>= subroutine decays_3 (u) integer, intent(in) :: u type(os_data_t) :: os_data class(model_data_t), pointer :: model type(process_library_t), target :: lib type(string_t) :: prefix type(string_t) :: procname2 type(process_stack_t) :: process_stack type(process_t), pointer :: process type(unstable_config_t), allocatable :: unstable type(flavor_t) :: flv write (u, "(A)") "* Test output: decays_3" write (u, "(A)") "* Purpose: Connect a decay configuration & &with a process" write (u, "(A)") write (u, "(A)") "* Initialize environment and integrate process" write (u, "(A)") call os_data%init () prefix = "decays_3" call prepare_testbed & (lib, process_stack, prefix, os_data, & scattering=.false., decay=.true., decay_rest_frame=.false.) procname2 = prefix // "_d" process => process_stack%get_process_ptr (procname2) model => process%get_model_ptr () call process%write (.false., u) write (u, "(A)") write (u, "(A)") "* Set up branching and decay" write (u, "(A)") call flv%init (25, model) allocate (unstable) call unstable%init (flv) call unstable%init_decays ([procname2], model) write (u, "(A)") "* Connect decay with process object" write (u, "(A)") call unstable%connect_decay (1, process, model) call unstable%compute () call unstable%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call unstable%final () call process_stack%final () write (u, "(A)") write (u, "(A)") "* Test output end: decays_3" end subroutine decays_3 @ %def decays_3 @ \subsubsection{Decay and Process Object} Building upon the previous test, we set up a decay instance and generate a decay event. <>= call test (decays_4, "decays_4", & "decay instance", & u, results) <>= public :: decays_4 <>= subroutine decays_4 (u) integer, intent(in) :: u type(os_data_t) :: os_data class(model_data_t), pointer :: model type(process_library_t), target :: lib type(string_t) :: prefix, procname2 class(rng_t), allocatable :: rng type(process_stack_t) :: process_stack type(process_t), pointer :: process type(unstable_config_t), allocatable, target :: unstable type(flavor_t) :: flv type(unstable_t), allocatable :: instance write (u, "(A)") "* Test output: decays_4" write (u, "(A)") "* Purpose: Create a decay process and evaluate & &an instance" write (u, "(A)") write (u, "(A)") "* Initialize environment, process, & &and decay configuration" write (u, "(A)") call os_data%init () prefix = "decays_4" call prepare_testbed & (lib, process_stack, prefix, os_data, & scattering=.false., decay=.true., decay_rest_frame = .false.) procname2 = prefix // "_d" process => process_stack%get_process_ptr (procname2) model => process%get_model_ptr () call flv%init (25, model) allocate (unstable) call unstable%init (flv) call unstable%init_decays ([procname2], model) call model%set_unstable (25, [procname2]) call unstable%connect_decay (1, process, model) call unstable%compute () allocate (rng_test_t :: rng) allocate (instance) call instance%init (unstable) call instance%import_rng (rng) call instance%select_chain () call instance%generate () call instance%write (u) write (u, *) call instance%write_process_instances (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call instance%final () call process_stack%final () call unstable%final () write (u, "(A)") write (u, "(A)") "* Test output end: decays_4" end subroutine decays_4 @ %def decays_4 @ \subsubsection{Decay with Parent Process} We define a scattering process $ss\to ss$ and subsequent decays $s\to f\bar f$. <>= call test (decays_5, "decays_5", & "parent process and decay", & u, results) <>= public :: decays_5 <>= subroutine decays_5 (u) integer, intent(in) :: u type(os_data_t) :: os_data class(model_data_t), pointer :: model type(process_library_t), target :: lib type(string_t) :: prefix, procname1, procname2 type(process_stack_t) :: process_stack type(process_t), pointer :: process type(process_instance_t), allocatable, target :: process_instance type(decay_root_config_t), target :: decay_root_config type(decay_root_t) :: decay_root type(decay_chain_t) :: decay_chain write (u, "(A)") "* Test output: decays_5" write (u, "(A)") "* Purpose: Handle a process with subsequent decays" write (u, "(A)") write (u, "(A)") "* Initialize environment and parent process" write (u, "(A)") call os_data%init () prefix = "decays_5" procname1 = prefix // "_p" procname2 = prefix // "_d" call prepare_testbed & (lib, process_stack, prefix, os_data, & scattering=.true., decay=.true.) write (u, "(A)") "* Initialize decay process" write (u, "(A)") process => process_stack%get_process_ptr (procname1) model => process%get_model_ptr () call model%set_unstable (25, [procname2]) write (u, "(A)") "* Initialize decay tree configuration" write (u, "(A)") call decay_root_config%connect (process, model, process_stack) call decay_root_config%compute () call decay_root_config%write (u) write (u, "(A)") write (u, "(A)") "* Initialize decay tree" allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () call process_instance%init_simulation (1) call decay_root%init (decay_root_config, process_instance) write (u, "(A)") write (u, "(A)") "* Select decay chain" write (u, "(A)") call decay_root%set_mci (1) !!! Not yet implemented; there is only one term anyway: ! call process_instance%select_i_term (decay_root%selected_term) call decay_root%set_term (1) call decay_root%select_chain () call decay_chain%build (decay_root) call decay_root%write (u) write (u, "(A)") write (u, "(A)") "* Generate event" write (u, "(A)") call process_instance%generate_unweighted_event (decay_root%get_mci ()) call process_instance%evaluate_event_data () call decay_root%generate () call pacify (decay_root) write (u, "(A)") "* Process instances" write (u, "(A)") call decay_root%write_process_instances (u) write (u, "(A)") write (u, "(A)") "* Generate decay chain" write (u, "(A)") call decay_chain%evaluate () call decay_chain%write (u) write (u, *) write (u, "(A,ES19.12)") "chain probability =", & decay_chain%get_probability () write (u, "(A)") write (u, "(A)") "* Cleanup" call decay_chain%final () call decay_root%final () call decay_root_config%final () call process_instance%final () deallocate (process_instance) call process_stack%final () write (u, "(A)") write (u, "(A)") "* Test output end: decays_5" end subroutine decays_5 @ %def decays_5 @ \subsubsection{Decay as Event Transform} Again, we define a scattering process $ss\to ss$ and subsequent decays $s\to f\bar f$. <>= call test (decays_6, "decays_6", & "evt_decay object", & u, results) <>= public :: decays_6 <>= subroutine decays_6 (u) integer, intent(in) :: u type(os_data_t) :: os_data class(model_data_t), pointer :: model type(process_library_t), target :: lib type(string_t) :: prefix, procname1, procname2 type(process_stack_t) :: process_stack type(process_t), pointer :: process type(process_instance_t), allocatable, target :: process_instance type(evt_decay_t), target :: evt_decay integer :: factorization_mode logical :: keep_correlations write (u, "(A)") "* Test output: decays_6" write (u, "(A)") "* Purpose: Handle a process with subsequent decays" write (u, "(A)") write (u, "(A)") "* Initialize environment and parent process" write (u, "(A)") call os_data%init () prefix = "decays_6" procname1 = prefix // "_p" procname2 = prefix // "_d" call prepare_testbed & (lib, process_stack, prefix, os_data, & scattering=.true., decay=.true.) write (u, "(A)") "* Initialize decay process" process => process_stack%get_process_ptr (procname1) model => process%get_model_ptr () call model%set_unstable (25, [procname2]) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () call process_instance%init_simulation (1) write (u, "(A)") write (u, "(A)") "* Initialize decay object" call evt_decay%connect (process_instance, model, process_stack) write (u, "(A)") write (u, "(A)") "* Generate scattering event" call process_instance%generate_unweighted_event (1) call process_instance%evaluate_event_data () write (u, "(A)") write (u, "(A)") "* Select decay chain and generate event" write (u, "(A)") call evt_decay%prepare_new_event (1, 1) call evt_decay%generate_unweighted () factorization_mode = FM_IGNORE_HELICITY keep_correlations = .false. call evt_decay%make_particle_set (factorization_mode, keep_correlations) call evt_decay%write (u, verbose = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_decay%final () call process_instance%final () deallocate (process_instance) call process_stack%final () write (u, "(A)") write (u, "(A)") "* Test output end: decays_6" end subroutine decays_6 @ %def decays_6 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Tau decays} <<[[tau_decays.f90]]>>= <> module tau_decays <> use sm_qcd use model_data use models use event_transforms <> <> <> interface <> end interface end module tau_decays @ <<[[tau_decays_sub.f90]]>>= <> submodule (tau_decays) tau_decays_s use io_units use format_utils, only: write_separator implicit none contains <> end submodule tau_decays_s @ %def tau_decays_s @ @ %def tau_decays \subsection{Tau Decays Event Transform} This is the type for the tau decay event transform. <>= public :: evt_tau_decays_t <>= type, extends (evt_t) :: evt_tau_decays_t type(model_t), pointer :: model_hadrons => null() type(qcd_t) :: qcd contains <> end type evt_tau_decays_t @ %def evt_tau_decays_t <>= procedure :: write_name => evt_tau_decays_write_name <>= module subroutine evt_tau_decays_write_name (evt, unit) class(evt_tau_decays_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_tau_decays_write_name <>= module subroutine evt_tau_decays_write_name (evt, unit) class(evt_tau_decays_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: tau decays" end subroutine evt_tau_decays_write_name @ %def evt_tau_decays_write_name @ Output. <>= procedure :: write => evt_tau_decays_write <>= module subroutine evt_tau_decays_write & (evt, unit, verbose, more_verbose, testflag) class(evt_tau_decays_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_tau_decays_write <>= module subroutine evt_tau_decays_write & (evt, unit, verbose, more_verbose, testflag) class(evt_tau_decays_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag integer :: u u = given_output_unit (unit) call write_separator (u, 2) call evt%write_name (u) call write_separator (u) call evt%base_write (u, testflag = testflag, show_set = .false.) if (evt%particle_set_exists) & call evt%particle_set%write & (u, summary = .true., compressed = .true., testflag = testflag) call write_separator (u) end subroutine evt_tau_decays_write @ %def evt_tau_decays_write @ Here we take the particle set from the previous event transform and apply the tau decays. What probability should be given back, the product of branching ratios of the corresponding tau decays? <>= procedure :: generate_weighted => evt_tau_decays_generate_weighted <>= module subroutine evt_tau_decays_generate_weighted (evt, probability) class(evt_tau_decays_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_tau_decays_generate_weighted <>= module subroutine evt_tau_decays_generate_weighted (evt, probability) class(evt_tau_decays_t), intent(inout) :: evt real(default), intent(inout) :: probability logical :: valid evt%particle_set = evt%previous%particle_set !!! To be checked or expanded probability = 1 valid = .true. evt%particle_set_exists = valid end subroutine evt_tau_decays_generate_weighted @ %def evt_tau_decays_generate_weighted @ The factorization parameters are irrelevant. <>= procedure :: make_particle_set => evt_tau_decays_make_particle_set <>= module subroutine evt_tau_decays_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_tau_decays_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_tau_decays_make_particle_set <>= module subroutine evt_tau_decays_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_tau_decays_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r logical :: valid !!! to be checked and expanded valid = .true. evt%particle_set_exists = evt%particle_set_exists .and. valid end subroutine evt_tau_decays_make_particle_set @ %def event_tau_decays_make_particle_set @ <>= procedure :: prepare_new_event => evt_tau_decays_prepare_new_event <>= module subroutine evt_tau_decays_prepare_new_event (evt, i_mci, i_term) class(evt_tau_decays_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_tau_decays_prepare_new_event <>= module subroutine evt_tau_decays_prepare_new_event (evt, i_mci, i_term) class(evt_tau_decays_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term call evt%reset () end subroutine evt_tau_decays_prepare_new_event @ %def evt_tau_decays_prepare_new_event @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Shower} We might use matrix elements of LO and NLO to increase the accuracy of the shower in the sense of matching as well as merging. <<[[shower.f90]]>>= <> module shower <> <> use os_interface use pdf use shower_base use matching_base use sm_qcd use model_data use event_transforms use models use process, only: process_t use instances, only: process_instance_t use process_stacks <> <> <> <> interface <> end interface end module shower @ %def shower @ <<[[shower_sub.f90]]>>= <> submodule (shower) shower_s <> use io_units use format_utils, only: write_separator use system_defs, only: LF use diagnostics use lorentz use subevents, only: PRT_BEAM_REMNANT, PRT_INCOMING, PRT_OUTGOING use powheg_matching, only: powheg_matching_t use rng_base use hep_common implicit none contains <> end submodule shower_s @ %def shower_s @ \subsection{Configuration Parameters} [[POWHEG_TESTING]] allows to disable the parton shower for validation and testing of the POWHEG procedure. <>= logical, parameter :: POWHEG_TESTING = .true. @ %def POWHEG_TESTING @ \subsection{Event Transform} The event transforms can do more than mere showering. Especially, it may reweight showered events to fixed-order matrix elements. The [[model_hadrons]] is supposed to be the SM variant that contains all hadrons that can be generated in the shower. <>= public :: evt_shower_t <>= type, extends (evt_t) :: evt_shower_t class(shower_base_t), allocatable :: shower class(matching_t), allocatable :: matching type(model_t), pointer :: model_hadrons => null () type(qcd_t) :: qcd type(pdf_data_t) :: pdf_data type(os_data_t) :: os_data logical :: is_first_event contains <> end type evt_shower_t @ %def evt_shower_t @ <>= procedure :: write_name => evt_shower_write_name <>= module subroutine evt_shower_write_name (evt, unit) class(evt_shower_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_shower_write_name <>= module subroutine evt_shower_write_name (evt, unit) class(evt_shower_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: shower" end subroutine evt_shower_write_name @ %def evt_shower_write_name @ Output. <>= procedure :: write => evt_shower_write <>= module subroutine evt_shower_write & (evt, unit, verbose, more_verbose, testflag) class(evt_shower_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_shower_write <>= module subroutine evt_shower_write & (evt, unit, verbose, more_verbose, testflag) class(evt_shower_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag integer :: u u = given_output_unit (unit) call write_separator (u, 2) call evt%write_name (u) call write_separator (u) call evt%base_write (u, testflag = testflag, show_set = .false.) if (evt%particle_set_exists) call evt%particle_set%write & (u, summary = .true., compressed = .true., testflag = testflag) call write_separator (u) call evt%shower%settings%write (u) end subroutine evt_shower_write @ %def evt_shower_write <>= procedure :: connect => evt_shower_connect <>= module subroutine evt_shower_connect & (evt, process_instance, model, process_stack) class(evt_shower_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack end subroutine evt_shower_connect <>= module subroutine evt_shower_connect & (evt, process_instance, model, process_stack) class(evt_shower_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack call evt%base_connect (process_instance, model, process_stack) call evt%make_rng (evt%process) if (allocated (evt%matching)) then call evt%matching%connect (process_instance, model, evt%shower) end if end subroutine evt_shower_connect @ %def evt_shower_connect @ Initialize the event transformation. This will be executed once during dispatching. The [[model_hadrons]] is supposed to be the SM variant that contains all hadrons that may be generated in the shower. <>= procedure :: init => evt_shower_init <>= module subroutine evt_shower_init (evt, model_hadrons, os_data) class(evt_shower_t), intent(out) :: evt type(model_t), intent(in), target :: model_hadrons type(os_data_t), intent(in) :: os_data end subroutine evt_shower_init <>= module subroutine evt_shower_init (evt, model_hadrons, os_data) class(evt_shower_t), intent(out) :: evt type(model_t), intent(in), target :: model_hadrons type(os_data_t), intent(in) :: os_data evt%os_data = os_data evt%model_hadrons => model_hadrons evt%is_first_event = .true. end subroutine evt_shower_init @ %def evt_shower_init @ Create RNG instances, spawned by the process object. <>= procedure :: make_rng => evt_shower_make_rng <>= module subroutine evt_shower_make_rng (evt, process) class(evt_shower_t), intent(inout) :: evt type(process_t), intent(inout) :: process end subroutine evt_shower_make_rng <>= module subroutine evt_shower_make_rng (evt, process) class(evt_shower_t), intent(inout) :: evt type(process_t), intent(inout) :: process class(rng_t), allocatable :: rng call process%make_rng (rng) call evt%shower%import_rng (rng) if (allocated (evt%matching)) then call process%make_rng (rng) call evt%matching%import_rng (rng) end if end subroutine evt_shower_make_rng @ %def evt_shower_make_rng @ Things we want to do for a new event before the whole event transformation chain is evaluated. <>= procedure :: prepare_new_event => evt_shower_prepare_new_event <>= module subroutine evt_shower_prepare_new_event (evt, i_mci, i_term) class(evt_shower_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_shower_prepare_new_event <>= module subroutine evt_shower_prepare_new_event (evt, i_mci, i_term) class(evt_shower_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term real(default) :: fac_scale, alpha_s fac_scale = evt%process_instance%get_fac_scale (i_term) alpha_s = evt%process_instance%get_alpha_s (i_term) call evt%reset () call evt%shower%prepare_new_event (fac_scale, alpha_s) end subroutine evt_shower_prepare_new_event @ %def evt_shower_prepare_new_event @ <>= procedure :: first_event => evt_shower_first_event <>= module subroutine evt_shower_first_event (evt) class(evt_shower_t), intent(inout) :: evt end subroutine evt_shower_first_event <>= module subroutine evt_shower_first_event (evt) class(evt_shower_t), intent(inout) :: evt double precision :: pdftest if (debug_on) call msg_debug (D_TRANSFORMS, "evt_shower_first_event") associate (settings => evt%shower%settings) settings%hadron_collision = .false. !!! !!! !!! Workaround for PGF90 v16.1 !!! if (all (evt%particle_set%prt(1:2)%flv%get_pdg_abs () <= 39)) then if (evt%particle_set%prt(1)%flv%get_pdg_abs () <= 39 .and. & evt%particle_set%prt(2)%flv%get_pdg_abs () <= 39) then settings%hadron_collision = .false. !!! else if (all (evt%particle_set%prt(1:2)%flv%get_pdg_abs () >= 100)) then else if (evt%particle_set%prt(1)%flv%get_pdg_abs () >= 100 .and. & evt%particle_set%prt(2)%flv%get_pdg_abs () >= 100) then settings%hadron_collision = .true. else call msg_fatal ("evt_shower didn't recognize beams setup") end if if (debug_on) call msg_debug (D_TRANSFORMS, "hadron_collision", settings%hadron_collision) if (allocated (evt%matching)) then evt%matching%is_hadron_collision = settings%hadron_collision call evt%matching%first_event () end if if (.not. settings%hadron_collision .and. settings%isr_active) then call msg_fatal ("?ps_isr_active is only intended for hadron-collisions") end if if (evt%pdf_data%type == STRF_LHAPDF5) then if (settings%isr_active .and. settings%hadron_collision) then call GetQ2max (0, pdftest) if (pdftest < epsilon (pdftest)) then call msg_bug ("ISR QCD shower enabled, but LHAPDF not " // & "initialized," // LF // " aborting simulation") return end if end if else if (evt%pdf_data%type == STRF_PDF_BUILTIN .and. & settings%method == PS_PYTHIA6) then call msg_fatal ("Builtin PDFs cannot be used for PYTHIA showers," & // LF // " aborting simulation") return end if end associate evt%is_first_event = .false. end subroutine evt_shower_first_event @ %def evt_shower_first_event @ Here we take the particle set from the previous event transform (assuming that there is always one) and apply the shower algorithm. The result is stored in the event transform of the current object. We always return a probability of unity as we don't have the analytic weight of the combination of shower, MLM matching and hadronization. A subdivision into multiple event transformations is under construction. Invalid or vetoed events have to be discarded by the caller which is why we mark the particle set as invalid. This procedure directly takes the (MLM) matching into account. <>= procedure :: generate_weighted => evt_shower_generate_weighted <>= module subroutine evt_shower_generate_weighted (evt, probability) class(evt_shower_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_shower_generate_weighted <>= module subroutine evt_shower_generate_weighted (evt, probability) class(evt_shower_t), intent(inout) :: evt real(default), intent(inout) :: probability logical :: valid, vetoed, is_powheg_matching if (debug_on) call msg_debug (D_TRANSFORMS, "evt_shower_generate_weighted") if (signal_is_pending ()) return evt%particle_set = evt%previous%particle_set valid = .true.; vetoed = .false.; is_powheg_matching = .false. if (evt%is_first_event) call evt%first_event () call evt%shower%import_particle_set (evt%particle_set) if (allocated (evt%matching)) then call evt%matching%before_shower (evt%particle_set, vetoed) if (msg_level(D_TRANSFORMS) >= DEBUG) then if (debug_on) call msg_debug & (D_TRANSFORMS, "Matching before generate emissions") call evt%matching%write () end if end if if (allocated (evt%matching)) then select type (matching => evt%matching) type is (powheg_matching_t) is_powheg_matching = .true. end select end if if (.not. vetoed) then if (.not. POWHEG_TESTING .or. .not. is_powheg_matching) then if (evt%shower%settings%method == PS_PYTHIA6 .or. & evt%shower%settings%hadronization_active) then call assure_heprup (evt%particle_set) end if call evt%shower%generate_emissions (valid) end if end if probability = 1 evt%particle_set_exists = valid .and. .not. vetoed end subroutine evt_shower_generate_weighted @ %def evt_shower_generate_weighted @ Here, we fill the particle set with the partons from the shower. The factorization parameters are irrelevant. We make a sanity check that the initial energy lands either in the outgoing particles or add to the beam remnant. <>= procedure :: make_particle_set => evt_shower_make_particle_set <>= module subroutine evt_shower_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_shower_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_shower_make_particle_set <>= module subroutine evt_shower_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_shower_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r type(vector4_t) :: sum_vec_in, sum_vec_out, sum_vec_beamrem, & sum_vec_beamrem_before logical :: vetoed, sane if (evt%particle_set_exists) then vetoed = .false. sum_vec_beamrem_before = sum (evt%particle_set%prt%p, & mask=evt%particle_set%prt%get_status () == PRT_BEAM_REMNANT) call evt%shower%make_particle_set (evt%particle_set, & evt%model, evt%model_hadrons) if (allocated (evt%matching)) then call evt%matching%after_shower (evt%particle_set, vetoed) end if if (debug_active (D_TRANSFORMS)) then call msg_debug (D_TRANSFORMS, & "Shower: obtained particle set after shower + matching") call evt%particle_set%write (summary = .true., compressed = .true.) end if sum_vec_in = sum (evt%particle_set%prt%p, & mask=evt%particle_set%prt%get_status () == PRT_INCOMING) sum_vec_out = sum (evt%particle_set%prt%p, & mask=evt%particle_set%prt%get_status () == PRT_OUTGOING) sum_vec_beamrem = sum (evt%particle_set%prt%p, & mask=evt%particle_set%prt%get_status () == PRT_BEAM_REMNANT) sum_vec_beamrem = sum_vec_beamrem - sum_vec_beamrem_before sane = abs(sum_vec_out%p(0) - sum_vec_in%p(0)) < & sum_vec_in%p(0) / 10 .or. & abs((sum_vec_out%p(0) + sum_vec_beamrem%p(0)) - sum_vec_in%p(0)) < & sum_vec_in%p(0) / 10 sane = .true. evt%particle_set_exists = .not. vetoed .and. sane end if end subroutine evt_shower_make_particle_set @ %def event_shower_make_particle_set @ <>= procedure :: contains_powheg_matching => evt_shower_contains_powheg_matching <>= module function evt_shower_contains_powheg_matching (evt) result (val) logical :: val class(evt_shower_t), intent(in) :: evt end function evt_shower_contains_powheg_matching <>= module function evt_shower_contains_powheg_matching (evt) result (val) logical :: val class(evt_shower_t), intent(in) :: evt val = .false. if (allocated (evt%matching)) & val = evt%matching%get_method () == "POWHEG" end function evt_shower_contains_powheg_matching @ %def evt_shower_contains_powheg_matching @ <>= procedure :: disable_powheg_matching => evt_shower_disable_powheg_matching <>= module subroutine evt_shower_disable_powheg_matching (evt) class(evt_shower_t), intent(inout) :: evt end subroutine evt_shower_disable_powheg_matching <>= module subroutine evt_shower_disable_powheg_matching (evt) class(evt_shower_t), intent(inout) :: evt select type (matching => evt%matching) type is (powheg_matching_t) matching%active = .false. class default call msg_fatal ("Trying to disable powheg but " // & "no powheg matching is allocated!") end select end subroutine evt_shower_disable_powheg_matching @ %def evt_shower_disable_powheg_matching @ <>= procedure :: enable_powheg_matching => evt_shower_enable_powheg_matching <>= module subroutine evt_shower_enable_powheg_matching (evt) class(evt_shower_t), intent(inout) :: evt end subroutine evt_shower_enable_powheg_matching <>= module subroutine evt_shower_enable_powheg_matching (evt) class(evt_shower_t), intent(inout) :: evt select type (matching => evt%matching) type is (powheg_matching_t) matching%active = .true. class default call msg_fatal & ("Trying to enable powheg but no powheg matching is allocated!") end select end subroutine evt_shower_enable_powheg_matching @ %def evt_shower_enable_powheg_matching @ <>= procedure :: final => evt_shower_final <>= module subroutine evt_shower_final (evt) class(evt_shower_t), intent(inout) :: evt end subroutine evt_shower_final <>= module subroutine evt_shower_final (evt) class(evt_shower_t), intent(inout) :: evt call evt%base_final () if (allocated (evt%matching)) call evt%matching%final () end subroutine evt_shower_final @ %def evt_shower_final @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[shower_ut.f90]]>>= <> module shower_ut use unit_tests use shower_uti <> <> contains <> end module shower_ut @ %def shower_ut @ <<[[shower_uti.f90]]>>= <> module shower_uti <> <> use format_utils, only: write_separator use os_interface use sm_qcd use physics_defs, only: BORN use model_data use models use state_matrices, only: FM_IGNORE_HELICITY use process_libraries use rng_base use rng_tao use dispatch_rng, only: dispatch_rng_factory_fallback use mci_base use mci_midpoint use phs_base use phs_single use prc_core_def, only: prc_core_def_t use prc_core use prc_omega use variables use event_transforms use tauola_interface !NODEP! use process, only: process_t use instances, only: process_instance_t use pdf use shower_base use shower_core use dispatch_rng_ut, only: dispatch_rng_factory_tao use shower <> <> contains <> end module shower_uti @ %def shower_uti @ API: driver for the unit tests below. <>= public :: shower_test <>= subroutine shower_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine shower_test @ %def shower_test @ \subsubsection{Testbed} This sequence sets up a two-jet process, ready for generating events. <>= <> @ <>= subroutine setup_testbed & (prefix, os_data, lib, model_list, process, process_instance) type(string_t), intent(in) :: prefix type(os_data_t), intent(out) :: os_data type(process_library_t), intent(out), target :: lib type(model_list_t), intent(out) :: model_list type(model_t), pointer :: model type(model_t), pointer :: model_tmp type(process_t), target, intent(out) :: process type(process_instance_t), target, intent(out) :: process_instance type(var_list_t), pointer :: model_vars type(string_t) :: model_name, libname, procname type(process_def_entry_t), pointer :: entry type(string_t), dimension(:), allocatable :: prt_in, prt_out class(prc_core_t), allocatable :: core_template class(phs_config_t), allocatable :: phs_config_template real(default) :: sqrts model_name = "SM" libname = prefix // "_lib" procname = prefix // "p" call os_data%init () dispatch_rng_factory_fallback => dispatch_rng_factory_tao allocate (model_tmp) call model_list%read_model (model_name, model_name // ".mdl", & os_data, model_tmp) model_vars => model_tmp%get_var_list_ptr () call model_vars%set_real (var_str ("me"), 0._default, & is_known = .true.) model => model_tmp call lib%init (libname) allocate (prt_in (2), source = [var_str ("e-"), var_str ("e+")]) allocate (prt_out (2), source = [var_str ("d"), var_str ("dbar")]) allocate (entry) call entry%init (procname, model, n_in = 2, n_components = 1) call omega_make_process_component (entry, 1, & model_name, prt_in, prt_out, & report_progress=.true.) call lib%append (entry) call lib%configure (os_data) call lib%write_makefile (os_data, force = .true., verbose = .false.) call lib%clean (os_data, distclean = .false.) call lib%write_driver (force = .true.) call lib%load (os_data) call process%init (procname, lib, os_data, model) allocate (prc_omega_t :: core_template) allocate (phs_single_config_t :: phs_config_template) call process%setup_cores (dispatch_core_omega_test) call process%init_components (phs_config_template) sqrts = 1000 call process%setup_beams_sqrts (sqrts, i_core = 1) call process%configure_phs () call process%setup_mci (dispatch_mci_test_midpoint) call process%setup_terms () call process_instance%init (process) call process_instance%integrate (1, 1, 1000) call process%final_integration (1) call process_instance%setup_event_data (i_core = 1) call process_instance%init_simulation (1) call process_instance%generate_weighted_event (1) call process_instance%evaluate_event_data () end subroutine setup_testbed @ %def setup_testbed @ A minimal dispatcher version that allocates the core object for testing. <>= subroutine dispatch_core_omega_test (core, core_def, model, & helicity_selection, qcd, use_color_factors, has_beam_pol) class(prc_core_t), allocatable, intent(inout) :: core class(prc_core_def_t), intent(in) :: core_def class(model_data_t), intent(in), target, optional :: model type(helicity_selection_t), intent(in), optional :: helicity_selection type(qcd_t), intent(in), optional :: qcd logical, intent(in), optional :: use_color_factors logical, intent(in), optional :: has_beam_pol allocate (prc_omega_t :: core) select type (core) type is (prc_omega_t) call core%set_parameters (model) end select end subroutine dispatch_core_omega_test @ %def dispatch_core_omega_test @ MCI record prepared for midpoint integrator. <>= subroutine dispatch_mci_test_midpoint (mci, var_list, process_id, is_nlo) use variables, only: var_list_t class(mci_t), allocatable, intent(out) :: mci type(var_list_t), intent(in) :: var_list type(string_t), intent(in) :: process_id logical, intent(in), optional :: is_nlo allocate (mci_midpoint_t :: mci) end subroutine dispatch_mci_test_midpoint @ %def dispatch_mci_test_midpoint @ \subsubsection{Trivial Test} We generate a two-jet event and shower it using default settings, i.e. in disabled mode. <>= call test (shower_1, "shower_1", & "disabled shower", & u, results) <>= public :: shower_1 <>= subroutine shower_1 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(process_library_t), target :: lib type(model_list_t) :: model_list class(model_data_t), pointer :: model type(model_t), pointer :: model_hadrons type(process_t), target :: process type(process_instance_t), target :: process_instance type(pdf_data_t) :: pdf_data integer :: factorization_mode logical :: keep_correlations class(evt_t), allocatable, target :: evt_trivial class(evt_t), allocatable, target :: evt_shower type(shower_settings_t) :: settings type(taudec_settings_t) :: taudec_settings write (u, "(A)") "* Test output: shower_1" write (u, "(A)") "* Purpose: Two-jet event with disabled shower" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl"), & os_data, model_hadrons) call setup_testbed (var_str ("shower_1"), & os_data, lib, model_list, process, process_instance) write (u, "(A)") "* Set up trivial transform" write (u, "(A)") allocate (evt_trivial_t :: evt_trivial) model => process%get_model_ptr () call evt_trivial%connect (process_instance, model) call evt_trivial%prepare_new_event (1, 1) call evt_trivial%generate_unweighted () factorization_mode = FM_IGNORE_HELICITY keep_correlations = .false. call evt_trivial%make_particle_set (factorization_mode, keep_correlations) select type (evt_trivial) type is (evt_trivial_t) call evt_trivial%write (u) call write_separator (u, 2) end select write (u, "(A)") write (u, "(A)") "* Set up shower event transform" write (u, "(A)") allocate (evt_shower_t :: evt_shower) select type (evt_shower) type is (evt_shower_t) call evt_shower%init (model_hadrons, os_data) allocate (shower_t :: evt_shower%shower) call evt_shower%shower%init (settings, taudec_settings, pdf_data, os_data) call evt_shower%connect (process_instance, model) end select evt_trivial%next => evt_shower evt_shower%previous => evt_trivial call evt_shower%prepare_new_event (1, 1) call evt_shower%generate_unweighted () call evt_shower%make_particle_set (factorization_mode, keep_correlations) select type (evt_shower) type is (evt_shower_t) call evt_shower%write (u) call write_separator (u, 2) end select write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_shower%final () call evt_trivial%final () call process_instance%final () call process%final () call lib%final () call model_hadrons%final () deallocate (model_hadrons) call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: shower_1" end subroutine shower_1 @ %def shower_1 @ \subsubsection{FSR Shower} We generate a two-jet event and shower it with the Whizard FSR shower. <>= call test (shower_2, "shower_2", & "final-state shower", & u, results) <>= public :: shower_2 <>= subroutine shower_2 (u) integer, intent(in) :: u type(os_data_t) :: os_data type(process_library_t), target :: lib type(model_list_t) :: model_list type(model_t), pointer :: model_hadrons class(model_data_t), pointer :: model type(process_t), target :: process type(process_instance_t), target :: process_instance integer :: factorization_mode logical :: keep_correlations type(pdf_data_t) :: pdf_data class(evt_t), allocatable, target :: evt_trivial class(evt_t), allocatable, target :: evt_shower type(shower_settings_t) :: settings type(taudec_settings_t) :: taudec_settings write (u, "(A)") "* Test output: shower_2" write (u, "(A)") "* Purpose: Two-jet event with FSR shower" write (u, "(A)") write (u, "(A)") "* Initialize environment" write (u, "(A)") call syntax_model_file_init () call os_data%init () call model_list%read_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl"), & os_data, model_hadrons) call setup_testbed (var_str ("shower_2"), & os_data, lib, model_list, process, process_instance) model => process%get_model_ptr () write (u, "(A)") "* Set up trivial transform" write (u, "(A)") allocate (evt_trivial_t :: evt_trivial) call evt_trivial%connect (process_instance, model) call evt_trivial%prepare_new_event (1, 1) call evt_trivial%generate_unweighted () factorization_mode = FM_IGNORE_HELICITY keep_correlations = .false. call evt_trivial%make_particle_set (factorization_mode, keep_correlations) select type (evt_trivial) type is (evt_trivial_t) call evt_trivial%write (u) call write_separator (u, 2) end select write (u, "(A)") write (u, "(A)") "* Set up shower event transform" write (u, "(A)") settings%fsr_active = .true. allocate (evt_shower_t :: evt_shower) select type (evt_shower) type is (evt_shower_t) call evt_shower%init (model_hadrons, os_data) allocate (shower_t :: evt_shower%shower) call evt_shower%shower%init (settings, taudec_settings, pdf_data, os_data) call evt_shower%connect (process_instance, model) end select evt_trivial%next => evt_shower evt_shower%previous => evt_trivial call evt_shower%prepare_new_event (1, 1) call evt_shower%generate_unweighted () call evt_shower%make_particle_set (factorization_mode, keep_correlations) select type (evt_shower) type is (evt_shower_t) call evt_shower%write (u, testflag = .true.) call write_separator (u, 2) end select write (u, "(A)") write (u, "(A)") "* Cleanup" call evt_shower%final () call evt_trivial%final () call process_instance%final () call process%final () call lib%final () call model_hadrons%final () deallocate (model_hadrons) call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: shower_2" end subroutine shower_2 @ %def shower_2 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Fixed Order NLO Events} This section deals with the generation of weighted event samples which take into account next-to-leading order corrections. An approach generating unweighted events is not possible here, because negative weights might occur due to subtraction. Note that the events produced this way are not physical in the sense that they will not keep NLO-accuracy when interfaced to a parton shower. They are rather useful for theoretical consistency checks and a fast estimate of NLO effects.\\ We generate NLO events in the following way: First, the integration is carried out using the complete divergence-subtracted NLO matrix element. In the subsequent simulation, $N$-particle kinematics are generated using $\mathcal{B}+\mathcal{V}+\mathcal{C}$ as weight. After that, the program loops over all singular regions and for each of them generates an event with $N+1$-particle kinematics. The weight for those events corresponds to the real matrix element $\mathcal{R}^\alpha$ evaluated at the $\alpha$-region's emitter's phase space point, multiplied with $S_\alpha$. This procedure is implemented using the [[evt_nlo]] transform. <<[[evt_nlo.f90]]>>= <> module evt_nlo <> <> use constants use phs_points, only: phs_point_t use phs_points, only: assignment(=), operator(*), size use sm_qcd use model_data use particles use instances, only: process_instance_t use process_stacks use event_transforms use quantum_numbers, only: quantum_numbers_t use phs_fks, only: phs_fks_t, phs_fks_generator_t use phs_fks, only: phs_identifier_t, phs_point_set_t use resonances, only: resonance_contributors_t use fks_regions, only: region_data_t <> <> <> <> interface <> end interface end module evt_nlo @ %def evt_nlo @ <<[[evt_nlo_sub.f90]]>>= <> submodule (evt_nlo) evt_nlo_s <> use io_units, only: given_output_unit use diagnostics use format_utils, only: write_separator use numeric_utils, only: nearly_equal use physics_defs, only: BORN, NLO_REAL use lorentz use interactions, only: interaction_t use pcm, only: pcm_nlo_t, pcm_nlo_workspace_t use prc_core, only: prc_core_t use prc_external, only: prc_external_t use phs_fks, only: SQRTS_FIXED, SQRTS_VAR implicit none contains <> end submodule evt_nlo_s @ %def evt_nlo_s @ <>= type :: nlo_event_deps_t logical :: lab_is_cm = .true. type(phs_point_set_t) :: p_born_cms type(phs_point_set_t) :: p_born_lab type(phs_point_set_t) :: p_real_cms type(phs_point_set_t) :: p_real_lab type(resonance_contributors_t), dimension(:), allocatable :: contributors type(phs_identifier_t), dimension(:), allocatable :: phs_identifiers integer, dimension(:), allocatable :: alr_to_i_con integer :: n_phs = 0 end type nlo_event_deps_t @ %def nlo_event_deps_t @ This event transformation is for the generation of fixed-order NLO events. It takes an event with Born kinematics and creates $N_\alpha + 1$ modified weighted events. The first one has Born kinematics and its weight is the sum of Born, virtual, subtraction and, if present, also DGLAP matrix elements. The other $N_\alpha$ events have a weight which is equal to the real matrix element, evaluated with the phase space corresponding to the emitter of the $\alpha$-region. As the NLO event transforms have different kinematics, they also differ in their [[particle_set]]s. The NLO [[event_t]] object carries a single pointer to a [[particle_set]]. To avoid interference between the different NLO [[particle_set]]s, we save the [[particle_set]] of the current $\alpha$-region in the array [[particle_set_nlo]]. Otherwise it would be unretrievable if the usual particle set of the event object was used. <>= integer, parameter, public :: EVT_NLO_UNDEFINED = 0 integer, parameter, public :: EVT_NLO_SEPARATE_BORNLIKE = 1 integer, parameter, public :: EVT_NLO_SEPARATE_REAL = 2 integer, parameter, public :: EVT_NLO_COMBINED = 3 <>= public :: evt_nlo_t <>= type, extends (evt_t) :: evt_nlo_t type(phs_fks_generator_t) :: phs_fks_generator real(default) :: sqme_rad = zero integer :: i_evaluation = 0 type(particle_set_t), dimension(:), allocatable :: particle_set_nlo type(qcd_t) :: qcd type(nlo_event_deps_t) :: event_deps integer :: mode = EVT_NLO_UNDEFINED integer, dimension(:), allocatable :: & i_evaluation_to_i_phs, i_evaluation_to_emitter, & i_evaluation_to_i_term logical :: keep_failed_events = .false. integer :: selected_i_flv = 0 contains <> end type evt_nlo_t @ %def evt_nlo_t @ <>= procedure :: write_name => evt_nlo_write_name <>= module subroutine evt_nlo_write_name (evt, unit) class(evt_nlo_t), intent(in) :: evt integer, intent(in), optional :: unit end subroutine evt_nlo_write_name <>= module subroutine evt_nlo_write_name (evt, unit) class(evt_nlo_t), intent(in) :: evt integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Event transform: NLO" end subroutine evt_nlo_write_name @ %def evt_nlo_write_name @ <>= procedure :: write => evt_nlo_write <>= module subroutine evt_nlo_write (evt, unit, verbose, more_verbose, testflag) class(evt_nlo_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag end subroutine evt_nlo_write <>= module subroutine evt_nlo_write (evt, unit, verbose, more_verbose, testflag) class(evt_nlo_t), intent(in) :: evt integer, intent(in), optional :: unit logical, intent(in), optional :: verbose, more_verbose, testflag integer :: u, i u = given_output_unit (unit) call write_separator (u, 2) call evt%write_name (u) call write_separator (u) call evt%base_write (u, testflag = testflag, show_set = .true.) write (u,'(A,ES16.9)') "sqme_rad = ", evt%sqme_rad write (u, "(3x,A,I0)") "i_evaluation = ", evt%i_evaluation call write_separator (u) write (u, "(1x,A)") "Radiated particle sets:" do i = 1, size (evt%particle_set_nlo) call evt%particle_set_nlo(i)%write (u, testflag = testflag) call write_separator (u) end do end subroutine evt_nlo_write @ %def evt_nlo_write @ Connects the event transform to the process. Here also the phase space is set up by making [[real_kinematics]] point to the corresponding object in the [[pcm_instance]]. <>= procedure :: connect => evt_nlo_connect <>= module subroutine evt_nlo_connect & (evt, process_instance, model, process_stack) class(evt_nlo_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack end subroutine evt_nlo_connect <>= module subroutine evt_nlo_connect & (evt, process_instance, model, process_stack) class(evt_nlo_t), intent(inout), target :: evt type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack if (debug_on) call msg_debug (D_TRANSFORMS, "evt_nlo_connect") call evt%base_connect (process_instance, model, process_stack) select type (pcm_work => process_instance%pcm_work) class is (pcm_nlo_workspace_t) select type (pcm => process_instance%pcm) type is (pcm_nlo_t) call pcm%setup_phs_generator (pcm_work, evt%phs_fks_generator, & process_instance%get_sqrts ()) call evt%set_i_evaluation_mappings (pcm%region_data, & pcm_work%real_kinematics%alr_to_i_phs) end select end select call evt%set_mode (process_instance) call evt%setup_general_event_kinematics (process_instance) if (evt%mode > EVT_NLO_SEPARATE_BORNLIKE) & call evt%setup_real_event_kinematics (process_instance) if (debug_on) call msg_debug2 (D_TRANSFORMS, "evt_nlo_connect: success") end subroutine evt_nlo_connect @ %def evt_nlo_connect @ <>= procedure :: set_i_evaluation_mappings => evt_nlo_set_i_evaluation_mappings <>= module subroutine evt_nlo_set_i_evaluation_mappings & (evt, reg_data, alr_to_i_phs) class(evt_nlo_t), intent(inout) :: evt type(region_data_t), intent(in) :: reg_data integer, intent(in), dimension(:) :: alr_to_i_phs end subroutine evt_nlo_set_i_evaluation_mappings <>= type :: registered_triple_t integer, dimension(2) :: phs_em type(registered_triple_t), pointer :: next => null () end type registered_triple_t <>= module subroutine evt_nlo_set_i_evaluation_mappings & (evt, reg_data, alr_to_i_phs) class(evt_nlo_t), intent(inout) :: evt type(region_data_t), intent(in) :: reg_data integer, intent(in), dimension(:) :: alr_to_i_phs integer :: n_phs, alr integer :: i_evaluation, i_phs, emitter logical :: checked type(registered_triple_t), allocatable, target :: check_list i_evaluation = 1 n_phs = reg_data%n_phs allocate (evt%i_evaluation_to_i_phs (n_phs), source = 0) allocate (evt%i_evaluation_to_emitter (n_phs), source = -1) allocate (evt%i_evaluation_to_i_term (0 : n_phs), source = 0) do alr = 1, reg_data%n_regions i_phs = alr_to_i_phs (alr) emitter = reg_data%regions(alr)%emitter call search_check_list (checked) if (.not. checked) then evt%i_evaluation_to_i_phs (i_evaluation) = i_phs evt%i_evaluation_to_emitter (i_evaluation) = emitter i_evaluation = i_evaluation + 1 end if end do call fill_i_evaluation_to_i_term () if (.not. (all (evt%i_evaluation_to_i_phs > 0) & .and. all (evt%i_evaluation_to_emitter > -1))) then call msg_fatal ("evt_nlo: Inconsistent mappings!") else if (debug2_active (D_TRANSFORMS)) then print *, 'evt_nlo Mappings, i_evaluation -> ' print *, 'i_phs: ', evt%i_evaluation_to_i_phs print *, 'emitter: ', evt%i_evaluation_to_emitter end if end if contains subroutine fill_i_evaluation_to_i_term () integer :: i_term, i_evaluation, term_emitter !!! First find subtraction component i_evaluation = 1 do i_term = 1, evt%process%get_n_terms () if (evt%process_instance%term(i_term)%nlo_type /= NLO_REAL) cycle term_emitter = evt%process_instance%kin(i_term)%emitter if (term_emitter < 0) then evt%i_evaluation_to_i_term (0) = i_term else if (evt%i_evaluation_to_emitter(i_evaluation) == term_emitter) then evt%i_evaluation_to_i_term (i_evaluation) = i_term i_evaluation = i_evaluation + 1 end if end do end subroutine fill_i_evaluation_to_i_term subroutine search_check_list (found) logical, intent(out) :: found type(registered_triple_t), pointer :: current_triple => null () if (allocated (check_list)) then current_triple => check_list do if (all (current_triple%phs_em == [i_phs, emitter])) then found = .true. exit end if if (.not. associated (current_triple%next)) then allocate (current_triple%next) current_triple%next%phs_em = [i_phs, emitter] found = .false. exit else current_triple => current_triple%next end if end do else allocate (check_list) check_list%phs_em = [i_phs, emitter] found = .false. end if end subroutine search_check_list end subroutine evt_nlo_set_i_evaluation_mappings @ %def evt_nlo_set_i_evaluation_mappings @ <>= procedure :: get_i_phs => evt_nlo_get_i_phs <>= module function evt_nlo_get_i_phs (evt) result (i_phs) integer :: i_phs class(evt_nlo_t), intent(in) :: evt end function evt_nlo_get_i_phs <>= module function evt_nlo_get_i_phs (evt) result (i_phs) integer :: i_phs class(evt_nlo_t), intent(in) :: evt i_phs = evt%i_evaluation_to_i_phs (evt%i_evaluation) end function evt_nlo_get_i_phs @ %def evt_nlo_get_i_phs @ <>= procedure :: get_emitter => evt_nlo_get_emitter <>= module function evt_nlo_get_emitter (evt) result (emitter) integer :: emitter class(evt_nlo_t), intent(in) :: evt end function evt_nlo_get_emitter <>= module function evt_nlo_get_emitter (evt) result (emitter) integer :: emitter class(evt_nlo_t), intent(in) :: evt emitter = evt%i_evaluation_to_emitter (evt%i_evaluation) end function evt_nlo_get_emitter @ %def evt_nlo_get_emitter @ <>= procedure :: get_i_term => evt_nlo_get_i_term <>= module function evt_nlo_get_i_term (evt) result (i_term) integer :: i_term class(evt_nlo_t), intent(in) :: evt end function evt_nlo_get_i_term <>= module function evt_nlo_get_i_term (evt) result (i_term) integer :: i_term class(evt_nlo_t), intent(in) :: evt if (evt%mode >= EVT_NLO_SEPARATE_REAL) then i_term = evt%i_evaluation_to_i_term (evt%i_evaluation) else i_term = evt%process_instance%get_first_active_i_term () end if end function evt_nlo_get_i_term @ %def evt_nlo_get_i_term @ The event transform has a variable which counts the number of times it has already been called for one generation point. If this variable, [[i_evaluation]], is zero, this means that [[evt_nlo_generate_weighted]] is called for the first time, so that the generation of an $N$-particle event is required. In all other cases, emission events are generated. During a separate integration of the real component, the first event of each event group will become the counterevent. In this case, we return the sum of all subtraction matrix elements. During a combined integration, the first event will be a combination of all Born-like events. To get the sum of their matrix elements, we subtract the sum of all real emissions from the sum of all matrix elements as the real contribution is the only non-Born contribution. Note that the argument named [[probablity]], the use of the routine [[generate_weighted]] and the procedure we use to generate NLO events via an event transformation is an abuse of the interface which should be refactored. <>= procedure :: generate_weighted => evt_nlo_generate_weighted <>= module subroutine evt_nlo_generate_weighted (evt, probability) class(evt_nlo_t), intent(inout) :: evt real(default), intent(inout) :: probability end subroutine evt_nlo_generate_weighted <>= module subroutine evt_nlo_generate_weighted (evt, probability) class(evt_nlo_t), intent(inout) :: evt real(default), intent(inout) :: probability real(default) :: sqme call print_debug_info () sqme = probability if (evt%mode > EVT_NLO_SEPARATE_BORNLIKE) then if (evt%i_evaluation == 0) then call evt%reset_phs_identifiers () call evt%evaluate_real_kinematics () if (evt%mode == EVT_NLO_SEPARATE_REAL) then sqme = evt%compute_subtraction_sqmes () else sqme = sqme - evt%compute_all_sqme_rad () end if else call evt%compute_real () sqme = evt%sqme_rad end if end if probability = sqme if (debug_on) call msg_debug & (D_TRANSFORMS, "probability (after)", probability) contains function status_code_to_string (mode) result (smode) type(string_t) :: smode integer, intent(in) :: mode select case (mode) case (EVT_NLO_UNDEFINED) smode = var_str ("Undefined") case (EVT_NLO_SEPARATE_BORNLIKE) smode = var_str ("Born-like") case (EVT_NLO_SEPARATE_REAL) smode = var_str ("Real") case (EVT_NLO_COMBINED) smode = var_str ("Combined") end select end function status_code_to_string subroutine print_debug_info () if (debug_on) call msg_debug (D_TRANSFORMS, "evt_nlo_generate_weighted") if (debug_on) call msg_debug & (D_TRANSFORMS, char ("mode: " // status_code_to_string (evt%mode))) if (debug_on) call msg_debug & (D_TRANSFORMS, "probability (before)", probability) if (debug_on) call msg_debug & (D_TRANSFORMS, "evt%i_evaluation", evt%i_evaluation) if (debug2_active (D_TRANSFORMS)) then if (evt%mode > EVT_NLO_SEPARATE_BORNLIKE) then if (evt%i_evaluation == 0) then print *, 'Evaluate subtraction component' else print *, 'Evaluate radiation component' end if end if end if end subroutine print_debug_info end subroutine evt_nlo_generate_weighted @ %def evt_nlo_generate_weighted @ <>= procedure :: reset_phs_identifiers => evt_nlo_reset_phs_identifiers <>= module subroutine evt_nlo_reset_phs_identifiers (evt) class(evt_nlo_t), intent(inout) :: evt end subroutine evt_nlo_reset_phs_identifiers <>= module subroutine evt_nlo_reset_phs_identifiers (evt) class(evt_nlo_t), intent(inout) :: evt evt%event_deps%phs_identifiers%evaluated = .false. end subroutine evt_nlo_reset_phs_identifiers @ %def evt_nlo_reset_phs_identifiers @ The routine [[make_factorized_particle_set]] will setup the subevent momenta from the [[connected%matrix]]. Its initial state momenta correspond to the Born process without IS splitting and thus need to be updated with the real momenta from the [[int_hard]] to get correct momenta in the events with real radiation. Ideally the [[int_hard]] and the [[connected]] would be setup with correct [[source_link]]s to real momenta so that we would not need to replace momenta of the [[connected]] here. The parameter [[n_in]] from the [[int_matrix]] is still $0$ as it has been shifted to [[n_vir]]. We thus take [[n_in]] from the [[particle_set]]. <>= procedure :: connected_set_real_IS_momenta => & evt_nlo_connected_set_real_IS_momenta <>= module subroutine evt_nlo_connected_set_real_IS_momenta (evt) class(evt_nlo_t), intent(inout) :: evt end subroutine evt_nlo_connected_set_real_IS_momenta <>= module subroutine evt_nlo_connected_set_real_IS_momenta (evt) class(evt_nlo_t), intent(inout) :: evt type(vector4_t) :: p_hard, p_beam, p_remn type(interaction_t), pointer :: int_matrix integer :: i, i_term, n_in, i_in_beam, i_in_hard, i_in_remn i_term = evt%get_i_term () int_matrix => evt%process_instance%get_matrix_int_ptr (i_term) n_in = evt%particle_set%get_n_in () do i = 1, n_in i_in_beam = i i_in_hard = n_in + i i_in_remn = 2 * n_in + i p_hard = evt%process_instance%term(i_term)%int_hard%get_momentum (i) p_beam = int_matrix%get_momentum (i_in_beam) p_remn = p_beam - p_hard call int_matrix%set_momentum (p_hard , i_in_hard) call int_matrix%set_momentum (p_remn , i_in_remn) end do end subroutine evt_nlo_connected_set_real_IS_momenta @ %def evt_nlo_connected_set_real_IS_momenta @ <>= procedure :: make_particle_set => evt_nlo_make_particle_set <>= module subroutine evt_nlo_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_nlo_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r end subroutine evt_nlo_make_particle_set <>= module subroutine evt_nlo_make_particle_set & (evt, factorization_mode, keep_correlations, r) class(evt_nlo_t), intent(inout) :: evt integer, intent(in) :: factorization_mode logical, intent(in) :: keep_correlations real(default), dimension(:), intent(in), optional :: r if (evt%mode >= EVT_NLO_SEPARATE_BORNLIKE) then call make_factorized_particle_set (evt, factorization_mode, & keep_correlations, r, evt%get_i_term (), & evt%get_selected_quantum_numbers (evt%selected_i_flv)) else call make_factorized_particle_set (evt, factorization_mode, & keep_correlations, r) end if end subroutine evt_nlo_make_particle_set @ %def evt_nlo_make_particle_set @ <>= procedure :: evaluate_real_kinematics => evt_nlo_evaluate_real_kinematics <>= module subroutine evt_nlo_evaluate_real_kinematics (evt) class(evt_nlo_t), intent(inout) :: evt end subroutine evt_nlo_evaluate_real_kinematics <>= module subroutine evt_nlo_evaluate_real_kinematics (evt) class(evt_nlo_t), intent(inout) :: evt integer :: alr, i_phs, i_con, emitter real(default), dimension(3) :: x_rad logical :: use_contributors integer :: n_regions integer :: i_term type(vector4_t), dimension(:), allocatable :: p_real select type (pcm_work => evt%process_instance%pcm_work) class is (pcm_nlo_workspace_t) x_rad = pcm_work%real_kinematics%x_rad associate (event_deps => evt%event_deps) i_term = evt%get_i_term () event_deps%p_born_lab%phs_point(1) = & evt%process_instance%term(i_term)%p_seed event_deps%p_born_cms%phs_point(1) & = evt%boost_to_cms (event_deps%p_born_lab%phs_point(1)) call evt%phs_fks_generator%set_sqrts_hat & (event_deps%p_born_cms%get_energy (1, 1)) use_contributors = allocated (event_deps%contributors) select type (pcm => evt%process_instance%pcm) type is (pcm_nlo_t) n_regions = pcm%region_data%n_regions end select do alr = 1, n_regions i_phs = pcm_work%real_kinematics%alr_to_i_phs(alr) if (event_deps%phs_identifiers(i_phs)%evaluated) cycle emitter = event_deps%phs_identifiers(i_phs)%emitter associate (generator => evt%phs_fks_generator) if (emitter <= evt%process%get_n_in ()) then call generator%prepare_generation (x_rad, i_phs, emitter, & event_deps%p_born_cms%phs_point(1)%get (), & event_deps%phs_identifiers) ! TODO wk 19-02-28: intent of p_real (also below)? p_real = event_deps%p_real_lab%phs_point(i_phs) select case (generator%isr_kinematics%isr_mode) case (SQRTS_FIXED) call generator%generate_isr_fixed_beam_energy (i_phs, & event_deps%p_born_cms%phs_point(1)%get (), & p_real) case (SQRTS_VAR) call generator%generate_isr (i_phs, & event_deps%p_born_lab%phs_point(1)%get (), & p_real) end select event_deps%p_real_lab%phs_point(i_phs) = p_real event_deps%p_real_cms%phs_point(i_phs) & = evt%boost_to_cms (event_deps%p_real_lab%phs_point(i_phs)) else if (use_contributors) then i_con = event_deps%alr_to_i_con(alr) call generator%prepare_generation (x_rad, i_phs, emitter, & event_deps%p_born_cms%phs_point(1)%get (), & event_deps%phs_identifiers, event_deps%contributors, i_con) p_real = event_deps%p_real_cms%phs_point(i_phs) call generator%generate_fsr (emitter, i_phs, i_con, & event_deps%p_born_cms%phs_point(1)%get (), & p_real) event_deps%p_real_cms%phs_point(i_phs) = p_real else call generator%prepare_generation (x_rad, i_phs, emitter, & event_deps%p_born_cms%phs_point(1)%get (), & event_deps%phs_identifiers) p_real = event_deps%p_real_cms%phs_point(i_phs) call generator%generate_fsr (emitter, i_phs, & event_deps%p_born_cms%phs_point(1)%get (), & p_real) event_deps%p_real_cms%phs_point(i_phs) = p_real end if event_deps%p_real_lab%phs_point(i_phs) & = evt%boost_to_lab (event_deps%p_real_cms%phs_point(i_phs)) end if end associate call pcm_work%set_momenta & (event_deps%p_born_lab%phs_point(1)%get (), & event_deps%p_real_lab%phs_point(i_phs)%get (), & i_phs) call pcm_work%set_momenta & (event_deps%p_born_cms%phs_point(1)%get (), & event_deps%p_real_cms%phs_point(i_phs)%get (), & i_phs, cms = .true.) event_deps%phs_identifiers(i_phs)%evaluated = .true. end do end associate end select end subroutine evt_nlo_evaluate_real_kinematics @ %def evt_nlo_evaluate_real_kinematics @ This routine calls the evaluation of the singular regions only for the subtraction terms. <>= procedure :: compute_subtraction_sqmes => evt_nlo_compute_subtraction_sqmes <>= module function evt_nlo_compute_subtraction_sqmes (evt) result (sqme) class(evt_nlo_t), intent(inout) :: evt real(default) :: sqme end function evt_nlo_compute_subtraction_sqmes <>= module function evt_nlo_compute_subtraction_sqmes (evt) result (sqme) class(evt_nlo_t), intent(inout) :: evt real(default) :: sqme integer :: i_phs, i_term if (debug_on) call msg_debug & (D_TRANSFORMS, "evt_nlo_compute_subtraction_sqmes") sqme = zero associate (event_deps => evt%event_deps) i_phs = 1; i_term = evt%i_evaluation_to_i_term(0) call evt%process_instance%compute_sqme_rad & (i_term, i_phs, is_subtraction = .true.) sqme = sqme + evt%process_instance%get_sqme (i_term) end associate end function evt_nlo_compute_subtraction_sqmes @ %def evt_nlo_compute_subtraction_sqmes @ This routine calls the evaluation of the singular regions only for emission matrix elements. <>= procedure :: compute_real => evt_nlo_compute_real <>= module subroutine evt_nlo_compute_real (evt) class(evt_nlo_t), intent(inout) :: evt end subroutine evt_nlo_compute_real <>= module subroutine evt_nlo_compute_real (evt) class(evt_nlo_t), intent(inout) :: evt integer :: i_phs, i_term if (debug_on) call msg_debug (D_TRANSFORMS, "evt_nlo_compute_real") i_phs = evt%get_i_phs () i_term = evt%i_evaluation_to_i_term (evt%i_evaluation) associate (event_deps => evt%event_deps) call evt%process_instance%compute_sqme_rad (i_term, i_phs, & is_subtraction = .false.) evt%sqme_rad = evt%process_instance%get_sqme (i_term) end associate end subroutine evt_nlo_compute_real @ %def evt_nlo_compute_real @ This routine calls the evaluation of the singular regions only for all emission matrix elements. This is needed for the combined mode. It returns the sum of all valid real matrix elements. <>= procedure :: compute_all_sqme_rad => evt_nlo_compute_all_sqme_rad <>= module function evt_nlo_compute_all_sqme_rad (evt) result (sqme) class(evt_nlo_t), intent(inout) :: evt real(default) :: sqme end function evt_nlo_compute_all_sqme_rad <>= module function evt_nlo_compute_all_sqme_rad (evt) result (sqme) class(evt_nlo_t), intent(inout) :: evt real(default) :: sqme integer :: i_phs, i_term if (debug_on) call msg_debug (D_TRANSFORMS, "evt_nlo_compute_all_sqme_rad") sqme = zero do i_term = 1, size (evt%process_instance%term) if (evt%is_valid_event (i_term)) then associate (term => evt%process_instance%term(i_term)) if (term%nlo_type == NLO_REAL .and. & .not. term%is_subtraction ()) then i_phs = evt%process_instance%kin(i_term)%i_phs call evt%process_instance%compute_sqme_rad ( & i_term, i_phs, is_subtraction = .false.) sqme = sqme + evt%process_instance%get_sqme (i_term) end if end associate end if end do end function evt_nlo_compute_all_sqme_rad @ %def evt_nlo_compute_all_sqme_rad @ Boosts the given four vector [[p_lab]] to the Born or real CMS depending on the number of given momenta. Unfortunately, all boosts available via [[get_boost_to_cms]] are Born-like, so we need to compute the boost to the real CMS here manually. We cannot rely on [[i_term]] in order to determine whether to apply a Born-like or a real boost as we also need a real boost to compute the weights of the Born-like subevents as implemented in [[evt_nlo_generate_weighted]]. <>= procedure :: boost_to_cms => evt_nlo_boost_to_cms <>= module function evt_nlo_boost_to_cms (evt, p_lab) result (p_cms) type(phs_point_t), intent(in) :: p_lab class(evt_nlo_t), intent(in) :: evt type(phs_point_t) :: p_cms end function evt_nlo_boost_to_cms <>= module function evt_nlo_boost_to_cms (evt, p_lab) result (p_cms) type(phs_point_t), intent(in) :: p_lab class(evt_nlo_t), intent(in) :: evt type(phs_point_t) :: p_cms type(vector4_t) :: p0, p1 type(lorentz_transformation_t) :: lt_lab_to_cms, lt real(default) :: sqrts_hat integer :: i_boost, n_legs_born if (evt%event_deps%lab_is_cm) then lt_lab_to_cms = identity else n_legs_born = size (evt%event_deps%p_born_lab%phs_point(1)) if (size (p_lab) == n_legs_born) then i_boost = evt%get_i_term () lt_lab_to_cms = evt%process_instance%get_boost_to_cms (i_boost) else sqrts_hat = (p_lab%select (1) + p_lab%select (2))**1 p0 = p_lab%select (1) + p_lab%select (2) lt = boost (p0, sqrts_hat) p1 = inverse(lt) * p_lab%select (1) lt_lab_to_cms = inverse (lt * rotation_to_2nd (3, space_part (p1))) end if end if p_cms = lt_lab_to_cms * p_lab end function evt_nlo_boost_to_cms @ %def evt_nlo_boost_to_cms @ Boosts the given four vector [[p_cms]] from the Born CMS to the lab system. It should not be called for ISR as in this case, the Born CMS and the real CMS differ. <>= procedure :: boost_to_lab => evt_nlo_boost_to_lab <>= module function evt_nlo_boost_to_lab (evt, p_cms) result (p_lab) type(phs_point_t) :: p_lab class(evt_nlo_t), intent(in) :: evt type(phs_point_t), intent(in) :: p_cms end function evt_nlo_boost_to_lab <>= module function evt_nlo_boost_to_lab (evt, p_cms) result (p_lab) type(phs_point_t) :: p_lab class(evt_nlo_t), intent(in) :: evt type(phs_point_t), intent(in) :: p_cms type(lorentz_transformation_t) :: lt_cms_to_lab integer :: i_boost if (evt%event_deps%lab_is_cm) then lt_cms_to_lab = identity else i_boost = evt%get_i_term () lt_cms_to_lab = evt%process_instance%get_boost_to_lab (i_boost) end if p_lab = lt_cms_to_lab * p_cms end function evt_nlo_boost_to_lab @ %def evt_nlo_boost_to_lab @ <>= procedure :: setup_general_event_kinematics => & evt_nlo_setup_general_event_kinematics <>= module subroutine evt_nlo_setup_general_event_kinematics & (evt, process_instance) class(evt_nlo_t), intent(inout) :: evt type(process_instance_t), intent(in) :: process_instance end subroutine evt_nlo_setup_general_event_kinematics <>= module subroutine evt_nlo_setup_general_event_kinematics & (evt, process_instance) class(evt_nlo_t), intent(inout) :: evt type(process_instance_t), intent(in) :: process_instance integer :: n_born associate (event_deps => evt%event_deps) event_deps%lab_is_cm = process_instance%lab_is_cm (1) select type (pcm => process_instance%pcm) type is (pcm_nlo_t) n_born = pcm%region_data%n_legs_born end select call event_deps%p_born_cms%init (n_born, 1) call event_deps%p_born_lab%init (n_born, 1) end associate end subroutine evt_nlo_setup_general_event_kinematics @ %def evt_nlo_setup_general_event_kinematics @ <>= procedure :: setup_real_event_kinematics => & evt_nlo_setup_real_event_kinematics <>= module subroutine evt_nlo_setup_real_event_kinematics & (evt, process_instance) class(evt_nlo_t), intent(inout) :: evt type(process_instance_t), intent(in) :: process_instance end subroutine evt_nlo_setup_real_event_kinematics <>= module subroutine evt_nlo_setup_real_event_kinematics (evt, process_instance) class(evt_nlo_t), intent(inout) :: evt type(process_instance_t), intent(in) :: process_instance integer :: n_real, n_phs integer :: i_real associate (event_deps => evt%event_deps) select type (pcm => process_instance%pcm) class is (pcm_nlo_t) n_real = pcm%region_data%n_legs_real end select i_real = evt%process%get_first_real_term () select type (phs => process_instance%kin(i_real)%phs) type is (phs_fks_t) event_deps%phs_identifiers = phs%phs_identifiers end select n_phs = size (event_deps%phs_identifiers) call event_deps%p_real_cms%init (n_real, n_phs) call event_deps%p_real_lab%init (n_real, n_phs) select type (pcm => process_instance%pcm) type is (pcm_nlo_t) if (allocated (pcm%region_data%alr_contributors)) then allocate (event_deps%contributors & (size (pcm%region_data%alr_contributors))) event_deps%contributors = pcm%region_data%alr_contributors end if if (allocated (pcm%region_data%alr_to_i_contributor)) then allocate (event_deps%alr_to_i_con & (size (pcm%region_data%alr_to_i_contributor))) event_deps%alr_to_i_con = pcm%region_data%alr_to_i_contributor end if end select end associate end subroutine evt_nlo_setup_real_event_kinematics @ %def evt_nlo_setup_real_event_kinematics @ <>= procedure :: set_mode => evt_nlo_set_mode <>= module subroutine evt_nlo_set_mode (evt, process_instance) class(evt_nlo_t), intent(inout) :: evt type(process_instance_t), intent(in) :: process_instance end subroutine evt_nlo_set_mode <>= module subroutine evt_nlo_set_mode (evt, process_instance) class(evt_nlo_t), intent(inout) :: evt type(process_instance_t), intent(in) :: process_instance integer :: i_real select type (pcm => process_instance%pcm) type is (pcm_nlo_t) if (pcm%settings%combined_integration) then evt%mode = EVT_NLO_COMBINED else i_real = evt%process%get_first_real_component () if (i_real == evt%process%extract_active_component_mci ()) then evt%mode = EVT_NLO_SEPARATE_REAL else evt%mode = EVT_NLO_SEPARATE_BORNLIKE end if end if end select end subroutine evt_nlo_set_mode @ %def evt_nlo_set_mode @ <>= procedure :: is_valid_event => evt_nlo_is_valid_event <>= module function evt_nlo_is_valid_event (evt, i_term) result (valid) logical :: valid class(evt_nlo_t), intent(in) :: evt integer, intent(in) :: i_term end function evt_nlo_is_valid_event <>= module function evt_nlo_is_valid_event (evt, i_term) result (valid) logical :: valid class(evt_nlo_t), intent(in) :: evt integer, intent(in) :: i_term valid = evt%process_instance%term(i_term)%passed end function evt_nlo_is_valid_event @ %def evt_nlo_is_valid_event @ Retrieves the actual quantum numbers chosen in [[evt_nlo_prepare_new_event]]. <>= procedure :: get_selected_quantum_numbers => & evt_nlo_get_selected_quantum_numbers <>= module function evt_nlo_get_selected_quantum_numbers & (evt, i_flv) result (qn_select) class(evt_nlo_t), intent(in) :: evt integer, intent(in) :: i_flv type(quantum_numbers_t), dimension(:), allocatable :: qn_select end function evt_nlo_get_selected_quantum_numbers <>= module function evt_nlo_get_selected_quantum_numbers & (evt, i_flv) result (qn_select) class(evt_nlo_t), intent(in) :: evt integer, intent(in) :: i_flv type(quantum_numbers_t), dimension(:), allocatable :: qn_select integer :: i_term, index i_term = evt%get_i_term () associate (term => evt%process_instance%term(i_term)) index = term%connected%matrix%get_qn_index (i_flv, i_sub = 0) qn_select = term%connected%matrix%get_quantum_numbers (index) end associate end function evt_nlo_get_selected_quantum_numbers @ %def evt_nlo_get_selected_quantum_numbers @ Selects a flavor structure for Born subevents, such that each possible flavor structure is as probable as its portion of the sum of Born matrix elements over all flavors. For non-Born Born-like subevents, no Born matrix elements are available. We always choose [[i_flv = 1]] in this case. If all terms are active, i.e. in a full NLO calculation, the flavors of Born-like subevents will be distributed according to the Born matrix elements only, to avoid issues with matrix elements of different sign and assure a LO flavor distribution. Likewise, the real-like event flavors are distributed according to the real matrix elements. Here, we need to make sure to not mix matrix elements from different real terms and instead determine the flavor for each subevent based on just the matrix elements for one of the terms. The implementation below assumes that in the sequence of NLO terms, the Born term is immediately followed by all the real terms which are again followed by the subtraction, the virtual and the DGLAP term. Both flavor structures can be determined without correlation as the flavors will only become important for events to be matched to a parton shower and in this case we will only generate either a single Born-like or a single real-like event which are not part of an event group. In case all subevents failed the cuts, all [[sqme]]s were set to $0$ so we cannot determine the flavor in this way. In this case, we always choose the first flavor structure given by the matrix-element generator with [[i_flv = 1]]. Ideally, having to choose a particle set here would not be necessary as it is also chosen in [[particle_set_init_interaction]] which in the current approach is disabled by supplying [[qn_select]] explicitly based on the flavors chosen here. <>= procedure :: prepare_new_event => evt_nlo_prepare_new_event <>= module subroutine evt_nlo_prepare_new_event (evt, i_mci, i_term) class(evt_nlo_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term end subroutine evt_nlo_prepare_new_event <>= module subroutine evt_nlo_prepare_new_event (evt, i_mci, i_term) class(evt_nlo_t), intent(inout) :: evt integer, intent(in) :: i_mci, i_term real(default) :: s, x real(default) :: sqme_total real(default), dimension(:), allocatable :: sqme_flv integer :: i, i_flv, i_core, emitter, n_in logical, save :: warn_once = .true. class(prc_core_t), pointer :: core => null () call evt%reset () call evt%rng%generate (x) do i = 1, size (evt%process_instance%term) associate (term => evt%process_instance%term(i)) if (evt%i_evaluation == 0) then if (term%nlo_type == BORN) then allocate (sqme_flv (term%config%data%n_flv)) exit end if else if (term%nlo_type == NLO_REAL .and. .not. term%is_subtraction()) then allocate (sqme_flv (term%config%data%n_flv)) exit end if end if end associate end do sqme_total = zero sqme_flv = zero i_core = evt%process%get_i_core (i_term) core => evt%process%get_core_ptr (i_core) do i = 1, size (evt%process_instance%term) associate (term => evt%process_instance%term(i)) if (i == evt%i_evaluation + 1 .and. (term%nlo_type == BORN .or. & (term%nlo_type == NLO_REAL .and. .not. term%is_subtraction())) ) then sqme_total = sqme_total + real (sum ( term%connected%matrix%get_matrix_element ())) !!! TODO (VR 2020-02-19) figure out why this select type is needed for prc_omega_t !!! For NLO and prc_omega_t the connected trace seems to be set up incorrectly! !!! (PS 2020-11-05) This leads to real events of processes with structure functions !!! having a wrong flavor distribution if computed with O'Mega. !!! The flavor distributions are identical with and also without the special case !!! for O'Mega and wrong in both cases. !!! However, this case it is not critical as long as O'Mega does not provide matrix elements !!! exclusive in coupling orders and is thus only rarely used for NLO applications anyways select type (core) class is (prc_external_t) do i_flv = 1, size (sqme_flv) if (allocated (term%passed_array)) then if (term%passed .and. .not. term%passed_array(i_flv)) cycle end if sqme_flv(i_flv) = sqme_flv(i_flv) & + real (term%connected%matrix%get_matrix_element ( & term%connected%matrix%get_qn_index (i_flv, i_sub = 0))) end do class default sqme_flv = sqme_flv & + real (term%connected%matrix%get_matrix_element ()) emitter = evt%process_instance%kin(i)%emitter n_in = evt%process_instance%kin(i)%n_in if (warn_once .and. term%nlo_type == NLO_REAL .and. emitter <= n_in) then warn_once = .false. call msg_warning("evt_nlo_prepare_new_event: fNLO flavor& & distributions with O'Mega are wrong.") end if end select end if end associate end do if (debug2_active (D_TRANSFORMS)) then if (.not. nearly_equal(sqme_total, sum (sqme_flv))) then call msg_warning ("evt_nlo_prepare_new_event: & &sum over flavored sqmes does not match total sqme.") end if end if !!! Need absolute values to take into account negative weights x = x * abs (sqme_total) s = abs (sqme_flv (1)) evt%selected_i_flv = 1 if (s < x) then do i_flv = 2, size (sqme_flv) s = s + abs (sqme_flv (i_flv)) if (s > x) then evt%selected_i_flv = i_flv exit end if end do end if if (debug2_active (D_TRANSFORMS)) then call msg_print_color ("Selected i_flv: ", COL_GREEN) print *, evt%selected_i_flv end if end subroutine evt_nlo_prepare_new_event @ %def evt_nlo_prepare_new_event @ \section{Complete Events} This module combines hard processes with decay chains, shower, and hadronization (not implemented yet) to complete events. It also manages the input and output of event records in various formats. <<[[events.f90]]>>= <> module events <> <> use diagnostics use variables use expr_base use model_data use state_matrices, only: FM_IGNORE_HELICITY, & FM_SELECT_HELICITY, FM_FACTOR_HELICITY, FM_CORRELATED_HELICITY use particles use subevt_expr use rng_base use process, only: process_t use instances, only: process_instance_t use process_stacks use event_base use event_transforms <> <> <> <> interface <> end interface contains <> end module events @ %def events @ <<[[events_sub.f90]]>>= <> submodule (events) events_s <> use constants, only: one use io_units use format_utils, only: pac_fmt, write_separator use format_defs, only: FMT_12, FMT_19 use numeric_utils use pcm, only: pcm_nlo_workspace_t use decays use evt_nlo use phs_fks, only: SQRTS_FIXED, SQRTS_VAR implicit none contains <> end submodule events_s @ %def events_s @ \subsection{Event configuration} The parameters govern the transformation of an event to a particle set. The [[safety_factor]] reduces the acceptance probability for unweighting. If greater than one, excess events become less likely, but the reweighting efficiency also drops. The [[sigma]] and [[n]] values, if nontrivial, allow for reweighting the events according to the requested [[norm_mode]]. Various [[parse_node_t]] objects are taken from the SINDARIN input. They encode expressions that apply to the current event. The workspaces for evaluating those expressions are set up in the [[event_expr_t]] objects. Note that these are really pointers, so the actual nodes are not stored inside the event object. <>= type :: event_config_t logical :: unweighted = .false. integer :: norm_mode = NORM_UNDEFINED integer :: factorization_mode = FM_IGNORE_HELICITY logical :: keep_correlations = .false. logical :: colorize_subevt = .false. real(default) :: sigma = 1 integer :: n = 1 real(default) :: safety_factor = 1 class(expr_factory_t), allocatable :: ef_selection class(expr_factory_t), allocatable :: ef_reweight class(expr_factory_t), allocatable :: ef_analysis contains <> end type event_config_t @ %def event_config_t @ Output. <>= procedure :: write => event_config_write <>= module subroutine event_config_write (object, unit, show_expressions) class(event_config_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: show_expressions end subroutine event_config_write <>= module subroutine event_config_write (object, unit, show_expressions) class(event_config_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: show_expressions integer :: u u = given_output_unit (unit) write (u, "(3x,A,L1)") "Unweighted = ", object%unweighted write (u, "(3x,A,A)") "Normalization = ", & char (event_normalization_string (object%norm_mode)) write (u, "(3x,A)", advance="no") "Helicity handling = " select case (object%factorization_mode) case (FM_IGNORE_HELICITY) write (u, "(A)") "drop" case (FM_SELECT_HELICITY) write (u, "(A)") "select" case (FM_FACTOR_HELICITY) write (u, "(A)") "factorize" end select write (u, "(3x,A,L1)") "Keep correlations = ", object%keep_correlations if (object%colorize_subevt) then write (u, "(3x,A,L1)") "Colorize subevent = ", object%colorize_subevt end if if (.not. nearly_equal (object%safety_factor, one)) then write (u, "(3x,A," // FMT_12 // ")") & "Safety factor = ", object%safety_factor end if if (present (show_expressions)) then if (show_expressions) then if (allocated (object%ef_selection)) then call write_separator (u) write (u, "(3x,A)") "Event selection expression:" call object%ef_selection%write (u) end if if (allocated (object%ef_reweight)) then call write_separator (u) write (u, "(3x,A)") "Event reweighting expression:" call object%ef_reweight%write (u) end if if (allocated (object%ef_analysis)) then call write_separator (u) write (u, "(3x,A)") "Analysis expression:" call object%ef_analysis%write (u) end if end if end if end subroutine event_config_write @ %def event_config_write @ \subsection{The event type} This is the concrete implementation of the [[generic_event_t]] core that is defined above in the [[event_base]] module. The core manages the main (dressed) particle set pointer and the current values for weights and sqme. The implementation adds configuration data, expressions, process references, and event transforms. Each event refers to a single elementary process. This process may be dressed by a shower, a decay chain etc. We maintain pointers to a process instance. A list of event transforms (class [[evt_t]]) transform the connected interactions of the process instance into the final particle set. In this list, the first transform is always the trivial one, which just factorizes the process instance. Subsequent transforms may apply decays, etc. The [[particle_set]] pointer identifies the particle set that we want to be analyzed and returned by the event, usually the last one. Squared matrix element and weight values: when reading events from file, the [[ref]] value is the number in the file, while the [[prc]] value is the number that we calculate from the momenta in the file, possibly with different parameters. When generating events the first time, or if we do not recalculate, the numbers should coincide. Furthermore, the array of [[alt]] values is copied from an array of alternative event records. These values should represent calculated values. The [[sqme]] and [[weight]] values mirror corresponding values in the [[expr]] subobject. The idea is that when generating or reading events, the event record is filled first, then the [[expr]] object acquires copies. These copies are used for writing events and as targets for pointer variables in the analysis expression. All data that involve user-provided expressions (selection, reweighting, analysis) are handled by the [[expr]] subobject. In particular, evaluating the event-selection expression sets the [[passed]] flag. Furthermore, the [[expr]] subobject collects data that can be used in the analysis and should be written to file, including copies of [[sqme]] and [[weight]]. <>= public :: event_t <>= type, extends (generic_event_t) :: event_t type(event_config_t) :: config type(process_t), pointer :: process => null () type(process_instance_t), pointer :: instance => null () class(rng_t), allocatable :: rng integer :: selected_i_mci = 0 integer :: selected_i_term = 0 integer :: selected_channel = 0 logical :: is_complete = .false. class(evt_t), pointer :: transform_first => null () class(evt_t), pointer :: transform_last => null () type(event_expr_t) :: expr logical :: selection_evaluated = .false. logical :: passed = .false. real(default), allocatable :: alpha_qcd_forced real(default), allocatable :: scale_forced real(default) :: reweight = 1 logical :: analysis_flag = .false. integer :: i_event = 0 contains <> end type event_t @ %def event_t @ <>= procedure :: clone => event_clone <>= module subroutine event_clone (event, event_new) class(event_t), intent(in), target :: event class(event_t), intent(out), target:: event_new end subroutine event_clone <>= module subroutine event_clone (event, event_new) class(event_t), intent(in), target :: event class(event_t), intent(out), target:: event_new type(string_t) :: id integer :: num_id event_new%config = event%config event_new%process => event%process event_new%instance => event%instance if (allocated (event%rng)) & allocate(event_new%rng, source=event%rng) event_new%selected_i_mci = event%selected_i_mci event_new%selected_i_term = event%selected_i_term event_new%selected_channel = event%selected_channel event_new%is_complete = event%is_complete event_new%transform_first => event%transform_first event_new%transform_last => event%transform_last event_new%selection_evaluated = event%selection_evaluated event_new%passed = event%passed if (allocated (event%alpha_qcd_forced)) & allocate(event_new%alpha_qcd_forced, source=event%alpha_qcd_forced) if (allocated (event%scale_forced)) & allocate(event_new%scale_forced, source=event%scale_forced) event_new%reweight = event%reweight event_new%analysis_flag = event%analysis_flag event_new%i_event = event%i_event id = event_new%process%get_id () if (id /= "") call event_new%expr%set_process_id (id) num_id = event_new%process%get_num_id () if (num_id /= 0) call event_new%expr%set_process_num_id (num_id) call event_new%expr%setup_vars (event_new%process%get_sqrts ()) call event_new%expr%link_var_list (event_new%process%get_var_list_ptr ()) end subroutine event_clone @ %def event_clone @ Finalizer: the list of event transforms is deleted iteratively. <>= procedure :: final => event_final <>= module subroutine event_final (object) class(event_t), intent(inout) :: object end subroutine event_final <>= module subroutine event_final (object) class(event_t), intent(inout) :: object class(evt_t), pointer :: evt if (allocated (object%rng)) call object%rng%final () call object%expr%final () do while (associated (object%transform_first)) evt => object%transform_first object%transform_first => evt%next call evt%final () deallocate (evt) end do end subroutine event_final @ %def event_final @ Output. The event index is written in the header, it should coincide with the [[event_index]] variable that can be used in selection and analysis. Particle set: this is a pointer to one of the event transforms, so it should suffice to print the latter. <>= procedure :: write => event_write <>= module subroutine event_write (object, unit, show_process, & show_transforms, show_decay, verbose, testflag) class(event_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: show_process, show_transforms, show_decay logical, intent(in), optional :: verbose logical, intent(in), optional :: testflag end subroutine event_write <>= module subroutine event_write (object, unit, show_process, & show_transforms, show_decay, verbose, testflag) class(event_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: show_process, show_transforms, show_decay logical, intent(in), optional :: verbose logical, intent(in), optional :: testflag logical :: prc, trans, dec, verb class(evt_t), pointer :: evt character(len=7) :: fmt integer :: u, i call pac_fmt (fmt, FMT_19, FMT_12, testflag) u = given_output_unit (unit) prc = .true.; if (present (show_process)) prc = show_process trans = .true.; if (present (show_transforms)) trans = show_transforms dec = .true.; if (present (show_decay)) dec = show_decay verb = .false.; if (present (verbose)) verb = verbose call write_separator (u, 2) write (u, "(1x,A)", advance="no") "Event" if (object%has_index ()) then write (u, "(1x,'#',I0)", advance="no") object%get_index () end if if (object%is_complete) then write (u, *) else write (u, "(1x,A)") "[incomplete]" end if call write_separator (u) call object%config%write (u) if (object%sqme_ref_is_known () .or. object%weight_ref_is_known ()) then call write_separator (u) end if if (object%sqme_ref_is_known ()) then write (u, "(3x,A," // fmt // ")") & "Squared matrix el. (ref) = ", object%get_sqme_ref () if (object%sqme_alt_is_known ()) then do i = 1, object%get_n_alt () write (u, "(5x,A," // fmt // ",1x,I0)") & "alternate sqme = ", object%get_sqme_alt(i), i end do end if end if if (object%sqme_prc_is_known ()) & write (u, "(3x,A," // fmt // ")") & "Squared matrix el. (prc) = ", object%get_sqme_prc () if (object%weight_ref_is_known ()) then write (u, "(3x,A," // fmt // ")") & "Event weight (ref) = ", object%get_weight_ref () if (object%weight_alt_is_known ()) then do i = 1, object%get_n_alt () write (u, "(5x,A," // fmt // ",1x,I0)") & "alternate weight = ", object%get_weight_alt(i), i end do end if end if if (object%weight_prc_is_known ()) & write (u, "(3x,A," // fmt // ")") & "Event weight (prc) = ", object%get_weight_prc () if (object%selected_i_mci /= 0) then call write_separator (u) write (u, "(3x,A,I0)") "Selected MCI group = ", object%selected_i_mci write (u, "(3x,A,I0)") "Selected term = ", object%selected_i_term write (u, "(3x,A,I0)") "Selected channel = ", object%selected_channel end if if (object%selection_evaluated) then call write_separator (u) write (u, "(3x,A,L1)") "Passed selection = ", object%passed if (object%passed) then write (u, "(3x,A," // fmt // ")") & "Reweighting factor = ", object%reweight write (u, "(3x,A,L1)") & "Analysis flag = ", object%analysis_flag end if end if if (associated (object%instance)) then if (prc) then if (verb) then call object%instance%write (u, testflag) else call object%instance%write_header (u) end if end if if (trans) then evt => object%transform_first do while (associated (evt)) select type (evt) type is (evt_decay_t) call evt%write (u, verbose = dec, more_verbose = verb, & testflag = testflag) class default call evt%write (u, verbose = verb, testflag = testflag) end select call write_separator (u, 2) evt => evt%next end do else call write_separator (u, 2) end if if (object%expr%subevt_filled) then call object%expr%write (u, pacified = testflag) call write_separator (u, 2) end if else call write_separator (u, 2) write (u, "(1x,A)") "Process instance: [undefined]" call write_separator (u, 2) end if end subroutine event_write @ %def event_write @ \subsection{Initialization} Initialize: set configuration parameters, using a variable list. We do not call this [[init]], because this method name will be used by a type extension. The default normalization is [[NORM_SIGMA]], since the default generation mode is weighted. For unweighted events, we may want to a apply a safety factor to event rejection. (By default, this factor is unity and can be ignored.) We also allocate the trivial event transform, which is always the first one. Gfortran 7/8/9 bug, has to remain in the main module: <>= procedure :: basic_init => event_init <>= subroutine event_init (event, var_list, n_alt) class(event_t), intent(out) :: event type(var_list_t), intent(in), optional :: var_list integer, intent(in), optional :: n_alt type(string_t) :: norm_string, mode_string logical :: polarized_events if (present (n_alt)) then call event%base_init (n_alt) call event%expr%init (n_alt) else call event%base_init (0) end if if (present (var_list)) then event%config%unweighted = var_list%get_lval (& var_str ("?unweighted")) norm_string = var_list%get_sval (& var_str ("$sample_normalization")) event%config%norm_mode = & event_normalization_mode (norm_string, event%config%unweighted) polarized_events = & var_list%get_lval (var_str ("?polarized_events")) if (polarized_events) then mode_string = & var_list%get_sval (var_str ("$polarization_mode")) select case (char (mode_string)) case ("ignore") event%config%factorization_mode = FM_IGNORE_HELICITY case ("helicity") event%config%factorization_mode = FM_SELECT_HELICITY case ("factorized") event%config%factorization_mode = FM_FACTOR_HELICITY case ("correlated") event%config%factorization_mode = FM_CORRELATED_HELICITY case default call msg_fatal ("Polarization mode " & // char (mode_string) // " is undefined") end select else event%config%factorization_mode = FM_IGNORE_HELICITY end if event%config%colorize_subevt = & var_list%get_lval (var_str ("?colorize_subevt")) if (event%config%unweighted) then event%config%safety_factor = var_list%get_rval (& var_str ("safety_factor")) end if else event%config%norm_mode = NORM_SIGMA end if allocate (evt_trivial_t :: event%transform_first) event%transform_last => event%transform_first end subroutine event_init @ %def event_init @ Set the [[sigma]] and [[n]] values in the configuration record that determine non-standard event normalizations. If these numbers are not set explicitly, the default value for both is unity, and event renormalization has no effect. <>= procedure :: set_sigma => event_set_sigma procedure :: set_n => event_set_n <>= elemental module subroutine event_set_sigma (event, sigma) class(event_t), intent(inout) :: event real(default), intent(in) :: sigma end subroutine event_set_sigma elemental module subroutine event_set_n (event, n) class(event_t), intent(inout) :: event integer, intent(in) :: n end subroutine event_set_n <>= elemental module subroutine event_set_sigma (event, sigma) class(event_t), intent(inout) :: event real(default), intent(in) :: sigma event%config%sigma = sigma end subroutine event_set_sigma elemental module subroutine event_set_n (event, n) class(event_t), intent(inout) :: event integer, intent(in) :: n event%config%n = n end subroutine event_set_n @ %def event_set_n @ Append an event transform (decays, etc.). The transform is not yet connected to a process. The transform is then considered to belong to the event object, and will be finalized together with it. The original pointer is removed. We can assume that the trivial transform is already present in the event object, at least. <>= procedure :: import_transform => event_import_transform <>= module subroutine event_import_transform (event, evt) class(event_t), intent(inout) :: event class(evt_t), intent(inout), pointer :: evt end subroutine event_import_transform <>= module subroutine event_import_transform (event, evt) class(event_t), intent(inout) :: event class(evt_t), intent(inout), pointer :: evt event%transform_last%next => evt evt%previous => event%transform_last event%transform_last => evt evt => null () end subroutine event_import_transform @ %def event_import_transform @ We link the event to an existing process instance. This includes the variable list, which is linked to the process variable list. Note that this is not necessarily identical to the variable list used for event initialization. The variable list will contain pointers to [[event]] subobjects, therefore the [[target]] attribute. Once we have a process connected, we can use it to obtain an event generator instance. The model and process stack may be needed by event transforms. The current model setting may be different from the model in the process (regarding unstable particles, etc.). The process stack can be used for assigning extra processes that we need for the event transforms. <>= procedure :: connect => event_connect <>= module subroutine event_connect & (event, process_instance, model, process_stack) class(event_t), intent(inout), target :: event type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack end subroutine event_connect <>= module subroutine event_connect & (event, process_instance, model, process_stack) class(event_t), intent(inout), target :: event type(process_instance_t), intent(in), target :: process_instance class(model_data_t), intent(in), target :: model type(process_stack_t), intent(in), optional :: process_stack type(string_t) :: id integer :: num_id class(evt_t), pointer :: evt event%process => process_instance%process event%instance => process_instance id = event%process%get_id () if (id /= "") call event%expr%set_process_id (id) num_id = event%process%get_num_id () if (num_id /= 0) call event%expr%set_process_num_id (num_id) call event%expr%setup_vars (event%process%get_sqrts ()) call event%expr%link_var_list (event%process%get_var_list_ptr ()) call event%process%make_rng (event%rng) evt => event%transform_first do while (associated (evt)) call evt%connect (process_instance, model, process_stack) evt => evt%next end do end subroutine event_connect @ %def event_connect @ Set the parse nodes for the associated expressions, individually. The parse-node pointers may be null. <>= procedure :: set_selection => event_set_selection procedure :: set_reweight => event_set_reweight procedure :: set_analysis => event_set_analysis <>= module subroutine event_set_selection (event, ef_selection) class(event_t), intent(inout) :: event class(expr_factory_t), intent(in) :: ef_selection end subroutine event_set_selection module subroutine event_set_reweight (event, ef_reweight) class(event_t), intent(inout) :: event class(expr_factory_t), intent(in) :: ef_reweight end subroutine event_set_reweight module subroutine event_set_analysis (event, ef_analysis) class(event_t), intent(inout) :: event class(expr_factory_t), intent(in) :: ef_analysis end subroutine event_set_analysis <>= module subroutine event_set_selection (event, ef_selection) class(event_t), intent(inout) :: event class(expr_factory_t), intent(in) :: ef_selection allocate (event%config%ef_selection, source = ef_selection) end subroutine event_set_selection module subroutine event_set_reweight (event, ef_reweight) class(event_t), intent(inout) :: event class(expr_factory_t), intent(in) :: ef_reweight allocate (event%config%ef_reweight, source = ef_reweight) end subroutine event_set_reweight module subroutine event_set_analysis (event, ef_analysis) class(event_t), intent(inout) :: event class(expr_factory_t), intent(in) :: ef_analysis allocate (event%config%ef_analysis, source = ef_analysis) end subroutine event_set_analysis @ %def event_set_selection @ %def event_set_reweight @ %def event_set_analysis @ Create evaluation trees from the parse trees. The [[target]] attribute is required because the expressions contain pointers to event subobjects. <>= procedure :: setup_expressions => event_setup_expressions <>= module subroutine event_setup_expressions (event) class(event_t), intent(inout), target :: event end subroutine event_setup_expressions <>= module subroutine event_setup_expressions (event) class(event_t), intent(inout), target :: event call event%expr%setup_selection (event%config%ef_selection) call event%expr%setup_analysis (event%config%ef_analysis) call event%expr%setup_reweight (event%config%ef_reweight) call event%expr%colorize (event%config%colorize_subevt) end subroutine event_setup_expressions @ %def event_setup_expressions @ \subsection{Evaluation} To fill the [[particle_set]], i.e., the event record proper, we have to apply all event transforms in order. The last transform should fill its associated particle set, factorizing the state matrix according to the current settings. There are several parameters in the event configuration that control this. We always fill the particle set for the first transform (the hard process) and the last transform, if different from the first (the fully dressed process). Each event transform is an event generator of its own. We choose to generate an \emph{unweighted} event for each of them, even if the master event is assumed to be weighted. Thus, the overall event weight is the one of the hard process only. (There may be more options in future extensions.) We can generate the two random numbers that the factorization needs. For testing purpose, we allow for providing them explicitly, as an option. <>= procedure :: evaluate_transforms => event_evaluate_transforms <>= module subroutine event_evaluate_transforms (event, r) class(event_t), intent(inout) :: event real(default), dimension(:), intent(in), optional :: r end subroutine event_evaluate_transforms <>= module subroutine event_evaluate_transforms (event, r) class(event_t), intent(inout) :: event real(default), dimension(:), intent(in), optional :: r class(evt_t), pointer :: evt real(default) :: weight_over_sqme integer :: i_term, emitter, n_in logical :: failed_but_keep failed_but_keep = .false. if (debug_on) call msg_debug (D_TRANSFORMS, "event_evaluate_transforms") call event%discard_particle_set () call event%check () if (event%instance%is_complete_event ()) then i_term = event%instance%select_i_term () event%selected_i_term = i_term evt => event%transform_first do while (associated (evt)) call evt%prepare_new_event & (event%selected_i_mci, event%selected_i_term) evt => evt%next end do if (debug_on) call msg_debug & (D_TRANSFORMS, "Before event transformations") if (debug_on) call msg_debug & (D_TRANSFORMS, "event%weight_prc", event%weight_prc) if (debug_on) call msg_debug & (D_TRANSFORMS, "event%sqme_prc", event%sqme_prc) evt => event%transform_first do while (associated (evt)) call print_transform_name_if_debug () if (evt%only_weighted_events) then select type (evt) type is (evt_nlo_t) i_term = evt%get_i_term () failed_but_keep = .not. evt%is_valid_event (i_term) & .and. evt%keep_failed_events if (.not. any(evt%process_instance%term%passed .and. evt%process_instance%term%active) & .and. .not. evt%keep_failed_events) return end select if (abs (event%weight_prc) > 0._default) then weight_over_sqme = event%weight_prc / event%sqme_prc call evt%generate_weighted (event%sqme_prc) event%weight_prc = weight_over_sqme * event%sqme_prc select type (evt) type is (evt_nlo_t) if (.not. evt%is_valid_event (i_term)) event%weight_prc = 0 end select else if (.not. failed_but_keep) exit end if else call evt%generate_unweighted () end if if (signal_is_pending ()) return select type (evt) type is (evt_nlo_t) if (evt%i_evaluation > 0) then emitter = evt%process_instance%kin(i_term)%emitter n_in = evt%process_instance%kin(i_term)%n_in select type (pcm_work => evt%process_instance%term(i_term)%pcm_work) type is (pcm_nlo_workspace_t) if (emitter <= n_in .and. pcm_work%isr_kinematics%isr_mode == SQRTS_VAR) then call evt%connected_set_real_IS_momenta () end if end select end if end select call evt%make_particle_set (event%config%factorization_mode, & event%config%keep_correlations) if (signal_is_pending ()) return if (.not. evt%particle_set_exists) exit evt => evt%next end do evt => event%transform_last if ((associated (evt) .and. evt%particle_set_exists) .or. failed_but_keep) then if (event%is_nlo ()) then select type (evt) type is (evt_nlo_t) evt%particle_set_nlo (event%i_event + 1) = evt%particle_set evt%i_evaluation = evt%i_evaluation + 1 call event%link_particle_set & (evt%particle_set_nlo(event%i_event + 1)) end select else call event%link_particle_set (evt%particle_set) end if end if if (debug_on) call msg_debug & (D_TRANSFORMS, "After event transformations") if (debug_on) call msg_debug & (D_TRANSFORMS, "event%weight_prc", event%weight_prc) if (debug_on) call msg_debug & (D_TRANSFORMS, "event%sqme_prc", event%sqme_prc) if (debug_on) call msg_debug & (D_TRANSFORMS, "evt%particle_set_exists", evt%particle_set_exists) end if contains subroutine print_transform_name_if_debug () if (debug_active (D_TRANSFORMS)) then print *, 'Current event transform: ' call evt%write_name () end if end subroutine print_transform_name_if_debug end subroutine event_evaluate_transforms @ %def event_evaluate_transforms @ Set / increment the event index for the current event. There is no condition for this to happen. The event index is actually stored in the subevent expression, because this allows us to access it in subevent expressions as a variable. <>= procedure :: set_index => event_set_index procedure :: increment_index => event_increment_index <>= module subroutine event_set_index (event, index) class(event_t), intent(inout) :: event integer, intent(in) :: index end subroutine event_set_index module subroutine event_increment_index (event, offset) class(event_t), intent(inout) :: event integer, intent(in), optional :: offset end subroutine event_increment_index <>= module subroutine event_set_index (event, index) class(event_t), intent(inout) :: event integer, intent(in) :: index call event%expr%set_event_index (index) end subroutine event_set_index module subroutine event_increment_index (event, offset) class(event_t), intent(inout) :: event integer, intent(in), optional :: offset call event%expr%increment_event_index (offset) end subroutine event_increment_index @ %def event_set_index @ %def event_increment_index @ Evaluate the event-related expressions, given a valid [[particle_set]]. If [[update_sqme]] is set, we use the process instance for the [[sqme_prc]] value. The [[sqme_ref]] value is always taken from the event record. <>= procedure :: evaluate_expressions => event_evaluate_expressions <>= module subroutine event_evaluate_expressions (event) class(event_t), intent(inout) :: event end subroutine event_evaluate_expressions <>= module subroutine event_evaluate_expressions (event) class(event_t), intent(inout) :: event if (event%has_valid_particle_set ()) then call event%expr%fill_subevt (event%get_particle_set_ptr ()) end if if (event%weight_ref_is_known ()) then call event%expr%set (weight_ref = event%get_weight_ref ()) end if if (event%weight_prc_is_known ()) then call event%expr%set (weight_prc = event%get_weight_prc ()) end if if (event%excess_prc_is_known ()) then call event%expr%set (excess_prc = event%get_excess_prc ()) end if if (event%sqme_ref_is_known ()) then call event%expr%set (sqme_ref = event%get_sqme_ref ()) end if if (event%sqme_prc_is_known ()) then call event%expr%set (sqme_prc = event%get_sqme_prc ()) end if if (event%has_valid_particle_set ()) then call event%expr%evaluate & (event%passed, event%reweight, event%analysis_flag) event%selection_evaluated = .true. end if end subroutine event_evaluate_expressions @ %def event_evaluate_expressions @ Report the result of the [[selection]] evaluation. <>= procedure :: passed_selection => event_passed_selection <>= module function event_passed_selection (event) result (flag) class(event_t), intent(in) :: event logical :: flag end function event_passed_selection <>= module function event_passed_selection (event) result (flag) class(event_t), intent(in) :: event logical :: flag flag = event%passed end function event_passed_selection @ %def event_passed_selection @ Set alternate sqme and weight arrays. This should be merged with the previous routine, if the expressions are allowed to refer to these values. <>= procedure :: store_alt_values => event_store_alt_values <>= module subroutine event_store_alt_values (event) class(event_t), intent(inout) :: event end subroutine event_store_alt_values <>= module subroutine event_store_alt_values (event) class(event_t), intent(inout) :: event if (event%weight_alt_is_known ()) then call event%expr%set (weight_alt = event%get_weight_alt ()) end if if (event%sqme_alt_is_known ()) then call event%expr%set (sqme_alt = event%get_sqme_alt ()) end if end subroutine event_store_alt_values @ %def event_store_alt_values @ <>= procedure :: is_nlo => event_is_nlo <>= module function event_is_nlo (event) result (is_nlo) logical :: is_nlo class(event_t), intent(in) :: event end function event_is_nlo <>= module function event_is_nlo (event) result (is_nlo) logical :: is_nlo class(event_t), intent(in) :: event if (associated (event%instance)) then select type (pcm_work => event%instance%pcm_work) type is (pcm_nlo_workspace_t) is_nlo = pcm_work%is_fixed_order_nlo_events () class default is_nlo = .false. end select else is_nlo = .false. end if end function event_is_nlo @ %def event_is_nlo @ \subsection{Reset to empty state} Applying this, current event contents are marked as incomplete but are not deleted. In particular, the initialization is kept. The event index is also kept, this can be reset separately. <>= procedure :: reset_contents => event_reset_contents procedure :: reset_index => event_reset_index <>= module subroutine event_reset_contents (event) class(event_t), intent(inout) :: event end subroutine event_reset_contents module subroutine event_reset_index (event) class(event_t), intent(inout) :: event end subroutine event_reset_index <>= module subroutine event_reset_contents (event) class(event_t), intent(inout) :: event class(evt_t), pointer :: evt call event%base_reset_contents () event%selected_i_mci = 0 event%selected_i_term = 0 event%selected_channel = 0 event%is_complete = .false. call event%expr%reset_contents () event%selection_evaluated = .false. event%passed = .false. event%analysis_flag = .false. if (associated (event%instance)) then call event%instance%reset (reset_mci = .true.) end if if (allocated (event%alpha_qcd_forced)) deallocate (event%alpha_qcd_forced) if (allocated (event%scale_forced)) deallocate (event%scale_forced) evt => event%transform_first do while (associated (evt)) call evt%reset () evt => evt%next end do end subroutine event_reset_contents module subroutine event_reset_index (event) class(event_t), intent(inout) :: event call event%expr%reset_event_index () end subroutine event_reset_index @ %def event_reset_contents @ %def event_reset_index @ \subsection{Squared Matrix Element and Weight} Transfer the result of the process instance calculation to the event record header. <>= procedure :: import_instance_results => event_import_instance_results <>= module subroutine event_import_instance_results (event) class(event_t), intent(inout) :: event end subroutine event_import_instance_results <>= module subroutine event_import_instance_results (event) class(event_t), intent(inout) :: event if (associated (event%instance)) then if (event%instance%has_evaluated_trace ()) then call event%set ( & sqme_prc = event%instance%get_sqme (), & weight_prc = event%instance%get_weight (), & excess_prc = event%instance%get_excess (), & n_dropped = event%instance%get_n_dropped () & ) end if end if end subroutine event_import_instance_results @ %def event_import_instance_results @ Duplicate the instance result / the reference result in the event record. <>= procedure :: accept_sqme_ref => event_accept_sqme_ref procedure :: accept_sqme_prc => event_accept_sqme_prc procedure :: accept_weight_ref => event_accept_weight_ref procedure :: accept_weight_prc => event_accept_weight_prc <>= module subroutine event_accept_sqme_ref (event) class(event_t), intent(inout) :: event end subroutine event_accept_sqme_ref module subroutine event_accept_sqme_prc (event) class(event_t), intent(inout) :: event end subroutine event_accept_sqme_prc module subroutine event_accept_weight_ref (event) class(event_t), intent(inout) :: event end subroutine event_accept_weight_ref module subroutine event_accept_weight_prc (event) class(event_t), intent(inout) :: event end subroutine event_accept_weight_prc <>= module subroutine event_accept_sqme_ref (event) class(event_t), intent(inout) :: event if (event%sqme_ref_is_known ()) then call event%set (sqme_prc = event%get_sqme_ref ()) end if end subroutine event_accept_sqme_ref module subroutine event_accept_sqme_prc (event) class(event_t), intent(inout) :: event if (event%sqme_prc_is_known ()) then call event%set (sqme_ref = event%get_sqme_prc ()) end if end subroutine event_accept_sqme_prc module subroutine event_accept_weight_ref (event) class(event_t), intent(inout) :: event if (event%weight_ref_is_known ()) then call event%set (weight_prc = event%get_weight_ref ()) end if end subroutine event_accept_weight_ref module subroutine event_accept_weight_prc (event) class(event_t), intent(inout) :: event if (event%weight_prc_is_known ()) then call event%set (weight_ref = event%get_weight_prc ()) end if end subroutine event_accept_weight_prc @ %def event_accept_sqme_ref @ %def event_accept_sqme_prc @ %def event_accept_weight_ref @ %def event_accept_weight_prc @ Update the weight normalization, just after generation. Unweighted and weighted events are generated with a different default normalization. The intended normalization is stored in the configuration record. <>= procedure :: update_normalization => event_update_normalization <>= module subroutine event_update_normalization (event, mode_ref) class(event_t), intent(inout) :: event integer, intent(in), optional :: mode_ref end subroutine event_update_normalization <>= module subroutine event_update_normalization (event, mode_ref) class(event_t), intent(inout) :: event integer, intent(in), optional :: mode_ref integer :: mode_old real(default) :: weight, excess if (present (mode_ref)) then mode_old = mode_ref else if (event%config%unweighted) then mode_old = NORM_UNIT else mode_old = NORM_SIGMA end if weight = event%get_weight_prc () call event_normalization_update (weight, & event%config%sigma, event%config%n, & mode_new = event%config%norm_mode, & mode_old = mode_old) call event%set_weight_prc (weight) excess = event%get_excess_prc () call event_normalization_update (excess, & event%config%sigma, event%config%n, & mode_new = event%config%norm_mode, & mode_old = mode_old) call event%set_excess_prc (excess) end subroutine event_update_normalization @ %def event_update_normalization @ The event is complete if it has a particle set plus valid entries for the sqme and weight values. <>= procedure :: check => event_check <>= module subroutine event_check (event) class(event_t), intent(inout) :: event end subroutine event_check <>= module subroutine event_check (event) class(event_t), intent(inout) :: event event%is_complete = event%has_valid_particle_set () & .and. event%sqme_ref_is_known () & .and. event%sqme_prc_is_known () & .and. event%weight_ref_is_known () & .and. event%weight_prc_is_known () if (event%get_n_alt () /= 0) then event%is_complete = event%is_complete & .and. event%sqme_alt_is_known () & .and. event%weight_alt_is_known () end if end subroutine event_check @ %def event_check @ @ \subsection{Generation} Assuming that we have a valid process associated to the event, we generate an event. We complete the event data, then factorize the spin density matrix and transfer it to the particle set. When done, we retrieve squared matrix element and weight. In case of explicit generation, the reference values coincide with the process values, so we [[accept]] the latter. The explicit random number argument [[r]] should be generated by a random-number generator. It is taken for the factorization algorithm, bypassing the event-specific random-number generator. This is useful for deterministic testing. <>= procedure :: generate => event_generate <>= module subroutine event_generate (event, i_mci, r, i_nlo) class(event_t), intent(inout) :: event integer, intent(in) :: i_mci real(default), dimension(:), intent(in), optional :: r integer, intent(in), optional :: i_nlo end subroutine event_generate <>= module subroutine event_generate (event, i_mci, r, i_nlo) class(event_t), intent(inout) :: event integer, intent(in) :: i_mci real(default), dimension(:), intent(in), optional :: r integer, intent(in), optional :: i_nlo logical :: generate_new generate_new = .true. if (present (i_nlo)) generate_new = (i_nlo == 1) if (generate_new) call event%reset_contents () event%selected_i_mci = i_mci if (event%config%unweighted) then call event%instance%generate_unweighted_event (i_mci) if (signal_is_pending ()) return call event%instance%evaluate_event_data () call event%instance%normalize_weight () else if (generate_new) & call event%instance%generate_weighted_event (i_mci) if (signal_is_pending ()) return call event%instance%evaluate_event_data () end if event%selected_channel = event%instance%get_channel () call event%import_instance_results () call event%accept_sqme_prc () call event%update_normalization () call event%accept_weight_prc () call event%evaluate_transforms (r) if (signal_is_pending ()) return call event%check () end subroutine event_generate @ %def event_generate @ Get a copy of the particle set belonging to the hard process. <>= procedure :: get_hard_particle_set => event_get_hard_particle_set <>= module subroutine event_get_hard_particle_set (event, pset) class(event_t), intent(in) :: event type(particle_set_t), intent(out) :: pset end subroutine event_get_hard_particle_set <>= module subroutine event_get_hard_particle_set (event, pset) class(event_t), intent(in) :: event type(particle_set_t), intent(out) :: pset class(evt_t), pointer :: evt evt => event%transform_first pset = evt%particle_set end subroutine event_get_hard_particle_set @ %def event_get_hard_particle_set @ \subsection{Recovering an event} Select MC group, term, and integration channel. <>= procedure :: select => event_select <>= module subroutine event_select (event, i_mci, i_term, channel) class(event_t), intent(inout) :: event integer, intent(in) :: i_mci, i_term, channel end subroutine event_select <>= module subroutine event_select (event, i_mci, i_term, channel) class(event_t), intent(inout) :: event integer, intent(in) :: i_mci, i_term, channel if (associated (event%instance)) then event%selected_i_mci = i_mci event%selected_i_term = i_term event%selected_channel = channel else event%selected_i_mci = 0 event%selected_i_term = 0 event%selected_channel = 0 end if end subroutine event_select @ %def event_select @ Copy a particle set into the event record. We deliberately use the first (the trivial) transform for this, i.e., the hard process. The event reader may either read in the transformed event separately, or apply all event transforms to the hard particle set to (re)generate a fully dressed event. Since this makes all subsequent event transforms invalid, we call [[reset]] on them. <>= procedure :: set_hard_particle_set => event_set_hard_particle_set <>= module subroutine event_set_hard_particle_set (event, particle_set) class(event_t), intent(inout) :: event type(particle_set_t), intent(in) :: particle_set end subroutine event_set_hard_particle_set <>= module subroutine event_set_hard_particle_set (event, particle_set) class(event_t), intent(inout) :: event type(particle_set_t), intent(in) :: particle_set class(evt_t), pointer :: evt evt => event%transform_first call evt%set_particle_set (particle_set, & event%selected_i_mci, event%selected_i_term) call event%link_particle_set (evt%particle_set) evt => evt%next do while (associated (evt)) call evt%reset () evt => evt%next end do end subroutine event_set_hard_particle_set @ %def event_set_hard_particle_set @ Set the $\alpha_s$ value that should be used in a recalculation. This should be called only if we explicitly want to override the QCD setting of the process core. <>= procedure :: set_alpha_qcd_forced => event_set_alpha_qcd_forced <>= module subroutine event_set_alpha_qcd_forced (event, alpha_qcd) class(event_t), intent(inout) :: event real(default), intent(in) :: alpha_qcd end subroutine event_set_alpha_qcd_forced <>= module subroutine event_set_alpha_qcd_forced (event, alpha_qcd) class(event_t), intent(inout) :: event real(default), intent(in) :: alpha_qcd if (allocated (event%alpha_qcd_forced)) then event%alpha_qcd_forced = alpha_qcd else allocate (event%alpha_qcd_forced, source = alpha_qcd) end if end subroutine event_set_alpha_qcd_forced @ %def event_set_alpha_qcd_forced @ Analogously, for the common scale. This forces also renormalization and factorization scale. <>= procedure :: set_scale_forced => event_set_scale_forced <>= module subroutine event_set_scale_forced (event, scale) class(event_t), intent(inout) :: event real(default), intent(in) :: scale end subroutine event_set_scale_forced <>= module subroutine event_set_scale_forced (event, scale) class(event_t), intent(inout) :: event real(default), intent(in) :: scale if (allocated (event%scale_forced)) then event%scale_forced = scale else allocate (event%scale_forced, source = scale) end if end subroutine event_set_scale_forced @ %def event_set_scale_forced @ Here we try to recover an event from the [[particle_set]] subobject and recalculate the structure functions and matrix elements. We have the appropriate [[process]] object and an initialized [[process_instance]] at hand, so beam and configuration data are known. From the [[particle_set]], we get the momenta. The quantum-number information may be incomplete, e.g., helicity information may be partial or absent. We recover the event just from the momentum configuration. We do not transfer the matrix element from the process instance to the event record, as we do when generating an event. The event record may contain the matrix element as read from file, and the current calculation may use different parameters. We thus can compare old and new values. The event [[weight]] may also be known already. If yes, we pass it to the [[evaluate_event_data]] procedure. It should already be normalized. If we have a [[weight_factor]] value, we obtain the event weight by multiplying the computed [[sqme]] by this factor. Otherwise, we make use of the MCI setup (which should be valid then) to compute the event weight, and we should normalize the result just as when generating events. Evaluating event expressions must also be done separately. If [[recover_phs]] is set (and false), do not attempt any phase-space calculation, including MCI evaluation. Useful if we need only matrix elements. <>= procedure :: recalculate => event_recalculate <>= module subroutine event_recalculate (event, update_sqme, weight_factor, & recover_beams, recover_phs, check_match, success) class(event_t), intent(inout) :: event logical, intent(in) :: update_sqme real(default), intent(in), optional :: weight_factor logical, intent(in), optional :: recover_beams logical, intent(in), optional :: recover_phs logical, intent(in), optional :: check_match logical, intent(out), optional :: success end subroutine event_recalculate <>= module subroutine event_recalculate (event, update_sqme, weight_factor, & recover_beams, recover_phs, check_match, success) class(event_t), intent(inout) :: event logical, intent(in) :: update_sqme real(default), intent(in), optional :: weight_factor logical, intent(in), optional :: recover_beams logical, intent(in), optional :: recover_phs logical, intent(in), optional :: check_match logical, intent(out), optional :: success type(particle_set_t), pointer :: particle_set integer :: i_mci, i_term, channel logical :: rec_phs_mci rec_phs_mci = .true.; if (present (recover_phs)) rec_phs_mci = recover_phs if (present (success)) success = .false. if (event%has_valid_particle_set ()) then particle_set => event%get_particle_set_ptr () i_mci = event%selected_i_mci i_term = event%selected_i_term channel = event%selected_channel if (i_mci == 0 .or. i_term == 0 .or. channel == 0) then call msg_bug ("Event: recalculate: undefined selection parameters") end if call event%instance%choose_mci (i_mci) call event%instance%set_trace & (particle_set, i_term, recover_beams, check_match, success) if (present (success)) then if (.not. success) return end if if (allocated (event%alpha_qcd_forced)) then call event%instance%set_alpha_qcd_forced & (i_term, event%alpha_qcd_forced) end if call event%instance%recover (channel, i_term, & update_sqme, rec_phs_mci, event%scale_forced) if (signal_is_pending ()) return if (update_sqme .and. present (weight_factor)) then call event%instance%evaluate_event_data & (weight = event%instance%get_sqme () * weight_factor) else if (event%weight_ref_is_known ()) then call event%instance%evaluate_event_data & (weight = event%get_weight_ref ()) else if (rec_phs_mci) then call event%instance%recover_event () if (signal_is_pending ()) return call event%instance%evaluate_event_data () if (event%config%unweighted) then call event%instance%normalize_weight () end if end if if (signal_is_pending ()) return if (update_sqme) then call event%import_instance_results () else call event%accept_sqme_ref () call event%accept_weight_ref () end if else call msg_bug ("Event: can't recalculate, particle set is undefined") end if end subroutine event_recalculate @ %def event_recalculate @ \subsection{Access content} Pointer to the associated process object (the associated model). <>= procedure :: get_process_ptr => event_get_process_ptr procedure :: get_process_instance_ptr => event_get_process_instance_ptr procedure :: get_model_ptr => event_get_model_ptr <>= module function event_get_process_ptr (event) result (ptr) class(event_t), intent(in) :: event type(process_t), pointer :: ptr end function event_get_process_ptr module function event_get_process_instance_ptr (event) result (ptr) class(event_t), intent(in) :: event type(process_instance_t), pointer :: ptr end function event_get_process_instance_ptr module function event_get_model_ptr (event) result (model) class(event_t), intent(in) :: event class(model_data_t), pointer :: model end function event_get_model_ptr <>= module function event_get_process_ptr (event) result (ptr) class(event_t), intent(in) :: event type(process_t), pointer :: ptr ptr => event%process end function event_get_process_ptr module function event_get_process_instance_ptr (event) result (ptr) class(event_t), intent(in) :: event type(process_instance_t), pointer :: ptr ptr => event%instance end function event_get_process_instance_ptr module function event_get_model_ptr (event) result (model) class(event_t), intent(in) :: event class(model_data_t), pointer :: model if (associated (event%process)) then model => event%process%get_model_ptr () else model => null () end if end function event_get_model_ptr @ %def event_get_process_ptr @ %def event_get_process_instance_ptr @ %def event_get_model_ptr @ Return the current values of indices: the MCI group of components, the term index (different terms corresponding, potentially, to different effective kinematics), and the MC integration channel. The [[i_mci]] call is delegated to the current process instance. <>= procedure :: get_i_mci => event_get_i_mci procedure :: get_i_term => event_get_i_term procedure :: get_channel => event_get_channel <>= module function event_get_i_mci (event) result (i_mci) class(event_t), intent(in) :: event integer :: i_mci end function event_get_i_mci module function event_get_i_term (event) result (i_term) class(event_t), intent(in) :: event integer :: i_term end function event_get_i_term module function event_get_channel (event) result (channel) class(event_t), intent(in) :: event integer :: channel end function event_get_channel <>= module function event_get_i_mci (event) result (i_mci) class(event_t), intent(in) :: event integer :: i_mci i_mci = event%selected_i_mci end function event_get_i_mci module function event_get_i_term (event) result (i_term) class(event_t), intent(in) :: event integer :: i_term i_term = event%selected_i_term end function event_get_i_term module function event_get_channel (event) result (channel) class(event_t), intent(in) :: event integer :: channel channel = event%selected_channel end function event_get_channel @ %def event_get_i_mci @ %def event_get_i_term @ %def event_get_channel @ This flag tells us whether the event consists just of a hard process (i.e., holds at most the first, trivial transform), or is a dressed events with additional transforms. <>= procedure :: has_transform => event_has_transform <>= module function event_has_transform (event) result (flag) class(event_t), intent(in) :: event logical :: flag end function event_has_transform <>= module function event_has_transform (event) result (flag) class(event_t), intent(in) :: event logical :: flag if (associated (event%transform_first)) then flag = associated (event%transform_first%next) else flag = .false. end if end function event_has_transform @ %def event_has_transform @ Return the currently selected normalization mode, or alternate normalization mode. <>= procedure :: get_norm_mode => event_get_norm_mode <>= elemental module function event_get_norm_mode (event) result (norm_mode) class(event_t), intent(in) :: event integer :: norm_mode end function event_get_norm_mode <>= elemental module function event_get_norm_mode (event) result (norm_mode) class(event_t), intent(in) :: event integer :: norm_mode norm_mode = event%config%norm_mode end function event_get_norm_mode @ %def event_get_norm_mode @ Return the kinematical weight, defined as the ratio of event weight and squared matrix element. <>= procedure :: get_kinematical_weight => event_get_kinematical_weight <>= module function event_get_kinematical_weight (event) result (f) class(event_t), intent(in) :: event real(default) :: f end function event_get_kinematical_weight <>= module function event_get_kinematical_weight (event) result (f) class(event_t), intent(in) :: event real(default) :: f if (event%sqme_ref_is_known () .and. event%weight_ref_is_known () & .and. abs (event%get_sqme_ref ()) > 0) then f = event%get_weight_ref () / event%get_sqme_ref () else f = 0 end if end function event_get_kinematical_weight @ %def event_get_kinematical_weight @ Return data used by external event formats. <>= procedure :: has_index => event_has_index procedure :: get_index => event_get_index procedure :: get_fac_scale => event_get_fac_scale procedure :: get_alpha_s => event_get_alpha_s procedure :: get_sqrts => event_get_sqrts procedure :: get_polarization => event_get_polarization procedure :: get_beam_file => event_get_beam_file procedure :: get_process_name => event_get_process_name <>= module function event_has_index (event) result (flag) class(event_t), intent(in) :: event logical :: flag end function event_has_index module function event_get_index (event) result (index) class(event_t), intent(in) :: event integer :: index end function event_get_index module function event_get_fac_scale (event) result (fac_scale) class(event_t), intent(in) :: event real(default) :: fac_scale end function event_get_fac_scale module function event_get_alpha_s (event) result (alpha_s) class(event_t), intent(in) :: event real(default) :: alpha_s end function event_get_alpha_s module function event_get_sqrts (event) result (sqrts) class(event_t), intent(in) :: event real(default) :: sqrts end function event_get_sqrts module function event_get_polarization (event) result (pol) class(event_t), intent(in) :: event real(default), dimension(:), allocatable :: pol end function event_get_polarization module function event_get_beam_file (event) result (file) class(event_t), intent(in) :: event type(string_t) :: file end function event_get_beam_file module function event_get_process_name (event) result (name) class(event_t), intent(in) :: event type(string_t) :: name end function event_get_process_name <>= module function event_has_index (event) result (flag) class(event_t), intent(in) :: event logical :: flag flag = event%expr%has_event_index () end function event_has_index module function event_get_index (event) result (index) class(event_t), intent(in) :: event integer :: index index = event%expr%get_event_index () end function event_get_index module function event_get_fac_scale (event) result (fac_scale) class(event_t), intent(in) :: event real(default) :: fac_scale fac_scale = event%instance%get_fac_scale (event%selected_i_term) end function event_get_fac_scale module function event_get_alpha_s (event) result (alpha_s) class(event_t), intent(in) :: event real(default) :: alpha_s alpha_s = event%instance%get_alpha_s (event%selected_i_term) end function event_get_alpha_s module function event_get_sqrts (event) result (sqrts) class(event_t), intent(in) :: event real(default) :: sqrts sqrts = event%instance%get_sqrts () end function event_get_sqrts module function event_get_polarization (event) result (pol) class(event_t), intent(in) :: event real(default), dimension(:), allocatable :: pol pol = event%instance%get_polarization () end function event_get_polarization module function event_get_beam_file (event) result (file) class(event_t), intent(in) :: event type(string_t) :: file file = event%instance%get_beam_file () end function event_get_beam_file module function event_get_process_name (event) result (name) class(event_t), intent(in) :: event type(string_t) :: name name = event%instance%get_process_name () end function event_get_process_name @ %def event_get_index @ %def event_get_fac_scale @ %def event_get_alpha_s @ %def event_get_sqrts @ %def event_get_polarization @ %def event_get_beam_file @ %def event_get_process_name @ Return the actual number of calls, as stored in the process instance. <>= procedure :: get_actual_calls_total => event_get_actual_calls_total <>= elemental module function event_get_actual_calls_total (event) result (n) class(event_t), intent(in) :: event integer :: n end function event_get_actual_calls_total <>= elemental module function event_get_actual_calls_total (event) result (n) class(event_t), intent(in) :: event integer :: n if (associated (event%instance)) then n = event%instance%get_actual_calls_total () else n = 0 end if end function event_get_actual_calls_total @ %def event_get_actual_calls_total @ Eliminate numerical noise in the [[subevt]] expression and in the event transforms (which includes associated process instances). <>= public :: pacify <>= interface pacify module procedure pacify_event end interface pacify <>= module subroutine pacify_event (event) class(event_t), intent(inout) :: event class(evt_t), pointer :: evt end subroutine pacify_event <>= module subroutine pacify_event (event) class(event_t), intent(inout) :: event class(evt_t), pointer :: evt call event%pacify_particle_set () if (event%expr%subevt_filled) call pacify (event%expr) evt => event%transform_first do while (associated (evt)) select type (evt) type is (evt_decay_t); call pacify (evt) end select evt => evt%next end do end subroutine pacify_event @ %def pacify @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[events_ut.f90]]>>= <> module events_ut use unit_tests use events_uti <> <> contains <> end module events_ut @ %def events_ut @ <<[[events_uti.f90]]>>= <> module events_uti <> <> use os_interface use model_data use particles use process_libraries use process_stacks use event_transforms use decays use decays_ut, only: prepare_testbed use process, only: process_t use instances, only: process_instance_t use events <> <> contains <> end module events_uti @ %def events_uti @ API: driver for the unit tests below. <>= public :: events_test <>= subroutine events_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine events_test @ %def events_test @ \subsubsection{Empty event record} <>= call test (events_1, "events_1", & "empty event record", & u, results) <>= public :: events_1 <>= subroutine events_1 (u) integer, intent(in) :: u type(event_t), target :: event write (u, "(A)") "* Test output: events_1" write (u, "(A)") "* Purpose: display an empty event object" write (u, "(A)") call event%write (u) write (u, "(A)") write (u, "(A)") "* Test output end: events_1" end subroutine events_1 @ %def events_1 @ \subsubsection{Simple event} <>= call test (events_2, "events_2", & "generate event", & u, results) <>= public :: events_2 <>= subroutine events_2 (u) use processes_ut, only: prepare_test_process, cleanup_test_process integer, intent(in) :: u type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(model_data_t), target :: model write (u, "(A)") "* Test output: events_2" write (u, "(A)") "* Purpose: generate and display an event" write (u, "(A)") call model%init_test () write (u, "(A)") "* Generate test process event" allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model) call process_instance%setup_event_data () write (u, "(A)") write (u, "(A)") "* Initialize event object" allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) write (u, "(A)") write (u, "(A)") "* Generate test process event" call process_instance%generate_weighted_event (1) write (u, "(A)") write (u, "(A)") "* Fill event object" write (u, "(A)") call event%generate (1, [0.4_default, 0.4_default]) call event%increment_index () call event%evaluate_expressions () call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call event%final () deallocate (event) call cleanup_test_process (process, process_instance) deallocate (process_instance) deallocate (process) call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: events_2" end subroutine events_2 @ %def events_2 @ \subsubsection{Recovering an event} Generate an event and store the particle set. Then reset the event record, recall the particle set, and recover the event from that. <>= call test (events_4, "events_4", & "recover event", & u, results) <>= public :: events_4 <>= subroutine events_4 (u) use processes_ut, only: prepare_test_process, cleanup_test_process integer, intent(in) :: u type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(process_t), allocatable, target :: process2 type(process_instance_t), allocatable, target :: process2_instance type(particle_set_t) :: particle_set type(model_data_t), target :: model write (u, "(A)") "* Test output: events_4" write (u, "(A)") "* Purpose: generate and recover an event" write (u, "(A)") call model%init_test () write (u, "(A)") "* Generate test process event and save particle set" write (u, "(A)") allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) call event%generate (1, [0.4_default, 0.4_default]) call event%increment_index () call event%evaluate_expressions () call event%write (u) particle_set = event%get_particle_set_ptr () ! NB: 'particle_set' contains pointers to the model within 'process' call event%final () deallocate (event) write (u, "(A)") write (u, "(A)") "* Recover event from particle set" write (u, "(A)") allocate (process2) allocate (process2_instance) call prepare_test_process (process2, process2_instance, model) call process2_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process2_instance, process2%get_model_ptr ()) call event%select (1, 1, 1) call event%set_hard_particle_set (particle_set) call event%recalculate (update_sqme = .true.) call event%write (u) write (u, "(A)") write (u, "(A)") "* Transfer sqme and evaluate expressions" write (u, "(A)") call event%accept_sqme_prc () call event%accept_weight_prc () call event%check () call event%set_index (1) call event%evaluate_expressions () call event%write (u) write (u, "(A)") write (u, "(A)") "* Reset contents" write (u, "(A)") call event%reset_contents () call event%reset_index () event%transform_first%particle_set_exists = .false. call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call particle_set%final () call event%final () deallocate (event) call cleanup_test_process (process2, process2_instance) deallocate (process2_instance) deallocate (process2) call cleanup_test_process (process, process_instance) deallocate (process_instance) deallocate (process) call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: events_4" end subroutine events_4 @ %def events_4 @ \subsubsection{Partially Recovering an event} Generate an event and store the particle set. Then reset the event record, recall the particle set, and recover the event as far as possible without recomputing the squared matrix element. <>= call test (events_5, "events_5", & "partially recover event", & u, results) <>= public :: events_5 <>= subroutine events_5 (u) use processes_ut, only: prepare_test_process, cleanup_test_process integer, intent(in) :: u type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(process_t), allocatable, target :: process2 type(process_instance_t), allocatable, target :: process2_instance type(particle_set_t) :: particle_set real(default) :: sqme, weight type(model_data_t), target :: model write (u, "(A)") "* Test output: events_5" write (u, "(A)") "* Purpose: generate and recover an event" write (u, "(A)") call model%init_test () write (u, "(A)") "* Generate test process event and save particle set" write (u, "(A)") allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) call event%generate (1, [0.4_default, 0.4_default]) call event%increment_index () call event%evaluate_expressions () call event%write (u) particle_set = event%get_particle_set_ptr () sqme = event%get_sqme_ref () weight = event%get_weight_ref () call event%final () deallocate (event) write (u, "(A)") write (u, "(A)") "* Recover event from particle set" write (u, "(A)") allocate (process2) allocate (process2_instance) call prepare_test_process (process2, process2_instance, model) call process2_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process2_instance, process2%get_model_ptr ()) call event%select (1, 1, 1) call event%set_hard_particle_set (particle_set) call event%recalculate (update_sqme = .false.) call event%write (u) write (u, "(A)") write (u, "(A)") "* Manually set sqme and evaluate expressions" write (u, "(A)") call event%set (sqme_ref = sqme, weight_ref = weight) call event%accept_sqme_ref () call event%accept_weight_ref () call event%set_index (1) call event%evaluate_expressions () call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call particle_set%final () call event%final () deallocate (event) call cleanup_test_process (process2, process2_instance) deallocate (process2_instance) deallocate (process2) call cleanup_test_process (process, process_instance) deallocate (process_instance) deallocate (process) call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: events_5" end subroutine events_5 @ %def events_5 @ \subsubsection{Decays} Generate an event with subsequent decays. <>= call test (events_6, "events_6", & "decays", & u, results) <>= public :: events_6 <>= subroutine events_6 (u) integer, intent(in) :: u type(os_data_t) :: os_data class(model_data_t), pointer :: model type(string_t) :: prefix, procname1, procname2 type(process_library_t), target :: lib type(process_stack_t) :: process_stack class(evt_t), pointer :: evt_decay type(event_t), allocatable, target :: event type(process_t), pointer :: process type(process_instance_t), allocatable, target :: process_instance write (u, "(A)") "* Test output: events_6" write (u, "(A)") "* Purpose: generate an event with subsequent decays" write (u, "(A)") write (u, "(A)") "* Generate test process and decay" write (u, "(A)") call os_data%init () prefix = "events_6" procname1 = prefix // "_p" procname2 = prefix // "_d" call prepare_testbed & (lib, process_stack, prefix, os_data, & scattering=.true., decay=.true.) write (u, "(A)") "* Initialize decay process" process => process_stack%get_process_ptr (procname1) model => process%get_model_ptr () call model%set_unstable (25, [procname2]) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () call process_instance%init_simulation (1) write (u, "(A)") write (u, "(A)") "* Initialize event transform: decay" allocate (evt_decay_t :: evt_decay) call evt_decay%connect (process_instance, model, process_stack) write (u, "(A)") write (u, "(A)") "* Initialize event object" write (u, "(A)") allocate (event) call event%basic_init () call event%connect (process_instance, model) call event%import_transform (evt_decay) call event%write (u, show_decay = .true.) write (u, "(A)") write (u, "(A)") "* Generate event" write (u, "(A)") call event%generate (1, [0.4_default, 0.4_default]) call event%increment_index () call event%evaluate_expressions () call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call event%final () deallocate (event) call process_instance%final () deallocate (process_instance) call process_stack%final () write (u, "(A)") write (u, "(A)") "* Test output end: events_6" end subroutine events_6 @ %def events_6 @ \subsubsection{Decays} Generate a decay event with varying options. <>= call test (events_7, "events_7", & "decay options", & u, results) <>= public :: events_7 <>= subroutine events_7 (u) integer, intent(in) :: u type(os_data_t) :: os_data class(model_data_t), pointer :: model type(string_t) :: prefix, procname2 type(process_library_t), target :: lib type(process_stack_t) :: process_stack type(process_t), pointer :: process type(process_instance_t), allocatable, target :: process_instance write (u, "(A)") "* Test output: events_7" write (u, "(A)") "* Purpose: check decay options" write (u, "(A)") write (u, "(A)") "* Prepare test process" write (u, "(A)") call os_data%init () prefix = "events_7" procname2 = prefix // "_d" call prepare_testbed & (lib, process_stack, prefix, os_data, & scattering=.false., decay=.true.) write (u, "(A)") "* Generate decay event, default options" write (u, "(A)") process => process_stack%get_process_ptr (procname2) model => process%get_model_ptr () call model%set_unstable (25, [procname2]) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data (model) call process_instance%init_simulation (1) call process_instance%generate_weighted_event (1) call process_instance%write (u) call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Generate decay event, helicity-diagonal decay" write (u, "(A)") process => process_stack%get_process_ptr (procname2) model => process%get_model_ptr () call model%set_unstable (25, [procname2], diagonal = .true.) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data (model) call process_instance%init_simulation (1) call process_instance%generate_weighted_event (1) call process_instance%write (u) call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Generate decay event, isotropic decay, & &polarized final state" write (u, "(A)") process => process_stack%get_process_ptr (procname2) model => process%get_model_ptr () call model%set_unstable (25, [procname2], isotropic = .true.) call model%set_polarized (6) call model%set_polarized (-6) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data (model) call process_instance%init_simulation (1) call process_instance%generate_weighted_event (1) call process_instance%write (u) call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Cleanup" call process_stack%final () write (u, "(A)") write (u, "(A)") "* Test output end: events_7" end subroutine events_7 @ %def events_7 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Raw Event I/O} The raw format is for internal use only. All data are stored unformatted, so they can be efficiently be re-read on the same machine, but not necessarily on another machine. This module explicitly depends on the [[events]] module which provides the concrete implementation of [[event_base]]. The other I/O formats access only the methods that are defined in [[event_base]]. <<[[eio_raw.f90]]>>= <> module eio_raw <> <> use event_base use event_handles, only: event_handle_t use eio_data use eio_base use events <> <> <> <> interface <> end interface end module eio_raw @ %def eio_raw @ <<[[eio_raw_sub.f90]]>>= <> submodule (eio_raw) eio_raw_s use io_units use diagnostics use model_data use particles implicit none contains <> end submodule eio_raw_s @ %def eio_raw_s @ \subsection{File Format Version} This is the current default file version. <>= integer, parameter :: CURRENT_FILE_VERSION = 2 @ %def CURRENT_FILE_VERSION @ The user may change this number; this should force some compatibility mode for reading and writing. In any case, the file version stored in a event file that we read has to match the expected file version. History of version numbers: \begin{enumerate} \item Format for WHIZARD 2.2.0 to 2.2.3. No version number stored in the raw file. \item Format from 2.2.4 on. File contains version number. The file contains the transformed particle set (if applicable) after the hard-process particle set. \end{enumerate} @ \subsection{Type} Note the file version number. The default may be reset during initialization, which should enforce some compatibility mode. <>= public :: eio_raw_t <>= type, extends (eio_t) :: eio_raw_t logical :: reading = .false. logical :: writing = .false. integer :: unit = 0 integer :: norm_mode = NORM_UNDEFINED real(default) :: sigma = 1 integer :: n = 1 integer :: n_alt = 0 logical :: check = .false. logical :: use_alphas_from_file = .false. logical :: use_scale_from_file = .false. logical :: fixed_order_nlo = .false. integer :: file_version = CURRENT_FILE_VERSION contains <> end type eio_raw_t @ %def eio_raw_t @ Output. This is not the actual event format, but a readable account of the current object status. <>= procedure :: write => eio_raw_write <>= module subroutine eio_raw_write (object, unit) class(eio_raw_t), intent(in) :: object integer, intent(in), optional :: unit end subroutine eio_raw_write <>= module subroutine eio_raw_write (object, unit) class(eio_raw_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Raw event stream:" write (u, "(3x,A,L1)") "Check MD5 sum = ", object%check if (object%n_alt > 0) then write (u, "(3x,A,I0)") "Alternate weights = ", object%n_alt end if write (u, "(3x,A,L1)") "Alpha_s from file = ", & object%use_alphas_from_file write (u, "(3x,A,L1)") "Scale from file = ", & object%use_scale_from_file write (u, "(3x,A,L1)") "Events for fNLO = ", & object%fixed_order_nlo if (object%reading) then write (u, "(3x,A,A)") "Reading from file = ", char (object%filename) else if (object%writing) then write (u, "(3x,A,A)") "Writing to file = ", char (object%filename) else write (u, "(3x,A)") "[closed]" end if end subroutine eio_raw_write @ %def eio_raw_write @ Finalizer: close any open file. <>= procedure :: final => eio_raw_final <>= module subroutine eio_raw_final (object) class(eio_raw_t), intent(inout) :: object end subroutine eio_raw_final <>= module subroutine eio_raw_final (object) class(eio_raw_t), intent(inout) :: object if (object%reading .or. object%writing) then write (msg_buffer, "(A,A,A)") "Events: closing raw file '", & char (object%filename), "'" call msg_message () close (object%unit) object%reading = .false. object%writing = .false. end if end subroutine eio_raw_final @ %def eio_raw_final @ Set the [[check]] flag which determines whether we compare checksums on input. <>= procedure :: set_parameters => eio_raw_set_parameters <>= module subroutine eio_raw_set_parameters (eio, check, & use_alphas_from_file, use_scale_from_file, fixed_order_nlo, & version_string, extension) class(eio_raw_t), intent(inout) :: eio logical, intent(in), optional :: check, use_alphas_from_file, & use_scale_from_file, fixed_order_nlo type(string_t), intent(in), optional :: version_string type(string_t), intent(in), optional :: extension end subroutine eio_raw_set_parameters <>= module subroutine eio_raw_set_parameters (eio, check, use_alphas_from_file, & use_scale_from_file, fixed_order_nlo, version_string, extension) class(eio_raw_t), intent(inout) :: eio logical, intent(in), optional :: check, use_alphas_from_file, & use_scale_from_file, fixed_order_nlo type(string_t), intent(in), optional :: version_string type(string_t), intent(in), optional :: extension if (present (check)) eio%check = check if (present (use_alphas_from_file)) eio%use_alphas_from_file = & use_alphas_from_file if (present (use_scale_from_file)) eio%use_scale_from_file = & use_scale_from_file if (present (fixed_order_nlo)) eio%fixed_order_nlo = & fixed_order_nlo if (present (version_string)) then select case (char (version_string)) case ("", "2.2.4") eio%file_version = CURRENT_FILE_VERSION case ("2.2") eio%file_version = 1 case default call msg_fatal ("Raw event I/O: unsupported version '" & // char (version_string) // "'") eio%file_version = 0 end select end if if (present (extension)) then eio%extension = extension else eio%extension = "evx" end if end subroutine eio_raw_set_parameters @ %def eio_raw_set_parameters @ Initialize event writing. <>= procedure :: init_out => eio_raw_init_out <>= module subroutine eio_raw_init_out (eio, sample, data, success, extension) class(eio_raw_t), intent(inout) :: eio type(string_t), intent(in) :: sample type(event_sample_data_t), intent(in), optional :: data logical, intent(out), optional :: success type(string_t), intent(in), optional :: extension end subroutine eio_raw_init_out <>= module subroutine eio_raw_init_out (eio, sample, data, success, extension) class(eio_raw_t), intent(inout) :: eio type(string_t), intent(in) :: sample type(event_sample_data_t), intent(in), optional :: data logical, intent(out), optional :: success type(string_t), intent(in), optional :: extension character(32) :: md5sum_prc, md5sum_cfg character(32), dimension(:), allocatable :: md5sum_alt integer :: i if (present (extension)) then eio%extension = extension else eio%extension = "evx" end if eio%filename = sample // "." // eio%extension eio%unit = free_unit () write (msg_buffer, "(A,A,A)") "Events: writing to raw file '", & char (eio%filename), "'" call msg_message () eio%writing = .true. if (present (data)) then md5sum_prc = data%md5sum_prc md5sum_cfg = data%md5sum_cfg eio%norm_mode = data%norm_mode eio%sigma = data%total_cross_section eio%n = data%n_evt eio%n_alt = data%n_alt if (eio%n_alt > 0) then !!! !!! !!! Workaround for gfortran 5.0 ICE allocate (md5sum_alt (data%n_alt)) md5sum_alt = data%md5sum_alt !!! allocate (md5sum_alt (data%n_alt), source = data%md5sum_alt) end if else md5sum_prc = "" md5sum_cfg = "" end if open (eio%unit, file = char (eio%filename), form = "unformatted", & action = "write", status = "replace") select case (eio%file_version) case (2:); write (eio%unit) eio%file_version end select write (eio%unit) md5sum_prc write (eio%unit) md5sum_cfg write (eio%unit) eio%norm_mode write (eio%unit) eio%n_alt if (allocated (md5sum_alt)) then do i = 1, eio%n_alt write (eio%unit) md5sum_alt(i) end do end if if (present (success)) success = .true. end subroutine eio_raw_init_out @ %def eio_raw_init_out @ Initialize event reading. <>= procedure :: init_in => eio_raw_init_in <>= module subroutine eio_raw_init_in (eio, sample, data, success, extension) class(eio_raw_t), intent(inout) :: eio type(string_t), intent(in) :: sample type(event_sample_data_t), intent(inout), optional :: data logical, intent(out), optional :: success type(string_t), intent(in), optional :: extension end subroutine eio_raw_init_in <>= module subroutine eio_raw_init_in (eio, sample, data, success, extension) class(eio_raw_t), intent(inout) :: eio type(string_t), intent(in) :: sample type(event_sample_data_t), intent(inout), optional :: data logical, intent(out), optional :: success type(string_t), intent(in), optional :: extension character(32) :: md5sum_prc, md5sum_cfg character(32), dimension(:), allocatable :: md5sum_alt integer :: i, file_version if (present (success)) success = .true. if (present (extension)) then eio%extension = extension else eio%extension = "evx" end if eio%filename = sample // "." // eio%extension eio%unit = free_unit () if (present (data)) then eio%sigma = data%total_cross_section eio%n = data%n_evt end if write (msg_buffer, "(A,A,A)") "Events: reading from raw file '", & char (eio%filename), "'" call msg_message () eio%reading = .true. open (eio%unit, file = char (eio%filename), form = "unformatted", & action = "read", status = "old") select case (eio%file_version) case (2:); read (eio%unit) file_version case default; file_version = 1 end select if (file_version /= eio%file_version) then call msg_error ("Reading event file: raw-file version mismatch.") if (present (success)) success = .false. return else if (file_version /= CURRENT_FILE_VERSION) then call msg_warning ("Reading event file: compatibility mode.") end if read (eio%unit) md5sum_prc read (eio%unit) md5sum_cfg read (eio%unit) eio%norm_mode read (eio%unit) eio%n_alt if (present (data)) then if (eio%n_alt /= data%n_alt) then if (present (success)) success = .false. return end if end if allocate (md5sum_alt (eio%n_alt)) do i = 1, eio%n_alt read (eio%unit) md5sum_alt(i) end do if (present (success)) then if (present (data)) then if (eio%check) then if (data%md5sum_prc /= "") then success = success .and. md5sum_prc == data%md5sum_prc end if if (data%md5sum_cfg /= "") then success = success .and. md5sum_cfg == data%md5sum_cfg end if do i = 1, eio%n_alt if (data%md5sum_alt(i) /= "") then success = success .and. md5sum_alt(i) == data%md5sum_alt(i) end if end do else call msg_warning ("Reading event file: MD5 sum check disabled") end if end if end if end subroutine eio_raw_init_in @ %def eio_raw_init_in @ Switch from input to output: reopen the file for reading. <>= procedure :: switch_inout => eio_raw_switch_inout <>= module subroutine eio_raw_switch_inout (eio, success) class(eio_raw_t), intent(inout) :: eio logical, intent(out), optional :: success end subroutine eio_raw_switch_inout <>= module subroutine eio_raw_switch_inout (eio, success) class(eio_raw_t), intent(inout) :: eio logical, intent(out), optional :: success write (msg_buffer, "(A,A,A)") "Events: appending to raw file '", & char (eio%filename), "'" call msg_message () close (eio%unit, status = "keep") eio%reading = .false. open (eio%unit, file = char (eio%filename), form = "unformatted", & action = "write", position = "append", status = "old") eio%writing = .true. if (present (success)) success = .true. end subroutine eio_raw_switch_inout @ %def eio_raw_switch_inout @ Output an event. Write first the event indices, then weight and squared matrix element, then the particle set. We always write the particle set of the hard process. (Note: this should be reconsidered.) We do make a physical copy. On output, we write the [[prc]] values for weight and sqme, since these are the values just computed. On input, we store the values as [[ref]] values. The caller can then decide whether to recompute values and thus obtain distinct [[prc]] values, or just accept them. The [[passed]] flag is not written. This allow us to apply different selection criteria upon rereading. <>= procedure :: output => eio_raw_output <>= module subroutine eio_raw_output & (eio, event, i_prc, reading, passed, pacify, event_handle) class(eio_raw_t), intent(inout) :: eio class(generic_event_t), intent(in), target :: event logical, intent(in), optional :: reading, passed, pacify class(event_handle_t), intent(inout), optional :: event_handle integer, intent(in) :: i_prc end subroutine eio_raw_output <>= module subroutine eio_raw_output & (eio, event, i_prc, reading, passed, pacify, event_handle) class(eio_raw_t), intent(inout) :: eio class(generic_event_t), intent(in), target :: event logical, intent(in), optional :: reading, passed, pacify class(event_handle_t), intent(inout), optional :: event_handle integer, intent(in) :: i_prc type(particle_set_t), pointer :: pset integer :: i if (eio%writing) then if (event%has_valid_particle_set ()) then select type (event) type is (event_t) write (eio%unit) i_prc write (eio%unit) event%get_index () write (eio%unit) event%get_i_mci () write (eio%unit) event%get_i_term () write (eio%unit) event%get_channel () write (eio%unit) event%expr%weight_prc write (eio%unit) event%expr%excess_prc write (eio%unit) event%get_n_dropped () write (eio%unit) event%expr%sqme_prc do i = 1, eio%n_alt write (eio%unit) event%expr%weight_alt(i) write (eio%unit) event%expr%sqme_alt(i) end do allocate (pset) call event%get_hard_particle_set (pset) call pset%write_raw (eio%unit) call pset%final () deallocate (pset) select case (eio%file_version) case (2:) if (event%has_transform ()) then write (eio%unit) .true. pset => event%get_particle_set_ptr () call pset%write_raw (eio%unit) else write (eio%unit) .false. end if end select class default call msg_bug ("Event: write raw: defined only for full event_t") end select else call msg_bug ("Event: write raw: particle set is undefined") end if else call eio%write () call msg_fatal ("Raw event file is not open for writing") end if end subroutine eio_raw_output @ %def eio_raw_output @ Input an event. Note: the particle set is physically copied. If there is a performance issue, we might choose to pointer-assign it instead, with a different version of [[event%set_hard_particle_set]]. <>= procedure :: input_i_prc => eio_raw_input_i_prc procedure :: input_event => eio_raw_input_event <>= module subroutine eio_raw_input_i_prc (eio, i_prc, iostat) class(eio_raw_t), intent(inout) :: eio integer, intent(out) :: i_prc integer, intent(out) :: iostat end subroutine eio_raw_input_i_prc module subroutine eio_raw_input_event (eio, event, iostat, event_handle) class(eio_raw_t), intent(inout) :: eio class(generic_event_t), intent(inout), target :: event integer, intent(out) :: iostat class(event_handle_t), intent(inout), optional :: event_handle end subroutine eio_raw_input_event <>= module subroutine eio_raw_input_i_prc (eio, i_prc, iostat) class(eio_raw_t), intent(inout) :: eio integer, intent(out) :: i_prc integer, intent(out) :: iostat if (eio%reading) then read (eio%unit, iostat = iostat) i_prc else call eio%write () call msg_fatal ("Raw event file is not open for reading") end if end subroutine eio_raw_input_i_prc module subroutine eio_raw_input_event (eio, event, iostat, event_handle) class(eio_raw_t), intent(inout) :: eio class(generic_event_t), intent(inout), target :: event integer, intent(out) :: iostat class(event_handle_t), intent(inout), optional :: event_handle integer :: event_index, i_mci, i_term, channel, i real(default) :: weight, excess, sqme integer :: n_dropped real(default), dimension(:), allocatable :: weight_alt, sqme_alt logical :: has_transform type(particle_set_t), pointer :: pset class(model_data_t), pointer :: model if (eio%reading) then select type (event) type is (event_t) read (eio%unit, iostat = iostat) event_index if (iostat /= 0) return read (eio%unit, iostat = iostat) i_mci if (iostat /= 0) return read (eio%unit, iostat = iostat) i_term if (iostat /= 0) return read (eio%unit, iostat = iostat) channel if (iostat /= 0) return read (eio%unit, iostat = iostat) weight if (iostat /= 0) return read (eio%unit, iostat = iostat) excess if (iostat /= 0) return read (eio%unit, iostat = iostat) n_dropped if (iostat /= 0) return read (eio%unit, iostat = iostat) sqme if (iostat /= 0) return call event%reset_contents () call event%set_index (event_index) call event%select (i_mci, i_term, channel) if (eio%norm_mode /= NORM_UNDEFINED) then call event_normalization_update (weight, & eio%sigma, eio%n, event%get_norm_mode (), eio%norm_mode) call event_normalization_update (excess, & eio%sigma, eio%n, event%get_norm_mode (), eio%norm_mode) end if call event%set (sqme_ref = sqme, weight_ref = weight, & excess_prc = excess, & n_dropped = n_dropped) if (eio%n_alt /= 0) then allocate (sqme_alt (eio%n_alt), weight_alt (eio%n_alt)) do i = 1, eio%n_alt read (eio%unit, iostat = iostat) weight_alt(i) if (iostat /= 0) return read (eio%unit, iostat = iostat) sqme_alt(i) if (iostat /= 0) return end do call event%set (sqme_alt = sqme_alt, weight_alt = weight_alt) end if model => null () if (associated (event%process)) then model => event%process%get_model_ptr () end if allocate (pset) call pset%read_raw (eio%unit, iostat) if (iostat /= 0) return if (associated (model)) call pset%set_model (model) call event%set_hard_particle_set (pset) if (eio%use_alphas_from_file .or. eio%use_scale_from_file) then call event%recalculate (update_sqme = .true.) if (eio%fixed_order_nlo) then if (event%weight_prc /= event%weight_ref .and. & event%weight_prc == 0) then event%weight_prc = event%weight_ref end if end if end if call pset%final () deallocate (pset) select case (eio%file_version) case (2:) read (eio%unit, iostat = iostat) has_transform if (iostat /= 0) return if (has_transform) then allocate (pset) call pset%read_raw (eio%unit, iostat) if (iostat /= 0) return if (associated (model)) & call pset%set_model (model) call event%link_particle_set (pset) end if end select class default call msg_bug ("Event: read raw: defined only for full event_t") end select else call eio%write () call msg_fatal ("Raw event file is not open for reading") end if end subroutine eio_raw_input_event @ %def eio_raw_input_i_prc @ %def eio_raw_input_event @ <>= procedure :: skip => eio_raw_skip <>= module subroutine eio_raw_skip (eio, iostat) class(eio_raw_t), intent(inout) :: eio integer, intent(out) :: iostat end subroutine eio_raw_skip <>= module subroutine eio_raw_skip (eio, iostat) class(eio_raw_t), intent(inout) :: eio integer, intent(out) :: iostat if (eio%reading) then read (eio%unit, iostat = iostat) else call eio%write () call msg_fatal ("Raw event file is not open for reading") end if end subroutine eio_raw_skip @ %def eio_raw_skip @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[eio_raw_ut.f90]]>>= <> module eio_raw_ut use unit_tests use eio_raw_uti <> <> contains <> end module eio_raw_ut @ %def eio_raw_ut @ <<[[eio_raw_uti.f90]]>>= <> module eio_raw_uti <> <> use model_data use variables use events use eio_data use eio_base use eio_raw use process, only: process_t use instances, only: process_instance_t <> <> contains <> end module eio_raw_uti @ %def eio_raw_uti @ API: driver for the unit tests below. <>= public :: eio_raw_test <>= subroutine eio_raw_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine eio_raw_test @ %def eio_raw_test @ \subsubsection{Test I/O methods} We test the implementation of all I/O methods. <>= call test (eio_raw_1, "eio_raw_1", & "read and write event contents", & u, results) <>= public :: eio_raw_1 <>= subroutine eio_raw_1 (u) use processes_ut, only: prepare_test_process, cleanup_test_process integer, intent(in) :: u type(model_data_t), target :: model type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance class(eio_t), allocatable :: eio integer :: i_prc, iostat type(string_t) :: sample write (u, "(A)") "* Test output: eio_raw_1" write (u, "(A)") "* Purpose: generate and read/write an event" write (u, "(A)") write (u, "(A)") "* Initialize test process" call model%init_test () allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model, & run_id = var_str ("run_test")) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) write (u, "(A)") write (u, "(A)") "* Generate and write an event" write (u, "(A)") sample = "eio_raw_1" allocate (eio_raw_t :: eio) call eio%init_out (sample) call event%generate (1, [0._default, 0._default]) call event%increment_index () call event%evaluate_expressions () call event%write (u) write (u, "(A)") call eio%output (event, i_prc = 42) call eio%write (u) call eio%final () call event%final () deallocate (event) call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Re-read the event" write (u, "(A)") call eio%init_in (sample) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) call eio%input_i_prc (i_prc, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (i_prc):", iostat call eio%input_event (event, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (event):", iostat call eio%write (u) write (u, "(A)") write (u, "(1x,A,I0)") "i_prc = ", i_prc write (u, "(A)") call event%write (u) write (u, "(A)") write (u, "(A)") "* Generate and append another event" write (u, "(A)") call eio%switch_inout () call event%generate (1, [0._default, 0._default]) call event%increment_index () call event%evaluate_expressions () call event%write (u) write (u, "(A)") call eio%output (event, i_prc = 5) call eio%write (u) call eio%final () call event%final () deallocate (event) call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Re-read both events" write (u, "(A)") call eio%init_in (sample) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) call eio%input_i_prc (i_prc, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (i_prc/1):", iostat call eio%input_event (event, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (event/1):", iostat call eio%input_i_prc (i_prc, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (i_prc/2):", iostat call eio%input_event (event, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (event/2):", iostat call eio%write (u) write (u, "(A)") write (u, "(1x,A,I0)") "i_prc = ", i_prc write (u, "(A)") call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call eio%final () deallocate (eio) call event%final () deallocate (event) call cleanup_test_process (process, process_instance) deallocate (process_instance) deallocate (process) call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: eio_raw_1" end subroutine eio_raw_1 @ %def eio_raw_1 @ \subsubsection{Test I/O methods} We test the implementation of all I/O methods. <>= call test (eio_raw_2, "eio_raw_2", & "handle multiple weights", & u, results) <>= public :: eio_raw_2 <>= subroutine eio_raw_2 (u) use processes_ut, only: prepare_test_process, cleanup_test_process integer, intent(in) :: u type(model_data_t), target :: model type(var_list_t) :: var_list type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(event_sample_data_t) :: data class(eio_t), allocatable :: eio integer :: i_prc, iostat type(string_t) :: sample write (u, "(A)") "* Test output: eio_raw_2" write (u, "(A)") "* Purpose: generate and read/write an event" write (u, "(A)") "* with multiple weights" write (u, "(A)") call model%init_test () write (u, "(A)") "* Initialize test process" allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model, & run_id = var_str ("run_test")) call process_instance%setup_event_data () call data%init (n_proc = 1, n_alt = 2) call var_list%append_log (var_str ("?unweighted"), .false., & intrinsic = .true.) call var_list%append_string (var_str ("$sample_normalization"), & var_str ("auto"), intrinsic = .true.) call var_list%append_real (var_str ("safety_factor"), & 1._default, intrinsic = .true.) allocate (event) call event%basic_init (var_list, n_alt = 2) call event%connect (process_instance, process%get_model_ptr ()) write (u, "(A)") write (u, "(A)") "* Generate and write an event" write (u, "(A)") sample = "eio_raw_2" allocate (eio_raw_t :: eio) call eio%init_out (sample, data) call event%generate (1, [0._default, 0._default]) call event%increment_index () call event%evaluate_expressions () call event%set (sqme_alt = [2._default, 3._default]) call event%set (weight_alt = & [2 * event%get_weight_ref (), 3 * event%get_weight_ref ()]) call event%store_alt_values () call event%check () call event%write (u) write (u, "(A)") call eio%output (event, i_prc = 42) call eio%write (u) call eio%final () call event%final () deallocate (event) call process_instance%final () deallocate (process_instance) write (u, "(A)") write (u, "(A)") "* Re-read the event" write (u, "(A)") call eio%init_in (sample, data) allocate (process_instance) call process_instance%init (process) call process_instance%setup_event_data () allocate (event) call event%basic_init (var_list, n_alt = 2) call event%connect (process_instance, process%get_model_ptr ()) call eio%input_i_prc (i_prc, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (i_prc):", iostat call eio%input_event (event, iostat) if (iostat /= 0) write (u, "(A,I0)") "I/O error (event):", iostat call eio%write (u) write (u, "(A)") write (u, "(1x,A,I0)") "i_prc = ", i_prc write (u, "(A)") call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call eio%final () deallocate (eio) call event%final () deallocate (event) call cleanup_test_process (process, process_instance) deallocate (process_instance) deallocate (process) call model%final () write (u, "(A)") write (u, "(A)") "* Test output end: eio_raw_2" end subroutine eio_raw_2 @ %def eio_raw_2 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Dispatch} An event transform is responsible for dressing a partonic event. Since event transforms are not mutually exclusive but are concatenated, we provide individual dispatchers for each of them. Due to the gfortran 7/8/9 bug that leads to segmentation violation if polymorphic user-defined derived types are allocated in routines within submodules, this module remains without submodule until we can switch to gfortran v10 or newer. <<[[dispatch_transforms.f90]]>>= <> module dispatch_transforms <> <> use process use variables use system_defs, only: LF use system_dependencies, only: LHAPDF6_AVAILABLE use sf_lhapdf, only: lhapdf_initialize use pdf, only: pdf_data_t use diagnostics use models use os_interface use beam_structures use resonances, only: resonance_history_set_t use instances, only: process_instance_t, process_instance_hook_t use event_base, only: event_callback_t, event_callback_nop_t use hepmc_interface, only: HEPMC3_MODE_HEPMC2, HEPMC3_MODE_HEPMC3 use hepmc_interface, only: HEPMC3_MODE_ROOT, HEPMC3_MODE_ROOTTREE use hepmc_interface, only: HEPMC3_MODE_HEPEVT use eio_base use eio_raw use eio_checkpoints use eio_callback use eio_lhef use eio_hepmc use eio_lcio use eio_stdhep use eio_ascii use eio_weights use eio_dump use event_transforms use resonance_insertion use isr_epa_handler use decays use shower_base use shower_core use shower use shower_pythia6 use shower_pythia8 use hadrons use mlm_matching use powheg_matching use ckkw_matching use tauola_interface !NODEP! use evt_nlo <> <> contains <> end module dispatch_transforms @ %def dispatch_transforms @ <>= public :: dispatch_evt_nlo <>= subroutine dispatch_evt_nlo (evt, keep_failed_events) class(evt_t), intent(out), pointer :: evt logical, intent(in) :: keep_failed_events call msg_message ("Simulate: activating fixed-order NLO events") allocate (evt_nlo_t :: evt) evt%only_weighted_events = .true. select type (evt) type is (evt_nlo_t) evt%i_evaluation = 0 evt%keep_failed_events = keep_failed_events end select end subroutine dispatch_evt_nlo @ %def dispatch_evt_nlo @ <>= public :: dispatch_evt_resonance <>= subroutine dispatch_evt_resonance (evt, var_list, res_history_set, libname) class(evt_t), intent(out), pointer :: evt type(var_list_t), intent(in) :: var_list type(resonance_history_set_t), dimension(:), intent(in) :: res_history_set type(string_t), intent(in) :: libname logical :: resonance_history resonance_history = var_list%get_lval (var_str ("?resonance_history")) if (resonance_history) then allocate (evt_resonance_t :: evt) call msg_message ("Simulate: activating resonance insertion") select type (evt) type is (evt_resonance_t) call evt%set_resonance_data (res_history_set) call evt%set_library (libname) end select else evt => null () end if end subroutine dispatch_evt_resonance @ %def dispatch_evt_resonance @ Initialize the ISR/EPA handler, depending on active settings. The activation is independent for both handlers, since only one may be needed at a time. However, if both handlers are active, the current implementation requires the handler modes of ISR and EPA to coincide. <>= public :: dispatch_evt_isr_epa_handler <>= subroutine dispatch_evt_isr_epa_handler (evt, var_list) class(evt_t), intent(out), pointer :: evt type(var_list_t), intent(in) :: var_list logical :: isr_recoil logical :: epa_recoil logical :: isr_handler_active logical :: epa_handler_active type(string_t) :: isr_handler_mode type(string_t) :: epa_handler_mode logical :: isr_keep_mass real(default) :: sqrts real(default) :: isr_q_max real(default) :: epa_q_max real(default) :: isr_mass real(default) :: epa_mass isr_handler_active = var_list%get_lval (var_str ("?isr_handler")) if (isr_handler_active) then call msg_message ("Simulate: activating ISR handler") isr_recoil = & var_list%get_lval (var_str ("?isr_recoil")) isr_handler_mode = & var_list%get_sval (var_str ("$isr_handler_mode")) isr_keep_mass = & var_list%get_lval (var_str ("?isr_handler_keep_mass")) if (isr_recoil) then call msg_fatal ("Simulate: ISR handler is incompatible & &with ?isr_recoil=true") end if end if epa_handler_active = var_list%get_lval (var_str ("?epa_handler")) if (epa_handler_active) then call msg_message ("Simulate: activating EPA handler") epa_recoil = var_list%get_lval (var_str ("?epa_recoil")) epa_handler_mode = var_list%get_sval (var_str ("$epa_handler_mode")) if (epa_recoil) then call msg_fatal ("Simulate: EPA handler is incompatible & &with ?epa_recoil=true") end if end if if (isr_handler_active .and. epa_handler_active) then if (isr_handler_mode /= epa_handler_mode) then call msg_fatal ("Simulate: ISR/EPA handler: modes must coincide") end if end if if (isr_handler_active .or. epa_handler_active) then allocate (evt_isr_epa_t :: evt) select type (evt) type is (evt_isr_epa_t) if (isr_handler_active) then call evt%set_mode_string (isr_handler_mode) else call evt%set_mode_string (epa_handler_mode) end if sqrts = var_list%get_rval (var_str ("sqrts")) if (isr_handler_active) then isr_q_max = var_list%get_rval (var_str ("isr_q_max")) isr_mass = var_list%get_rval (var_str ("isr_mass")) call evt%set_data_isr (sqrts, isr_q_max, isr_mass, isr_keep_mass) end if if (epa_handler_active) then epa_q_max = var_list%get_rval (var_str ("epa_q_max")) epa_mass = var_list%get_rval (var_str ("epa_mass")) call evt%set_data_epa (sqrts, epa_q_max, epa_mass) end if call msg_message ("Simulate: ISR/EPA handler mode: " & // char (evt%get_mode_string ())) end select else evt => null () end if end subroutine dispatch_evt_isr_epa_handler @ %def dispatch_evt_isr_epa_handler @ <>= public :: dispatch_evt_decay <>= subroutine dispatch_evt_decay (evt, var_list) class(evt_t), intent(out), pointer :: evt type(var_list_t), intent(in), target :: var_list logical :: allow_decays allow_decays = var_list%get_lval (var_str ("?allow_decays")) if (allow_decays) then allocate (evt_decay_t :: evt) call msg_message ("Simulate: activating decays") select type (evt) type is (evt_decay_t) call evt%set_var_list (var_list) end select else evt => null () end if end subroutine dispatch_evt_decay @ %def dispatch_evt_decay @ <>= public :: dispatch_evt_shower <>= subroutine dispatch_evt_shower (evt, var_list, model, fallback_model, & os_data, beam_structure, process) class(evt_t), intent(out), pointer :: evt type(var_list_t), intent(in) :: var_list type(model_t), pointer, intent(in) :: model, fallback_model type(os_data_t), intent(in) :: os_data type(beam_structure_t), intent(in) :: beam_structure type(process_t), intent(in), optional :: process type(string_t) :: lhapdf_file, lhapdf_dir, process_name integer :: lhapdf_member type(shower_settings_t) :: settings type(taudec_settings_t) :: taudec_settings call msg_message ("Simulate: activating parton shower") allocate (evt_shower_t :: evt) call settings%init (var_list) if (associated (model)) then call taudec_settings%init (var_list, model) else call taudec_settings%init (var_list, fallback_model) end if if (present (process)) then process_name = process%get_id () else process_name = 'dispatch_testing' end if select type (evt) type is (evt_shower_t) call evt%init (fallback_model, os_data) lhapdf_member = & var_list%get_ival (var_str ("lhapdf_member")) if (LHAPDF6_AVAILABLE) then lhapdf_dir = & var_list%get_sval (var_str ("$lhapdf_dir")) lhapdf_file = & var_list%get_sval (var_str ("$lhapdf_file")) call lhapdf_initialize & (1, lhapdf_dir, lhapdf_file, lhapdf_member, evt%pdf_data%pdf) end if if (present (process)) call evt%pdf_data%setup ("Shower", & beam_structure, lhapdf_member, process%get_pdf_set ()) select case (settings%method) case (PS_WHIZARD) allocate (shower_t :: evt%shower) case (PS_PYTHIA6) allocate (shower_pythia6_t :: evt%shower) case (PS_PYTHIA8) allocate (shower_pythia8_t :: evt%shower) case default call msg_fatal ('Shower: Method ' // & char (var_list%get_sval (var_str ("$shower_method"))) // & 'not implemented!') end select call evt%shower%init (settings, taudec_settings, evt%pdf_data, os_data) call dispatch_matching (evt, settings, var_list, process_name, evt%pdf_data) class default call dispatch_matching (evt, settings, var_list, process_name) end select end subroutine dispatch_evt_shower @ %def dispatch_evt_shower @ <>= public :: dispatch_evt_shower_hook <>= subroutine dispatch_evt_shower_hook (hook, var_list, process_instance, beam_structure, pdf_set) class(process_instance_hook_t), pointer, intent(out) :: hook type(var_list_t), intent(in) :: var_list class(process_instance_t), intent(in), target :: process_instance type(beam_structure_t), intent(in) :: beam_structure integer, intent(in) :: pdf_set type(pdf_data_t) :: pdf_data type(string_t) :: lhapdf_file, lhapdf_dir integer :: lhapdf_member if (var_list%get_lval (var_str ('?powheg_matching'))) then call msg_message ("Integration hook: add POWHEG hook") allocate (powheg_matching_hook_t :: hook) select type (hook) type is (powheg_matching_hook_t) lhapdf_member = var_list%get_ival (var_str ("lhapdf_member")) if (LHAPDF6_AVAILABLE) then lhapdf_dir = var_list%get_sval (var_str ("$lhapdf_dir")) lhapdf_file = var_list%get_sval (var_str ("$lhapdf_file")) call lhapdf_initialize (1, lhapdf_dir, lhapdf_file, lhapdf_member, pdf_data%pdf) end if call pdf_data%setup ("Shower", beam_structure, lhapdf_member, pdf_set) call hook%init (var_list, process_instance, pdf_data) end select else hook => null () end if end subroutine dispatch_evt_shower_hook @ %def dispatch_evt_shower_hook @ <>= public :: dispatch_matching <>= subroutine dispatch_matching (evt, settings, var_list, process_name, pdf_data) class(evt_t), intent(inout) :: evt type(shower_settings_t), intent(in) :: settings type(var_list_t), intent(in) :: var_list type(string_t), intent(in) :: process_name type(pdf_data_t), intent(in), optional :: pdf_data select type (evt) type is (evt_shower_t) if (settings%mlm_matching .and. settings%ckkw_matching) then call msg_fatal ("Both MLM and CKKW matching activated," // & LF // " aborting simulation") end if if (settings%powheg_matching) then call msg_message ("Simulate: applying POWHEG matching") allocate (powheg_matching_t :: evt%matching) end if if (settings%mlm_matching) then call msg_message ("Simulate: applying MLM matching") allocate (mlm_matching_t :: evt%matching) end if if (settings%ckkw_matching) then call msg_warning ("Simulate: CKKW(-L) matching not yet supported") allocate (ckkw_matching_t :: evt%matching) end if if (allocated (evt%matching)) then call evt%matching%init (var_list, process_name) if (present(pdf_data)) then select type (matching => evt%matching) type is (powheg_matching_t) matching%process_deps%pdf_data = pdf_data end select end if end if end select end subroutine dispatch_matching @ %def dispatch_matching @ <>= public :: dispatch_evt_hadrons <>= subroutine dispatch_evt_hadrons (evt, var_list, fallback_model) class(evt_t), intent(out), pointer :: evt type(var_list_t), intent(in) :: var_list type(model_t), pointer, intent(in) :: fallback_model type(shower_settings_t) :: shower_settings type(hadron_settings_t) :: hadron_settings allocate (evt_hadrons_t :: evt) call msg_message ("Simulate: activating hadronization") call shower_settings%init (var_list) call hadron_settings%init (var_list) select type (evt) type is (evt_hadrons_t) call evt%init (fallback_model) select case (hadron_settings%method) case (HADRONS_WHIZARD) allocate (hadrons_hadrons_t :: evt%hadrons) case (HADRONS_PYTHIA6) allocate (hadrons_pythia6_t :: evt%hadrons) case (HADRONS_PYTHIA8) allocate (hadrons_pythia8_t :: evt%hadrons) case default call msg_fatal ('Hadronization: Method ' // & char (var_list%get_sval (var_str ("hadronization_method"))) // & 'not implemented!') end select call evt%hadrons%init & (shower_settings, hadron_settings, fallback_model) end select end subroutine dispatch_evt_hadrons @ %def dispatch_evt_hadrons @ We cannot put this in the [[events]] subdir due to [[eio_raw_t]], which is defined here. <>= public :: dispatch_eio <>= subroutine dispatch_eio (eio, method, var_list, fallback_model, & event_callback) class(eio_t), allocatable, intent(inout) :: eio type(string_t), intent(in) :: method type(var_list_t), intent(in) :: var_list type(model_t), target, intent(in) :: fallback_model class(event_callback_t), allocatable, intent(in) :: event_callback logical :: check, keep_beams, keep_remnants, recover_beams logical :: use_alphas_from_file, use_scale_from_file logical :: fixed_order_nlo_events logical :: write_sqme_prc, write_sqme_ref, write_sqme_alt logical :: output_cross_section, ensure_order type(string_t) :: lhef_version, lhef_extension, raw_version type(string_t) :: extension_default, debug_extension, dump_extension, & extension_hepmc, & extension_lha, extension_hepevt, extension_ascii_short, & extension_ascii_long, extension_athena, extension_mokka, & extension_stdhep, extension_stdhep_up, extension_stdhep_ev4, & extension_raw, extension_hepevt_verb, extension_lha_verb, & extension_lcio integer :: checkpoint integer :: lcio_run_id, hepmc3_mode logical :: show_process, show_transforms, show_decay, verbose, pacified logical :: dump_weights, dump_compressed, dump_summary, dump_screen logical :: proc_as_run_id, hepmc3_write_flows keep_beams = & var_list%get_lval (var_str ("?keep_beams")) keep_remnants = & var_list%get_lval (var_str ("?keep_remnants")) ensure_order = & var_list%get_lval (var_str ("?hepevt_ensure_order")) recover_beams = & var_list%get_lval (var_str ("?recover_beams")) use_alphas_from_file = & var_list%get_lval (var_str ("?use_alphas_from_file")) use_scale_from_file = & var_list%get_lval (var_str ("?use_scale_from_file")) fixed_order_nlo_events = & var_list%get_lval (var_str ("?fixed_order_nlo_events")) select case (char (method)) case ("raw") allocate (eio_raw_t :: eio) select type (eio) type is (eio_raw_t) check = & var_list%get_lval (var_str ("?check_event_file")) raw_version = & var_list%get_sval (var_str ("$event_file_version")) extension_raw = & var_list%get_sval (var_str ("$extension_raw")) call eio%set_parameters (check, use_alphas_from_file, & use_scale_from_file, fixed_order_nlo_events, & raw_version, extension_raw) end select case ("checkpoint") allocate (eio_checkpoints_t :: eio) select type (eio) type is (eio_checkpoints_t) checkpoint = & var_list%get_ival (var_str ("checkpoint")) pacified = & var_list%get_lval (var_str ("?pacify")) call eio%set_parameters (checkpoint, blank = pacified) end select case ("callback") allocate (eio_callback_t :: eio) select type (eio) type is (eio_callback_t) checkpoint = & var_list%get_ival (var_str ("event_callback_interval")) if (allocated (event_callback)) then call eio%set_parameters (event_callback, checkpoint) else call eio%set_parameters (event_callback_nop_t (), 0) end if end select case ("lhef") allocate (eio_lhef_t :: eio) select type (eio) type is (eio_lhef_t) lhef_version = & var_list%get_sval (var_str ("$lhef_version")) lhef_extension = & var_list%get_sval (var_str ("$lhef_extension")) write_sqme_prc = & var_list%get_lval (var_str ("?lhef_write_sqme_prc")) write_sqme_ref = & var_list%get_lval (var_str ("?lhef_write_sqme_ref")) write_sqme_alt = & var_list%get_lval (var_str ("?lhef_write_sqme_alt")) call eio%set_parameters ( & keep_beams, keep_remnants, recover_beams, & use_alphas_from_file, use_scale_from_file, & char (lhef_version), lhef_extension, & write_sqme_ref, write_sqme_prc, write_sqme_alt) end select case ("hepmc") allocate (eio_hepmc_t :: eio) select type (eio) type is (eio_hepmc_t) output_cross_section = & var_list%get_lval (var_str ("?hepmc_output_cross_section")) extension_hepmc = & var_list%get_sval (var_str ("$extension_hepmc")) hepmc3_write_flows = & var_list%get_lval (var_str ("?hepmc3_write_flows")) select case (char (var_list%get_sval (var_str ("$hepmc3_mode")))) case ("HepMC2") hepmc3_mode = HEPMC3_MODE_HEPMC2 case ("HepMC3") hepmc3_mode = HEPMC3_MODE_HEPMC3 case ("Root") hepmc3_mode = HEPMC3_MODE_ROOT if (extension_hepmc /= "root") then call msg_message ("Events: HepMC3 Root mode, using " // & "event sample extension 'root'") extension_hepmc = "root" end if case ("RootTree") hepmc3_mode = HEPMC3_MODE_ROOTTREE if (extension_hepmc /= "root") then call msg_message ("Events: HepMC3 RootTree mode, using " // & "event sample extension 'root'") extension_hepmc = "root" end if case ("HepEVT") hepmc3_mode = HEPMC3_MODE_HEPEVT case default call msg_fatal ("Only supported HepMC3 modes are: 'HepMC2', " // & "'HepMC3', 'HepEVT', 'Root', and 'RootTree'.") end select call eio%set_parameters (recover_beams, & use_alphas_from_file, use_scale_from_file, & extension = extension_hepmc, & output_cross_section = output_cross_section, & hepmc3_mode = hepmc3_mode, & hepmc3_write_flows = hepmc3_write_flows) end select case ("lcio") allocate (eio_lcio_t :: eio) select type (eio) type is (eio_lcio_t) extension_lcio = & var_list%get_sval (var_str ("$extension_lcio")) proc_as_run_id = & var_list%get_lval (var_str ("?proc_as_run_id")) lcio_run_id = & var_list%get_ival (var_str ("lcio_run_id")) call eio%set_parameters (recover_beams, & use_alphas_from_file, use_scale_from_file, & extension_lcio, proc_as_run_id = proc_as_run_id, & lcio_run_id = lcio_run_id) end select case ("stdhep") allocate (eio_stdhep_hepevt_t :: eio) select type (eio) type is (eio_stdhep_hepevt_t) extension_stdhep = & var_list%get_sval (var_str ("$extension_stdhep")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, recover_beams, & use_alphas_from_file, use_scale_from_file, extension_stdhep) end select case ("stdhep_up") allocate (eio_stdhep_hepeup_t :: eio) select type (eio) type is (eio_stdhep_hepeup_t) extension_stdhep_up = & var_list%get_sval (var_str ("$extension_stdhep_up")) call eio%set_parameters (keep_beams, keep_remnants, ensure_order, & recover_beams, use_alphas_from_file, & use_scale_from_file, extension_stdhep_up) end select case ("stdhep_ev4") allocate (eio_stdhep_hepev4_t :: eio) select type (eio) type is (eio_stdhep_hepev4_t) extension_stdhep_ev4 = & var_list%get_sval (var_str ("$extension_stdhep_ev4")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, recover_beams, & use_alphas_from_file, use_scale_from_file, extension_stdhep_ev4) end select case ("ascii") allocate (eio_ascii_ascii_t :: eio) select type (eio) type is (eio_ascii_ascii_t) extension_default = & var_list%get_sval (var_str ("$extension_default")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_default) end select case ("athena") allocate (eio_ascii_athena_t :: eio) select type (eio) type is (eio_ascii_athena_t) extension_athena = & var_list%get_sval (var_str ("$extension_athena")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_athena) end select case ("debug") allocate (eio_ascii_debug_t :: eio) select type (eio) type is (eio_ascii_debug_t) debug_extension = & var_list%get_sval (var_str ("$debug_extension")) show_process = & var_list%get_lval (var_str ("?debug_process")) show_transforms = & var_list%get_lval (var_str ("?debug_transforms")) show_decay = & var_list%get_lval (var_str ("?debug_decay")) verbose = & var_list%get_lval (var_str ("?debug_verbose")) call eio%set_parameters ( & extension = debug_extension, & show_process = show_process, & show_transforms = show_transforms, & show_decay = show_decay, & verbose = verbose) end select case ("dump") allocate (eio_dump_t :: eio) select type (eio) type is (eio_dump_t) dump_extension = & var_list%get_sval (var_str ("$dump_extension")) pacified = & var_list%get_lval (var_str ("?pacify")) dump_weights = & var_list%get_lval (var_str ("?dump_weights")) dump_compressed = & var_list%get_lval (var_str ("?dump_compressed")) dump_summary = & var_list%get_lval (var_str ("?dump_summary")) dump_screen = & var_list%get_lval (var_str ("?dump_screen")) call eio%set_parameters ( & extension = dump_extension, & pacify = pacified, & weights = dump_weights, & compressed = dump_compressed, & summary = dump_summary, & screen = dump_screen) end select case ("hepevt") allocate (eio_ascii_hepevt_t :: eio) select type (eio) type is (eio_ascii_hepevt_t) extension_hepevt = & var_list%get_sval (var_str ("$extension_hepevt")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_hepevt) end select case ("hepevt_verb") allocate (eio_ascii_hepevt_verb_t :: eio) select type (eio) type is (eio_ascii_hepevt_verb_t) extension_hepevt_verb = & var_list%get_sval (var_str ("$extension_hepevt_verb")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_hepevt_verb) end select case ("lha") allocate (eio_ascii_lha_t :: eio) select type (eio) type is (eio_ascii_lha_t) extension_lha = & var_list%get_sval (var_str ("$extension_lha")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_lha) end select case ("lha_verb") allocate (eio_ascii_lha_verb_t :: eio) select type (eio) type is (eio_ascii_lha_verb_t) extension_lha_verb = var_list%get_sval ( & var_str ("$extension_lha_verb")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_lha_verb) end select case ("long") allocate (eio_ascii_long_t :: eio) select type (eio) type is (eio_ascii_long_t) extension_ascii_long = & var_list%get_sval (var_str ("$extension_ascii_long")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_ascii_long) end select case ("mokka") allocate (eio_ascii_mokka_t :: eio) select type (eio) type is (eio_ascii_mokka_t) extension_mokka = & var_list%get_sval (var_str ("$extension_mokka")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_mokka) end select case ("short") allocate (eio_ascii_short_t :: eio) select type (eio) type is (eio_ascii_short_t) extension_ascii_short = & var_list%get_sval (var_str ("$extension_ascii_short")) call eio%set_parameters & (keep_beams, keep_remnants, ensure_order, extension_ascii_short) end select case ("weight_stream") allocate (eio_weights_t :: eio) select type (eio) type is (eio_weights_t) pacified = & var_list%get_lval (var_str ("?pacify")) call eio%set_parameters (pacify = pacified) end select case default call msg_fatal ("Event I/O method '" // char (method) & // "' not implemented") end select call eio%set_fallback_model (fallback_model) end subroutine dispatch_eio @ %def dispatch_eio @ @ \subsection{Unit tests} Test module, followed by the corresponding implementation module. <<[[dispatch_transforms_ut.f90]]>>= <> module dispatch_transforms_ut use unit_tests use dispatch_transforms_uti <> <> contains <> end module dispatch_transforms_ut @ %def dispatch_transforms_ut @ <<[[dispatch_transforms_uti.f90]]>>= <> module dispatch_transforms_uti <> <> use format_utils, only: write_separator use variables use event_base, only: event_callback_t use models, only: model_t, model_list_t use models, only: syntax_model_file_init, syntax_model_file_final use resonances, only: resonance_history_set_t use beam_structures, only: beam_structure_t use eio_base, only: eio_t use os_interface, only: os_data_t use event_transforms, only: evt_t use dispatch_transforms <> <> contains <> end module dispatch_transforms_uti @ %def dispatch_transforms_uti @ API: driver for the unit tests below. <>= public ::dispatch_transforms_test <>= subroutine dispatch_transforms_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine dispatch_transforms_test @ %def dispatch_transforms_test @ \subsubsection{Event I/O} <>= call test (dispatch_transforms_1, "dispatch_transforms_1", & "event I/O", & u, results) <>= public :: dispatch_transforms_1 <>= subroutine dispatch_transforms_1 (u) integer, intent(in) :: u type(var_list_t) :: var_list type(model_list_t) :: model_list type(model_t), pointer :: model type(os_data_t) :: os_data class(event_callback_t), allocatable :: event_callback class(eio_t), allocatable :: eio write (u, "(A)") "* Test output: dispatch_transforms_1" write (u, "(A)") "* Purpose: allocate an event I/O (eio) stream" write (u, "(A)") call var_list%init_defaults (0) call os_data%init () call syntax_model_file_init () call model_list%read_model (var_str ("SM_hadrons"), & var_str ("SM_hadrons.mdl"), os_data, model) write (u, "(A)") "* Allocate as raw" write (u, "(A)") call dispatch_eio (eio, var_str ("raw"), var_list, & model, event_callback) call eio%write (u) call eio%final () deallocate (eio) write (u, "(A)") write (u, "(A)") "* Allocate as checkpoints:" write (u, "(A)") call dispatch_eio (eio, var_str ("checkpoint"), var_list, & model, event_callback) call eio%write (u) call eio%final () deallocate (eio) write (u, "(A)") write (u, "(A)") "* Allocate as LHEF:" write (u, "(A)") call var_list%set_string (var_str ("$lhef_extension"), & var_str ("lhe_custom"), is_known = .true.) call dispatch_eio (eio, var_str ("lhef"), var_list, & model, event_callback) call eio%write (u) call eio%final () deallocate (eio) write (u, "(A)") write (u, "(A)") "* Allocate as HepMC:" write (u, "(A)") call dispatch_eio (eio, var_str ("hepmc"), var_list, & model, event_callback) call eio%write (u) call eio%final () deallocate (eio) write (u, "(A)") write (u, "(A)") "* Allocate as weight_stream" write (u, "(A)") call dispatch_eio (eio, var_str ("weight_stream"), var_list, & model, event_callback) call eio%write (u) call eio%final () deallocate (eio) write (u, "(A)") write (u, "(A)") "* Allocate as debug format" write (u, "(A)") call var_list%set_log (var_str ("?debug_verbose"), & .false., is_known = .true.) call dispatch_eio (eio, var_str ("debug"), var_list, & model, event_callback) call eio%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call eio%final () call var_list%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_transforms_1" end subroutine dispatch_transforms_1 @ %def dispatch_transforms_1 @ \subsubsection{Event transforms} This test dispatches [[evt]] (event transform) objects. <>= call test (dispatch_transforms_2, "dispatch_transforms_2", & "event transforms", & u, results) <>= public :: dispatch_transforms_2 <>= subroutine dispatch_transforms_2 (u) integer, intent(in) :: u type(var_list_t), target :: var_list type(model_list_t) :: model_list type(model_t), pointer :: model type(os_data_t) :: os_data type(resonance_history_set_t), dimension(1) :: res_history_set type(beam_structure_t) :: beam_structure class(evt_t), pointer :: evt write (u, "(A)") "* Test output: dispatch_transforms_2" write (u, "(A)") "* Purpose: configure event transform" write (u, "(A)") call syntax_model_file_init () call var_list%init_defaults (0) call os_data%init () call model_list%read_model (var_str ("SM_hadrons"), & var_str ("SM_hadrons.mdl"), os_data, model) write (u, "(A)") "* Resonance insertion" write (u, "(A)") call var_list%set_log (var_str ("?resonance_history"), .true., & is_known = .true.) call dispatch_evt_resonance (evt, var_list, & res_history_set, & var_str ("foo_R")) call evt%write (u, verbose = .true., more_verbose = .true.) call evt%final () deallocate (evt) write (u, "(A)") write (u, "(A)") "* ISR handler" write (u, "(A)") call var_list%set_log (var_str ("?isr_handler"), .true., & is_known = .true.) call var_list%set_log (var_str ("?epa_handler"), .false., & is_known = .true.) call var_list%set_string (var_str ("$isr_handler_mode"), & var_str ("recoil"), & is_known = .true.) call var_list%set_real (var_str ("sqrts"), 100._default, & is_known = .true.) call var_list%set_real (var_str ("isr_mass"), 511.e-6_default, & is_known = .true.) call dispatch_evt_isr_epa_handler (evt, var_list) call evt%write (u, verbose = .true., more_verbose = .true.) call evt%final () deallocate (evt) write (u, "(A)") write (u, "(A)") "* EPA handler" write (u, "(A)") call var_list%set_log (var_str ("?isr_handler"), .false., & is_known = .true.) call var_list%set_log (var_str ("?epa_handler"), .true., & is_known = .true.) call var_list%set_string (var_str ("$epa_handler_mode"), & var_str ("recoil"), & is_known = .true.) call var_list%set_real (var_str ("sqrts"), 100._default, & is_known = .true.) call var_list%set_real (var_str ("epa_mass"), 511.e-6_default, & is_known = .true.) call dispatch_evt_isr_epa_handler (evt, var_list) call evt%write (u, verbose = .true., more_verbose = .true.) call evt%final () deallocate (evt) write (u, "(A)") write (u, "(A)") "* Partonic decays" write (u, "(A)") call dispatch_evt_decay (evt, var_list) call evt%write (u, verbose = .true., more_verbose = .true.) call evt%final () deallocate (evt) write (u, "(A)") write (u, "(A)") "* Shower" write (u, "(A)") call var_list%set_log (var_str ("?allow_shower"), .true., & is_known = .true.) call var_list%set_string (var_str ("$shower_method"), & var_str ("WHIZARD"), is_known = .true.) call dispatch_evt_shower (evt, var_list, model, & model, os_data, beam_structure) call evt%write (u) call write_separator (u, 2) call evt%final () deallocate (evt) call var_list%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_transforms_2" end subroutine dispatch_transforms_2 @ %def dispatch_transforms_2 Index: trunk/src/pythia8/Pythia8Wrap_dummy.f90 =================================================================== --- trunk/src/pythia8/Pythia8Wrap_dummy.f90 (revision 8850) +++ trunk/src/pythia8/Pythia8Wrap_dummy.f90 (revision 8851) @@ -1,232 +1,244 @@ ! Tell the caller that this is NOT the true Pythia8 library logical(c_bool) function pythia8_available () bind(C) use iso_c_binding !NODEP! pythia8_available = .false. end function pythia8_available function new_pythia8 (filename, subrun) bind(C) result (pythia) use iso_c_binding !NODEP! character(len=1, kind=c_char), intent(in) :: filename integer(c_int), intent(in) :: subrun type(c_ptr) :: pythia pythia = c_null_ptr write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function new_pythia8 subroutine pythia8_delete (pythia) bind(C) use iso_c_binding !NODEP! type(c_ptr), value :: pythia write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end subroutine pythia8_delete function pythia8_set_lhaup_ptr (cptr, whizard_lha) bind(C) result (flag) use iso_c_binding !NODEP! type(c_ptr), value :: cptr type(c_ptr), intent(in), value :: whizard_lha logical(c_bool) :: flag write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_set_lhaup_ptr function pythia8_set_rndm_engine_ptr (pythia, whizard_rndm) bind(C) result (flag) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: pythia type(c_ptr), intent(in), value :: whizard_rndm logical(c_bool) :: flag write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_set_rndm_engine_ptr function pythia8_read_file (cptr, filename, subrun) bind(C) result (flag) use iso_c_binding !NODEP! type(c_ptr), value :: cptr character(kind=c_char), dimension(*), intent(in) :: filename integer(c_int), intent(in), value :: subrun logical(c_bool) :: flag write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_read_file function pythia8_read_string (cptr, str) bind(C) result (flag) use iso_c_binding !NODEP! type(c_ptr), value :: cptr character(kind=c_char), dimension(*), intent(in) :: str logical(c_bool) :: flag write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_read_string function pythia8_init (cptr) bind(C) result (flag) use iso_c_binding !NODEP! logical(c_bool) :: flag write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_init function pythia8_next (cptr) bind(C) result (flag) use iso_c_binding !NODEP! type(c_ptr), value :: cptr logical(c_bool) :: flag write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_next subroutine pythia8_list_lha_event (cptr) bind(C) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: cptr write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end subroutine pythia8_list_lha_event subroutine pythia8_list_event (cptr) bind(C) use iso_c_binding !NODEP! type(c_ptr), value :: cptr write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end subroutine pythia8_list_event function pythia8_get_event_size (cptr) bind(C) result(n) use iso_c_binding !NODEP! type(c_ptr), value :: cptr integer(c_int) :: n write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_event_size function pythia8_get_single_event (cptr, index) bind(C) result (particle) use iso_c_binding !NODEP! use whizard_lha, only: lha_particle_t type(c_ptr), value :: cptr integer(c_int), value :: index type(lha_particle_t) :: particle write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_single_event function pythia8_get_particle_status (cptr, index) bind(C) result (status) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index integer(c_int) :: status write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_particle_status function pythia8_get_particle_id (cptr, index) bind(C) result (status) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index integer(c_int) :: status write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_particle_id subroutine pythia8_get_particle_momentum (cptr, index, momentum) bind(C) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index real(c_double), dimension(*), intent(out) :: momentum write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end subroutine pythia8_get_particle_momentum function pythia8_get_n_mothers (cptr) bind(C) result (n_mothers) use iso_c_binding !NODEP! type(c_ptr), value :: cptr integer(c_int) :: n_mothers write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_n_mothers function pythia8_get_mother_array (cptr, i_prt, index) bind(C) result (mother) use iso_c_binding !NODEP! type(c_ptr), value :: cptr integer(c_int), value, intent(in) :: i_prt integer(c_int), value, intent(in) :: index integer(c_int) :: mother write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_mother_array function pythia8_get_n_daughters (cptr) bind(C) result (n_daughters) use iso_c_binding !NODEP! type(c_ptr), value :: cptr integer(c_int) :: n_daughters write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_n_daughters function pythia8_get_daughter_array (cptr, i_prt, index) bind(C) result (daughter) use iso_c_binding !NODEP! type(c_ptr), value :: cptr integer(c_int), value, intent(in) :: i_prt integer(c_int), value, intent(in) :: index integer(c_int) :: daughter write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_daughter_array function pythia8_get_status_hepmc (cptr, i_prt) bind(C) result (status) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: cptr integer(c_int), value, intent(in) :: i_prt integer(c_int) :: status write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end function pythia8_get_status_hepmc subroutine pythia8_get_decay_vertex (cptr, i_prt, time, vertex) bind(C) use iso_c_binding !NODEP! type(c_ptr), intent(in), value :: cptr integer(c_int), value, intent(in) :: i_prt real(c_double), intent(out) :: time real(c_double), dimension(3), intent(out) :: vertex write (0, "(A)") "**************************************************************" write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" write (0, "(A)") "**************************************************************" stop end subroutine pythia8_get_decay_vertex + +subroutine pythia8_get_production_vertex (cptr, i_prt, time, vertex) bind(C) + use iso_c_binding !NODEP! + type(c_ptr), intent(in), value :: cptr + integer(c_int), value, intent(in) :: i_prt + real(c_double), intent(out) :: time + real(c_double), dimension(3), intent(out) :: vertex + write (0, "(A)") "**************************************************************" + write (0, "(A)") "*** Pythia8: Error: library not linked, WHIZARD terminates ***" + write (0, "(A)") "**************************************************************" + stop +end subroutine pythia8_get_production_vertex Index: trunk/src/pythia8/pythia8.nw =================================================================== --- trunk/src/pythia8/pythia8.nw (revision 8850) +++ trunk/src/pythia8/pythia8.nw (revision 8851) @@ -1,1775 +1,1787 @@ %% -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*- % WHIZARD code as NOWEB source: LHA user process interface and Pythia8 interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{LHA User Process and Pythia8} \label{cha:lha-pythia8} We implement the Les Houches Accord interface for C++ specified in Pythia8 and interface the Pythia with the given LHA User Process object of WHIZARD. \section{LHA User Process WHIZARD} \label{sec:lha-whizard} <<[[whizard_lha.f90]]>>= <> module whizard_lha <> <> <> <> <> <> <> contains <> end module whizard_lha @ %def whizard_lha @ <>= use, intrinsic :: iso_c_binding use diagnostics use format_utils, only: write_separator use lorentz use io_units, only: given_output_unit use polarizations use particles use subevents, only: PRT_BEAM, PRT_INCOMING, PRT_OUTGOING, & PRT_UNDEFINED, PRT_VIRTUAL, PRT_RESONANT, PRT_BEAM_REMNANT @ %def whizard_lha_modules @ We define a transport type for a particle corresponding to C-struct. <>= public :: lha_particle_t <>= type, bind(C) :: lha_particle_t integer(c_int) :: id, status integer(c_int), dimension(2) :: mother integer(c_int), dimension(2) :: color real(c_double), dimension(4) :: momentum real(c_double) :: mass, tau, spin end type lha_particle_t @ %def lha_particle_t @ Private print routine for [[lha_particle_t]]. <>= interface lha_particle_write module procedure lha_particle_write_single, lha_particle_write_array end interface lha_particle_write <>= subroutine lha_particle_write_single (particle, unit) type(lha_particle_t) :: particle integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(I9,1X)", advance="no") particle%id write (u, "(I4,1X)", advance="no") particle%status write (u, "(2(I5,1X))", advance="no") particle%mother(1), particle%mother(2) write (u, "(2(I5,1X))", advance="no") particle%color(1), particle%color(2) write (u, "(5(F11.3,1X))", advance="no") particle%momentum(2), particle%momentum(3), & particle%momentum(4), particle%momentum(1), particle%mass write (u, "(F8.3,1X)", advance="no") particle%tau write (u, "(F8.3,1X)", advance="no") particle%tau write (u, "(A)") end subroutine lha_particle_write_single subroutine lha_particle_write_array (particle_set, unit) type(lha_particle_t), dimension(:), intent(in) :: particle_set integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) write (u, "(1X,A)") "LHA Particle set:" call write_separator (u) write (u, "((A4,1X),(A9,1X),(A4,1X),(1X,A10,1X),(1X,A10,1X),5(A11,1X),2(A8,1X))") & "No", "ID", "Stat", "Mothers", "Colours", & "P(1)", "P(2)", "P(3)", "E", "M", "Tau", "Spin" if (size (particle_set) == 0) then write (u, "(3X,A)") "[empty]" else do i = 1, size(particle_set) write (u, "(I4,1X)", advance="no") i call lha_particle_write_single (particle_set(i), unit) end do end if call write_separator (u) end subroutine lha_particle_write_array @ %def lha_particle_write_single, lha_particle_write_array @ We define the [[whizard_lha_t]] type which handles the C++ implementation of the LHA User Procces class [[LHAupWhizard]]. <>= public :: whizard_lha_t <>= type :: whizard_lha_t private type(c_ptr) :: cptr logical :: new_event = .false. contains <> end type whizard_lha_t @ %def whizard_lha_t @ Initialize. Construct a new C++ object of type [[LHAupWhizard]]. <>= procedure :: init => whizard_lha_init <>= interface function new_whizard_lha () bind(C) result (cptr) import type(c_ptr) :: cptr end function new_whizard_lha end interface <>= subroutine whizard_lha_init (whizard_lha) class(whizard_lha_t), intent(out) :: whizard_lha whizard_lha%cptr = new_whizard_lha () end subroutine whizard_lha_init @ %def whizard_lha_init @ Finalize. Call the Destructor of the [[LHAupWhizard]] object. <>= procedure :: final => whizard_lha_final <>= interface subroutine lhaup_whizard_delete (cptr) bind(C) import ! Attribute value cannot have intent(inout). type(c_ptr), value :: cptr end subroutine lhaup_whizard_delete end interface <>= subroutine whizard_lha_final (whizard_lha) class(whizard_lha_t), intent(inout) :: whizard_lha call lhaup_whizard_delete (whizard_lha%cptr) end subroutine whizard_lha_final @ %def whizard_lha_final @ Get [[c_ptr]]. <>= procedure :: get_ptr => whizard_lha_get_ptr <>= function whizard_lha_get_ptr (whizard_lha) result (cptr) class(whizard_lha_t), intent(in) :: whizard_lha type(c_ptr) :: cptr cptr = whizard_lha%cptr end function whizard_lha_get_ptr @ %def whizard_lha_get_ptr @ Set initialisation parameter. <>= procedure :: set_init => whizard_lha_set_init <>= interface function lhaup_whizard_set_init (cptr, beam_pdg, beam_energy, n_processes, unweighted, negative_weights) bind(C) result (flag) import type(c_ptr), value :: cptr integer(c_int), dimension(2), intent(in) :: beam_pdg real(c_double), dimension(2), intent(in) :: beam_energy integer(c_int), intent(in), value :: n_processes logical(c_bool), intent(in), value :: unweighted, negative_weights logical(c_bool) :: flag end function lhaup_whizard_set_init end interface <>= subroutine whizard_lha_set_init (whizard_lha, beam_pdg, beam_energy, n_processes, unweighted, negative_weights) class(whizard_lha_t), intent(inout) :: whizard_lha integer, dimension(2), intent(in) :: beam_pdg real(default), dimension(2), intent(in) :: beam_energy integer, intent(in) :: n_processes logical, intent(in) :: unweighted logical, intent(in) :: negative_weights logical(c_bool) :: flag integer(c_int) :: c_n_processes integer(c_int), dimension(2) :: c_beam_pdg real(c_double), dimension(2) :: c_beam_energy logical(c_bool) :: c_unweighted, c_negative_weights c_beam_pdg = int (beam_pdg, c_int) c_beam_energy = real (beam_energy, c_double) c_n_processes = int (n_processes, c_int) c_unweighted = unweighted c_negative_weights = negative_weights flag = lhaup_whizard_set_init (whizard_lha%cptr, c_beam_pdg, & c_beam_energy, c_n_processes, c_unweighted, c_negative_weights) if (.not. flag) then call msg_fatal ("[whizard_lha_set_init] could not " // & "initialize the LHAUpWhizard interface.") end if end subroutine whizard_lha_set_init @ %def whizard_lha_set_init @ Set process parameters. <>= procedure :: set_process_parameters => whizard_lha_set_process_parameters <>= interface function lhaup_whizard_set_process_parameters & (cptr, process_id, cross_section, error, max_weight) & bind(C) result (flag) import type(c_ptr), value :: cptr integer(c_int), intent(in), value :: process_id real(c_double), intent(in), value :: cross_section, error, max_weight logical(c_bool) :: flag end function lhaup_whizard_set_process_parameters end interface <>= ! get this directly from event_sample_data_t subroutine whizard_lha_set_process_parameters (whizard_lha, process_id, cross_section, error, max_weight) class(whizard_lha_t), intent(inout) :: whizard_lha integer, intent(in) :: process_id real(default), intent(in), optional :: cross_section, error, max_weight real(default), parameter :: pb_per_fb = 1.e-3_default integer(c_int) :: c_process_id real(c_double) :: c_cross_section, c_error, c_max_weight logical(c_bool) :: flag c_process_id = int (process_id, c_int) if (present (cross_section)) then c_cross_section = real (cross_section * pb_per_fb, c_double) else c_cross_section = 0._c_double end if if (present (error)) then c_error = real (error * pb_per_fb, c_double) else c_error = 0._c_double end if if (present (max_weight)) then c_max_weight = real (max_weight, c_double) else c_max_weight = 0._c_double end if flag = lhaup_whizard_set_process_parameters (whizard_lha%cptr, & c_process_id, c_cross_section, c_error, c_max_weight) if (.not. flag) then call msg_fatal ("[whizard_lha_add_process] could not add a process.") end if end subroutine whizard_lha_set_process_parameters @ %def whizard_lha_set_process_parameters @ Print LHA User Process initialisation. <>= procedure :: list_init => whizard_lha_list_init procedure :: list_event => whizard_lha_list_event <>= interface subroutine lhaup_whizard_list_init (cptr) bind(C) import type(c_ptr), value :: cptr end subroutine lhaup_whizard_list_init end interface interface subroutine lhaup_whizard_list_event (cptr) bind(C) import type(c_ptr), value :: cptr end subroutine lhaup_whizard_list_event end interface <>= subroutine whizard_lha_list_init (whizard_lha) class(whizard_lha_t), intent(in) :: whizard_lha call lhaup_whizard_list_init (whizard_lha%cptr) end subroutine whizard_lha_list_init subroutine whizard_lha_list_event (whizard_lha) class(whizard_lha_t), intent(in) :: whizard_lha call lhaup_whizard_list_event (whizard_lha%cptr) end subroutine whizard_lha_list_event @ %def whizard_lha_list_init, whizard_lha_list_event @ Set the event process information. We set the process’ scale, the coupling and the weight, iff we handle weighted events. Also, we clean up and prepare the particle list. <>= procedure :: set_event_process => whizard_lha_set_event_process <>= interface subroutine lhaup_whizard_set_event_process & (cptr, process_id, scale, alpha_qcd, alpha_qed, weight) bind(C) import type(c_ptr), value :: cptr integer(c_int), intent(in), value :: process_id real(c_double), intent(in), value :: scale, alpha_qcd, alpha_qed, weight end subroutine lhaup_whizard_set_event_process end interface <>= subroutine whizard_lha_set_event_process & (whizard_lha, process_id, scale, alpha_qcd, alpha_qed, weight) class(whizard_lha_t), intent(inout) :: whizard_lha integer, intent(in) :: process_id real(default), intent(in) :: scale, alpha_qcd, alpha_qed, weight integer(c_int) :: c_process_id real(c_double) :: c_scale, c_alpha_qcd, c_alpha_qed, c_weight c_scale = real (scale, c_double) c_alpha_qcd = real (alpha_qcd, c_double) c_alpha_qed = real (alpha_qed, c_double) c_weight = real (weight, c_double) c_process_id = int (process_id, c_int) call lhaup_whizard_set_event_process (whizard_lha%cptr, & c_process_id, c_scale, c_alpha_qcd, c_alpha_qed, c_weight) whizard_lha%new_event = .true. end subroutine whizard_lha_set_event_process @ %def whizard_lha_set_event_process @ Set particles in to LHA event record. Must be called after [[whizard_lha_set_event_process]]. We first create a new particle set that contains only the particles that are supported by the Les Houches Accord. These are: beam, incoming, resonant or outgoing. We drop particles with unknown, virtual or beam-remnant status. From this we fill the LHA particle type. <>= procedure :: set_event => whizard_lha_set_event <>= interface function lhaup_whizard_set_event (cptr, process_id, n_particles, & particle_set) bind(C) result (flag) import type(c_ptr), value :: cptr integer(c_int), intent(in), value :: process_id integer(c_int), intent(in), value :: n_particles ! IMPORTANT NOTE: Assumed-size array has to be defined by *. type(lha_particle_t), dimension(*), intent(in) :: particle_set logical(c_bool) :: flag end function lhaup_whizard_set_event end interface <>= subroutine whizard_lha_set_event (whizard_lha, process_id, particle_set,& keep_beams, keep_remnants, polarization) class(whizard_lha_t), intent(inout) :: whizard_lha integer, intent(in) :: process_id type(particle_set_t), intent(in) :: particle_set logical, intent(in), optional :: keep_beams, keep_remnants, polarization type(particle_set_t) :: pset logical :: kr, pol type(lha_particle_t), dimension(:), allocatable :: c_particle_set integer(c_int) :: c_process_id, c_n_particles logical(c_bool) :: flag - kr = .true.; if (present (keep_remnants)) kr = keep_remnants - pol = .true.; if (present (polarization)) pol = polarization + kr = .true.; if (present (keep_remnants)) kr = keep_remnants + pol = .true.; if (present (polarization)) pol = polarization if (.not. whizard_lha%new_event) then call msg_bug ("[whizard_lha_set_event] new event was not prepared.") end if call particle_set%filter_particles (pset, real_parents = .true., & keep_beams = keep_beams, keep_virtuals = .false.) if (debug_active (D_SHOWER) .or. debug_active(D_TRANSFORMS)) then print *, "After particle_set%filter: pset" call pset%write (summary = .true., compressed = .true.) end if allocate (c_particle_set (pset%get_n_tot ())) call fill_c_particle_set (pset, c_particle_set, kr, pol) if (debug_active (D_SHOWER) .or. debug_active (D_TRANSFORMS)) & call lha_particle_write (c_particle_set) c_n_particles = pset%get_n_tot (); c_process_id = process_id flag = lhaup_whizard_set_event (whizard_lha%cptr, c_process_id, c_n_particles, c_particle_set) whizard_lha%new_event = .false. contains subroutine fill_c_particle_set (particle_set, c_particle_set, keep_remnants, polarization) type(particle_set_t), intent(in) :: particle_set type(lha_particle_t), dimension(:), intent(out) :: c_particle_set logical, intent(in) :: keep_remnants, polarization integer :: i, status integer, dimension(:), allocatable :: parent integer, dimension(2) :: color type(vector4_t) :: p do i = 1, particle_set%get_n_tot () associate (c_prt => c_particle_set, prt => particle_set%prt(i)) c_prt(i)%id = prt%get_pdg () status = prt%get_status () if (keep_remnants .and. status == PRT_BEAM_REMNANT & .and. prt%get_n_children () == 0) then status = PRT_OUTGOING end if select case (status) case (PRT_BEAM); c_prt(i)%status = -9 case (PRT_INCOMING); c_prt(i)%status = -1 case (PRT_OUTGOING); c_prt(i)%status = 1 case (PRT_RESONANT); c_prt(i)%status = 2 case (PRT_VIRTUAL); c_prt(i)%status = 3 case default; c_prt(i)%status = 0 end select parent = prt%get_parents () select case (size (parent)) case (0) c_prt(i)%mother(1) = 0; c_prt(i)%mother(2) = 0 case (1) c_prt(i)%mother(1) = parent(1); c_prt(i)%mother(2) = 0 case (2) c_prt(i)%mother(1) = parent(1); c_prt(i)%mother(2) = parent(2) case default - call msg_bug("[c_fill_particle_set] Too many parents. & + call msg_bug("[fill_c_particle_set] Too many parents. & &Please contact the WHIZARD developers.") end select color = prt%get_color () where (color > 0) c_prt(i)%color = 500 + color elsewhere c_prt(i)%color = 0 end where p = prt%get_momentum () c_prt(i)%momentum = p%p c_prt(i)%mass = invariant_mass(p) c_prt(i)%tau = prt%get_lifetime () c_prt(i)%spin = 9 if (polarization) then select case (prt%get_polarization_status ()) case (PRT_GENERIC_POLARIZATION) if (prt%get_n_parents () == 1) then parent = prt%get_parents () c_prt(i)%spin = polarization_to_spin & (prt%get_momentum (), prt%get_polarization (), & particle_set%prt(parent(1))%get_momentum ()) end if end select end if end associate end do end subroutine fill_c_particle_set real(default) function polarization_to_spin (p, pol, p_mother) result (spin) type(vector4_t), intent(in) :: p type(polarization_t), intent(in) :: pol type(vector4_t), intent(in) :: p_mother type(vector3_t) :: s3, p3 type(vector4_t) :: s4 ! TODO sbrass move the conversion of polarization to spin to a better place (with documentation) s3 = vector3_moving (pol%get_axis ()) p3 = space_part (p) s4 = rotation_to_2nd (3, p3) * vector4_moving (0._default, s3) spin = enclosed_angle_ct (s4, p_mother) end function polarization_to_spin end subroutine whizard_lha_set_event @ %def whizard_lha_set_event @ \subsection{Unit tests} \label{sec:whizard-lha-ut} Test module, followed by the corresponding implementation module. <<[[whizard_lha_ut.f90]]>>= <> module whizard_lha_ut use unit_tests use whizard_lha_uti <> <> contains <> end module whizard_lha_ut @ %def whizard_lha_ut @ <<[[whizard_lha_uti.f90]]>>= <> module whizard_lha_uti <> use io_units use whizard_lha use flavors, only: flavor_t use lorentz, only: vector4_at_rest use subevents, only: PRT_BEAM, PRT_INCOMING, PRT_OUTGOING, & PRT_UNDEFINED, PRT_VIRTUAL, PRT_RESONANT, PRT_BEAM_REMNANT use particles, only: particle_set_t <> <> contains <> end module whizard_lha_uti @ %def whizard_lha_uti @ API: driver for the unit tests below. <>= public :: whizard_lha_test <>= subroutine whizard_lha_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine whizard_lha_test @ %def whizard_lha_test @ \subsubsection{Setup LHA User Process} <>= call test (whizard_lha_1, "whizard_lha_1", "Setup LHAupWhizard and& &initialize Beams.", u, results) <>= public :: whizard_lha_1 <>= subroutine whizard_lha_1 (u) integer, intent(in) :: u type(whizard_lha_t) :: lha integer :: i integer, parameter :: N_PROC = 5 real(default), dimension(N_PROC) :: xsec, xerror, max_weight write (u, "(A)") "* Test output: whizard_lha_1" write (u, "(A)") "* Purpose: Construct LHAupWhizard object and initialize the beams." write (u, *) xsec = [1.0, 1.2, 1.4, 1.6, 1.8] * 1e3 ! fb xerror = 0.05 * xsec max_weight = 1e-3 * xsec call lha%init () write (u, "(A)") write (u, "(A)") "* Set initialisation (Beams) and weighting strategy." write (u, "(A)") call lha%set_init & ([2212, 2212], [6500._default, 6500._default], 1, .true., .true.) write (u, "(A)") write (u, "(A)") "* Set process parameters for 5 different processes." write (u, "(A)") do i = 1, N_PROC call lha%set_process_parameters (process_id = i, & cross_section = xsec(i), error = xerror(i), & max_weight = max_weight(i)) end do call lha%list_init () write (u, "(A)") write (u, "(A)") "* Cleanup" call lha%final () end subroutine whizard_lha_1 @ %def whizard_lha_1 @ <>= call test (whizard_lha_2, "whizard_lha_2", "Setup LHAupWhizard& & and set event record.", u, results) <>= public :: whizard_lha_2 <>= subroutine whizard_lha_2 (u) integer, intent(in) :: u type(whizard_lha_t) :: lha integer :: i integer, parameter :: N_PROC = 1 real(default), dimension(N_PROC) :: xsec, xerror, max_weight type(particle_set_t) :: pset type(flavor_t), dimension(:), allocatable :: flv pset%n_beam = 2 pset%n_in = 2 pset%n_vir = 2 pset%n_out = 3 pset%n_tot = 9 write (u, "(A)") "* Test output: whizard_lha_2" write (u, "(A)") "* Purpose: Setup LHAupWhizard and set event record." write (u, "(A)") xsec = [1.0] * 1e3 xerror = 0.05 * xsec max_weight = 1e-3 * xsec call lha%init () write (u, "(A)") write (u, "(A)") "* Set initialisation (Beams) and weighting strategy." write (u, "(A)") call lha%set_init & ([2212, 2212], [6500._default, 6500._default], 1, .true., .true.) write (u, "(A)") write (u, "(A)") "* Set process parameters for 5 different processes." write (u, "(A)") do i = 1, N_PROC call lha%set_process_parameters (process_id = i, & cross_section = xsec(i), error = xerror(i), & max_weight = max_weight(i)) end do write (u, "(A)") write (u, "(A)") "* Set event record." write (u, "(A)") allocate (pset%prt (pset%n_tot)) call pset%prt(1)%reset_status (PRT_BEAM) call pset%prt(2)%reset_status (PRT_BEAM) call pset%prt(3)%reset_status (PRT_INCOMING) call pset%prt(4)%reset_status (PRT_INCOMING) call pset%prt(5)%reset_status (PRT_BEAM_REMNANT) call pset%prt(6)%reset_status (PRT_BEAM_REMNANT) call pset%prt(7)%reset_status (PRT_OUTGOING) call pset%prt(8)%reset_status (PRT_OUTGOING) call pset%prt(9)%reset_status (PRT_OUTGOING) call pset%prt(1)%set_children ([3,5]) call pset%prt(2)%set_children ([4,6]) call pset%prt(3)%set_children ([7,8,9]) call pset%prt(4)%set_children ([7,8,9]) call pset%prt(3)%set_parents ([1]) call pset%prt(4)%set_parents ([2]) call pset%prt(5)%set_parents ([1]) call pset%prt(6)%set_parents ([2]) call pset%prt(7)%set_parents ([3,4]) call pset%prt(8)%set_parents ([3,4]) call pset%prt(9)%set_parents ([3,4]) call pset%prt(1)%set_momentum (vector4_at_rest (1._default)) call pset%prt(2)%set_momentum (vector4_at_rest (2._default)) call pset%prt(3)%set_momentum (vector4_at_rest (4._default)) call pset%prt(4)%set_momentum (vector4_at_rest (6._default)) call pset%prt(5)%set_momentum (vector4_at_rest (3._default)) call pset%prt(6)%set_momentum (vector4_at_rest (5._default)) call pset%prt(7)%set_momentum (vector4_at_rest (7._default)) call pset%prt(8)%set_momentum (vector4_at_rest (8._default)) call pset%prt(9)%set_momentum (vector4_at_rest (9._default)) allocate (flv (9)) call flv%init ([2011, 2012, 11, 12, 91, 92, 3, 4, 5]) do i = 1, 9 call pset%prt(i)%set_flavor (flv(i)) end do call lha%set_event_process (1, 1000._default, 0.1_default, 1._default / 127., 1._default) call lha%set_event (1, pset) call lha%list_init () write (u, "(A)") write (u, "(A)") "* Cleanup" call lha%final () end subroutine whizard_lha_2 @ %def whizard_lha_2 \section{Pythia8} \label{sec:pythia8} <<[[pythia8.f90]]>>= <> module pythia8 <> <> <> <> <> <> <> <> <> contains <> end module pythia8 @ %def pythia8 @ <>= use, intrinsic :: iso_c_binding use constants, only: tiny_10, tiny_07 use diagnostics use iso_varying_string, string_t => varying_string use lorentz, only: assignment(=), operator(/=), & vector3_moving, vector4_t, vector4_moving, vector4_null, & vector4_write use numeric_utils, only: vanishes, nearly_equal use model_data, only: model_data_t, find_model use pdg_arrays, only: is_elementary, is_colored, is_gluon use colors, only: color_t use flavors, only: flavor_t use helicities, only: helicity_t use particles, only: particle_set_t, particle_t, & PRT_DEFINITE_HELICITY, PRT_GENERIC_POLARIZATION, PRT_UNPOLARIZED use event_base, only: generic_event_t use subevents, only: PRT_BEAM, PRT_INCOMING, PRT_OUTGOING, & PRT_UNDEFINED, PRT_VIRTUAL, PRT_RESONANT, PRT_BEAM_REMNANT use rng_base, only: rng_t use whizard_lha @ %def pythia8_modules @ Random generator wrapper. <>= type :: whizard_rndm_t class(rng_t), pointer :: rng end type whizard_rndm_t @ %def whizard_rndm_t @ <>= public :: pythia8_t <>= type :: pythia8_t private type(c_ptr) :: cptr type(whizard_rndm_t) :: rndm contains <> end type pythia8_t @ %def pythia8_t @ Init. Construct a C++-Pythia8 object and store it in an opaque type. <>= procedure :: init => whizard_pythia8_init <>= interface function new_pythia8 (print_banner) bind(C) result (cptr) import type(c_ptr) :: cptr logical(c_bool), value, intent(in) :: print_banner end function new_pythia8 end interface <>= subroutine whizard_pythia8_init (pythia, verbose) class(pythia8_t), intent(out) :: pythia logical, intent(in), optional :: verbose logical(c_bool) :: verbose_opt verbose_opt = .false. if (present (verbose)) verbose_opt = verbose pythia%cptr = new_pythia8 (verbose_opt) if (.not. verbose_opt) & call pythia%read_string (var_str ("Print:quiet = on")) end subroutine whizard_pythia8_init @ %def whizard_pythia8_init @ Finalize. Destruct the C++-Ptyhia object. <>= procedure :: final => whizard_pythia8_final <>= interface subroutine pythia8_delete (pythia) bind(C) import type(c_ptr), value :: pythia end subroutine pythia8_delete end interface <>= subroutine whizard_pythia8_final (pythia) class(pythia8_t), intent(inout) :: pythia call pythia8_delete (pythia%cptr) end subroutine whizard_pythia8_final @ %def whizard_pythia8_final @ Set pointer to a LHA User Process object. <>= procedure :: set_lhaup_ptr => whizard_pythia8_set_lhaup_ptr <>= interface function pythia8_set_lhaup_ptr (cptr, whizard_lha) bind(C) result (flag) import type(c_ptr), intent(in), value :: cptr type(c_ptr), intent(in), value :: whizard_lha logical(c_bool) :: flag end function pythia8_set_lhaup_ptr end interface <>= subroutine whizard_pythia8_set_lhaup_ptr (pythia, whizard_lha) class(pythia8_t), intent(inout) :: pythia type(whizard_lha_t), intent(in) :: whizard_lha logical(c_bool) :: flag flag = pythia8_set_lhaup_ptr (pythia%cptr, whizard_lha%get_ptr ()) end subroutine whizard_pythia8_set_lhaup_ptr @ %def whizard_pythia8_set_lhaup_ptr @ Import random number generator. We store a pointer to a target [[rng]] provided by the calling function in the container [[whizard_rndm_t]]. The C-interface expects a C-pointer which we retrieve with [[c_loc]] from the container. The container is an opaque objects for C and is a place-holder for the polymorphic object [[rng]]. When [[Pythia8]] requests a random-number, then we have to reverse the containment of [[rng]] inside a container. The container is mapped back to a Fortran pointer where we can access the target [[rng]] and generate a random number. <>= procedure :: import_rng => whizard_pythia8_import_rng <>= interface function pythia8_set_rndm_engine_ptr (pythia, whizard_rndm) bind(C) result (flag) import type(c_ptr), intent(in), value :: pythia type(c_ptr), intent(in), value :: whizard_rndm logical(c_bool) :: flag end function pythia8_set_rndm_engine_ptr end interface <>= subroutine whizard_pythia8_import_rng (pythia, rng) class(pythia8_t), intent(inout), target :: pythia class(rng_t), allocatable, intent(in), target :: rng logical :: flag pythia%rndm%rng => rng flag = pythia8_set_rndm_engine_ptr (pythia%cptr, c_loc (pythia%rndm)) if (.not. flag) then call msg_bug ("[whizard_pythia8_import_rng] Cannot export RNG to Pythia8.") end if end subroutine whizard_pythia8_import_rng function whizard_rndm_generate (whizard_rndm) bind(C) result (c_x) type(c_ptr), intent(in), value :: whizard_rndm real(c_double) :: c_x real(default) :: x type(whizard_rndm_t), pointer :: f_whizard_rndm call c_f_pointer (whizard_rndm, f_whizard_rndm) if (.not. associated (f_whizard_rndm)) then call msg_bug ("[whizard_rndm_generate] Cannot import pointer to RNG object from Pythia8.") end if call f_whizard_rndm%rng%generate (x) c_x = real (x, c_double) end function whizard_rndm_generate @ %def pythia8_import_rng @ Seed [[PYTHIA8]] random generator. Unfortunately, it is impossible to export the random number generator to C and back to Fortran again in such a way that multiple instances of [[PYTHIA8]] could exist coherently. <>= procedure :: set_rng_seed => pythia8_set_rng_seed <>= subroutine pythia8_set_rng_seed (pythia, r) class(pythia8_t), intent(inout) :: pythia real(default), intent(in) :: r real(default), parameter :: MAX_SEED = 900000000._default character(len=10) :: buffer; type(string_t) :: string write (buffer, "(I10)") floor (r * MAX_SEED) string = var_str ("Random:seed = " // buffer) call pythia%read_string (string) end subroutine pythia8_set_rng_seed @ %def pythia8_set_rng_seed @ Read Pythia8 settings from file with path [[filename]]. <>= procedure :: read_file => whizard_pythia8_read_file <>= interface function pythia8_read_file (cptr, filename, subrun) bind(C) result (flag) import type(c_ptr), intent(in), value :: cptr character(kind=c_char), dimension(*), intent(in) :: filename integer(c_int), intent(in), value :: subrun logical(c_bool) :: flag end function pythia8_read_file end interface <>= subroutine whizard_pythia8_read_file (pythia, filename, subrun) class(pythia8_t), intent(inout) :: pythia type(string_t), intent(in) :: filename integer, intent(in), optional :: subrun character(len(filename) + 1, kind=c_char) :: c_filename integer(c_int) :: c_subrun logical(c_bool) :: flag c_filename = filename // c_null_char if (present (subrun)) then c_subrun = subrun else c_subrun = -1 end if flag = pythia8_read_file (pythia%cptr, c_filename, c_subrun) end subroutine whizard_pythia8_read_file @ %def whizard_pythia8_read_file @ Read a single Pythia8 string. <>= integer, parameter :: C_MAX_STR_LEN = 100 <>= procedure :: read_string => whizard_pythia8_read_string <>= interface function pythia8_read_string (cptr, str) bind(C) result (flag) import type(c_ptr), intent(in), value :: cptr character(kind=c_char), dimension(*), intent(in) :: str logical(c_bool) :: flag end function pythia8_read_string end interface <>= subroutine whizard_pythia8_read_string (pythia, str) class(pythia8_t), intent(in) :: pythia type(string_t), intent(in) :: str character(len(str) + 1, kind=c_char) :: c_str logical(c_bool) :: flag c_str = char (str) // c_null_char flag = pythia8_read_string (pythia%cptr, c_str) end subroutine whizard_pythia8_read_string @ %def whizardd_pythia8_read_string @ Parse and set the configuration string. Different options are separeted either by a newline or by [[;]]. First, we separate lines, then we check on [[;]]. If none found, we take the line as valid [[PYTHIA8]] string, else we the separate string into tokens which we expect to be valid [[PYTHIA8]] tokens. We have to take care of the case that the remaining string is empty after splitting with respect to [[;]]. <>= procedure :: parse_and_set_config => whizard_pythia8_parse_and_set_config <>= subroutine whizard_pythia8_parse_and_set_config (pythia, config) class(pythia8_t), intent(in) :: pythia type(string_t), intent(in) :: config type(string_t) :: stream, line, token if (debug_on) call msg_debug (D_SHOWER, "whizard_pythia8_parse_and_set_config") if (len (config) == 0) return stream = config do while (len (stream) > 0) call split (stream, line, new_line("A")) if (debug_active (D_SHOWER)) & print *, "LINE: ", char(line), " | ", char(stream) if (index (line, ";") == 0) then call pythia%read_string (trim(line)) else token = line do while (len (line) > 0) call split (line, token, ";") if (debug_active (D_SHOWER)) & print *, "-> ", char(token), " | ", char(line) call pythia%read_string (trim(token)) end do end if end do end subroutine whizard_pythia8_parse_and_set_config @ %def whizard_pythia8_parse_and_set_config @ @ Initialize the Pythia8 object itself after the complete setup has been done. <>= procedure :: init_pythia => whizard_pythia8_init_pythia <>= interface function pythia8_init (cptr) bind(C) result (flag) import type(c_ptr), intent(in), value :: cptr logical(c_bool) :: flag end function pythia8_init end interface <>= subroutine whizard_pythia8_init_pythia (pythia) class(pythia8_t), intent(in) :: pythia logical(c_bool) :: flag flag = pythia8_init (pythia%cptr) if (.not. flag) then call msg_fatal ("[whizard_pythia8_init_pythia] Pythia8 initialisation failed.") end if end subroutine whizard_pythia8_init_pythia @ %def whizard_pythia8_init_pythia @ Generate the next event in Pythia. Before the a new event has to be set with the LHA User Process interface of WHIZARD. <>= procedure :: next => whizard_pythia8_next <>= interface function pythia8_next (cptr) bind(C) result (flag) import type(c_ptr), intent(in), value :: cptr logical(c_bool) :: flag end function pythia8_next end interface <>= subroutine whizard_pythia8_next (pythia, flag) class(pythia8_t), intent(inout) :: pythia logical, intent(out), optional :: flag logical(c_bool) :: c_flag c_flag = pythia8_next (pythia%cptr) if (present (flag)) flag = c_flag end subroutine whizard_pythia8_next @ %def whizard_pythia8_next @ List the current Les Houches event taken from the LHA Whizard interface or the last event generated by [[PYTHIA8]]. The procedure is for debug purpose only as the information are written to [[cout]] (hard-wired). <>= procedure :: list_lha_event => whizard_pythia8_list_lha_event procedure :: list_event => whizard_pythia8_list_event <>= interface subroutine pythia8_list_lha_event (cptr) bind(C) import type(c_ptr), intent(in), value :: cptr end subroutine pythia8_list_lha_event end interface interface subroutine pythia8_list_event (cptr) bind(C) import type(c_ptr), intent(in), value :: cptr end subroutine pythia8_list_event end interface <>= subroutine whizard_pythia8_list_lha_event (pythia) class(pythia8_t), intent(in) :: pythia call pythia8_list_lha_event (pythia%cptr) end subroutine whizard_pythia8_list_lha_event subroutine whizard_pythia8_list_event (pythia) class(pythia8_t), intent(in) :: pythia call pythia8_list_event (pythia%cptr) end subroutine whizard_pythia8_list_event @ %def whizard_pythia8_list_event @ Get event size. We retrieve the number of particles associated with the last event record in Pythia8. The first event entry is the overall system which we neglect. <>= procedure :: get_event_size => whizard_pythia8_get_event_size <>= interface function pythia8_get_event_size (cptr) bind(C) result(n) import type(c_ptr), intent(in), value :: cptr integer(c_int) :: n end function pythia8_get_event_size end interface <>= function whizard_pythia8_get_event_size (pythia) result(n) class(pythia8_t), intent(in) :: pythia integer :: n integer(c_int) :: c_n c_n = pythia8_get_event_size (pythia%cptr) n = c_n - 1 end function whizard_pythia8_get_event_size @ %def whizard_pythia8_get_event_size @ Get the ith particle from the current event record in Pythia8. <>= procedure, private :: get_single_event => whizard_pythia8_get_single_event <>= interface function pythia8_get_single_event (cptr, index) bind(C) result (particle) import type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index type(lha_particle_t) :: particle end function pythia8_get_single_event end interface <>= function whizard_pythia8_get_single_event (pythia, index) result (particle) class(pythia8_t), intent(in) :: pythia integer, intent(in) :: index type(lha_particle_t) :: particle integer(c_int) :: c_index c_index = index particle = pythia8_get_single_event (pythia%cptr, c_index) end function whizard_pythia8_get_single_event @ %def whizard_get_single_event @ Convenient getter methods. <>= interface function pythia8_get_particle_status (cptr, index) bind(C) result (status) import type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index integer(c_int) :: status end function pythia8_get_particle_status end interface interface function pythia8_get_particle_id (cptr, index) bind(C) result (status) import type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index integer(c_int) :: status end function pythia8_get_particle_id end interface interface subroutine pythia8_get_particle_momentum (cptr, index, momentum) bind(C) import type(c_ptr), intent(in), value :: cptr integer(c_int), intent(in), value :: index real(c_double), dimension(*), intent(out) :: momentum end subroutine pythia8_get_particle_momentum end interface <>= procedure, private :: get_particle_status => & whizard_pythia8_get_particle_status procedure, private :: get_particle_id => whizard_pythia8_get_particle_id procedure, private :: get_particle_momentum => & whizard_pythia8_get_particle_momentum procedure :: get_final_colored_ME_momenta => & whizard_pythia8_get_final_colored_ME_momenta <>= function whizard_pythia8_get_particle_status (pythia, index) result (status) class(pythia8_t), intent(in) :: pythia integer, intent(in) :: index integer :: status status = pythia8_get_particle_status (pythia%cptr, int(index, c_int)) end function whizard_pythia8_get_particle_status function whizard_pythia8_get_particle_id (pythia, index) result (id) class(pythia8_t), intent(in) :: pythia integer, intent(in) :: index integer :: id id = pythia8_get_particle_id (pythia%cptr, int(index, c_int)) end function whizard_pythia8_get_particle_id function whizard_pythia8_get_particle_momentum & (pythia, index) result (momentum) class(pythia8_t), intent(in) :: pythia integer, intent(in) :: index real(default), dimension(4) :: momentum real(c_double), dimension(4) :: c_momentum call pythia8_get_particle_momentum (pythia%cptr, index, c_momentum) momentum = real (c_momentum, kind=default) end function whizard_pythia8_get_particle_momentum subroutine whizard_pythia8_get_final_colored_ME_momenta & (pythia, momenta) class(pythia8_t), intent(in) :: pythia type(vector4_t), dimension(:), allocatable, intent(out) :: momenta logical, dimension(:), allocatable :: mask integer, parameter :: PYTHIA8_HARD_PROCESS_OUTGOING = 23 integer :: i, j, n_particles, id, status if (debug_on) call msg_debug (D_TRANSFORMS, "whizard_pythia8_get_final_colored_ME_momenta") n_particles = pythia%get_event_size () allocate (mask(n_particles), source=.false.) do i = 1, n_particles status = pythia%get_particle_status (i) id = pythia%get_particle_id (i) if (abs (status) == PYTHIA8_HARD_PROCESS_OUTGOING & .and. (id == 21 .or. abs(id) <= 6)) mask(i) = .true. ! Particle record is ordered. First beam, beam remnants, then hard process, second hard process and so on... ! if (abs(status) > 30) exit end do if (all (.not. mask)) return allocate (momenta(count(mask))) j = 1 do i = 1, n_particles if (.not. mask(i)) cycle momenta(j) = pythia%get_particle_momentum(i) j = j + 1 end do end subroutine whizard_pythia8_get_final_colored_ME_momenta @ %def whizard_pythia8_get_particle_status @ %def whizard_pythia8_get_particle_momentum @ Get a logical mask on the shower entries in the current Pythia event record. We skip the zeroth entry whichs holds overall system information. We retrieve beam entries only when [[?ps_isr_active]] else we skip the two beam entries. Furthermore, we check that all [[PYTHIA8]] have a valid status code. We expect that the event record has been generated with [[HadronLevel:all = Off]]. Furthermore, we skip entries which are found in a reference particle set, or are too soft. <>= procedure, private :: get_shower_mask => pythia8_get_shower_mask <>= subroutine pythia8_get_shower_mask (pythia, pset, mask, recover_beams) class(pythia8_t), intent(in) :: pythia type(particle_set_t), intent(in) :: pset logical, dimension(:), allocatable, intent(out) :: mask logical, intent(in) :: recover_beams integer :: skip_beams, i type(lha_particle_t) :: c_prt if (allocated (mask)) deallocate (mask) allocate (mask(pythia%get_event_size ()), source=.true.) if (.not. recover_beams) then skip_beams = 2 mask(1:2) = .false. else skip_beams = 0 end if do i = 1 + skip_beams, size(mask) c_prt = pythia%get_single_event (i) ! Search for unchanged entries mask(i) = (reverse_find_particle (c_prt, pset) == 0) end do end subroutine pythia8_get_shower_mask @ %def pythia8_get_shower_mask @ Reverse find an existing entry in [[particle_set]]. -Returns zero if non is found. +Returns zero if none is found. <>= pure function reverse_find_particle (c_prt, particle_set) result (idx) type(lha_particle_t), intent(in) :: c_prt type(particle_set_t), intent(in) :: particle_set integer :: idx type(vector4_t) :: momentum momentum = real (c_prt%momentum, default) - idx = particle_set%reverse_find_particle (c_prt%id, momentum, tiny_10, tiny_07) + idx = particle_set%reverse_find_particle & + (c_prt%id, momentum, tiny_10, tiny_07) end function reverse_find_particle @ %def reverse_find_particle # Get a logical mask on the full hadronic entries in the current [[PYTHIA8]] event record. -The hadronic event record doesn't hold information about beams as those are only relevant in context of a partonic event. -We expect that the event record has been generated with [[ProcessLevel:all = Off]]. +The hadronic event record does not hold information about beams as +those are only relevant in context of a partonic event. We expect that +the event record has been generated with [[ProcessLevel:all = Off]]. Furthermore, we skip entries which are found in a reference particle set. <>= procedure, private :: get_hadron_mask => pythia8_get_hadron_mask <>= subroutine pythia8_get_hadron_mask (pythia, pset, mask) class(pythia8_t), intent(in) :: pythia type(particle_set_t), intent(in) :: pset logical, dimension(:), allocatable, intent(out) :: mask integer :: i integer(c_int) :: c_i_prt type(lha_particle_t) :: c_prt type(vector4_t) :: momentum if (allocated (mask)) deallocate (mask) allocate (mask(pythia%get_event_size ()), source=.true.) do i = 1, size(mask) c_prt = pythia%get_single_event (i) ! Search for unchanged entries mask(i) = (reverse_find_particle (c_prt, pset) == 0) end do end subroutine pythia8_get_hadron_mask @ %def pythia8_get_shower_mask @ Get [[particle_set]] from [[PYTHIA8]]. A model and a fallback model have to be provided to declare the correct particle content with a PDG code. We take a particle set and add the new particles by parton shower. The polarization is explicity set (unpolarized or density matrix) which is common to all particles. Correlated polarization information is not available. We recover beam particles only if explicitly stated. Pythia8 stores [[n_tot + 1]] particles where the zeroth particle represents the overall system. We simply discard the zeroth event. <>= procedure :: get_shower_particles => whizard_pythia8_get_shower_particles <>= interface function pythia8_get_n_mothers (cptr, i_prt) bind(C) result (n_mothers) import type(c_ptr), intent(in), value :: cptr integer(c_int), value, intent(in) :: i_prt integer(c_int) :: n_mothers end function pythia8_get_n_mothers subroutine pythia8_get_mother_array (cptr, i_prt, n_mothers, mother) bind (C) import type(c_ptr), intent(in), value :: cptr integer(c_int), value :: i_prt integer(c_int), value :: n_mothers integer(c_int), dimension(*), intent(out) :: mother end subroutine pythia8_get_mother_array function pythia8_get_n_daughters (cptr, i_prt) bind(C) result (n_daughters) import type(c_ptr), intent(in), value :: cptr integer(c_int), value, intent(in) :: i_prt integer(c_int) :: n_daughters end function pythia8_get_n_daughters subroutine pythia8_get_daughter_array (cptr, i_prt, n_daughters, daughter) bind (C) import type(c_ptr), intent(in), value :: cptr integer(c_int), value :: i_prt integer(c_int), value :: n_daughters integer(c_int), dimension(*), intent(out) :: daughter end subroutine pythia8_get_daughter_array function pythia8_get_status_hepmc (cptr, i_prt) bind(C) result (status) import type(c_ptr), intent(in), value :: cptr integer(c_int), value, intent(in) :: i_prt integer(c_int) :: status end function pythia8_get_status_hepmc subroutine pythia8_get_decay_vertex (cptr, i_prt, time, vertex) bind(C) import type(c_ptr), intent(in), value :: cptr integer(c_int), value, intent(in) :: i_prt real(c_double), intent(out) :: time real(c_double), dimension(3), intent(out) :: vertex end subroutine pythia8_get_decay_vertex + + subroutine pythia8_get_production_vertex (cptr, i_prt, time, vertex) bind(C) + import + type(c_ptr), intent(in), value :: cptr + integer(c_int), value, intent(in) :: i_prt + real(c_double), intent(out) :: time + real(c_double), dimension(3), intent(out) :: vertex + end subroutine pythia8_get_production_vertex end interface <>= subroutine whizard_pythia8_get_shower_particles & (pythia, model, model_fallback, particle_set, helicity, recover_beams) class(pythia8_t), intent(in) :: pythia class(model_data_t), intent(in), target :: model, model_fallback type(particle_set_t), intent(inout) :: particle_set integer, intent(in), optional :: helicity logical, intent(in), optional :: recover_beams integer :: n_particles, n_old logical, dimension(:), allocatable :: mask type(particle_t), dimension(:), allocatable :: particle integer :: helicity_opt logical :: recover_beams_opt if (debug_on) call msg_debug (D_SHOWER, "whizard_pythia8_get_particle_set") recover_beams_opt = .false.; if (present (recover_beams)) & recover_beams_opt = recover_beams helicity_opt = PRT_UNPOLARIZED; if (present (helicity)) & helicity_opt = helicity call pythia%get_shower_mask (particle_set, mask, recover_beams) n_particles = pythia%get_event_size () if (.not. recover_beams_opt) n_particles = n_particles - 2 allocate (particle(n_particles)) call pythia%get_particles (model, model_fallback, mask, particle, particle_set, & helicity_opt, recover_beams_opt) end subroutine whizard_pythia8_get_shower_particles @ %def whizard_pythia8_get_shower_particles @ Get hadron particles. Retrieve the full particle, respective the beam entries. <>= procedure :: get_hadron_particles => whizard_pythia8_get_hadron_particles <>= subroutine whizard_pythia8_get_hadron_particles & (pythia, model, model_fallback, particle_set, helicity) class(pythia8_t), intent(in) :: pythia class(model_data_t), intent(in), target :: model, model_fallback type(particle_set_t), intent(inout) :: particle_set integer, intent(in), optional :: helicity integer :: n_particles logical, dimension(:), allocatable :: mask type(particle_t), dimension(:), allocatable :: particle integer, dimension(:), allocatable :: pythia_idx, whizard_idx integer :: helicity_opt if (debug_on) call msg_debug (D_TRANSFORMS, "whizard_pythia8_get_particle_set") helicity_opt = PRT_UNPOLARIZED; if (present (helicity)) & helicity_opt = helicity call pythia%get_hadron_mask (particle_set, mask) n_particles = pythia%get_event_size () allocate (particle(n_particles)) call pythia%get_particles (model, model_fallback, mask, particle, particle_set, & helicity_opt, recover_beams = .true.) end subroutine whizard_pythia8_get_hadron_particles @ %def whizard_pythia8_get_hadron_particles @ Get particles from [[PYTHIA8]]. We take care of the status code of former outgoing particles (i.e. the unchanged particles entries of the outgoing particles of the hard process) and change it to [[PRT_VIRTUAL]]. <>= procedure, private :: get_particles => whizard_pythia8_get_particles <>= subroutine whizard_pythia8_get_particles (& pythia, model, model_fallback, mask, particle, particle_set, & helicity, recover_beams) class(pythia8_t), intent(in) :: pythia class(model_data_t), intent(in), target :: model, model_fallback logical, dimension(:), intent(in) :: mask type(particle_t), dimension(:), allocatable, intent(inout) :: particle type(particle_set_t), intent(inout) :: particle_set integer, intent(in) :: helicity logical, intent(in) :: recover_beams integer, dimension(:), allocatable :: pythia_idx, whizard_idx if (debug_on) call msg_debug (D_SHOWER, "whizard_pythia8_get_particles") call pythia%import_pythia_particles (& model, model_fallback, mask, particle, particle_set, & pythia_idx, whizard_idx, helicity, recover_beams) call particle_set%replace (particle) call pythia%get_parent_child_relation (& pythia_idx, whizard_idx, particle_set, recover_beams) - where (particle_set%prt%status == PRT_OUTGOING .and. & + where ((particle_set%prt%status == PRT_OUTGOING .or. & + particle_set%prt%status == PRT_VIRTUAL .or. & + particle_set%prt%status == PRT_BEAM_REMNANT) .and. & particle_set%prt%has_children ()) & - particle_set%prt%status = PRT_VIRTUAL + particle_set%prt%status = PRT_RESONANT end subroutine whizard_pythia8_get_particles @ %def whizard_pythia8_get_particles <>= procedure, private :: import_pythia_particles => pythia8_import_pythia_particles <>= subroutine pythia8_import_pythia_particles (& pythia, model, model_fallback, mask, particle, particle_set, & pythia_idx, whizard_idx, helicity, recover_beams) class(pythia8_t), intent(in) :: pythia class(model_data_t), intent(in), target :: model, model_fallback logical, dimension(:), intent(in) :: mask type(particle_t), dimension(:), intent(inout) :: particle type(particle_set_t), intent(in) :: particle_set integer, dimension(:), allocatable, intent(out) :: pythia_idx, whizard_idx integer, intent(in) :: helicity logical, intent(in) :: recover_beams integer :: i_whizard, i_pythia, idx, skip_beams real(default) :: time real(default), dimension(3) :: vertex type(vector4_t) :: momentum type(lha_particle_t) :: c_prt allocate (whizard_idx(size (mask)), source = 0) allocate (pythia_idx(size (particle)), source = 0) i_whizard = 0; if (recover_beams) then skip_beams = 0 else skip_beams = 2 end if ADD_PARTICLE: do i_pythia = 1 + skip_beams, size(mask) idx = -1 c_prt = pythia%get_single_event (i_pythia) ! Check on exisiting particle entry if (.not. mask(i_pythia)) then ! Retrieve particle from original particle_set whizard_idx(i_pythia) = reverse_find_particle (c_prt, particle_set) idx = reverse_find_particle (c_prt, particle_set) ! Skip entry completely if (idx > 0) then i_whizard = i_whizard + 1 particle(i_whizard) = particle_set%get_particle (idx) whizard_idx(i_pythia) = i_whizard pythia_idx(i_whizard) = i_pythia if (debug2_active (D_SHOWER)) then print *, "Reverse search for particle ", i_pythia, " with PDG: ", c_prt%id print *, "Momentum: ", c_prt%momentum print *, "Found: ", whizard_idx(i_pythia) end if cycle ADD_PARTICLE end if ! Fallthrough: We could not retrieve the particle from our set, retrieve it from PYTHIA8. end if ! idx is exactly zero iff the reverse particle search failed. if (mask(i_pythia) .or. idx == 0) then i_whizard = i_whizard + 1 call get_particle_status (i_pythia, c_prt, particle(i_whizard)) call fill_particle (model, model_fallback, helicity, c_prt, particle(i_whizard)) ! call get_particle_color (i_color, dangling_color, c_prt%status, particle(i_whizard)) call get_particle_vertex (i_pythia, particle(i_whizard)) whizard_idx(i_pythia) = i_whizard pythia_idx(i_whizard) = i_pythia end if if (debug2_active (D_SHOWER)) then print *, "Shower: ", mask(i_pythia) print *, "i_pythia: ", i_pythia, " -> i_whizard: ", whizard_idx(i_pythia) end if end do ADD_PARTICLE contains subroutine get_particle_status (i_pythia, c_particle, particle) integer, intent(in) :: i_pythia type(lha_particle_t), intent(in) :: c_particle type(particle_t), intent(inout) :: particle integer :: whizard_status select case (pythia8_get_status_hepmc & (pythia%cptr, int(i_pythia, c_int))) case(1); whizard_status = (PRT_OUTGOING) case(2); whizard_status = (PRT_RESONANT) case(4); whizard_status = (PRT_BEAM) case default; if (c_particle%status < 0) & whizard_status = PRT_VIRTUAL end select if (debug2_active (D_SHOWER) .or. debug2_active (D_TRANSFORMS)) then write (*, "(1X,A,1X,I0)") "Particle's status code:", i_pythia write (*, "(1X,3(A,1X,I0,1X))") "HEPMC:", pythia8_get_status_hepmc (pythia%cptr, int(i_pythia, c_int)), & "PYTHIA:", c_particle%status, & "WHIZARD:", whizard_status end if call particle%set_status (whizard_status) end subroutine get_particle_status subroutine fill_particle & (model_in, model_fallback, polarization, c_prt, prt) type(lha_particle_t), intent(in) :: c_prt class(model_data_t), intent(in), target :: model_in, model_fallback type(particle_t), intent(inout) :: prt integer, intent(in) :: polarization integer :: whizard_status, hmax class(model_data_t), pointer :: model type(flavor_t) :: flv type(color_t) :: color type(helicity_t) :: hel type(vector4_t) :: p integer :: col, acol call find_model (model, c_prt%id, model_in, model_fallback) call flv%init (c_prt%id, model) col = max (c_prt%color(1), 0) acol = max (c_prt%color(2), 0) call color%init_col_acl (col, acol) if (flv%is_beam_remnant ()) & call prt%set_status (PRT_BEAM_REMNANT) call prt%set_flavor (flv); call prt%set_color (color) p = real (c_prt%momentum, kind=default) call prt%set_momentum (p, real (c_prt%mass**2, default)) select case (polarization) case (PRT_DEFINITE_HELICITY) if (abs (c_prt%spin) <= 1.) then hmax = flv%get_spin_type () / 2. call hel%init (sign (hmax, nint (c_prt%spin))) call prt%set_helicity (hel) end if case (PRT_GENERIC_POLARIZATION) call msg_fatal ("[whizard_pythia8_get_particle_set]" // & "generic polarization with Pythia8 not defined.") case (PRT_UNPOLARIZED) case default call msg_bug ("[whizard_pythia8_get_particle]" // & "Helicity handling is undefined.") end select if (.not. vanishes (real (c_prt%tau, kind=default))) & call prt%set_lifetime (real (c_prt%tau, kind=default)) end subroutine fill_particle subroutine get_particle_vertex (i_pythia, particle) integer, intent(in) :: i_pythia type(particle_t), intent(inout) :: particle real(c_double) :: time real(c_double), dimension(3) :: vertex type(vector4_t) :: vtx4 - call pythia8_get_decay_vertex (pythia%cptr, i_pythia, time, vertex) + call pythia8_get_production_vertex (pythia%cptr, i_pythia, time, vertex) vtx4 = vector4_moving (real (time, kind=default), & vector3_moving (real (vertex, kind=default))) if (vtx4 /= vector4_null) call particle%set_vertex (vtx4) end subroutine get_particle_vertex end subroutine pythia8_import_pythia_particles @ %def pythia8_import_pythia_particles @ Check on beam particle. <>= procedure, private :: is_beam_particle => pythia8_is_beam_particle <>= function pythia8_is_beam_particle (pythia, i_pythia) result (flag) class(pythia8_t), intent(in) :: pythia integer, intent(in) :: i_pythia logical :: flag integer(c_int) :: c_i_pythia integer, parameter :: HEPMC_BEAM_PRT = 4 c_i_pythia = int(i_pythia, c_int) flag = HEPMC_BEAM_PRT == pythia8_get_status_hepmc (pythia%cptr, c_i_pythia) end function pythia8_is_beam_particle @ %pythia8_is_beam_particle @ Get parent child relation from [[PYTHIA8]]. Apply the parent child relations from [[PYTHIA8]] to previously filled particle set. <>= procedure, private :: get_parent_child_relation => pythia8_get_parent_child_relation <>= subroutine pythia8_get_parent_child_relation (& pythia, pythia_idx, whizard_idx, particle_set, recover_beams) class(pythia8_t), intent(in) :: pythia integer, dimension(:), intent(in) :: pythia_idx, whizard_idx type(particle_set_t), intent(inout) :: particle_set logical, intent(in) :: recover_beams integer(c_int) :: c_n_parents, c_n_children, c_i_pythia integer, dimension(:), allocatable :: parent, child integer :: i_pythia, i, skip_beams if (debug_on) call msg_debug (D_SHOWER, "pythia8_get_parent_child_relation") skip_beams = 0; if (recover_beams) skip_beams = 2 do i_pythia = 1 + skip_beams, size(whizard_idx) if (whizard_idx(i_pythia) == 0) cycle c_i_pythia = int(i_pythia, c_int) c_n_parents = pythia8_get_n_mothers (pythia%cptr, c_i_pythia) c_n_children = pythia8_get_n_daughters (pythia%cptr, c_i_pythia) allocate (parent(c_n_parents), child(c_n_children)) parent = 0; child = 0 if (c_n_parents > 0) then call pythia8_get_mother_array (pythia%cptr, c_i_pythia, c_n_parents, parent) if (count (parent > 0) > 0) then if (debug2_active (D_SHOWER) .or. debug2_active (D_TRANSFORMS)) then write (*, "(1X,A,1X,I0)") "Particle's parents ", whizard_idx(i_pythia) do i = 1, c_n_parents if (parent(i) > 0) & write (*, "(1X,I0,1X,'(',I0,')',1X)", advance="no") parent(i), whizard_idx(parent(i)) end do write (*, *) end if call particle_set%prt(whizard_idx(i_pythia))%set_parents (& whizard_idx(pack(parent, parent > 0))) end if end if if (c_n_children > 0) then call pythia8_get_daughter_array (pythia%cptr, c_i_pythia, c_n_children, child) if (count (child > 0) > 0) then if (debug2_active (D_SHOWER) .or. debug2_active (D_TRANSFORMS)) then write (*, "(1X,A,1X,I0)") "Particle's children ", whizard_idx(i_pythia) do i = 1, c_n_children if (child(i) > 0) & write (*, "(1X,I0,1X,'(',I0,')',1X)", advance="no") child(i), whizard_idx(child(i)) end do write (*, *) end if call particle_set%prt(whizard_idx(i_pythia))%set_children (& whizard_idx(pack (child, child > 0))) end if end if deallocate (parent, child) end do end subroutine pythia8_get_parent_child_relation @ %def pythia8_get_parent_child_relation @ \subsection{Unit tests} \label{sec:whizard-lha-ut} Test module, followed by the corresponding implementation module. <<[[pythia8_ut.f90]]>>= <> module pythia8_ut use unit_tests use pythia8_uti <> <> contains <> end module pythia8_ut @ %def pythia8_ut @ <<[[pythia8_uti.f90]]>>= <> module pythia8_uti <> use io_units use iso_varying_string, string_t => varying_string use model_data, only: model_data_t use particles, only: particle_t, PRT_DEFINITE_HELICITY, PRT_GENERIC_POLARIZATION use rng_base, only: rng_t use rng_stream, only: rng_stream_t use whizard_lha use pythia8 <> <> contains <> end module pythia8_uti @ %def pythia8_uti @ API: driver for the unit tests below. <>= public :: pythia8_test <>= subroutine pythia8_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine pythia8_test @ %def pythia8_test @ \subsubsection{Setup Pythia8} <>= call test (pythia8_1, "pythia8_1", "Construct and destruct Pythia8 object", u, results) <>= public :: pythia8_1 <>= subroutine pythia8_1 (u) integer, intent(in) :: u type(pythia8_t) :: pythia type(whizard_lha_t) :: lha write (u, "(A)") "* Test output: pythia8_1" write (u, "(A)") "* Purpose: Construct and destruct a Pythia8 object." write (u, "(A)") write (u, "(A)") write (u, "(A)") "* Construct Pythia8 object." write (u, "(A)") call pythia%init () write (u, "(A)") write (u, "(A)") "* Destruct Pythia8 object." write (u, "(A)") call pythia%final () end subroutine pythia8_1 @ %def pythia8_1 @ <>= call test (pythia8_2, "pythia8_2", "Initialize Pythia8 with a LHA User Process object.", u, results) <>= public :: pythia8_2 <>= subroutine pythia8_2 (u) integer, intent(in) :: u type(pythia8_t) :: pythia type(whizard_lha_t) :: lha integer :: i integer, parameter :: N_PROC = 5 real(default), dimension(N_PROC) :: xsec, xerror, max_weight write (u, "(A)") "* Test output: pythia8_2" write (u, "(A)") & "* Purpose: Initialize Pythia8 with a LHA User Process object.." write (u, "(A)") write (u, "(A)") write (u, "(A)") "* Construct Pythia8 object." write (u, "(A)") call pythia%init () write (u, "(A)") write (u, "(A)") "* Read string 'Beam:frameType = 5' into " // & "Pythia8 allowing for LHA user processes." write (u, "(A)") call pythia%read_string (var_str ("Beams:frameType = 5")) call pythia%read_string (var_str ("Random:setSeed = on")) call pythia%read_string (var_str ("Random:seed = 1234")) write (u, "(A)") write (u, "(A)") & "* Setup LHA User Process object and let Pythia8 point to it." write (u, "(A)") call lha%init () call lha%set_init & ([2212, 2212], [6500._default, 6500._default], 1, .false., .false.) xsec = [1.0, 1.2, 1.4, 1.6, 1.8] * 1e3_default ! fb xerror = 0.05_default * xsec max_weight = 1e-3_default * xsec do i = 1, N_PROC call lha%set_process_parameters (process_id = i, & cross_section = xsec(i), error = xerror(i), & max_weight = max_weight(i)) end do call pythia%set_lhaup_ptr (lha) write (u, "(A)") write (u, "(A)") "* Initialize Pythia8." write (u, "(A)") call pythia%init_pythia () write (u, "(A)") write (u, "(A)") "* Destruct Pythia8 object." write (u, "(A)") call pythia%final () end subroutine pythia8_2 @ %def pythia8_2 @ Index: trunk/src/pythia8/Pythia8Wrap.cpp =================================================================== --- trunk/src/pythia8/Pythia8Wrap.cpp (revision 8850) +++ trunk/src/pythia8/Pythia8Wrap.cpp (revision 8851) @@ -1,151 +1,158 @@ #include "Pythia8Wrap.h" using namespace Pythia8; // Define external C-function. extern "C" { bool pythia8_available () { return true; } Pythia* new_pythia8 (bool printBanner = true) { Pythia* pythia = new Pythia ("", printBanner); return pythia; } void pythia8_delete (Pythia* pythia) { delete pythia; } #if PYTHIA_VERSION_INTEGER > 8300 bool pythia8_set_lhaup_ptr (Pythia* pythia, LHAupWhizard* whizard_lha) { return pythia->setLHAupPtr ((LHAupPtr)whizard_lha); } #else bool pythia8_set_lhaup_ptr (Pythia* pythia, LHAupWhizard* whizard_lha) { return pythia->setLHAupPtr (whizard_lha); } #endif bool pythia8_set_rndm_engine_ptr (Pythia* pythia, void* rndm) { WhizardRndm* whizard_rndm = new WhizardRndm (rndm); return pythia->setRndmEnginePtr (whizard_rndm); } bool pythia8_read_string (Pythia* pythia, const char* str) { return pythia->readString (string (str)); } bool pythia8_read_file (Pythia* pythia, const char* filename, const int subrun) { return pythia->readFile (string (filename), subrun); } bool pythia8_init (Pythia* pythia) { return pythia->init (); } bool pythia8_next (Pythia* pythia) { return pythia->next (); } int pythia8_get_event_size (Pythia* pythia) { return pythia->event.size (); } lha_particle_t pythia8_get_single_event (Pythia* pythia, const int i) { Particle event = pythia->event[i]; lha_particle_t lha_event; lha_event.idPart = event.id(); lha_event.statusPart = event.status(); lha_event.motherPart[0] = event.mother1(); lha_event.motherPart[1] = event.mother2(); lha_event.colorPart[0] = event.col(); lha_event.colorPart[1] = event.acol(); lha_event.pPart[0] = event.e(); lha_event.pPart[1] = event.px(); lha_event.pPart[2] = event.py(); lha_event.pPart[3] = event.pz(); lha_event.mPart = event.m(); lha_event.tauPart = event.tau(); lha_event.spinPart = event.pol(); // TODO sbrass Implement scale of parton return lha_event; } int pythia8_get_particle_status (Pythia* pythia, const int i) { return pythia->event[i].status(); } int pythia8_get_particle_id (Pythia* pythia, const int i) { return pythia->event[i].id(); } void pythia8_get_particle_momentum (Pythia* pythia, const int i, double* p) { // TODO sbrass implement a check on size of p Particle event = pythia->event[i]; p[0] = event.e(); p[1] = event.px(); p[2] = event.py(); p[3] = event.pz(); } int pythia8_get_n_mothers (Pythia* pythia, const int i) { vector motherList = pythia->event[i].motherList (); return motherList.size (); } int pythia8_get_n_daughters (Pythia* pythia, const int i) { vector daughterList = pythia->event[i].daughterList (); return daughterList.size (); } void pythia8_get_mother_array (Pythia* pythia, const int i, const int n_mothers, int mother[]) { vector motherList = pythia->event[i].motherList (); if (std::size_t (n_mothers) != motherList.size ()) { std::cerr << "[pythia8_get_mother_array] mismatch in array size." << endl; exit(2); } std::copy (motherList.begin (), motherList.end (), mother); } void pythia8_get_daughter_array (Pythia* pythia, const int i, const int n_daughters, int* daughter) { vector daughterList = pythia->event[i].daughterList (); if (std::size_t (n_daughters) != daughterList.size ()) { std::cerr << "[pythia8_get_mother_array] mismatch in array size." << endl; exit(2); } std::copy (daughterList.begin (), daughterList.end (), daughter); } int pythia8_get_status_hepmc (Pythia* pythia, const int i) { return pythia->event[i].statusHepMC(); } void pythia8_get_decay_vertex (Pythia* pythia, const int i, double* time, double space_vertex[3]) { *time = pythia->event[i].tDec(); space_vertex[0] = pythia->event[i].xDec(); space_vertex[1] = pythia->event[i].yDec(); space_vertex[2] = pythia->event[i].zDec(); } + void pythia8_get_production_vertex (Pythia* pythia, const int i, double* time, double space_vertex[3]) { + *time = pythia->event[i].tProd(); + space_vertex[0] = pythia->event[i].xProd(); + space_vertex[1] = pythia->event[i].yProd(); + space_vertex[2] = pythia->event[i].zProd(); + } + void pythia8_get_event_info (Pythia* pythia, double* alpha_s, double* alpha_em, double* scale) { *alpha_s = pythia->info.alphaS(); *alpha_em = pythia->info.alphaEM(); *scale = pythia->info.scalup(); // See: http://home.thep.lu.se/~torbjorn/pythia82html/EventInformation.html } // Debug Output void pythia8_list_lha_event (Pythia* pythia) { pythia->LHAeventList (); } void pythia8_list_event (Pythia* pythia) { pythia->event.list (); } } Index: trunk/src/noweb-frame/whizard-prelude.nw =================================================================== --- trunk/src/noweb-frame/whizard-prelude.nw (revision 8850) +++ trunk/src/noweb-frame/whizard-prelude.nw (revision 8851) @@ -1,175 +1,175 @@ % -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*- % WHIZARD code as NOWEB source: Header, intro and generic stuff \documentclass[a4paper]{report} \usepackage{amsmath,amssymb,dsfont} \usepackage [bookmarks,bookmarksopen=true,bookmarksopenlevel=1,bookmarksnumbered=true] {hyperref} \usepackage{noweb} \usepackage{graphics,graphicx} \usepackage{url} \usepackage[T1]{fontenc} \setlength{\nwmarginglue}{1em} \noweboptions{smallcode,noidentxref} %%% Saving paper: \def\nwendcode{\endtrivlist\endgroup} \nwcodepenalty=0 \let\nwdocspar\relax %\makeindex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Macros \def\tsum{{\textstyle\sum}} \newcommand{\circeone}{\texttt{CIRCE1}} \newcommand{\circetwo}{\texttt{CIRCE2}} \newcommand{\whizard}{\texttt{WHIZARD}} % Noweb emacs mode: single ' below \newcommand{\oMega}{\texttt{O'MEGA}} \newcommand{\vamp}{\texttt{VAMP}} \newcommand{\vamptwo}{\texttt{VAMP2}} \newcommand{\pythia}{\texttt{PYTHIA}} \newcommand{\gosam}{\texttt{GoSam}} \newcommand{\includemodulegraph}{\begingroup \catcode`_=12 \doincludemodulegraph} \newcommand{\doincludemodulegraph}[1]{% \begin{figure} \includegraphics[width=\textwidth]{#1}% \caption{Module dependencies in \texttt{src/#1}.} \end{figure} \endgroup } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\def\WhizardVersion{3.0.3+} -\def\WhizardDate{Apr 06 2022} +\def\WhizardVersion{3.1.0} +\def\WhizardDate{Dec 14 2022} <>= -3.0.3+ +3.1.0 <>= -Apr 06 2022 +Dec 14 2022 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{% \whizard\footnote{The original meaning of the acronym is \emph{$W$, Higgs, $Z$, And Respective Decays}. The current program is much more than that, however.} } \author{% Wolfgang Kilian,% \thanks{e-mail: \texttt{kilian@physik.uni-siegen.de}} Thorsten Ohl,% \thanks{e-mail: \texttt{ohl@physik.uni-wuerzburg.de}} J\"urgen Reuter% \thanks{e-mail: \texttt{juergen.reuter@desy.de}}} \date{Version \WhizardVersion, \WhizardDate \\ \mbox{} with contributions from: Fabian Bach, Tim Barklow, Vincent Bettaque, Mikael Berggren, Hans-Werner Boschmann, Felix Braam, Simon Brass, Pia Bredt, Bijan Chokouf\'{e} Nejad, Oliver Fischer, Christian Fleper, David Gordo Gomez, Uta Klein, Nils Kreher, Krzysztof~M\k{e}ka{\l}a, Akiya Miyamoto, Moritz Prei{\ss}er, Vincent Rothe, Sebastian Schmidt, Marco Sekulla, So Young Shim, Christian Speckner, Pascal Stienemeier, Tobias Striegl, Manuel Utsch, Christian Weiss, Daniel Wiesler, Zhijie Zhao \vspace{1cm} \begin{center} \includegraphics[width=4cm]{Whizard-Logo} \end{center} \mbox{} \\ \vspace{.2cm}} \maketitle \begin{abstract} \texttt{WHIZARD} is an application of the \texttt{VAMP} algorithm: Adaptive multi-channel integration and event generation. The bare \texttt{VAMP} library is augmented by modules for Lorentz algebra, particles, phase space, etc., such that physical processes with arbitrary complex final states [well, in principle\ldots] can be integrated and \emph{unweighted} events be generated. \end{abstract} \newpage \begin{figure} \centering \includegraphics[angle=90,width=\textwidth,height=\textheight,keepaspectratio]{overview} \caption{Overall folder structure} \end{figure} \newpage \tableofcontents \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Changes} {\bf For a comprehensive list of changes confer the ChangeLog file or the subversion log.} \chapter{Preliminaries} The WHIZARD file header: <>= ! WHIZARD <> <> ! ! Copyright (C) 1999-2022 by ! Wolfgang Kilian ! Thorsten Ohl ! Juergen Reuter ! ! with contributions from ! cf. main AUTHORS file ! ! WHIZARD is free software; you can redistribute it and/or modify it ! under the terms of the GNU General Public License as published by ! the Free Software Foundation; either version 2, or (at your option) ! any later version. ! ! WHIZARD is distributed in the hope that it will be useful, but ! WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with this program; if not, write to the Free Software ! Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! This file has been stripped of most comments. For documentation, refer ! to the source 'whizard.nw' @ We are strict with our names: <>= implicit none private @ This is the way to envoke the kinds module (not contained in this source) <>= use kinds, only: default <>= use kinds, only: default, double @ %def default @ And we make heavy use of variable-length strings <>= use iso_varying_string, string_t => varying_string @ %def string_t @ Access to the [[debug_on]] master switch <>= use debug_master, only: debug_on @ %def debug_on @ And we need the Fortran 2008 MPI module, if compiled with [[MPI]]. <>= @ <>= use mpi_f08 !NODEP! @ %def mpi_f08 Index: trunk/README =================================================================== --- trunk/README (revision 8850) +++ trunk/README (revision 8851) @@ -1,56 +1,59 @@ ####################################################################### # WHIZARD # # Copyright (C) 1999-2022 by # Wolfgang Kilian # Thorsten Ohl # Juergen Reuter # with contributions from # cf. main AUTHORS file # # WHIZARD is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # WHIZARD is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # ######################################################################## WHIZARD is a program system designed for the efficient calculation of multi-particle scattering cross sections and simulated event samples. +It has now full NLO capabilities for the Standard Model in QCD, EW and mixed +coupling orders for fixed-order distributions as well as a general +POWHEG-type NLO matching. The events can be written to file in HepMC, LHEF, LCIO or ASCII format. Tree-level matrix elements are generated automatically for arbitrary partonic processes by calling the O'Mega matrix element generator. Matrix elements obtained by alternative methods (e.g., including loop corrections) are interfaced as well via the BLHA interface, from external packages like e.g. GoSam, OpenLoops and RECOLA. The program is able to calculate numerically stable signal and background cross sections and generate unweighted event samples with reasonable efficiency for processes with up to six or eight final-state particles. Polarization is treated exactly for both the initial and final states. Final-state quark or lepton flavors can be summed over automatically where needed. For Linear Collider physics, beamstrahlung (CIRCE) and ISR spectra are included for electrons and photons. Currently, WHIZARD supports the Standard Model, optionally with anomalous couplings (for gauge bosons, the Higgs boson, and the top quark), the MSSM, the NMSSM, several types of Little Higgs models, Universal Extra Dimensions, the 3-site Higgsless moose model, and a generic Z' model. Model extensions or completely different models can be added. Almost arbitrary models might be added via interfaces to the packages FeynRules and SARAH, or via the UFO interface of WHIZARD. The WHIZARD manual as well as the documented source code can be found in the subdirectory 'share/doc'. The manual describes the installation and usage of WHIZARD.