Index: docs/cs_hgg_ideas/Makefile =================================================================== --- docs/cs_hgg_ideas/Makefile (revision 8536) +++ docs/cs_hgg_ideas/Makefile (revision 8537) @@ -1,18 +0,0 @@ -TEX = pdflatex -MPOST = mpost - -GARBAGE = fmf* hgg.log hgg.aux - -all: hgg.pdf - -hgg.pdf: hgg.tex - $(TEX) $< - grep -i metapost hgg.log && $(MPOST) fmf.mp - $(TEX) $< - -clean: - -rm $(GARBAGE) -realclean: - -rm hgg.pdf - -.PHONY: all clean realclean Index: docs/cs_hgg_ideas/hgg.pdf =================================================================== Cannot display: file marked as a binary type. svn:mime-type = application/octet-stream Index: docs/cs_hgg_ideas/hgg.tex =================================================================== --- docs/cs_hgg_ideas/hgg.tex (revision 8536) +++ docs/cs_hgg_ideas/hgg.tex (revision 8537) @@ -1,208 +0,0 @@ -\documentclass[a4paper,11pt]{article} -\usepackage{graphicx} -\usepackage{feynmp} -\usepackage{amsmath} -\usepackage{palatino} - -\DeclareGraphicsRule{*}{mps}{*}{} -\setlength{\unitlength}{1mm} - -\begin{fmffile}{fmf} -\begin{document} - -\section{Algorithm} - -Going to the color flow basis, the vertex -% -\begin{equation} -\parbox{24mm}{\fmfframe(2,5)(2,5){\begin{fmfgraph*}(20,20) -\fmfleft{i2,i1}\fmfright{o}\fmf{gluon}{i1,v}\fmf{gluon}{v,i2} -\fmf{plain}{o,v} -\fmfv{la=$a$}{i1}\fmfv{la=$b$}{i2} -\end{fmfgraph*}}} -\quad=\quad g\delta_{ab} -\label{equ-ggh} -\end{equation} -% -(where $a,b$ are the color indices and all Lorentz structure is understood to be absorbed in the -coupling $g$) is replaced by two color flow vertices -% -\begin{equation} -\parbox{24mm}{\fmfframe(2,5)(2,5){\begin{fmfgraph*}(20,20) -\fmfleft{i2,i1}\fmfright{o}\fmf{phantom}{i1,v,i2}\fmf{plain}{o,v}\fmffreeze -\fmf{fermion}{i1,v,i2} -\fmfi{fermion}{vloc (__i2) - thick*(3,0) -- vloc (__v) - thick*(3,0)} -\fmfi{fermion}{vloc(__v) - thick*(3,0) -- vloc (__i1) - thick*(3,0)} -\fmfv{la=$g_{i/j}$}{i1}\fmfv{la=$g_{j/i}$}{i2} -\end{fmfgraph*}}} -\quad=\quad g -\label{equ-flow-rule} -\end{equation} -% -and -\begin{equation} -\parbox{24mm}{\fmfframe(2,5)(2,5){\begin{fmfgraph*}(20,20) -\fmfleft{i2,i1}\fmfright{o}\fmf{dashes}{i2,v,i1}\fmf{plain}{o,v} -\fmfv{la=$g_0$}{i1,i2} -\end{fmfgraph*}}} -\quad=\quad -gN_c -\label{equ-ghost-rule} -\end{equation} -% -(note that the minus sign in \eqref{equ-ghost-rule} is \emph{no} typo but required for the algorithm -to work). The correct color structure is then reproduced by the color flow rules as -implemented in O'Mega / WHIZARD if closed color ribbons are not counted as $N_c^2$, but instead as -% -\begin{equation} -\parbox{20mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(20,20) -\fmfi{fermion}{halfcircle scaled (.9w) shifted (.45w,.45w)} -\fmfi{fermion}{halfcircle scaled (.9w) rotated 180 shifted (.45w,.45w)} -\fmfi{fermion}{reverse halfcircle scaled (.7w) shifted (.45w,.45w)} -\fmfi{fermion}{reverse halfcircle scaled (.7w) rotated 180 shifted (.45w,.45w)} -\end{fmfgraph}}} -\quad=\quad N_c^2 - 2 -\label{equ-prescr} -\end{equation} -% -in the squared color flow amplitude. - -\section{Proof} - -The new contributions to squared amplitudes which may arise after adding the vertex \eqref{equ-ggh} -to the theory are either closed gluon lines with $n$ insertions of \eqref{equ-ggh} -% -\begin{equation} -\parbox{40mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(40,30) -\fmfsurroundn{e}{8} -\begin{fmffor}{n}{1}{1}{8} -\fmf{plain}{e[n],i[n]} -\end{fmffor} -\fmfcyclen{gluon}{i}{8} -\end{fmfgraph}}} -\label{equ-closed-ribbon} -\end{equation} -% -or gluon lines connecting two vertices of the original theory with $n$ insertions of -\eqref{equ-ggh} in between -% -\begin{equation} -\parbox{40mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(40,15) -\fmfleft{i}\fmfright{o}\fmfstraight\fmftop{tl,t1,t2,t3,t4,tr} -\fmfbottom{bl,b1,b2,b3,b4,br} -\fmf{phantom}{b1,v1,t1}\fmf{phantom}{b2,v2,t2}\fmf{phantom}{b3,v3,t3} -\fmf{phantom}{b4,v4,t4}\fmffreeze -\fmf{gluon}{i,v1,v2,v3,v4,o} -\fmf{plain}{v1,t1}\fmf{plain}{v2,t2}\fmf{plain}{v3,t3}\fmf{plain}{v4,t4} -\fmfblob{10thick}{i,o} -\end{fmfgraph}}} -\label{equ-struct-2} -\end{equation} -% - -The color flow structure of pieces of the type \eqref{equ-struct-2} is identical to that of -% -\begin{equation}\begin{gathered} -\parbox{40mm}{\fmfframe(0,3)(0,0){\begin{fmfgraph}(40,15) -\fmfleft{i}\fmfright{o}\fmf{gluon}{i,o}\fmfblob{10thick}{i,o} -\end{fmfgraph}}} -\\ = \\ -\parbox{40mm}{\fmfframe(0,0)(0,0){\begin{fmfgraph}(40,15) -\fmfleft{i}\fmfright{o}\fmffreeze -\fmfi{fermion}{vloc (__i) + thick*(0,1.5) -- vloc (__o) + thick*(0,1.5)} -\fmfi{fermion}{vloc (__o) - thick*(0,1.5) -- vloc (__i) - thick*(0,1.5)} -\fmfblob{10thick}{i,o} -\end{fmfgraph}}} -\\ + \\ -\parbox{40mm}{\fmfframe(0,0)(0,3){\begin{fmfgraph}(40,15) -\fmfleft{i}\fmfright{o}\fmf{dashes}{i,o}\fmfblob{10thick}{i,o} -\end{fmfgraph}}} -\label{equ-flow-struct-2} -\end{gathered}\end{equation} -% -(note that we are free to contract the $n$ Kronecker symbols at the vertices \eqref{equ-ggh} -to a single $\delta_{ab}$ before transforming to the color flow decomposition by applying the -completeness relation). The $n$ insertions of the $ggh$ type vertex give -% -\begin{equation} -\parbox{40mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(40,15) -\fmfleft{i}\fmfright{o}\fmfstraight\fmftop{tl,t1,t2,t3,t4,tr} -\fmfbottom{bl,b1,b2,b3,b4,br} -\fmf{phantom}{b1,v1,t1}\fmf{phantom}{b2,v2,t2}\fmf{phantom}{b3,v3,t3} -\fmf{phantom}{b4,v4,t4}\fmffreeze -\fmfi{fermion}{vloc (__i) + thick*(0,1.5) -- vloc (__o) + thick*(0,1.5)} -\fmfi{fermion}{vloc (__o) - thick*(0,1.5) -- vloc (__i) - thick*(0,1.5)} -\fmfi{plain}{vloc (__v1) + thick*(0,1.5) -- vloc (__t1)} -\fmfi{plain}{vloc (__v2) + thick*(0,1.5) -- vloc (__t2)} -\fmfi{plain}{vloc (__v3) + thick*(0,1.5) -- vloc (__t3)} -\fmfi{plain}{vloc (__v4) + thick*(0,1.5) -- vloc (__t4)} -\fmfblob{10thick}{i,o} -\end{fmfgraph}}} -\end{equation} -% -and -% -\begin{equation} -\parbox{40mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(40,15) -\fmfleft{i}\fmfright{o}\fmfstraight\fmftop{tl,t1,t2,t3,t4,tr} -\fmfbottom{bl,b1,b2,b3,b4,br} -\fmf{phantom}{b1,v1,t1}\fmf{phantom}{b2,v2,t2}\fmf{phantom}{b3,v3,t3} -\fmf{phantom}{b4,v4,t4}\fmffreeze -\fmf{dashes}{i,v1,v2,v3,v4,o} -\fmf{plain}{v1,t1}\fmf{plain}{v2,t2}\fmf{plain}{v3,t3}\fmf{plain}{v4,t4} -\fmfblob{10thick}{i,o} -\end{fmfgraph}}} -\end{equation} -% -According to \eqref{equ-ghost-rule}, the $n$ insertions of \eqref{equ-ggh} into the color flow ghost -line give (note that there are $n+1$ ghost propagators involved) -% -\begin{equation} -(-N_c)^{n}\left(\frac{-1}{N_c}\right)^{n+1} = \frac{(-1)^{2n + 1}}{N_c} = -\frac{1}{N_c} -\end{equation} -% -which is the correct factor for a color flow ghost propagator. Therefore, the $n$ insertions of -$ggh$ type vertices with the Feynman rules \eqref{equ-flow-rule}, \eqref{equ-ghost-rule} act just like a -gluon propagator as far as color flow is concerned and therefore reproduce the correct flow -\eqref{equ-flow-struct-2}. As color flows of this type already were handled correctly by the WHIZARD -/ O'Mega algorithm before inserting the additional vertex (or vertices) of type \eqref{equ-ggh}, the -color factors are correctly reproduced. - -As far as the closed color flow ribbons \eqref{equ-closed-ribbon} are concerned, the Feynman rules -\eqref{equ-flow-rule}, \eqref{equ-ghost-rule} together with the prescription \eqref{equ-prescr} -give us two contributions to the color factor of the term in the squared amplitude (note that there -are $n$ vertices and $n$ propagators involved) -% -\begin{multline} -\parbox{40mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(40,30) -\fmfcurved -\fmfsurroundn{e}{8} -\begin{fmffor}{n}{1}{1}{8} -\fmf{plain}{e[n],i[n]} -\end{fmffor} -\fmfcyclen{phantom}{i}{8} -\fmffreeze -\fmfi{fermion}{vloc(__i[1]) .. vloc(__i[2]) .. vloc(__i[3]) .. vloc(__i[4]) .. vloc(__i[5]) - .. vloc(__i[6]) .. vloc(__i[7]) .. vloc(__i[8]) .. cycle} -\fmfi{fermion}{vloc(__i[5]) .. vloc(__i[6]) .. vloc(__i[7]) .. vloc(__i[8]) .. vloc(__i[1]) - .. vloc(__i[2]) .. vloc(__i[3]) .. vloc(__i[4]) .. cycle} -\fmfi{fermion}{reverse (vloc(__i[1]) .. vloc(__i[2]) .. vloc(__i[3]) .. vloc(__i[4]) .. vloc(__i[5]) - .. vloc(__i[6]) .. vloc(__i[7]) .. vloc(__i[8]) .. cycle) scaled 0.8 shifted (.1w,.1h)} -\fmfi{fermion}{reverse (vloc(__i[5]) .. vloc(__i[6]) .. vloc(__i[7]) .. vloc(__i[8]) .. vloc(__i[1]) - .. vloc(__i[2]) .. vloc(__i[3]) .. vloc(__i[4]) .. cycle) scaled 0.8 shifted (.1w,.1h)} -\end{fmfgraph}}} -\quad + \quad -\parbox{40mm}{\fmfframe(0,3)(0,3){\begin{fmfgraph}(40,30) -\fmfsurroundn{e}{8} -\begin{fmffor}{n}{1}{1}{8} -\fmf{plain}{e[n],i[n]} -\end{fmffor} -\fmfcyclen{dashes}{i}{8} -\end{fmfgraph}}}\\ -\quad = \quad N_c^2 - 2 + (-N_c)^n \left(\frac{-1}{N_c}\right)^n = N_c^2 - 1 -\end{multline} -% -recovering the correct result which can be trivially obtained from the color sum in the adjoint -representation. - -\end{fmffile} -\end{document}