Index: trunk/src/whizard-core/whizard.nw =================================================================== --- trunk/src/whizard-core/whizard.nw (revision 8346) +++ trunk/src/whizard-core/whizard.nw (revision 8347) @@ -1,31314 +1,31389 @@ % -*- ess-noweb-default-code-mode: f90-mode; noweb-default-code-mode: f90-mode; -*- % WHIZARD main code as NOWEB source \includemodulegraph{whizard-core} \chapter{Integration and Simulation} @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{User-controlled File I/O} The SINDARIN language includes commands that write output to file (input may be added later). We identify files by their name, and manage the unit internally. We need procedures for opening, closing, and printing files. <<[[user_files.f90]]>>= <> module user_files <> use io_units use diagnostics use ifiles use analysis <> <> <> <> contains <> end module user_files @ %def user_files @ \subsection{The file type} This is a type that describes an open user file and its properties. The entry is part of a doubly-linked list. <>= type :: file_t private type(string_t) :: name integer :: unit = -1 logical :: reading = .false. logical :: writing = .false. type(file_t), pointer :: prev => null () type(file_t), pointer :: next => null () end type file_t @ %def file_t @ The initializer opens the file. <>= subroutine file_init (file, name, action, status, position) type(file_t), intent(out) :: file type(string_t), intent(in) :: name character(len=*), intent(in) :: action, status, position file%unit = free_unit () file%name = name open (unit = file%unit, file = char (file%name), & action = action, status = status, position = position) select case (action) case ("read") file%reading = .true. case ("write") file%writing = .true. case ("readwrite") file%reading = .true. file%writing = .true. end select end subroutine file_init @ %def file_init @ The finalizer closes it. <>= subroutine file_final (file) type(file_t), intent(inout) :: file close (unit = file%unit) file%unit = -1 end subroutine file_final @ %def file_final @ Check if a file is open with correct status. <>= function file_is_open (file, action) result (flag) logical :: flag type(file_t), intent(in) :: file character(*), intent(in) :: action select case (action) case ("read") flag = file%reading case ("write") flag = file%writing case ("readwrite") flag = file%reading .and. file%writing case default call msg_bug ("Checking file '" // char (file%name) & // "': illegal action specifier") end select end function file_is_open @ %def file_is_open @ Return the unit number of a file for direct access. It should be checked first whether the file is open. <>= function file_get_unit (file) result (unit) integer :: unit type(file_t), intent(in) :: file unit = file%unit end function file_get_unit @ %def file_get_unit @ Write to the file. Error if in wrong mode. If there is no string, just write an empty record. If there is a string, respect the [[advancing]] option. <>= subroutine file_write_string (file, string, advancing) type(file_t), intent(in) :: file type(string_t), intent(in), optional :: string logical, intent(in), optional :: advancing if (file%writing) then if (present (string)) then if (present (advancing)) then if (advancing) then write (file%unit, "(A)") char (string) else write (file%unit, "(A)", advance="no") char (string) end if else write (file%unit, "(A)") char (string) end if else write (file%unit, *) end if else call msg_error ("Writing to file: File '" // char (file%name) & // "' is not open for writing.") end if end subroutine file_write_string @ %def file_write @ Write a whole ifile, line by line. <>= subroutine file_write_ifile (file, ifile) type(file_t), intent(in) :: file type(ifile_t), intent(in) :: ifile type(line_p) :: line call line_init (line, ifile) do while (line_is_associated (line)) call file_write_string (file, line_get_string_advance (line)) end do end subroutine file_write_ifile @ %def file_write_ifile @ Write an analysis object (or all objects) to an open file. <>= subroutine file_write_analysis (file, tag) type(file_t), intent(in) :: file type(string_t), intent(in), optional :: tag if (file%writing) then if (present (tag)) then call analysis_write (tag, unit = file%unit) else call analysis_write (unit = file%unit) end if else call msg_error ("Writing analysis to file: File '" // char (file%name) & // "' is not open for writing.") end if end subroutine file_write_analysis @ %def file_write_analysis @ \subsection{The file list} We maintain a list of all open files and their attributes. The list must be doubly-linked because we may delete entries. <>= public :: file_list_t <>= type :: file_list_t type(file_t), pointer :: first => null () type(file_t), pointer :: last => null () end type file_list_t @ %def file_list_t @ There is no initialization routine, but a finalizer which deletes all: <>= public :: file_list_final <>= subroutine file_list_final (file_list) type(file_list_t), intent(inout) :: file_list type(file_t), pointer :: current do while (associated (file_list%first)) current => file_list%first file_list%first => current%next call file_final (current) deallocate (current) end do file_list%last => null () end subroutine file_list_final @ %def file_list_final @ Find an entry in the list. Return null pointer on failure. <>= function file_list_get_file_ptr (file_list, name) result (current) type(file_t), pointer :: current type(file_list_t), intent(in) :: file_list type(string_t), intent(in) :: name current => file_list%first do while (associated (current)) if (current%name == name) return current => current%next end do end function file_list_get_file_ptr @ %def file_list_get_file_ptr @ Check if a file is open, public version: <>= public :: file_list_is_open <>= function file_list_is_open (file_list, name, action) result (flag) logical :: flag type(file_list_t), intent(in) :: file_list type(string_t), intent(in) :: name character(len=*), intent(in) :: action type(file_t), pointer :: current current => file_list_get_file_ptr (file_list, name) if (associated (current)) then flag = file_is_open (current, action) else flag = .false. end if end function file_list_is_open @ %def file_list_is_open @ Return the unit number for a file. It should be checked first whether the file is open. <>= public :: file_list_get_unit <>= function file_list_get_unit (file_list, name) result (unit) integer :: unit type(file_list_t), intent(in) :: file_list type(string_t), intent(in) :: name type(file_t), pointer :: current current => file_list_get_file_ptr (file_list, name) if (associated (current)) then unit = file_get_unit (current) else unit = -1 end if end function file_list_get_unit @ %def file_list_get_unit @ Append a new file entry, i.e., open this file. Error if it is already open. <>= public :: file_list_open <>= subroutine file_list_open (file_list, name, action, status, position) type(file_list_t), intent(inout) :: file_list type(string_t), intent(in) :: name character(len=*), intent(in) :: action, status, position type(file_t), pointer :: current if (.not. associated (file_list_get_file_ptr (file_list, name))) then allocate (current) call msg_message ("Opening file '" // char (name) // "' for output") call file_init (current, name, action, status, position) if (associated (file_list%last)) then file_list%last%next => current current%prev => file_list%last else file_list%first => current end if file_list%last => current else call msg_error ("Opening file: File '" // char (name) & // "' is already open.") end if end subroutine file_list_open @ %def file_list_open @ Delete a file entry, i.e., close this file. Error if it is not open. <>= public :: file_list_close <>= subroutine file_list_close (file_list, name) type(file_list_t), intent(inout) :: file_list type(string_t), intent(in) :: name type(file_t), pointer :: current current => file_list_get_file_ptr (file_list, name) if (associated (current)) then if (associated (current%prev)) then current%prev%next => current%next else file_list%first => current%next end if if (associated (current%next)) then current%next%prev => current%prev else file_list%last => current%prev end if call msg_message ("Closing file '" // char (name) // "' for output") call file_final (current) deallocate (current) else call msg_error ("Closing file: File '" // char (name) & // "' is not open.") end if end subroutine file_list_close @ %def file_list_close @ Write a string to file. Error if it is not open. <>= public :: file_list_write <>= interface file_list_write module procedure file_list_write_string module procedure file_list_write_ifile end interface <>= subroutine file_list_write_string (file_list, name, string, advancing) type(file_list_t), intent(in) :: file_list type(string_t), intent(in) :: name type(string_t), intent(in), optional :: string logical, intent(in), optional :: advancing type(file_t), pointer :: current current => file_list_get_file_ptr (file_list, name) if (associated (current)) then call file_write_string (current, string, advancing) else call msg_error ("Writing to file: File '" // char (name) & // "'is not open.") end if end subroutine file_list_write_string subroutine file_list_write_ifile (file_list, name, ifile) type(file_list_t), intent(in) :: file_list type(string_t), intent(in) :: name type(ifile_t), intent(in) :: ifile type(file_t), pointer :: current current => file_list_get_file_ptr (file_list, name) if (associated (current)) then call file_write_ifile (current, ifile) else call msg_error ("Writing to file: File '" // char (name) & // "'is not open.") end if end subroutine file_list_write_ifile @ %def file_list_write @ Write an analysis object or all objects to data file. Error if it is not open. If the file name is empty, write to standard output. <>= public :: file_list_write_analysis <>= subroutine file_list_write_analysis (file_list, name, tag) type(file_list_t), intent(in) :: file_list type(string_t), intent(in) :: name type(string_t), intent(in), optional :: tag type(file_t), pointer :: current if (name == "") then if (present (tag)) then call analysis_write (tag) else call analysis_write end if else current => file_list_get_file_ptr (file_list, name) if (associated (current)) then call file_write_analysis (current, tag) else call msg_error ("Writing analysis to file: File '" // char (name) & // "' is not open.") end if end if end subroutine file_list_write_analysis @ %def file_list_write_analysis @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Runtime data} <<[[rt_data.f90]]>>= <> module rt_data <> <> use io_units use format_utils, only: write_separator use format_defs, only: FMT_19, FMT_12 use system_dependencies use diagnostics use os_interface use lexers use parser use models use subevents use pdg_arrays use variables, only: var_list_t use process_libraries use prclib_stacks use prc_core, only: helicity_selection_t use beam_structures use event_base, only: event_callback_t use user_files use process_stacks use iterations <> <> <> contains <> end module rt_data @ %def rt_data @ \subsection{Strategy for models and variables} The program manages its data via a main [[rt_data_t]] object. During program flow, various commands create and use local [[rt_data_t]] objects. Those transient blocks contain either pointers to global object or local copies which are deleted after use. Each [[rt_data_t]] object contains a variable list component. This lists holds (local copies of) all kinds of intrinsic or user-defined variables. The variable list is linked to the variable list contained in the local process library. This, in turn, is linked to the variable list of the [[rt_data_t]] context, and so on. A variable lookup will thus be recursively delegated to the linked variable lists, until a match is found. When modifying a variable which is not yet local, the program creates a local copy and uses this afterwards. Thus, when the local [[rt_data_t]] object is deleted, the context value is recovered. Models are kept in a model list which is separate from the variable list. Otherwise, they are treated in a similar manner: the local list is linked to the context model list. Model lookup is thus recursively delegated. When a model or any part of it is modified, the model is copied to the local [[rt_data_t]] object, so the context model is not modified. Commands such as [[integrate]] will create their own copy of the current model (and of the current variable list) at the point where they are executed. When a model is encountered for the first time, it is read from file. The reading is automatically delegated to the global context. Thus, this master copy survives until the main [[rt_data_t]] object is deleted, at program completion. If there is a currently active model, its variable list is linked to the main variable list. Variable lookups will then start from the model variable list. When the current model is switched, the new active model will get this link instead. Consequently, a change to the current model is kept as long as this model has a local copy; it survives local model switches. On the other hand, a parameter change in the current model doesn't affect any other model, even if the parameter name is identical. @ \subsection{Container for parse nodes} The runtime data set contains a bunch of parse nodes (chunks of code that have not been compiled into evaluation trees but saved for later use). We collect them here. This implementation has the useful effect that an assignment between two objects of this type will establish a pointer-target relationship for all components. <>= type :: rt_parse_nodes_t type(parse_node_t), pointer :: cuts_lexpr => null () type(parse_node_t), pointer :: scale_expr => null () type(parse_node_t), pointer :: fac_scale_expr => null () type(parse_node_t), pointer :: ren_scale_expr => null () type(parse_node_t), pointer :: weight_expr => null () type(parse_node_t), pointer :: selection_lexpr => null () type(parse_node_t), pointer :: reweight_expr => null () type(parse_node_t), pointer :: analysis_lexpr => null () type(parse_node_p), dimension(:), allocatable :: alt_setup contains <> end type rt_parse_nodes_t @ %def rt_parse_nodes_t @ Clear individual components. The parse nodes are nullified. No finalization needed since the pointer targets are part of the global parse tree. <>= procedure :: clear => rt_parse_nodes_clear <>= subroutine rt_parse_nodes_clear (rt_pn, name) class(rt_parse_nodes_t), intent(inout) :: rt_pn type(string_t), intent(in) :: name select case (char (name)) case ("cuts") rt_pn%cuts_lexpr => null () case ("scale") rt_pn%scale_expr => null () case ("factorization_scale") rt_pn%fac_scale_expr => null () case ("renormalization_scale") rt_pn%ren_scale_expr => null () case ("weight") rt_pn%weight_expr => null () case ("selection") rt_pn%selection_lexpr => null () case ("reweight") rt_pn%reweight_expr => null () case ("analysis") rt_pn%analysis_lexpr => null () end select end subroutine rt_parse_nodes_clear @ %def rt_parse_nodes_clear @ Output for the parse nodes. <>= procedure :: write => rt_parse_nodes_write <>= subroutine rt_parse_nodes_write (object, unit) class(rt_parse_nodes_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) call wrt ("Cuts", object%cuts_lexpr) call write_separator (u) call wrt ("Scale", object%scale_expr) call write_separator (u) call wrt ("Factorization scale", object%fac_scale_expr) call write_separator (u) call wrt ("Renormalization scale", object%ren_scale_expr) call write_separator (u) call wrt ("Weight", object%weight_expr) call write_separator (u, 2) call wrt ("Event selection", object%selection_lexpr) call write_separator (u) call wrt ("Event reweighting factor", object%reweight_expr) call write_separator (u) call wrt ("Event analysis", object%analysis_lexpr) if (allocated (object%alt_setup)) then call write_separator (u, 2) write (u, "(1x,A,':')") "Alternative setups" do i = 1, size (object%alt_setup) call write_separator (u) call wrt ("Commands", object%alt_setup(i)%ptr) end do end if contains subroutine wrt (title, pn) character(*), intent(in) :: title type(parse_node_t), intent(in), pointer :: pn if (associated (pn)) then write (u, "(1x,A,':')") title call write_separator (u) call parse_node_write_rec (pn, u) else write (u, "(1x,A,':',1x,A)") title, "[undefined]" end if end subroutine wrt end subroutine rt_parse_nodes_write @ %def rt_parse_nodes_write @ Screen output for individual components. (This should eventually be more condensed, currently we print the internal representation tree.) <>= procedure :: show => rt_parse_nodes_show <>= subroutine rt_parse_nodes_show (rt_pn, name, unit) class(rt_parse_nodes_t), intent(in) :: rt_pn type(string_t), intent(in) :: name integer, intent(in), optional :: unit type(parse_node_t), pointer :: pn integer :: u u = given_output_unit (unit) select case (char (name)) case ("cuts") pn => rt_pn%cuts_lexpr case ("scale") pn => rt_pn%scale_expr case ("factorization_scale") pn => rt_pn%fac_scale_expr case ("renormalization_scale") pn => rt_pn%ren_scale_expr case ("weight") pn => rt_pn%weight_expr case ("selection") pn => rt_pn%selection_lexpr case ("reweight") pn => rt_pn%reweight_expr case ("analysis") pn => rt_pn%analysis_lexpr end select if (associated (pn)) then write (u, "(A,1x,A,1x,A)") "Expression:", char (name), "(parse tree):" call parse_node_write_rec (pn, u) else write (u, "(A,1x,A,A)") "Expression:", char (name), ": [undefined]" end if end subroutine rt_parse_nodes_show @ %def rt_parse_nodes_show @ \subsection{The data type} This is a big data container which contains everything that is used and modified during the command flow. A local copy of this can be used to temporarily override defaults. The data set is transparent. <>= public :: rt_data_t <>= type :: rt_data_t type(lexer_t), pointer :: lexer => null () type(rt_data_t), pointer :: context => null () type(string_t), dimension(:), allocatable :: export type(var_list_t) :: var_list type(iterations_list_t) :: it_list type(os_data_t) :: os_data type(model_list_t) :: model_list type(model_t), pointer :: model => null () logical :: model_is_copy = .false. type(model_t), pointer :: preload_model => null () type(model_t), pointer :: fallback_model => null () type(prclib_stack_t) :: prclib_stack type(process_library_t), pointer :: prclib => null () type(beam_structure_t) :: beam_structure type(rt_parse_nodes_t) :: pn type(process_stack_t) :: process_stack type(string_t), dimension(:), allocatable :: sample_fmt class(event_callback_t), allocatable :: event_callback type(file_list_t), pointer :: out_files => null () logical :: quit = .false. integer :: quit_code = 0 type(string_t) :: logfile logical :: nlo_fixed_order = .false. logical, dimension(0:5) :: selected_nlo_parts = .false. integer, dimension(:), allocatable :: nlo_component contains <> end type rt_data_t @ %def rt_data_t @ \subsection{Output} <>= procedure :: write => rt_data_write <>= subroutine rt_data_write (object, unit, vars, pacify) class(rt_data_t), intent(in) :: object integer, intent(in), optional :: unit type(string_t), dimension(:), intent(in), optional :: vars logical, intent(in), optional :: pacify integer :: u, i u = given_output_unit (unit) call write_separator (u, 2) write (u, "(1x,A)") "Runtime data:" if (object%get_n_export () > 0) then call write_separator (u, 2) write (u, "(1x,A)") "Exported objects and variables:" call write_separator (u) call object%write_exports (u) end if if (present (vars)) then if (size (vars) /= 0) then call write_separator (u, 2) write (u, "(1x,A)") "Selected variables:" call write_separator (u) call object%write_vars (u, vars) end if else call write_separator (u, 2) if (associated (object%model)) then call object%model%write_var_list (u, follow_link=.true.) else call object%var_list%write (u, follow_link=.true.) end if end if if (object%it_list%get_n_pass () > 0) then call write_separator (u, 2) write (u, "(1x)", advance="no") call object%it_list%write (u) end if if (associated (object%model)) then call write_separator (u, 2) call object%model%write (u) end if call object%prclib_stack%write (u) call object%beam_structure%write (u) call write_separator (u, 2) call object%pn%write (u) if (allocated (object%sample_fmt)) then call write_separator (u) write (u, "(1x,A)", advance="no") "Event sample formats = " do i = 1, size (object%sample_fmt) if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "(A)", advance="no") char (object%sample_fmt(i)) end do write (u, "(A)") end if call write_separator (u) write (u, "(1x,A)", advance="no") "Event callback:" if (allocated (object%event_callback)) then call object%event_callback%write (u) else write (u, "(1x,A)") "[undefined]" end if call object%process_stack%write (u, pacify) write (u, "(1x,A,1x,L1)") "quit :", object%quit write (u, "(1x,A,1x,I0)") "quit_code:", object%quit_code call write_separator (u, 2) write (u, "(1x,A,1x,A)") "Logfile :", "'" // trim (char (object%logfile)) // "'" call write_separator (u, 2) end subroutine rt_data_write @ %def rt_data_write @ Write only selected variables. <>= procedure :: write_vars => rt_data_write_vars <>= subroutine rt_data_write_vars (object, unit, vars) class(rt_data_t), intent(in), target :: object integer, intent(in), optional :: unit type(string_t), dimension(:), intent(in) :: vars type(var_list_t), pointer :: var_list integer :: u, i u = given_output_unit (unit) var_list => object%get_var_list_ptr () do i = 1, size (vars) associate (var => vars(i)) if (var_list%contains (var, follow_link=.true.)) then call var_list%write_var (var, unit = u, & follow_link = .true., defined=.true.) end if end associate end do end subroutine rt_data_write_vars @ %def rt_data_write_vars @ Write only the model list. <>= procedure :: write_model_list => rt_data_write_model_list <>= subroutine rt_data_write_model_list (object, unit) class(rt_data_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) call object%model_list%write (u) end subroutine rt_data_write_model_list @ %def rt_data_write_model_list @ Write only the library stack. <>= procedure :: write_libraries => rt_data_write_libraries <>= subroutine rt_data_write_libraries (object, unit, libpath) class(rt_data_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: libpath integer :: u u = given_output_unit (unit) call object%prclib_stack%write (u, libpath) end subroutine rt_data_write_libraries @ %def rt_data_write_libraries @ Write only the beam data. <>= procedure :: write_beams => rt_data_write_beams <>= subroutine rt_data_write_beams (object, unit) class(rt_data_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) call write_separator (u, 2) call object%beam_structure%write (u) call write_separator (u, 2) end subroutine rt_data_write_beams @ %def rt_data_write_beams @ Write only the process and event expressions. <>= procedure :: write_expr => rt_data_write_expr <>= subroutine rt_data_write_expr (object, unit) class(rt_data_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) call write_separator (u, 2) call object%pn%write (u) call write_separator (u, 2) end subroutine rt_data_write_expr @ %def rt_data_write_expr @ Write only the process stack. <>= procedure :: write_process_stack => rt_data_write_process_stack <>= subroutine rt_data_write_process_stack (object, unit) class(rt_data_t), intent(in) :: object integer, intent(in), optional :: unit call object%process_stack%write (unit) end subroutine rt_data_write_process_stack @ %def rt_data_write_process_stack @ <>= procedure :: write_var_descriptions => rt_data_write_var_descriptions <>= subroutine rt_data_write_var_descriptions (rt_data, unit, ascii_output) class(rt_data_t), intent(in) :: rt_data integer, intent(in), optional :: unit logical, intent(in), optional :: ascii_output integer :: u logical :: ao u = given_output_unit (unit) ao = .false.; if (present (ascii_output)) ao = ascii_output call rt_data%var_list%write (u, follow_link=.true., & descriptions=.true., ascii_output=ao) end subroutine rt_data_write_var_descriptions @ %def rt_data_write_var_descriptions @ <>= procedure :: show_description_of_string => rt_data_show_description_of_string <>= subroutine rt_data_show_description_of_string (rt_data, string, & unit, ascii_output) class(rt_data_t), intent(in) :: rt_data type(string_t), intent(in) :: string integer, intent(in), optional :: unit logical, intent(in), optional :: ascii_output integer :: u logical :: ao u = given_output_unit (unit) ao = .false.; if (present (ascii_output)) ao = ascii_output call rt_data%var_list%write_var (string, unit=u, follow_link=.true., & defined=.false., descriptions=.true., ascii_output=ao) end subroutine rt_data_show_description_of_string @ %def rt_data_show_description_of_string @ \subsection{Clear} The [[clear]] command can remove the contents of various subobjects. The objects themselves should stay. <>= procedure :: clear_beams => rt_data_clear_beams <>= subroutine rt_data_clear_beams (global) class(rt_data_t), intent(inout) :: global call global%beam_structure%final_sf () call global%beam_structure%final_pol () call global%beam_structure%final_mom () end subroutine rt_data_clear_beams @ %def rt_data_clear_beams @ \subsection{Initialization} Initialize runtime data. This defines special variables such as [[sqrts]], and should be done only for the instance that is actually global. Local copies will inherit the special variables. We link the global variable list to the process stack variable list, so the latter is always available (and kept global). <>= procedure :: global_init => rt_data_global_init <>= subroutine rt_data_global_init (global, paths, logfile) class(rt_data_t), intent(out), target :: global type(paths_t), intent(in), optional :: paths type(string_t), intent(in), optional :: logfile integer :: seed call global%os_data%init (paths) if (present (logfile)) then global%logfile = logfile else global%logfile = "" end if allocate (global%out_files) call system_clock (seed) call global%var_list%init_defaults (seed, paths) call global%init_pointer_variables () call global%process_stack%init_var_list (global%var_list) end subroutine rt_data_global_init @ %def rt_data_global_init @ \subsection{Local copies} This is done at compile time when a local copy of runtime data is needed: Link the variable list and initialize all derived parameters. This allows for synchronizing them with local variable changes without affecting global data. Also re-initialize pointer variables, so they point to local copies of their targets. <>= procedure :: local_init => rt_data_local_init <>= subroutine rt_data_local_init (local, global, env) class(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(in), target :: global integer, intent(in), optional :: env local%context => global call local%process_stack%link (global%process_stack) call local%process_stack%init_var_list (local%var_list) call local%process_stack%link_var_list (global%var_list) call local%var_list%append_string (var_str ("$model_name"), & var_str (""), intrinsic=.true.) call local%init_pointer_variables () local%fallback_model => global%fallback_model local%os_data = global%os_data local%logfile = global%logfile call local%model_list%link (global%model_list) local%model => global%model if (associated (local%model)) then call local%model%link_var_list (local%var_list) end if if (allocated (global%event_callback)) then allocate (local%event_callback, source = global%event_callback) end if end subroutine rt_data_local_init @ %def rt_data_local_init @ These variables point to objects which get local copies: <>= procedure :: init_pointer_variables => rt_data_init_pointer_variables <>= subroutine rt_data_init_pointer_variables (local) class(rt_data_t), intent(inout), target :: local logical, target, save :: known = .true. call local%var_list%append_string_ptr (var_str ("$fc"), & local%os_data%fc, known, intrinsic=.true., & description=var_str('This string variable gives the ' // & '\ttt{Fortran} compiler used within \whizard. It can ' // & 'only be accessed, not set by the user. (cf. also ' // & '\ttt{\$fcflags})')) call local%var_list%append_string_ptr (var_str ("$fcflags"), & local%os_data%fcflags, known, intrinsic=.true., & description=var_str('This string variable gives the ' // & 'compiler flags for the \ttt{Fortran} compiler used ' // & 'within \whizard. It can only be accessed, not set by ' // & 'the user. (cf. also \ttt{\$fc})')) end subroutine rt_data_init_pointer_variables @ %def rt_data_init_pointer_variables @ This is done at execution time: Copy data, transfer pointers. [[local]] has intent(inout) because its local variable list has already been prepared by the previous routine. To be pedantic, the local pointers to model and library should point to the entries in the local copies. (However, as long as these are just shallow copies with identical content, this is actually irrelevant.) The process library and process stacks behave as global objects. The copies of the process library and process stacks should be shallow copies, so the contents stay identical. Since objects may be pushed on the stack in the local environment, upon restoring the global environment, we should reverse the assignment. Then the added stack elements will end up on the global stack. (This should be reconsidered in a parallel environment.) <>= procedure :: activate => rt_data_activate <>= subroutine rt_data_activate (local) class(rt_data_t), intent(inout), target :: local class(rt_data_t), pointer :: global global => local%context if (associated (global)) then local%lexer => global%lexer call global%copy_globals (local) local%os_data = global%os_data local%logfile = global%logfile if (associated (global%prclib)) then local%prclib => & local%prclib_stack%get_library_ptr (global%prclib%get_name ()) end if call local%import_values () call local%process_stack%link (global%process_stack) local%it_list = global%it_list local%beam_structure = global%beam_structure local%pn = global%pn if (allocated (local%sample_fmt)) deallocate (local%sample_fmt) if (allocated (global%sample_fmt)) then allocate (local%sample_fmt (size (global%sample_fmt)), & source = global%sample_fmt) end if local%out_files => global%out_files local%model => global%model local%model_is_copy = .false. else if (.not. associated (local%model)) then local%model => local%preload_model local%model_is_copy = .false. end if if (associated (local%model)) then call local%model%link_var_list (local%var_list) call local%var_list%set_string (var_str ("$model_name"), & local%model%get_name (), is_known = .true.) else call local%var_list%set_string (var_str ("$model_name"), & var_str (""), is_known = .false.) end if end subroutine rt_data_activate @ %def rt_data_activate @ Restore the previous state of data, without actually finalizing the local environment. We also clear the local process stack. Some local modifications (model list and process library stack) are communicated to the global context, if there is any. If the [[keep_local]] flag is set, we want to retain current settings in the local environment. In particular, we create an instance of the currently selected model (which thus becomes separated from the model library!). The local variables are also kept. <>= procedure :: deactivate => rt_data_deactivate <>= subroutine rt_data_deactivate (local, global, keep_local) class(rt_data_t), intent(inout), target :: local class(rt_data_t), intent(inout), optional, target :: global logical, intent(in), optional :: keep_local type(string_t) :: local_model, local_scheme logical :: same_model, delete delete = .true.; if (present (keep_local)) delete = .not. keep_local if (present (global)) then if (associated (global%model) .and. associated (local%model)) then local_model = local%model%get_name () if (global%model%has_schemes ()) then local_scheme = local%model%get_scheme () same_model = & global%model%matches (local_model, local_scheme) else same_model = global%model%matches (local_model) end if else same_model = .false. end if if (delete) then call local%process_stack%clear () call local%unselect_model () call local%unset_values () else if (associated (local%model)) then call local%ensure_model_copy () end if if (.not. same_model .and. associated (global%model)) then if (global%model%has_schemes ()) then call msg_message ("Restoring model '" // & char (global%model%get_name ()) // "', scheme '" // & char (global%model%get_scheme ()) // "'") else call msg_message ("Restoring model '" // & char (global%model%get_name ()) // "'") end if end if if (associated (global%model)) then call global%model%link_var_list (global%var_list) end if call global%restore_globals (local) else call local%unselect_model () end if end subroutine rt_data_deactivate @ %def rt_data_deactivate @ This imports the global objects for which local modifications should be kept. Currently, this is only the process library stack. <>= procedure :: copy_globals => rt_data_copy_globals <>= subroutine rt_data_copy_globals (global, local) class(rt_data_t), intent(in) :: global class(rt_data_t), intent(inout) :: local local%prclib_stack = global%prclib_stack end subroutine rt_data_copy_globals @ %def rt_data_copy_globals @ This restores global objects for which local modifications should be kept. May also modify (remove) the local objects. <>= procedure :: restore_globals => rt_data_restore_globals <>= subroutine rt_data_restore_globals (global, local) class(rt_data_t), intent(inout) :: global class(rt_data_t), intent(inout) :: local global%prclib_stack = local%prclib_stack call local%handle_exports (global) end subroutine rt_data_restore_globals @ %def rt_data_restore_globals @ \subsection{Exported objects} Exported objects are transferred to the global state when a local environment is closed. (For the top-level global data set, there is no effect.) The current implementation handles only the [[results]] object, which resolves to the local process stack. The stack elements are appended to the global stack without modification, the local stack becomes empty. Write names of objects to be exported: <>= procedure :: write_exports => rt_data_write_exports <>= subroutine rt_data_write_exports (rt_data, unit) class(rt_data_t), intent(in) :: rt_data integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) do i = 1, rt_data%get_n_export () write (u, "(A)") char (rt_data%export(i)) end do end subroutine rt_data_write_exports @ %def rt_data_write_exports @ The number of entries in the export list. <>= procedure :: get_n_export => rt_data_get_n_export <>= function rt_data_get_n_export (rt_data) result (n) class(rt_data_t), intent(in) :: rt_data integer :: n if (allocated (rt_data%export)) then n = size (rt_data%export) else n = 0 end if end function rt_data_get_n_export @ %def rt_data_get_n_export @ Return a specific export @ Append new names to the export list. If a duplicate occurs, do not transfer it. <>= procedure :: append_exports => rt_data_append_exports <>= subroutine rt_data_append_exports (rt_data, export) class(rt_data_t), intent(inout) :: rt_data type(string_t), dimension(:), intent(in) :: export logical, dimension(:), allocatable :: mask type(string_t), dimension(:), allocatable :: tmp integer :: i, j, n if (.not. allocated (rt_data%export)) allocate (rt_data%export (0)) n = size (rt_data%export) allocate (mask (size (export)), source=.false.) do i = 1, size (export) mask(i) = all (export(i) /= rt_data%export) & .and. all (export(i) /= export(:i-1)) end do if (count (mask) > 0) then allocate (tmp (n + count (mask))) tmp(1:n) = rt_data%export(:) j = n do i = 1, size (export) if (mask(i)) then j = j + 1 tmp(j) = export(i) end if end do call move_alloc (from=tmp, to=rt_data%export) end if end subroutine rt_data_append_exports @ %def rt_data_append_exports @ Transfer export-objects from the [[local]] rt data to the [[global]] rt data, as far as supported. <>= procedure :: handle_exports => rt_data_handle_exports <>= subroutine rt_data_handle_exports (local, global) class(rt_data_t), intent(inout), target :: local class(rt_data_t), intent(inout), target :: global type(string_t) :: export integer :: i if (local%get_n_export () > 0) then do i = 1, local%get_n_export () export = local%export(i) select case (char (export)) case ("results") call msg_message ("Exporting integration results & &to outer environment") call local%transfer_process_stack (global) case default call msg_bug ("handle exports: '" & // char (export) // "' unsupported") end select end do end if end subroutine rt_data_handle_exports @ %def rt_data_handle_exports @ Export the process stack. One-by-one, take the last process from the local stack and push it on the global stack. Also handle the corresponding result variables: append if the process did not exist yet in the global stack, otherwise update. TODO: result variables don't work that way yet, require initialization in the global variable list. <>= procedure :: transfer_process_stack => rt_data_transfer_process_stack <>= subroutine rt_data_transfer_process_stack (local, global) class(rt_data_t), intent(inout), target :: local class(rt_data_t), intent(inout), target :: global type(process_entry_t), pointer :: process type(string_t) :: process_id do call local%process_stack%pop_last (process) if (.not. associated (process)) exit process_id = process%get_id () call global%process_stack%push (process) call global%process_stack%fill_result_vars (process_id) call global%process_stack%update_result_vars & (process_id, global%var_list) end do end subroutine rt_data_transfer_process_stack @ %def rt_data_transfer_process_stack @ \subsection{Finalization} Finalizer for the variable list and the structure-function list. This is done only for the global RT dataset; local copies contain pointers to this and do not need a finalizer. <>= procedure :: final => rt_data_global_final <>= subroutine rt_data_global_final (global) class(rt_data_t), intent(inout) :: global call global%process_stack%final () call global%prclib_stack%final () call global%model_list%final () call global%var_list%final (follow_link=.false.) if (associated (global%out_files)) then call file_list_final (global%out_files) deallocate (global%out_files) end if end subroutine rt_data_global_final @ %def rt_data_global_final @ The local copy needs a finalizer for the variable list, which consists of local copies. This finalizer is called only when the local environment is finally discarded. (Note that the process stack should already have been cleared after execution, which can occur many times for the same local environment.) <>= procedure :: local_final => rt_data_local_final <>= subroutine rt_data_local_final (local) class(rt_data_t), intent(inout) :: local call local%process_stack%clear () call local%model_list%final () call local%var_list%final (follow_link=.false.) end subroutine rt_data_local_final @ %def rt_data_local_final @ \subsection{Model Management} Read a model, so it becomes available for activation. No variables or model copies, this is just initialization. If this is a local environment, the model will be automatically read into the global context. <>= procedure :: read_model => rt_data_read_model <>= subroutine rt_data_read_model (global, name, model, scheme) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name type(string_t), intent(in), optional :: scheme type(model_t), pointer, intent(out) :: model type(string_t) :: filename filename = name // ".mdl" call global%model_list%read_model & (name, filename, global%os_data, model, scheme) end subroutine rt_data_read_model @ %def rt_data_read_model @ Read a UFO model. Create it on the fly if necessary. <>= procedure :: read_ufo_model => rt_data_read_ufo_model <>= subroutine rt_data_read_ufo_model (global, name, model, ufo_path) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name type(model_t), pointer, intent(out) :: model type(string_t), intent(in), optional :: ufo_path type(string_t) :: filename filename = name // ".ufo.mdl" call global%model_list%read_model & (name, filename, global%os_data, model, ufo=.true., ufo_path=ufo_path) end subroutine rt_data_read_ufo_model @ %def rt_data_read_ufo_model @ Initialize the fallback model. This model is used whenever the current model does not describe all physical particles (hadrons, mainly). It is not supposed to be modified, and the pointer should remain linked to this model. <>= procedure :: init_fallback_model => rt_data_init_fallback_model <>= subroutine rt_data_init_fallback_model (global, name, filename) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name, filename call global%model_list%read_model & (name, filename, global%os_data, global%fallback_model) end subroutine rt_data_init_fallback_model @ %def rt_data_init_fallback_model @ Activate a model: assign the current-model pointer and set the model name in the variable list. If necessary, read the model from file. Link the global variable list to the model variable list. <>= procedure :: select_model => rt_data_select_model <>= subroutine rt_data_select_model (global, name, scheme, ufo, ufo_path) class(rt_data_t), intent(inout), target :: global type(string_t), intent(in) :: name type(string_t), intent(in), optional :: scheme logical, intent(in), optional :: ufo type(string_t), intent(in), optional :: ufo_path logical :: same_model, ufo_model ufo_model = .false.; if (present (ufo)) ufo_model = ufo if (associated (global%model)) then same_model = global%model%matches (name, scheme, ufo) else same_model = .false. end if if (.not. same_model) then global%model => global%model_list%get_model_ptr (name, scheme, ufo) if (.not. associated (global%model)) then if (ufo_model) then call global%read_ufo_model (name, global%model, ufo_path) else call global%read_model (name, global%model) end if global%model_is_copy = .false. else if (associated (global%context)) then global%model_is_copy = & global%model_list%model_exists (name, scheme, ufo, & follow_link=.false.) else global%model_is_copy = .false. end if end if if (associated (global%model)) then call global%model%link_var_list (global%var_list) call global%var_list%set_string (var_str ("$model_name"), & name, is_known = .true.) if (global%model%is_ufo_model ()) then call msg_message ("Switching to model '" // char (name) // "' " & // "(generated from UFO source)") else if (global%model%has_schemes ()) then call msg_message ("Switching to model '" // char (name) // "', " & // "scheme '" // char (global%model%get_scheme ()) // "'") else call msg_message ("Switching to model '" // char (name) // "'") end if else call global%var_list%set_string (var_str ("$model_name"), & var_str (""), is_known = .false.) end if end subroutine rt_data_select_model @ %def rt_data_select_model @ Remove the model link. Do not unset the model name variable, because this may unset the variable in a parent [[rt_data]] object (via linked var lists). <>= procedure :: unselect_model => rt_data_unselect_model <>= subroutine rt_data_unselect_model (global) class(rt_data_t), intent(inout), target :: global if (associated (global%model)) then global%model => null () global%model_is_copy = .false. end if end subroutine rt_data_unselect_model @ %def rt_data_unselect_model @ Create a copy of the currently selected model and append it to the local model list. The model pointer is redirected to the copy. (Not applicable for the global model list, those models will be modified in-place.) <>= procedure :: ensure_model_copy => rt_data_ensure_model_copy <>= subroutine rt_data_ensure_model_copy (global) class(rt_data_t), intent(inout), target :: global if (associated (global%context)) then if (.not. global%model_is_copy) then call global%model_list%append_copy (global%model, global%model) global%model_is_copy = .true. call global%model%link_var_list (global%var_list) end if end if end subroutine rt_data_ensure_model_copy @ %def rt_data_ensure_model_copy @ Modify a model variable. The update mechanism will ensure that the model parameter set remains consistent. This has to take place in a local copy of the current model. If there is none yet, create one. <>= procedure :: model_set_real => rt_data_model_set_real <>= subroutine rt_data_model_set_real (global, name, rval, verbose, pacified) class(rt_data_t), intent(inout), target :: global type(string_t), intent(in) :: name real(default), intent(in) :: rval logical, intent(in), optional :: verbose, pacified call global%ensure_model_copy () call global%model%set_real (name, rval, verbose, pacified) end subroutine rt_data_model_set_real @ %def rt_data_model_set_real @ Modify particle properties. This has to take place in a local copy of the current model. If there is none yet, create one. <>= procedure :: modify_particle => rt_data_modify_particle <>= subroutine rt_data_modify_particle & (global, pdg, polarized, stable, decay, & isotropic_decay, diagonal_decay, decay_helicity) class(rt_data_t), intent(inout), target :: global integer, intent(in) :: pdg logical, intent(in), optional :: polarized, stable logical, intent(in), optional :: isotropic_decay, diagonal_decay integer, intent(in), optional :: decay_helicity type(string_t), dimension(:), intent(in), optional :: decay call global%ensure_model_copy () if (present (polarized)) then if (polarized) then call global%model%set_polarized (pdg) else call global%model%set_unpolarized (pdg) end if end if if (present (stable)) then if (stable) then call global%model%set_stable (pdg) else if (present (decay)) then call global%model%set_unstable & (pdg, decay, isotropic_decay, diagonal_decay, decay_helicity) else call msg_bug ("Setting particle unstable: missing decay processes") end if end if end subroutine rt_data_modify_particle @ %def rt_data_modify_particle @ \subsection{Managing Variables} Return a pointer to the currently active variable list. If there is no model, this is the global variable list. If there is one, it is the model variable list, which should be linked to the former. <>= procedure :: get_var_list_ptr => rt_data_get_var_list_ptr <>= function rt_data_get_var_list_ptr (global) result (var_list) class(rt_data_t), intent(in), target :: global type(var_list_t), pointer :: var_list if (associated (global%model)) then var_list => global%model%get_var_list_ptr () else var_list => global%var_list end if end function rt_data_get_var_list_ptr @ %def rt_data_get_var_list_ptr @ Initialize a local variable: append it to the current variable list. No initial value, yet. <>= procedure :: append_log => rt_data_append_log procedure :: append_int => rt_data_append_int procedure :: append_real => rt_data_append_real procedure :: append_cmplx => rt_data_append_cmplx procedure :: append_subevt => rt_data_append_subevt procedure :: append_pdg_array => rt_data_append_pdg_array procedure :: append_string => rt_data_append_string <>= subroutine rt_data_append_log (local, name, lval, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name logical, intent(in), optional :: lval logical, intent(in), optional :: intrinsic, user call local%var_list%append_log (name, lval, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_log subroutine rt_data_append_int (local, name, ival, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name integer, intent(in), optional :: ival logical, intent(in), optional :: intrinsic, user call local%var_list%append_int (name, ival, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_int subroutine rt_data_append_real (local, name, rval, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name real(default), intent(in), optional :: rval logical, intent(in), optional :: intrinsic, user call local%var_list%append_real (name, rval, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_real subroutine rt_data_append_cmplx (local, name, cval, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name complex(default), intent(in), optional :: cval logical, intent(in), optional :: intrinsic, user call local%var_list%append_cmplx (name, cval, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_cmplx subroutine rt_data_append_subevt (local, name, pval, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name type(subevt_t), intent(in), optional :: pval logical, intent(in) :: intrinsic, user call local%var_list%append_subevt (name, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_subevt subroutine rt_data_append_pdg_array (local, name, aval, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name type(pdg_array_t), intent(in), optional :: aval logical, intent(in), optional :: intrinsic, user call local%var_list%append_pdg_array (name, aval, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_pdg_array subroutine rt_data_append_string (local, name, sval, intrinsic, user) class(rt_data_t), intent(inout) :: local type(string_t), intent(in) :: name type(string_t), intent(in), optional :: sval logical, intent(in), optional :: intrinsic, user call local%var_list%append_string (name, sval, & intrinsic = intrinsic, user = user) end subroutine rt_data_append_string @ %def rt_data_append_log @ %def rt_data_append_int @ %def rt_data_append_real @ %def rt_data_append_cmplx @ %def rt_data_append_subevt @ %def rt_data_append_pdg_array @ %def rt_data_append_string @ Import values for all local variables, given a global context environment where these variables are defined. <>= procedure :: import_values => rt_data_import_values <>= subroutine rt_data_import_values (local) class(rt_data_t), intent(inout) :: local type(rt_data_t), pointer :: global global => local%context if (associated (global)) then call local%var_list%import (global%var_list) end if end subroutine rt_data_import_values @ %def rt_data_import_values @ Unset all variable values. <>= procedure :: unset_values => rt_data_unset_values <>= subroutine rt_data_unset_values (global) class(rt_data_t), intent(inout) :: global call global%var_list%undefine (follow_link=.false.) end subroutine rt_data_unset_values @ %def rt_data_unset_values @ Set a variable. (Not a model variable, these are handled separately.) We can assume that the variable has been initialized. <>= procedure :: set_log => rt_data_set_log procedure :: set_int => rt_data_set_int procedure :: set_real => rt_data_set_real procedure :: set_cmplx => rt_data_set_cmplx procedure :: set_subevt => rt_data_set_subevt procedure :: set_pdg_array => rt_data_set_pdg_array procedure :: set_string => rt_data_set_string <>= subroutine rt_data_set_log & (global, name, lval, is_known, force, verbose) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name logical, intent(in) :: lval logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose call global%var_list%set_log (name, lval, is_known, & force=force, verbose=verbose) end subroutine rt_data_set_log subroutine rt_data_set_int & (global, name, ival, is_known, force, verbose) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name integer, intent(in) :: ival logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose call global%var_list%set_int (name, ival, is_known, & force=force, verbose=verbose) end subroutine rt_data_set_int subroutine rt_data_set_real & (global, name, rval, is_known, force, verbose, pacified) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name real(default), intent(in) :: rval logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose, pacified call global%var_list%set_real (name, rval, is_known, & force=force, verbose=verbose, pacified=pacified) end subroutine rt_data_set_real subroutine rt_data_set_cmplx & (global, name, cval, is_known, force, verbose, pacified) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name complex(default), intent(in) :: cval logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose, pacified call global%var_list%set_cmplx (name, cval, is_known, & force=force, verbose=verbose, pacified=pacified) end subroutine rt_data_set_cmplx subroutine rt_data_set_subevt & (global, name, pval, is_known, force, verbose) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name type(subevt_t), intent(in) :: pval logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose call global%var_list%set_subevt (name, pval, is_known, & force=force, verbose=verbose) end subroutine rt_data_set_subevt subroutine rt_data_set_pdg_array & (global, name, aval, is_known, force, verbose) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name type(pdg_array_t), intent(in) :: aval logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose call global%var_list%set_pdg_array (name, aval, is_known, & force=force, verbose=verbose) end subroutine rt_data_set_pdg_array subroutine rt_data_set_string & (global, name, sval, is_known, force, verbose) class(rt_data_t), intent(inout) :: global type(string_t), intent(in) :: name type(string_t), intent(in) :: sval logical, intent(in) :: is_known logical, intent(in), optional :: force, verbose call global%var_list%set_string (name, sval, is_known, & force=force, verbose=verbose) end subroutine rt_data_set_string @ %def rt_data_set_log @ %def rt_data_set_int @ %def rt_data_set_real @ %def rt_data_set_cmplx @ %def rt_data_set_subevt @ %def rt_data_set_pdg_array @ %def rt_data_set_string @ Return the value of a variable, assuming that the type is correct. <>= procedure :: get_lval => rt_data_get_lval procedure :: get_ival => rt_data_get_ival procedure :: get_rval => rt_data_get_rval procedure :: get_cval => rt_data_get_cval procedure :: get_pval => rt_data_get_pval procedure :: get_aval => rt_data_get_aval procedure :: get_sval => rt_data_get_sval <>= function rt_data_get_lval (global, name) result (lval) logical :: lval class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () lval = var_list%get_lval (name) end function rt_data_get_lval function rt_data_get_ival (global, name) result (ival) integer :: ival class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () ival = var_list%get_ival (name) end function rt_data_get_ival function rt_data_get_rval (global, name) result (rval) real(default) :: rval class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () rval = var_list%get_rval (name) end function rt_data_get_rval function rt_data_get_cval (global, name) result (cval) complex(default) :: cval class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () cval = var_list%get_cval (name) end function rt_data_get_cval function rt_data_get_aval (global, name) result (aval) type(pdg_array_t) :: aval class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () aval = var_list%get_aval (name) end function rt_data_get_aval function rt_data_get_pval (global, name) result (pval) type(subevt_t) :: pval class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () pval = var_list%get_pval (name) end function rt_data_get_pval function rt_data_get_sval (global, name) result (sval) type(string_t) :: sval class(rt_data_t), intent(in), target :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () sval = var_list%get_sval (name) end function rt_data_get_sval @ %def rt_data_get_lval @ %def rt_data_get_ival @ %def rt_data_get_rval @ %def rt_data_get_cval @ %def rt_data_get_pval @ %def rt_data_get_aval @ %def rt_data_get_sval @ Return true if the variable exists in the global list. <>= procedure :: contains => rt_data_contains <>= function rt_data_contains (global, name) result (lval) logical :: lval class(rt_data_t), intent(in) :: global type(string_t), intent(in) :: name type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () lval = var_list%contains (name) end function rt_data_contains @ %def rt_data_contains @ \subsection{Further Content} Add a library (available via a pointer of type [[prclib_entry_t]]) to the stack and update the pointer and variable list to the current library. The pointer association of [[prclib_entry]] will be discarded. <>= procedure :: add_prclib => rt_data_add_prclib <>= subroutine rt_data_add_prclib (global, prclib_entry) class(rt_data_t), intent(inout) :: global type(prclib_entry_t), intent(inout), pointer :: prclib_entry call global%prclib_stack%push (prclib_entry) call global%update_prclib (global%prclib_stack%get_first_ptr ()) end subroutine rt_data_add_prclib @ %def rt_data_add_prclib @ Given a pointer to a process library, make this the currently active library. <>= procedure :: update_prclib => rt_data_update_prclib <>= subroutine rt_data_update_prclib (global, lib) class(rt_data_t), intent(inout) :: global type(process_library_t), intent(in), target :: lib global%prclib => lib if (global%var_list%contains (& var_str ("$library_name"), follow_link = .false.)) then call global%var_list%set_string (var_str ("$library_name"), & global%prclib%get_name (), is_known=.true.) else call global%var_list%append_string ( & var_str ("$library_name"), global%prclib%get_name (), & intrinsic = .true.) end if end subroutine rt_data_update_prclib @ %def rt_data_update_prclib @ \subsection{Miscellaneous} The helicity selection data are distributed among several parameters. Here, we collect them in a single record. <>= procedure :: get_helicity_selection => rt_data_get_helicity_selection <>= function rt_data_get_helicity_selection (rt_data) result (helicity_selection) class(rt_data_t), intent(in) :: rt_data type(helicity_selection_t) :: helicity_selection associate (var_list => rt_data%var_list) helicity_selection%active = var_list%get_lval (& var_str ("?helicity_selection_active")) if (helicity_selection%active) then helicity_selection%threshold = var_list%get_rval (& var_str ("helicity_selection_threshold")) helicity_selection%cutoff = var_list%get_ival (& var_str ("helicity_selection_cutoff")) end if end associate end function rt_data_get_helicity_selection @ %def rt_data_get_helicity_selection @ Show the beam setup: beam structure and relevant global variables. <>= procedure :: show_beams => rt_data_show_beams <>= subroutine rt_data_show_beams (rt_data, unit) class(rt_data_t), intent(in) :: rt_data integer, intent(in), optional :: unit type(string_t) :: s integer :: u u = given_output_unit (unit) associate (beams => rt_data%beam_structure, var_list => rt_data%var_list) call beams%write (u) if (.not. beams%asymmetric () .and. beams%get_n_beam () == 2) then write (u, "(2x,A," // FMT_19 // ",1x,'GeV')") "sqrts =", & var_list%get_rval (var_str ("sqrts")) end if if (beams%contains ("pdf_builtin")) then s = var_list%get_sval (var_str ("$pdf_builtin_set")) if (s /= "") then write (u, "(2x,A,1x,3A)") "PDF set =", '"', char (s), '"' else write (u, "(2x,A,1x,A)") "PDF set =", "[undefined]" end if end if if (beams%contains ("lhapdf")) then s = var_list%get_sval (var_str ("$lhapdf_dir")) if (s /= "") then write (u, "(2x,A,1x,3A)") "LHAPDF dir =", '"', char (s), '"' end if s = var_list%get_sval (var_str ("$lhapdf_file")) if (s /= "") then write (u, "(2x,A,1x,3A)") "LHAPDF file =", '"', char (s), '"' write (u, "(2x,A,1x,I0)") "LHAPDF member =", & var_list%get_ival (var_str ("lhapdf_member")) else write (u, "(2x,A,1x,A)") "LHAPDF file =", "[undefined]" end if end if if (beams%contains ("lhapdf_photon")) then s = var_list%get_sval (var_str ("$lhapdf_dir")) if (s /= "") then write (u, "(2x,A,1x,3A)") "LHAPDF dir =", '"', char (s), '"' end if s = var_list%get_sval (var_str ("$lhapdf_photon_file")) if (s /= "") then write (u, "(2x,A,1x,3A)") "LHAPDF file =", '"', char (s), '"' write (u, "(2x,A,1x,I0)") "LHAPDF member =", & var_list%get_ival (var_str ("lhapdf_member")) write (u, "(2x,A,1x,I0)") "LHAPDF scheme =", & var_list%get_ival (& var_str ("lhapdf_photon_scheme")) else write (u, "(2x,A,1x,A)") "LHAPDF file =", "[undefined]" end if end if if (beams%contains ("isr")) then write (u, "(2x,A," // FMT_19 // ")") "ISR alpha =", & var_list%get_rval (var_str ("isr_alpha")) write (u, "(2x,A," // FMT_19 // ")") "ISR Q max =", & var_list%get_rval (var_str ("isr_q_max")) write (u, "(2x,A," // FMT_19 // ")") "ISR mass =", & var_list%get_rval (var_str ("isr_mass")) write (u, "(2x,A,1x,I0)") "ISR order =", & var_list%get_ival (var_str ("isr_order")) write (u, "(2x,A,1x,L1)") "ISR recoil =", & var_list%get_lval (var_str ("?isr_recoil")) write (u, "(2x,A,1x,L1)") "ISR energy cons. =", & var_list%get_lval (var_str ("?isr_keep_energy")) end if if (beams%contains ("epa")) then write (u, "(2x,A," // FMT_19 // ")") "EPA alpha =", & var_list%get_rval (var_str ("epa_alpha")) write (u, "(2x,A," // FMT_19 // ")") "EPA x min =", & var_list%get_rval (var_str ("epa_x_min")) write (u, "(2x,A," // FMT_19 // ")") "EPA Q min =", & var_list%get_rval (var_str ("epa_q_min")) write (u, "(2x,A," // FMT_19 // ")") "EPA E max =", & var_list%get_rval (var_str ("epa_e_max")) write (u, "(2x,A," // FMT_19 // ")") "EPA mass =", & var_list%get_rval (var_str ("epa_mass")) write (u, "(2x,A,1x,L1)") "EPA recoil =", & var_list%get_lval (var_str ("?epa_recoil")) write (u, "(2x,A,1x,L1)") "EPA energy cons. =", & var_list%get_lval (var_str ("?epa_keep_energy")) end if if (beams%contains ("ewa")) then write (u, "(2x,A," // FMT_19 // ")") "EWA x min =", & var_list%get_rval (var_str ("ewa_x_min")) write (u, "(2x,A," // FMT_19 // ")") "EWA Pt max =", & var_list%get_rval (var_str ("ewa_pt_max")) write (u, "(2x,A," // FMT_19 // ")") "EWA mass =", & var_list%get_rval (var_str ("ewa_mass")) write (u, "(2x,A,1x,L1)") "EWA recoil =", & var_list%get_lval (var_str ("?ewa_recoil")) write (u, "(2x,A,1x,L1)") "EWA energy cons. =", & var_list%get_lval (var_str ("ewa_keep_energy")) end if if (beams%contains ("circe1")) then write (u, "(2x,A,1x,I0)") "CIRCE1 version =", & var_list%get_ival (var_str ("circe1_ver")) write (u, "(2x,A,1x,I0)") "CIRCE1 revision =", & var_list%get_ival (var_str ("circe1_rev")) s = var_list%get_sval (var_str ("$circe1_acc")) write (u, "(2x,A,1x,A)") "CIRCE1 acceler. =", char (s) write (u, "(2x,A,1x,I0)") "CIRCE1 chattin. =", & var_list%get_ival (var_str ("circe1_chat")) write (u, "(2x,A," // FMT_19 // ")") "CIRCE1 sqrts =", & var_list%get_rval (var_str ("circe1_sqrts")) write (u, "(2x,A," // FMT_19 // ")") "CIRCE1 epsil. =", & var_list%get_rval (var_str ("circe1_eps")) write (u, "(2x,A,1x,L1)") "CIRCE1 phot. 1 =", & var_list%get_lval (var_str ("?circe1_photon1")) write (u, "(2x,A,1x,L1)") "CIRCE1 phot. 2 =", & var_list%get_lval (var_str ("?circe1_photon2")) write (u, "(2x,A,1x,L1)") "CIRCE1 generat. =", & var_list%get_lval (var_str ("?circe1_generate")) write (u, "(2x,A,1x,L1)") "CIRCE1 mapping =", & var_list%get_lval (var_str ("?circe1_map")) write (u, "(2x,A," // FMT_19 // ")") "CIRCE1 map. slope =", & var_list%get_rval (var_str ("circe1_mapping_slope")) write (u, "(2x,A,1x,L1)") "CIRCE recoil photon =", & var_list%get_lval (var_str ("?circe1_with_radiation")) end if if (beams%contains ("circe2")) then s = var_list%get_sval (var_str ("$circe2_design")) write (u, "(2x,A,1x,A)") "CIRCE2 design =", char (s) s = var_list%get_sval (var_str ("$circe2_file")) write (u, "(2x,A,1x,A)") "CIRCE2 file =", char (s) write (u, "(2x,A,1x,L1)") "CIRCE2 polarized =", & var_list%get_lval (var_str ("?circe2_polarized")) end if if (beams%contains ("gaussian")) then write (u, "(2x,A,1x," // FMT_12 // ")") "Gaussian spread 1 =", & var_list%get_rval (var_str ("gaussian_spread1")) write (u, "(2x,A,1x," // FMT_12 // ")") "Gaussian spread 2 =", & var_list%get_rval (var_str ("gaussian_spread2")) end if if (beams%contains ("beam_events")) then s = var_list%get_sval (var_str ("$beam_events_file")) write (u, "(2x,A,1x,A)") "Beam events file =", char (s) write (u, "(2x,A,1x,L1)") "Beam events EOF warn =", & var_list%get_lval (var_str ("?beam_events_warn_eof")) end if end associate end subroutine rt_data_show_beams @ %def rt_data_show_beams @ Return the collision energy as determined by the current beam settings. Without beam setup, this is the [[sqrts]] variable. If the value is meaningless for a setup, the function returns zero. <>= procedure :: get_sqrts => rt_data_get_sqrts <>= function rt_data_get_sqrts (rt_data) result (sqrts) class(rt_data_t), intent(in) :: rt_data real(default) :: sqrts sqrts = rt_data%var_list%get_rval (var_str ("sqrts")) end function rt_data_get_sqrts @ %def rt_data_get_sqrts @ For testing purposes, the [[rt_data_t]] contents can be pacified to suppress numerical fluctuations in (constant) test matrix elements. <>= procedure :: pacify => rt_data_pacify <>= subroutine rt_data_pacify (rt_data, efficiency_reset, error_reset) class(rt_data_t), intent(inout) :: rt_data logical, intent(in), optional :: efficiency_reset, error_reset type(process_entry_t), pointer :: process process => rt_data%process_stack%first do while (associated (process)) call process%pacify (efficiency_reset, error_reset) process => process%next end do end subroutine rt_data_pacify @ %def rt_data_pacify @ <>= procedure :: set_event_callback => rt_data_set_event_callback <>= subroutine rt_data_set_event_callback (global, callback) class(rt_data_t), intent(inout) :: global class(event_callback_t), intent(in) :: callback if (allocated (global%event_callback)) deallocate (global%event_callback) allocate (global%event_callback, source = callback) end subroutine rt_data_set_event_callback @ %def rt_data_set_event_callback @ <>= procedure :: has_event_callback => rt_data_has_event_callback procedure :: get_event_callback => rt_data_get_event_callback <>= function rt_data_has_event_callback (global) result (flag) class(rt_data_t), intent(in) :: global logical :: flag flag = allocated (global%event_callback) end function rt_data_has_event_callback function rt_data_get_event_callback (global) result (callback) class(rt_data_t), intent(in) :: global class(event_callback_t), allocatable :: callback if (allocated (global%event_callback)) then allocate (callback, source = global%event_callback) end if end function rt_data_get_event_callback @ %def rt_data_has_event_callback @ %def rt_data_get_event_callback @ Force system-dependent objects to well-defined values. Some of the variables are locked and therefore must be addressed directly. This is, of course, only required for testing purposes. In principle, the [[real_specimen]] variables could be set to their values in [[rt_data_t]], but this depends on the precision again, so we set them to some dummy values. <>= public :: fix_system_dependencies <>= subroutine fix_system_dependencies (global) class(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () call var_list%set_log (var_str ("?omega_openmp"), & .false., is_known = .true., force=.true.) call var_list%set_log (var_str ("?openmp_is_active"), & .false., is_known = .true., force=.true.) call var_list%set_int (var_str ("openmp_num_threads_default"), & 1, is_known = .true., force=.true.) call var_list%set_int (var_str ("openmp_num_threads"), & 1, is_known = .true., force=.true.) call var_list%set_int (var_str ("real_range"), & 307, is_known = .true., force=.true.) call var_list%set_int (var_str ("real_precision"), & 15, is_known = .true., force=.true.) call var_list%set_real (var_str ("real_epsilon"), & 1.e-16_default, is_known = .true., force=.true.) call var_list%set_real (var_str ("real_tiny"), & 1.e-300_default, is_known = .true., force=.true.) global%os_data%fc = "Fortran-compiler" global%os_data%fcflags = "Fortran-flags" end subroutine fix_system_dependencies @ %def fix_system_dependencies @ <>= public :: show_description_of_string <>= subroutine show_description_of_string (string) type(string_t), intent(in) :: string type(rt_data_t), target :: global call global%global_init () call global%show_description_of_string (string, ascii_output=.true.) end subroutine show_description_of_string @ %def show_description_of_string @ <>= public :: show_tex_descriptions <>= subroutine show_tex_descriptions () type(rt_data_t), target :: global call global%global_init () call fix_system_dependencies (global) call global%set_int (var_str ("seed"), 0, is_known=.true.) call global%var_list%sort () call global%write_var_descriptions () end subroutine show_tex_descriptions @ %def show_tex_descriptions @ \subsection{Unit Tests} Test module, followed by the corresponding implementation module. <<[[rt_data_ut.f90]]>>= <> module rt_data_ut use unit_tests use rt_data_uti <> <> contains <> end module rt_data_ut @ %def rt_data_ut @ <<[[rt_data_uti.f90]]>>= <> module rt_data_uti <> <> use format_defs, only: FMT_19 use ifiles use lexers use parser use flavors use variables, only: var_list_t, var_entry_t, var_entry_init_int use eval_trees use models use prclib_stacks use rt_data <> <> contains <> <> end module rt_data_uti @ %def rt_data_ut @ API: driver for the unit tests below. <>= public :: rt_data_test <>= subroutine rt_data_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine rt_data_test @ %def rt_data_test @ \subsubsection{Initial content} @ Display the RT data in the state just after (global) initialization. <>= call test (rt_data_1, "rt_data_1", & "initialize", & u, results) <>= public :: rt_data_1 <>= subroutine rt_data_1 (u) integer, intent(in) :: u type(rt_data_t), target :: global write (u, "(A)") "* Test output: rt_data_1" write (u, "(A)") "* Purpose: initialize global runtime data" write (u, "(A)") call global%global_init (logfile = var_str ("rt_data.log")) call fix_system_dependencies (global) call global%set_int (var_str ("seed"), 0, is_known=.true.) call global%it_list%init ([2, 3], [5000, 20000]) call global%write (u) call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_1" end subroutine rt_data_1 @ %def rt_data_1 @ \subsubsection{Fill values} Fill in empty slots in the runtime data block. <>= call test (rt_data_2, "rt_data_2", & "fill", & u, results) <>= public :: rt_data_2 <>= subroutine rt_data_2 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(flavor_t), dimension(2) :: flv type(string_t) :: cut_expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: parse_tree write (u, "(A)") "* Test output: rt_data_2" write (u, "(A)") "* Purpose: initialize global runtime data & &and fill contents" write (u, "(A)") call syntax_model_file_init () call global%global_init () call fix_system_dependencies (global) call global%select_model (var_str ("Test")) call global%set_real (var_str ("sqrts"), & 1000._default, is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call flv%init ([25,25], global%model) call global%set_string (var_str ("$run_id"), & var_str ("run1"), is_known = .true.) call global%set_real (var_str ("luminosity"), & 33._default, is_known = .true.) call syntax_pexpr_init () cut_expr_text = "all Pt > 100 [s]" call ifile_append (ifile, cut_expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (parse_tree, stream, .true.) global%pn%cuts_lexpr => parse_tree%get_root_ptr () allocate (global%sample_fmt (2)) global%sample_fmt(1) = "foo_fmt" global%sample_fmt(2) = "bar_fmt" call global%write (u) call parse_tree_final (parse_tree) call stream_final (stream) call ifile_final (ifile) call syntax_pexpr_final () call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_2" end subroutine rt_data_2 @ %def rt_data_2 @ \subsubsection{Save and restore} Set up a local runtime data block, change some contents, restore the global block. <>= call test (rt_data_3, "rt_data_3", & "save/restore", & u, results) <>= public :: rt_data_3 <>= subroutine rt_data_3 (u) use event_base, only: event_callback_nop_t integer, intent(in) :: u type(rt_data_t), target :: global, local type(flavor_t), dimension(2) :: flv type(string_t) :: cut_expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: parse_tree type(prclib_entry_t), pointer :: lib type(event_callback_nop_t) :: event_callback_nop write (u, "(A)") "* Test output: rt_data_3" write (u, "(A)") "* Purpose: initialize global runtime data & &and fill contents;" write (u, "(A)") "* copy to local block and back" write (u, "(A)") write (u, "(A)") "* Init global data" write (u, "(A)") call syntax_model_file_init () call global%global_init () call fix_system_dependencies (global) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%select_model (var_str ("Test")) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call flv%init ([25,25], global%model) call global%beam_structure%init_sf (flv%get_name (), [1]) call global%beam_structure%set_sf (1, 1, var_str ("pdf_builtin")) call global%set_string (var_str ("$run_id"), & var_str ("run1"), is_known = .true.) call global%set_real (var_str ("luminosity"), & 33._default, is_known = .true.) call syntax_pexpr_init () cut_expr_text = "all Pt > 100 [s]" call ifile_append (ifile, cut_expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (parse_tree, stream, .true.) global%pn%cuts_lexpr => parse_tree%get_root_ptr () allocate (global%sample_fmt (2)) global%sample_fmt(1) = "foo_fmt" global%sample_fmt(2) = "bar_fmt" allocate (lib) call lib%init (var_str ("library_1")) call global%add_prclib (lib) write (u, "(A)") "* Init and modify local data" write (u, "(A)") call local%local_init (global) call local%append_string (var_str ("$integration_method"), intrinsic=.true.) call local%append_string (var_str ("$phs_method"), intrinsic=.true.) call local%activate () write (u, "(1x,A,L1)") "model associated = ", associated (local%model) write (u, "(1x,A,L1)") "library associated = ", associated (local%prclib) write (u, *) call local%model_set_real (var_str ("ms"), 150._default) call local%set_string (var_str ("$integration_method"), & var_str ("midpoint"), is_known = .true.) call local%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) local%os_data%fc = "Local compiler" allocate (lib) call lib%init (var_str ("library_2")) call local%add_prclib (lib) call local%set_event_callback (event_callback_nop) call local%write (u) write (u, "(A)") write (u, "(A)") "* Restore global data" write (u, "(A)") call local%deactivate (global) write (u, "(1x,A,L1)") "model associated = ", associated (global%model) write (u, "(1x,A,L1)") "library associated = ", associated (global%prclib) write (u, *) call global%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call parse_tree_final (parse_tree) call stream_final (stream) call ifile_final (ifile) call syntax_pexpr_final () call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_3" end subroutine rt_data_3 @ %def rt_data_3 @ \subsubsection{Show variables} Display selected variables in the global record. <>= call test (rt_data_4, "rt_data_4", & "show variables", & u, results) <>= public :: rt_data_4 <>= subroutine rt_data_4 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(string_t), dimension(0) :: empty_string_array write (u, "(A)") "* Test output: rt_data_4" write (u, "(A)") "* Purpose: display selected variables" write (u, "(A)") call global%global_init () write (u, "(A)") "* No variables:" write (u, "(A)") call global%write_vars (u, empty_string_array) write (u, "(A)") "* Two variables:" write (u, "(A)") call global%write_vars (u, & [var_str ("?unweighted"), var_str ("$phs_method")]) write (u, "(A)") write (u, "(A)") "* Display whole record with selected variables" write (u, "(A)") call global%write (u, & vars = [var_str ("?unweighted"), var_str ("$phs_method")]) call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_4" end subroutine rt_data_4 @ %def rt_data_4 @ \subsubsection{Show parts} Display only selected parts in the state just after (global) initialization. <>= call test (rt_data_5, "rt_data_5", & "show parts", & u, results) <>= public :: rt_data_5 <>= subroutine rt_data_5 (u) integer, intent(in) :: u type(rt_data_t), target :: global write (u, "(A)") "* Test output: rt_data_5" write (u, "(A)") "* Purpose: display parts of rt data" write (u, "(A)") call global%global_init () call global%write_libraries (u) write (u, "(A)") call global%write_beams (u) write (u, "(A)") call global%write_process_stack (u) call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_5" end subroutine rt_data_5 @ %def rt_data_5 @ \subsubsection{Local Model} Locally modify a model and restore the global one. We need an auxiliary function to determine the status of a model particle: <>= function is_stable (pdg, global) result (flag) integer, intent(in) :: pdg type(rt_data_t), intent(in) :: global logical :: flag type(flavor_t) :: flv call flv%init (pdg, global%model) flag = flv%is_stable () end function is_stable function is_polarized (pdg, global) result (flag) integer, intent(in) :: pdg type(rt_data_t), intent(in) :: global logical :: flag type(flavor_t) :: flv call flv%init (pdg, global%model) flag = flv%is_polarized () end function is_polarized @ %def is_stable is_polarized <>= call test (rt_data_6, "rt_data_6", & "local model", & u, results) <>= public :: rt_data_6 <>= subroutine rt_data_6 (u) integer, intent(in) :: u type(rt_data_t), target :: global, local type(var_list_t), pointer :: model_vars type(string_t) :: var_name write (u, "(A)") "* Test output: rt_data_6" write (u, "(A)") "* Purpose: apply and keep local modifications to model" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%select_model (var_str ("Test")) write (u, "(A)") "* Original model" write (u, "(A)") call global%write_model_list (u) write (u, *) write (u, "(A,L1)") "s is stable = ", is_stable (25, global) write (u, "(A,L1)") "f is polarized = ", is_polarized (6, global) write (u, *) var_name = "ff" write (u, "(A)", advance="no") "Global model variable: " model_vars => global%model%get_var_list_ptr () call model_vars%write_var (var_name, u) write (u, "(A)") write (u, "(A)") "* Apply local modifications: unstable" write (u, "(A)") call local%local_init (global) call local%activate () call local%model_set_real (var_name, 0.4_default) call local%modify_particle (25, stable = .false., decay = [var_str ("d1")]) call local%modify_particle (6, stable = .false., & decay = [var_str ("f1")], isotropic_decay = .true.) call local%modify_particle (-6, stable = .false., & decay = [var_str ("f2"), var_str ("f3")], diagonal_decay = .true.) call local%model%write (u) write (u, "(A)") write (u, "(A)") "* Further modifications" write (u, "(A)") call local%modify_particle (6, stable = .false., & decay = [var_str ("f1")], & diagonal_decay = .true., isotropic_decay = .false.) call local%modify_particle (-6, stable = .false., & decay = [var_str ("f2"), var_str ("f3")], & diagonal_decay = .false., isotropic_decay = .true.) call local%model%write (u) write (u, "(A)") write (u, "(A)") "* Further modifications: f stable but polarized" write (u, "(A)") call local%modify_particle (6, stable = .true., polarized = .true.) call local%modify_particle (-6, stable = .true.) call local%model%write (u) write (u, "(A)") write (u, "(A)") "* Global model" write (u, "(A)") call global%model%write (u) write (u, *) write (u, "(A,L1)") "s is stable = ", is_stable (25, global) write (u, "(A,L1)") "f is polarized = ", is_polarized (6, global) write (u, "(A)") write (u, "(A)") "* Local model" write (u, "(A)") call local%model%write (u) write (u, *) write (u, "(A,L1)") "s is stable = ", is_stable (25, local) write (u, "(A,L1)") "f is polarized = ", is_polarized (6, local) write (u, *) write (u, "(A)", advance="no") "Global model variable: " model_vars => global%model%get_var_list_ptr () call model_vars%write_var (var_name, u) write (u, "(A)", advance="no") "Local model variable: " associate (model_var_list_ptr => local%model%get_var_list_ptr()) call model_var_list_ptr%write_var (var_name, u) end associate write (u, "(A)") write (u, "(A)") "* Restore global" call local%deactivate (global, keep_local = .true.) write (u, "(A)") write (u, "(A)") "* Global model" write (u, "(A)") call global%model%write (u) write (u, *) write (u, "(A,L1)") "s is stable = ", is_stable (25, global) write (u, "(A,L1)") "f is polarized = ", is_polarized (6, global) write (u, "(A)") write (u, "(A)") "* Local model" write (u, "(A)") call local%model%write (u) write (u, *) write (u, "(A,L1)") "s is stable = ", is_stable (25, local) write (u, "(A,L1)") "f is polarized = ", is_polarized (6, local) write (u, *) write (u, "(A)", advance="no") "Global model variable: " model_vars => global%model%get_var_list_ptr () call model_vars%write_var (var_name, u) write (u, "(A)", advance="no") "Local model variable: " associate (model_var_list_ptr => local%model%get_var_list_ptr()) call model_var_list_ptr%write_var (var_name, u) end associate write (u, "(A)") write (u, "(A)") "* Cleanup" call local%model%final () deallocate (local%model) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_6" end subroutine rt_data_6 @ %def rt_data_6 @ \subsubsection{Result variables} Initialize result variables and check that they are accessible via the global variable list. <>= call test (rt_data_7, "rt_data_7", & "result variables", & u, results) <>= public :: rt_data_7 <>= subroutine rt_data_7 (u) integer, intent(in) :: u type(rt_data_t), target :: global write (u, "(A)") "* Test output: rt_data_7" write (u, "(A)") "* Purpose: set and access result variables" write (u, "(A)") write (u, "(A)") "* Initialize process variables" write (u, "(A)") call global%global_init () call global%process_stack%init_result_vars (var_str ("testproc")) call global%var_list%write_var (& var_str ("integral(testproc)"), u, defined=.true.) call global%var_list%write_var (& var_str ("error(testproc)"), u, defined=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_7" end subroutine rt_data_7 @ %def rt_data_7 @ \subsubsection{Beam energy} If beam parameters are set, the variable [[sqrts]] is not necessarily the collision energy. The method [[get_sqrts]] fetches the correct value. <>= call test (rt_data_8, "rt_data_8", & "beam energy", & u, results) <>= public :: rt_data_8 <>= subroutine rt_data_8 (u) integer, intent(in) :: u type(rt_data_t), target :: global write (u, "(A)") "* Test output: rt_data_8" write (u, "(A)") "* Purpose: get correct collision energy" write (u, "(A)") write (u, "(A)") "* Initialize" write (u, "(A)") call global%global_init () write (u, "(A)") "* Set sqrts" write (u, "(A)") call global%set_real (var_str ("sqrts"), & 1000._default, is_known = .true.) write (u, "(1x,A," // FMT_19 // ")") "sqrts =", global%get_sqrts () write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_8" end subroutine rt_data_8 @ %def rt_data_8 @ \subsubsection{Local variable modifications} <>= call test (rt_data_9, "rt_data_9", & "local variables", & u, results) <>= public :: rt_data_9 <>= subroutine rt_data_9 (u) integer, intent(in) :: u type(rt_data_t), target :: global, local type(var_list_t), pointer :: var_list write (u, "(A)") "* Test output: rt_data_9" write (u, "(A)") "* Purpose: handle local variables" write (u, "(A)") call syntax_model_file_init () write (u, "(A)") "* Initialize global record and set some variables" write (u, "(A)") call global%global_init () call global%select_model (var_str ("Test")) call global%set_real (var_str ("sqrts"), 17._default, is_known = .true.) call global%set_real (var_str ("luminosity"), 2._default, is_known = .true.) call global%model_set_real (var_str ("ff"), 0.5_default) call global%model_set_real (var_str ("gy"), 1.2_default) var_list => global%get_var_list_ptr () call var_list%write_var (var_str ("sqrts"), u, defined=.true.) call var_list%write_var (var_str ("luminosity"), u, defined=.true.) call var_list%write_var (var_str ("ff"), u, defined=.true.) call var_list%write_var (var_str ("gy"), u, defined=.true.) call var_list%write_var (var_str ("mf"), u, defined=.true.) call var_list%write_var (var_str ("x"), u, defined=.true.) write (u, "(A)") write (u, "(1x,A,1x,F5.2)") "sqrts = ", & global%get_rval (var_str ("sqrts")) write (u, "(1x,A,1x,F5.2)") "luminosity = ", & global%get_rval (var_str ("luminosity")) write (u, "(1x,A,1x,F5.2)") "ff = ", & global%get_rval (var_str ("ff")) write (u, "(1x,A,1x,F5.2)") "gy = ", & global%get_rval (var_str ("gy")) write (u, "(1x,A,1x,F5.2)") "mf = ", & global%get_rval (var_str ("mf")) write (u, "(1x,A,1x,F5.2)") "x = ", & global%get_rval (var_str ("x")) write (u, "(A)") write (u, "(A)") "* Create local record with local variables" write (u, "(A)") call local%local_init (global) call local%append_real (var_str ("luminosity"), intrinsic = .true.) call local%append_real (var_str ("x"), user = .true.) call local%activate () var_list => local%get_var_list_ptr () call var_list%write_var (var_str ("sqrts"), u) call var_list%write_var (var_str ("luminosity"), u) call var_list%write_var (var_str ("ff"), u) call var_list%write_var (var_str ("gy"), u) call var_list%write_var (var_str ("mf"), u) call var_list%write_var (var_str ("x"), u, defined=.true.) write (u, "(A)") write (u, "(1x,A,1x,F5.2)") "sqrts = ", & local%get_rval (var_str ("sqrts")) write (u, "(1x,A,1x,F5.2)") "luminosity = ", & local%get_rval (var_str ("luminosity")) write (u, "(1x,A,1x,F5.2)") "ff = ", & local%get_rval (var_str ("ff")) write (u, "(1x,A,1x,F5.2)") "gy = ", & local%get_rval (var_str ("gy")) write (u, "(1x,A,1x,F5.2)") "mf = ", & local%get_rval (var_str ("mf")) write (u, "(1x,A,1x,F5.2)") "x = ", & local%get_rval (var_str ("x")) write (u, "(A)") write (u, "(A)") "* Modify some local variables" write (u, "(A)") call local%set_real (var_str ("luminosity"), 42._default, is_known=.true.) call local%set_real (var_str ("x"), 6.66_default, is_known=.true.) call local%model_set_real (var_str ("ff"), 0.7_default) var_list => local%get_var_list_ptr () call var_list%write_var (var_str ("sqrts"), u) call var_list%write_var (var_str ("luminosity"), u) call var_list%write_var (var_str ("ff"), u) call var_list%write_var (var_str ("gy"), u) call var_list%write_var (var_str ("mf"), u) call var_list%write_var (var_str ("x"), u, defined=.true.) write (u, "(A)") write (u, "(1x,A,1x,F5.2)") "sqrts = ", & local%get_rval (var_str ("sqrts")) write (u, "(1x,A,1x,F5.2)") "luminosity = ", & local%get_rval (var_str ("luminosity")) write (u, "(1x,A,1x,F5.2)") "ff = ", & local%get_rval (var_str ("ff")) write (u, "(1x,A,1x,F5.2)") "gy = ", & local%get_rval (var_str ("gy")) write (u, "(1x,A,1x,F5.2)") "mf = ", & local%get_rval (var_str ("mf")) write (u, "(1x,A,1x,F5.2)") "x = ", & local%get_rval (var_str ("x")) write (u, "(A)") write (u, "(A)") "* Restore globals" write (u, "(A)") call local%deactivate (global) var_list => global%get_var_list_ptr () call var_list%write_var (var_str ("sqrts"), u) call var_list%write_var (var_str ("luminosity"), u) call var_list%write_var (var_str ("ff"), u) call var_list%write_var (var_str ("gy"), u) call var_list%write_var (var_str ("mf"), u) call var_list%write_var (var_str ("x"), u, defined=.true.) write (u, "(A)") write (u, "(1x,A,1x,F5.2)") "sqrts = ", & global%get_rval (var_str ("sqrts")) write (u, "(1x,A,1x,F5.2)") "luminosity = ", & global%get_rval (var_str ("luminosity")) write (u, "(1x,A,1x,F5.2)") "ff = ", & global%get_rval (var_str ("ff")) write (u, "(1x,A,1x,F5.2)") "gy = ", & global%get_rval (var_str ("gy")) write (u, "(1x,A,1x,F5.2)") "mf = ", & global%get_rval (var_str ("mf")) write (u, "(1x,A,1x,F5.2)") "x = ", & global%get_rval (var_str ("x")) write (u, "(A)") write (u, "(A)") "* Cleanup" call local%local_final () call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_9" end subroutine rt_data_9 @ %def rt_data_9 @ \subsubsection{Descriptions} <>= call test(rt_data_10, "rt_data_10", & "descriptions", u, results) <>= public :: rt_data_10 <>= subroutine rt_data_10 (u) integer, intent(in) :: u type(rt_data_t) :: global ! type(var_list_t) :: var_list write (u, "(A)") "* Test output: rt_data_10" write (u, "(A)") "* Purpose: display descriptions" write (u, "(A)") call global%var_list%append_real (var_str ("sqrts"), & intrinsic=.true., & description=var_str ('Real variable in order to set the center-of-mass ' // & 'energy for the collisions.')) call global%var_list%append_real (var_str ("luminosity"), 0._default, & intrinsic=.true., & description=var_str ('This specifier \ttt{luminosity = {\em ' // & '}} sets the integrated luminosity (in inverse femtobarns, ' // & 'fb${}^{-1}$) for the event generation of the processes in the ' // & '\sindarin\ input files.')) call global%var_list%append_int (var_str ("seed"), 1234, & intrinsic=.true., & description=var_str ('Integer variable \ttt{seed = {\em }} ' // & 'that allows to set a specific random seed \ttt{num}.')) call global%var_list%append_string (var_str ("$method"), var_str ("omega"), & intrinsic=.true., & description=var_str ('This string variable specifies the method ' // & 'for the matrix elements to be used in the evaluation.')) call global%var_list%append_log (var_str ("?read_color_factors"), .true., & intrinsic=.true., & description=var_str ('This flag decides whether to read QCD ' // & 'color factors from the matrix element provided by each method, ' // & 'or to try and calculate the color factors in \whizard\ internally.')) call global%var_list%sort () call global%write_var_descriptions (u) call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_10" end subroutine rt_data_10 @ %def rt_data_10 @ \subsubsection{Export objects} Export objects are variables or other data that should be copied or otherwise applied to corresponding objects in the outer scope. We test appending and retrieval for the export list. <>= call test(rt_data_11, "rt_data_11", & "export objects", u, results) <>= public :: rt_data_11 <>= subroutine rt_data_11 (u) integer, intent(in) :: u type(rt_data_t) :: global type(string_t), dimension(:), allocatable :: exports integer :: i write (u, "(A)") "* Test output: rt_data_11" write (u, "(A)") "* Purpose: handle export object list" write (u, "(A)") write (u, "(A)") "* Empty export list" write (u, "(A)") call global%write_exports (u) write (u, "(A)") "* Add an entry" write (u, "(A)") allocate (exports (1)) exports(1) = var_str ("results") do i = 1, size (exports) write (u, "('+ ',A)") char (exports(i)) end do write (u, *) call global%append_exports (exports) call global%write_exports (u) write (u, "(A)") write (u, "(A)") "* Add more entries, including doubler" write (u, "(A)") deallocate (exports) allocate (exports (3)) exports(1) = var_str ("foo") exports(2) = var_str ("results") exports(3) = var_str ("bar") do i = 1, size (exports) write (u, "('+ ',A)") char (exports(i)) end do write (u, *) call global%append_exports (exports) call global%write_exports (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: rt_data_11" end subroutine rt_data_11 @ %def rt_data_11 @ @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Select implementations} For abstract types (process core, integrator, phase space, etc.), we need a way to dynamically select a concrete type, using either data given by the user or a previous selection of a concrete type. This is done by subroutines in the current module. We would like to put this in the [[me_methods]] folder but it also depends on [[gosam]] and [[openloops]], so it is unclear where to put it. <<[[dispatch_me_methods.f90]]>>= <> module dispatch_me_methods <> <> use physics_defs, only: BORN use diagnostics use sm_qcd use variables, only: var_list_t use models use model_data use prc_core_def use prc_core use prc_test_core use prc_template_me use prc_test use prc_omega use prc_external use prc_gosam use prc_openloops use prc_recola use prc_threshold <> <> contains <> end module dispatch_me_methods @ %def dispatch_me_methods @ \subsection{Process Core Definition} The [[prc_core_def_t]] abstract type can be instantiated by providing a [[$method]] string variable. Note: [[core_def]] has intent(inout) because gfortran 4.7.1 crashes for intent(out). <>= public :: dispatch_core_def <>= subroutine dispatch_core_def (core_def, prt_in, prt_out, & model, var_list, id, nlo_type, method) class(prc_core_def_t), allocatable, intent(inout) :: core_def type(string_t), dimension(:), intent(in) :: prt_in type(string_t), dimension(:), intent(in) :: prt_out type(model_t), pointer, intent(in) :: model type(var_list_t), intent(in) :: var_list type(string_t), intent(in), optional :: id integer, intent(in), optional :: nlo_type type(string_t), intent(in), optional :: method type(string_t) :: model_name, meth type(string_t) :: ufo_path type(string_t) :: restrictions logical :: ufo logical :: cms_scheme logical :: openmp_support logical :: report_progress logical :: diags, diags_color logical :: write_phs_output type(string_t) :: extra_options, correction_type integer :: nlo integer :: alpha_power integer :: alphas_power if (present (method)) then meth = method else meth = var_list%get_sval (var_str ("$method")) end if if (debug_on) call msg_debug2 (D_CORE, "dispatch_core_def") if (associated (model)) then model_name = model%get_name () cms_scheme = model%get_scheme () == "Complex_Mass_Scheme" ufo = model%is_ufo_model () ufo_path = model%get_ufo_path () else model_name = "" cms_scheme = .false. ufo = .false. end if restrictions = var_list%get_sval (& var_str ("$restrictions")) diags = var_list%get_lval (& var_str ("?vis_diags")) diags_color = var_list%get_lval (& var_str ("?vis_diags_color")) openmp_support = var_list%get_lval (& var_str ("?omega_openmp")) report_progress = var_list%get_lval (& var_str ("?report_progress")) write_phs_output = var_list%get_lval (& var_str ("?omega_write_phs_output")) extra_options = var_list%get_sval (& var_str ("$omega_flags")) nlo = BORN; if (present (nlo_type)) nlo = nlo_type alpha_power = var_list%get_ival (var_str ("alpha_power")) alphas_power = var_list%get_ival (var_str ("alphas_power")) correction_type = var_list%get_sval (var_str ("$nlo_correction_type")) if (debug_on) call msg_debug2 (D_CORE, "dispatching core method: ", meth) select case (char (meth)) case ("unit_test") allocate (prc_test_def_t :: core_def) select type (core_def) type is (prc_test_def_t) call core_def%init (model_name, prt_in, prt_out) end select case ("template") allocate (template_me_def_t :: core_def) select type (core_def) type is (template_me_def_t) call core_def%init (model, prt_in, prt_out, unity = .false.) end select case ("template_unity") allocate (template_me_def_t :: core_def) select type (core_def) type is (template_me_def_t) call core_def%init (model, prt_in, prt_out, unity = .true.) end select case ("omega") allocate (omega_def_t :: core_def) select type (core_def) type is (omega_def_t) call core_def%init (model_name, prt_in, prt_out, & .false., ufo, ufo_path, & restrictions, cms_scheme, & openmp_support, report_progress, write_phs_output, & extra_options, diags, diags_color) end select case ("ovm") allocate (omega_def_t :: core_def) select type (core_def) type is (omega_def_t) call core_def%init (model_name, prt_in, prt_out, & .true., .false., var_str (""), & restrictions, cms_scheme, & openmp_support, report_progress, write_phs_output, & extra_options, diags, diags_color) end select case ("gosam") allocate (gosam_def_t :: core_def) select type (core_def) type is (gosam_def_t) if (present (id)) then call core_def%init (id, model_name, prt_in, & prt_out, nlo, restrictions, var_list) else call msg_fatal ("Dispatch GoSam def: No id!") end if end select case ("openloops") allocate (openloops_def_t :: core_def) select type (core_def) type is (openloops_def_t) if (present (id)) then call core_def%init (id, model_name, prt_in, & prt_out, nlo, restrictions, var_list) else call msg_fatal ("Dispatch OpenLoops def: No id!") end if end select case ("recola") call abort_if_recola_not_active () allocate (recola_def_t :: core_def) select type (core_def) type is (recola_def_t) if (present (id)) then call core_def%init (id, model_name, prt_in, prt_out, & nlo, alpha_power, alphas_power, correction_type, & restrictions) else call msg_fatal ("Dispatch RECOLA def: No id!") end if end select case ("dummy") allocate (prc_external_test_def_t :: core_def) select type (core_def) type is (prc_external_test_def_t) if (present (id)) then call core_def%init (id, model_name, prt_in, prt_out) else call msg_fatal ("Dispatch User-Defined Test def: No id!") end if end select case ("threshold") allocate (threshold_def_t :: core_def) select type (core_def) type is (threshold_def_t) if (present (id)) then call core_def%init (id, model_name, prt_in, prt_out, & nlo, restrictions) else call msg_fatal ("Dispatch Threshold def: No id!") end if end select case default call msg_fatal ("Process configuration: method '" & // char (meth) // "' not implemented") end select end subroutine dispatch_core_def @ %def dispatch_core_def @ \subsection{Process core allocation} Here we allocate an object of abstract type [[prc_core_t]] with a concrete type that matches a process definition. The [[prc_omega_t]] extension will require the current parameter set, so we take the opportunity to grab it from the model. <>= public :: dispatch_core <>= subroutine dispatch_core (core, core_def, model, & helicity_selection, qcd, use_color_factors, has_beam_pol) class(prc_core_t), allocatable, intent(inout) :: core class(prc_core_def_t), intent(in) :: core_def class(model_data_t), intent(in), target, optional :: model type(helicity_selection_t), intent(in), optional :: helicity_selection type(qcd_t), intent(in), optional :: qcd logical, intent(in), optional :: use_color_factors logical, intent(in), optional :: has_beam_pol select type (core_def) type is (prc_test_def_t) allocate (test_t :: core) type is (template_me_def_t) allocate (prc_template_me_t :: core) select type (core) type is (prc_template_me_t) call core%set_parameters (model) end select class is (omega_def_t) if (.not. allocated (core)) allocate (prc_omega_t :: core) select type (core) type is (prc_omega_t) call core%set_parameters (model, & helicity_selection, qcd, use_color_factors) end select type is (gosam_def_t) if (.not. allocated (core)) allocate (prc_gosam_t :: core) select type (core) type is (prc_gosam_t) call core%set_parameters (qcd) end select type is (openloops_def_t) if (.not. allocated (core)) allocate (prc_openloops_t :: core) select type (core) type is (prc_openloops_t) call core%set_parameters (qcd) end select type is (recola_def_t) if (.not. allocated (core)) allocate (prc_recola_t :: core) select type (core) type is (prc_recola_t) call core%set_parameters (qcd, model) end select type is (prc_external_test_def_t) if (.not. allocated (core)) allocate (prc_external_test_t :: core) select type (core) type is (prc_external_test_t) call core%set_parameters (qcd, model) end select type is (threshold_def_t) if (.not. allocated (core)) allocate (prc_threshold_t :: core) select type (core) type is (prc_threshold_t) call core%set_parameters (qcd, model) call core%set_beam_pol (has_beam_pol) end select class default call msg_bug ("Process core: unexpected process definition type") end select end subroutine dispatch_core @ %def dispatch_core @ \subsection{Process core update and restoration} Here we take an existing object of abstract type [[prc_core_t]] and update the parameters as given by the current state of [[model]]. Optionally, we can save the previous state as [[saved_core]]. The second routine restores the original from the save. (In the test case, there is no possible update.) <>= public :: dispatch_core_update public :: dispatch_core_restore <>= subroutine dispatch_core_update & (core, model, helicity_selection, qcd, saved_core) class(prc_core_t), allocatable, intent(inout) :: core class(model_data_t), intent(in), optional, target :: model type(helicity_selection_t), intent(in), optional :: helicity_selection type(qcd_t), intent(in), optional :: qcd class(prc_core_t), allocatable, intent(inout), optional :: saved_core if (present (saved_core)) then allocate (saved_core, source = core) end if select type (core) type is (test_t) type is (prc_omega_t) call core%set_parameters (model, helicity_selection, qcd) call core%activate_parameters () class is (prc_external_t) call msg_message ("Updating user defined cores is not implemented yet.") class default call msg_bug ("Process core update: unexpected process definition type") end select end subroutine dispatch_core_update subroutine dispatch_core_restore (core, saved_core) class(prc_core_t), allocatable, intent(inout) :: core class(prc_core_t), allocatable, intent(inout) :: saved_core call move_alloc (from = saved_core, to = core) select type (core) type is (test_t) type is (prc_omega_t) call core%activate_parameters () class default call msg_bug ("Process core restore: unexpected process definition type") end select end subroutine dispatch_core_restore @ %def dispatch_core_update dispatch_core_restore @ \subsection{Unit Tests} Test module, followed by the corresponding implementation module. <<[[dispatch_ut.f90]]>>= <> module dispatch_ut use unit_tests use dispatch_uti <> <> <> contains <> end module dispatch_ut @ %def dispatch_ut @ <<[[dispatch_uti.f90]]>>= <> module dispatch_uti <> <> use os_interface, only: os_data_t use physics_defs, only: ELECTRON, PROTON use sm_qcd, only: qcd_t use flavors, only: flavor_t use interactions, only: reset_interaction_counter use pdg_arrays, only: pdg_array_t, assignment(=) use prc_core_def, only: prc_core_def_t use prc_test_core, only: test_t use prc_core, only: prc_core_t use prc_test, only: prc_test_def_t use prc_omega, only: omega_def_t, prc_omega_t use sf_mappings, only: sf_channel_t use sf_base, only: sf_data_t, sf_config_t use phs_base, only: phs_channel_collection_t use variables, only: var_list_t use model_data, only: model_data_t use models, only: syntax_model_file_init, syntax_model_file_final use rt_data, only: rt_data_t use dispatch_phase_space, only: dispatch_sf_channels use dispatch_beams, only: sf_prop_t, dispatch_qcd use dispatch_beams, only: dispatch_sf_config, dispatch_sf_data use dispatch_me_methods, only: dispatch_core_def, dispatch_core use dispatch_me_methods, only: dispatch_core_update, dispatch_core_restore use sf_base_ut, only: sf_test_data_t <> <> <> contains <> <> end module dispatch_uti @ %def dispatch_uti @ API: driver for the unit tests below. <>= public :: dispatch_test <>= subroutine dispatch_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine dispatch_test @ %def dispatch_test @ \subsubsection{Select type: process definition} <>= call test (dispatch_1, "dispatch_1", & "process configuration method", & u, results) <>= public :: dispatch_1 <>= subroutine dispatch_1 (u) integer, intent(in) :: u type(string_t), dimension(2) :: prt_in, prt_out type(rt_data_t), target :: global class(prc_core_def_t), allocatable :: core_def write (u, "(A)") "* Test output: dispatch_1" write (u, "(A)") "* Purpose: select process configuration method" write (u, "(A)") call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) prt_in = [var_str ("a"), var_str ("b")] prt_out = [var_str ("c"), var_str ("d")] write (u, "(A)") "* Allocate core_def as prc_test_def" call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call dispatch_core_def (core_def, prt_in, prt_out, global%model, global%var_list) select type (core_def) type is (prc_test_def_t) call core_def%write (u) end select deallocate (core_def) write (u, "(A)") write (u, "(A)") "* Allocate core_def as omega_def" write (u, "(A)") call global%set_string (var_str ("$method"), & var_str ("omega"), is_known = .true.) call dispatch_core_def (core_def, prt_in, prt_out, global%model, global%var_list) select type (core_def) type is (omega_def_t) call core_def%write (u) end select call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_1" end subroutine dispatch_1 @ %def dispatch_1 @ \subsubsection{Select type: process core} <>= call test (dispatch_2, "dispatch_2", & "process core", & u, results) <>= public :: dispatch_2 <>= subroutine dispatch_2 (u) integer, intent(in) :: u type(string_t), dimension(2) :: prt_in, prt_out type(rt_data_t), target :: global class(prc_core_def_t), allocatable :: core_def class(prc_core_t), allocatable :: core write (u, "(A)") "* Test output: dispatch_2" write (u, "(A)") "* Purpose: select process configuration method" write (u, "(A)") " and allocate process core" write (u, "(A)") call syntax_model_file_init () call global%global_init () prt_in = [var_str ("a"), var_str ("b")] prt_out = [var_str ("c"), var_str ("d")] write (u, "(A)") "* Allocate core as test_t" write (u, "(A)") call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call dispatch_core_def (core_def, prt_in, prt_out, global%model, global%var_list) call dispatch_core (core, core_def) select type (core) type is (test_t) call core%write (u) end select deallocate (core) deallocate (core_def) write (u, "(A)") write (u, "(A)") "* Allocate core as prc_omega_t" write (u, "(A)") call global%set_string (var_str ("$method"), & var_str ("omega"), is_known = .true.) call dispatch_core_def (core_def, prt_in, prt_out, global%model, global%var_list) call global%select_model (var_str ("Test")) call global%set_log (& var_str ("?helicity_selection_active"), & .true., is_known = .true.) call global%set_real (& var_str ("helicity_selection_threshold"), & 1e9_default, is_known = .true.) call global%set_int (& var_str ("helicity_selection_cutoff"), & 10, is_known = .true.) call dispatch_core (core, core_def, & global%model, & global%get_helicity_selection ()) call core_def%allocate_driver (core%driver, var_str ("")) select type (core) type is (prc_omega_t) call core%write (u) end select call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_2" end subroutine dispatch_2 @ %def dispatch_2 @ \subsubsection{Select type: structure-function data} This is an extra dispatcher that enables the test structure functions. This procedure should be assigned to the [[dispatch_sf_data_extra]] hook before any tests are executed. <>= public :: dispatch_sf_data_test <>= subroutine dispatch_sf_data_test (data, sf_method, i_beam, sf_prop, & var_list, var_list_global, model, os_data, sqrts, pdg_in, pdg_prc, polarized) class(sf_data_t), allocatable, intent(inout) :: data type(string_t), intent(in) :: sf_method integer, dimension(:), intent(in) :: i_beam type(var_list_t), intent(in) :: var_list type(var_list_t), intent(inout) :: var_list_global class(model_data_t), target, intent(in) :: model type(os_data_t), intent(in) :: os_data real(default), intent(in) :: sqrts type(pdg_array_t), dimension(:), intent(inout) :: pdg_in type(pdg_array_t), dimension(:,:), intent(in) :: pdg_prc type(sf_prop_t), intent(inout) :: sf_prop logical, intent(in) :: polarized select case (char (sf_method)) case ("sf_test_0", "sf_test_1") allocate (sf_test_data_t :: data) select type (data) type is (sf_test_data_t) select case (char (sf_method)) case ("sf_test_0"); call data%init (model, pdg_in(i_beam(1))) case ("sf_test_1"); call data%init (model, pdg_in(i_beam(1)),& mode = 1) end select end select end select end subroutine dispatch_sf_data_test @ %def dispatch_sf_data_test @ The actual test. We can't move this to [[beams]] as it depends on [[model_features]] for the [[model_list_t]]. <>= call test (dispatch_7, "dispatch_7", & "structure-function data", & u, results) <>= public :: dispatch_7 <>= subroutine dispatch_7 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(os_data_t) :: os_data type(string_t) :: prt, sf_method type(sf_prop_t) :: sf_prop class(sf_data_t), allocatable :: data type(pdg_array_t), dimension(1) :: pdg_in type(pdg_array_t), dimension(1,1) :: pdg_prc type(pdg_array_t), dimension(1) :: pdg_out integer, dimension(:), allocatable :: pdg1 write (u, "(A)") "* Test output: dispatch_7" write (u, "(A)") "* Purpose: select and configure & &structure function data" write (u, "(A)") call global%global_init () call os_data%init () call syntax_model_file_init () call global%select_model (var_str ("QCD")) call reset_interaction_counter () call global%set_real (var_str ("sqrts"), & 14000._default, is_known = .true.) prt = "p" call global%beam_structure%init_sf ([prt, prt], [1]) pdg_in = 2212 write (u, "(A)") "* Allocate data as sf_pdf_builtin_t" write (u, "(A)") sf_method = "pdf_builtin" call dispatch_sf_data (data, sf_method, [1], sf_prop, & global%get_var_list_ptr (), global%var_list, & global%model, global%os_data, global%get_sqrts (), & pdg_in, pdg_prc, .false.) call data%write (u) call data%get_pdg_out (pdg_out) pdg1 = pdg_out(1) write (u, "(A)") write (u, "(1x,A,99(1x,I0))") "PDG(out) = ", pdg1 deallocate (data) write (u, "(A)") write (u, "(A)") "* Allocate data for different PDF set" write (u, "(A)") pdg_in = 2212 call global%set_string (var_str ("$pdf_builtin_set"), & var_str ("CTEQ6M"), is_known = .true.) sf_method = "pdf_builtin" call dispatch_sf_data (data, sf_method, [1], sf_prop, & global%get_var_list_ptr (), global%var_list, & global%model, global%os_data, global%get_sqrts (), & pdg_in, pdg_prc, .false.) call data%write (u) call data%get_pdg_out (pdg_out) pdg1 = pdg_out(1) write (u, "(A)") write (u, "(1x,A,99(1x,I0))") "PDG(out) = ", pdg1 deallocate (data) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_7" end subroutine dispatch_7 @ %def dispatch_7 @ \subsubsection{Beam structure} The actual test. We can't move this to [[beams]] as it depends on [[model_features]] for the [[model_list_t]]. <>= call test (dispatch_8, "dispatch_8", & "beam structure", & u, results) <>= public :: dispatch_8 <>= subroutine dispatch_8 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(os_data_t) :: os_data type(flavor_t), dimension(2) :: flv type(sf_config_t), dimension(:), allocatable :: sf_config type(sf_prop_t) :: sf_prop type(sf_channel_t), dimension(:), allocatable :: sf_channel type(phs_channel_collection_t) :: coll type(string_t) :: sf_string integer :: i type(pdg_array_t), dimension (2,1) :: pdg_prc write (u, "(A)") "* Test output: dispatch_8" write (u, "(A)") "* Purpose: configure a structure-function chain" write (u, "(A)") call global%global_init () call os_data%init () call syntax_model_file_init () call global%select_model (var_str ("QCD")) write (u, "(A)") "* Allocate LHC beams with PDF builtin" write (u, "(A)") call flv(1)%init (PROTON, global%model) call flv(2)%init (PROTON, global%model) call reset_interaction_counter () call global%set_real (var_str ("sqrts"), & 14000._default, is_known = .true.) call global%beam_structure%init_sf (flv%get_name (), [1]) call global%beam_structure%set_sf (1, 1, var_str ("pdf_builtin")) call dispatch_sf_config (sf_config, sf_prop, global%beam_structure, & global%get_var_list_ptr (), global%var_list, & global%model, global%os_data, global%get_sqrts (), pdg_prc) do i = 1, size (sf_config) call sf_config(i)%write (u) end do call dispatch_sf_channels (sf_channel, sf_string, sf_prop, coll, & global%var_list, global%get_sqrts(), global%beam_structure) write (u, "(1x,A)") "Mapping configuration:" do i = 1, size (sf_channel) write (u, "(2x)", advance = "no") call sf_channel(i)%write (u) end do write (u, "(A)") write (u, "(A)") "* Allocate ILC beams with CIRCE1" write (u, "(A)") call global%select_model (var_str ("QED")) call flv(1)%init ( ELECTRON, global%model) call flv(2)%init (-ELECTRON, global%model) call reset_interaction_counter () call global%set_real (var_str ("sqrts"), & 500._default, is_known = .true.) call global%set_log (var_str ("?circe1_generate"), & .false., is_known = .true.) call global%beam_structure%init_sf (flv%get_name (), [1]) call global%beam_structure%set_sf (1, 1, var_str ("circe1")) call dispatch_sf_config (sf_config, sf_prop, global%beam_structure, & global%get_var_list_ptr (), global%var_list, & global%model, global%os_data, global%get_sqrts (), pdg_prc) do i = 1, size (sf_config) call sf_config(i)%write (u) end do call dispatch_sf_channels (sf_channel, sf_string, sf_prop, coll, & global%var_list, global%get_sqrts(), global%beam_structure) write (u, "(1x,A)") "Mapping configuration:" do i = 1, size (sf_channel) write (u, "(2x)", advance = "no") call sf_channel(i)%write (u) end do write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_8" end subroutine dispatch_8 @ %def dispatch_8 @ \subsubsection{Update process core parameters} This test dispatches a process core, temporarily modifies parameters, then restores the original. <>= call test (dispatch_10, "dispatch_10", & "process core update", & u, results) <>= public :: dispatch_10 <>= subroutine dispatch_10 (u) integer, intent(in) :: u type(string_t), dimension(2) :: prt_in, prt_out type(rt_data_t), target :: global class(prc_core_def_t), allocatable :: core_def class(prc_core_t), allocatable :: core, saved_core type(var_list_t), pointer :: model_vars write (u, "(A)") "* Test output: dispatch_10" write (u, "(A)") "* Purpose: select process configuration method," write (u, "(A)") " allocate process core," write (u, "(A)") " temporarily reset parameters" write (u, "(A)") call syntax_model_file_init () call global%global_init () prt_in = [var_str ("a"), var_str ("b")] prt_out = [var_str ("c"), var_str ("d")] write (u, "(A)") "* Allocate core as prc_omega_t" write (u, "(A)") call global%set_string (var_str ("$method"), & var_str ("omega"), is_known = .true.) call dispatch_core_def (core_def, prt_in, prt_out, global%model, global%var_list) call global%select_model (var_str ("Test")) call dispatch_core (core, core_def, global%model) call core_def%allocate_driver (core%driver, var_str ("")) select type (core) type is (prc_omega_t) call core%write (u) end select write (u, "(A)") write (u, "(A)") "* Update core with modified model and helicity selection" write (u, "(A)") model_vars => global%model%get_var_list_ptr () call model_vars%set_real (var_str ("gy"), 2._default, & is_known = .true.) call global%model%update_parameters () call global%set_log (& var_str ("?helicity_selection_active"), & .true., is_known = .true.) call global%set_real (& var_str ("helicity_selection_threshold"), & 2e10_default, is_known = .true.) call global%set_int (& var_str ("helicity_selection_cutoff"), & 5, is_known = .true.) call dispatch_core_update (core, & global%model, & global%get_helicity_selection (), & saved_core = saved_core) select type (core) type is (prc_omega_t) call core%write (u) end select write (u, "(A)") write (u, "(A)") "* Restore core from save" write (u, "(A)") call dispatch_core_restore (core, saved_core) select type (core) type is (prc_omega_t) call core%write (u) end select call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_10" end subroutine dispatch_10 @ %def dispatch_10 @ \subsubsection{QCD Coupling} This test dispatches an [[qcd]] object, which is used to compute the (running) coupling by one of several possible methods. We can't move this to [[beams]] as it depends on [[model_features]] for the [[model_list_t]]. <>= call test (dispatch_11, "dispatch_11", & "QCD coupling", & u, results) <>= public :: dispatch_11 <>= subroutine dispatch_11 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(var_list_t), pointer :: model_vars type(qcd_t) :: qcd write (u, "(A)") "* Test output: dispatch_11" write (u, "(A)") "* Purpose: select QCD coupling formula" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%select_model (var_str ("SM")) model_vars => global%get_var_list_ptr () write (u, "(A)") "* Allocate alpha_s as fixed" write (u, "(A)") call global%set_log (var_str ("?alphas_is_fixed"), & .true., is_known = .true.) call dispatch_qcd (qcd, global%get_var_list_ptr (), global%os_data) call qcd%write (u) write (u, "(A)") write (u, "(A)") "* Allocate alpha_s as running (built-in)" write (u, "(A)") call global%set_log (var_str ("?alphas_is_fixed"), & .false., is_known = .true.) call global%set_log (var_str ("?alphas_from_mz"), & .true., is_known = .true.) call global%set_int & (var_str ("alphas_order"), 1, is_known = .true.) call model_vars%set_real (var_str ("alphas"), 0.1234_default, & is_known=.true.) call model_vars%set_real (var_str ("mZ"), 91.234_default, & is_known=.true.) call dispatch_qcd (qcd, global%get_var_list_ptr (), global%os_data) call qcd%write (u) write (u, "(A)") write (u, "(A)") "* Allocate alpha_s as running (built-in, Lambda defined)" write (u, "(A)") call global%set_log (var_str ("?alphas_from_mz"), & .false., is_known = .true.) call global%set_log (& var_str ("?alphas_from_lambda_qcd"), & .true., is_known = .true.) call global%set_real & (var_str ("lambda_qcd"), 250.e-3_default, & is_known=.true.) call global%set_int & (var_str ("alphas_order"), 2, is_known = .true.) call global%set_int & (var_str ("alphas_nf"), 4, is_known = .true.) call dispatch_qcd (qcd, global%get_var_list_ptr (), global%os_data) call qcd%write (u) write (u, "(A)") write (u, "(A)") "* Allocate alpha_s as running (using builtin PDF set)" write (u, "(A)") call global%set_log (& var_str ("?alphas_from_lambda_qcd"), & .false., is_known = .true.) call global%set_log & (var_str ("?alphas_from_pdf_builtin"), & .true., is_known = .true.) call dispatch_qcd (qcd, global%get_var_list_ptr (), global%os_data) call qcd%write (u) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: dispatch_11" end subroutine dispatch_11 @ %def dispatch_11 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Process Configuration} This module communicates between the toplevel command structure with its runtime data set and the process-library handling modules which collect the definition of individual processes. Its primary purpose is to select from the available matrix-element generating methods and configure the entry in the process library accordingly. <<[[process_configurations.f90]]>>= <> module process_configurations <> <> use diagnostics use io_units use physics_defs, only: BORN, NLO_VIRTUAL, NLO_REAL, NLO_DGLAP, & NLO_SUBTRACTION, NLO_MISMATCH use models use prc_core_def use particle_specifiers use process_libraries use rt_data use variables, only: var_list_t use dispatch_me_methods, only: dispatch_core_def use prc_external, only: prc_external_def_t <> <> <> contains <> end module process_configurations @ %def process_configurations @ \subsection{Data Type} <>= public :: process_configuration_t <>= type :: process_configuration_t type(process_def_entry_t), pointer :: entry => null () type(string_t) :: id integer :: num_id = 0 contains <> end type process_configuration_t @ %def process_configuration_t @ Output (for unit tests). <>= procedure :: write => process_configuration_write <>= subroutine process_configuration_write (config, unit) class(process_configuration_t), intent(in) :: config integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(A)") "Process configuration:" if (associated (config%entry)) then call config%entry%write (u) else write (u, "(1x,3A)") "ID = '", char (config%id), "'" write (u, "(1x,A,1x,I0)") "num ID =", config%num_id write (u, "(2x,A)") "[no entry]" end if end subroutine process_configuration_write @ %def process_configuration_write @ Initialize a process. We only need the name, the number of incoming particles, and the number of components. <>= procedure :: init => process_configuration_init <>= subroutine process_configuration_init & (config, prc_name, n_in, n_components, model, var_list, nlo_process) class(process_configuration_t), intent(out) :: config type(string_t), intent(in) :: prc_name integer, intent(in) :: n_in integer, intent(in) :: n_components type(model_t), intent(in), pointer :: model type(var_list_t), intent(in) :: var_list logical, intent(in), optional :: nlo_process logical :: nlo_proc logical :: requires_resonances if (debug_on) call msg_debug (D_CORE, "process_configuration_init") config%id = prc_name if (present (nlo_process)) then nlo_proc = nlo_process else nlo_proc = .false. end if requires_resonances = var_list%get_lval (var_str ("?resonance_history")) if (debug_on) call msg_debug (D_CORE, "nlo_process", nlo_proc) allocate (config%entry) if (var_list%is_known (var_str ("process_num_id"))) then config%num_id = & var_list%get_ival (var_str ("process_num_id")) call config%entry%init (prc_name, & model = model, n_in = n_in, n_components = n_components, & num_id = config%num_id, & nlo_process = nlo_proc, & requires_resonances = requires_resonances) else call config%entry%init (prc_name, & model = model, n_in = n_in, n_components = n_components, & nlo_process = nlo_proc, & requires_resonances = requires_resonances) end if end subroutine process_configuration_init @ %def process_configuration_init @ Initialize a process component. The details depend on the process method, which determines the type of the process component core. We set the incoming and outgoing particles (as strings, to be interpreted by the process driver). All other information is taken from the variable list. The dispatcher gets only the names of the particles. The process component definition gets the complete specifiers which contains a polarization flag and names of decay processes, where applicable. <>= procedure :: setup_component => process_configuration_setup_component <>= subroutine process_configuration_setup_component & (config, i_component, prt_in, prt_out, model, var_list, & nlo_type, can_be_integrated) class(process_configuration_t), intent(inout) :: config integer, intent(in) :: i_component type(prt_spec_t), dimension(:), intent(in) :: prt_in type(prt_spec_t), dimension(:), intent(in) :: prt_out type(model_t), pointer, intent(in) :: model type(var_list_t), intent(in) :: var_list integer, intent(in), optional :: nlo_type logical, intent(in), optional :: can_be_integrated type(string_t), dimension(:), allocatable :: prt_str_in type(string_t), dimension(:), allocatable :: prt_str_out class(prc_core_def_t), allocatable :: core_def type(string_t) :: method type(string_t) :: born_me_method type(string_t) :: real_tree_me_method type(string_t) :: loop_me_method type(string_t) :: correlation_me_method type(string_t) :: dglap_me_method integer :: i if (debug_on) call msg_debug2 (D_CORE, "process_configuration_setup_component") allocate (prt_str_in (size (prt_in))) allocate (prt_str_out (size (prt_out))) forall (i = 1:size (prt_in)) prt_str_in(i) = prt_in(i)% get_name () forall (i = 1:size (prt_out)) prt_str_out(i) = prt_out(i)%get_name () method = var_list%get_sval (var_str ("$method")) if (present (nlo_type)) then select case (nlo_type) case (BORN) born_me_method = var_list%get_sval (var_str ("$born_me_method")) if (born_me_method /= var_str ("")) then method = born_me_method end if case (NLO_VIRTUAL) loop_me_method = var_list%get_sval (var_str ("$loop_me_method")) if (loop_me_method /= var_str ("")) then method = loop_me_method end if case (NLO_REAL) real_tree_me_method = & var_list%get_sval (var_str ("$real_tree_me_method")) if (real_tree_me_method /= var_str ("")) then method = real_tree_me_method end if case (NLO_DGLAP) dglap_me_method = & var_list%get_sval (var_str ("$dglap_me_method")) if (dglap_me_method /= var_str ("")) then method = dglap_me_method end if case (NLO_SUBTRACTION,NLO_MISMATCH) correlation_me_method = & var_list%get_sval (var_str ("$correlation_me_method")) if (correlation_me_method /= var_str ("")) then method = correlation_me_method end if case default end select end if call dispatch_core_def (core_def, prt_str_in, prt_str_out, & model, var_list, config%id, nlo_type, method) select type (core_def) class is (prc_external_def_t) if (present (can_be_integrated)) then call core_def%set_active_writer (can_be_integrated) else call msg_fatal ("Cannot decide if external core is integrated!") end if end select if (debug_on) call msg_debug2 (D_CORE, "import_component with method ", method) call config%entry%import_component (i_component, & n_out = size (prt_out), & prt_in = prt_in, & prt_out = prt_out, & method = method, & variant = core_def, & nlo_type = nlo_type, & can_be_integrated = can_be_integrated) end subroutine process_configuration_setup_component @ %def process_configuration_setup_component @ <>= procedure :: set_fixed_emitter => process_configuration_set_fixed_emitter <>= subroutine process_configuration_set_fixed_emitter (config, i, emitter) class(process_configuration_t), intent(inout) :: config integer, intent(in) :: i, emitter call config%entry%set_fixed_emitter (i, emitter) end subroutine process_configuration_set_fixed_emitter @ %def process_configuration_set_fixed_emitter @ <>= procedure :: set_coupling_powers => process_configuration_set_coupling_powers <>= subroutine process_configuration_set_coupling_powers & (config, alpha_power, alphas_power) class(process_configuration_t), intent(inout) :: config integer, intent(in) :: alpha_power, alphas_power call config%entry%set_coupling_powers (alpha_power, alphas_power) end subroutine process_configuration_set_coupling_powers @ %def process_configuration_set_coupling_powers @ <>= procedure :: set_component_associations => & process_configuration_set_component_associations <>= subroutine process_configuration_set_component_associations & (config, i_list, remnant, use_real_finite, mismatch) class(process_configuration_t), intent(inout) :: config integer, dimension(:), intent(in) :: i_list logical, intent(in) :: remnant, use_real_finite, mismatch integer :: i_component do i_component = 1, config%entry%get_n_components () if (any (i_list == i_component)) then call config%entry%set_associated_components (i_component, & i_list, remnant, use_real_finite, mismatch) end if end do end subroutine process_configuration_set_component_associations @ %def process_configuration_set_component_associations @ Record a process configuration: append it to the currently selected process definition library. <>= procedure :: record => process_configuration_record <>= subroutine process_configuration_record (config, global) class(process_configuration_t), intent(inout) :: config type(rt_data_t), intent(inout) :: global if (associated (global%prclib)) then call global%prclib%open () call global%prclib%append (config%entry) if (config%num_id /= 0) then write (msg_buffer, "(5A,I0,A)") "Process library '", & char (global%prclib%get_name ()), & "': recorded process '", char (config%id), "' (", & config%num_id, ")" else write (msg_buffer, "(5A)") "Process library '", & char (global%prclib%get_name ()), & "': recorded process '", char (config%id), "'" end if call msg_message () else call msg_fatal ("Recording process '" // char (config%id) & // "': active process library undefined") end if end subroutine process_configuration_record @ %def process_configuration_record @ \subsection{Unit Tests} Test module, followed by the corresponding implementation module. <<[[process_configurations_ut.f90]]>>= <> module process_configurations_ut use unit_tests use process_configurations_uti <> <> <> contains <> end module process_configurations_ut @ %def process_configurations_ut @ <<[[process_configurations_uti.f90]]>>= <> module process_configurations_uti <> use particle_specifiers, only: new_prt_spec use prclib_stacks use models use rt_data use process_configurations <> <> <> contains <> <> end module process_configurations_uti @ %def process_configurations_uti @ API: driver for the unit tests below. <>= public :: process_configurations_test <>= subroutine process_configurations_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine process_configurations_test @ %def process_configurations_test @ \subsubsection{Minimal setup} The workflow for setting up a minimal process configuration with the test matrix element method. We wrap this in a public procedure, so we can reuse it in later modules. The procedure prepares a process definition list for two processes (one [[prc_test]] and one [[omega]] type) and appends this to the process library stack in the global data set. The [[mode]] argument determines which processes to build. The [[procname]] argument replaces the predefined procname(s). This is re-exported by the UT module. <>= public :: prepare_test_library <>= subroutine prepare_test_library (global, libname, mode, procname) type(rt_data_t), intent(inout), target :: global type(string_t), intent(in) :: libname integer, intent(in) :: mode type(string_t), intent(in), dimension(:), optional :: procname type(prclib_entry_t), pointer :: lib type(string_t) :: prc_name type(string_t), dimension(:), allocatable :: prt_in, prt_out integer :: n_components type(process_configuration_t) :: prc_config if (.not. associated (global%prclib_stack%get_first_ptr ())) then allocate (lib) call lib%init (libname) call global%add_prclib (lib) end if if (btest (mode, 0)) then call global%select_model (var_str ("Test")) if (present (procname)) then prc_name = procname(1) else prc_name = "prc_config_a" end if n_components = 1 allocate (prt_in (2), prt_out (2)) prt_in = [var_str ("s"), var_str ("s")] prt_out = [var_str ("s"), var_str ("s")] call global%set_string (var_str ("$method"),& var_str ("unit_test"), is_known = .true.) call prc_config%init (prc_name, & size (prt_in), n_components, & global%model, global%var_list) call prc_config%setup_component (1, & new_prt_spec (prt_in), new_prt_spec (prt_out), & global%model, global%var_list) call prc_config%record (global) deallocate (prt_in, prt_out) end if if (btest (mode, 1)) then call global%select_model (var_str ("QED")) if (present (procname)) then prc_name = procname(2) else prc_name = "prc_config_b" end if n_components = 1 allocate (prt_in (2), prt_out (2)) prt_in = [var_str ("e+"), var_str ("e-")] prt_out = [var_str ("m+"), var_str ("m-")] call global%set_string (var_str ("$method"),& var_str ("omega"), is_known = .true.) call prc_config%init (prc_name, & size (prt_in), n_components, & global%model, global%var_list) call prc_config%setup_component (1, & new_prt_spec (prt_in), new_prt_spec (prt_out), & global%model, global%var_list) call prc_config%record (global) deallocate (prt_in, prt_out) end if if (btest (mode, 2)) then call global%select_model (var_str ("Test")) if (present (procname)) then prc_name = procname(1) else prc_name = "prc_config_a" end if n_components = 1 allocate (prt_in (1), prt_out (2)) prt_in = [var_str ("s")] prt_out = [var_str ("f"), var_str ("fbar")] call global%set_string (var_str ("$method"),& var_str ("unit_test"), is_known = .true.) call prc_config%init (prc_name, & size (prt_in), n_components, & global%model, global%var_list) call prc_config%setup_component (1, & new_prt_spec (prt_in), new_prt_spec (prt_out), & global%model, global%var_list) call prc_config%record (global) deallocate (prt_in, prt_out) end if end subroutine prepare_test_library @ %def prepare_test_library @ The actual test: the previous procedure with some prelude and postlude. In the global variable list, just before printing we reset the variables where the value may depend on the system and run environment. <>= call test (process_configurations_1, "process_configurations_1", & "test processes", & u, results) <>= public :: process_configurations_1 <>= subroutine process_configurations_1 (u) integer, intent(in) :: u type(rt_data_t), target :: global write (u, "(A)") "* Test output: process_configurations_1" write (u, "(A)") "* Purpose: configure test processes" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) write (u, "(A)") "* Configure processes as prc_test, model Test" write (u, "(A)") "* and omega, model QED" write (u, *) call global%set_int (var_str ("process_num_id"), & 42, is_known = .true.) call prepare_test_library (global, var_str ("prc_config_lib_1"), 3) global%os_data%fc = "Fortran-compiler" global%os_data%fcflags = "Fortran-flags" call global%write_libraries (u) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: process_configurations_1" end subroutine process_configurations_1 @ %def process_configurations_1 @ \subsubsection{\oMega\ options} Slightly extended example where we pass \oMega\ options to the library. The [[prepare_test_library]] contents are spelled out. <>= call test (process_configurations_2, "process_configurations_2", & "omega options", & u, results) <>= public :: process_configurations_2 <>= subroutine process_configurations_2 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(string_t) :: libname type(prclib_entry_t), pointer :: lib type(string_t) :: prc_name type(string_t), dimension(:), allocatable :: prt_in, prt_out integer :: n_components type(process_configuration_t) :: prc_config write (u, "(A)") "* Test output: process_configurations_2" write (u, "(A)") "* Purpose: configure test processes with options" write (u, "(A)") call syntax_model_file_init () call global%global_init () write (u, "(A)") "* Configure processes as omega, model QED" write (u, *) libname = "prc_config_lib_2" allocate (lib) call lib%init (libname) call global%add_prclib (lib) call global%select_model (var_str ("QED")) prc_name = "prc_config_c" n_components = 2 allocate (prt_in (2), prt_out (2)) prt_in = [var_str ("e+"), var_str ("e-")] prt_out = [var_str ("m+"), var_str ("m-")] call global%set_string (var_str ("$method"),& var_str ("omega"), is_known = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call prc_config%init (prc_name, size (prt_in), n_components, & global%model, global%var_list) call global%set_log (var_str ("?report_progress"), & .true., is_known = .true.) call prc_config%setup_component (1, & new_prt_spec (prt_in), new_prt_spec (prt_out), global%model, global%var_list) call global%set_log (var_str ("?report_progress"), & .false., is_known = .true.) call global%set_log (var_str ("?omega_openmp"), & .true., is_known = .true.) call global%set_string (var_str ("$restrictions"),& var_str ("3+4~A"), is_known = .true.) call global%set_string (var_str ("$omega_flags"), & var_str ("-fusion:progress_file omega_prc_config.log"), & is_known = .true.) call prc_config%setup_component (2, & new_prt_spec (prt_in), new_prt_spec (prt_out), global%model, global%var_list) call prc_config%record (global) deallocate (prt_in, prt_out) global%os_data%fc = "Fortran-compiler" global%os_data%fcflags = "Fortran-flags" call global%write_vars (u, [ & var_str ("$model_name"), & var_str ("$method"), & var_str ("?report_progress"), & var_str ("$restrictions"), & var_str ("$omega_flags")]) write (u, "(A)") call global%write_libraries (u) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: process_configurations_2" end subroutine process_configurations_2 @ %def process_configurations_2 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Compilation} This module manages compilation and loading of of process libraries. It is needed as a separate module because integration depends on it. <<[[compilations.f90]]>>= <> module compilations <> use io_units use system_defs, only: TAB use diagnostics use os_interface use variables, only: var_list_t use model_data use process_libraries use prclib_stacks use rt_data <> <> <> <> contains <> end module compilations @ %def compilations @ \subsection{The data type} The compilation item handles the compilation and loading of a single process library. <>= public :: compilation_item_t <>= type :: compilation_item_t private type(string_t) :: libname type(string_t) :: static_external_tag type(process_library_t), pointer :: lib => null () logical :: recompile_library = .false. logical :: verbose = .false. logical :: use_workspace = .false. type(string_t) :: workspace contains <> end type compilation_item_t @ %def compilation_item_t @ Initialize. Set flags and global properties of the library. Establish the workspace name, if defined. <>= procedure :: init => compilation_item_init <>= subroutine compilation_item_init (comp, libname, stack, var_list) class(compilation_item_t), intent(out) :: comp type(string_t), intent(in) :: libname type(prclib_stack_t), intent(inout) :: stack type(var_list_t), intent(in) :: var_list comp%libname = libname comp%lib => stack%get_library_ptr (comp%libname) if (.not. associated (comp%lib)) then call msg_fatal ("Process library '" // char (comp%libname) & // "' has not been declared.") end if comp%recompile_library = & var_list%get_lval (var_str ("?recompile_library")) comp%verbose = & var_list%get_lval (var_str ("?me_verbose")) comp%use_workspace = & var_list%is_known (var_str ("$compile_workspace")) if (comp%use_workspace) then comp%workspace = & var_list%get_sval (var_str ("$compile_workspace")) if (comp%workspace == "") comp%use_workspace = .false. else comp%workspace = "" end if end subroutine compilation_item_init @ %def compilation_item_init @ Compile the current library. The [[force]] flag has the effect that we first delete any previous files, as far as accessible by the current makefile. It also guarantees that previous files not accessible by a makefile will be overwritten. <>= procedure :: compile => compilation_item_compile <>= subroutine compilation_item_compile (comp, model, os_data, force, recompile) class(compilation_item_t), intent(inout) :: comp class(model_data_t), intent(in), target :: model type(os_data_t), intent(in) :: os_data logical, intent(in) :: force, recompile if (associated (comp%lib)) then if (comp%use_workspace) call setup_workspace (comp%workspace, os_data) call msg_message ("Process library '" & // char (comp%libname) // "': compiling ...") call comp%lib%configure (os_data) if (signal_is_pending ()) return call comp%lib%compute_md5sum (model) call comp%lib%write_makefile & (os_data, force, verbose=comp%verbose, workspace=comp%workspace) if (signal_is_pending ()) return if (force) then call comp%lib%clean & (os_data, distclean = .false., workspace=comp%workspace) if (signal_is_pending ()) return end if call comp%lib%write_driver (force, workspace=comp%workspace) if (signal_is_pending ()) return if (recompile) then call comp%lib%load & (os_data, keep_old_source = .true., workspace=comp%workspace) if (signal_is_pending ()) return end if call comp%lib%update_status (os_data, workspace=comp%workspace) end if end subroutine compilation_item_compile @ %def compilation_item_compile @ The workspace directory is created if it does not exist. (Applies only if the use has set the workspace directory.) <>= character(*), parameter :: ALLOWED_IN_DIRNAME = & "abcdefghijklmnopqrstuvwxyz& &ABCDEFGHIJKLMNOPQRSTUVWXYZ& &1234567890& &.,_-+=" @ %def ALLOWED_IN_DIRNAME <>= subroutine setup_workspace (workspace, os_data) type(string_t), intent(in) :: workspace type(os_data_t), intent(in) :: os_data if (verify (workspace, ALLOWED_IN_DIRNAME) == 0) then call msg_message ("Compile: preparing workspace directory '" & // char (workspace) // "'") call os_system_call ("mkdir -p '" // workspace // "'") else call msg_fatal ("compile: workspace name '" & // char (workspace) // "' contains illegal characters") end if end subroutine setup_workspace @ %def setup_workspace @ Load the current library, just after compiling it. <>= procedure :: load => compilation_item_load <>= subroutine compilation_item_load (comp, os_data) class(compilation_item_t), intent(inout) :: comp type(os_data_t), intent(in) :: os_data if (associated (comp%lib)) then call comp%lib%load (os_data, workspace=comp%workspace) end if end subroutine compilation_item_load @ %def compilation_item_load @ Message as a separate call: <>= procedure :: success => compilation_item_success <>= subroutine compilation_item_success (comp) class(compilation_item_t), intent(in) :: comp if (associated (comp%lib)) then call msg_message ("Process library '" // char (comp%libname) & // "': ... success.") else call msg_fatal ("Process library '" // char (comp%libname) & // "': ... failure.") end if end subroutine compilation_item_success @ %def compilation_item_success @ %def compilation_item_failure @ \subsection{API for library compilation and loading} This is a shorthand for compiling and loading a single library. The [[compilation_item]] object is used only internally. The [[global]] data set may actually be local to the caller. The compilation affects the library specified by its name if it is on the stack, but it does not reset the currently selected library. <>= public :: compile_library <>= subroutine compile_library (libname, global) type(string_t), intent(in) :: libname type(rt_data_t), intent(inout), target :: global type(compilation_item_t) :: comp logical :: force, recompile force = & global%var_list%get_lval (var_str ("?rebuild_library")) recompile = & global%var_list%get_lval (var_str ("?recompile_library")) if (associated (global%model)) then call comp%init (libname, global%prclib_stack, global%var_list) call comp%compile (global%model, global%os_data, force, recompile) if (signal_is_pending ()) return call comp%load (global%os_data) if (signal_is_pending ()) return else call msg_fatal ("Process library compilation: " & // " model is undefined.") end if call comp%success () end subroutine compile_library @ %def compile_library @ \subsection{Compiling static executable} This object handles the creation of a static executable which should contain a set of static process libraries. <>= public :: compilation_t <>= type :: compilation_t private type(string_t) :: exe_name type(string_t), dimension(:), allocatable :: lib_name contains <> end type compilation_t @ %def compilation_t @ Output. <>= procedure :: write => compilation_write <>= subroutine compilation_write (object, unit) class(compilation_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) write (u, "(1x,A)") "Compilation object:" write (u, "(3x,3A)") "executable = '", & char (object%exe_name), "'" write (u, "(3x,A)", advance="no") "process libraries =" do i = 1, size (object%lib_name) write (u, "(1x,3A)", advance="no") "'", char (object%lib_name(i)), "'" end do write (u, *) end subroutine compilation_write @ %def compilation_write @ Initialize: we know the names of the executable and of the libraries. Optionally, we may provide a workspace directory. <>= procedure :: init => compilation_init <>= subroutine compilation_init (compilation, exe_name, lib_name) class(compilation_t), intent(out) :: compilation type(string_t), intent(in) :: exe_name type(string_t), dimension(:), intent(in) :: lib_name compilation%exe_name = exe_name allocate (compilation%lib_name (size (lib_name))) compilation%lib_name = lib_name end subroutine compilation_init @ %def compilation_init @ Write the dispatcher subroutine for the compiled libraries. Also write a subroutine which returns the names of the compiled libraries. <>= procedure :: write_dispatcher => compilation_write_dispatcher <>= subroutine compilation_write_dispatcher (compilation) class(compilation_t), intent(in) :: compilation type(string_t) :: file integer :: u, i file = compilation%exe_name // "_prclib_dispatcher.f90" call msg_message ("Static executable '" // char (compilation%exe_name) & // "': writing library dispatcher") u = free_unit () open (u, file = char (file), status="replace", action="write") write (u, "(3A)") "! Whizard: process libraries for executable '", & char (compilation%exe_name), "'" write (u, "(A)") "! Automatically generated file, do not edit" write (u, "(A)") "subroutine dispatch_prclib_static " // & "(driver, basename, modellibs_ldflags)" write (u, "(A)") " use iso_varying_string, string_t => varying_string" write (u, "(A)") " use prclib_interfaces" do i = 1, size (compilation%lib_name) associate (lib_name => compilation%lib_name(i)) write (u, "(A)") " use " // char (lib_name) // "_driver" end associate end do write (u, "(A)") " implicit none" write (u, "(A)") " class(prclib_driver_t), intent(inout), allocatable & &:: driver" write (u, "(A)") " type(string_t), intent(in) :: basename" write (u, "(A)") " logical, intent(in), optional :: " // & "modellibs_ldflags" write (u, "(A)") " select case (char (basename))" do i = 1, size (compilation%lib_name) associate (lib_name => compilation%lib_name(i)) write (u, "(3A)") " case ('", char (lib_name), "')" write (u, "(3A)") " allocate (", char (lib_name), "_driver_t & &:: driver)" end associate end do write (u, "(A)") " end select" write (u, "(A)") "end subroutine dispatch_prclib_static" write (u, *) write (u, "(A)") "subroutine get_prclib_static (libname)" write (u, "(A)") " use iso_varying_string, string_t => varying_string" write (u, "(A)") " implicit none" write (u, "(A)") " type(string_t), dimension(:), intent(inout), & &allocatable :: libname" write (u, "(A,I0,A)") " allocate (libname (", & size (compilation%lib_name), "))" do i = 1, size (compilation%lib_name) associate (lib_name => compilation%lib_name(i)) write (u, "(A,I0,A,A,A)") " libname(", i, ") = '", & char (lib_name), "'" end associate end do write (u, "(A)") "end subroutine get_prclib_static" close (u) end subroutine compilation_write_dispatcher @ %def compilation_write_dispatcher @ Write the Makefile subroutine for the compiled libraries. <>= procedure :: write_makefile => compilation_write_makefile <>= subroutine compilation_write_makefile & (compilation, os_data, ext_libtag, verbose) class(compilation_t), intent(in) :: compilation type(os_data_t), intent(in) :: os_data logical, intent(in) :: verbose type(string_t), intent(in), optional :: ext_libtag type(string_t) :: file, ext_tag integer :: u, i if (present (ext_libtag)) then ext_tag = ext_libtag else ext_tag = "" end if file = compilation%exe_name // ".makefile" call msg_message ("Static executable '" // char (compilation%exe_name) & // "': writing makefile") u = free_unit () open (u, file = char (file), status="replace", action="write") write (u, "(3A)") "# WHIZARD: Makefile for executable '", & char (compilation%exe_name), "'" write (u, "(A)") "# Automatically generated file, do not edit" write (u, "(A)") "" write (u, "(A)") "# Executable name" write (u, "(A)") "EXE = " // char (compilation%exe_name) write (u, "(A)") "" write (u, "(A)") "# Compiler" write (u, "(A)") "FC = " // char (os_data%fc) write (u, "(A)") "" write (u, "(A)") "# Included libraries" write (u, "(A)") "FCINCL = " // char (os_data%whizard_includes) write (u, "(A)") "" write (u, "(A)") "# Compiler flags" write (u, "(A)") "FCFLAGS = " // char (os_data%fcflags) write (u, "(A)") "LDFLAGS = " // char (os_data%ldflags) write (u, "(A)") "LDFLAGS_STATIC = " // char (os_data%ldflags_static) write (u, "(A)") "LDFLAGS_HEPMC = " // char (os_data%ldflags_hepmc) write (u, "(A)") "LDFLAGS_LCIO = " // char (os_data%ldflags_lcio) write (u, "(A)") "LDFLAGS_HOPPET = " // char (os_data%ldflags_hoppet) write (u, "(A)") "LDFLAGS_LOOPTOOLS = " // char (os_data%ldflags_looptools) write (u, "(A)") "LDWHIZARD = " // char (os_data%whizard_ldflags) write (u, "(A)") "" write (u, "(A)") "# Libtool" write (u, "(A)") "LIBTOOL = " // char (os_data%whizard_libtool) if (verbose) then write (u, "(A)") "FCOMPILE = $(LIBTOOL) --tag=FC --mode=compile" write (u, "(A)") "LINK = $(LIBTOOL) --tag=FC --mode=link" else write (u, "(A)") "FCOMPILE = @$(LIBTOOL) --silent --tag=FC --mode=compile" write (u, "(A)") "LINK = @$(LIBTOOL) --silent --tag=FC --mode=link" end if write (u, "(A)") "" write (u, "(A)") "# Compile commands (default)" write (u, "(A)") "LTFCOMPILE = $(FCOMPILE) $(FC) -c $(FCINCL) $(FCFLAGS)" write (u, "(A)") "" write (u, "(A)") "# Default target" write (u, "(A)") "all: link" write (u, "(A)") "" write (u, "(A)") "# Libraries" do i = 1, size (compilation%lib_name) associate (lib_name => compilation%lib_name(i)) write (u, "(A)") "LIBRARIES += " // char (lib_name) // ".la" write (u, "(A)") char (lib_name) // ".la:" write (u, "(A)") TAB // "$(MAKE) -f " // char (lib_name) // ".makefile" end associate end do write (u, "(A)") "" write (u, "(A)") "# Library dispatcher" write (u, "(A)") "DISP = $(EXE)_prclib_dispatcher" write (u, "(A)") "$(DISP).lo: $(DISP).f90 $(LIBRARIES)" if (.not. verbose) then write (u, "(A)") TAB // '@echo " FC " $@' end if write (u, "(A)") TAB // "$(LTFCOMPILE) $<" write (u, "(A)") "" write (u, "(A)") "# Executable" write (u, "(A)") "$(EXE): $(DISP).lo $(LIBRARIES)" if (.not. verbose) then write (u, "(A)") TAB // '@echo " FCLD " $@' end if write (u, "(A)") TAB // "$(LINK) $(FC) -static $(FCFLAGS) \" write (u, "(A)") TAB // " $(LDWHIZARD) $(LDFLAGS) \" write (u, "(A)") TAB // " -o $(EXE) $^ \" write (u, "(A)") TAB // " $(LDFLAGS_HEPMC) $(LDFLAGS_LCIO) $(LDFLAGS_HOPPET) \" write (u, "(A)") TAB // " $(LDFLAGS_LOOPTOOLS) $(LDFLAGS_STATIC)" // char (ext_tag) write (u, "(A)") "" write (u, "(A)") "# Main targets" write (u, "(A)") "link: compile $(EXE)" write (u, "(A)") "compile: $(LIBRARIES) $(DISP).lo" write (u, "(A)") ".PHONY: link compile" write (u, "(A)") "" write (u, "(A)") "# Cleanup targets" write (u, "(A)") "clean-exe:" write (u, "(A)") TAB // "rm -f $(EXE)" write (u, "(A)") "clean-objects:" write (u, "(A)") TAB // "rm -f $(DISP).lo" write (u, "(A)") "clean-source:" write (u, "(A)") TAB // "rm -f $(DISP).f90" write (u, "(A)") "clean-makefile:" write (u, "(A)") TAB // "rm -f $(EXE).makefile" write (u, "(A)") "" write (u, "(A)") "clean: clean-exe clean-objects clean-source" write (u, "(A)") "distclean: clean clean-makefile" write (u, "(A)") ".PHONY: clean distclean" close (u) end subroutine compilation_write_makefile @ %def compilation_write_makefile @ Compile the dispatcher source code. <>= procedure :: make_compile => compilation_make_compile <>= subroutine compilation_make_compile (compilation, os_data) class(compilation_t), intent(in) :: compilation type(os_data_t), intent(in) :: os_data call os_system_call ("make compile " // os_data%makeflags & // " -f " // compilation%exe_name // ".makefile") end subroutine compilation_make_compile @ %def compilation_make_compile @ Link the dispatcher together with all matrix-element code and the \whizard\ and \oMega\ main libraries, to generate a static executable. <>= procedure :: make_link => compilation_make_link <>= subroutine compilation_make_link (compilation, os_data) class(compilation_t), intent(in) :: compilation type(os_data_t), intent(in) :: os_data call os_system_call ("make link " // os_data%makeflags & // " -f " // compilation%exe_name // ".makefile") end subroutine compilation_make_link @ %def compilation_make_link @ Cleanup. <>= procedure :: make_clean_exe => compilation_make_clean_exe <>= subroutine compilation_make_clean_exe (compilation, os_data) class(compilation_t), intent(in) :: compilation type(os_data_t), intent(in) :: os_data call os_system_call ("make clean-exe " // os_data%makeflags & // " -f " // compilation%exe_name // ".makefile") end subroutine compilation_make_clean_exe @ %def compilation_make_clean_exe @ \subsection{API for executable compilation} This is a shorthand for compiling and loading an executable, including the enclosed libraries. The [[compilation]] object is used only internally. The [[global]] data set may actually be local to the caller. The compilation affects the library specified by its name if it is on the stack, but it does not reset the currently selected library. <>= public :: compile_executable <>= subroutine compile_executable (exename, libname, global) type(string_t), intent(in) :: exename type(string_t), dimension(:), intent(in) :: libname type(rt_data_t), intent(inout), target :: global type(compilation_t) :: compilation type(compilation_item_t) :: item type(string_t) :: ext_libtag logical :: force, recompile, verbose integer :: i ext_libtag = "" force = & global%var_list%get_lval (var_str ("?rebuild_library")) recompile = & global%var_list%get_lval (var_str ("?recompile_library")) verbose = & global%var_list%get_lval (var_str ("?me_verbose")) call compilation%init (exename, [libname]) if (signal_is_pending ()) return call compilation%write_dispatcher () if (signal_is_pending ()) return do i = 1, size (libname) call item%init (libname(i), global%prclib_stack, global%var_list) call item%compile (global%model, global%os_data, & force=force, recompile=recompile) ext_libtag = "" // item%lib%get_static_modelname (global%os_data) if (signal_is_pending ()) return call item%success () end do call compilation%write_makefile & (global%os_data, ext_libtag=ext_libtag, verbose=verbose) if (signal_is_pending ()) return call compilation%make_compile (global%os_data) if (signal_is_pending ()) return call compilation%make_link (global%os_data) end subroutine compile_executable @ %def compile_executable @ \subsection{Unit Tests} Test module, followed by the stand-alone unit-test procedures. <<[[compilations_ut.f90]]>>= <> module compilations_ut use unit_tests use compilations_uti <> <> contains <> end module compilations_ut @ %def compilations_ut @ <<[[compilations_uti.f90]]>>= <> module compilations_uti <> use io_units use models use rt_data use process_configurations_ut, only: prepare_test_library use compilations <> <> contains <> end module compilations_uti @ %def compilations_uti @ API: driver for the unit tests below. <>= public :: compilations_test <>= subroutine compilations_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine compilations_test @ %def compilations_test @ \subsubsection{Intrinsic Matrix Element} Compile an intrinsic test matrix element ([[prc_test]] type). Note: In this and the following test, we reset the Fortran compiler and flag variables immediately before they are printed, so the test is portable. <>= call test (compilations_1, "compilations_1", & "intrinsic test processes", & u, results) <>= public :: compilations_1 <>= subroutine compilations_1 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global write (u, "(A)") "* Test output: compilations_1" write (u, "(A)") "* Purpose: configure and compile test process" write (u, "(A)") call syntax_model_file_init () call global%global_init () libname = "compilation_1" procname = "prc_comp_1" call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%write_libraries (u) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: compilations_1" end subroutine compilations_1 @ %def compilations_1 @ \subsubsection{External Matrix Element} Compile an external test matrix element ([[omega]] type) <>= call test (compilations_2, "compilations_2", & "external process (omega)", & u, results) <>= public :: compilations_2 <>= subroutine compilations_2 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global write (u, "(A)") "* Test output: compilations_2" write (u, "(A)") "* Purpose: configure and compile test process" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) libname = "compilation_2" procname = "prc_comp_2" call prepare_test_library (global, libname, 2, [procname,procname]) call compile_library (libname, global) call global%write_libraries (u, libpath = .false.) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: compilations_2" end subroutine compilations_2 @ %def compilations_2 @ \subsubsection{External Matrix Element} Compile an external test matrix element ([[omega]] type) and create driver files for a static executable. <>= call test (compilations_3, "compilations_3", & "static executable: driver", & u, results) <>= public :: compilations_3 <>= subroutine compilations_3 (u) integer, intent(in) :: u type(string_t) :: libname, procname, exename type(rt_data_t), target :: global type(compilation_t) :: compilation integer :: u_file character(80) :: buffer write (u, "(A)") "* Test output: compilations_3" write (u, "(A)") "* Purpose: make static executable" write (u, "(A)") write (u, "(A)") "* Initialize library" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) libname = "compilations_3_lib" procname = "prc_comp_3" exename = "compilations_3" call prepare_test_library (global, libname, 2, [procname,procname]) call compilation%init (exename, [libname]) call compilation%write (u) write (u, "(A)") write (u, "(A)") "* Write dispatcher" write (u, "(A)") call compilation%write_dispatcher () u_file = free_unit () open (u_file, file = char (exename) // "_prclib_dispatcher.f90", & status = "old", action = "read") do read (u_file, "(A)", end = 1) buffer write (u, "(A)") trim (buffer) end do 1 close (u_file) write (u, "(A)") write (u, "(A)") "* Write Makefile" write (u, "(A)") associate (os_data => global%os_data) os_data%fc = "fortran-compiler" os_data%whizard_includes = "my-includes" os_data%fcflags = "my-fcflags" os_data%ldflags = "my-ldflags" os_data%ldflags_static = "my-ldflags-static" os_data%ldflags_hepmc = "my-ldflags-hepmc" os_data%ldflags_lcio = "my-ldflags-lcio" os_data%ldflags_hoppet = "my-ldflags-hoppet" os_data%ldflags_looptools = "my-ldflags-looptools" os_data%whizard_ldflags = "my-ldwhizard" os_data%whizard_libtool = "my-libtool" end associate call compilation%write_makefile (global%os_data, verbose = .true.) open (u_file, file = char (exename) // ".makefile", & status = "old", action = "read") do read (u_file, "(A)", end = 2) buffer write (u, "(A)") trim (buffer) end do 2 close (u_file) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: compilations_3" end subroutine compilations_3 @ %def compilations_3 @ \subsection{Test static build} The tests for building a static executable are separate, since they should be skipped if the \whizard\ build itself has static libraries disabled. <>= public :: compilations_static_test <>= subroutine compilations_static_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine compilations_static_test @ %def compilations_static_test @ \subsubsection{External Matrix Element} Compile an external test matrix element ([[omega]] type) and incorporate this in a new static WHIZARD executable. <>= call test (compilations_static_1, "compilations_static_1", & "static executable: compilation", & u, results) <>= public :: compilations_static_1 <>= subroutine compilations_static_1 (u) integer, intent(in) :: u type(string_t) :: libname, procname, exename type(rt_data_t), target :: global type(compilation_item_t) :: item type(compilation_t) :: compilation logical :: exist write (u, "(A)") "* Test output: compilations_static_1" write (u, "(A)") "* Purpose: make static executable" write (u, "(A)") write (u, "(A)") "* Initialize library" call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) libname = "compilations_static_1_lib" procname = "prc_comp_stat_1" exename = "compilations_static_1" call prepare_test_library (global, libname, 2, [procname,procname]) call compilation%init (exename, [libname]) write (u, "(A)") write (u, "(A)") "* Write dispatcher" call compilation%write_dispatcher () write (u, "(A)") write (u, "(A)") "* Write Makefile" call compilation%write_makefile (global%os_data, verbose = .true.) write (u, "(A)") write (u, "(A)") "* Build libraries" call item%init (libname, global%prclib_stack, global%var_list) call item%compile & (global%model, global%os_data, force=.true., recompile=.false.) call item%success () write (u, "(A)") write (u, "(A)") "* Check executable (should be absent)" write (u, "(A)") call compilation%make_clean_exe (global%os_data) inquire (file = char (exename), exist = exist) write (u, "(A,A,L1)") char (exename), " exists = ", exist write (u, "(A)") write (u, "(A)") "* Build executable" write (u, "(A)") call compilation%make_compile (global%os_data) call compilation%make_link (global%os_data) write (u, "(A)") "* Check executable (should be present)" write (u, "(A)") inquire (file = char (exename), exist = exist) write (u, "(A,A,L1)") char (exename), " exists = ", exist write (u, "(A)") write (u, "(A)") "* Cleanup" call compilation%make_clean_exe (global%os_data) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: compilations_static_1" end subroutine compilations_static_1 @ %def compilations_static_1 @ \subsubsection{External Matrix Element} Compile an external test matrix element ([[omega]] type) and incorporate this in a new static WHIZARD executable. In this version, we use the wrapper [[compile_executable]] procedure. <>= call test (compilations_static_2, "compilations_static_2", & "static executable: shortcut", & u, results) <>= public :: compilations_static_2 <>= subroutine compilations_static_2 (u) integer, intent(in) :: u type(string_t) :: libname, procname, exename type(rt_data_t), target :: global logical :: exist integer :: u_file write (u, "(A)") "* Test output: compilations_static_2" write (u, "(A)") "* Purpose: make static executable" write (u, "(A)") write (u, "(A)") "* Initialize library and compile" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) libname = "compilations_static_2_lib" procname = "prc_comp_stat_2" exename = "compilations_static_2" call prepare_test_library (global, libname, 2, [procname,procname]) call compile_executable (exename, [libname], global) write (u, "(A)") "* Check executable (should be present)" write (u, "(A)") inquire (file = char (exename), exist = exist) write (u, "(A,A,L1)") char (exename), " exists = ", exist write (u, "(A)") write (u, "(A)") "* Cleanup" u_file = free_unit () open (u_file, file = char (exename), status = "old", action = "write") close (u_file, status = "delete") call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: compilations_static_2" end subroutine compilations_static_2 @ %def compilations_static_2 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Integration} This module manages phase space setup, matrix-element evaluation and integration, as far as it is not done by lower-level routines, in particular in the [[processes]] module. <<[[integrations.f90]]>>= <> module integrations <> <> <> use io_units use diagnostics use os_interface use cputime use sm_qcd use physics_defs use model_data use pdg_arrays use variables, only: var_list_t use eval_trees use sf_mappings use sf_base use phs_base use rng_base use mci_base use process_libraries use prc_core use process_config, only: COMP_MASTER, COMP_REAL_FIN, & COMP_MISMATCH, COMP_PDF, COMP_REAL, COMP_SUB, COMP_VIRT, & COMP_REAL_SING use process use pcm_base, only: pcm_t use instances use process_stacks use models use iterations use rt_data use dispatch_me_methods, only: dispatch_core use dispatch_beams, only: dispatch_qcd, sf_prop_t, dispatch_sf_config use dispatch_phase_space, only: dispatch_sf_channels use dispatch_phase_space, only: dispatch_phs use dispatch_mci, only: dispatch_mci_s, setup_grid_path use dispatch_transforms, only: dispatch_evt_shower_hook use compilations, only: compile_library use dispatch_fks, only: dispatch_fks_s use nlo_data <> <> <> <> contains <> end module integrations @ %def integrations @ \subsection{The integration type} This type holds all relevant data, the integration methods operates on this. In contrast to the [[simulation_t]] introduced later, the [[integration_t]] applies to a single process. <>= public :: integration_t <>= type :: integration_t private type(string_t) :: process_id type(string_t) :: run_id type(process_t), pointer :: process => null () logical :: rebuild_phs = .false. logical :: ignore_phs_mismatch = .false. logical :: phs_only = .false. logical :: process_has_me = .true. integer :: n_calls_test = 0 logical :: vis_history = .true. type(string_t) :: history_filename type(string_t) :: log_filename type(helicity_selection_t) :: helicity_selection logical :: use_color_factors = .false. logical :: has_beam_pol = .false. logical :: combined_integration = .false. type(iteration_multipliers_t) :: iteration_multipliers type(nlo_settings_t) :: nlo_settings contains <> end type integration_t @ %def integration_t @ @ \subsection{Initialization} Initialization, first part: Create a process entry. Push it on the stack if the [[global]] environment is supplied. <>= procedure :: create_process => integration_create_process <>= subroutine integration_create_process (intg, process_id, global) class(integration_t), intent(out) :: intg type(rt_data_t), intent(inout), optional, target :: global type(string_t), intent(in) :: process_id type(process_entry_t), pointer :: process_entry if (debug_on) call msg_debug (D_CORE, "integration_create_process") intg%process_id = process_id if (present (global)) then allocate (process_entry) intg%process => process_entry%process_t call global%process_stack%push (process_entry) else allocate (process_t :: intg%process) end if end subroutine integration_create_process @ %def integration_create_process @ Initialization, second part: Initialize the process object, using the local environment. We allocate a RNG factory and a QCD object. We also fetch a pointer to the model that the process uses. The process initializer will create a snapshot of that model. This procedure does not modify the [[local]] stack directly. The intent(inout) attribute for the [[local]] data set is due to the random generator seed which may be incremented during initialization. NOTE: Changes to model parameters within the current context are respected only if the process model coincides with the current model. This is the usual case. If not, we read the model from the global model library, which has default parameters. To become more flexible, we should implement a local model library which records local changes to currently inactive models. <>= procedure :: init_process => integration_init_process <>= subroutine integration_init_process (intg, local) class(integration_t), intent(inout) :: intg type(rt_data_t), intent(inout), target :: local type(string_t) :: model_name type(model_t), pointer :: model class(model_data_t), pointer :: model_instance type(var_list_t), pointer :: var_list if (debug_on) call msg_debug (D_CORE, "integration_init_process") if (.not. local%prclib%contains (intg%process_id)) then call msg_fatal ("Process '" // char (intg%process_id) // "' not found" & // " in library '" // char (local%prclib%get_name ()) // "'") return end if model_name = local%prclib%get_model_name (intg%process_id) if (local%get_sval (var_str ("$model_name")) == model_name) then model => local%model else model => local%model_list%get_model_ptr (model_name) end if var_list => local%get_var_list_ptr () call intg%process%init (intg%process_id, & local%prclib, & local%os_data, & model, & var_list, & local%beam_structure) intg%run_id = intg%process%get_run_id () end subroutine integration_init_process @ %def integration_init_process @ Initialization, third part: complete process configuration. <>= procedure :: setup_process => integration_setup_process <>= subroutine integration_setup_process (intg, local, verbose, init_only) class(integration_t), intent(inout) :: intg type(rt_data_t), intent(inout), target :: local logical, intent(in), optional :: verbose logical, intent(in), optional :: init_only type(var_list_t), pointer :: var_list class(mci_t), allocatable :: mci_template type(sf_config_t), dimension(:), allocatable :: sf_config type(sf_prop_t) :: sf_prop type(sf_channel_t), dimension(:), allocatable :: sf_channel type(phs_channel_collection_t) :: phs_channel_collection logical :: sf_trace logical :: verb, initialize_only type(string_t) :: sf_string type(string_t) :: workspace verb = .true.; if (present (verbose)) verb = verbose initialize_only = .false. if (present (init_only)) initialize_only = init_only call display_init_message (verb) var_list => local%get_var_list_ptr () call setup_log_and_history () associate (process => intg%process) call set_intg_parameters (process) call process%setup_cores (dispatch_core, & intg%helicity_selection, intg%use_color_factors, intg%has_beam_pol) call process%init_phs_config () call process%init_components () call process%record_inactive_components () intg%process_has_me = process%has_matrix_element () if (.not. intg%process_has_me) then call msg_warning ("Process '" & // char (intg%process_id) // "': matrix element vanishes") end if call setup_beams () call setup_structure_functions () workspace = var_list%get_sval (var_str ("$integrate_workspace")) if (workspace == "") then call process%configure_phs & (intg%rebuild_phs, & intg%ignore_phs_mismatch, & intg%combined_integration) else call setup_grid_path (workspace) call process%configure_phs & (intg%rebuild_phs, & intg%ignore_phs_mismatch, & intg%combined_integration, & workspace) end if call process%complete_pcm_setup () call process%prepare_blha_cores () call process%create_blha_interface () call process%prepare_any_external_code () call process%setup_terms (with_beams = intg%has_beam_pol) call process%check_masses () if (verb) then call process%write (screen = .true.) call process%print_phs_startup_message () end if if (intg%process_has_me) then if (size (sf_config) > 0) then call process%collect_channels (phs_channel_collection) else if (.not. initialize_only & .and. process%contains_trivial_component ()) then call msg_fatal ("Integrate: 2 -> 1 process can't be handled & &with fixed-energy beams") end if call dispatch_sf_channels & (sf_channel, sf_string, sf_prop, phs_channel_collection, & local%var_list, local%get_sqrts(), local%beam_structure) if (allocated (sf_channel)) then if (size (sf_channel) > 0) then call process%set_sf_channel (sf_channel) end if end if call phs_channel_collection%final () if (verb) call process%sf_startup_message (sf_string) end if call process%setup_mci (dispatch_mci_s) call setup_expressions () call process%compute_md5sum () end associate contains subroutine setup_log_and_history () if (intg%run_id /= "") then intg%history_filename = intg%process_id // "." // intg%run_id & // ".history" intg%log_filename = intg%process_id // "." // intg%run_id // ".log" else intg%history_filename = intg%process_id // ".history" intg%log_filename = intg%process_id // ".log" end if intg%vis_history = & var_list%get_lval (var_str ("?vis_history")) end subroutine setup_log_and_history subroutine set_intg_parameters (process) type(process_t), intent(in) :: process intg%n_calls_test = & var_list%get_ival (var_str ("n_calls_test")) intg%combined_integration = & var_list%get_lval (var_str ('?combined_nlo_integration')) & .and. process%is_nlo_calculation () intg%use_color_factors = & var_list%get_lval (var_str ("?read_color_factors")) intg%has_beam_pol = & local%beam_structure%has_polarized_beams () intg%helicity_selection = & local%get_helicity_selection () intg%rebuild_phs = & var_list%get_lval (var_str ("?rebuild_phase_space")) intg%ignore_phs_mismatch = & .not. var_list%get_lval (var_str ("?check_phs_file")) intg%phs_only = & var_list%get_lval (var_str ("?phs_only")) end subroutine set_intg_parameters subroutine display_init_message (verb) logical, intent(in) :: verb if (verb) then call msg_message ("Initializing integration for process " & // char (intg%process_id) // ":") if (intg%run_id /= "") & call msg_message ("Run ID = " // '"' // char (intg%run_id) // '"') end if end subroutine display_init_message subroutine setup_beams () real(default) :: sqrts logical :: decay_rest_frame sqrts = local%get_sqrts () decay_rest_frame = & var_list%get_lval (var_str ("?decay_rest_frame")) if (intg%process_has_me) then call intg%process%setup_beams_beam_structure & (local%beam_structure, sqrts, decay_rest_frame) end if if (verb .and. intg%process_has_me) then call intg%process%beams_startup_message & (beam_structure = local%beam_structure) end if end subroutine setup_beams subroutine setup_structure_functions () integer :: n_in type(pdg_array_t), dimension(:,:), allocatable :: pdg_prc type(string_t) :: sf_trace_file if (intg%process_has_me) then call intg%process%get_pdg_in (pdg_prc) else n_in = intg%process%get_n_in () allocate (pdg_prc (n_in, intg%process%get_n_components ())) pdg_prc = 0 end if call dispatch_sf_config (sf_config, sf_prop, local%beam_structure, & local%get_var_list_ptr (), local%var_list, & local%model, local%os_data, local%get_sqrts (), pdg_prc) sf_trace = & var_list%get_lval (var_str ("?sf_trace")) sf_trace_file = & var_list%get_sval (var_str ("$sf_trace_file")) if (sf_trace) then call intg%process%init_sf_chain (sf_config, sf_trace_file) else call intg%process%init_sf_chain (sf_config) end if end subroutine setup_structure_functions subroutine setup_expressions () type(eval_tree_factory_t) :: expr_factory if (associated (local%pn%cuts_lexpr)) then if (verb) call msg_message ("Applying user-defined cuts.") call expr_factory%init (local%pn%cuts_lexpr) call intg%process%set_cuts (expr_factory) else if (verb) call msg_warning ("No cuts have been defined.") end if if (associated (local%pn%scale_expr)) then if (verb) call msg_message ("Using user-defined general scale.") call expr_factory%init (local%pn%scale_expr) call intg%process%set_scale (expr_factory) end if if (associated (local%pn%fac_scale_expr)) then if (verb) call msg_message ("Using user-defined factorization scale.") call expr_factory%init (local%pn%fac_scale_expr) call intg%process%set_fac_scale (expr_factory) end if if (associated (local%pn%ren_scale_expr)) then if (verb) call msg_message ("Using user-defined renormalization scale.") call expr_factory%init (local%pn%ren_scale_expr) call intg%process%set_ren_scale (expr_factory) end if if (associated (local%pn%weight_expr)) then if (verb) call msg_message ("Using user-defined reweighting factor.") call expr_factory%init (local%pn%weight_expr) call intg%process%set_weight (expr_factory) end if end subroutine setup_expressions end subroutine integration_setup_process @ %def integration_setup_process @ \subsection{Integration} Integrate: do the final integration. Here, we do a multi-iteration integration. Again, we skip iterations that are already on file. Record the results in the global variable list. <>= procedure :: evaluate => integration_evaluate <>= subroutine integration_evaluate & (intg, process_instance, i_mci, pass, it_list, pacify) class(integration_t), intent(inout) :: intg type(process_instance_t), intent(inout), target :: process_instance integer, intent(in) :: i_mci integer, intent(in) :: pass type(iterations_list_t), intent(in) :: it_list logical, intent(in), optional :: pacify integer :: n_calls, n_it logical :: adapt_grids, adapt_weights, final n_it = it_list%get_n_it (pass) n_calls = it_list%get_n_calls (pass) adapt_grids = it_list%adapt_grids (pass) adapt_weights = it_list%adapt_weights (pass) final = pass == it_list%get_n_pass () call process_instance%integrate ( & i_mci, n_it, n_calls, adapt_grids, adapt_weights, & final, pacify) end subroutine integration_evaluate @ %def integration_evaluate @ In case the user has not provided a list of iterations, make a reasonable default. This can depend on the process. The usual approach is to define two distinct passes, one for adaptation and one for integration. <>= procedure :: make_iterations_list => integration_make_iterations_list <>= subroutine integration_make_iterations_list (intg, it_list) class(integration_t), intent(in) :: intg type(iterations_list_t), intent(out) :: it_list integer :: pass, n_pass integer, dimension(:), allocatable :: n_it, n_calls logical, dimension(:), allocatable :: adapt_grids, adapt_weights n_pass = intg%process%get_n_pass_default () allocate (n_it (n_pass), n_calls (n_pass)) allocate (adapt_grids (n_pass), adapt_weights (n_pass)) do pass = 1, n_pass n_it(pass) = intg%process%get_n_it_default (pass) n_calls(pass) = intg%process%get_n_calls_default (pass) adapt_grids(pass) = intg%process%adapt_grids_default (pass) adapt_weights(pass) = intg%process%adapt_weights_default (pass) end do call it_list%init (n_it, n_calls, & adapt_grids = adapt_grids, adapt_weights = adapt_weights) end subroutine integration_make_iterations_list @ %def integration_make_iterations_list @ In NLO calculations, the individual components might scale very differently with the number of calls. This especially applies to the real-subtracted component, which usually fluctuates more than the Born and virtual component, making it a bottleneck of the calculation. Thus, the calculation is throttled twice, first by the number of calls for the real component, second by the number of surplus calls of computation-intense virtual matrix elements. Therefore, we want to set a different number of calls for each component, which is done by the subroutine [[integration_apply_call_multipliers]]. <>= procedure :: init_iteration_multipliers => integration_init_iteration_multipliers <>= subroutine integration_init_iteration_multipliers (intg, local) class(integration_t), intent(inout) :: intg type(rt_data_t), intent(in) :: local integer :: n_pass, pass type(iterations_list_t) :: it_list n_pass = local%it_list%get_n_pass () if (n_pass == 0) then call intg%make_iterations_list (it_list) n_pass = it_list%get_n_pass () end if associate (it_multipliers => intg%iteration_multipliers) allocate (it_multipliers%n_calls0 (n_pass)) do pass = 1, n_pass it_multipliers%n_calls0(pass) = local%it_list%get_n_calls (pass) end do it_multipliers%mult_real = local%var_list%get_rval & (var_str ("mult_call_real")) it_multipliers%mult_virt = local%var_list%get_rval & (var_str ("mult_call_virt")) it_multipliers%mult_dglap = local%var_list%get_rval & (var_str ("mult_call_dglap")) end associate end subroutine integration_init_iteration_multipliers @ %def integration_init_iteration_multipliers @ <>= procedure :: apply_call_multipliers => integration_apply_call_multipliers <>= subroutine integration_apply_call_multipliers (intg, n_pass, i_component, it_list) class(integration_t), intent(in) :: intg integer, intent(in) :: n_pass, i_component type(iterations_list_t), intent(inout) :: it_list integer :: nlo_type integer :: n_calls0, n_calls integer :: pass real(default) :: multiplier nlo_type = intg%process%get_component_nlo_type (i_component) do pass = 1, n_pass associate (multipliers => intg%iteration_multipliers) select case (nlo_type) case (NLO_REAL) multiplier = multipliers%mult_real case (NLO_VIRTUAL) multiplier = multipliers%mult_virt case (NLO_DGLAP) multiplier = multipliers%mult_dglap case default return end select end associate if (n_pass <= size (intg%iteration_multipliers%n_calls0)) then n_calls0 = intg%iteration_multipliers%n_calls0 (pass) n_calls = floor (multiplier * n_calls0) call it_list%set_n_calls (pass, n_calls) end if end do end subroutine integration_apply_call_multipliers @ %def integration_apply_call_multipliers @ \subsection{API for integration objects} This initializer does everything except assigning cuts/scale/weight expressions. <>= procedure :: init => integration_init <>= subroutine integration_init & (intg, process_id, local, global, local_stack, init_only) class(integration_t), intent(out) :: intg type(string_t), intent(in) :: process_id type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global logical, intent(in), optional :: init_only logical, intent(in), optional :: local_stack logical :: use_local use_local = .false.; if (present (local_stack)) use_local = local_stack if (present (global)) then call intg%create_process (process_id, global) else if (use_local) then call intg%create_process (process_id, local) else call intg%create_process (process_id) end if call intg%init_process (local) call intg%setup_process (local, init_only = init_only) call intg%init_iteration_multipliers (local) end subroutine integration_init @ %def integration_init @ Do the integration for a single process, both warmup and final evaluation. The [[eff_reset]] flag is to suppress numerical noise in the graphical output of the integration history. <>= procedure :: integrate => integration_integrate <>= subroutine integration_integrate (intg, local, eff_reset) class(integration_t), intent(inout) :: intg type(rt_data_t), intent(in), target :: local logical, intent(in), optional :: eff_reset type(string_t) :: log_filename type(var_list_t), pointer :: var_list type(process_instance_t), allocatable, target :: process_instance type(iterations_list_t) :: it_list logical :: pacify integer :: pass, i_mci, n_mci, n_pass integer :: i_component integer :: nlo_type logical :: display_summed logical :: nlo_active type(string_t) :: component_output allocate (process_instance) call process_instance%init (intg%process) var_list => intg%process%get_var_list_ptr () call openmp_set_num_threads_verbose & (var_list%get_ival (var_str ("openmp_num_threads")), & var_list%get_lval (var_str ("?openmp_logging"))) pacify = var_list%get_lval (var_str ("?pacify")) display_summed = .true. n_mci = intg%process%get_n_mci () if (n_mci == 1) then write (msg_buffer, "(A,A,A)") & "Starting integration for process '", & char (intg%process%get_id ()), "'" call msg_message () end if call setup_hooks () nlo_active = any (intg%process%get_component_nlo_type & ([(i_mci, i_mci = 1, n_mci)]) /= BORN) do i_mci = 1, n_mci i_component = intg%process%get_master_component (i_mci) nlo_type = intg%process%get_component_nlo_type (i_component) if (intg%process%component_can_be_integrated (i_component)) then if (n_mci > 1) then if (nlo_active) then if (intg%combined_integration .and. nlo_type == BORN) then component_output = var_str ("Combined") else component_output = component_status (nlo_type) end if write (msg_buffer, "(A,A,A,A,A)") & "Starting integration for process '", & char (intg%process%get_id ()), "' part '", & char (component_output), "'" else write (msg_buffer, "(A,A,A,I0)") & "Starting integration for process '", & char (intg%process%get_id ()), "' part ", i_mci end if call msg_message () end if n_pass = local%it_list%get_n_pass () if (n_pass == 0) then call msg_message ("Integrate: iterations not specified, & &using default") call intg%make_iterations_list (it_list) n_pass = it_list%get_n_pass () else it_list = local%it_list end if call intg%apply_call_multipliers (n_pass, i_mci, it_list) call msg_message ("Integrate: " // char (it_list%to_string ())) do pass = 1, n_pass call intg%evaluate (process_instance, i_mci, pass, it_list, pacify) if (signal_is_pending ()) return end do call intg%process%final_integration (i_mci) if (intg%vis_history) then call intg%process%display_integration_history & (i_mci, intg%history_filename, local%os_data, eff_reset) end if if (local%logfile == intg%log_filename) then if (intg%run_id /= "") then log_filename = intg%process_id // "." // intg%run_id // & ".var.log" else log_filename = intg%process_id // ".var.log" end if call msg_message ("Name clash for global logfile and process log: ", & arr =[var_str ("| Renaming log file from ") // local%logfile, & var_str ("| to ") // log_filename // var_str (" .")]) else log_filename = intg%log_filename end if call intg%process%write_logfile (i_mci, log_filename) end if end do if (n_mci > 1 .and. display_summed) then call msg_message ("Integrate: sum of all components") call intg%process%display_summed_results (pacify) end if call process_instance%final () deallocate (process_instance) contains subroutine setup_hooks () class(process_instance_hook_t), pointer :: hook call dispatch_evt_shower_hook (hook, var_list, process_instance) if (associated (hook)) then call process_instance%append_after_hook (hook) end if end subroutine setup_hooks end subroutine integration_integrate @ %def integration_integrate @ Do a dummy integration for a process which could not be initialized (e.g., has no matrix element). The result is zero. <>= procedure :: integrate_dummy => integration_integrate_dummy <>= subroutine integration_integrate_dummy (intg) class(integration_t), intent(inout) :: intg call intg%process%integrate_dummy () end subroutine integration_integrate_dummy @ %def integration_integrate_dummy @ Just sample the matrix element under realistic conditions (but no cuts); throw away the results. <>= procedure :: sampler_test => integration_sampler_test <>= subroutine integration_sampler_test (intg) class(integration_t), intent(inout) :: intg type(process_instance_t), allocatable, target :: process_instance integer :: n_mci, i_mci type(timer_t) :: timer_mci, timer_tot real(default) :: t_mci, t_tot allocate (process_instance) call process_instance%init (intg%process) n_mci = intg%process%get_n_mci () if (n_mci == 1) then write (msg_buffer, "(A,A,A)") & "Test: probing process '", & char (intg%process%get_id ()), "'" call msg_message () end if call timer_tot%start () do i_mci = 1, n_mci if (n_mci > 1) then write (msg_buffer, "(A,A,A,I0)") & "Test: probing process '", & char (intg%process%get_id ()), "' part ", i_mci call msg_message () end if call timer_mci%start () call process_instance%sampler_test (i_mci, intg%n_calls_test) call timer_mci%stop () t_mci = timer_mci write (msg_buffer, "(A,ES12.5)") "Test: " & // "time in seconds (wallclock): ", t_mci call msg_message () end do call timer_tot%stop () t_tot = timer_tot if (n_mci > 1) then write (msg_buffer, "(A,ES12.5)") "Test: " & // "total time (wallclock): ", t_tot call msg_message () end if call process_instance%final () end subroutine integration_sampler_test @ %def integration_sampler_test @ Return the process pointer (needed by simulate): <>= procedure :: get_process_ptr => integration_get_process_ptr <>= function integration_get_process_ptr (intg) result (ptr) class(integration_t), intent(in) :: intg type(process_t), pointer :: ptr ptr => intg%process end function integration_get_process_ptr @ %def integration_get_process_ptr @ Simply integrate, do a dummy integration if necessary. The [[integration]] object exists only internally. If the [[global]] environment is provided, the process object is appended to the global stack. Otherwise, if [[local_stack]] is set, we append to the local process stack. If this is unset, the [[process]] object is not recorded permanently. The [[init_only]] flag can be used to skip the actual integration part. We will end up with a process object that is completely initialized, including phase space configuration. The [[eff_reset]] flag is to suppress numerical noise in the visualization of the integration history. <>= public :: integrate_process <>= subroutine integrate_process (process_id, local, global, local_stack, init_only, eff_reset) type(string_t), intent(in) :: process_id type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global logical, intent(in), optional :: local_stack, init_only, eff_reset type(string_t) :: prclib_name type(integration_t) :: intg character(32) :: buffer <> <> if (.not. associated (local%prclib)) then call msg_fatal ("Integrate: current process library is undefined") return end if if (.not. local%prclib%is_active ()) then call msg_message ("Integrate: current process library needs compilation") prclib_name = local%prclib%get_name () call compile_library (prclib_name, local) if (signal_is_pending ()) return call msg_message ("Integrate: compilation done") end if call intg%init (process_id, local, global, local_stack, init_only) if (signal_is_pending ()) return if (present (init_only)) then if (init_only) return end if if (intg%n_calls_test > 0) then write (buffer, "(I0)") intg%n_calls_test call msg_message ("Integrate: test (" // trim (buffer) // " calls) ...") call intg%sampler_test () call msg_message ("Integrate: ... test complete.") if (signal_is_pending ()) return end if <> if (intg%phs_only) then call msg_message ("Integrate: phase space only, skipping integration") else if (intg%process_has_me) then call intg%integrate (local, eff_reset) else call intg%integrate_dummy () end if end if end subroutine integrate_process @ %def integrate_process <>= @ <>= @ <>= @ @ The parallelization leads to undefined behavior while writing simultaneously to one file. The master worker has to initialize single-handed the corresponding library files and the phase space file. The slave worker will wait with a blocking [[MPI_BCAST]] until they receive a logical flag. <>= type(var_list_t), pointer :: var_list logical :: mpi_logging, process_init integer :: rank, n_size <>= if (debug_on) call msg_debug (D_MPI, "integrate_process") var_list => local%get_var_list_ptr () process_init = .false. call mpi_get_comm_id (n_size, rank) mpi_logging = (("vamp2" == char (var_list%get_sval (var_str ("$integration_method"))) .and. & & (n_size > 1)) .or. var_list%get_lval (var_str ("?mpi_logging"))) if (debug_on) call msg_debug (D_MPI, "n_size", rank) if (debug_on) call msg_debug (D_MPI, "rank", rank) if (debug_on) call msg_debug (D_MPI, "mpi_logging", mpi_logging) if (rank /= 0) then if (mpi_logging) then call msg_message ("MPI: wait for master to finish process initialization ...") end if call MPI_bcast (process_init, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD) else process_init = .true. end if if (process_init) then <>= if (rank == 0) then if (mpi_logging) then call msg_message ("MPI: finish process initialization, load slaves ...") end if call MPI_bcast (process_init, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD) end if end if call MPI_barrier (MPI_COMM_WORLD) call mpi_set_logging (mpi_logging) @ %def integrate_process_mpi @ \subsection{Unit Tests} Test module, followed by the stand-alone unit-test procedures. <<[[integrations_ut.f90]]>>= <> module integrations_ut use unit_tests use integrations_uti <> <> contains <> end module integrations_ut @ %def integrations_ut @ <<[[integrations_uti.f90]]>>= <> module integrations_uti <> <> use io_units use ifiles use lexers use parser use io_units use flavors use interactions, only: reset_interaction_counter use phs_forests use eval_trees use models use rt_data use process_configurations_ut, only: prepare_test_library use compilations, only: compile_library use integrations use phs_wood_ut, only: write_test_phs_file <> <> contains <> end module integrations_uti @ %def integrations_uti @ API: driver for the unit tests below. <>= public :: integrations_test <>= subroutine integrations_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine integrations_test @ %def integrations_test @ <>= public :: integrations_history_test <>= subroutine integrations_history_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine integrations_history_test @ %def integrations_history_test @ \subsubsection{Integration of test process} Compile and integrate an intrinsic test matrix element ([[prc_test]] type). The phase-space implementation is [[phs_single]] (single-particle phase space), the integrator is [[mci_midpoint]]. The cross section for the $2\to 2$ process $ss\to ss$ with its constant matrix element is given by \begin{equation} \sigma = c\times f\times \Phi_2 \times |M|^2. \end{equation} $c$ is the conversion constant \begin{equation} c = 0.3894\times 10^{12}\;\mathrm{fb}\,\mathrm{GeV}^2. \end{equation} $f$ is the flux of the incoming particles with mass $m=125\,\mathrm{GeV}$ and energy $\sqrt{s}=1000\,\mathrm{GeV}$ \begin{equation} f = \frac{(2\pi)^4}{2\lambda^{1/2}(s,m^2,m^2)} = \frac{(2\pi)^4}{2\sqrt{s}\,\sqrt{s - 4m^2}} = 8.048\times 10^{-4}\;\mathrm{GeV}^{-2} \end{equation} $\Phi_2$ is the volume of the two-particle phase space \begin{equation} \Phi_2 = \frac{1}{4(2\pi)^5} = 2.5529\times 10^{-5}. \end{equation} The squared matrix element $|M|^2$ is unity. Combining everything, we obtain \begin{equation} \sigma = 8000\;\mathrm{fb} \end{equation} This number should appear as the final result. Note: In this and the following test, we reset the Fortran compiler and flag variables immediately before they are printed, so the test is portable. <>= call test (integrations_1, "integrations_1", & "intrinsic test process", & u, results) <>= public :: integrations_1 <>= subroutine integrations_1 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global write (u, "(A)") "* Test output: integrations_1" write (u, "(A)") "* Purpose: integrate test process" write (u, "(A)") call syntax_model_file_init () call global%global_init () libname = "integration_1" procname = "prc_config_a" call prepare_test_library (global, libname, 1) call compile_library (libname, global) call global%set_string (var_str ("$run_id"), & var_str ("integrations1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%write (u, vars = [ & var_str ("$method"), & var_str ("sqrts"), & var_str ("$integration_method"), & var_str ("$phs_method"), & var_str ("$run_id")]) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_1" end subroutine integrations_1 @ %def integrations_1 @ \subsubsection{Integration with cuts} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) with cuts set. <>= call test (integrations_2, "integrations_2", & "intrinsic test process with cut", & u, results) <>= public :: integrations_2 <>= subroutine integrations_2 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global type(string_t) :: cut_expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: parse_tree type(string_t), dimension(0) :: empty_string_array write (u, "(A)") "* Test output: integrations_2" write (u, "(A)") "* Purpose: integrate test process with cut" write (u, "(A)") call syntax_model_file_init () call global%global_init () write (u, "(A)") "* Prepare a cut expression" write (u, "(A)") call syntax_pexpr_init () cut_expr_text = "all Pt > 100 [s]" call ifile_append (ifile, cut_expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (parse_tree, stream, .true.) global%pn%cuts_lexpr => parse_tree%get_root_ptr () write (u, "(A)") "* Build and initialize a test process" write (u, "(A)") libname = "integration_3" procname = "prc_config_a" call prepare_test_library (global, libname, 1) call compile_library (libname, global) call global%set_string (var_str ("$run_id"), & var_str ("integrations1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%write (u, vars = empty_string_array) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_2" end subroutine integrations_2 @ %def integrations_2 @ \subsubsection{Standard phase space} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) using the default ([[phs_wood]]) phase-space implementation. We use an explicit phase-space configuration file with a single channel and integrate by [[mci_midpoint]]. <>= call test (integrations_3, "integrations_3", & "standard phase space", & u, results) <>= public :: integrations_3 <>= subroutine integrations_3 (u) <> <> use interactions, only: reset_interaction_counter use models use rt_data use process_configurations_ut, only: prepare_test_library use compilations, only: compile_library use integrations implicit none integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global integer :: u_phs write (u, "(A)") "* Test output: integrations_3" write (u, "(A)") "* Purpose: integrate test process" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () libname = "integration_3" procname = "prc_config_a" call prepare_test_library (global, libname, 1) call compile_library (libname, global) call global%set_string (var_str ("$run_id"), & var_str ("integrations1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("default"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?phs_s_mapping"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) write (u, "(A)") "* Create a scratch phase-space file" write (u, "(A)") u_phs = free_unit () open (u_phs, file = "integrations_3.phs", & status = "replace", action = "write") call write_test_phs_file (u_phs, var_str ("prc_config_a_i1")) close (u_phs) call global%set_string (var_str ("$phs_file"),& var_str ("integrations_3.phs"), is_known = .true.) call global%it_list%init ([1], [1000]) write (u, "(A)") "* Integrate" write (u, "(A)") call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%write (u, vars = [ & var_str ("$phs_method"), & var_str ("$phs_file")]) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_3" end subroutine integrations_3 @ %def integrations_3 @ \subsubsection{VAMP integration} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) using the single-channel ([[phs_single]]) phase-space implementation. The integration method is [[vamp]]. <>= call test (integrations_4, "integrations_4", & "VAMP integration (one iteration)", & u, results) <>= public :: integrations_4 <>= subroutine integrations_4 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global write (u, "(A)") "* Test output: integrations_4" write (u, "(A)") "* Purpose: integrate test process using VAMP" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call global%global_init () libname = "integrations_4_lib" procname = "integrations_4" call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .false., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) write (u, "(A)") "* Integrate" write (u, "(A)") call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%pacify (efficiency_reset = .true., error_reset = .true.) call global%write (u, vars = [var_str ("$integration_method")], & pacify = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_4" end subroutine integrations_4 @ %def integrations_4 @ \subsubsection{Multiple iterations integration} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) using the single-channel ([[phs_single]]) phase-space implementation. The integration method is [[vamp]]. We launch three iterations. <>= call test (integrations_5, "integrations_5", & "VAMP integration (three iterations)", & u, results) <>= public :: integrations_5 <>= subroutine integrations_5 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global write (u, "(A)") "* Test output: integrations_5" write (u, "(A)") "* Purpose: integrate test process using VAMP" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call global%global_init () libname = "integrations_5_lib" procname = "integrations_5" call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .false., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([3], [1000]) write (u, "(A)") "* Integrate" write (u, "(A)") call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%pacify (efficiency_reset = .true., error_reset = .true.) call global%write (u, vars = [var_str ("$integration_method")], & pacify = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_5" end subroutine integrations_5 @ %def integrations_5 @ \subsubsection{Multiple passes integration} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) using the single-channel ([[phs_single]]) phase-space implementation. The integration method is [[vamp]]. We launch three passes with three iterations each. <>= call test (integrations_6, "integrations_6", & "VAMP integration (three passes)", & u, results) <>= public :: integrations_6 <>= subroutine integrations_6 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global type(string_t), dimension(0) :: no_vars write (u, "(A)") "* Test output: integrations_6" write (u, "(A)") "* Purpose: integrate test process using VAMP" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call global%global_init () libname = "integrations_6_lib" procname = "integrations_6" call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .false., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([3, 3, 3], [1000, 1000, 1000], & adapt = [.true., .true., .false.], & adapt_code = [var_str ("wg"), var_str ("g"), var_str ("")]) write (u, "(A)") "* Integrate" write (u, "(A)") call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%pacify (efficiency_reset = .true., error_reset = .true.) call global%write (u, vars = no_vars, pacify = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_6" end subroutine integrations_6 @ %def integrations_6 @ \subsubsection{VAMP and default phase space} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) using the default ([[phs_wood]]) phase-space implementation. The integration method is [[vamp]]. We launch three passes with three iterations each. We enable channel equivalences and groves. <>= call test (integrations_7, "integrations_7", & "VAMP integration with wood phase space", & u, results) <>= public :: integrations_7 <>= subroutine integrations_7 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global type(string_t), dimension(0) :: no_vars integer :: iostat, u_phs character(95) :: buffer type(string_t) :: phs_file logical :: exist write (u, "(A)") "* Test output: integrations_7" write (u, "(A)") "* Purpose: integrate test process using VAMP" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () libname = "integrations_7_lib" procname = "integrations_7" call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?phs_s_mapping"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([3, 3, 3], [1000, 1000, 1000], & adapt = [.true., .true., .false.], & adapt_code = [var_str ("wg"), var_str ("g"), var_str ("")]) write (u, "(A)") "* Integrate" write (u, "(A)") call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%pacify (efficiency_reset = .true., error_reset = .true.) call global%write (u, vars = no_vars, pacify = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Generated phase-space file" write (u, "(A)") phs_file = procname // ".r1.i1.phs" inquire (file = char (phs_file), exist = exist) if (exist) then u_phs = free_unit () open (u_phs, file = char (phs_file), action = "read", status = "old") iostat = 0 do while (iostat == 0) read (u_phs, "(A)", iostat = iostat) buffer if (iostat == 0) write (u, "(A)") trim (buffer) end do close (u_phs) else write (u, "(A)") "[file is missing]" end if write (u, "(A)") write (u, "(A)") "* Test output end: integrations_7" end subroutine integrations_7 @ %def integrations_7 @ \subsubsection{Structure functions} Compile and integrate an intrinsic test matrix element ([[prc_test]] type) using the default ([[phs_wood]]) phase-space implementation. The integration method is [[vamp]]. There is a structure function of type [[unit_test]]. We use a test structure function $f(x)=x$ for both beams. Together with the $1/x_1x_2$ factor from the phase-space flux and a unit matrix element, we should get the same result as previously for the process without structure functions. There is a slight correction due to the $m_s$ mass which we set to zero here. <>= call test (integrations_8, "integrations_8", & "integration with structure function", & u, results) <>= public :: integrations_8 <>= subroutine integrations_8 (u) <> <> use interactions, only: reset_interaction_counter use phs_forests use models use rt_data use process_configurations_ut, only: prepare_test_library use compilations, only: compile_library use integrations implicit none integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global type(flavor_t) :: flv type(string_t) :: name write (u, "(A)") "* Test output: integrations_8" write (u, "(A)") "* Purpose: integrate test process using VAMP & &with structure function" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () libname = "integrations_8_lib" procname = "integrations_8" call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?phs_s_mapping"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), 0._default) call reset_interaction_counter () call flv%init (25, global%model) name = flv%get_name () call global%beam_structure%init_sf ([name, name], [1]) call global%beam_structure%set_sf (1, 1, var_str ("sf_test_1")) write (u, "(A)") "* Integrate" write (u, "(A)") call global%it_list%init ([1], [1000]) call integrate_process (procname, global, local_stack=.true.) call global%write (u, vars = [var_str ("ms")]) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_8" end subroutine integrations_8 @ %def integrations_8 @ \subsubsection{Integration with sign change} Compile and integrate an intrinsic test matrix element ([[prc_test]] type). The phase-space implementation is [[phs_single]] (single-particle phase space), the integrator is [[mci_midpoint]]. The weight that is applied changes the sign in half of phase space. The weight is $-3$ and $1$, respectively, so the total result is equal to the original, but negative sign. The efficiency should (approximately) become the average of $1$ and $1/3$, that is $2/3$. <>= call test (integrations_9, "integrations_9", & "handle sign change", & u, results) <>= public :: integrations_9 <>= subroutine integrations_9 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global type(string_t) :: wgt_expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: parse_tree write (u, "(A)") "* Test output: integrations_9" write (u, "(A)") "* Purpose: integrate test process" write (u, "(A)") call syntax_model_file_init () call global%global_init () write (u, "(A)") "* Prepare a weight expression" write (u, "(A)") call syntax_pexpr_init () wgt_expr_text = "eval 2 * sgn (Pz) - 1 [s]" call ifile_append (ifile, wgt_expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (parse_tree, stream, .true.) global%pn%weight_expr => parse_tree%get_root_ptr () write (u, "(A)") "* Build and evaluate a test process" write (u, "(A)") libname = "integration_9" procname = "prc_config_a" call prepare_test_library (global, libname, 1) call compile_library (libname, global) call global%set_string (var_str ("$run_id"), & var_str ("integrations1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true.) call global%write (u, vars = [ & var_str ("$method"), & var_str ("sqrts"), & var_str ("$integration_method"), & var_str ("$phs_method"), & var_str ("$run_id")]) call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_9" end subroutine integrations_9 @ %def integrations_9 @ \subsubsection{Integration history for VAMP integration with default phase space} This test is only run when event analysis can be done. <>= call test (integrations_history_1, "integrations_history_1", & "Test integration history files", & u, results) <>= public :: integrations_history_1 <>= subroutine integrations_history_1 (u) integer, intent(in) :: u type(string_t) :: libname, procname type(rt_data_t), target :: global type(string_t), dimension(0) :: no_vars integer :: iostat, u_his character(91) :: buffer type(string_t) :: his_file, ps_file, pdf_file logical :: exist, exist_ps, exist_pdf write (u, "(A)") "* Test output: integrations_history_1" write (u, "(A)") "* Purpose: test integration history files" write (u, "(A)") write (u, "(A)") "* Initialize process and parameters" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () libname = "integrations_history_1_lib" procname = "integrations_history_1" call global%set_log (var_str ("?vis_history"), & .true., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?phs_s_mapping"),& .false., is_known = .true.) call prepare_test_library (global, libname, 1, [procname]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_real (var_str ("error_threshold"),& 5E-6_default, is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known=.true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([2, 2, 2], [1000, 1000, 1000], & adapt = [.true., .true., .false.], & adapt_code = [var_str ("wg"), var_str ("g"), var_str ("")]) write (u, "(A)") "* Integrate" write (u, "(A)") call reset_interaction_counter () call integrate_process (procname, global, local_stack=.true., & eff_reset = .true.) call global%pacify (efficiency_reset = .true., error_reset = .true.) call global%write (u, vars = no_vars, pacify = .true.) write (u, "(A)") write (u, "(A)") "* Generated history files" write (u, "(A)") his_file = procname // ".r1.history.tex" ps_file = procname // ".r1.history.ps" pdf_file = procname // ".r1.history.pdf" inquire (file = char (his_file), exist = exist) if (exist) then u_his = free_unit () open (u_his, file = char (his_file), action = "read", status = "old") iostat = 0 do while (iostat == 0) read (u_his, "(A)", iostat = iostat) buffer if (iostat == 0) write (u, "(A)") trim (buffer) end do close (u_his) else write (u, "(A)") "[History LaTeX file is missing]" end if inquire (file = char (ps_file), exist = exist_ps) if (exist_ps) then write (u, "(A)") "[History Postscript file exists and is nonempty]" else write (u, "(A)") "[History Postscript file is missing/non-regular]" end if inquire (file = char (pdf_file), exist = exist_pdf) if (exist_pdf) then write (u, "(A)") "[History PDF file exists and is nonempty]" else write (u, "(A)") "[History PDF file is missing/non-regular]" end if write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: integrations_history_1" end subroutine integrations_history_1 @ %def integrations_history_1 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Event Streams} This module manages I/O from/to multiple concurrent event streams. Usually, there is at most one input stream, but several output streams. For the latter, we set up an array which can hold [[eio_t]] (event I/O) objects of different dynamic types simultaneously. One of them may be marked as an input channel. <<[[event_streams.f90]]>>= <> module event_streams <> use io_units use diagnostics use events use eio_data use eio_base use rt_data use dispatch_transforms, only: dispatch_eio <> <> <> contains <> end module event_streams @ %def event_streams @ \subsection{Event Stream Array} Each entry is an [[eio_t]] object. Since the type is dynamic, we need a wrapper: <>= type :: event_stream_entry_t class(eio_t), allocatable :: eio end type event_stream_entry_t @ %def event_stream_entry_t @ An array of event-stream entry objects. If one of the entries is an input channel, [[i_in]] is the corresponding index. <>= public :: event_stream_array_t <>= type :: event_stream_array_t type(event_stream_entry_t), dimension(:), allocatable :: entry integer :: i_in = 0 contains <> end type event_stream_array_t @ %def event_stream_array_t @ Output. <>= procedure :: write => event_stream_array_write <>= subroutine event_stream_array_write (object, unit) class(event_stream_array_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) write (u, "(1x,A)") "Event stream array:" if (allocated (object%entry)) then select case (size (object%entry)) case (0) write (u, "(3x,A)") "[empty]" case default do i = 1, size (object%entry) if (i == object%i_in) write (u, "(1x,A)") "Input stream:" call object%entry(i)%eio%write (u) end do end select else write (u, "(3x,A)") "[undefined]" end if end subroutine event_stream_array_write @ %def event_stream_array_write @ Finalize all streams. <>= procedure :: final => event_stream_array_final <>= subroutine event_stream_array_final (es_array) class(event_stream_array_t), intent(inout) :: es_array integer :: i do i = 1, size (es_array%entry) call es_array%entry(i)%eio%final () end do end subroutine event_stream_array_final @ %def event_stream_array_final @ Initialization. We use a generic [[sample]] name, open event I/O objects for all provided stream types (using the [[dispatch_eio]] routine), and initialize for the given list of process pointers. If there is an [[input]] argument, this channel is initialized as an input channel and appended to the array. The [[input_data]] or, if not present, [[data]] may be modified. This happens if we open a stream for reading and get new information there. <>= procedure :: init => event_stream_array_init <>= subroutine event_stream_array_init & (es_array, sample, stream_fmt, global, & data, input, input_sample, input_data, allow_switch, & checkpoint, callback, & error) class(event_stream_array_t), intent(out) :: es_array type(string_t), intent(in) :: sample type(string_t), dimension(:), intent(in) :: stream_fmt type(rt_data_t), intent(in) :: global type(event_sample_data_t), intent(inout), optional :: data type(string_t), intent(in), optional :: input type(string_t), intent(in), optional :: input_sample type(event_sample_data_t), intent(inout), optional :: input_data logical, intent(in), optional :: allow_switch integer, intent(in), optional :: checkpoint integer, intent(in), optional :: callback logical, intent(out), optional :: error type(string_t) :: sample_in integer :: n, i, n_output, i_input, i_checkpoint, i_callback logical :: success, switch if (present (input_sample)) then sample_in = input_sample else sample_in = sample end if if (present (allow_switch)) then switch = allow_switch else switch = .true. end if if (present (error)) then error = .false. end if n = size (stream_fmt) n_output = n if (present (input)) then n = n + 1 i_input = n else i_input = 0 end if if (present (checkpoint)) then n = n + 1 i_checkpoint = n else i_checkpoint = 0 end if if (present (callback)) then n = n + 1 i_callback = n else i_callback = 0 end if allocate (es_array%entry (n)) if (i_checkpoint > 0) then call dispatch_eio & (es_array%entry(i_checkpoint)%eio, var_str ("checkpoint"), & global%var_list, global%fallback_model, & global%event_callback) call es_array%entry(i_checkpoint)%eio%init_out (sample, data) end if if (i_callback > 0) then call dispatch_eio & (es_array%entry(i_callback)%eio, var_str ("callback"), & global%var_list, global%fallback_model, & global%event_callback) call es_array%entry(i_callback)%eio%init_out (sample, data) end if if (i_input > 0) then call dispatch_eio (es_array%entry(i_input)%eio, input, & global%var_list, global%fallback_model, & global%event_callback) if (present (input_data)) then call es_array%entry(i_input)%eio%init_in & (sample_in, input_data, success) else call es_array%entry(i_input)%eio%init_in & (sample_in, data, success) end if if (success) then es_array%i_in = i_input else if (present (input_sample)) then if (present (error)) then error = .true. else call msg_fatal ("Events: & ¶meter mismatch in input, aborting") end if else call msg_message ("Events: & ¶meter mismatch, discarding old event set") call es_array%entry(i_input)%eio%final () if (switch) then call msg_message ("Events: generating new events") call es_array%entry(i_input)%eio%init_out (sample, data) end if end if end if do i = 1, n_output call dispatch_eio (es_array%entry(i)%eio, stream_fmt(i), & global%var_list, global%fallback_model, & global%event_callback) call es_array%entry(i)%eio%init_out (sample, data) end do end subroutine event_stream_array_init @ %def event_stream_array_init @ Switch the (only) input channel to an output channel, so further events are appended to the respective stream. <>= procedure :: switch_inout => event_stream_array_switch_inout <>= subroutine event_stream_array_switch_inout (es_array) class(event_stream_array_t), intent(inout) :: es_array integer :: n if (es_array%has_input ()) then n = es_array%i_in call es_array%entry(n)%eio%switch_inout () es_array%i_in = 0 else call msg_bug ("Reading events: switch_inout: no input stream selected") end if end subroutine event_stream_array_switch_inout @ %def event_stream_array_switch_inout @ Output an event (with given process number) to all output streams. If there is no output stream, do nothing. <>= procedure :: output => event_stream_array_output <>= subroutine event_stream_array_output (es_array, event, i_prc, & event_index, passed, pacify) class(event_stream_array_t), intent(inout) :: es_array type(event_t), intent(in), target :: event integer, intent(in) :: i_prc, event_index logical, intent(in), optional :: passed, pacify logical :: increased integer :: i do i = 1, size (es_array%entry) if (i /= es_array%i_in) then associate (eio => es_array%entry(i)%eio) if (eio%split) then if (eio%split_n_evt > 0 .and. event_index > 1) then if (mod (event_index, eio%split_n_evt) == 1) then call eio%split_out () end if else if (eio%split_n_kbytes > 0) then call eio%update_split_count (increased) if (increased) call eio%split_out () end if end if call eio%output (event, i_prc, reading = es_array%i_in /= 0, & passed = passed, & pacify = pacify) end associate end if end do end subroutine event_stream_array_output @ %def event_stream_array_output @ Input the [[i_prc]] index which selects the process for the current event. This is separated from reading the event, because it determines which event record to read. [[iostat]] may indicate an error or an EOF condition, as usual. <>= procedure :: input_i_prc => event_stream_array_input_i_prc <>= subroutine event_stream_array_input_i_prc (es_array, i_prc, iostat) class(event_stream_array_t), intent(inout) :: es_array integer, intent(out) :: i_prc integer, intent(out) :: iostat integer :: n if (es_array%has_input ()) then n = es_array%i_in call es_array%entry(n)%eio%input_i_prc (i_prc, iostat) else call msg_fatal ("Reading events: no input stream selected") end if end subroutine event_stream_array_input_i_prc @ %def event_stream_array_input_i_prc @ Input an event from the selected input stream. [[iostat]] may indicate an error or an EOF condition, as usual. <>= procedure :: input_event => event_stream_array_input_event <>= subroutine event_stream_array_input_event (es_array, event, iostat) class(event_stream_array_t), intent(inout) :: es_array type(event_t), intent(inout), target :: event integer, intent(out) :: iostat integer :: n if (es_array%has_input ()) then n = es_array%i_in call es_array%entry(n)%eio%input_event (event, iostat) else call msg_fatal ("Reading events: no input stream selected") end if end subroutine event_stream_array_input_event @ %def event_stream_array_input_event @ Skip an entry of eio\_t. Used to synchronize the event read-in for NLO events. <>= procedure :: skip_eio_entry => event_stream_array_skip_eio_entry <>= subroutine event_stream_array_skip_eio_entry (es_array, iostat) class(event_stream_array_t), intent(inout) :: es_array integer, intent(out) :: iostat integer :: n if (es_array%has_input ()) then n = es_array%i_in call es_array%entry(n)%eio%skip (iostat) else call msg_fatal ("Reading events: no input stream selected") end if end subroutine event_stream_array_skip_eio_entry @ %def event_stream_array_skip_eio_entry @ Return true if there is an input channel among the event streams. <>= procedure :: has_input => event_stream_array_has_input <>= function event_stream_array_has_input (es_array) result (flag) class(event_stream_array_t), intent(in) :: es_array logical :: flag flag = es_array%i_in /= 0 end function event_stream_array_has_input @ %def event_stream_array_has_input @ \subsection{Unit Tests} Test module, followed by the stand-alone unit-test procedures. <<[[event_streams_ut.f90]]>>= <> module event_streams_ut use unit_tests use event_streams_uti <> <> contains <> end module event_streams_ut @ <<[[event_streams_uti.f90]]>>= <> module event_streams_uti <> <> use model_data use eio_data use process, only: process_t use instances, only: process_instance_t use models use rt_data use events use event_streams <> <> contains <> end module event_streams_uti @ %def event_streams_uti @ API: driver for the unit tests below. <>= public :: event_streams_test <>= subroutine event_streams_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine event_streams_test @ %def event_streams_test @ \subsubsection{Empty event stream} This should set up an empty event output stream array, including initialization, output, and finalization (which are all no-ops). <>= call test (event_streams_1, "event_streams_1", & "empty event stream array", & u, results) <>= public :: event_streams_1 <>= subroutine event_streams_1 (u) integer, intent(in) :: u type(event_stream_array_t) :: es_array type(rt_data_t) :: global type(event_t) :: event type(string_t) :: sample type(string_t), dimension(0) :: empty_string_array write (u, "(A)") "* Test output: event_streams_1" write (u, "(A)") "* Purpose: handle empty event stream array" write (u, "(A)") sample = "event_streams_1" call es_array%init (sample, empty_string_array, global) call es_array%output (event, 42, 1) call es_array%write (u) call es_array%final () write (u, "(A)") write (u, "(A)") "* Test output end: event_streams_1" end subroutine event_streams_1 @ %def event_streams_1 @ \subsubsection{Nontrivial event stream} Here we generate a trivial event and choose [[raw]] output as an entry in the stream array. <>= call test (event_streams_2, "event_streams_2", & "nontrivial event stream array", & u, results) <>= public :: event_streams_2 <>= subroutine event_streams_2 (u) use processes_ut, only: prepare_test_process integer, intent(in) :: u type(event_stream_array_t) :: es_array type(rt_data_t) :: global type(model_data_t), target :: model type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(string_t) :: sample type(string_t), dimension(0) :: empty_string_array integer :: i_prc, iostat write (u, "(A)") "* Test output: event_streams_2" write (u, "(A)") "* Purpose: handle empty event stream array" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call model%init_test () write (u, "(A)") "* Generate test process event" write (u, "(A)") allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model, & run_id = var_str ("run_test")) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) call event%generate (1, [0.4_default, 0.4_default]) call event%set_index (42) call event%evaluate_expressions () call event%write (u) write (u, "(A)") write (u, "(A)") "* Allocate raw eio stream and write event to file" write (u, "(A)") sample = "event_streams_2" call es_array%init (sample, [var_str ("raw")], global) call es_array%output (event, 1, 1) call es_array%write (u) call es_array%final () write (u, "(A)") write (u, "(A)") "* Reallocate raw eio stream for reading" write (u, "(A)") sample = "foo" call es_array%init (sample, empty_string_array, global, & input = var_str ("raw"), input_sample = var_str ("event_streams_2")) call es_array%write (u) write (u, "(A)") write (u, "(A)") "* Reread event" write (u, "(A)") call es_array%input_i_prc (i_prc, iostat) write (u, "(1x,A,I0)") "i_prc = ", i_prc write (u, "(A)") call es_array%input_event (event, iostat) call es_array%final () call event%write (u) call global%final () call model%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: event_streams_2" end subroutine event_streams_2 @ %def event_streams_2 @ \subsubsection{Switch in/out} Here we generate an event file and test switching from writing to reading when the file is exhausted. <>= call test (event_streams_3, "event_streams_3", & "switch input/output", & u, results) <>= public :: event_streams_3 <>= subroutine event_streams_3 (u) use processes_ut, only: prepare_test_process integer, intent(in) :: u type(event_stream_array_t) :: es_array type(rt_data_t) :: global type(model_data_t), target :: model type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(string_t) :: sample type(string_t), dimension(0) :: empty_string_array integer :: i_prc, iostat write (u, "(A)") "* Test output: event_streams_3" write (u, "(A)") "* Purpose: handle in/out switching" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call model%init_test () write (u, "(A)") "* Generate test process event" write (u, "(A)") allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model, & run_id = var_str ("run_test")) call process_instance%setup_event_data () allocate (event) call event%basic_init () call event%connect (process_instance, process%get_model_ptr ()) call event%generate (1, [0.4_default, 0.4_default]) call event%increment_index () call event%evaluate_expressions () write (u, "(A)") "* Allocate raw eio stream and write event to file" write (u, "(A)") sample = "event_streams_3" call es_array%init (sample, [var_str ("raw")], global) call es_array%output (event, 1, 1) call es_array%write (u) call es_array%final () write (u, "(A)") write (u, "(A)") "* Reallocate raw eio stream for reading" write (u, "(A)") call es_array%init (sample, empty_string_array, global, & input = var_str ("raw")) call es_array%write (u) write (u, "(A)") write (u, "(A)") "* Reread event" write (u, "(A)") call es_array%input_i_prc (i_prc, iostat) call es_array%input_event (event, iostat) write (u, "(A)") "* Attempt to read another event (fail), then generate" write (u, "(A)") call es_array%input_i_prc (i_prc, iostat) if (iostat < 0) then call es_array%switch_inout () call event%generate (1, [0.3_default, 0.3_default]) call event%increment_index () call event%evaluate_expressions () call es_array%output (event, 1, 2) end if call es_array%write (u) call es_array%final () write (u, "(A)") call event%write (u) write (u, "(A)") write (u, "(A)") "* Reallocate raw eio stream for reading" write (u, "(A)") call es_array%init (sample, empty_string_array, global, & input = var_str ("raw")) call es_array%write (u) write (u, "(A)") write (u, "(A)") "* Reread two events and display 2nd event" write (u, "(A)") call es_array%input_i_prc (i_prc, iostat) call es_array%input_event (event, iostat) call es_array%input_i_prc (i_prc, iostat) call es_array%input_event (event, iostat) call es_array%final () call event%write (u) call global%final () call model%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: event_streams_3" end subroutine event_streams_3 @ %def event_streams_3 @ \subsubsection{Checksum} Here we generate an event file and repeat twice, once with identical parameters and once with modified parameters. <>= call test (event_streams_4, "event_streams_4", & "check MD5 sum", & u, results) <>= public :: event_streams_4 <>= subroutine event_streams_4 (u) integer, intent(in) :: u type(event_stream_array_t) :: es_array type(rt_data_t) :: global type(process_t), allocatable, target :: process type(string_t) :: sample type(string_t), dimension(0) :: empty_string_array type(event_sample_data_t) :: data write (u, "(A)") "* Test output: event_streams_4" write (u, "(A)") "* Purpose: handle in/out switching" write (u, "(A)") write (u, "(A)") "* Generate test process event" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%set_log (var_str ("?check_event_file"), & .true., is_known = .true.) allocate (process) write (u, "(A)") "* Allocate raw eio stream for writing" write (u, "(A)") sample = "event_streams_4" data%md5sum_cfg = "1234567890abcdef1234567890abcdef" call es_array%init (sample, [var_str ("raw")], global, data) call es_array%write (u) call es_array%final () write (u, "(A)") write (u, "(A)") "* Reallocate raw eio stream for reading" write (u, "(A)") call es_array%init (sample, empty_string_array, global, & data, input = var_str ("raw")) call es_array%write (u) call es_array%final () write (u, "(A)") write (u, "(A)") "* Reallocate modified raw eio stream for reading (fail)" write (u, "(A)") data%md5sum_cfg = "1234567890______1234567890______" call es_array%init (sample, empty_string_array, global, & data, input = var_str ("raw")) call es_array%write (u) call es_array%final () write (u, "(A)") write (u, "(A)") "* Repeat ignoring checksum" write (u, "(A)") call global%set_log (var_str ("?check_event_file"), & .false., is_known = .true.) call es_array%init (sample, empty_string_array, global, & data, input = var_str ("raw")) call es_array%write (u) call es_array%final () call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: event_streams_4" end subroutine event_streams_4 @ %def event_streams_4 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Restricted Subprocesses} This module provides an automatic means to construct restricted subprocesses of a current process object. A restricted subprocess has the same initial and final state as the current process, but a restricted set of Feynman graphs. The actual application extracts the set of resonance histories that apply to the process and uses this to construct subprocesses that are restricted to one of those histories, respectively. The resonance histories are derived from the phase-space setup. This implies that the method is tied to the OMega matrix element generator and to the wood phase space method. The processes are collected in a new process library that is generated on-the-fly. The [[resonant_subprocess_t]] object is intended as a component of the event record, which manages all operations regarding resonance handling. The run-time calculations are delegated to an event transform ([[evt_resonance_t]]), as a part of the event transform chain. The transform selects one (or none) of the resonance histories, given the momentum configuration, computes matrix elements and inserts resonances into the particle set. <<[[restricted_subprocesses.f90]]>>= <> module restricted_subprocesses <> <> use diagnostics, only: msg_message, msg_fatal, msg_bug use diagnostics, only: signal_is_pending use io_units, only: given_output_unit use format_defs, only: FMT_14, FMT_19 use string_utils, only: str use lorentz, only: vector4_t use particle_specifiers, only: prt_spec_t use particles, only: particle_set_t use resonances, only: resonance_history_t, resonance_history_set_t use variables, only: var_list_t use models, only: model_t use process_libraries, only: process_component_def_t use process_libraries, only: process_library_t use process_libraries, only: STAT_ACTIVE use prclib_stacks, only: prclib_entry_t use event_transforms, only: evt_t use resonance_insertion, only: evt_resonance_t use rt_data, only: rt_data_t use compilations, only: compile_library use process_configurations, only: process_configuration_t use process, only: process_t, process_ptr_t use instances, only: process_instance_t, process_instance_ptr_t use integrations, only: integrate_process <> <> <> <> <> contains <> end module restricted_subprocesses @ %def restricted_subprocesses @ \subsection{Process configuration} We extend the [[process_configuration_t]] by another method for initialization that takes into account a resonance history. <>= public :: restricted_process_configuration_t <>= type, extends (process_configuration_t) :: restricted_process_configuration_t private contains <> end type restricted_process_configuration_t @ %def restricted_process_configuration_t @ Resonance history as an argument. We use it to override the [[restrictions]] setting in a local variable list. Since we can construct the restricted process only by using OMega, we enforce it as the ME method. Other settings are taken from the variable list. The model will most likely be set, but we insert a safeguard just in case. Also, the resonant subprocess should not itself spawn resonant subprocesses, so we unset [[?resonance_history]]. We have to create a local copy of the model here, via pointer allocation. The reason is that the model as stored (via pointer) in the base type will be finalized and deallocated. The current implementation will generate a LO process, the optional [[nlo_process]] is unset. (It is not obvious whether the construction makes sense beyond LO.) <>= procedure :: init_resonant_process <>= subroutine init_resonant_process & (prc_config, prc_name, prt_in, prt_out, res_history, model, var_list) class(restricted_process_configuration_t), intent(out) :: prc_config type(string_t), intent(in) :: prc_name type(prt_spec_t), dimension(:), intent(in) :: prt_in type(prt_spec_t), dimension(:), intent(in) :: prt_out type(resonance_history_t), intent(in) :: res_history type(model_t), intent(in), target :: model type(var_list_t), intent(in), target :: var_list type(model_t), pointer :: local_model type(var_list_t) :: local_var_list allocate (local_model) call local_model%init_instance (model) call local_var_list%link (var_list) call local_var_list%append_string (var_str ("$model_name"), & sval = local_model%get_name (), & intrinsic=.true.) call local_var_list%append_string (var_str ("$method"), & sval = var_str ("omega"), & intrinsic=.true.) call local_var_list%append_string (var_str ("$restrictions"), & sval = res_history%as_omega_string (size (prt_in)), & intrinsic = .true.) call local_var_list%append_log (var_str ("?resonance_history"), & lval = .false., & intrinsic = .true.) call prc_config%init (prc_name, size (prt_in), 1, & local_model, local_var_list) call prc_config%setup_component (1, & prt_in, prt_out, & local_model, local_var_list) end subroutine init_resonant_process @ %def init_resonant_process @ \subsection{Resonant-subprocess set manager} This data type enables generation of a library of resonant subprocesses for a given master process, and it allows for convenient access. The matrix elements from the subprocesses can be used as channel weights to activate a selector, which then returns a preferred channel via some random number generator. <>= public :: resonant_subprocess_set_t <>= type :: resonant_subprocess_set_t private integer, dimension(:), allocatable :: n_history type(resonance_history_set_t), dimension(:), allocatable :: res_history_set logical :: lib_active = .false. type(string_t) :: libname type(string_t), dimension(:), allocatable :: proc_id type(process_ptr_t), dimension(:), allocatable :: subprocess type(process_instance_ptr_t), dimension(:), allocatable :: instance logical :: filled = .false. type(evt_resonance_t), pointer :: evt => null () contains <> end type resonant_subprocess_set_t @ %def resonant_subprocess_set_t @ Output <>= procedure :: write => resonant_subprocess_set_write <>= subroutine resonant_subprocess_set_write (prc_set, unit, testflag) class(resonant_subprocess_set_t), intent(in) :: prc_set integer, intent(in), optional :: unit logical, intent(in), optional :: testflag logical :: truncate integer :: u, i u = given_output_unit (unit) truncate = .false.; if (present (testflag)) truncate = testflag write (u, "(1x,A)") "Resonant subprocess set:" if (allocated (prc_set%n_history)) then if (any (prc_set%n_history > 0)) then do i = 1, size (prc_set%n_history) if (prc_set%n_history(i) > 0) then write (u, "(1x,A,I0)") "Component #", i call prc_set%res_history_set(i)%write (u, indent=1) end if end do if (prc_set%lib_active) then write (u, "(3x,A,A,A)") "Process library = '", & char (prc_set%libname), "'" else write (u, "(3x,A)") "Process library: [inactive]" end if if (associated (prc_set%evt)) then if (truncate) then write (u, "(3x,A,1x," // FMT_14 // ")") & "Process sqme =", prc_set%get_master_sqme () else write (u, "(3x,A,1x," // FMT_19 // ")") & "Process sqme =", prc_set%get_master_sqme () end if end if if (associated (prc_set%evt)) then write (u, "(3x,A)") "Event transform: associated" write (u, "(2x)", advance="no") call prc_set%evt%write_selector (u, testflag) else write (u, "(3x,A)") "Event transform: not associated" end if else write (u, "(2x,A)") "[empty]" end if else write (u, "(3x,A)") "[not allocated]" end if end subroutine resonant_subprocess_set_write @ %def resonant_subprocess_set_write @ \subsection{Resonance history set} Initialize subprocess set with an array of pre-created resonance history sets. Safeguard: if there are no resonances in the input, initialize the local set as empty, but complete. <>= procedure :: init => resonant_subprocess_set_init procedure :: fill_resonances => resonant_subprocess_set_fill_resonances <>= subroutine resonant_subprocess_set_init (prc_set, n_component) class(resonant_subprocess_set_t), intent(out) :: prc_set integer, intent(in) :: n_component allocate (prc_set%res_history_set (n_component)) allocate (prc_set%n_history (n_component), source = 0) end subroutine resonant_subprocess_set_init subroutine resonant_subprocess_set_fill_resonances (prc_set, & res_history_set, i_component) class(resonant_subprocess_set_t), intent(inout) :: prc_set type(resonance_history_set_t), intent(in) :: res_history_set integer, intent(in) :: i_component prc_set%n_history(i_component) = res_history_set%get_n_history () if (prc_set%n_history(i_component) > 0) then prc_set%res_history_set(i_component) = res_history_set else call prc_set%res_history_set(i_component)%init (initial_size = 0) call prc_set%res_history_set(i_component)%freeze () end if end subroutine resonant_subprocess_set_fill_resonances @ %def resonant_subprocess_set_init @ %def resonant_subprocess_set_fill_resonances @ Return the resonance history set. <>= procedure :: get_resonance_history_set & => resonant_subprocess_set_get_resonance_history_set <>= function resonant_subprocess_set_get_resonance_history_set (prc_set) & result (res_history_set) class(resonant_subprocess_set_t), intent(in) :: prc_set type(resonance_history_set_t), dimension(:), allocatable :: res_history_set res_history_set = prc_set%res_history_set end function resonant_subprocess_set_get_resonance_history_set @ %def resonant_subprocess_set_get_resonance_history_set @ \subsection{Library for the resonance history set} The recommended library name: append [[_R]] to the process name. <>= public :: get_libname_res <>= elemental function get_libname_res (proc_id) result (libname) type(string_t), intent(in) :: proc_id type(string_t) :: libname libname = proc_id // "_R" end function get_libname_res @ %def get_libname_res @ Here we scan the global process library whether any processes require resonant subprocesses to be constructed. If yes, create process objects with phase space and construct the process libraries as usual. Then append the library names to the array. The temporary integration objects should carry the [[phs_only]] flag. We set this in the local environment. Once a process object with resonance histories (derived from phase space) has been created, we extract the resonance histories and use them, together with the process definition, to create the new library. Finally, compile the library. <>= public :: spawn_resonant_subprocess_libraries <>= subroutine spawn_resonant_subprocess_libraries & (libname, local, global, libname_res) type(string_t), intent(in) :: libname type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), target :: global type(string_t), dimension(:), allocatable, intent(inout) :: libname_res type(process_library_t), pointer :: lib type(string_t), dimension(:), allocatable :: process_id_res type(process_t), pointer :: process type(resonance_history_set_t) :: res_history_set type(process_component_def_t), pointer :: process_component_def logical :: phs_only_saved, exist integer :: i_proc, i_component lib => global%prclib_stack%get_library_ptr (libname) call lib%get_process_id_req_resonant (process_id_res) if (size (process_id_res) > 0) then call msg_message ("Creating resonant-subprocess libraries & &for library '" // char (libname) // "'") libname_res = get_libname_res (process_id_res) phs_only_saved = local%var_list%get_lval (var_str ("?phs_only")) call local%var_list%set_log & (var_str ("?phs_only"), .true., is_known=.true.) do i_proc = 1, size (process_id_res) associate (proc_id => process_id_res (i_proc)) call msg_message ("Process '" // char (proc_id) // "': & &constructing phase space for resonance structure") call integrate_process (proc_id, local, global) process => global%process_stack%get_process_ptr (proc_id) call create_library (libname_res(i_proc), global, exist) if (.not. exist) then do i_component = 1, process%get_n_components () call process%extract_resonance_history_set & (res_history_set, i_component = i_component) process_component_def & => process%get_component_def_ptr (i_component) call add_to_library (libname_res(i_proc), & res_history_set, & process_component_def%get_prt_spec_in (), & process_component_def%get_prt_spec_out (), & global) end do call msg_message ("Process library '" & // char (libname_res(i_proc)) & // "': created") end if call global%update_prclib (lib) end associate end do call local%var_list%set_log & (var_str ("?phs_only"), phs_only_saved, is_known=.true.) end if end subroutine spawn_resonant_subprocess_libraries @ %def spawn_resonant_subprocess_libraries @ This is another version of the library constructor, bound to a restricted-subprocess set object. Create the appropriate process library, add processes, and close the library. <>= procedure :: create_library => resonant_subprocess_set_create_library procedure :: add_to_library => resonant_subprocess_set_add_to_library procedure :: freeze_library => resonant_subprocess_set_freeze_library <>= subroutine resonant_subprocess_set_create_library (prc_set, & libname, global, exist) class(resonant_subprocess_set_t), intent(inout) :: prc_set type(string_t), intent(in) :: libname type(rt_data_t), intent(inout), target :: global logical, intent(out) :: exist prc_set%libname = libname call create_library (prc_set%libname, global, exist) end subroutine resonant_subprocess_set_create_library subroutine resonant_subprocess_set_add_to_library (prc_set, & i_component, prt_in, prt_out, global) class(resonant_subprocess_set_t), intent(inout) :: prc_set integer, intent(in) :: i_component type(prt_spec_t), dimension(:), intent(in) :: prt_in type(prt_spec_t), dimension(:), intent(in) :: prt_out type(rt_data_t), intent(inout), target :: global call add_to_library (prc_set%libname, & prc_set%res_history_set(i_component), & prt_in, prt_out, global) end subroutine resonant_subprocess_set_add_to_library subroutine resonant_subprocess_set_freeze_library (prc_set, global) class(resonant_subprocess_set_t), intent(inout) :: prc_set type(rt_data_t), intent(inout), target :: global type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib lib => global%prclib_stack%get_library_ptr (prc_set%libname) call lib%get_process_id_list (prc_set%proc_id) prc_set%lib_active = .true. end subroutine resonant_subprocess_set_freeze_library @ %def resonant_subprocess_set_create_library @ %def resonant_subprocess_set_add_to_library @ %def resonant_subprocess_set_freeze_library @ The common parts of the procedures above: (i) create a new process library or recover it, (ii) for each history, create a process configuration and record it. <>= subroutine create_library (libname, global, exist) type(string_t), intent(in) :: libname type(rt_data_t), intent(inout), target :: global logical, intent(out) :: exist type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib type(resonance_history_t) :: res_history type(string_t), dimension(:), allocatable :: proc_id type(restricted_process_configuration_t) :: prc_config integer :: i lib => global%prclib_stack%get_library_ptr (libname) exist = associated (lib) if (.not. exist) then call msg_message ("Creating library for resonant subprocesses '" & // char (libname) // "'") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) else call msg_message ("Using library for resonant subprocesses '" & // char (libname) // "'") call global%update_prclib (lib) end if end subroutine create_library subroutine add_to_library (libname, res_history_set, prt_in, prt_out, global) type(string_t), intent(in) :: libname type(resonance_history_set_t), intent(in) :: res_history_set type(prt_spec_t), dimension(:), intent(in) :: prt_in type(prt_spec_t), dimension(:), intent(in) :: prt_out type(rt_data_t), intent(inout), target :: global type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib type(resonance_history_t) :: res_history type(string_t), dimension(:), allocatable :: proc_id type(restricted_process_configuration_t) :: prc_config integer :: n0, i lib => global%prclib_stack%get_library_ptr (libname) if (associated (lib)) then n0 = lib%get_n_processes () allocate (proc_id (res_history_set%get_n_history ())) do i = 1, size (proc_id) proc_id(i) = libname // str (n0 + i) res_history = res_history_set%get_history(i) call prc_config%init_resonant_process (proc_id(i), & prt_in, prt_out, & res_history, & global%model, global%var_list) call msg_message ("Resonant subprocess #" & // char (str(n0+i)) // ": " & // char (res_history%as_omega_string (size (prt_in)))) call prc_config%record (global) if (signal_is_pending ()) return end do else call msg_bug ("Adding subprocesses: library '" & // char (libname) // "' not found") end if end subroutine add_to_library @ %def create_library @ %def add_to_library @ Compile the generated library, required settings taken from the [[global]] data set. <>= procedure :: compile_library => resonant_subprocess_set_compile_library <>= subroutine resonant_subprocess_set_compile_library (prc_set, global) class(resonant_subprocess_set_t), intent(in) :: prc_set type(rt_data_t), intent(inout), target :: global type(process_library_t), pointer :: lib lib => global%prclib_stack%get_library_ptr (prc_set%libname) if (lib%get_status () < STAT_ACTIVE) then call compile_library (prc_set%libname, global) end if end subroutine resonant_subprocess_set_compile_library @ %def resonant_subprocess_set_compile_library @ Check if the library has been created / the process has been evaluated. <>= procedure :: is_active => resonant_subprocess_set_is_active <>= function resonant_subprocess_set_is_active (prc_set) result (flag) class(resonant_subprocess_set_t), intent(in) :: prc_set logical :: flag flag = prc_set%lib_active end function resonant_subprocess_set_is_active @ %def resonant_subprocess_set_is_active @ Return number of generated process objects, library, and process IDs. <>= procedure :: get_n_process => resonant_subprocess_set_get_n_process procedure :: get_libname => resonant_subprocess_set_get_libname procedure :: get_proc_id => resonant_subprocess_set_get_proc_id <>= function resonant_subprocess_set_get_n_process (prc_set) result (n) class(resonant_subprocess_set_t), intent(in) :: prc_set integer :: n if (prc_set%lib_active) then n = size (prc_set%proc_id) else n = 0 end if end function resonant_subprocess_set_get_n_process function resonant_subprocess_set_get_libname (prc_set) result (libname) class(resonant_subprocess_set_t), intent(in) :: prc_set type(string_t) :: libname if (prc_set%lib_active) then libname = prc_set%libname else libname = "" end if end function resonant_subprocess_set_get_libname function resonant_subprocess_set_get_proc_id (prc_set, i) result (proc_id) class(resonant_subprocess_set_t), intent(in) :: prc_set integer, intent(in) :: i type(string_t) :: proc_id if (allocated (prc_set%proc_id)) then proc_id = prc_set%proc_id(i) else proc_id = "" end if end function resonant_subprocess_set_get_proc_id @ %def resonant_subprocess_set_get_n_process @ %def resonant_subprocess_set_get_libname @ %def resonant_subprocess_set_get_proc_id @ \subsection{Process objects and instances} Prepare process objects for all entries in the resonant-subprocesses library. The process objects are appended to the global process stack. A local environment can be used where we place temporary variable settings that affect process-object generation. We initialize the processes, such that we can evaluate matrix elements, but we do not need to integrate them. The internal procedure [[prepare_process]] is an abridged version of the procedure with this name in the [[simulations]] module. <>= procedure :: prepare_process_objects & => resonant_subprocess_set_prepare_process_objects <>= subroutine resonant_subprocess_set_prepare_process_objects & (prc_set, local, global) class(resonant_subprocess_set_t), intent(inout) :: prc_set type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global type(rt_data_t), pointer :: current type(process_library_t), pointer :: lib type(string_t) :: proc_id, libname_cur, libname_res integer :: i, n if (.not. prc_set%is_active ()) return if (present (global)) then current => global else current => local end if libname_cur = current%prclib%get_name () libname_res = prc_set%get_libname () lib => current%prclib_stack%get_library_ptr (libname_res) if (associated (lib)) call current%update_prclib (lib) call local%set_string (var_str ("$phs_method"), & var_str ("none"), is_known = .true.) call local%set_string (var_str ("$integration_method"), & var_str ("none"), is_known = .true.) n = prc_set%get_n_process () allocate (prc_set%subprocess (n)) do i = 1, n proc_id = prc_set%get_proc_id (i) call prepare_process (prc_set%subprocess(i)%p, proc_id) if (signal_is_pending ()) return end do lib => current%prclib_stack%get_library_ptr (libname_cur) if (associated (lib)) call current%update_prclib (lib) contains subroutine prepare_process (process, process_id) type(process_t), pointer, intent(out) :: process type(string_t), intent(in) :: process_id call msg_message ("Simulate: initializing resonant subprocess '" & // char (process_id) // "'") if (present (global)) then call integrate_process (process_id, local, global, & init_only = .true.) else call integrate_process (process_id, local, local_stack = .true., & init_only = .true.) end if process => current%process_stack%get_process_ptr (process_id) if (.not. associated (process)) then call msg_fatal ("Simulate: resonant subprocess '" & // char (process_id) // "' could not be initialized: aborting") end if end subroutine prepare_process end subroutine resonant_subprocess_set_prepare_process_objects @ %def resonant_subprocess_set_prepare_process_objects @ Workspace for the resonant subprocesses. <>= procedure :: prepare_process_instances & => resonant_subprocess_set_prepare_process_instances <>= subroutine resonant_subprocess_set_prepare_process_instances (prc_set, global) class(resonant_subprocess_set_t), intent(inout) :: prc_set type(rt_data_t), intent(in), target :: global integer :: i, n if (.not. prc_set%is_active ()) return n = size (prc_set%subprocess) allocate (prc_set%instance (n)) do i = 1, n allocate (prc_set%instance(i)%p) call prc_set%instance(i)%p%init (prc_set%subprocess(i)%p) call prc_set%instance(i)%p%setup_event_data (global%model) end do end subroutine resonant_subprocess_set_prepare_process_instances @ %def resonant_subprocess_set_prepare_process_instances @ \subsection{Event transform connection} The idea is that the resonance-insertion event transform has been allocated somewhere (namely, in the standard event-transform chain), but we maintain a link such that we can inject matrix-element results event by event. The event transform holds a selector, to choose one of the resonance histories (or none), and it manages resonance insertion for the particle set. The data that the event transform requires can be provided here. The resonance history set has already been assigned with the [[dispatch]] initializer. Here, we supply the set of subprocess instances that we have generated (see above). The master-process instance is set when we [[connect]] the transform by the standard method. <>= procedure :: connect_transform => & resonant_subprocess_set_connect_transform <>= subroutine resonant_subprocess_set_connect_transform (prc_set, evt) class(resonant_subprocess_set_t), intent(inout) :: prc_set class(evt_t), intent(in), target :: evt select type (evt) type is (evt_resonance_t) prc_set%evt => evt call prc_set%evt%set_subprocess_instances (prc_set%instance) class default call msg_bug ("Resonant subprocess set: event transform has wrong type") end select end subroutine resonant_subprocess_set_connect_transform @ %def resonant_subprocess_set_connect_transform @ Set the on-shell limit value in the connected transform. <>= procedure :: set_on_shell_limit => resonant_subprocess_set_on_shell_limit <>= subroutine resonant_subprocess_set_on_shell_limit (prc_set, on_shell_limit) class(resonant_subprocess_set_t), intent(inout) :: prc_set real(default), intent(in) :: on_shell_limit call prc_set%evt%set_on_shell_limit (on_shell_limit) end subroutine resonant_subprocess_set_on_shell_limit @ %def resonant_subprocess_set_on_shell_limit @ Set the Gaussian turnoff parameter in the connected transform. <>= procedure :: set_on_shell_turnoff => resonant_subprocess_set_on_shell_turnoff <>= subroutine resonant_subprocess_set_on_shell_turnoff & (prc_set, on_shell_turnoff) class(resonant_subprocess_set_t), intent(inout) :: prc_set real(default), intent(in) :: on_shell_turnoff call prc_set%evt%set_on_shell_turnoff (on_shell_turnoff) end subroutine resonant_subprocess_set_on_shell_turnoff @ %def resonant_subprocess_set_on_shell_turnoff @ Reweight (suppress) the background contribution probability, for the kinematics where a resonance history is active. <>= procedure :: set_background_factor & => resonant_subprocess_set_background_factor <>= subroutine resonant_subprocess_set_background_factor & (prc_set, background_factor) class(resonant_subprocess_set_t), intent(inout) :: prc_set real(default), intent(in) :: background_factor call prc_set%evt%set_background_factor (background_factor) end subroutine resonant_subprocess_set_background_factor @ %def resonant_subprocess_set_background_factor @ \subsection{Wrappers for runtime calculations} All runtime calculations are delegated to the event transform. The following procedures are essentially redundant wrappers. We retain them for a unit test below. Debugging aid: <>= procedure :: dump_instances => resonant_subprocess_set_dump_instances <>= subroutine resonant_subprocess_set_dump_instances (prc_set, unit, testflag) class(resonant_subprocess_set_t), intent(inout) :: prc_set integer, intent(in), optional :: unit logical, intent(in), optional :: testflag integer :: i, n, u u = given_output_unit (unit) write (u, "(A)") "*** Process instances of resonant subprocesses" write (u, *) n = size (prc_set%subprocess) do i = 1, n associate (instance => prc_set%instance(i)%p) call instance%write (u, testflag) write (u, *) write (u, *) end associate end do end subroutine resonant_subprocess_set_dump_instances @ %def resonant_subprocess_set_dump_instances @ Inject the current kinematics configuration, reading from the previous event transform or from the process instance. <>= procedure :: fill_momenta => resonant_subprocess_set_fill_momenta <>= subroutine resonant_subprocess_set_fill_momenta (prc_set) class(resonant_subprocess_set_t), intent(inout) :: prc_set integer :: i, n call prc_set%evt%fill_momenta () end subroutine resonant_subprocess_set_fill_momenta @ %def resonant_subprocess_set_fill_momenta @ Determine the indices of the resonance histories that can be considered on-shell for the current kinematics. <>= procedure :: determine_on_shell_histories & => resonant_subprocess_set_determine_on_shell_histories <>= subroutine resonant_subprocess_set_determine_on_shell_histories & (prc_set, i_component, index_array) class(resonant_subprocess_set_t), intent(in) :: prc_set integer, intent(in) :: i_component integer, dimension(:), allocatable, intent(out) :: index_array call prc_set%evt%determine_on_shell_histories (index_array) end subroutine resonant_subprocess_set_determine_on_shell_histories @ %def resonant_subprocess_set_determine_on_shell_histories @ Evaluate selected subprocesses. (In actual operation, the ones that have been tagged as on-shell.) <>= procedure :: evaluate_subprocess & => resonant_subprocess_set_evaluate_subprocess <>= subroutine resonant_subprocess_set_evaluate_subprocess (prc_set, index_array) class(resonant_subprocess_set_t), intent(inout) :: prc_set integer, dimension(:), intent(in) :: index_array call prc_set%evt%evaluate_subprocess (index_array) end subroutine resonant_subprocess_set_evaluate_subprocess @ %def resonant_subprocess_set_evaluate_subprocess @ Extract the matrix elements of the master process / the resonant subprocesses. After the previous routine has been executed, they should be available and stored in the corresponding process instances. <>= procedure :: get_master_sqme & => resonant_subprocess_set_get_master_sqme procedure :: get_subprocess_sqme & => resonant_subprocess_set_get_subprocess_sqme <>= function resonant_subprocess_set_get_master_sqme (prc_set) result (sqme) class(resonant_subprocess_set_t), intent(in) :: prc_set real(default) :: sqme sqme = prc_set%evt%get_master_sqme () end function resonant_subprocess_set_get_master_sqme subroutine resonant_subprocess_set_get_subprocess_sqme (prc_set, sqme) class(resonant_subprocess_set_t), intent(in) :: prc_set real(default), dimension(:), intent(inout) :: sqme integer :: i call prc_set%evt%get_subprocess_sqme (sqme) end subroutine resonant_subprocess_set_get_subprocess_sqme @ %def resonant_subprocess_set_get_master_sqme @ %def resonant_subprocess_set_get_subprocess_sqme @ We use the calculations of resonant matrix elements to determine probabilities for all resonance configurations. <>= procedure :: compute_probabilities & => resonant_subprocess_set_compute_probabilities <>= subroutine resonant_subprocess_set_compute_probabilities (prc_set, prob_array) class(resonant_subprocess_set_t), intent(inout) :: prc_set real(default), dimension(:), allocatable, intent(out) :: prob_array integer, dimension(:), allocatable :: index_array real(default) :: sqme, sqme_sum, sqme_bg real(default), dimension(:), allocatable :: sqme_res integer :: n n = size (prc_set%subprocess) allocate (prob_array (0:n), source = 0._default) call prc_set%evt%compute_probabilities () call prc_set%evt%get_selector_weights (prob_array) end subroutine resonant_subprocess_set_compute_probabilities @ %def resonant_subprocess_set_compute_probabilities @ \subsection{Unit tests} Test module, followed by the stand-alone unit-test procedures. <<[[restricted_subprocesses_ut.f90]]>>= <> module restricted_subprocesses_ut use unit_tests use restricted_subprocesses_uti <> <> contains <> end module restricted_subprocesses_ut @ %def restricted_subprocesses_ut @ <<[[restricted_subprocesses_uti.f90]]>>= <> module restricted_subprocesses_uti <> <> use io_units, only: free_unit use format_defs, only: FMT_10, FMT_12 use lorentz, only: vector4_t, vector3_moving, vector4_moving use particle_specifiers, only: new_prt_spec use process_libraries, only: process_library_t use resonances, only: resonance_info_t use resonances, only: resonance_history_t use resonances, only: resonance_history_set_t use state_matrices, only: FM_IGNORE_HELICITY use particles, only: particle_set_t use model_data, only: model_data_t use models, only: syntax_model_file_init, syntax_model_file_final use models, only: model_t use rng_base_ut, only: rng_test_factory_t use mci_base, only: mci_t use mci_none, only: mci_none_t use phs_base, only: phs_config_t use phs_forests, only: syntax_phs_forest_init, syntax_phs_forest_final use phs_wood, only: phs_wood_config_t use process_libraries, only: process_def_entry_t use process_libraries, only: process_component_def_t use prclib_stacks, only: prclib_entry_t use prc_core_def, only: prc_core_def_t use prc_omega, only: omega_def_t use process, only: process_t use instances, only: process_instance_t use process_stacks, only: process_entry_t use event_transforms, only: evt_trivial_t use resonance_insertion, only: evt_resonance_t use integrations, only: integrate_process use rt_data, only: rt_data_t use restricted_subprocesses <> <> <> <> contains <> <> end module restricted_subprocesses_uti @ %def restricted_subprocesses_uti @ API: driver for the unit tests below. <>= public :: restricted_subprocesses_test <>= subroutine restricted_subprocesses_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine restricted_subprocesses_test @ %def restricted_subprocesses_test @ \subsubsection{subprocess configuration} Initialize a [[restricted_subprocess_configuration_t]] object which represents a given process with a defined resonance history. <>= call test (restricted_subprocesses_1, "restricted_subprocesses_1", & "single subprocess", & u, results) <>= public :: restricted_subprocesses_1 <>= subroutine restricted_subprocesses_1 (u) integer, intent(in) :: u type(rt_data_t) :: global type(resonance_info_t) :: res_info type(resonance_history_t) :: res_history type(string_t) :: prc_name type(string_t), dimension(2) :: prt_in type(string_t), dimension(3) :: prt_out type(restricted_process_configuration_t) :: prc_config write (u, "(A)") "* Test output: restricted_subprocesses_1" write (u, "(A)") "* Purpose: create subprocess list from resonances" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%select_model (var_str ("SM")) write (u, "(A)") "* Create resonance history" write (u, "(A)") call res_info%init (3, -24, global%model, 5) call res_history%add_resonance (res_info) call res_history%write (u) write (u, "(A)") write (u, "(A)") "* Create process configuration" write (u, "(A)") prc_name = "restricted_subprocesses_1_p" prt_in(1) = "e-" prt_in(2) = "e+" prt_out(1) = "d" prt_out(2) = "u" prt_out(3) = "W+" call prc_config%init_resonant_process (prc_name, & new_prt_spec (prt_in), new_prt_spec (prt_out), & res_history, global%model, global%var_list) call prc_config%write (u) write (u, *) write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: restricted_subprocesses_1" end subroutine restricted_subprocesses_1 @ %def restricted_subprocesses_1 @ \subsubsection{Subprocess library configuration} Create a process library that represents restricted subprocesses for a given set of resonance histories <>= call test (restricted_subprocesses_2, "restricted_subprocesses_2", & "subprocess library", & u, results) <>= public :: restricted_subprocesses_2 <>= subroutine restricted_subprocesses_2 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(resonance_info_t) :: res_info type(resonance_history_t), dimension(2) :: res_history type(resonance_history_set_t) :: res_history_set type(string_t) :: libname type(string_t), dimension(2) :: prt_in type(string_t), dimension(3) :: prt_out type(resonant_subprocess_set_t) :: prc_set type(process_library_t), pointer :: lib logical :: exist write (u, "(A)") "* Test output: restricted_subprocesses_2" write (u, "(A)") "* Purpose: create subprocess library from resonances" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%select_model (var_str ("SM")) write (u, "(A)") "* Create resonance histories" write (u, "(A)") call res_info%init (3, -24, global%model, 5) call res_history(1)%add_resonance (res_info) call res_history(1)%write (u) call res_info%init (7, 23, global%model, 5) call res_history(2)%add_resonance (res_info) call res_history(2)%write (u) call res_history_set%init () call res_history_set%enter (res_history(1)) call res_history_set%enter (res_history(2)) call res_history_set%freeze () write (u, "(A)") write (u, "(A)") "* Empty restricted subprocess set" write (u, "(A)") write (u, "(A,1x,L1)") "active =", prc_set%is_active () write (u, "(A)") call prc_set%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Fill restricted subprocess set" write (u, "(A)") libname = "restricted_subprocesses_2_p_R" prt_in(1) = "e-" prt_in(2) = "e+" prt_out(1) = "d" prt_out(2) = "u" prt_out(3) = "W+" call prc_set%init (1) call prc_set%fill_resonances (res_history_set, 1) call prc_set%create_library (libname, global, exist) if (.not. exist) then call prc_set%add_to_library (1, & new_prt_spec (prt_in), new_prt_spec (prt_out), & global) end if call prc_set%freeze_library (global) write (u, "(A,1x,L1)") "active =", prc_set%is_active () write (u, "(A)") call prc_set%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Queries" write (u, "(A)") write (u, "(A,1x,I0)") "n_process =", prc_set%get_n_process () write (u, "(A)") write (u, "(A,A,A)") "libname = '", char (prc_set%get_libname ()), "'" write (u, "(A)") write (u, "(A,A,A)") "proc_id(1) = '", char (prc_set%get_proc_id (1)), "'" write (u, "(A,A,A)") "proc_id(2) = '", char (prc_set%get_proc_id (2)), "'" write (u, "(A)") write (u, "(A)") "* Process library" write (u, "(A)") call prc_set%compile_library (global) lib => global%prclib_stack%get_library_ptr (libname) if (associated (lib)) call lib%write (u, libpath=.false.) write (u, *) write (u, "(A)") "* Cleanup" call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: restricted_subprocesses_2" end subroutine restricted_subprocesses_2 @ %def restricted_subprocesses_2 @ \subsubsection{Auxiliary: Test processes} Auxiliary subroutine that constructs the process library for the above test. This parallels a similar subroutine in [[processes_uti]], but this time we want an \oMega\ process. <>= public :: prepare_resonance_test_library <>= subroutine prepare_resonance_test_library & (lib, libname, procname, model, global, u) type(process_library_t), target, intent(out) :: lib type(string_t), intent(in) :: libname type(string_t), intent(in) :: procname class(model_data_t), intent(in), pointer :: model type(rt_data_t), intent(in), target :: global integer, intent(in) :: u type(string_t), dimension(:), allocatable :: prt_in, prt_out class(prc_core_def_t), allocatable :: def type(process_def_entry_t), pointer :: entry call lib%init (libname) allocate (prt_in (2), prt_out (3)) prt_in = [var_str ("e+"), var_str ("e-")] prt_out = [var_str ("d"), var_str ("ubar"), var_str ("W+")] allocate (omega_def_t :: def) select type (def) type is (omega_def_t) call def%init (model%get_name (), prt_in, prt_out, & ovm=.false., ufo=.false.) end select allocate (entry) call entry%init (procname, & model_name = model%get_name (), & n_in = 2, n_components = 1, & requires_resonances = .true.) call entry%import_component (1, n_out = size (prt_out), & prt_in = new_prt_spec (prt_in), & prt_out = new_prt_spec (prt_out), & method = var_str ("omega"), & variant = def) call entry%write (u) call lib%append (entry) call lib%configure (global%os_data) call lib%write_makefile (global%os_data, force = .true., verbose = .false.) call lib%clean (global%os_data, distclean = .false.) call lib%write_driver (force = .true.) call lib%load (global%os_data) end subroutine prepare_resonance_test_library @ %def prepare_resonance_test_library @ \subsubsection{Kinematics and resonance selection} Prepare an actual process with resonant subprocesses. Insert kinematics and apply the resonance selector in an associated event transform. <>= call test (restricted_subprocesses_3, "restricted_subprocesses_3", & "resonance kinematics and probability", & u, results) <>= public :: restricted_subprocesses_3 <>= subroutine restricted_subprocesses_3 (u) integer, intent(in) :: u type(rt_data_t), target :: global class(model_t), pointer :: model class(model_data_t), pointer :: model_data type(string_t) :: libname, libname_res type(string_t) :: procname type(process_component_def_t), pointer :: process_component_def type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib logical :: exist type(process_t), pointer :: process type(process_instance_t), target :: process_instance type(resonance_history_set_t), dimension(1) :: res_history_set type(resonant_subprocess_set_t) :: prc_set type(particle_set_t) :: pset real(default) :: sqrts, mw, pp real(default), dimension(3) :: p3 type(vector4_t), dimension(:), allocatable :: p real(default), dimension(:), allocatable :: m integer, dimension(:), allocatable :: pdg real(default), dimension(:), allocatable :: sqme logical, dimension(:), allocatable :: mask real(default) :: on_shell_limit integer, dimension(:), allocatable :: i_array real(default), dimension(:), allocatable :: prob_array type(evt_resonance_t), target :: evt_resonance integer :: i, u_dump write (u, "(A)") "* Test output: restricted_subprocesses_3" write (u, "(A)") "* Purpose: handle process and resonance kinematics" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%set_log (var_str ("?resonance_history"), & .true., is_known = .true.) call global%select_model (var_str ("SM")) allocate (model) call model%init_instance (global%model) model_data => model libname = "restricted_subprocesses_3_lib" libname_res = "restricted_subprocesses_3_lib_res" procname = "restricted_subprocesses_3_p" write (u, "(A)") "* Initialize process library and process" write (u, "(A)") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) call prepare_resonance_test_library & (lib, libname, procname, model_data, global, u) call integrate_process (procname, global, & local_stack = .true., init_only = .true.) process => global%process_stack%get_process_ptr (procname) call process_instance%init (process) call process_instance%setup_event_data () write (u, "(A)") write (u, "(A)") "* Extract resonance history set" write (u, "(A)") call process%extract_resonance_history_set & (res_history_set(1), include_trivial=.true., i_component=1) call res_history_set(1)%write (u) write (u, "(A)") write (u, "(A)") "* Build resonant-subprocess library" write (u, "(A)") call prc_set%init (1) call prc_set%fill_resonances (res_history_set(1), 1) process_component_def => process%get_component_def_ptr (1) call prc_set%create_library (libname_res, global, exist) if (.not. exist) then call prc_set%add_to_library (1, & process_component_def%get_prt_spec_in (), & process_component_def%get_prt_spec_out (), & global) end if call prc_set%freeze_library (global) call prc_set%compile_library (global) call prc_set%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Build particle set" write (u, "(A)") sqrts = global%get_rval (var_str ("sqrts")) mw = 80._default ! deliberately slightly different from true mw pp = sqrt (sqrts**2 - 4 * mw**2) / 2 allocate (pdg (5), p (5), m (5)) pdg(1) = -11 p(1) = vector4_moving (sqrts/2, sqrts/2, 3) m(1) = 0 pdg(2) = 11 p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) m(2) = 0 pdg(3) = 1 p3(1) = pp/2 p3(2) = mw/2 p3(3) = 0 p(3) = vector4_moving (sqrts/4, vector3_moving (p3)) m(3) = 0 p3(2) = -mw/2 pdg(4) = -2 p(4) = vector4_moving (sqrts/4, vector3_moving (p3)) m(4) = 0 pdg(5) = 24 p(5) = vector4_moving (sqrts/2,-pp, 1) m(5) = mw call pset%init_direct (0, 2, 0, 0, 3, pdg, model) call pset%set_momentum (p, m**2) call pset%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Fill process instance" ! workflow from event_recalculate call process_instance%choose_mci (1) call process_instance%set_trace (pset, 1) call process_instance%recover & (1, 1, update_sqme=.true., recover_phs=.false.) call process_instance%evaluate_event_data (weight = 1._default) write (u, "(A)") write (u, "(A)") "* Prepare resonant subprocesses" call prc_set%prepare_process_objects (global) call prc_set%prepare_process_instances (global) call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call prc_set%connect_transform (evt_resonance) call evt_resonance%connect (process_instance, model) call prc_set%fill_momenta () write (u, "(A)") write (u, "(A)") "* Show squared matrix element of master process," write (u, "(A)") " should coincide with 2nd subprocess sqme" write (u, "(A)") write (u, "(1x,I0,1x," // FMT_12 // ")") 0, prc_set%get_master_sqme () write (u, "(A)") write (u, "(A)") "* Compute squared matrix elements & &of selected resonant subprocesses [1,2]" write (u, "(A)") call prc_set%evaluate_subprocess ([1,2]) allocate (sqme (3), source = 0._default) call prc_set%get_subprocess_sqme (sqme) do i = 1, size (sqme) write (u, "(1x,I0,1x," // FMT_12 // ")") i, sqme(i) end do deallocate (sqme) write (u, "(A)") write (u, "(A)") "* Compute squared matrix elements & &of all resonant subprocesses" write (u, "(A)") call prc_set%evaluate_subprocess ([1,2,3]) allocate (sqme (3), source = 0._default) call prc_set%get_subprocess_sqme (sqme) do i = 1, size (sqme) write (u, "(1x,I0,1x," // FMT_12 // ")") i, sqme(i) end do deallocate (sqme) write (u, "(A)") write (u, "(A)") "* Write process instances to file & &restricted_subprocesses_3_lib_res.dat" u_dump = free_unit () open (unit = u_dump, file = "restricted_subprocesses_3_lib_res.dat", & action = "write", status = "replace") call prc_set%dump_instances (u_dump) close (u_dump) write (u, "(A)") write (u, "(A)") "* Determine on-shell resonant subprocesses" write (u, "(A)") on_shell_limit = 0 write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) write (u, "(1x,A,9(1x,I0))") "resonant =", i_array on_shell_limit = 0.1_default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) write (u, "(1x,A,9(1x,I0))") "resonant =", i_array on_shell_limit = 10._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) write (u, "(1x,A,9(1x,I0))") "resonant =", i_array on_shell_limit = 10000._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) write (u, "(1x,A,9(1x,I0))") "resonant =", i_array write (u, "(A)") write (u, "(A)") "* Compute probabilities for applicable resonances" write (u, "(A)") " and initialize the process selector" write (u, "(A)") " (The first number is the probability for background)" write (u, "(A)") on_shell_limit = 0 write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) call prc_set%compute_probabilities (prob_array) write (u, "(1x,A,9(1x,"// FMT_12 // "))") "resonant =", prob_array call prc_set%write (u, testflag=.true.) write (u, *) on_shell_limit = 10._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) call prc_set%compute_probabilities (prob_array) write (u, "(1x,A,9(1x,"// FMT_12 // "))") "resonant =", prob_array call prc_set%write (u, testflag=.true.) write (u, *) on_shell_limit = 10000._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call prc_set%set_on_shell_limit (on_shell_limit) call prc_set%determine_on_shell_histories (1, i_array) call prc_set%compute_probabilities (prob_array) write (u, "(1x,A,9(1x,"// FMT_12 // "))") "resonant =", prob_array write (u, *) call prc_set%write (u, testflag=.true.) write (u, *) write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: restricted_subprocesses_3" end subroutine restricted_subprocesses_3 @ %def restricted_subprocesses_3 @ \subsubsection{Event transform} Prepare an actual process with resonant subprocesses. Prepare the resonance selector for a fixed event and apply the resonance-insertion event transform. <>= call test (restricted_subprocesses_4, "restricted_subprocesses_4", & "event transform", & u, results) <>= public :: restricted_subprocesses_4 <>= subroutine restricted_subprocesses_4 (u) integer, intent(in) :: u type(rt_data_t), target :: global class(model_t), pointer :: model class(model_data_t), pointer :: model_data type(string_t) :: libname, libname_res type(string_t) :: procname type(process_component_def_t), pointer :: process_component_def type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib logical :: exist type(process_t), pointer :: process type(process_instance_t), target :: process_instance type(resonance_history_set_t), dimension(1) :: res_history_set type(resonant_subprocess_set_t) :: prc_set type(particle_set_t) :: pset real(default) :: sqrts, mw, pp real(default), dimension(3) :: p3 type(vector4_t), dimension(:), allocatable :: p real(default), dimension(:), allocatable :: m integer, dimension(:), allocatable :: pdg real(default) :: on_shell_limit type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance real(default) :: probability integer :: i write (u, "(A)") "* Test output: restricted_subprocesses_4" write (u, "(A)") "* Purpose: employ event transform" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%set_log (var_str ("?resonance_history"), & .true., is_known = .true.) call global%select_model (var_str ("SM")) allocate (model) call model%init_instance (global%model) model_data => model libname = "restricted_subprocesses_4_lib" libname_res = "restricted_subprocesses_4_lib_res" procname = "restricted_subprocesses_4_p" write (u, "(A)") "* Initialize process library and process" write (u, "(A)") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) call prepare_resonance_test_library & (lib, libname, procname, model_data, global, u) call integrate_process (procname, global, & local_stack = .true., init_only = .true.) process => global%process_stack%get_process_ptr (procname) call process_instance%init (process) call process_instance%setup_event_data () write (u, "(A)") write (u, "(A)") "* Extract resonance history set" call process%extract_resonance_history_set & (res_history_set(1), include_trivial=.false., i_component=1) write (u, "(A)") write (u, "(A)") "* Build resonant-subprocess library" call prc_set%init (1) call prc_set%fill_resonances (res_history_set(1), 1) process_component_def => process%get_component_def_ptr (1) call prc_set%create_library (libname_res, global, exist) if (.not. exist) then call prc_set%add_to_library (1, & process_component_def%get_prt_spec_in (), & process_component_def%get_prt_spec_out (), & global) end if call prc_set%freeze_library (global) call prc_set%compile_library (global) write (u, "(A)") write (u, "(A)") "* Build particle set" write (u, "(A)") sqrts = global%get_rval (var_str ("sqrts")) mw = 80._default ! deliberately slightly different from true mw pp = sqrt (sqrts**2 - 4 * mw**2) / 2 allocate (pdg (5), p (5), m (5)) pdg(1) = -11 p(1) = vector4_moving (sqrts/2, sqrts/2, 3) m(1) = 0 pdg(2) = 11 p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) m(2) = 0 pdg(3) = 1 p3(1) = pp/2 p3(2) = mw/2 p3(3) = 0 p(3) = vector4_moving (sqrts/4, vector3_moving (p3)) m(3) = 0 p3(2) = -mw/2 pdg(4) = -2 p(4) = vector4_moving (sqrts/4, vector3_moving (p3)) m(4) = 0 pdg(5) = 24 p(5) = vector4_moving (sqrts/2,-pp, 1) m(5) = mw call pset%init_direct (0, 2, 0, 0, 3, pdg, model) call pset%set_momentum (p, m**2) write (u, "(A)") "* Fill process instance" write (u, "(A)") ! workflow from event_recalculate call process_instance%choose_mci (1) call process_instance%set_trace (pset, 1) call process_instance%recover & (1, 1, update_sqme=.true., recover_phs=.false.) call process_instance%evaluate_event_data (weight = 1._default) write (u, "(A)") "* Prepare resonant subprocesses" write (u, "(A)") call prc_set%prepare_process_objects (global) call prc_set%prepare_process_instances (global) write (u, "(A)") "* Fill trivial event transform (deliberately w/o color)" write (u, "(A)") call evt_trivial%connect (process_instance, model) call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) write (u, "(A)") write (u, "(A)") "* Initialize resonance-insertion event transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%connect (process_instance, model) call prc_set%connect_transform (evt_resonance) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Compute probabilities for applicable resonances" write (u, "(A)") " and initialize the process selector" write (u, "(A)") on_shell_limit = 10._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", on_shell_limit call evt_resonance%set_on_shell_limit (on_shell_limit) write (u, "(A)") write (u, "(A)") "* Evaluate resonance-insertion event transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (1, .false.) call evt_resonance%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: restricted_subprocesses_4" end subroutine restricted_subprocesses_4 @ %def restricted_subprocesses_4 @ \subsubsection{Gaussian turnoff} Identical to the previous process, except that we apply a Gaussian turnoff to the resonance kinematics, which affects the subprocess selector. <>= call test (restricted_subprocesses_5, "restricted_subprocesses_5", & "event transform with gaussian turnoff", & u, results) <>= public :: restricted_subprocesses_5 <>= subroutine restricted_subprocesses_5 (u) integer, intent(in) :: u type(rt_data_t), target :: global class(model_t), pointer :: model class(model_data_t), pointer :: model_data type(string_t) :: libname, libname_res type(string_t) :: procname type(process_component_def_t), pointer :: process_component_def type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib logical :: exist type(process_t), pointer :: process type(process_instance_t), target :: process_instance type(resonance_history_set_t), dimension(1) :: res_history_set type(resonant_subprocess_set_t) :: prc_set type(particle_set_t) :: pset real(default) :: sqrts, mw, pp real(default), dimension(3) :: p3 type(vector4_t), dimension(:), allocatable :: p real(default), dimension(:), allocatable :: m integer, dimension(:), allocatable :: pdg real(default) :: on_shell_limit real(default) :: on_shell_turnoff type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance real(default) :: probability integer :: i write (u, "(A)") "* Test output: restricted_subprocesses_5" write (u, "(A)") "* Purpose: employ event transform & &with gaussian turnoff" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%set_log (var_str ("?resonance_history"), & .true., is_known = .true.) call global%select_model (var_str ("SM")) allocate (model) call model%init_instance (global%model) model_data => model libname = "restricted_subprocesses_5_lib" libname_res = "restricted_subprocesses_5_lib_res" procname = "restricted_subprocesses_5_p" write (u, "(A)") "* Initialize process library and process" write (u, "(A)") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) call prepare_resonance_test_library & (lib, libname, procname, model_data, global, u) call integrate_process (procname, global, & local_stack = .true., init_only = .true.) process => global%process_stack%get_process_ptr (procname) call process_instance%init (process) call process_instance%setup_event_data () write (u, "(A)") write (u, "(A)") "* Extract resonance history set" call process%extract_resonance_history_set & (res_history_set(1), include_trivial=.false., i_component=1) write (u, "(A)") write (u, "(A)") "* Build resonant-subprocess library" call prc_set%init (1) call prc_set%fill_resonances (res_history_set(1), 1) process_component_def => process%get_component_def_ptr (1) call prc_set%create_library (libname_res, global, exist) if (.not. exist) then call prc_set%add_to_library (1, & process_component_def%get_prt_spec_in (), & process_component_def%get_prt_spec_out (), & global) end if call prc_set%freeze_library (global) call prc_set%compile_library (global) write (u, "(A)") write (u, "(A)") "* Build particle set" write (u, "(A)") sqrts = global%get_rval (var_str ("sqrts")) mw = 80._default ! deliberately slightly different from true mw pp = sqrt (sqrts**2 - 4 * mw**2) / 2 allocate (pdg (5), p (5), m (5)) pdg(1) = -11 p(1) = vector4_moving (sqrts/2, sqrts/2, 3) m(1) = 0 pdg(2) = 11 p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) m(2) = 0 pdg(3) = 1 p3(1) = pp/2 p3(2) = mw/2 p3(3) = 0 p(3) = vector4_moving (sqrts/4, vector3_moving (p3)) m(3) = 0 p3(2) = -mw/2 pdg(4) = -2 p(4) = vector4_moving (sqrts/4, vector3_moving (p3)) m(4) = 0 pdg(5) = 24 p(5) = vector4_moving (sqrts/2,-pp, 1) m(5) = mw call pset%init_direct (0, 2, 0, 0, 3, pdg, model) call pset%set_momentum (p, m**2) write (u, "(A)") "* Fill process instance" write (u, "(A)") ! workflow from event_recalculate call process_instance%choose_mci (1) call process_instance%set_trace (pset, 1) call process_instance%recover & (1, 1, update_sqme=.true., recover_phs=.false.) call process_instance%evaluate_event_data (weight = 1._default) write (u, "(A)") "* Prepare resonant subprocesses" write (u, "(A)") call prc_set%prepare_process_objects (global) call prc_set%prepare_process_instances (global) write (u, "(A)") "* Fill trivial event transform (deliberately w/o color)" write (u, "(A)") call evt_trivial%connect (process_instance, model) call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) write (u, "(A)") write (u, "(A)") "* Initialize resonance-insertion event transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%connect (process_instance, model) call prc_set%connect_transform (evt_resonance) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Compute probabilities for applicable resonances" write (u, "(A)") " and initialize the process selector" write (u, "(A)") on_shell_limit = 10._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_limit =", & on_shell_limit call evt_resonance%set_on_shell_limit (on_shell_limit) on_shell_turnoff = 1._default write (u, "(1x,A,1x," // FMT_10 // ")") "on_shell_turnoff =", & on_shell_turnoff call evt_resonance%set_on_shell_turnoff (on_shell_turnoff) write (u, "(A)") write (u, "(A)") "* Evaluate resonance-insertion event transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (1, .false.) call evt_resonance%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: restricted_subprocesses_5" end subroutine restricted_subprocesses_5 @ %def restricted_subprocesses_5 @ \subsubsection{Event transform} The same process and event again. This time, switch off the background contribution, so the selector becomes trivial. <>= call test (restricted_subprocesses_6, "restricted_subprocesses_6", & "event transform with background switched off", & u, results) <>= public :: restricted_subprocesses_6 <>= subroutine restricted_subprocesses_6 (u) integer, intent(in) :: u type(rt_data_t), target :: global class(model_t), pointer :: model class(model_data_t), pointer :: model_data type(string_t) :: libname, libname_res type(string_t) :: procname type(process_component_def_t), pointer :: process_component_def type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib logical :: exist type(process_t), pointer :: process type(process_instance_t), target :: process_instance type(resonance_history_set_t), dimension(1) :: res_history_set type(resonant_subprocess_set_t) :: prc_set type(particle_set_t) :: pset real(default) :: sqrts, mw, pp real(default), dimension(3) :: p3 type(vector4_t), dimension(:), allocatable :: p real(default), dimension(:), allocatable :: m integer, dimension(:), allocatable :: pdg real(default) :: on_shell_limit real(default) :: background_factor type(evt_trivial_t), target :: evt_trivial type(evt_resonance_t), target :: evt_resonance real(default) :: probability integer :: i write (u, "(A)") "* Test output: restricted_subprocesses_6" write (u, "(A)") "* Purpose: employ event transform & &with background switched off" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%set_log (var_str ("?resonance_history"), & .true., is_known = .true.) call global%select_model (var_str ("SM")) allocate (model) call model%init_instance (global%model) model_data => model libname = "restricted_subprocesses_6_lib" libname_res = "restricted_subprocesses_6_lib_res" procname = "restricted_subprocesses_6_p" write (u, "(A)") "* Initialize process library and process" write (u, "(A)") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) call prepare_resonance_test_library & (lib, libname, procname, model_data, global, u) call integrate_process (procname, global, & local_stack = .true., init_only = .true.) process => global%process_stack%get_process_ptr (procname) call process_instance%init (process) call process_instance%setup_event_data () write (u, "(A)") write (u, "(A)") "* Extract resonance history set" call process%extract_resonance_history_set & (res_history_set(1), include_trivial=.false., i_component=1) write (u, "(A)") write (u, "(A)") "* Build resonant-subprocess library" call prc_set%init (1) call prc_set%fill_resonances (res_history_set(1), 1) process_component_def => process%get_component_def_ptr (1) call prc_set%create_library (libname_res, global, exist) if (.not. exist) then call prc_set%add_to_library (1, & process_component_def%get_prt_spec_in (), & process_component_def%get_prt_spec_out (), & global) end if call prc_set%freeze_library (global) call prc_set%compile_library (global) write (u, "(A)") write (u, "(A)") "* Build particle set" write (u, "(A)") sqrts = global%get_rval (var_str ("sqrts")) mw = 80._default ! deliberately slightly different from true mw pp = sqrt (sqrts**2 - 4 * mw**2) / 2 allocate (pdg (5), p (5), m (5)) pdg(1) = -11 p(1) = vector4_moving (sqrts/2, sqrts/2, 3) m(1) = 0 pdg(2) = 11 p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) m(2) = 0 pdg(3) = 1 p3(1) = pp/2 p3(2) = mw/2 p3(3) = 0 p(3) = vector4_moving (sqrts/4, vector3_moving (p3)) m(3) = 0 p3(2) = -mw/2 pdg(4) = -2 p(4) = vector4_moving (sqrts/4, vector3_moving (p3)) m(4) = 0 pdg(5) = 24 p(5) = vector4_moving (sqrts/2,-pp, 1) m(5) = mw call pset%init_direct (0, 2, 0, 0, 3, pdg, model) call pset%set_momentum (p, m**2) write (u, "(A)") "* Fill process instance" write (u, "(A)") ! workflow from event_recalculate call process_instance%choose_mci (1) call process_instance%set_trace (pset, 1) call process_instance%recover & (1, 1, update_sqme=.true., recover_phs=.false.) call process_instance%evaluate_event_data (weight = 1._default) write (u, "(A)") "* Prepare resonant subprocesses" write (u, "(A)") call prc_set%prepare_process_objects (global) call prc_set%prepare_process_instances (global) write (u, "(A)") "* Fill trivial event transform (deliberately w/o color)" write (u, "(A)") call evt_trivial%connect (process_instance, model) call evt_trivial%set_particle_set (pset, 1, 1) call evt_trivial%write (u) write (u, "(A)") write (u, "(A)") "* Initialize resonance-insertion event transform" write (u, "(A)") evt_trivial%next => evt_resonance evt_resonance%previous => evt_trivial call evt_resonance%set_resonance_data (res_history_set) call evt_resonance%select_component (1) call evt_resonance%connect (process_instance, model) call prc_set%connect_transform (evt_resonance) call evt_resonance%write (u) write (u, "(A)") write (u, "(A)") "* Compute probabilities for applicable resonances" write (u, "(A)") " and initialize the process selector" write (u, "(A)") on_shell_limit = 10._default write (u, "(1x,A,1x," // FMT_10 // ")") & "on_shell_limit =", on_shell_limit call evt_resonance%set_on_shell_limit (on_shell_limit) background_factor = 0 write (u, "(1x,A,1x," // FMT_10 // ")") & "background_factor =", background_factor call evt_resonance%set_background_factor (background_factor) write (u, "(A)") write (u, "(A)") "* Evaluate resonance-insertion event transform" write (u, "(A)") call evt_resonance%prepare_new_event (1, 1) call evt_resonance%generate_weighted (probability) call evt_resonance%make_particle_set (1, .false.) call evt_resonance%write (u, testflag=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () call syntax_phs_forest_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: restricted_subprocesses_6" end subroutine restricted_subprocesses_6 @ %def restricted_subprocesses_6 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Simulation} This module manages simulation: event generation and reading/writing of event files. The [[simulation]] object is intended to be used (via a pointer) outside of \whizard, if events are generated individually by an external driver. <<[[simulations.f90]]>>= <> module simulations <> <> <> use io_units use format_utils, only: write_separator use format_defs, only: FMT_15, FMT_19 use os_interface use numeric_utils use string_utils, only: str use diagnostics use lorentz, only: vector4_t use sm_qcd use md5 use variables, only: var_list_t use eval_trees use model_data use flavors use particles use state_matrices, only: FM_IGNORE_HELICITY use beam_structures, only: beam_structure_t use beams use rng_base use rng_stream, only: rng_stream_t use selectors use resonances, only: resonance_history_set_t use process_libraries, only: process_library_t use process_libraries, only: process_component_def_t use prc_core ! TODO: (bcn 2016-09-13) should be ideally only pcm_base use pcm, only: pcm_nlo_t, pcm_instance_nlo_t ! TODO: (bcn 2016-09-13) details of process config should not be necessary here use process_config, only: COMP_REAL_FIN use process use instances use event_base use events use event_transforms use shower use eio_data use eio_base use rt_data use dispatch_beams, only: dispatch_qcd use dispatch_rng, only: dispatch_rng_factory use dispatch_rng, only: update_rng_seed_in_var_list use dispatch_me_methods, only: dispatch_core_update, dispatch_core_restore use dispatch_transforms, only: dispatch_evt_isr_epa_handler use dispatch_transforms, only: dispatch_evt_resonance use dispatch_transforms, only: dispatch_evt_decay use dispatch_transforms, only: dispatch_evt_shower use dispatch_transforms, only: dispatch_evt_hadrons use dispatch_transforms, only: dispatch_evt_nlo use integrations use event_streams use restricted_subprocesses, only: resonant_subprocess_set_t use restricted_subprocesses, only: get_libname_res use evt_nlo <> <> <> <> <> contains <> end module simulations @ %def simulations @ \subsection{Event counting} In this object we collect statistical information about an event sample or sub-sample. <>= type :: counter_t integer :: total = 0 integer :: generated = 0 integer :: read = 0 integer :: positive = 0 integer :: negative = 0 integer :: zero = 0 integer :: excess = 0 integer :: dropped = 0 real(default) :: max_excess = 0 real(default) :: sum_excess = 0 logical :: reproduce_xsection = .false. real(default) :: mean = 0 real(default) :: varsq = 0 integer :: nlo_weight_counter = 0 contains <> end type counter_t @ %def simulation_counter_t @ Output. <>= procedure :: write => counter_write <>= subroutine counter_write (counter, unit) class(counter_t), intent(in) :: counter integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) 1 format (3x,A,I0) 2 format (5x,A,I0) 3 format (5x,A,ES19.12) write (u, 1) "Events total = ", counter%total write (u, 2) "generated = ", counter%generated write (u, 2) "read = ", counter%read write (u, 2) "positive weight = ", counter%positive write (u, 2) "negative weight = ", counter%negative write (u, 2) "zero weight = ", counter%zero write (u, 2) "excess weight = ", counter%excess if (counter%excess /= 0) then write (u, 3) "max excess = ", counter%max_excess write (u, 3) "avg excess = ", counter%sum_excess / counter%total end if write (u, 1) "Events dropped = ", counter%dropped end subroutine counter_write @ %def counter_write @ This is a screen message: if there was an excess, display statistics. <>= procedure :: show_excess => counter_show_excess <>= subroutine counter_show_excess (counter) class(counter_t), intent(in) :: counter if (counter%excess > 0) then write (msg_buffer, "(A,1x,I0,1x,A,1x,'(',F7.3,' %)')") & "Encountered events with excess weight:", counter%excess, & "events", 100 * counter%excess / real (counter%total) call msg_warning () write (msg_buffer, "(A,ES10.3)") & "Maximum excess weight =", counter%max_excess call msg_message () write (msg_buffer, "(A,ES10.3)") & "Average excess weight =", counter%sum_excess / counter%total call msg_message () end if end subroutine counter_show_excess @ %def counter_show_excess @ If events have been dropped during simulation of weighted events, issue a message here. <>= procedure :: show_dropped => counter_show_dropped <>= subroutine counter_show_dropped (counter) class(counter_t), intent(in) :: counter if (counter%dropped > 0) then write (msg_buffer, "(A,1x,I0,1x,'(',A,1x,I0,')')") & "Dropped events (weight zero) =", & counter%dropped, "total", counter%dropped + counter%total call msg_message () write (msg_buffer, "(A,ES15.8)") & "All event weights must be rescaled by f =", & real (counter%total, default) & / real (counter%dropped + counter%total, default) call msg_warning () end if end subroutine counter_show_dropped @ %def counter_show_dropped @ <>= procedure :: show_mean_and_variance => counter_show_mean_and_variance <>= subroutine counter_show_mean_and_variance (counter) class(counter_t), intent(in) :: counter if (counter%reproduce_xsection .and. counter%nlo_weight_counter > 1) then print *, "Reconstructed cross-section from event weights: " print *, counter%mean, '+-', sqrt (counter%varsq / (counter%nlo_weight_counter - 1)) end if end subroutine counter_show_mean_and_variance @ %def counter_show_mean_and_variance @ Count an event. The weight and event source are optional; by default we assume that the event has been generated and has positive weight. The optional integer [[n_dropped]] counts weighted events with weight zero that were encountered while generating the current event, but dropped (because of their zero weight). Accumulating this number allows for renormalizing event weight sums in histograms, after the generation step has been completed. <>= procedure :: record => counter_record <>= subroutine counter_record (counter, weight, excess, n_dropped, from_file) class(counter_t), intent(inout) :: counter real(default), intent(in), optional :: weight, excess integer, intent(in), optional :: n_dropped logical, intent(in), optional :: from_file counter%total = counter%total + 1 if (present (from_file)) then if (from_file) then counter%read = counter%read + 1 else counter%generated = counter%generated + 1 end if else counter%generated = counter%generated + 1 end if if (present (weight)) then if (weight > 0) then counter%positive = counter%positive + 1 else if (weight < 0) then counter%negative = counter%negative + 1 else counter%zero = counter%zero + 1 end if else counter%positive = counter%positive + 1 end if if (present (excess)) then if (excess > 0) then counter%excess = counter%excess + 1 counter%max_excess = max (counter%max_excess, excess) counter%sum_excess = counter%sum_excess + excess end if end if if (present (n_dropped)) then counter%dropped = counter%dropped + n_dropped end if end subroutine counter_record @ %def counter_record @ <>= procedure :: record_mean_and_variance => & counter_record_mean_and_variance <>= subroutine counter_record_mean_and_variance (counter, weight, i_nlo) class(counter_t), intent(inout) :: counter real(default), intent(in) :: weight integer, intent(in) :: i_nlo real(default), save :: weight_buffer = 0._default integer, save :: nlo_count = 1 if (.not. counter%reproduce_xsection) return if (i_nlo == 1) then call flush_weight_buffer (weight_buffer, nlo_count) weight_buffer = weight nlo_count = 1 else weight_buffer = weight_buffer + weight nlo_count = nlo_count + 1 end if contains subroutine flush_weight_buffer (w, n_nlo) real(default), intent(in) :: w integer, intent(in) :: n_nlo integer :: n real(default) :: mean_new counter%nlo_weight_counter = counter%nlo_weight_counter + 1 !!! Minus 1 to take into account offset from initialization n = counter%nlo_weight_counter - 1 if (n > 0) then mean_new = counter%mean + (w / n_nlo - counter%mean) / n if (n > 1) & counter%varsq = counter%varsq - counter%varsq / (n - 1) + & n * (mean_new - counter%mean)**2 counter%mean = mean_new end if end subroutine flush_weight_buffer end subroutine counter_record_mean_and_variance @ %def counter_record_mean_and_variance @ \subsection{Simulation: component sets} For each set of process components that share a MCI entry in the process configuration, we keep a separate event record. <>= type :: mci_set_t private integer :: n_components = 0 integer, dimension(:), allocatable :: i_component type(string_t), dimension(:), allocatable :: component_id logical :: has_integral = .false. real(default) :: integral = 0 real(default) :: error = 0 real(default) :: weight_mci = 0 type(counter_t) :: counter contains <> end type mci_set_t @ %def mci_set_t @ Output. <>= procedure :: write => mci_set_write <>= subroutine mci_set_write (object, unit, pacified) class(mci_set_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: pacified logical :: pacify integer :: u, i u = given_output_unit (unit) pacify = .false.; if (present (pacified)) pacify = pacified write (u, "(3x,A)") "Components:" do i = 1, object%n_components write (u, "(5x,I0,A,A,A)") object%i_component(i), & ": '", char (object%component_id(i)), "'" end do if (object%has_integral) then if (pacify) then write (u, "(3x,A," // FMT_15 // ")") "Integral = ", object%integral write (u, "(3x,A," // FMT_15 // ")") "Error = ", object%error write (u, "(3x,A,F9.6)") "Weight =", object%weight_mci else write (u, "(3x,A," // FMT_19 // ")") "Integral = ", object%integral write (u, "(3x,A," // FMT_19 // ")") "Error = ", object%error write (u, "(3x,A,F13.10)") "Weight =", object%weight_mci end if else write (u, "(3x,A)") "Integral = [undefined]" end if call object%counter%write (u) end subroutine mci_set_write @ %def mci_set_write @ Initialize: Get the indices and names for the process components that will contribute to this set. <>= procedure :: init => mci_set_init <>= subroutine mci_set_init (object, i_mci, process) class(mci_set_t), intent(out) :: object integer, intent(in) :: i_mci type(process_t), intent(in), target :: process integer :: i call process%get_i_component (i_mci, object%i_component) object%n_components = size (object%i_component) allocate (object%component_id (object%n_components)) do i = 1, size (object%component_id) object%component_id(i) = & process%get_component_id (object%i_component(i)) end do if (process%has_integral (i_mci)) then object%integral = process%get_integral (i_mci) object%error = process%get_error (i_mci) object%has_integral = .true. end if end subroutine mci_set_init @ %def mci_set_init @ \subsection{Process-core Safe} This is an object that temporarily holds a process core object. We need this while rescanning a process with modified parameters. After the rescan, we want to restore the original state. <>= type :: core_safe_t class(prc_core_t), allocatable :: core end type core_safe_t @ %def core_safe_t @ \subsection{Process Object} The simulation works on process objects. This subroutine makes a process object available for simulation. The process is in the process stack. [[use_process]] implies that the process should already exist as an object in the process stack. If integration is not yet done, do it. Any generated process object should be put on the global stack, if it is separate from the local one. <>= subroutine prepare_process & (process, process_id, use_process, integrate, local, global) type(process_t), pointer, intent(out) :: process type(string_t), intent(in) :: process_id logical, intent(in) :: use_process, integrate type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global type(rt_data_t), pointer :: current if (debug_on) call msg_debug (D_CORE, "prepare_process") if (debug_on) call msg_debug (D_CORE, "global present", present (global)) if (present (global)) then current => global else current => local end if process => current%process_stack%get_process_ptr (process_id) if (debug_on) call msg_debug (D_CORE, "use_process", use_process) if (debug_on) call msg_debug (D_CORE, "associated process", associated (process)) if (use_process .and. .not. associated (process)) then if (integrate) then call msg_message ("Simulate: process '" & // char (process_id) // "' needs integration") else call msg_message ("Simulate: process '" & // char (process_id) // "' needs initialization") end if if (present (global)) then call integrate_process (process_id, local, global, & init_only = .not. integrate) else call integrate_process (process_id, local, & local_stack = .true., init_only = .not. integrate) end if if (signal_is_pending ()) return process => current%process_stack%get_process_ptr (process_id) if (associated (process)) then if (integrate) then call msg_message ("Simulate: integration done") call current%process_stack%fill_result_vars (process_id) else call msg_message ("Simulate: process initialization done") end if else call msg_fatal ("Simulate: process '" & // char (process_id) // "' could not be initialized: aborting") end if else if (.not. associated (process)) then if (present (global)) then call integrate_process (process_id, local, global, & init_only = .true.) else call integrate_process (process_id, local, & local_stack = .true., init_only = .true.) end if process => current%process_stack%get_process_ptr (process_id) call msg_message & ("Simulate: process '" & // char (process_id) // "': enabled for rescan only") end if end subroutine prepare_process @ %def prepare_process @ \subsection{Simulation entry} For each process that we consider for event generation, we need a separate entry. The entry separately records the process ID and run ID. The [[weight_mci]] array is used for selecting a component set (which shares a MCI record inside the process container) when generating an event for the current process. The simulation entry is an extension of the [[event_t]] event record. This core object contains configuration data, pointers to the process and process instance, the expressions, flags and values that are evaluated at runtime, and the resulting particle set. The entry explicitly allocate the [[process_instance]], which becomes the process-specific workspace for the event record. If entries with differing environments are present simultaneously, we may need to switch QCD parameters and/or the model event by event. In this case, the [[qcd]] and/or [[model]] components are present.\\ For the puropose of NLO events, [[entry_t]] contains a pointer list to other simulation-entries. This is due to the fact that we have to associate an event for each component of the fixed order simulation, i.e. one $N$-particle event and $N_\alpha$ $N+1$-particle events. However, all entries share the same event transforms. <>= type, extends (event_t) :: entry_t private type(string_t) :: process_id type(string_t) :: library type(string_t) :: run_id logical :: has_integral = .false. real(default) :: integral = 0 real(default) :: error = 0 real(default) :: process_weight = 0 logical :: valid = .false. type(counter_t) :: counter integer :: n_in = 0 integer :: n_mci = 0 type(mci_set_t), dimension(:), allocatable :: mci_sets type(selector_t) :: mci_selector logical :: has_resonant_subprocess_set = .false. type(resonant_subprocess_set_t) :: resonant_subprocess_set type(core_safe_t), dimension(:), allocatable :: core_safe class(model_data_t), pointer :: model => null () type(qcd_t) :: qcd type(entry_t), pointer :: first => null () type(entry_t), pointer :: next => null () class(evt_t), pointer :: evt_powheg => null () contains <> end type entry_t @ %def entry_t @ Output. Write just the configuration, the event is written by a separate routine. The [[verbose]] option is unused, it is required by the interface of the base-object method. <>= procedure :: write_config => entry_write_config <>= subroutine entry_write_config (object, unit, pacified) class(entry_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: pacified logical :: pacify integer :: u, i u = given_output_unit (unit) pacify = .false.; if (present (pacified)) pacify = pacified write (u, "(3x,A,A,A)") "Process = '", char (object%process_id), "'" write (u, "(3x,A,A,A)") "Library = '", char (object%library), "'" write (u, "(3x,A,A,A)") "Run = '", char (object%run_id), "'" write (u, "(3x,A,L1)") "is valid = ", object%valid if (object%has_integral) then if (pacify) then write (u, "(3x,A," // FMT_15 // ")") "Integral = ", object%integral write (u, "(3x,A," // FMT_15 // ")") "Error = ", object%error write (u, "(3x,A,F9.6)") "Weight =", object%process_weight else write (u, "(3x,A," // FMT_19 // ")") "Integral = ", object%integral write (u, "(3x,A," // FMT_19 // ")") "Error = ", object%error write (u, "(3x,A,F13.10)") "Weight =", object%process_weight end if else write (u, "(3x,A)") "Integral = [undefined]" end if write (u, "(3x,A,I0)") "MCI sets = ", object%n_mci call object%counter%write (u) do i = 1, size (object%mci_sets) write (u, "(A)") write (u, "(1x,A,I0,A)") "MCI set #", i, ":" call object%mci_sets(i)%write (u, pacified) end do if (object%resonant_subprocess_set%is_active ()) then write (u, "(A)") call object%write_resonant_subprocess_data (u) end if if (allocated (object%core_safe)) then do i = 1, size (object%core_safe) write (u, "(1x,A,I0,A)") "Saved process-component core #", i, ":" call object%core_safe(i)%core%write (u) end do end if end subroutine entry_write_config @ %def entry_write_config @ Finalizer. The [[instance]] pointer component of the [[event_t]] base type points to a target which we did explicitly allocate in the [[entry_init]] procedure. Therefore, we finalize and explicitly deallocate it here. Then we call the finalizer of the base type. <>= procedure :: final => entry_final <>= subroutine entry_final (object) class(entry_t), intent(inout) :: object integer :: i if (associated (object%instance)) then do i = 1, object%n_mci call object%instance%final_simulation (i) end do call object%instance%final () deallocate (object%instance) end if call object%event_t%final () end subroutine entry_final @ %def entry_final @ Copy the content of an entry into another one, except for the next-pointer <>= procedure :: copy_entry => entry_copy_entry <>= subroutine entry_copy_entry (entry1, entry2) class(entry_t), intent(in), target :: entry1 type(entry_t), intent(inout), target :: entry2 call entry1%event_t%clone (entry2%event_t) entry2%process_id = entry1%process_id entry2%library = entry1%library entry2%run_id = entry1%run_id entry2%has_integral = entry1%has_integral entry2%integral = entry1%integral entry2%error = entry1%error entry2%process_weight = entry1%process_weight entry2%valid = entry1%valid entry2%counter = entry1%counter entry2%n_in = entry1%n_in entry2%n_mci = entry1%n_mci if (allocated (entry1%mci_sets)) then allocate (entry2%mci_sets (size (entry1%mci_sets))) entry2%mci_sets = entry1%mci_sets end if entry2%mci_selector = entry1%mci_selector if (allocated (entry1%core_safe)) then allocate (entry2%core_safe (size (entry1%core_safe))) entry2%core_safe = entry1%core_safe end if entry2%model => entry1%model entry2%qcd = entry1%qcd end subroutine entry_copy_entry @ %def entry_copy_entry @ Initialization. Search for a process entry and allocate a process instance as an anonymous object, temporarily accessible via the [[process_instance]] pointer. Assign data by looking at the process object and at the environment. If [[n_alt]] is set, we prepare for additional alternate sqme and weight entries. The [[compile]] flag is only false if we don't need the Whizard process at all, just its definition. In that case, we skip process initialization. Otherwise, and if the process object is not found initially: if [[integrate]] is set, attempt an integration pass and try again. Otherwise, just initialize the object. If [[generate]] is set, prepare the MCI objects for generating new events. For pure rescanning, this is not necessary. If [[resonance_history]] is set, we create a separate process library which contains all possible restricted subprocesses with distinct resonance histories. These processes will not be integrated, but their matrix element codes are used for determining probabilities of resonance histories. Note that this can work only if the process method is OMega, and the phase-space method is 'wood'. When done, we assign the [[instance]] and [[process]] pointers of the base type by the [[connect]] method, so we can reference them later. TODO: In case of NLO event generation, copying the configuration from the master process is rather intransparent. For instance, we override the process var list by the global var list. <>= procedure :: init => entry_init <>= subroutine entry_init & (entry, process_id, & use_process, integrate, generate, update_sqme, & support_resonance_history, & local, global, n_alt) class(entry_t), intent(inout), target :: entry type(string_t), intent(in) :: process_id logical, intent(in) :: use_process, integrate, generate, update_sqme logical, intent(in) :: support_resonance_history type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global integer, intent(in), optional :: n_alt type(process_t), pointer :: process, master_process type(process_instance_t), pointer :: process_instance type(process_library_t), pointer :: prclib_saved integer :: i logical :: res_include_trivial logical :: combined_integration integer :: selected_mci selected_mci = 0 if (debug_on) call msg_debug (D_CORE, "entry_init") if (debug_on) call msg_debug (D_CORE, "process_id", process_id) call prepare_process & (master_process, process_id, use_process, integrate, local, global) if (signal_is_pending ()) return if (associated (master_process)) then if (.not. master_process%has_matrix_element ()) then entry%has_integral = .true. entry%process_id = process_id entry%valid = .false. return end if else call entry%basic_init (local%var_list) entry%has_integral = .false. entry%process_id = process_id call entry%import_process_def_characteristics (local%prclib, process_id) entry%valid = .true. return end if call entry%basic_init (local%var_list, n_alt) entry%process_id = process_id if (generate .or. integrate) then entry%run_id = master_process%get_run_id () process => master_process else call local%set_log (var_str ("?rebuild_phase_space"), & .false., is_known = .true.) call local%set_log (var_str ("?check_phs_file"), & .false., is_known = .true.) call local%set_log (var_str ("?rebuild_grids"), & .false., is_known = .true.) entry%run_id = & local%var_list%get_sval (var_str ("$run_id")) if (update_sqme) then call prepare_local_process (process, process_id, local) else process => master_process end if end if call entry%import_process_characteristics (process) allocate (entry%mci_sets (entry%n_mci)) do i = 1, size (entry%mci_sets) call entry%mci_sets(i)%init (i, master_process) end do call entry%import_process_results (master_process) call entry%prepare_expressions (local) if (process%is_nlo_calculation ()) then call process%init_nlo_settings (global%var_list) end if combined_integration = local%get_lval (var_str ("?combined_nlo_integration")) if (.not. combined_integration & .and. local%get_lval (var_str ("?fixed_order_nlo_events"))) & selected_mci = process%extract_active_component_mci () call prepare_process_instance (process_instance, process, local%model, & local = local) if (generate) then if (selected_mci > 0) then call process%prepare_simulation (selected_mci) call process_instance%init_simulation (selected_mci, entry%config%safety_factor, & local%get_lval (var_str ("?keep_failed_events"))) else do i = 1, entry%n_mci call process%prepare_simulation (i) call process_instance%init_simulation (i, entry%config%safety_factor, & local%get_lval (var_str ("?keep_failed_events"))) end do end if end if if (support_resonance_history) then prclib_saved => local%prclib call entry%setup_resonant_subprocesses (local, process) if (entry%has_resonant_subprocess_set) then if (signal_is_pending ()) return call entry%compile_resonant_subprocesses (local) if (signal_is_pending ()) return call entry%prepare_resonant_subprocesses (local, global) if (signal_is_pending ()) return call entry%prepare_resonant_subprocess_instances (local) end if if (signal_is_pending ()) return if (associated (prclib_saved)) call local%update_prclib (prclib_saved) end if call entry%setup_event_transforms (process, local) call dispatch_qcd (entry%qcd, local%get_var_list_ptr (), local%os_data) call entry%connect_qcd () select type (pcm => process_instance%pcm) class is (pcm_instance_nlo_t) select type (config => pcm%config) type is (pcm_nlo_t) if (config%settings%fixed_order_nlo) & call pcm%set_fixed_order_event_mode () end select end select if (present (global)) then call entry%connect (process_instance, local%model, global%process_stack) else call entry%connect (process_instance, local%model, local%process_stack) end if call entry%setup_expressions () entry%model => process%get_model_ptr () entry%valid = .true. end subroutine entry_init @ %def entry_init @ <>= procedure :: set_active_real_components => entry_set_active_real_components <>= subroutine entry_set_active_real_components (entry) class(entry_t), intent(inout) :: entry integer :: i_active_real select type (pcm => entry%instance%pcm) class is (pcm_instance_nlo_t) i_active_real = entry%instance%get_real_of_mci () if (debug_on) call msg_debug2 (D_CORE, "i_active_real", i_active_real) if (associated (entry%evt_powheg)) then select type (evt => entry%evt_powheg) type is (evt_shower_t) if (entry%process%get_component_type(i_active_real) == COMP_REAL_FIN) then if (debug_on) call msg_debug (D_CORE, "Disabling Powheg matching for ", i_active_real) call evt%disable_powheg_matching () else if (debug_on) call msg_debug (D_CORE, "Enabling Powheg matching for ", i_active_real) call evt%enable_powheg_matching () end if class default call msg_fatal ("powheg-evt should be evt_shower_t!") end select end if end select end subroutine entry_set_active_real_components @ %def entry_set_active_real_components @ Part of simulation-entry initialization: set up a process object for local use. <>= subroutine prepare_local_process (process, process_id, local) type(process_t), pointer, intent(inout) :: process type(string_t), intent(in) :: process_id type(rt_data_t), intent(inout), target :: local type(integration_t) :: intg call intg%create_process (process_id) call intg%init_process (local) call intg%setup_process (local, verbose=.false.) process => intg%get_process_ptr () end subroutine prepare_local_process @ %def prepare_local_process @ Part of simulation-entry initialization: set up a process instance matching the selected process object. The model that we can provide as an extra argument can modify particle settings (polarization) in the density matrices that will be constructed. It does not affect parameters. <>= subroutine prepare_process_instance & (process_instance, process, model, local) type(process_instance_t), pointer, intent(inout) :: process_instance type(process_t), intent(inout), target :: process class(model_data_t), intent(in), optional :: model type(rt_data_t), intent(in), optional, target :: local allocate (process_instance) call process_instance%init (process) if (process%is_nlo_calculation ()) then select type (pcm => process_instance%pcm) type is (pcm_instance_nlo_t) select type (config => pcm%config) type is (pcm_nlo_t) if (.not. config%settings%combined_integration) & call pcm%set_radiation_event () end select end select call process%prepare_any_external_code () end if call process_instance%setup_event_data (model) end subroutine prepare_process_instance @ %def prepare_process_instance @ Part of simulation-entry initialization: query the process for basic information. <>= procedure, private :: import_process_characteristics & => entry_import_process_characteristics <>= subroutine entry_import_process_characteristics (entry, process) class(entry_t), intent(inout) :: entry type(process_t), intent(in), target :: process entry%library = process%get_library_name () entry%n_in = process%get_n_in () entry%n_mci = process%get_n_mci () end subroutine entry_import_process_characteristics @ %def entry_import_process_characteristics @ This is the alternative form which applies if there is no process entry, but just a process definition which we take from the provided [[prclib]] definition library. <>= procedure, private :: import_process_def_characteristics & => entry_import_process_def_characteristics <>= subroutine entry_import_process_def_characteristics (entry, prclib, id) class(entry_t), intent(inout) :: entry type(process_library_t), intent(in), target :: prclib type(string_t), intent(in) :: id entry%library = prclib%get_name () entry%n_in = prclib%get_n_in (id) end subroutine entry_import_process_def_characteristics @ %def entry_import_process_def_characteristics @ Part of simulation-entry initialization: query the process for integration results. <>= procedure, private :: import_process_results & => entry_import_process_results <>= subroutine entry_import_process_results (entry, process) class(entry_t), intent(inout) :: entry type(process_t), intent(in), target :: process if (process%has_integral ()) then entry%integral = process%get_integral () entry%error = process%get_error () call entry%set_sigma (entry%integral) entry%has_integral = .true. end if end subroutine entry_import_process_results @ %def entry_import_process_characteristics @ Part of simulation-entry initialization: create expression factory objects and store them. <>= procedure, private :: prepare_expressions & => entry_prepare_expressions <>= subroutine entry_prepare_expressions (entry, local) class(entry_t), intent(inout) :: entry type(rt_data_t), intent(in), target :: local type(eval_tree_factory_t) :: expr_factory call expr_factory%init (local%pn%selection_lexpr) call entry%set_selection (expr_factory) call expr_factory%init (local%pn%reweight_expr) call entry%set_reweight (expr_factory) call expr_factory%init (local%pn%analysis_lexpr) call entry%set_analysis (expr_factory) end subroutine entry_prepare_expressions @ %def entry_prepare_expressions @ Initializes the list of additional NLO entries. The routine gets the information about how many entries to associate from [[region_data]]. <>= procedure :: setup_additional_entries => entry_setup_additional_entries <>= subroutine entry_setup_additional_entries (entry) class(entry_t), intent(inout), target :: entry type(entry_t), pointer :: current_entry integer :: i, n_phs type(evt_nlo_t), pointer :: evt integer :: mode evt => null () select type (pcm => entry%instance%pcm) class is (pcm_instance_nlo_t) select type (config => pcm%config) type is (pcm_nlo_t) n_phs = config%region_data%n_phs end select end select select type (entry) type is (entry_t) current_entry => entry current_entry%first => entry call get_nlo_evt_ptr (current_entry, evt, mode) if (mode > EVT_NLO_SEPARATE_BORNLIKE) then allocate (evt%particle_set_radiated (n_phs + 1)) evt%event_deps%n_phs = n_phs evt%qcd = entry%qcd do i = 1, n_phs allocate (current_entry%next) current_entry%next%first => current_entry%first current_entry => current_entry%next call entry%copy_entry (current_entry) current_entry%i_event = i end do else allocate (evt%particle_set_radiated (1)) end if end select contains subroutine get_nlo_evt_ptr (entry, evt, mode) type(entry_t), intent(in), target :: entry type(evt_nlo_t), intent(out), pointer :: evt integer, intent(out) :: mode class(evt_t), pointer :: current_evt evt => null () current_evt => entry%transform_first do select type (current_evt) type is (evt_nlo_t) evt => current_evt mode = evt%mode exit end select if (associated (current_evt%next)) then current_evt => current_evt%next else call msg_fatal ("evt_nlo not in list of event transforms") end if end do end subroutine get_nlo_evt_ptr end subroutine entry_setup_additional_entries @ %def entry_setup_additional_entries @ <>= procedure :: get_first => entry_get_first <>= function entry_get_first (entry) result (entry_out) class(entry_t), intent(in), target :: entry type(entry_t), pointer :: entry_out entry_out => null () select type (entry) type is (entry_t) if (entry%is_nlo ()) then entry_out => entry%first else entry_out => entry end if end select end function entry_get_first @ %def entry_get_first @ <>= procedure :: get_next => entry_get_next <>= function entry_get_next (entry) result (next_entry) class(entry_t), intent(in) :: entry type(entry_t), pointer :: next_entry next_entry => null () if (associated (entry%next)) then next_entry => entry%next else call msg_fatal ("Get next entry: No next entry") end if end function entry_get_next @ %def entry_get_next @ <>= procedure :: count_nlo_entries => entry_count_nlo_entries <>= function entry_count_nlo_entries (entry) result (n) class(entry_t), intent(in), target :: entry integer :: n type(entry_t), pointer :: current_entry n = 1 if (.not. associated (entry%next)) then return else current_entry => entry%next do n = n + 1 if (.not. associated (current_entry%next)) exit current_entry => current_entry%next end do end if end function entry_count_nlo_entries @ %def entry_count_nlo_entries @ <>= procedure :: reset_nlo_counter => entry_reset_nlo_counter <>= subroutine entry_reset_nlo_counter (entry) class(entry_t), intent(inout) :: entry class(evt_t), pointer :: evt evt => entry%transform_first do select type (evt) type is (evt_nlo_t) evt%i_evaluation = 0 exit end select if (associated (evt%next)) evt => evt%next end do end subroutine entry_reset_nlo_counter @ %def entry_reset_nlo_counter @ <>= procedure :: determine_if_powheg_matching => entry_determine_if_powheg_matching <>= subroutine entry_determine_if_powheg_matching (entry) class(entry_t), intent(inout) :: entry class(evt_t), pointer :: current_transform if (associated (entry%transform_first)) then current_transform => entry%transform_first do select type (current_transform) type is (evt_shower_t) if (current_transform%contains_powheg_matching ()) & entry%evt_powheg => current_transform exit end select if (associated (current_transform%next)) then current_transform => current_transform%next else exit end if end do end if end subroutine entry_determine_if_powheg_matching @ %def entry_determine_if_powheg_matching @ Part of simulation-entry initialization: dispatch event transforms (decay, shower) as requested. If a transform is not applicable or switched off via some variable, it will be skipped. Regarding resonances/decays: these two transforms are currently mutually exclusive. Resonance insertion will not be applied if there is an unstable particle in the game. <>= procedure, private :: setup_event_transforms & => entry_setup_event_transforms <>= subroutine entry_setup_event_transforms (entry, process, local) class(entry_t), intent(inout) :: entry type(process_t), intent(inout), target :: process type(rt_data_t), intent(in), target :: local class(evt_t), pointer :: evt type(var_list_t), pointer :: var_list logical :: enable_isr_handler logical :: enable_epa_handler logical :: enable_fixed_order logical :: enable_shower var_list => local%get_var_list_ptr () enable_isr_handler = local%get_lval (var_str ("?isr_handler")) enable_epa_handler = local%get_lval (var_str ("?epa_handler")) if (enable_isr_handler .or. enable_epa_handler) then call dispatch_evt_isr_epa_handler (evt, local%var_list) if (associated (evt)) call entry%import_transform (evt) end if if (process%contains_unstable (local%model)) then call dispatch_evt_decay (evt, local%var_list) if (associated (evt)) call entry%import_transform (evt) else if (entry%resonant_subprocess_set%is_active ()) then call dispatch_evt_resonance (evt, local%var_list, & entry%resonant_subprocess_set%get_resonance_history_set (), & entry%resonant_subprocess_set%get_libname ()) if (associated (evt)) then call entry%resonant_subprocess_set%connect_transform (evt) call entry%resonant_subprocess_set%set_on_shell_limit & (local%get_rval (var_str ("resonance_on_shell_limit"))) call entry%resonant_subprocess_set%set_on_shell_turnoff & (local%get_rval (var_str ("resonance_on_shell_turnoff"))) call entry%resonant_subprocess_set%set_background_factor & (local%get_rval (var_str ("resonance_background_factor"))) call entry%import_transform (evt) end if end if enable_fixed_order = local%get_lval (var_str ("?fixed_order_nlo_events")) if (enable_fixed_order) then if (local%get_lval (var_str ("?unweighted"))) & call msg_fatal ("NLO Fixed Order events have to be generated with & &?unweighted = false") call dispatch_evt_nlo (evt, local%get_lval (var_str ("?keep_failed_events"))) call entry%import_transform (evt) end if enable_shower = local%get_lval (var_str ("?allow_shower")) .and. & (local%get_lval (var_str ("?ps_isr_active")) & .or. local%get_lval (var_str ("?ps_fsr_active")) & .or. local%get_lval (var_str ("?muli_active")) & .or. local%get_lval (var_str ("?mlm_matching")) & .or. local%get_lval (var_str ("?ckkw_matching")) & .or. local%get_lval (var_str ("?powheg_matching"))) if (enable_shower) then call dispatch_evt_shower (evt, var_list, local%model, & local%fallback_model, local%os_data, local%beam_structure, & process) call entry%import_transform (evt) end if if (local%get_lval (var_str ("?hadronization_active"))) then call dispatch_evt_hadrons (evt, var_list, local%fallback_model) call entry%import_transform (evt) end if end subroutine entry_setup_event_transforms @ %def entry_setup_event_transforms @ Compute weights. The integral in the argument is the sum of integrals for all processes in the sample. After computing the process weights, we repeat the normalization procedure for the process components. <>= procedure :: init_mci_selector => entry_init_mci_selector <>= subroutine entry_init_mci_selector (entry, negative_weights) class(entry_t), intent(inout), target :: entry logical, intent(in), optional :: negative_weights type(entry_t), pointer :: current_entry integer :: i, j, k if (debug_on) call msg_debug (D_CORE, "entry_init_mci_selector") if (entry%has_integral) then select type (entry) type is (entry_t) current_entry => entry do j = 1, current_entry%count_nlo_entries () if (j > 1) current_entry => current_entry%get_next () do k = 1, size(current_entry%mci_sets%integral) if (debug_on) call msg_debug (D_CORE, "current_entry%mci_sets(k)%integral", & current_entry%mci_sets(k)%integral) end do call current_entry%mci_selector%init & (current_entry%mci_sets%integral, negative_weights) do i = 1, current_entry%n_mci current_entry%mci_sets(i)%weight_mci = & current_entry%mci_selector%get_weight (i) end do end do end select end if end subroutine entry_init_mci_selector @ %def entry_init_mci_selector @ Select a MCI entry, using the embedded random-number generator. <>= procedure :: select_mci => entry_select_mci <>= function entry_select_mci (entry) result (i_mci) class(entry_t), intent(inout) :: entry integer :: i_mci if (debug_on) call msg_debug2 (D_CORE, "entry_select_mci") i_mci = entry%process%extract_active_component_mci () if (i_mci == 0) call entry%mci_selector%generate (entry%rng, i_mci) if (debug_on) call msg_debug2 (D_CORE, "i_mci", i_mci) end function entry_select_mci @ %def entry_select_mci @ Record an event for this entry, i.e., increment the appropriate counters. <>= procedure :: record => entry_record <>= subroutine entry_record (entry, i_mci, from_file) class(entry_t), intent(inout) :: entry integer, intent(in) :: i_mci logical, intent(in), optional :: from_file real(default) :: weight, excess integer :: n_dropped weight = entry%get_weight_prc () excess = entry%get_excess_prc () n_dropped = entry%get_n_dropped () call entry%counter%record (weight, excess, n_dropped, from_file) if (i_mci > 0) then call entry%mci_sets(i_mci)%counter%record (weight, excess) end if end subroutine entry_record @ %def entry_record @ Update and restore the process core that this entry accesses, when parameters change. If explicit arguments [[model]], [[qcd]], or [[helicity_selection]] are provided, use those. Otherwise use the parameters stored in the process object. <>= procedure :: update_process => entry_update_process procedure :: restore_process => entry_restore_process <>= subroutine entry_update_process & (entry, model, qcd, helicity_selection) class(entry_t), intent(inout) :: entry class(model_data_t), intent(in), optional, target :: model type(qcd_t), intent(in), optional :: qcd type(helicity_selection_t), intent(in), optional :: helicity_selection type(process_t), pointer :: process class(prc_core_t), allocatable :: core integer :: i, n_terms class(model_data_t), pointer :: model_local type(qcd_t) :: qcd_local if (present (model)) then model_local => model else model_local => entry%model end if if (present (qcd)) then qcd_local = qcd else qcd_local = entry%qcd end if process => entry%get_process_ptr () n_terms = process%get_n_terms () allocate (entry%core_safe (n_terms)) do i = 1, n_terms if (process%has_matrix_element (i, is_term_index = .true.)) then call process%extract_core (i, core) call dispatch_core_update (core, & model_local, helicity_selection, qcd_local, & entry%core_safe(i)%core) call process%restore_core (i, core) end if end do end subroutine entry_update_process subroutine entry_restore_process (entry) class(entry_t), intent(inout) :: entry type(process_t), pointer :: process class(prc_core_t), allocatable :: core integer :: i, n_terms process => entry%get_process_ptr () n_terms = process%get_n_terms () do i = 1, n_terms if (process%has_matrix_element (i, is_term_index = .true.)) then call process%extract_core (i, core) call dispatch_core_restore (core, entry%core_safe(i)%core) call process%restore_core (i, core) end if end do deallocate (entry%core_safe) end subroutine entry_restore_process @ %def entry_update_process @ %def entry_restore_process <>= procedure :: connect_qcd => entry_connect_qcd <>= subroutine entry_connect_qcd (entry) class(entry_t), intent(inout), target :: entry class(evt_t), pointer :: evt evt => entry%transform_first do while (associated (evt)) select type (evt) type is (evt_shower_t) evt%qcd = entry%qcd if (allocated (evt%matching)) then evt%matching%qcd = entry%qcd end if end select evt => evt%next end do end subroutine entry_connect_qcd @ %def entry_connect_qcd @ \subsection{Handling resonant subprocesses} Resonant subprocesses are required if we want to determine resonance histories when generating events. The feature is optional, to be switched on by the user. This procedure initializes a new, separate process library that contains copies of the current process, restricted to the relevant resonance histories. (If this library exists already, it is just kept.) The histories can be extracted from the process object. The code has to match the assignments in [[create_resonant_subprocess_library]]. The library may already exist -- in that case, here it will be recovered without recompilation. <>= procedure :: setup_resonant_subprocesses & => entry_setup_resonant_subprocesses <>= subroutine entry_setup_resonant_subprocesses (entry, global, process) class(entry_t), intent(inout) :: entry type(rt_data_t), intent(inout), target :: global type(process_t), intent(in), target :: process type(string_t) :: libname type(resonance_history_set_t) :: res_history_set type(process_library_t), pointer :: lib type(process_component_def_t), pointer :: process_component_def logical :: req_resonant, library_exist integer :: i_component libname = process%get_library_name () lib => global%prclib_stack%get_library_ptr (libname) entry%has_resonant_subprocess_set = lib%req_resonant (process%get_id ()) if (entry%has_resonant_subprocess_set) then libname = get_libname_res (process%get_id ()) call entry%resonant_subprocess_set%init (process%get_n_components ()) call entry%resonant_subprocess_set%create_library & (libname, global, library_exist) do i_component = 1, process%get_n_components () call process%extract_resonance_history_set & (res_history_set, i_component = i_component) call entry%resonant_subprocess_set%fill_resonances & (res_history_set, i_component) if (.not. library_exist) then process_component_def & => process%get_component_def_ptr (i_component) call entry%resonant_subprocess_set%add_to_library & (i_component, & process_component_def%get_prt_spec_in (), & process_component_def%get_prt_spec_out (), & global) end if end do call entry%resonant_subprocess_set%freeze_library (global) end if end subroutine entry_setup_resonant_subprocesses @ %def entry_setup_resonant_subprocesses @ Compile the resonant-subprocesses library. The library is assumed to be the current library in the [[global]] object. This is a simple wrapper. <>= procedure :: compile_resonant_subprocesses & => entry_compile_resonant_subprocesses <>= subroutine entry_compile_resonant_subprocesses (entry, global) class(entry_t), intent(inout) :: entry type(rt_data_t), intent(inout), target :: global call entry%resonant_subprocess_set%compile_library (global) end subroutine entry_compile_resonant_subprocesses @ %def entry_compile_resonant_subprocesses @ Prepare process objects for the resonant-subprocesses library. The process objects are appended to the global process stack. We initialize the processes, such that we can evaluate matrix elements, but we do not need to integrate them. <>= procedure :: prepare_resonant_subprocesses & => entry_prepare_resonant_subprocesses <>= subroutine entry_prepare_resonant_subprocesses (entry, local, global) class(entry_t), intent(inout) :: entry type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global call entry%resonant_subprocess_set%prepare_process_objects (local, global) end subroutine entry_prepare_resonant_subprocesses @ %def entry_prepare_resonant_subprocesses @ Prepare process instances. They are linked to their corresponding process objects. Both, process and instance objects, are allocated as anonymous targets inside the [[resonant_subprocess_set]] component. NOTE: those anonymous object are likely forgotten during finalization of the parent [[event_t]] (extended as [[entry_t]]) object. This should be checked! The memory leak is probably harmless as long as the event object is created once per run, not once per event. <>= procedure :: prepare_resonant_subprocess_instances & => entry_prepare_resonant_subprocess_instances <>= subroutine entry_prepare_resonant_subprocess_instances (entry, global) class(entry_t), intent(inout) :: entry type(rt_data_t), intent(in), target :: global call entry%resonant_subprocess_set%prepare_process_instances (global) end subroutine entry_prepare_resonant_subprocess_instances @ %def entry_prepare_resonant_subprocess_instances @ Display the resonant subprocesses. This includes, upon request, the resonance set that defines those subprocess, and a short or long account of the process objects themselves. <>= procedure :: write_resonant_subprocess_data & => entry_write_resonant_subprocess_data <>= subroutine entry_write_resonant_subprocess_data (entry, unit) class(entry_t), intent(in) :: entry integer, intent(in), optional :: unit integer :: u, i u = given_output_unit (unit) call entry%resonant_subprocess_set%write (unit) write (u, "(1x,A,I0)") "Resonant subprocesses refer to & &process component #", 1 end subroutine entry_write_resonant_subprocess_data @ %def entry_write_resonant_subprocess_data @ Display of the master process for the current event, for diagnostics. <>= procedure :: write_process_data => entry_write_process_data <>= subroutine entry_write_process_data & (entry, unit, show_process, show_instance, verbose) class(entry_t), intent(in) :: entry integer, intent(in), optional :: unit logical, intent(in), optional :: show_process logical, intent(in), optional :: show_instance logical, intent(in), optional :: verbose integer :: u, i logical :: s_proc, s_inst, verb type(process_t), pointer :: process type(process_instance_t), pointer :: instance u = given_output_unit (unit) s_proc = .false.; if (present (show_process)) s_proc = show_process s_inst = .false.; if (present (show_instance)) s_inst = show_instance verb = .false.; if (present (verbose)) verb = verbose if (s_proc .or. s_inst) then write (u, "(1x,A,':')") "Process data" if (s_proc) then process => entry%process if (associated (process)) then if (verb) then call write_separator (u, 2) call process%write (.false., u) else call process%show (u, verbose=.false.) end if else write (u, "(3x,A)") "[not associated]" end if end if if (s_inst) then instance => entry%instance if (associated (instance)) then if (verb) then call instance%write (u) else call instance%write_header (u) end if else write (u, "(3x,A)") "Process instance: [not associated]" end if end if end if end subroutine entry_write_process_data @ %def entry_write_process_data @ \subsection{Entries for alternative environment} Entries for alternate environments. [No additional components anymore, so somewhat redundant.] <>= type, extends (entry_t) :: alt_entry_t contains <> end type alt_entry_t @ %def alt_entry_t The alternative entries are there to re-evaluate the event, given momenta, in a different context. Therefore, we allocate a local process object and use this as the reference for the local process instance, when initializing the entry. We temporarily import the [[process]] object into an [[integration_t]] wrapper, to take advantage of the associated methods. The local process object is built in the context of the current environment, here called [[global]]. Then, we initialize the process instance. The [[master_process]] object contains the integration results to which we refer when recalculating an event. Therefore, we use this object instead of the locally built [[process]] when we extract the integration results. The locally built [[process]] object should be finalized when done. It remains accessible via the [[event_t]] base object of [[entry]], which contains pointers to the process and instance. <>= procedure :: init_alt => alt_entry_init <>= subroutine alt_entry_init (entry, process_id, master_process, local) class(alt_entry_t), intent(inout), target :: entry type(string_t), intent(in) :: process_id type(process_t), intent(in), target :: master_process type(rt_data_t), intent(inout), target :: local type(process_t), pointer :: process type(process_instance_t), pointer :: process_instance type(string_t) :: run_id integer :: i call msg_message ("Simulate: initializing alternate process setup ...") run_id = & local%var_list%get_sval (var_str ("$run_id")) call local%set_log (var_str ("?rebuild_phase_space"), & .false., is_known = .true.) call local%set_log (var_str ("?check_phs_file"), & .false., is_known = .true.) call local%set_log (var_str ("?rebuild_grids"), & .false., is_known = .true.) call entry%basic_init (local%var_list) call prepare_local_process (process, process_id, local) entry%process_id = process_id entry%run_id = run_id call entry%import_process_characteristics (process) allocate (entry%mci_sets (entry%n_mci)) do i = 1, size (entry%mci_sets) call entry%mci_sets(i)%init (i, master_process) end do call entry%import_process_results (master_process) call entry%prepare_expressions (local) call prepare_process_instance (process_instance, process, local%model) call entry%setup_event_transforms (process, local) call entry%connect (process_instance, local%model, local%process_stack) call entry%setup_expressions () entry%model => process%get_model_ptr () call msg_message ("... alternate process setup complete.") end subroutine alt_entry_init @ %def alt_entry_init @ Copy the particle set from the master entry to the alternate entry. This is the particle set of the hard process. <>= procedure :: fill_particle_set => entry_fill_particle_set <>= subroutine entry_fill_particle_set (alt_entry, entry) class(alt_entry_t), intent(inout) :: alt_entry class(entry_t), intent(in), target :: entry type(particle_set_t) :: pset call entry%get_hard_particle_set (pset) call alt_entry%set_hard_particle_set (pset) call pset%final () end subroutine entry_fill_particle_set @ %def particle_set_copy_prt @ \subsection{The simulation type} Each simulation object corresponds to an event sample, identified by the [[sample_id]]. The simulation may cover several processes simultaneously. All process-specific data, including the event records, are stored in the [[entry]] subobjects. The [[current]] index indicates which record was selected last. [[version]] is foreseen to contain a tag on the \whizard\ event file version. It can be <>= public :: simulation_t <>= type :: simulation_t private type(rt_data_t), pointer :: local => null () type(string_t) :: sample_id logical :: unweighted = .true. logical :: negative_weights = .false. logical :: support_resonance_history = .false. logical :: respect_selection = .true. integer :: norm_mode = NORM_UNDEFINED logical :: update_sqme = .false. logical :: update_weight = .false. logical :: update_event = .false. logical :: recover_beams = .false. logical :: pacify = .false. integer :: n_max_tries = 10000 integer :: n_prc = 0 integer :: n_alt = 0 logical :: has_integral = .false. logical :: valid = .false. real(default) :: integral = 0 real(default) :: error = 0 integer :: version = 1 character(32) :: md5sum_prc = "" character(32) :: md5sum_cfg = "" character(32), dimension(:), allocatable :: md5sum_alt type(entry_t), dimension(:), allocatable :: entry type(alt_entry_t), dimension(:,:), allocatable :: alt_entry type(selector_t) :: process_selector integer :: n_evt_requested = 0 integer :: event_index_offset = 0 logical :: event_index_set = .false. integer :: event_index = 0 integer :: split_n_evt = 0 integer :: split_n_kbytes = 0 integer :: split_index = 0 type(counter_t) :: counter class(rng_t), allocatable :: rng integer :: i_prc = 0 integer :: i_mci = 0 real(default) :: weight = 0 real(default) :: excess = 0 integer :: n_dropped = 0 contains <> end type simulation_t @ %def simulation_t @ Output. [[write_config]] writes just the configuration. [[write]] as a method of the base type [[event_t]] writes the current event and process instance, depending on options. <>= procedure :: write => simulation_write <>= subroutine simulation_write (object, unit, testflag) class(simulation_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: testflag logical :: pacified integer :: u, i u = given_output_unit (unit) pacified = object%pacify; if (present (testflag)) pacified = testflag call write_separator (u, 2) write (u, "(1x,A,A,A)") "Event sample: '", char (object%sample_id), "'" write (u, "(3x,A,I0)") "Processes = ", object%n_prc if (object%n_alt > 0) then write (u, "(3x,A,I0)") "Alt.wgts = ", object%n_alt end if write (u, "(3x,A,L1)") "Unweighted = ", object%unweighted write (u, "(3x,A,A)") "Event norm = ", & char (event_normalization_string (object%norm_mode)) write (u, "(3x,A,L1)") "Neg. weights = ", object%negative_weights write (u, "(3x,A,L1)") "Res. history = ", object%support_resonance_history write (u, "(3x,A,L1)") "Respect sel. = ", object%respect_selection write (u, "(3x,A,L1)") "Update sqme = ", object%update_sqme write (u, "(3x,A,L1)") "Update wgt = ", object%update_weight write (u, "(3x,A,L1)") "Update event = ", object%update_event write (u, "(3x,A,L1)") "Recov. beams = ", object%recover_beams write (u, "(3x,A,L1)") "Pacify = ", object%pacify write (u, "(3x,A,I0)") "Max. tries = ", object%n_max_tries if (object%has_integral) then if (pacified) then write (u, "(3x,A," // FMT_15 // ")") & "Integral = ", object%integral write (u, "(3x,A," // FMT_15 // ")") & "Error = ", object%error else write (u, "(3x,A," // FMT_19 // ")") & "Integral = ", object%integral write (u, "(3x,A," // FMT_19 // ")") & "Error = ", object%error end if else write (u, "(3x,A)") "Integral = [undefined]" end if write (u, "(3x,A,L1)") "Sim. valid = ", object%valid write (u, "(3x,A,I0)") "Ev.file ver. = ", object%version if (object%md5sum_prc /= "") then write (u, "(3x,A,A,A)") "MD5 sum (proc) = '", object%md5sum_prc, "'" end if if (object%md5sum_cfg /= "") then write (u, "(3x,A,A,A)") "MD5 sum (config) = '", object%md5sum_cfg, "'" end if write (u, "(3x,A,I0)") "Events requested = ", object%n_evt_requested if (object%event_index_offset /= 0) then write (u, "(3x,A,I0)") "Event index offset= ", object%event_index_offset end if if (object%event_index_set) then write (u, "(3x,A,I0)") "Event index = ", object%event_index end if if (object%split_n_evt > 0 .or. object%split_n_kbytes > 0) then write (u, "(3x,A,I0)") "Events per file = ", object%split_n_evt write (u, "(3x,A,I0)") "KBytes per file = ", object%split_n_kbytes write (u, "(3x,A,I0)") "First file index = ", object%split_index end if call object%counter%write (u) call write_separator (u) if (object%i_prc /= 0) then write (u, "(1x,A)") "Current event:" write (u, "(3x,A,I0,A,A)") "Process #", & object%i_prc, ": ", & char (object%entry(object%i_prc)%process_id) write (u, "(3x,A,I0)") "MCI set #", object%i_mci write (u, "(3x,A," // FMT_19 // ")") "Weight = ", object%weight if (.not. vanishes (object%excess)) & write (u, "(3x,A," // FMT_19 // ")") "Excess = ", object%excess write (u, "(3x,A,I0)") "Zero-weight events dropped = ", object%n_dropped else write (u, "(1x,A,I0,A,A)") "Current event: [undefined]" end if call write_separator (u) if (allocated (object%rng)) then call object%rng%write (u) else write (u, "(3x,A)") "Random-number generator: [undefined]" end if if (allocated (object%entry)) then do i = 1, size (object%entry) if (i == 1) then call write_separator (u, 2) else call write_separator (u) end if write (u, "(1x,A,I0,A)") "Process #", i, ":" call object%entry(i)%write_config (u, pacified) end do end if call write_separator (u, 2) end subroutine simulation_write @ %def simulation_write @ Write the current event record. If an explicit index is given, write that event record. We implement writing to [[unit]] (event contents / debugging format) and writing to an [[eio]] event stream (storage). We include a [[testflag]] in order to suppress numerical noise in the testsuite. <>= generic :: write_event => write_event_unit procedure :: write_event_unit => simulation_write_event_unit <>= subroutine simulation_write_event_unit & (object, unit, i_prc, verbose, testflag) class(simulation_t), intent(in) :: object integer, intent(in), optional :: unit logical, intent(in), optional :: verbose integer, intent(in), optional :: i_prc logical, intent(in), optional :: testflag logical :: pacified integer :: current pacified = .false.; if (present(testflag)) pacified = testflag pacified = pacified .or. object%pacify if (present (i_prc)) then current = i_prc else current = object%i_prc end if if (current > 0) then call object%entry(current)%write (unit, verbose = verbose, & testflag = pacified) else call msg_fatal ("Simulation: write event: no process selected") end if end subroutine simulation_write_event_unit @ %def simulation_write_event @ This writes one of the alternate events, if allocated. <>= procedure :: write_alt_event => simulation_write_alt_event <>= subroutine simulation_write_alt_event (object, unit, j_alt, i_prc, & verbose, testflag) class(simulation_t), intent(in) :: object integer, intent(in), optional :: unit integer, intent(in), optional :: j_alt integer, intent(in), optional :: i_prc logical, intent(in), optional :: verbose logical, intent(in), optional :: testflag integer :: i, j if (present (j_alt)) then j = j_alt else j = 1 end if if (present (i_prc)) then i = i_prc else i = object%i_prc end if if (i > 0) then if (j> 0 .and. j <= object%n_alt) then call object%alt_entry(i,j)%write (unit, verbose = verbose, & testflag = testflag) else call msg_fatal ("Simulation: write alternate event: out of range") end if else call msg_fatal ("Simulation: write alternate event: no process selected") end if end subroutine simulation_write_alt_event @ %def simulation_write_alt_event @ This writes the contents of the resonant subprocess set in the current event record. <>= procedure :: write_resonant_subprocess_data & => simulation_write_resonant_subprocess_data <>= subroutine simulation_write_resonant_subprocess_data (object, unit, i_prc) class(simulation_t), intent(in) :: object integer, intent(in), optional :: unit integer, intent(in), optional :: i_prc integer :: i if (present (i_prc)) then i = i_prc else i = object%i_prc end if call object%entry(i)%write_resonant_subprocess_data (unit) end subroutine simulation_write_resonant_subprocess_data @ %def simulation_write_resonant_subprocess_data @ The same for the master process, as an additional debugging aid. <>= procedure :: write_process_data & => simulation_write_process_data <>= subroutine simulation_write_process_data & (object, unit, i_prc, & show_process, show_instance, verbose) class(simulation_t), intent(in) :: object integer, intent(in), optional :: unit integer, intent(in), optional :: i_prc logical, intent(in), optional :: show_process logical, intent(in), optional :: show_instance logical, intent(in), optional :: verbose integer :: i if (present (i_prc)) then i = i_prc else i = object%i_prc end if call object%entry(i)%write_process_data & (unit, show_process, show_instance, verbose) end subroutine simulation_write_process_data @ %def simulation_write_process_data @ Finalizer. <>= procedure :: final => simulation_final <>= subroutine simulation_final (object) class(simulation_t), intent(inout) :: object integer :: i, j if (allocated (object%entry)) then do i = 1, size (object%entry) call object%entry(i)%final () end do end if if (allocated (object%alt_entry)) then do j = 1, size (object%alt_entry, 2) do i = 1, size (object%alt_entry, 1) call object%alt_entry(i,j)%final () end do end do end if if (allocated (object%rng)) call object%rng%final () end subroutine simulation_final @ %def simulation_final @ Initialization. We can deduce all data from the given list of process IDs and the global data set. The process objects are taken from the stack. Once the individual integrals are known, we add them (and the errors), to get the sample integral. If there are alternative environments, we suspend initialization for setting up alternative process objects, then restore the master process and its parameters. The generator or rescanner can then switch rapidly between processes. If [[integrate]] is set, we make sure that all affected processes are integrated before simulation. This is necessary if we want to actually generate events. If [[integrate]] is unset, we don't need the integral because we just rescan existing events. In that case, we just need compiled matrix elements. If [[generate]] is set, we prepare for actually generating events. Otherwise, we may only read and rescan events. <>= procedure :: init => simulation_init <>= subroutine simulation_init (simulation, & process_id, integrate, generate, local, global, alt_env) class(simulation_t), intent(out), target :: simulation type(string_t), dimension(:), intent(in) :: process_id logical, intent(in) :: integrate, generate type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), optional, target :: global type(rt_data_t), dimension(:), intent(inout), optional, target :: alt_env class(rng_factory_t), allocatable :: rng_factory integer :: next_rng_seed type(string_t) :: norm_string, version_string logical :: use_process integer :: i, j type(string_t) :: sample_suffix <> sample_suffix = "" <> simulation%local => local simulation%sample_id = & local%get_sval (var_str ("$sample")) // sample_suffix simulation%unweighted = & local%get_lval (var_str ("?unweighted")) simulation%negative_weights = & local%get_lval (var_str ("?negative_weights")) simulation%support_resonance_history = & local%get_lval (var_str ("?resonance_history")) simulation%respect_selection = & local%get_lval (var_str ("?sample_select")) version_string = & local%get_sval (var_str ("$event_file_version")) norm_string = & local%get_sval (var_str ("$sample_normalization")) simulation%norm_mode = & event_normalization_mode (norm_string, simulation%unweighted) simulation%pacify = & local%get_lval (var_str ("?sample_pacify")) simulation%event_index_offset = & local%get_ival (var_str ("event_index_offset")) simulation%n_max_tries = & local%get_ival (var_str ("sample_max_tries")) simulation%split_n_evt = & local%get_ival (var_str ("sample_split_n_evt")) simulation%split_n_kbytes = & local%get_ival (var_str ("sample_split_n_kbytes")) simulation%split_index = & local%get_ival (var_str ("sample_split_index")) simulation%update_sqme = & local%get_lval (var_str ("?update_sqme")) simulation%update_weight = & local%get_lval (var_str ("?update_weight")) simulation%update_event = & local%get_lval (var_str ("?update_event")) simulation%recover_beams = & local%get_lval (var_str ("?recover_beams")) simulation%counter%reproduce_xsection = & local%get_lval (var_str ("?check_event_weights_against_xsection")) use_process = & integrate .or. generate & .or. simulation%update_sqme & .or. simulation%update_weight & .or. simulation%update_event & .or. present (alt_env) select case (size (process_id)) case (0) call msg_error ("Simulation: no process selected") case (1) write (msg_buffer, "(A,A,A)") & "Starting simulation for process '", & char (process_id(1)), "'" call msg_message () case default write (msg_buffer, "(A,A,A)") & "Starting simulation for processes '", & char (process_id(1)), "' etc." call msg_message () end select select case (char (version_string)) case ("", "2.2.4") simulation%version = 2 case ("2.2") simulation%version = 1 case default simulation%version = 0 end select if (simulation%version == 0) then call msg_fatal ("Event file format '" & // char (version_string) & // "' is not compatible with this version.") end if simulation%n_prc = size (process_id) allocate (simulation%entry (simulation%n_prc)) if (present (alt_env)) then simulation%n_alt = size (alt_env) do i = 1, simulation%n_prc call simulation%entry(i)%init (process_id(i), & use_process, integrate, generate, & simulation%update_sqme, & simulation%support_resonance_history, & local, global, simulation%n_alt) if (signal_is_pending ()) return end do simulation%valid = any (simulation%entry%valid) if (.not. simulation%valid) then call msg_error ("Simulate: no process has a valid matrix element.") return end if call simulation%update_processes () allocate (simulation%alt_entry (simulation%n_prc, simulation%n_alt)) allocate (simulation%md5sum_alt (simulation%n_alt)) simulation%md5sum_alt = "" do j = 1, simulation%n_alt do i = 1, simulation%n_prc call simulation%alt_entry(i,j)%init_alt (process_id(i), & simulation%entry(i)%get_process_ptr (), alt_env(j)) if (signal_is_pending ()) return end do end do call simulation%restore_processes () else do i = 1, simulation%n_prc call simulation%entry(i)%init & (process_id(i), & use_process, integrate, generate, & simulation%update_sqme, & simulation%support_resonance_history, & local, global) call simulation%entry(i)%determine_if_powheg_matching () if (signal_is_pending ()) return if (simulation%entry(i)%is_nlo ()) & call simulation%entry(i)%setup_additional_entries () end do simulation%valid = any (simulation%entry%valid) if (.not. simulation%valid) then call msg_error ("Simulate: " & // "no process has a valid matrix element.") return end if end if !!! if this becomes conditional, some ref files will need update (seed change) ! if (generate) then call dispatch_rng_factory (rng_factory, local%var_list, next_rng_seed) call update_rng_seed_in_var_list (local%var_list, next_rng_seed) call rng_factory%make (simulation%rng) ! end if if (all (simulation%entry%has_integral)) then simulation%integral = sum (simulation%entry%integral) simulation%error = sqrt (sum (simulation%entry%error ** 2)) simulation%has_integral = .true. if (integrate .and. generate) then do i = 1, simulation%n_prc if (simulation%entry(i)%integral < 0 .and. .not. & simulation%negative_weights) then call msg_fatal ("Integral of process '" // & char (process_id (i)) // "'is negative.") end if end do end if else if (integrate .and. generate) & call msg_error ("Simulation contains undefined integrals.") end if if (simulation%integral > 0 .or. & (simulation%integral < 0 .and. simulation%negative_weights)) then simulation%valid = .true. else if (generate) then call msg_error ("Simulate: " & // "sum of process integrals must be positive; skipping.") simulation%valid = .false. else simulation%valid = .true. end if if (simulation%valid) call simulation%compute_md5sum () end subroutine simulation_init @ %def simulation_init @ <>= integer :: rank, n_size @ <>= call mpi_get_comm_id (n_size, rank) if (n_size > 1) then sample_suffix = var_str ("_") // str (rank) end if @ @ The number of events that we want to simulate is determined by the settings of [[n_events]], [[luminosity]], and [[?unweighted]]. For weighted events, we take [[n_events]] at face value as the number of matrix element calls. For unweighted events, if the process is a decay, [[n_events]] is the number of unweighted events. In these cases, the luminosity setting is ignored. For unweighted events with a scattering process, we calculate the event number that corresponds to the luminosity, given the current value of the integral. We then compare this with [[n_events]] and choose the larger number. <>= procedure :: compute_n_events => simulation_compute_n_events <>= subroutine simulation_compute_n_events (simulation, n_events, var_list) class(simulation_t), intent(in) :: simulation integer, intent(out) :: n_events type(var_list_t) :: var_list real(default) :: lumi, x_events_lumi integer :: n_events_lumi logical :: is_scattering n_events = & var_list%get_ival (var_str ("n_events")) lumi = & var_list%get_rval (var_str ("luminosity")) if (simulation%unweighted) then is_scattering = simulation%entry(1)%n_in == 2 if (is_scattering) then x_events_lumi = abs (simulation%integral * lumi) if (x_events_lumi < huge (n_events)) then n_events_lumi = nint (x_events_lumi) else call msg_message ("Simulation: luminosity too large, & &limiting number of events") n_events_lumi = huge (n_events) end if if (n_events_lumi > n_events) then call msg_message ("Simulation: using n_events as computed from & &luminosity value") n_events = n_events_lumi else write (msg_buffer, "(A,1x,I0)") & "Simulation: requested number of events =", n_events call msg_message () if (.not. vanishes (simulation%integral)) then write (msg_buffer, "(A,1x,ES11.4)") & " corr. to luminosity [fb-1] = ", & n_events / simulation%integral call msg_message () end if end if end if end if end subroutine simulation_compute_n_events @ %def simulation_compute_n_events @ Write the actual efficiency of the simulation run. We get the total number of events stored in the simulation counter and compare this with the total number of calls stored in the event entries. In order not to miscount samples that are partly read from file, use the [[generated]] counter, not the [[total]] counter. <>= procedure :: show_efficiency => simulation_show_efficiency <>= subroutine simulation_show_efficiency (simulation) class(simulation_t), intent(inout) :: simulation integer :: n_events, n_calls real(default) :: eff n_events = simulation%counter%generated n_calls = sum (simulation%entry%get_actual_calls_total ()) if (n_calls > 0) then eff = real (n_events, kind=default) / n_calls write (msg_buffer, "(A,1x,F6.2,1x,A)") & "Events: actual unweighting efficiency =", 100 * eff, "%" call msg_message () end if end subroutine simulation_show_efficiency @ %def simulation_show_efficiency @ <>= procedure :: get_n_nlo_entries => simulation_get_n_nlo_entries <>= function simulation_get_n_nlo_entries (simulation, i_prc) result (n_extra) class(simulation_t), intent(in) :: simulation integer, intent(in) :: i_prc integer :: n_extra n_extra = simulation%entry(i_prc)%count_nlo_entries () end function simulation_get_n_nlo_entries @ %def simulation_get_n_nlo_entries @ Compute the checksum of the process set. We retrieve the MD5 sums of all processes. This depends only on the process definitions, while parameters are not considered. The configuration checksum is retrieved from the MCI records in the process objects and furthermore includes beams, parameters, integration results, etc., so matching the latter should guarantee identical physics. <>= procedure :: compute_md5sum => simulation_compute_md5sum <>= subroutine simulation_compute_md5sum (simulation) class(simulation_t), intent(inout) :: simulation type(process_t), pointer :: process type(string_t) :: buffer integer :: j, i, n_mci, i_mci, n_component, i_component if (simulation%md5sum_prc == "") then buffer = "" do i = 1, simulation%n_prc if (.not. simulation%entry(i)%valid) cycle process => simulation%entry(i)%get_process_ptr () if (associated (process)) then n_component = process%get_n_components () do i_component = 1, n_component if (process%has_matrix_element (i_component)) then buffer = buffer // process%get_md5sum_prc (i_component) end if end do end if end do simulation%md5sum_prc = md5sum (char (buffer)) end if if (simulation%md5sum_cfg == "") then buffer = "" do i = 1, simulation%n_prc if (.not. simulation%entry(i)%valid) cycle process => simulation%entry(i)%get_process_ptr () if (associated (process)) then n_mci = process%get_n_mci () do i_mci = 1, n_mci buffer = buffer // process%get_md5sum_mci (i_mci) end do end if end do simulation%md5sum_cfg = md5sum (char (buffer)) end if do j = 1, simulation%n_alt if (simulation%md5sum_alt(j) == "") then buffer = "" do i = 1, simulation%n_prc process => simulation%alt_entry(i,j)%get_process_ptr () if (associated (process)) then buffer = buffer // process%get_md5sum_cfg () end if end do simulation%md5sum_alt(j) = md5sum (char (buffer)) end if end do end subroutine simulation_compute_md5sum @ %def simulation_compute_md5sum @ Initialize the process selector, using the entry integrals as process weights. <>= procedure :: init_process_selector => simulation_init_process_selector <>= subroutine simulation_init_process_selector (simulation) class(simulation_t), intent(inout) :: simulation integer :: i if (simulation%has_integral) then call simulation%process_selector%init (simulation%entry%integral, & negative_weights = simulation%negative_weights) do i = 1, simulation%n_prc associate (entry => simulation%entry(i)) if (.not. entry%valid) then call msg_warning ("Process '" // char (entry%process_id) // & "': matrix element vanishes, no events can be generated.") cycle end if call entry%init_mci_selector (simulation%negative_weights) entry%process_weight = simulation%process_selector%get_weight (i) end associate end do end if end subroutine simulation_init_process_selector @ %def simulation_init_process_selector @ Select a process, using the random-number generator. <>= procedure :: select_prc => simulation_select_prc <>= function simulation_select_prc (simulation) result (i_prc) class(simulation_t), intent(inout) :: simulation integer :: i_prc call simulation%process_selector%generate (simulation%rng, i_prc) end function simulation_select_prc @ %def simulation_select_prc @ Select a MCI set for the selected process. <>= procedure :: select_mci => simulation_select_mci <>= function simulation_select_mci (simulation) result (i_mci) class(simulation_t), intent(inout) :: simulation integer :: i_mci i_mci = 0 if (simulation%i_prc /= 0) then i_mci = simulation%entry(simulation%i_prc)%select_mci () end if end function simulation_select_mci @ %def simulation_select_mci @ Generate a predefined number of events. First select a process and a component set, then generate an event for that process and factorize the quantum state. The pair of random numbers can be used for factorization. When generating events, we drop all configurations where the event is marked as incomplete. This happens if the event fails cuts. In fact, such events are dropped already by the sampler if unweighting is in effect, so this can happen only for weighted events. By setting a limit given by [[sample_max_tries]] (user parameter), we can avoid an endless loop. NB: When reading from file, event transforms can't be applied because the process instance will not be complete. This should be fixed. <>= procedure :: generate => simulation_generate <>= subroutine simulation_generate (simulation, n, es_array) class(simulation_t), intent(inout), target :: simulation integer, intent(in) :: n type(event_stream_array_t), intent(inout), optional :: es_array type(string_t) :: str1, str2, str3 logical :: generate_new, passed integer :: i, j, k type(entry_t), pointer :: current_entry integer :: n_events <> simulation%n_evt_requested = n n_events = n * simulation%get_n_nlo_entries (1) call simulation%entry%set_n (n) if (simulation%n_alt > 0) call simulation%alt_entry%set_n (n) str1 = "Events: generating" if (present (es_array)) then if (es_array%has_input ()) str1 = "Events: reading" end if if (simulation%entry(1)%config%unweighted) then str2 = "unweighted" else str2 = "weighted" end if if (simulation%entry(1)%config%factorization_mode == & FM_IGNORE_HELICITY) then str3 = ", unpolarized" else str3 = ", polarized" end if if (n_events == n) then write (msg_buffer, "(A,1x,I0,1x,A,1x,A)") char (str1), n, & char (str2) // char(str3), "events ..." else write (msg_buffer, "(A,1x,I0,1x,A,1x,A)") char (str1), n_events, & char (str2) // char(str3), "NLO events ..." end if call msg_message () write (msg_buffer, "(A,1x,A)") "Events: event normalization mode", & char (event_normalization_string (simulation%norm_mode)) call msg_message () call simulation%init_event_index () <> do i = start_it, end_it call simulation%increment_event_index () if (present (es_array)) then call simulation%read_event (es_array, .true., generate_new) else generate_new = .true. end if if (generate_new) then simulation%i_prc = simulation%select_prc () simulation%i_mci = simulation%select_mci () associate (entry => simulation%entry(simulation%i_prc)) entry%instance%i_mci = simulation%i_mci call entry%set_active_real_components () current_entry => entry%get_first () do k = 1, current_entry%count_nlo_entries () if (k > 1) then current_entry => current_entry%get_next () current_entry%particle_set => current_entry%first%particle_set current_entry%particle_set_is_valid & = current_entry%first%particle_set_is_valid end if do j = 1, simulation%n_max_tries if (.not. current_entry%valid) call msg_warning & ("Process '" // char (current_entry%process_id) // "': " // & "matrix element vanishes, no events can be generated.") call current_entry%generate (simulation%i_mci, i_nlo = k) if (signal_is_pending ()) return call simulation%counter%record_mean_and_variance & (current_entry%weight_prc, k) if (current_entry%has_valid_particle_set ()) exit end do end do if (entry%is_nlo ()) call entry%reset_nlo_counter () if (.not. entry%has_valid_particle_set ()) then write (msg_buffer, "(A,I0,A)") "Simulation: failed to & &generate valid event after ", & simulation%n_max_tries, " tries (sample_max_tries)" call msg_fatal () end if current_entry => entry%get_first () do k = 1, current_entry%count_nlo_entries () if (k > 1) current_entry => current_entry%get_next () call current_entry%set_index (simulation%get_event_index ()) call current_entry%evaluate_expressions () end do if (signal_is_pending ()) return simulation%n_dropped = entry%get_n_dropped () if (entry%passed_selection ()) then simulation%weight = entry%get_weight_ref () simulation%excess = entry%get_excess_prc () end if call simulation%counter%record & (simulation%weight, simulation%excess, simulation%n_dropped) call entry%record (simulation%i_mci) end associate else associate (entry => simulation%entry(simulation%i_prc)) call simulation%set_event_index (entry%get_index ()) call entry%accept_sqme_ref () call entry%accept_weight_ref () call entry%check () call entry%evaluate_expressions () if (signal_is_pending ()) return simulation%n_dropped = entry%get_n_dropped () if (entry%passed_selection ()) then simulation%weight = entry%get_weight_ref () simulation%excess = entry%get_excess_prc () end if call simulation%counter%record & (simulation%weight, simulation%excess, simulation%n_dropped, from_file=.true.) call entry%record (simulation%i_mci, from_file=.true.) end associate end if call simulation%calculate_alt_entries () if (signal_is_pending ()) return if (simulation%pacify) call pacify (simulation) if (simulation%respect_selection) then passed = simulation%entry(simulation%i_prc)%passed_selection () else passed = .true. end if if (present (es_array)) then call simulation%write_event (es_array, passed) end if end do <> call msg_message (" ... event sample complete.") if (simulation%unweighted) call simulation%show_efficiency () call simulation%counter%show_excess () call simulation%counter%show_dropped () call simulation%counter%show_mean_and_variance () end subroutine simulation_generate @ %def simulation_generate @ <>= integer :: start_it, end_it @ <>= start_it = 1 end_it = n @ <>= @ <>= integer :: n_size, rank integer :: worker_n_events, root_n_events <>= call mpi_get_comm_id (n_size, rank) if (n_size > 1) then start_it = start_it + nint (rank * (real (n) / n_size)) end_it = min (nint ((rank + 1) * (real (n) / n_size)), n) write (msg_buffer, "(A,I0,A,I0,A)") & & "MPI: generate events [", start_it, ":", end_it, "]" call msg_message () do i = 1, rank + 1 select type (rng => simulation%rng) type is (rng_stream_t) call rng%next_substream () end select end do end if @ <>= call MPI_Barrier (MPI_COMM_WORLD) if (n_size > 1) then worker_n_events = end_it - start_it + 1 call MPI_Reduce (worker_n_events, root_n_events, 1, MPI_INTEGER, MPI_SUM,& & 0, MPI_COMM_WORLD) if (rank == 0) then write (msg_buffer, "(A,I0)") "MPI: Number of generated events in world = ", root_n_events call msg_message () end if end if @ @ Compute the event matrix element and weight for all alternative environments, given the current event and selected process. We first copy the particle set, then temporarily update the process core with local parameters, recalculate everything, and restore the process core. The event weight is obtained by rescaling the original event weight with the ratio of the new and old [[sqme]] values. (In particular, if the old value was zero, the weight will stay zero.) Note: this may turn out to be inefficient because we always replace all parameters and recalculate everything, once for each event and environment. However, a more fine-grained control requires more code. In any case, while we may keep multiple process cores (which stay constant for a simulation run), we still have to update the external matrix element parameters event by event. The matrix element ``object'' is present only once. <>= procedure :: calculate_alt_entries => simulation_calculate_alt_entries <>= subroutine simulation_calculate_alt_entries (simulation) class(simulation_t), intent(inout) :: simulation real(default) :: factor real(default), dimension(:), allocatable :: sqme_alt, weight_alt integer :: n_alt, i, j i = simulation%i_prc n_alt = simulation%n_alt if (n_alt == 0) return allocate (sqme_alt (n_alt), weight_alt (n_alt)) associate (entry => simulation%entry(i)) do j = 1, n_alt if (signal_is_pending ()) return factor = entry%get_kinematical_weight () associate (alt_entry => simulation%alt_entry(i,j)) call alt_entry%update_process () call alt_entry%select & (entry%get_i_mci (), entry%get_i_term (), entry%get_channel ()) call alt_entry%fill_particle_set (entry) call alt_entry%recalculate & (update_sqme = .true., weight_factor = factor) if (signal_is_pending ()) return call alt_entry%accept_sqme_prc () call alt_entry%update_normalization () call alt_entry%accept_weight_prc () call alt_entry%check () call alt_entry%set_index (simulation%get_event_index ()) call alt_entry%evaluate_expressions () if (signal_is_pending ()) return call alt_entry%restore_process () sqme_alt(j) = alt_entry%get_sqme_ref () if (alt_entry%passed_selection ()) then weight_alt(j) = alt_entry%get_weight_ref () end if end associate end do call entry%set (sqme_alt = sqme_alt, weight_alt = weight_alt) call entry%check () call entry%store_alt_values () end associate end subroutine simulation_calculate_alt_entries @ %def simulation_calculate_alt_entries @ Rescan an undefined number of events. If [[update_event]] or [[update_sqme]] is set, we have to recalculate the event, starting from the particle set. If the latter is set, this includes the squared matrix element (i.e., the amplitude is evaluated). Otherwise, only kinematics and observables derived from it are recovered. If any of the update flags is set, we will come up with separate [[sqme_prc]] and [[weight_prc]] values. (The latter is only distinct if [[update_weight]] is set.) Otherwise, we accept the reference values. <>= procedure :: rescan => simulation_rescan <>= subroutine simulation_rescan (simulation, n, es_array, global) class(simulation_t), intent(inout) :: simulation integer, intent(in) :: n type(event_stream_array_t), intent(inout) :: es_array type(rt_data_t), intent(inout) :: global type(qcd_t) :: qcd type(string_t) :: str1, str2, str3 logical :: complete str1 = "Rescanning" if (simulation%entry(1)%config%unweighted) then str2 = "unweighted" else str2 = "weighted" end if simulation%n_evt_requested = n call simulation%entry%set_n (n) if (simulation%update_sqme .or. simulation%update_weight) then call dispatch_qcd (qcd, global%get_var_list_ptr (), global%os_data) call simulation%update_processes & (global%model, qcd, global%get_helicity_selection ()) str3 = "(process parameters updated) " else str3 = "" end if write (msg_buffer, "(A,1x,A,1x,A,A,A)") char (str1), char (str2), & "events ", char (str3), "..." call msg_message () call simulation%init_event_index () do call simulation%increment_event_index () call simulation%read_event (es_array, .false., complete) if (complete) exit if (simulation%update_event & .or. simulation%update_sqme & .or. simulation%update_weight) then call simulation%recalculate () if (signal_is_pending ()) return associate (entry => simulation%entry(simulation%i_prc)) call entry%update_normalization () if (simulation%update_event) then call entry%evaluate_transforms () end if call entry%check () call entry%evaluate_expressions () if (signal_is_pending ()) return simulation%n_dropped = entry%get_n_dropped () simulation%weight = entry%get_weight_prc () call simulation%counter%record & (simulation%weight, n_dropped=simulation%n_dropped, from_file=.true.) call entry%record (simulation%i_mci, from_file=.true.) end associate else associate (entry => simulation%entry(simulation%i_prc)) call entry%accept_sqme_ref () call entry%accept_weight_ref () call entry%check () call entry%evaluate_expressions () if (signal_is_pending ()) return simulation%n_dropped = entry%get_n_dropped () simulation%weight = entry%get_weight_ref () call simulation%counter%record & (simulation%weight, n_dropped=simulation%n_dropped, from_file=.true.) call entry%record (simulation%i_mci, from_file=.true.) end associate end if call simulation%calculate_alt_entries () if (signal_is_pending ()) return call simulation%write_event (es_array) end do call simulation%counter%show_dropped () if (simulation%update_sqme .or. simulation%update_weight) then call simulation%restore_processes () end if end subroutine simulation_rescan @ %def simulation_rescan @ Here we handle the event index that is kept in the simulation record. The event index is valid for the current sample. When generating or reading events, we initialize the index with the offset that the user provides (if any) and increment it for each event that is generated or read from file. The event index is stored in the event-entry that is current for the event. If an event on file comes with its own index, that index overwrites the predefined one and also resets the index within the simulation record. The event index is not connected to the [[counter]] object. The counter is supposed to collect statistical information. The event index is a user-level object that is visible in event records and analysis expressions. <>= procedure :: init_event_index => simulation_init_event_index procedure :: increment_event_index => simulation_increment_event_index procedure :: set_event_index => simulation_set_event_index procedure :: get_event_index => simulation_get_event_index <>= subroutine simulation_init_event_index (simulation) class(simulation_t), intent(inout) :: simulation call simulation%set_event_index (simulation%event_index_offset) end subroutine simulation_init_event_index subroutine simulation_increment_event_index (simulation) class(simulation_t), intent(inout) :: simulation if (simulation%event_index_set) then simulation%event_index = simulation%event_index + 1 end if end subroutine simulation_increment_event_index subroutine simulation_set_event_index (simulation, i) class(simulation_t), intent(inout) :: simulation integer, intent(in) :: i simulation%event_index = i simulation%event_index_set = .true. end subroutine simulation_set_event_index function simulation_get_event_index (simulation) result (i) class(simulation_t), intent(in) :: simulation integer :: i if (simulation%event_index_set) then i = simulation%event_index else i = 0 end if end function simulation_get_event_index @ %def simulation_init_event_index @ %def simulation_increment_event_index @ %def simulation_set_event_index @ %def simulation_get_event_index @ @ These routines take care of temporary parameter redefinitions that we want to take effect while recalculating the matrix elements. We extract the core(s) of the processes that we are simulating, apply the changes, and make sure that the changes are actually used. This is the duty of [[dispatch_core_update]]. When done, we restore the original versions using [[dispatch_core_restore]]. <>= procedure :: update_processes => simulation_update_processes procedure :: restore_processes => simulation_restore_processes <>= subroutine simulation_update_processes (simulation, & model, qcd, helicity_selection) class(simulation_t), intent(inout) :: simulation class(model_data_t), intent(in), optional, target :: model type(qcd_t), intent(in), optional :: qcd type(helicity_selection_t), intent(in), optional :: helicity_selection integer :: i do i = 1, simulation%n_prc call simulation%entry(i)%update_process & (model, qcd, helicity_selection) end do end subroutine simulation_update_processes subroutine simulation_restore_processes (simulation) class(simulation_t), intent(inout) :: simulation integer :: i do i = 1, simulation%n_prc call simulation%entry(i)%restore_process () end do end subroutine simulation_restore_processes @ %def simulation_update_processes @ %def simulation_restore_processes @ \subsection{Event Stream I/O} Write an event to a generic [[eio]] event stream. The process index must be selected, or the current index must be available. <>= generic :: write_event => write_event_eio procedure :: write_event_eio => simulation_write_event_eio <>= subroutine simulation_write_event_eio (object, eio, i_prc) class(simulation_t), intent(in) :: object class(eio_t), intent(inout) :: eio integer, intent(in), optional :: i_prc logical :: increased integer :: current if (present (i_prc)) then current = i_prc else current = object%i_prc end if if (current > 0) then if (object%split_n_evt > 0 .and. object%counter%total > 1) then if (mod (object%counter%total, object%split_n_evt) == 1) then call eio%split_out () end if else if (object%split_n_kbytes > 0) then call eio%update_split_count (increased) if (increased) call eio%split_out () end if call eio%output (object%entry(current)%event_t, current, pacify = object%pacify) else call msg_fatal ("Simulation: write event: no process selected") end if end subroutine simulation_write_event_eio @ %def simulation_write_event @ Read an event from a generic [[eio]] event stream. The event stream element must specify the process within the sample ([[i_prc]]), the MC group for this process ([[i_mci]]), the selected term ([[i_term]]), the selected MC integration [[channel]], and the particle set of the event. We may encounter EOF, which we indicate by storing 0 for the process index [[i_prc]]. An I/O error will be reported, and we also abort reading. <>= generic :: read_event => read_event_eio procedure :: read_event_eio => simulation_read_event_eio <>= subroutine simulation_read_event_eio (object, eio) class(simulation_t), intent(inout) :: object class(eio_t), intent(inout) :: eio integer :: iostat, current call eio%input_i_prc (current, iostat) select case (iostat) case (0) object%i_prc = current call eio%input_event (object%entry(current)%event_t, iostat) end select select case (iostat) case (:-1) object%i_prc = 0 object%i_mci = 0 case (1:) call msg_error ("Reading events: I/O error, aborting read") object%i_prc = 0 object%i_mci = 0 case default object%i_mci = object%entry(current)%get_i_mci () end select end subroutine simulation_read_event_eio @ %def simulation_read_event @ \subsection{Event Stream Array} Write an event using an array of event I/O streams. The process index must be selected, or the current index must be available. <>= generic :: write_event => write_event_es_array procedure :: write_event_es_array => simulation_write_event_es_array <>= subroutine simulation_write_event_es_array (object, es_array, passed) class(simulation_t), intent(in), target :: object class(event_stream_array_t), intent(inout) :: es_array logical, intent(in), optional :: passed integer :: i_prc, event_index integer :: i type(entry_t), pointer :: current_entry i_prc = object%i_prc if (i_prc > 0) then event_index = object%counter%total current_entry => object%entry(i_prc)%get_first () do i = 1, current_entry%count_nlo_entries () if (i > 1) current_entry => current_entry%get_next () call es_array%output (current_entry%event_t, i_prc, & event_index, passed = passed, pacify = object%pacify) end do else call msg_fatal ("Simulation: write event: no process selected") end if end subroutine simulation_write_event_es_array @ %def simulation_write_event @ Read an event using an array of event I/O streams. Reading is successful if there is an input stream within the array, and if a valid event can be read from that stream. If there is a stream, but EOF is passed when reading the first item, we switch the channel to output and return failure but no error message, such that new events can be appended to that stream. <>= generic :: read_event => read_event_es_array procedure :: read_event_es_array => simulation_read_event_es_array <>= subroutine simulation_read_event_es_array (object, es_array, enable_switch, & fail) class(simulation_t), intent(inout), target :: object class(event_stream_array_t), intent(inout), target :: es_array logical, intent(in) :: enable_switch logical, intent(out) :: fail integer :: iostat, i_prc type(entry_t), pointer :: current_entry => null () integer :: i if (es_array%has_input ()) then fail = .false. call es_array%input_i_prc (i_prc, iostat) select case (iostat) case (0) object%i_prc = i_prc current_entry => object%entry(i_prc) do i = 1, current_entry%count_nlo_entries () if (i > 1) then call es_array%skip_eio_entry (iostat) current_entry => current_entry%get_next () end if call current_entry%set_index (object%get_event_index ()) call es_array%input_event (current_entry%event_t, iostat) end do case (:-1) write (msg_buffer, "(A,1x,I0,1x,A)") & "... event file terminates after", & object%counter%read, "events." call msg_message () if (enable_switch) then call es_array%switch_inout () write (msg_buffer, "(A,1x,I0,1x,A)") & "Generating remaining ", & object%n_evt_requested - object%counter%read, "events ..." call msg_message () end if fail = .true. return end select select case (iostat) case (0) object%i_mci = object%entry(i_prc)%get_i_mci () case default write (msg_buffer, "(A,1x,I0,1x,A)") & "Reading events: I/O error, aborting read after", & object%counter%read, "events." call msg_error () object%i_prc = 0 object%i_mci = 0 fail = .true. end select else fail = .true. end if end subroutine simulation_read_event_es_array @ %def simulation_read_event @ \subsection{Recover event} Recalculate the process instance contents, given an event with known particle set. The indices for MC, term, and channel must be already set. The [[recalculate]] method of the selected entry will import the result into [[sqme_prc]] and [[weight_prc]]. If [[recover_phs]] is set (and false), do not attempt any phase-space calculation. Useful if we need only matrix elements (esp. testing); this flag is not stored in the simulation record. <>= procedure :: recalculate => simulation_recalculate <>= subroutine simulation_recalculate (simulation, recover_phs) class(simulation_t), intent(inout) :: simulation logical, intent(in), optional :: recover_phs integer :: i_prc i_prc = simulation%i_prc associate (entry => simulation%entry(i_prc)) if (simulation%update_weight) then call entry%recalculate & (update_sqme = simulation%update_sqme, & recover_beams = simulation%recover_beams, & recover_phs = recover_phs, & weight_factor = entry%get_kinematical_weight ()) else call entry%recalculate & (update_sqme = simulation%update_sqme, & recover_beams = simulation%recover_beams, & recover_phs = recover_phs) end if end associate end subroutine simulation_recalculate @ %def simulation_recalculate @ \subsection{Extract contents} Return the MD5 sum that summarizes configuration and integration (but not the event file). Used for initializing the event streams. <>= procedure :: get_md5sum_prc => simulation_get_md5sum_prc procedure :: get_md5sum_cfg => simulation_get_md5sum_cfg procedure :: get_md5sum_alt => simulation_get_md5sum_alt <>= function simulation_get_md5sum_prc (simulation) result (md5sum) class(simulation_t), intent(in) :: simulation character(32) :: md5sum md5sum = simulation%md5sum_prc end function simulation_get_md5sum_prc function simulation_get_md5sum_cfg (simulation) result (md5sum) class(simulation_t), intent(in) :: simulation character(32) :: md5sum md5sum = simulation%md5sum_cfg end function simulation_get_md5sum_cfg function simulation_get_md5sum_alt (simulation, i) result (md5sum) class(simulation_t), intent(in) :: simulation integer, intent(in) :: i character(32) :: md5sum md5sum = simulation%md5sum_alt(i) end function simulation_get_md5sum_alt @ %def simulation_get_md5sum_prc @ %def simulation_get_md5sum_cfg @ Return data that may be useful for writing event files. Usually we can refer to a previously integrated process, for which we can fetch a process pointer. Occasionally, we don't have this because we're just rescanning an externally generated file without calculation. For that situation, we generate our local beam data object using the current enviroment, or, in simple cases, just fetch the necessary data from the process definition and environment. <>= procedure :: get_data => simulation_get_data <>= function simulation_get_data (simulation, alt) result (sdata) class(simulation_t), intent(in) :: simulation logical, intent(in), optional :: alt type(event_sample_data_t) :: sdata type(process_t), pointer :: process type(beam_data_t), pointer :: beam_data type(beam_structure_t), pointer :: beam_structure type(flavor_t), dimension(:), allocatable :: flv integer :: n, i logical :: enable_alt, construct_beam_data real(default) :: sqrts class(model_data_t), pointer :: model logical :: decay_rest_frame type(string_t) :: process_id enable_alt = .true.; if (present (alt)) enable_alt = alt if (debug_on) call msg_debug (D_CORE, "simulation_get_data") if (debug_on) call msg_debug (D_CORE, "alternative setup", enable_alt) if (enable_alt) then call sdata%init (simulation%n_prc, simulation%n_alt) do i = 1, simulation%n_alt sdata%md5sum_alt(i) = simulation%get_md5sum_alt (i) end do else call sdata%init (simulation%n_prc) end if sdata%unweighted = simulation%unweighted sdata%negative_weights = simulation%negative_weights sdata%norm_mode = simulation%norm_mode process => simulation%entry(1)%get_process_ptr () if (associated (process)) then beam_data => process%get_beam_data_ptr () construct_beam_data = .false. else n = simulation%entry(1)%n_in sqrts = simulation%local%get_sqrts () beam_structure => simulation%local%beam_structure call beam_structure%check_against_n_in (n, construct_beam_data) if (construct_beam_data) then allocate (beam_data) model => simulation%local%model decay_rest_frame = & simulation%local%get_lval (var_str ("?decay_rest_frame")) call beam_data%init_structure (beam_structure, & sqrts, model, decay_rest_frame) else beam_data => null () end if end if if (associated (beam_data)) then n = beam_data%get_n_in () sdata%n_beam = n allocate (flv (n)) flv = beam_data%get_flavor () sdata%pdg_beam(:n) = flv%get_pdg () sdata%energy_beam(:n) = beam_data%get_energy () if (construct_beam_data) deallocate (beam_data) else n = simulation%entry(1)%n_in sdata%n_beam = n process_id = simulation%entry(1)%process_id call simulation%local%prclib%get_pdg_in_1 & (process_id, sdata%pdg_beam(:n)) sdata%energy_beam(:n) = sqrts / n end if do i = 1, simulation%n_prc if (.not. simulation%entry(i)%valid) cycle process => simulation%entry(i)%get_process_ptr () if (associated (process)) then sdata%proc_num_id(i) = process%get_num_id () else process_id = simulation%entry(i)%process_id sdata%proc_num_id(i) = simulation%local%prclib%get_num_id (process_id) end if if (sdata%proc_num_id(i) == 0) sdata%proc_num_id(i) = i if (simulation%entry(i)%has_integral) then sdata%cross_section(i) = simulation%entry(i)%integral sdata%error(i) = simulation%entry(i)%error end if end do sdata%total_cross_section = sum (sdata%cross_section) sdata%md5sum_prc = simulation%get_md5sum_prc () sdata%md5sum_cfg = simulation%get_md5sum_cfg () if (simulation%split_n_evt > 0 .or. simulation%split_n_kbytes > 0) then sdata%split_n_evt = simulation%split_n_evt sdata%split_n_kbytes = simulation%split_n_kbytes sdata%split_index = simulation%split_index end if end function simulation_get_data @ %def simulation_get_data @ Return a default name for the current event sample. This is the process ID of the first process. <>= procedure :: get_default_sample_name => simulation_get_default_sample_name <>= function simulation_get_default_sample_name (simulation) result (sample) class(simulation_t), intent(in) :: simulation type(string_t) :: sample type(process_t), pointer :: process sample = "whizard" if (simulation%n_prc > 0) then process => simulation%entry(1)%get_process_ptr () if (associated (process)) then sample = process%get_id () end if end if end function simulation_get_default_sample_name @ %def simulation_get_default_sample_name @ <>= procedure :: is_valid => simulation_is_valid <>= function simulation_is_valid (simulation) result (valid) class(simulation_t), intent(inout) :: simulation logical :: valid valid = simulation%valid end function simulation_is_valid @ %def simulation_is_valid @ Return the hard-interaction particle set for event entry [[i_prc]]. <>= procedure :: get_hard_particle_set => simulation_get_hard_particle_set <>= function simulation_get_hard_particle_set (simulation, i_prc) result (pset) class(simulation_t), intent(in) :: simulation integer, intent(in) :: i_prc type(particle_set_t) :: pset call simulation%entry(i_prc)%get_hard_particle_set (pset) end function simulation_get_hard_particle_set @ %def simulation_get_hard_particle_set @ \subsection{Auxiliary} Call pacify: eliminate numerical noise. <>= public :: pacify <>= interface pacify module procedure pacify_simulation end interface <>= subroutine pacify_simulation (simulation) class(simulation_t), intent(inout) :: simulation integer :: i, j i = simulation%i_prc if (i > 0) then call pacify (simulation%entry(i)) do j = 1, simulation%n_alt call pacify (simulation%alt_entry(i,j)) end do end if end subroutine pacify_simulation @ %def pacify_simulation @ Manually evaluate expressions for the currently selected process. This is used only in the unit tests. <>= procedure :: evaluate_expressions => simulation_evaluate_expressions <>= subroutine simulation_evaluate_expressions (simulation) class(simulation_t), intent(inout) :: simulation call simulation%entry(simulation%i_prc)%evaluate_expressions () end subroutine simulation_evaluate_expressions @ %def simulation_evaluate_expressions @ Manually evaluate event transforms for the currently selected process. This is used only in the unit tests. <>= procedure :: evaluate_transforms => simulation_evaluate_transforms <>= subroutine simulation_evaluate_transforms (simulation) class(simulation_t), intent(inout) :: simulation associate (entry => simulation%entry(simulation%i_prc)) call entry%evaluate_transforms () end associate end subroutine simulation_evaluate_transforms @ %def simulation_evaluate_transforms @ \subsection{Unit tests} Test module, followed by the stand-alone unit-test procedures. <<[[simulations_ut.f90]]>>= <> module simulations_ut use unit_tests use simulations_uti <> <> contains <> end module simulations_ut @ %def simulations_ut @ <<[[simulations_uti.f90]]>>= <> module simulations_uti <> use kinds, only: i64 <> use io_units use format_defs, only: FMT_10, FMT_12 use ifiles use lexers use parser use lorentz use flavors use interactions, only: reset_interaction_counter use process_libraries, only: process_library_t use prclib_stacks use phs_forests use event_base, only: generic_event_t use event_base, only: event_callback_t use particles, only: particle_set_t use eio_data use eio_base use eio_direct, only: eio_direct_t use eio_raw use eio_ascii use eio_dump use eio_callback use eval_trees use model_data, only: model_data_t use models use rt_data use event_streams use decays_ut, only: prepare_testbed use process, only: process_t use process_stacks, only: process_entry_t use process_configurations_ut, only: prepare_test_library use compilations, only: compile_library use integrations, only: integrate_process use simulations use restricted_subprocesses_uti, only: prepare_resonance_test_library <> <> <> contains <> <> end module simulations_uti @ %def simulations_uti @ API: driver for the unit tests below. <>= public :: simulations_test <>= subroutine simulations_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine simulations_test @ %def simulations_test @ \subsubsection{Initialization} Initialize a [[simulation_t]] object, including the embedded event records. <>= call test (simulations_1, "simulations_1", & "initialization", & u, results) <>= public :: simulations_1 <>= subroutine simulations_1 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, procname2 type(rt_data_t), target :: global type(simulation_t), target :: simulation write (u, "(A)") "* Test output: simulations_1" write (u, "(A)") "* Purpose: initialize simulation" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_1a" procname1 = "simulation_1p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("simulations1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) procname2 = "sim_extra" call prepare_test_library (global, libname, 1, [procname2]) call compile_library (libname, global) call global%set_string (var_str ("$run_id"), & var_str ("simulations2"), is_known = .true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_string (var_str ("$sample"), & var_str ("sim1"), is_known = .true.) call integrate_process (procname2, global, local_stack=.true.) call simulation%init ([procname1, procname2], .false., .true., global) call simulation%init_process_selector () call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Write the event record for the first process" write (u, "(A)") call simulation%write_event (u, i_prc = 1) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_1" end subroutine simulations_1 @ %def simulations_1 @ \subsubsection{Weighted events} Generate events for a single process. <>= call test (simulations_2, "simulations_2", & "weighted events", & u, results) <>= public :: simulations_2 <>= subroutine simulations_2 (u) integer, intent(in) :: u type(string_t) :: libname, procname1 type(rt_data_t), target :: global type(simulation_t), target :: simulation type(event_sample_data_t) :: data write (u, "(A)") "* Test output: simulations_2" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_2a" procname1 = "simulation_2p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("simulations1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () data = simulation%get_data () call data%write (u) write (u, "(A)") write (u, "(A)") "* Generate three events" write (u, "(A)") call simulation%generate (3) call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Write the event record for the last event" write (u, "(A)") call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_2" end subroutine simulations_2 @ %def simulations_2 @ \subsubsection{Unweighted events} Generate events for a single process. <>= call test (simulations_3, "simulations_3", & "unweighted events", & u, results) <>= public :: simulations_3 <>= subroutine simulations_3 (u) integer, intent(in) :: u type(string_t) :: libname, procname1 type(rt_data_t), target :: global type(simulation_t), target :: simulation type(event_sample_data_t) :: data write (u, "(A)") "* Test output: simulations_3" write (u, "(A)") "* Purpose: generate unweighted events & &for a single process" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_3a" procname1 = "simulation_3p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("simulations1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () data = simulation%get_data () call data%write (u) write (u, "(A)") write (u, "(A)") "* Generate three events" write (u, "(A)") call simulation%generate (3) call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Write the event record for the last event" write (u, "(A)") call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_3" end subroutine simulations_3 @ %def simulations_3 @ \subsubsection{Simulating process with structure functions} Generate events for a single process. <>= call test (simulations_4, "simulations_4", & "process with structure functions", & u, results) <>= public :: simulations_4 <>= subroutine simulations_4 (u) integer, intent(in) :: u type(string_t) :: libname, procname1 type(rt_data_t), target :: global type(flavor_t) :: flv type(string_t) :: name type(simulation_t), target :: simulation type(event_sample_data_t) :: data write (u, "(A)") "* Test output: simulations_4" write (u, "(A)") "* Purpose: generate events for a single process & &with structure functions" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_4a" procname1 = "simulation_4p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), & 0._default) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call reset_interaction_counter () call flv%init (25, global%model) name = flv%get_name () call global%beam_structure%init_sf ([name, name], [1]) call global%beam_structure%set_sf (1, 1, var_str ("sf_test_1")) write (u, "(A)") "* Integrate" write (u, "(A)") call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) call global%set_string (var_str ("$sample"), & var_str ("simulations4"), is_known = .true.) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () data = simulation%get_data () call data%write (u) write (u, "(A)") write (u, "(A)") "* Generate three events" write (u, "(A)") call simulation%generate (3) call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Write the event record for the last event" write (u, "(A)") call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_4" end subroutine simulations_4 @ %def simulations_4 @ \subsubsection{Event I/O} Generate event for a test process, write to file and reread. <>= call test (simulations_5, "simulations_5", & "raw event I/O", & u, results) <>= public :: simulations_5 <>= subroutine simulations_5 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global class(eio_t), allocatable :: eio type(simulation_t), allocatable, target :: simulation write (u, "(A)") "* Test output: simulations_5" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* write to file and reread" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_5a" procname1 = "simulation_5p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("simulations5"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations5" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () write (u, "(A)") "* Initialize raw event file" write (u, "(A)") allocate (eio_raw_t :: eio) call eio%init_out (sample) write (u, "(A)") "* Generate an event" write (u, "(A)") call simulation%generate (1) call simulation%write_event (u) call simulation%write_event (eio) call eio%final () deallocate (eio) call simulation%final () deallocate (simulation) write (u, "(A)") write (u, "(A)") "* Re-read the event from file" write (u, "(A)") call global%set_log (var_str ("?update_sqme"), & .true., is_known = .true.) call global%set_log (var_str ("?update_weight"), & .true., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () allocate (eio_raw_t :: eio) call eio%init_in (sample) call simulation%read_event (eio) call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Recalculate process instance" write (u, "(A)") call simulation%recalculate () call simulation%evaluate_expressions () call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call eio%final () call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_5" end subroutine simulations_5 @ %def simulations_5 @ \subsubsection{Event I/O} Generate event for a real process with structure functions, write to file and reread. <>= call test (simulations_6, "simulations_6", & "raw event I/O with structure functions", & u, results) <>= public :: simulations_6 <>= subroutine simulations_6 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global class(eio_t), allocatable :: eio type(simulation_t), allocatable, target :: simulation type(flavor_t) :: flv type(string_t) :: name write (u, "(A)") "* Test output: simulations_6" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* write to file and reread" write (u, "(A)") write (u, "(A)") "* Initialize process and integrate" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_6" procname1 = "simulation_6p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), & 0._default) call flv%init (25, global%model) name = flv%get_name () call global%beam_structure%init_sf ([name, name], [1]) call global%beam_structure%set_sf (1, 1, var_str ("sf_test_1")) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call reset_interaction_counter () call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations6" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () write (u, "(A)") "* Initialize raw event file" write (u, "(A)") allocate (eio_raw_t :: eio) call eio%init_out (sample) write (u, "(A)") "* Generate an event" write (u, "(A)") call simulation%generate (1) call pacify (simulation) call simulation%write_event (u, verbose = .true., testflag = .true.) call simulation%write_event (eio) call eio%final () deallocate (eio) call simulation%final () deallocate (simulation) write (u, "(A)") write (u, "(A)") "* Re-read the event from file" write (u, "(A)") call reset_interaction_counter () call global%set_log (var_str ("?update_sqme"), & .true., is_known = .true.) call global%set_log (var_str ("?update_weight"), & .true., is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () allocate (eio_raw_t :: eio) call eio%init_in (sample) call simulation%read_event (eio) call simulation%write_event (u, verbose = .true., testflag = .true.) write (u, "(A)") write (u, "(A)") "* Recalculate process instance" write (u, "(A)") call simulation%recalculate () call simulation%evaluate_expressions () call simulation%write_event (u, verbose = .true., testflag = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call eio%final () call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_6" end subroutine simulations_6 @ %def simulations_6 @ \subsubsection{Automatic Event I/O} Generate events with raw-format event file as cache: generate, reread, append. <>= call test (simulations_7, "simulations_7", & "automatic raw event I/O", & u, results) <>= public :: simulations_7 <>= subroutine simulations_7 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global type(string_t), dimension(0) :: empty_string_array type(event_sample_data_t) :: data type(event_stream_array_t) :: es_array type(simulation_t), allocatable, target :: simulation type(flavor_t) :: flv type(string_t) :: name write (u, "(A)") "* Test output: simulations_7" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* write to file and reread" write (u, "(A)") write (u, "(A)") "* Initialize process and integrate" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_7" procname1 = "simulation_7p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), & 0._default) call flv%init (25, global%model) name = flv%get_name () call global%beam_structure%init_sf ([name, name], [1]) call global%beam_structure%set_sf (1, 1, var_str ("sf_test_1")) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call reset_interaction_counter () call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations7" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () write (u, "(A)") "* Initialize raw event file" write (u, "(A)") data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = simulation%get_md5sum_cfg () call es_array%init (sample, [var_str ("raw")], global, data) write (u, "(A)") "* Generate an event" write (u, "(A)") call simulation%generate (1, es_array) call es_array%final () call simulation%final () deallocate (simulation) write (u, "(A)") "* Re-read the event from file and generate another one" write (u, "(A)") call global%set_log (& var_str ("?rebuild_events"), .false., is_known = .true.) call reset_interaction_counter () allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = simulation%get_md5sum_cfg () call es_array%init (sample, empty_string_array, global, data, & input = var_str ("raw")) call simulation%generate (2, es_array) call pacify (simulation) call simulation%write_event (u, verbose = .true.) call es_array%final () call simulation%final () deallocate (simulation) write (u, "(A)") write (u, "(A)") "* Re-read both events from file" write (u, "(A)") call reset_interaction_counter () allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = simulation%get_md5sum_cfg () call es_array%init (sample, empty_string_array, global, data, & input = var_str ("raw")) call simulation%generate (2, es_array) call pacify (simulation) call simulation%write_event (u, verbose = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call es_array%final () call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_7" end subroutine simulations_7 @ %def simulations_7 @ \subsubsection{Rescanning Events} Generate events and rescan the resulting raw event file. <>= call test (simulations_8, "simulations_8", & "rescan raw event file", & u, results) <>= public :: simulations_8 <>= subroutine simulations_8 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global type(string_t), dimension(0) :: empty_string_array type(event_sample_data_t) :: data type(event_stream_array_t) :: es_array type(simulation_t), allocatable, target :: simulation type(flavor_t) :: flv type(string_t) :: name write (u, "(A)") "* Test output: simulations_8" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* write to file and rescan" write (u, "(A)") write (u, "(A)") "* Initialize process and integrate" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_8" procname1 = "simulation_8p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), & 0._default) call flv%init (25, global%model) name = flv%get_name () call global%beam_structure%init_sf ([name, name], [1]) call global%beam_structure%set_sf (1, 1, var_str ("sf_test_1")) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call reset_interaction_counter () call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations8" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () write (u, "(A)") "* Initialize raw event file" write (u, "(A)") data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = simulation%get_md5sum_cfg () write (u, "(1x,A,A,A)") "MD5 sum (proc) = '", data%md5sum_prc, "'" write (u, "(1x,A,A,A)") "MD5 sum (config) = '", data%md5sum_cfg, "'" call es_array%init (sample, [var_str ("raw")], global, & data) write (u, "(A)") write (u, "(A)") "* Generate an event" write (u, "(A)") call simulation%generate (1, es_array) call pacify (simulation) call simulation%write_event (u, verbose = .true., testflag = .true.) call es_array%final () call simulation%final () deallocate (simulation) write (u, "(A)") write (u, "(A)") "* Re-read the event from file" write (u, "(A)") call reset_interaction_counter () allocate (simulation) call simulation%init ([procname1], .false., .false., global) call simulation%init_process_selector () data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = "" write (u, "(1x,A,A,A)") "MD5 sum (proc) = '", data%md5sum_prc, "'" write (u, "(1x,A,A,A)") "MD5 sum (config) = '", data%md5sum_cfg, "'" call es_array%init (sample, empty_string_array, global, data, & input = var_str ("raw"), input_sample = sample, allow_switch = .false.) call simulation%rescan (1, es_array, global = global) write (u, "(A)") call pacify (simulation) call simulation%write_event (u, verbose = .true., testflag = .true.) call es_array%final () call simulation%final () deallocate (simulation) write (u, "(A)") write (u, "(A)") "* Re-read again and recalculate" write (u, "(A)") call reset_interaction_counter () call global%set_log (var_str ("?update_sqme"), & .true., is_known = .true.) call global%set_log (var_str ("?update_event"), & .true., is_known = .true.) allocate (simulation) call simulation%init ([procname1], .false., .false., global) call simulation%init_process_selector () data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = "" write (u, "(1x,A,A,A)") "MD5 sum (proc) = '", data%md5sum_prc, "'" write (u, "(1x,A,A,A)") "MD5 sum (config) = '", data%md5sum_cfg, "'" call es_array%init (sample, empty_string_array, global, data, & input = var_str ("raw"), input_sample = sample, allow_switch = .false.) call simulation%rescan (1, es_array, global = global) write (u, "(A)") call pacify (simulation) call simulation%write_event (u, verbose = .true., testflag = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call es_array%final () call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_8" end subroutine simulations_8 @ %def simulations_8 @ \subsubsection{Rescanning Check} Generate events and rescan with process mismatch. <>= call test (simulations_9, "simulations_9", & "rescan mismatch", & u, results) <>= public :: simulations_9 <>= subroutine simulations_9 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global type(string_t), dimension(0) :: empty_string_array type(event_sample_data_t) :: data type(event_stream_array_t) :: es_array type(simulation_t), allocatable, target :: simulation type(flavor_t) :: flv type(string_t) :: name logical :: error write (u, "(A)") "* Test output: simulations_9" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* write to file and rescan" write (u, "(A)") write (u, "(A)") "* Initialize process and integrate" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_9" procname1 = "simulation_9p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("wood"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("vamp"), is_known = .true.) call global%set_log (var_str ("?use_vamp_equivalences"),& .true., is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), & 0._default) call flv%init (25, global%model) name = flv%get_name () call global%beam_structure%init_sf ([name, name], [1]) call global%beam_structure%set_sf (1, 1, var_str ("sf_test_1")) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call reset_interaction_counter () call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations9" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Initialize raw event file" write (u, "(A)") data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = simulation%get_md5sum_cfg () write (u, "(1x,A,A,A)") "MD5 sum (proc) = '", data%md5sum_prc, "'" write (u, "(1x,A,A,A)") "MD5 sum (config) = '", data%md5sum_cfg, "'" call es_array%init (sample, [var_str ("raw")], global, & data) write (u, "(A)") write (u, "(A)") "* Generate an event" write (u, "(A)") call simulation%generate (1, es_array) call es_array%final () call simulation%final () deallocate (simulation) write (u, "(A)") "* Initialize event generation for different parameters" write (u, "(A)") call reset_interaction_counter () allocate (simulation) call simulation%init ([procname1, procname1], .false., .false., global) call simulation%init_process_selector () call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Attempt to re-read the events (should fail)" write (u, "(A)") data%md5sum_prc = simulation%get_md5sum_prc () data%md5sum_cfg = "" write (u, "(1x,A,A,A)") "MD5 sum (proc) = '", data%md5sum_prc, "'" write (u, "(1x,A,A,A)") "MD5 sum (config) = '", data%md5sum_cfg, "'" call es_array%init (sample, empty_string_array, global, data, & input = var_str ("raw"), input_sample = sample, & allow_switch = .false., error = error) write (u, "(1x,A,L1)") "error = ", error call simulation%rescan (1, es_array, global = global) call es_array%final () call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_9" end subroutine simulations_9 @ %def simulations_9 @ \subsubsection{Alternative weights} Generate an event for a single process and reweight it in a simultaneous calculation. <>= call test (simulations_10, "simulations_10", & "alternative weight", & u, results) <>= public :: simulations_10 <>= subroutine simulations_10 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, expr_text type(rt_data_t), target :: global type(rt_data_t), dimension(1), target :: alt_env type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: pt_weight type(simulation_t), target :: simulation type(event_sample_data_t) :: data write (u, "(A)") "* Test output: simulations_10" write (u, "(A)") "* Purpose: reweight event" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call syntax_pexpr_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_10a" procname1 = "simulation_10p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("simulations1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize alternative environment with custom weight" write (u, "(A)") call alt_env(1)%local_init (global) call alt_env(1)%activate () expr_text = "2" write (u, "(A,A)") "weight = ", char (expr_text) write (u, *) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_weight, stream, .true.) call stream_final (stream) alt_env(1)%pn%weight_expr => pt_weight%get_root_ptr () call alt_env(1)%write_expr (u) write (u, "(A)") write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) call simulation%init ([procname1], .true., .true., global, alt_env=alt_env) call simulation%init_process_selector () data = simulation%get_data () call data%write (u) write (u, "(A)") write (u, "(A)") "* Generate an event" write (u, "(A)") call simulation%generate (1) call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Write the event record for the last event" write (u, "(A)") call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Write the event record for the alternative setup" write (u, "(A)") call simulation%write_alt_event (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () call syntax_model_file_final () call syntax_pexpr_final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_10" end subroutine simulations_10 @ %def simulations_10 @ \subsubsection{Decays} Generate an event with subsequent partonic decays. <>= call test (simulations_11, "simulations_11", & "decay", & u, results) <>= public :: simulations_11 <>= subroutine simulations_11 (u) integer, intent(in) :: u type(rt_data_t), target :: global type(prclib_entry_t), pointer :: lib type(string_t) :: prefix, procname1, procname2 type(simulation_t), target :: simulation write (u, "(A)") "* Test output: simulations_11" write (u, "(A)") "* Purpose: apply decay" write (u, "(A)") write (u, "(A)") "* Initialize processes" write (u, "(A)") call syntax_model_file_init () call global%global_init () allocate (lib) call global%add_prclib (lib) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) prefix = "simulation_11" procname1 = prefix // "_p" procname2 = prefix // "_d" call prepare_testbed & (global%prclib, global%process_stack, & prefix, global%os_data, & scattering=.true., decay=.true.) call global%select_model (var_str ("Test")) call global%model%set_par (var_str ("ff"), 0.4_default) call global%model%set_par (var_str ("mf"), & global%model%get_real (var_str ("ff")) & * global%model%get_real (var_str ("ms"))) call global%model%set_unstable (25, [procname2]) write (u, "(A)") "* Initialize simulation object" write (u, "(A)") call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () write (u, "(A)") "* Generate event" write (u, "(A)") call simulation%generate (1) call simulation%write (u) write (u, *) call simulation%write_event (u) write (u, "(A)") write (u, "(A)") "* Cleanup" write (u, "(A)") call simulation%final () call global%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_11" end subroutine simulations_11 @ %def simulations_11 @ \subsubsection{Split Event Files} Generate event for a real process with structure functions and write to file, accepting a limit for the number of events per file. <>= call test (simulations_12, "simulations_12", & "split event files", & u, results) <>= public :: simulations_12 <>= subroutine simulations_12 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global class(eio_t), allocatable :: eio type(simulation_t), allocatable, target :: simulation type(flavor_t) :: flv integer :: i_evt write (u, "(A)") "* Test output: simulations_12" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* and write to split event files" write (u, "(A)") write (u, "(A)") "* Initialize process and integrate" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_12" procname1 = "simulation_12p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%model_set_real (var_str ("ms"), & 0._default) call flv%init (25, global%model) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations_12" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) call global%set_int (var_str ("sample_split_n_evt"), & 2, is_known = .true.) call global%set_int (var_str ("sample_split_index"), & 42, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () call simulation%write (u) write (u, "(A)") write (u, "(A)") "* Initialize ASCII event file" write (u, "(A)") allocate (eio_ascii_short_t :: eio) select type (eio) class is (eio_ascii_t); call eio%set_parameters () end select call eio%init_out (sample, data = simulation%get_data ()) write (u, "(A)") "* Generate 5 events, distributed among three files" do i_evt = 1, 5 call simulation%generate (1) call simulation%write_event (eio) end do call eio%final () deallocate (eio) call simulation%final () deallocate (simulation) write (u, *) call display_file ("simulations_12.42.short.evt", u) write (u, *) call display_file ("simulations_12.43.short.evt", u) write (u, *) call display_file ("simulations_12.44.short.evt", u) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_12" end subroutine simulations_12 @ %def simulations_12 @ Auxiliary: display file contents. <>= public :: display_file <>= subroutine display_file (file, u) use io_units, only: free_unit character(*), intent(in) :: file integer, intent(in) :: u character(256) :: buffer integer :: u_file write (u, "(3A)") "* Contents of file '", file, "':" write (u, *) u_file = free_unit () open (u_file, file = file, action = "read", status = "old") do read (u_file, "(A)", end = 1) buffer write (u, "(A)") trim (buffer) end do 1 continue end subroutine display_file @ %def display_file @ \subsubsection{Callback} Generate events and execute a callback in place of event I/O. <>= call test (simulations_13, "simulations_13", & "callback", & u, results) <>= public :: simulations_13 <>= subroutine simulations_13 (u) integer, intent(in) :: u type(string_t) :: libname, procname1, sample type(rt_data_t), target :: global class(eio_t), allocatable :: eio type(simulation_t), allocatable, target :: simulation type(flavor_t) :: flv integer :: i_evt type(simulations_13_callback_t) :: event_callback write (u, "(A)") "* Test output: simulations_13" write (u, "(A)") "* Purpose: generate events for a single process" write (u, "(A)") "* and execute callback" write (u, "(A)") write (u, "(A)") "* Initialize process and integrate" write (u, "(A)") call syntax_model_file_init () call global%global_init () call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) libname = "simulation_13" procname1 = "simulation_13p" call prepare_test_library (global, libname, 1, [procname1]) call compile_library (libname, global) call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_string (var_str ("$method"), & var_str ("unit_test"), is_known = .true.) call global%set_string (var_str ("$phs_method"), & var_str ("single"), is_known = .true.) call global%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known = .true.) call global%set_log (var_str ("?vis_history"),& .false., is_known = .true.) call global%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call flv%init (25, global%model) call global%it_list%init ([1], [1000]) call global%set_string (var_str ("$run_id"), & var_str ("r1"), is_known = .true.) call integrate_process (procname1, global, local_stack=.true.) write (u, "(A)") "* Initialize event generation" write (u, "(A)") call global%set_log (var_str ("?unweighted"), & .false., is_known = .true.) sample = "simulations_13" call global%set_string (var_str ("$sample"), & sample, is_known = .true.) allocate (simulation) call simulation%init ([procname1], .true., .true., global) call simulation%init_process_selector () write (u, "(A)") "* Prepare callback object" write (u, "(A)") event_callback%u = u call global%set_event_callback (event_callback) write (u, "(A)") "* Initialize callback I/O object" write (u, "(A)") allocate (eio_callback_t :: eio) select type (eio) class is (eio_callback_t) call eio%set_parameters (callback = event_callback, & count_interval = 3) end select call eio%init_out (sample, data = simulation%get_data ()) write (u, "(A)") "* Generate 7 events, with callback every 3 events" write (u, "(A)") do i_evt = 1, 7 call simulation%generate (1) call simulation%write_event (eio) end do call eio%final () deallocate (eio) call simulation%final () deallocate (simulation) write (u, "(A)") write (u, "(A)") "* Cleanup" call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_13" end subroutine simulations_13 @ %def simulations_13 @ The callback object and procedure. In the type extension, we can store the output channel [[u]] so we know where to write into. <>= type, extends (event_callback_t) :: simulations_13_callback_t integer :: u contains procedure :: write => simulations_13_callback_write procedure :: proc => simulations_13_callback end type simulations_13_callback_t @ %def simulations_13_callback_t <>= subroutine simulations_13_callback_write (event_callback, unit) class(simulations_13_callback_t), intent(in) :: event_callback integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Hello" end subroutine simulations_13_callback_write subroutine simulations_13_callback (event_callback, i, event) class(simulations_13_callback_t), intent(in) :: event_callback integer(i64), intent(in) :: i class(generic_event_t), intent(in) :: event write (event_callback%u, "(A,I0)") "hello event #", i end subroutine simulations_13_callback @ %def simulations_13_callback_write @ %def simulations_13_callback @ \subsubsection{Resonant subprocess setup} Prepare a process with resonances and enter resonant subprocesses in the simulation object. Select a kinematics configuration and compute probabilities for resonant subprocesses. The process and its initialization is taken from [[processes_18]], but we need a complete \oMega\ matrix element here. <>= call test (simulations_14, "simulations_14", & "resonant subprocesses evaluation", & u, results) <>= public :: simulations_14 <>= subroutine simulations_14 (u) integer, intent(in) :: u type(string_t) :: libname, libname_generated type(string_t) :: procname type(string_t) :: model_name type(rt_data_t), target :: global type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib class(model_t), pointer :: model class(model_data_t), pointer :: model_data type(simulation_t), target :: simulation type(particle_set_t) :: pset type(eio_direct_t) :: eio_in type(eio_dump_t) :: eio_out real(default) :: sqrts, mw, pp real(default), dimension(3) :: p3 type(vector4_t), dimension(:), allocatable :: p real(default), dimension(:), allocatable :: m integer :: u_verbose, i real(default) :: sqme_proc real(default), dimension(:), allocatable :: sqme real(default) :: on_shell_limit integer, dimension(:), allocatable :: i_array real(default), dimension(:), allocatable :: prob_array write (u, "(A)") "* Test output: simulations_14" write (u, "(A)") "* Purpose: construct resonant subprocesses & &in the simulation object" write (u, "(A)") write (u, "(A)") "* Build and load a test library with one process" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () libname = "simulations_14_lib" procname = "simulations_14_p" call global%global_init () call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_log (var_str ("?update_sqme"), & .true., is_known = .true.) call global%set_log (var_str ("?update_weight"), & .true., is_known = .true.) call global%set_log (var_str ("?update_event"), & .true., is_known = .true.) model_name = "SM" call global%select_model (model_name) allocate (model) call model%init_instance (global%model) model_data => model write (u, "(A)") "* Initialize process library and process" write (u, "(A)") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) call prepare_resonance_test_library & (lib, libname, procname, model_data, global, u) write (u, "(A)") write (u, "(A)") "* Initialize simulation object & &with resonant subprocesses" write (u, "(A)") call global%set_log (var_str ("?resonance_history"), & .true., is_known = .true.) call global%set_real (var_str ("resonance_on_shell_limit"), & 10._default, is_known = .true.) call simulation%init ([procname], & integrate=.false., generate=.false., local=global) call simulation%write_resonant_subprocess_data (u, 1) write (u, "(A)") write (u, "(A)") "* Resonant subprocesses: generated library" write (u, "(A)") libname_generated = procname // "_R" lib => global%prclib_stack%get_library_ptr (libname_generated) if (associated (lib)) call lib%write (u, libpath=.false.) write (u, "(A)") write (u, "(A)") "* Generated process stack" write (u, "(A)") call global%process_stack%show (u) write (u, "(A)") write (u, "(A)") "* Particle set" write (u, "(A)") pset = simulation%get_hard_particle_set (1) call pset%write (u) write (u, "(A)") write (u, "(A)") "* Initialize object for direct access" write (u, "(A)") call eio_in%init_direct & (n_beam = 0, n_in = 2, n_rem = 0, n_vir = 0, n_out = 3, & pdg = [-11, 11, 1, -2, 24], model=global%model) call eio_in%set_selection_indices (1, 1, 1, 1) sqrts = global%get_rval (var_str ("sqrts")) mw = 80._default ! deliberately slightly different from true mw pp = sqrt (sqrts**2 - 4 * mw**2) / 2 allocate (p (5), m (5)) p(1) = vector4_moving (sqrts/2, sqrts/2, 3) m(1) = 0 p(2) = vector4_moving (sqrts/2,-sqrts/2, 3) m(2) = 0 p3(1) = pp/2 p3(2) = mw/2 p3(3) = 0 p(3) = vector4_moving (sqrts/4, vector3_moving (p3)) m(3) = 0 p3(2) = -mw/2 p(4) = vector4_moving (sqrts/4, vector3_moving (p3)) m(4) = 0 p(5) = vector4_moving (sqrts/2,-pp, 1) m(5) = mw call eio_in%set_momentum (p, m**2) call eio_in%write (u) write (u, "(A)") write (u, "(A)") "* Transfer and show particle set" write (u, "(A)") call simulation%read_event (eio_in) pset = simulation%get_hard_particle_set (1) call pset%write (u) write (u, "(A)") write (u, "(A)") "* (Re)calculate matrix element" write (u, "(A)") call simulation%recalculate (recover_phs = .false.) call simulation%evaluate_transforms () write (u, "(A)") "* Show event with sqme" write (u, "(A)") call eio_out%set_parameters (unit = u, & weights = .true., pacify = .true., compressed = .true.) call eio_out%init_out (var_str ("")) call simulation%write_event (eio_out) write (u, "(A)") write (u, "(A)") "* Write event to separate file & &'simulations_14_event_verbose.log'" u_verbose = free_unit () open (unit = u_verbose, file = "simulations_14_event_verbose.log", & status = "replace", action = "write") call simulation%write (u_verbose) write (u_verbose, *) call simulation%write_event (u_verbose, verbose =.true., testflag = .true.) close (u_verbose) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_14" end subroutine simulations_14 @ %def simulations_14 @ \subsubsection{Resonant subprocess simulation} Prepare a process with resonances and enter resonant subprocesses in the simulation object. Simulate events with selection of resonance histories. The process and its initialization is taken from [[processes_18]], but we need a complete \oMega\ matrix element here. <>= call test (simulations_15, "simulations_15", & "resonant subprocesses in simulation", & u, results) <>= public :: simulations_15 <>= subroutine simulations_15 (u) integer, intent(in) :: u type(string_t) :: libname, libname_generated type(string_t) :: procname type(string_t) :: model_name type(rt_data_t), target :: global type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib class(model_t), pointer :: model class(model_data_t), pointer :: model_data type(simulation_t), target :: simulation real(default) :: sqrts type(eio_dump_t) :: eio_out integer :: u_verbose write (u, "(A)") "* Test output: simulations_15" write (u, "(A)") "* Purpose: generate event with resonant subprocess" write (u, "(A)") write (u, "(A)") "* Build and load a test library with one process" write (u, "(A)") call syntax_model_file_init () call syntax_phs_forest_init () libname = "simulations_15_lib" procname = "simulations_15_p" call global%global_init () call global%append_log (& var_str ("?rebuild_phase_space"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_grids"), .true., intrinsic = .true.) call global%append_log (& var_str ("?rebuild_events"), .true., intrinsic = .true.) call global%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) call global%set_int (var_str ("seed"), & 0, is_known = .true.) call global%set_real (var_str ("sqrts"),& 1000._default, is_known = .true.) call global%set_log (var_str ("?recover_beams"), & .false., is_known = .true.) call global%set_log (var_str ("?update_sqme"), & .true., is_known = .true.) call global%set_log (var_str ("?update_weight"), & .true., is_known = .true.) call global%set_log (var_str ("?update_event"), & .true., is_known = .true.) call global%set_log (var_str ("?resonance_history"), & .true., is_known = .true.) call global%set_real (var_str ("resonance_on_shell_limit"), & 10._default, is_known = .true.) model_name = "SM" call global%select_model (model_name) allocate (model) call model%init_instance (global%model) model_data => model write (u, "(A)") "* Initialize process library and process" write (u, "(A)") allocate (lib_entry) call lib_entry%init (libname) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) call prepare_resonance_test_library & (lib, libname, procname, model_data, global, u) write (u, "(A)") write (u, "(A)") "* Initialize simulation object & &with resonant subprocesses" write (u, "(A)") call global%it_list%init ([1], [1000]) call simulation%init ([procname], & integrate=.true., generate=.true., local=global) call simulation%write_resonant_subprocess_data (u, 1) write (u, "(A)") write (u, "(A)") "* Generate event" write (u, "(A)") call simulation%init_process_selector () call simulation%generate (1) call eio_out%set_parameters (unit = u, & weights = .true., pacify = .true., compressed = .true.) call eio_out%init_out (var_str ("")) call simulation%write_event (eio_out) write (u, "(A)") write (u, "(A)") "* Write event to separate file & &'simulations_15_event_verbose.log'" u_verbose = free_unit () open (unit = u_verbose, file = "simulations_15_event_verbose.log", & status = "replace", action = "write") call simulation%write (u_verbose) write (u_verbose, *) call simulation%write_event (u_verbose, verbose =.true., testflag = .true.) close (u_verbose) write (u, "(A)") write (u, "(A)") "* Cleanup" call simulation%final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: simulations_15" end subroutine simulations_15 @ %def simulations_15 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{More Unit Tests} This chapter collects some procedures for testing that can't be provided at the point where the corresponding modules are defined, because they use other modules of a different level. (We should move them back, collecting the high-level functionality in init/final hooks that we can set at runtime.) \section{Expression Testing} Expression objects are part of process and event objects, but the process and event object modules should not depend on the implementation of expressions. Here, we collect unit tests that depend on expression implementation. <<[[expr_tests_ut.f90]]>>= <> module expr_tests_ut use unit_tests use expr_tests_uti <> <> contains <> end module expr_tests_ut @ %def expr_tests_ut @ <<[[expr_tests_uti.f90]]>>= <> module expr_tests_uti <> <> use format_defs, only: FMT_12 use format_utils, only: write_separator use os_interface use sm_qcd use lorentz use ifiles use lexers use parser use model_data use interactions, only: reset_interaction_counter use process_libraries use subevents use subevt_expr use rng_base use mci_base use phs_base use variables, only: var_list_t use eval_trees use models use prc_core use prc_test use process, only: process_t use instances, only: process_instance_t use events use rng_base_ut, only: rng_test_factory_t use phs_base_ut, only: phs_test_config_t <> <> contains <> <> end module expr_tests_uti @ %def expr_tests_uti @ \subsection{Test} This is the master for calling self-test procedures. <>= public :: subevt_expr_test <>= subroutine subevt_expr_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine subevt_expr_test @ %def subevt_expr_test @ \subsubsection{Parton-event expressions} <>= call test (subevt_expr_1, "subevt_expr_1", & "parton-event expressions", & u, results) <>= public :: subevt_expr_1 <>= subroutine subevt_expr_1 (u) integer, intent(in) :: u type(string_t) :: expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: pt_cuts, pt_scale, pt_fac_scale, pt_ren_scale type(parse_tree_t) :: pt_weight type(parse_node_t), pointer :: pn_cuts, pn_scale, pn_fac_scale, pn_ren_scale type(parse_node_t), pointer :: pn_weight type(eval_tree_factory_t) :: expr_factory type(os_data_t) :: os_data type(model_t), target :: model type(parton_expr_t), target :: expr real(default) :: E, Ex, m type(vector4_t), dimension(6) :: p integer :: i, pdg logical :: passed real(default) :: scale, fac_scale, ren_scale, weight write (u, "(A)") "* Test output: subevt_expr_1" write (u, "(A)") "* Purpose: Set up a subevt and associated & &process-specific expressions" write (u, "(A)") call syntax_pexpr_init () call syntax_model_file_init () call os_data%init () call model%read (var_str ("Test.mdl"), os_data) write (u, "(A)") "* Expression texts" write (u, "(A)") expr_text = "all Pt > 100 [s]" write (u, "(A,A)") "cuts = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (pt_cuts, stream, .true.) call stream_final (stream) pn_cuts => pt_cuts%get_root_ptr () expr_text = "sqrts" write (u, "(A,A)") "scale = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_scale, stream, .true.) call stream_final (stream) pn_scale => pt_scale%get_root_ptr () expr_text = "sqrts_hat" write (u, "(A,A)") "fac_scale = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_fac_scale, stream, .true.) call stream_final (stream) pn_fac_scale => pt_fac_scale%get_root_ptr () expr_text = "100" write (u, "(A,A)") "ren_scale = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_ren_scale, stream, .true.) call stream_final (stream) pn_ren_scale => pt_ren_scale%get_root_ptr () expr_text = "n_tot - n_in - n_out" write (u, "(A,A)") "weight = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_weight, stream, .true.) call stream_final (stream) pn_weight => pt_weight%get_root_ptr () call ifile_final (ifile) write (u, "(A)") write (u, "(A)") "* Initialize process expr" write (u, "(A)") call expr%setup_vars (1000._default) call expr%var_list%append_real (var_str ("tolerance"), 0._default) call expr%link_var_list (model%get_var_list_ptr ()) call expr_factory%init (pn_cuts) call expr%setup_selection (expr_factory) call expr_factory%init (pn_scale) call expr%setup_scale (expr_factory) call expr_factory%init (pn_fac_scale) call expr%setup_fac_scale (expr_factory) call expr_factory%init (pn_ren_scale) call expr%setup_ren_scale (expr_factory) call expr_factory%init (pn_weight) call expr%setup_weight (expr_factory) call write_separator (u) call expr%write (u) call write_separator (u) write (u, "(A)") write (u, "(A)") "* Fill subevt and evaluate expressions" write (u, "(A)") call subevt_init (expr%subevt_t, 6) E = 500._default Ex = 400._default m = 125._default pdg = 25 p(1) = vector4_moving (E, sqrt (E**2 - m**2), 3) p(2) = vector4_moving (E, -sqrt (E**2 - m**2), 3) p(3) = vector4_moving (Ex, sqrt (Ex**2 - m**2), 3) p(4) = vector4_moving (Ex, -sqrt (Ex**2 - m**2), 3) p(5) = vector4_moving (Ex, sqrt (Ex**2 - m**2), 1) p(6) = vector4_moving (Ex, -sqrt (Ex**2 - m**2), 1) call expr%reset_contents () do i = 1, 2 call subevt_set_beam (expr%subevt_t, i, pdg, p(i), m**2) end do do i = 3, 4 call subevt_set_incoming (expr%subevt_t, i, pdg, p(i), m**2) end do do i = 5, 6 call subevt_set_outgoing (expr%subevt_t, i, pdg, p(i), m**2) end do expr%sqrts_hat = subevt_get_sqrts_hat (expr%subevt_t) expr%n_in = 2 expr%n_out = 2 expr%n_tot = 4 expr%subevt_filled = .true. call expr%evaluate (passed, scale, fac_scale, ren_scale, weight) write (u, "(A,L1)") "Event has passed = ", passed write (u, "(A," // FMT_12 // ")") "Scale = ", scale write (u, "(A," // FMT_12 // ")") "Factorization scale = ", fac_scale write (u, "(A," // FMT_12 // ")") "Renormalization scale = ", ren_scale write (u, "(A," // FMT_12 // ")") "Weight = ", weight write (u, "(A)") call write_separator (u) call expr%write (u) call write_separator (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call expr%final () call model%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: subevt_expr_1" end subroutine subevt_expr_1 @ %def subevt_expr_1 @ \subsubsection{Parton-event expressions} <>= call test (subevt_expr_2, "subevt_expr_2", & "parton-event expressions", & u, results) <>= public :: subevt_expr_2 <>= subroutine subevt_expr_2 (u) integer, intent(in) :: u type(string_t) :: expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: pt_selection type(parse_tree_t) :: pt_reweight, pt_analysis type(parse_node_t), pointer :: pn_selection type(parse_node_t), pointer :: pn_reweight, pn_analysis type(os_data_t) :: os_data type(model_t), target :: model type(eval_tree_factory_t) :: expr_factory type(event_expr_t), target :: expr real(default) :: E, Ex, m type(vector4_t), dimension(6) :: p integer :: i, pdg logical :: passed real(default) :: reweight logical :: analysis_flag write (u, "(A)") "* Test output: subevt_expr_2" write (u, "(A)") "* Purpose: Set up a subevt and associated & &process-specific expressions" write (u, "(A)") call syntax_pexpr_init () call syntax_model_file_init () call os_data%init () call model%read (var_str ("Test.mdl"), os_data) write (u, "(A)") "* Expression texts" write (u, "(A)") expr_text = "all Pt > 100 [s]" write (u, "(A,A)") "selection = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (pt_selection, stream, .true.) call stream_final (stream) pn_selection => pt_selection%get_root_ptr () expr_text = "n_tot - n_in - n_out" write (u, "(A,A)") "reweight = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_reweight, stream, .true.) call stream_final (stream) pn_reweight => pt_reweight%get_root_ptr () expr_text = "true" write (u, "(A,A)") "analysis = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (pt_analysis, stream, .true.) call stream_final (stream) pn_analysis => pt_analysis%get_root_ptr () call ifile_final (ifile) write (u, "(A)") write (u, "(A)") "* Initialize process expr" write (u, "(A)") call expr%setup_vars (1000._default) call expr%link_var_list (model%get_var_list_ptr ()) call expr%var_list%append_real (var_str ("tolerance"), 0._default) call expr_factory%init (pn_selection) call expr%setup_selection (expr_factory) call expr_factory%init (pn_analysis) call expr%setup_analysis (expr_factory) call expr_factory%init (pn_reweight) call expr%setup_reweight (expr_factory) call write_separator (u) call expr%write (u) call write_separator (u) write (u, "(A)") write (u, "(A)") "* Fill subevt and evaluate expressions" write (u, "(A)") call subevt_init (expr%subevt_t, 6) E = 500._default Ex = 400._default m = 125._default pdg = 25 p(1) = vector4_moving (E, sqrt (E**2 - m**2), 3) p(2) = vector4_moving (E, -sqrt (E**2 - m**2), 3) p(3) = vector4_moving (Ex, sqrt (Ex**2 - m**2), 3) p(4) = vector4_moving (Ex, -sqrt (Ex**2 - m**2), 3) p(5) = vector4_moving (Ex, sqrt (Ex**2 - m**2), 1) p(6) = vector4_moving (Ex, -sqrt (Ex**2 - m**2), 1) call expr%reset_contents () do i = 1, 2 call subevt_set_beam (expr%subevt_t, i, pdg, p(i), m**2) end do do i = 3, 4 call subevt_set_incoming (expr%subevt_t, i, pdg, p(i), m**2) end do do i = 5, 6 call subevt_set_outgoing (expr%subevt_t, i, pdg, p(i), m**2) end do expr%sqrts_hat = subevt_get_sqrts_hat (expr%subevt_t) expr%n_in = 2 expr%n_out = 2 expr%n_tot = 4 expr%subevt_filled = .true. call expr%evaluate (passed, reweight, analysis_flag) write (u, "(A,L1)") "Event has passed = ", passed write (u, "(A," // FMT_12 // ")") "Reweighting factor = ", reweight write (u, "(A,L1)") "Analysis flag = ", analysis_flag write (u, "(A)") call write_separator (u) call expr%write (u) call write_separator (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call expr%final () call model%final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: subevt_expr_2" end subroutine subevt_expr_2 @ %def subevt_expr_2 @ \subsubsection{Processes: handle partonic cuts} Initialize a process and process instance, choose a sampling point and fill the process instance, evaluating a given cut configuration. We use the same trivial process as for the previous test. All momentum and state dependence is trivial, so we just test basic functionality. <>= call test (processes_5, "processes_5", & "handle cuts (partonic event)", & u, results) <>= public :: processes_5 <>= subroutine processes_5 (u) integer, intent(in) :: u type(string_t) :: cut_expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: parse_tree type(eval_tree_factory_t) :: expr_factory type(process_library_t), target :: lib type(string_t) :: libname type(string_t) :: procname type(os_data_t) :: os_data type(model_t), pointer :: model_tmp type(model_t), pointer :: model type(var_list_t), target :: var_list type(process_t), allocatable, target :: process class(phs_config_t), allocatable :: phs_config_template real(default) :: sqrts type(process_instance_t), allocatable, target :: process_instance write (u, "(A)") "* Test output: processes_5" write (u, "(A)") "* Purpose: create a process & &and fill a process instance" write (u, "(A)") write (u, "(A)") "* Prepare a cut expression" write (u, "(A)") call syntax_pexpr_init () cut_expr_text = "all Pt > 100 [s]" call ifile_append (ifile, cut_expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (parse_tree, stream, .true.) write (u, "(A)") "* Build and initialize a test process" write (u, "(A)") libname = "processes5" procname = libname call os_data%init () call prc_test_create_library (libname, lib) call syntax_model_file_init () allocate (model_tmp) call model_tmp%read (var_str ("Test.mdl"), os_data) call var_list%init_snapshot (model_tmp%get_var_list_ptr ()) model => model_tmp call reset_interaction_counter () call var_list%append_real (var_str ("tolerance"), 0._default) call var_list%append_log (var_str ("?alphas_is_fixed"), .true.) call var_list%append_int (var_str ("seed"), 0) allocate (process) call process%init (procname, lib, os_data, model, var_list) call var_list%final () allocate (phs_test_config_t :: phs_config_template) call process%setup_test_cores () call process%init_components (phs_config_template) write (u, "(A)") "* Prepare a trivial beam setup" write (u, "(A)") sqrts = 1000 call process%setup_beams_sqrts (sqrts, i_core = 1) call process%configure_phs () call process%setup_mci (dispatch_mci_empty) write (u, "(A)") "* Complete process initialization and set cuts" write (u, "(A)") call process%setup_terms () call expr_factory%init (parse_tree%get_root_ptr ()) call process%set_cuts (expr_factory) call process%write (.false., u, & show_var_list=.true., show_expressions=.true., show_os_data=.false.) write (u, "(A)") write (u, "(A)") "* Create a process instance" write (u, "(A)") allocate (process_instance) call process_instance%init (process) write (u, "(A)") write (u, "(A)") "* Inject a set of random numbers" write (u, "(A)") call process_instance%choose_mci (1) call process_instance%set_mcpar ([0._default, 0._default]) write (u, "(A)") write (u, "(A)") "* Set up kinematics and subevt, check cuts (should fail)" write (u, "(A)") call process_instance%select_channel (1) call process_instance%compute_seed_kinematics () call process_instance%compute_hard_kinematics () call process_instance%compute_eff_kinematics () call process_instance%evaluate_expressions () call process_instance%compute_other_channels () call process_instance%write (u) write (u, "(A)") write (u, "(A)") "* Evaluate for another set (should succeed)" write (u, "(A)") call process_instance%reset () call process_instance%set_mcpar ([0.5_default, 0.125_default]) call process_instance%select_channel (1) call process_instance%compute_seed_kinematics () call process_instance%compute_hard_kinematics () call process_instance%compute_eff_kinematics () call process_instance%evaluate_expressions () call process_instance%compute_other_channels () call process_instance%evaluate_trace () call process_instance%write (u) write (u, "(A)") write (u, "(A)") "* Evaluate for another set using convenience procedure & &(failure)" write (u, "(A)") call process_instance%evaluate_sqme (1, [0.0_default, 0.2_default]) call process_instance%write_header (u) write (u, "(A)") write (u, "(A)") "* Evaluate for another set using convenience procedure & &(success)" write (u, "(A)") call process_instance%evaluate_sqme (1, [0.1_default, 0.2_default]) call process_instance%write_header (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call process_instance%final () deallocate (process_instance) call process%final () deallocate (process) call parse_tree_final (parse_tree) call stream_final (stream) call ifile_final (ifile) call syntax_pexpr_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: processes_5" end subroutine processes_5 @ %def processes_5 @ Trivial for testing: do not allocate the MCI record. <>= subroutine dispatch_mci_empty (mci, var_list, process_id, is_nlo) class(mci_t), allocatable, intent(out) :: mci type(var_list_t), intent(in) :: var_list type(string_t), intent(in) :: process_id logical, intent(in), optional :: is_nlo end subroutine dispatch_mci_empty @ %def dispatch_mci_empty @ \subsubsection{Processes: scales and such} Initialize a process and process instance, choose a sampling point and fill the process instance, evaluating a given cut configuration. We use the same trivial process as for the previous test. All momentum and state dependence is trivial, so we just test basic functionality. <>= call test (processes_6, "processes_6", & "handle scales and weight (partonic event)", & u, results) <>= public :: processes_6 <>= subroutine processes_6 (u) integer, intent(in) :: u type(string_t) :: expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: pt_scale, pt_fac_scale, pt_ren_scale, pt_weight type(process_library_t), target :: lib type(string_t) :: libname type(string_t) :: procname type(os_data_t) :: os_data type(model_t), pointer :: model_tmp type(model_t), pointer :: model type(var_list_t), target :: var_list type(process_t), allocatable, target :: process class(phs_config_t), allocatable :: phs_config_template real(default) :: sqrts type(process_instance_t), allocatable, target :: process_instance type(eval_tree_factory_t) :: expr_factory write (u, "(A)") "* Test output: processes_6" write (u, "(A)") "* Purpose: create a process & &and fill a process instance" write (u, "(A)") write (u, "(A)") "* Prepare expressions" write (u, "(A)") call syntax_pexpr_init () expr_text = "sqrts - 100 GeV" write (u, "(A,A)") "scale = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_scale, stream, .true.) call stream_final (stream) expr_text = "sqrts_hat" write (u, "(A,A)") "fac_scale = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_fac_scale, stream, .true.) call stream_final (stream) expr_text = "eval sqrt (M2) [collect [s]]" write (u, "(A,A)") "ren_scale = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_ren_scale, stream, .true.) call stream_final (stream) expr_text = "n_tot * n_in * n_out * (eval Phi / pi [s])" write (u, "(A,A)") "weight = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_weight, stream, .true.) call stream_final (stream) call ifile_final (ifile) write (u, "(A)") write (u, "(A)") "* Build and initialize a test process" write (u, "(A)") libname = "processes4" procname = libname call os_data%init () call prc_test_create_library (libname, lib) call syntax_model_file_init () allocate (model_tmp) call model_tmp%read (var_str ("Test.mdl"), os_data) call var_list%init_snapshot (model_tmp%get_var_list_ptr ()) model => model_tmp call var_list%append_log (var_str ("?alphas_is_fixed"), .true.) call var_list%append_int (var_str ("seed"), 0) call reset_interaction_counter () allocate (process) call process%init (procname, lib, os_data, model, var_list) call var_list%final () call process%setup_test_cores () allocate (phs_test_config_t :: phs_config_template) call process%init_components (phs_config_template) write (u, "(A)") "* Prepare a trivial beam setup" write (u, "(A)") sqrts = 1000 call process%setup_beams_sqrts (sqrts, i_core = 1) call process%configure_phs () call process%setup_mci (dispatch_mci_empty) write (u, "(A)") "* Complete process initialization and set cuts" write (u, "(A)") call process%setup_terms () call expr_factory%init (pt_scale%get_root_ptr ()) call process%set_scale (expr_factory) call expr_factory%init (pt_fac_scale%get_root_ptr ()) call process%set_fac_scale (expr_factory) call expr_factory%init (pt_ren_scale%get_root_ptr ()) call process%set_ren_scale (expr_factory) call expr_factory%init (pt_weight%get_root_ptr ()) call process%set_weight (expr_factory) call process%write (.false., u, show_expressions=.true.) write (u, "(A)") write (u, "(A)") "* Create a process instance and evaluate" write (u, "(A)") allocate (process_instance) call process_instance%init (process) call process_instance%choose_mci (1) call process_instance%evaluate_sqme (1, [0.5_default, 0.125_default]) call process_instance%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call process_instance%final () deallocate (process_instance) call process%final () deallocate (process) call parse_tree_final (pt_scale) call parse_tree_final (pt_fac_scale) call parse_tree_final (pt_ren_scale) call parse_tree_final (pt_weight) call syntax_pexpr_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: processes_6" end subroutine processes_6 @ %def processes_6 @ \subsubsection{Event expressions} After generating an event, fill the [[subevt]] and evaluate expressions for selection, reweighting, and analysis. <>= call test (events_3, "events_3", & "expression evaluation", & u, results) <>= public :: events_3 <>= subroutine events_3 (u) use processes_ut, only: prepare_test_process, cleanup_test_process integer, intent(in) :: u type(string_t) :: expr_text type(ifile_t) :: ifile type(stream_t) :: stream type(parse_tree_t) :: pt_selection, pt_reweight, pt_analysis type(eval_tree_factory_t) :: expr_factory type(event_t), allocatable, target :: event type(process_t), allocatable, target :: process type(process_instance_t), allocatable, target :: process_instance type(os_data_t) :: os_data type(model_t), pointer :: model type(var_list_t), target :: var_list write (u, "(A)") "* Test output: events_3" write (u, "(A)") "* Purpose: generate an event and evaluate expressions" write (u, "(A)") call syntax_pexpr_init () write (u, "(A)") "* Expression texts" write (u, "(A)") expr_text = "all Pt > 100 [s]" write (u, "(A,A)") "selection = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (pt_selection, stream, .true.) call stream_final (stream) expr_text = "1 + sqrts_hat / sqrts" write (u, "(A,A)") "reweight = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_expr (pt_reweight, stream, .true.) call stream_final (stream) expr_text = "true" write (u, "(A,A)") "analysis = ", char (expr_text) call ifile_clear (ifile) call ifile_append (ifile, expr_text) call stream_init (stream, ifile) call parse_tree_init_lexpr (pt_analysis, stream, .true.) call stream_final (stream) call ifile_final (ifile) write (u, "(A)") write (u, "(A)") "* Initialize test process event" call os_data%init () call syntax_model_file_init () allocate (model) call model%read (var_str ("Test.mdl"), os_data) call var_list%init_snapshot (model%get_var_list_ptr ()) call var_list%append_log (var_str ("?alphas_is_fixed"), .true.) call var_list%append_int (var_str ("seed"), 0) allocate (process) allocate (process_instance) call prepare_test_process (process, process_instance, model, var_list) call var_list%final () call process_instance%setup_event_data () write (u, "(A)") write (u, "(A)") "* Initialize event object and set expressions" allocate (event) call event%basic_init () call expr_factory%init (pt_selection%get_root_ptr ()) call event%set_selection (expr_factory) call expr_factory%init (pt_reweight%get_root_ptr ()) call event%set_reweight (expr_factory) call expr_factory%init (pt_analysis%get_root_ptr ()) call event%set_analysis (expr_factory) call event%connect (process_instance, process%get_model_ptr ()) call event%expr%var_list%append_real (var_str ("tolerance"), 0._default) call event%setup_expressions () write (u, "(A)") write (u, "(A)") "* Generate test process event" call process_instance%generate_weighted_event (1) write (u, "(A)") write (u, "(A)") "* Fill event object and evaluate expressions" write (u, "(A)") call event%generate (1, [0.4_default, 0.4_default]) call event%set_index (42) call event%evaluate_expressions () call event%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call event%final () deallocate (event) call cleanup_test_process (process, process_instance) deallocate (process_instance) deallocate (process) call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: events_3" end subroutine events_3 @ %def events_3 @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Top Level} The top level consists of \begin{description} \item[commands] Defines generic command-list and command objects, and all specific implementations. Each command type provides a specific functionality. Together with the modules that provide expressions and variables, this module defines the Sindarin language. \item[whizard] This module interprets streams of various kind in terms of the command language. It also contains the unit-test feature. We also define the externally visible procedures here, for the \whizard\ as a library. \item[main] The driver for \whizard\ as a stand-alone program. Contains the command-line interpreter. \item[whizard\_c\_interface] Alternative top-level procedures, for use in the context of a C-compatible caller program. \end{description} \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Commands} This module defines the command language of the main input file. <<[[commands.f90]]>>= <> module commands <> <> <> use io_units use string_utils, only: lower_case, split_string, str use format_utils, only: write_indent use format_defs, only: FMT_14, FMT_19 use diagnostics use physics_defs use sorting use sf_lhapdf, only: lhapdf_global_reset use os_interface use ifiles use lexers use syntax_rules use parser use analysis use pdg_arrays use variables, only: var_list_t, V_NONE, V_LOG, V_INT, V_REAL, V_CMPLX, V_STR, V_PDG use observables, only: var_list_check_observable use observables, only: var_list_check_result_var use eval_trees use models use auto_components use flavors use polarizations use particle_specifiers use process_libraries use process use instances use prclib_stacks use slha_interface use user_files use eio_data use rt_data use process_configurations use compilations, only: compile_library, compile_executable use integrations, only: integrate_process use restricted_subprocesses, only: get_libname_res use restricted_subprocesses, only: spawn_resonant_subprocess_libraries use event_streams use simulations use radiation_generator <> <> <> <> <> <> <> contains <> end module commands @ %def commands @ \subsection{The command type} The command type is a generic type that holds any command, compiled for execution. Each command may come with its own local environment. The command list that determines this environment is allocated as [[options]], if necessary. (It has to be allocated as a pointer because the type definition is recursive.) The local environment is available as a pointer which either points to the global environment, or is explicitly allocated and initialized. <>= type, abstract :: command_t type(parse_node_t), pointer :: pn => null () class(command_t), pointer :: next => null () type(parse_node_t), pointer :: pn_opt => null () type(command_list_t), pointer :: options => null () type(rt_data_t), pointer :: local => null () contains <> end type command_t @ %def command_t @ Finalizer: If there is an option list, finalize the option list and deallocate. If not, the local environment is just a pointer. <>= procedure :: final => command_final <>= recursive subroutine command_final (cmd) class(command_t), intent(inout) :: cmd if (associated (cmd%options)) then call cmd%options%final () deallocate (cmd%options) call cmd%local%local_final () deallocate (cmd%local) else cmd%local => null () end if end subroutine command_final @ %def command_final @ Allocate a command with the appropriate concrete type. Store the parse node pointer in the command object, so we can reference to it when compiling. <>= subroutine dispatch_command (command, pn) class(command_t), intent(inout), pointer :: command type(parse_node_t), intent(in), target :: pn select case (char (parse_node_get_rule_key (pn))) case ("cmd_model") allocate (cmd_model_t :: command) case ("cmd_library") allocate (cmd_library_t :: command) case ("cmd_process") allocate (cmd_process_t :: command) case ("cmd_nlo") allocate (cmd_nlo_t :: command) case ("cmd_compile") allocate (cmd_compile_t :: command) case ("cmd_exec") allocate (cmd_exec_t :: command) case ("cmd_num", "cmd_complex", "cmd_real", "cmd_int", & "cmd_log_decl", "cmd_log", "cmd_string", "cmd_string_decl", & "cmd_alias", "cmd_result") allocate (cmd_var_t :: command) case ("cmd_slha") allocate (cmd_slha_t :: command) case ("cmd_show") allocate (cmd_show_t :: command) case ("cmd_clear") allocate (cmd_clear_t :: command) case ("cmd_expect") allocate (cmd_expect_t :: command) case ("cmd_beams") allocate (cmd_beams_t :: command) case ("cmd_beams_pol_density") allocate (cmd_beams_pol_density_t :: command) case ("cmd_beams_pol_fraction") allocate (cmd_beams_pol_fraction_t :: command) case ("cmd_beams_momentum") allocate (cmd_beams_momentum_t :: command) case ("cmd_beams_theta") allocate (cmd_beams_theta_t :: command) case ("cmd_beams_phi") allocate (cmd_beams_phi_t :: command) case ("cmd_cuts") allocate (cmd_cuts_t :: command) case ("cmd_scale") allocate (cmd_scale_t :: command) case ("cmd_fac_scale") allocate (cmd_fac_scale_t :: command) case ("cmd_ren_scale") allocate (cmd_ren_scale_t :: command) case ("cmd_weight") allocate (cmd_weight_t :: command) case ("cmd_selection") allocate (cmd_selection_t :: command) case ("cmd_reweight") allocate (cmd_reweight_t :: command) case ("cmd_iterations") allocate (cmd_iterations_t :: command) case ("cmd_integrate") allocate (cmd_integrate_t :: command) case ("cmd_observable") allocate (cmd_observable_t :: command) case ("cmd_histogram") allocate (cmd_histogram_t :: command) case ("cmd_plot") allocate (cmd_plot_t :: command) case ("cmd_graph") allocate (cmd_graph_t :: command) case ("cmd_record") allocate (cmd_record_t :: command) case ("cmd_analysis") allocate (cmd_analysis_t :: command) case ("cmd_alt_setup") allocate (cmd_alt_setup_t :: command) case ("cmd_unstable") allocate (cmd_unstable_t :: command) case ("cmd_stable") allocate (cmd_stable_t :: command) case ("cmd_polarized") allocate (cmd_polarized_t :: command) case ("cmd_unpolarized") allocate (cmd_unpolarized_t :: command) case ("cmd_sample_format") allocate (cmd_sample_format_t :: command) case ("cmd_simulate") allocate (cmd_simulate_t :: command) case ("cmd_rescan") allocate (cmd_rescan_t :: command) case ("cmd_write_analysis") allocate (cmd_write_analysis_t :: command) case ("cmd_compile_analysis") allocate (cmd_compile_analysis_t :: command) case ("cmd_open_out") allocate (cmd_open_out_t :: command) case ("cmd_close_out") allocate (cmd_close_out_t :: command) case ("cmd_printf") allocate (cmd_printf_t :: command) case ("cmd_scan") allocate (cmd_scan_t :: command) case ("cmd_if") allocate (cmd_if_t :: command) case ("cmd_include") allocate (cmd_include_t :: command) case ("cmd_export") allocate (cmd_export_t :: command) case ("cmd_quit") allocate (cmd_quit_t :: command) case default print *, char (parse_node_get_rule_key (pn)) call msg_bug ("Command not implemented") end select command%pn => pn end subroutine dispatch_command @ %def dispatch_command @ Output. We allow for indentation so we can display a command tree. <>= procedure (command_write), deferred :: write <>= abstract interface subroutine command_write (cmd, unit, indent) import class(command_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent end subroutine command_write end interface @ %def command_write @ Compile a command. The command type is already fixed, so this is a deferred type-bound procedure. <>= procedure (command_compile), deferred :: compile <>= abstract interface subroutine command_compile (cmd, global) import class(command_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global end subroutine command_compile end interface @ %def command_compile @ Execute a command. This will use and/or modify the runtime data set. If the [[quit]] flag is set, the caller should terminate command execution. <>= procedure (command_execute), deferred :: execute <>= abstract interface subroutine command_execute (cmd, global) import class(command_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global end subroutine command_execute end interface @ %def command_execute @ \subsection{Options} The [[options]] command list is allocated, initialized, and executed, if the command is associated with an option text in curly braces. If present, a separate local runtime data set [[local]] will be allocated and initialized; otherwise, [[local]] becomes a pointer to the global dataset. For output, we indent the options list. <>= procedure :: write_options => command_write_options <>= recursive subroutine command_write_options (cmd, unit, indent) class(command_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: ind ind = 1; if (present (indent)) ind = indent + 1 if (associated (cmd%options)) call cmd%options%write (unit, ind) end subroutine command_write_options @ %def command_write_options @ Compile the options list, if any. This implies initialization of the local environment. Should be done once the [[pn_opt]] node has been assigned (if applicable), but before the actual command compilation. <>= procedure :: compile_options => command_compile_options <>= recursive subroutine command_compile_options (cmd, global) class(command_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (associated (cmd%pn_opt)) then allocate (cmd%local) call cmd%local%local_init (global) call global%copy_globals (cmd%local) allocate (cmd%options) call cmd%options%compile (cmd%pn_opt, cmd%local) call global%restore_globals (cmd%local) call cmd%local%deactivate () else cmd%local => global end if end subroutine command_compile_options @ %def command_compile_options @ Execute options. First prepare the local environment, then execute the command list. <>= procedure :: execute_options => cmd_execute_options <>= recursive subroutine cmd_execute_options (cmd, global) class(command_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (associated (cmd%options)) then call cmd%local%activate () call cmd%options%execute (cmd%local) end if end subroutine cmd_execute_options @ %def cmd_execute_options @ This must be called after the parent command has been executed, to undo temporary modifications to the environment. Note that some modifications to [[global]] can become permanent. <>= procedure :: reset_options => cmd_reset_options <>= subroutine cmd_reset_options (cmd, global) class(command_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (associated (cmd%options)) then call cmd%local%deactivate (global) end if end subroutine cmd_reset_options @ %def cmd_reset_options @ \subsection{Specific command types} \subsubsection{Model configuration} The command declares a model, looks for the specified file and loads it. <>= type, extends (command_t) :: cmd_model_t private type(string_t) :: name type(string_t) :: scheme logical :: ufo_model = .false. logical :: ufo_path_set = .false. type(string_t) :: ufo_path contains <> end type cmd_model_t @ %def cmd_model_t @ Output <>= procedure :: write => cmd_model_write <>= subroutine cmd_model_write (cmd, unit, indent) class(cmd_model_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,1x,'""',A,'""')", advance="no") "model =", char (cmd%name) if (cmd%ufo_model) then if (cmd%ufo_path_set) then write (u, "(1x,A,A,A)") "(ufo (", char (cmd%ufo_path), "))" else write (u, "(1x,A)") "(ufo)" end if else if (cmd%scheme /= "") then write (u, "(1x,'(',A,')')") char (cmd%scheme) else write (u, *) end if end subroutine cmd_model_write @ %def cmd_model_write @ Compile. Get the model name and read the model from file, so it is readily available when the command list is executed. If the model has a scheme argument, take this into account. Assign the model pointer in the [[global]] record, so it can be used for (read-only) variable lookup while compiling further commands. <>= procedure :: compile => cmd_model_compile <>= subroutine cmd_model_compile (cmd, global) class(cmd_model_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_name, pn_arg, pn_scheme type(parse_node_t), pointer :: pn_ufo_arg, pn_path type(model_t), pointer :: model type(string_t) :: scheme pn_name => cmd%pn%get_sub_ptr (3) pn_arg => pn_name%get_next_ptr () if (associated (pn_arg)) then pn_scheme => pn_arg%get_sub_ptr () else pn_scheme => null () end if cmd%name = pn_name%get_string () if (associated (pn_scheme)) then select case (char (pn_scheme%get_rule_key ())) case ("ufo_spec") cmd%ufo_model = .true. pn_ufo_arg => pn_scheme%get_sub_ptr (2) if (associated (pn_ufo_arg)) then pn_path => pn_ufo_arg%get_sub_ptr () cmd%ufo_path_set = .true. cmd%ufo_path = pn_path%get_string () end if case default scheme = pn_scheme%get_string () select case (char (lower_case (scheme))) case ("ufo"); cmd%ufo_model = .true. case default; cmd%scheme = scheme end select end select if (cmd%ufo_model) then if (cmd%ufo_path_set) then call preload_ufo_model (model, cmd%name, cmd%ufo_path) else call preload_ufo_model (model, cmd%name) end if else call preload_model (model, cmd%name, cmd%scheme) end if else cmd%scheme = "" call preload_model (model, cmd%name) end if global%model => model if (associated (global%model)) then call global%model%link_var_list (global%var_list) end if contains subroutine preload_model (model, name, scheme) type(model_t), pointer, intent(out) :: model type(string_t), intent(in) :: name type(string_t), intent(in), optional :: scheme model => null () if (associated (global%model)) then if (global%model%matches (name, scheme)) then model => global%model end if end if if (.not. associated (model)) then if (global%model_list%model_exists (name, scheme)) then model => global%model_list%get_model_ptr (name, scheme) else call global%read_model (name, model, scheme) end if end if end subroutine preload_model subroutine preload_ufo_model (model, name, ufo_path) type(model_t), pointer, intent(out) :: model type(string_t), intent(in) :: name type(string_t), intent(in), optional :: ufo_path model => null () if (associated (global%model)) then if (global%model%matches (name, ufo=.true., ufo_path=ufo_path)) then model => global%model end if end if if (.not. associated (model)) then if (global%model_list%model_exists (name, & ufo=.true., ufo_path=ufo_path)) then model => global%model_list%get_model_ptr (name, & ufo=.true., ufo_path=ufo_path) else call global%read_ufo_model (name, model, ufo_path=ufo_path) end if end if end subroutine preload_ufo_model end subroutine cmd_model_compile @ %def cmd_model_compile @ Execute: Insert a pointer into the global data record and reassign the variable list. <>= procedure :: execute => cmd_model_execute <>= subroutine cmd_model_execute (cmd, global) class(cmd_model_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (cmd%ufo_model) then if (cmd%ufo_path_set) then call global%select_model (cmd%name, ufo=.true., ufo_path=cmd%ufo_path) else call global%select_model (cmd%name, ufo=.true.) end if else if (cmd%scheme /= "") then call global%select_model (cmd%name, cmd%scheme) else call global%select_model (cmd%name) end if if (.not. associated (global%model)) & call msg_fatal ("Switching to model '" & // char (cmd%name) // "': model not found") end subroutine cmd_model_execute @ %def cmd_model_execute @ \subsubsection{Library configuration} We configure a process library that should hold the subsequently defined processes. If the referenced library exists already, just make it the currently active one. <>= type, extends (command_t) :: cmd_library_t private type(string_t) :: name contains <> end type cmd_library_t @ %def cmd_library_t @ Output. <>= procedure :: write => cmd_library_write <>= subroutine cmd_library_write (cmd, unit, indent) class(cmd_library_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit) call write_indent (u, indent) write (u, "(1x,A,1x,'""',A,'""')") "library =", char (cmd%name) end subroutine cmd_library_write @ %def cmd_library_write @ Compile. Get the library name. <>= procedure :: compile => cmd_library_compile <>= subroutine cmd_library_compile (cmd, global) class(cmd_library_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_name pn_name => parse_node_get_sub_ptr (cmd%pn, 3) cmd%name = parse_node_get_string (pn_name) end subroutine cmd_library_compile @ %def cmd_library_compile @ Execute: Initialize a new library and push it on the library stack (if it does not yet exist). Insert a pointer to the library into the global data record. Then, try to load the library unless the [[rebuild]] flag is set. <>= procedure :: execute => cmd_library_execute <>= subroutine cmd_library_execute (cmd, global) class(cmd_library_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib logical :: rebuild_library lib => global%prclib_stack%get_library_ptr (cmd%name) rebuild_library = & global%var_list%get_lval (var_str ("?rebuild_library")) if (.not. (associated (lib))) then allocate (lib_entry) call lib_entry%init (cmd%name) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) else call global%update_prclib (lib) end if if (associated (lib) .and. .not. rebuild_library) then call lib%update_status (global%os_data) end if end subroutine cmd_library_execute @ %def cmd_library_execute @ \subsubsection{Process configuration} We define a process-configuration command as a specific type. The incoming and outgoing particles are given evaluation-trees which we transform to PDG-code arrays. For transferring to \oMega, they are reconverted to strings. For the incoming particles, we store parse nodes individually. We do not yet resolve the outgoing state, so we store just a single parse node. This also includes the choice of method for the corresponding process: [[omega]] for \oMega\ matrix elements as Fortran code, [[ovm]] for \oMega\ matrix elements as a bytecode virtual machine, [[test]] for special processes, [[unit_test]] for internal test matrix elements generated by \whizard, [[template]] and [[template_unity]] for test matrix elements generated by \whizard\ as Fortran code similar to the \oMega\ code. If the one-loop program (OLP) \gosam\ is linked, also matrix elements from there (at leading and next-to-leading order) can be generated via [[gosam]]. <>= type, extends (command_t) :: cmd_process_t private type(string_t) :: id integer :: n_in = 0 type(parse_node_p), dimension(:), allocatable :: pn_pdg_in type(parse_node_t), pointer :: pn_out => null () contains <> end type cmd_process_t @ %def cmd_process_t @ Output. The particle expressions are not resolved, so we just list the number of incoming particles. <>= procedure :: write => cmd_process_write <>= subroutine cmd_process_write (cmd, unit, indent) class(cmd_process_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A,A,I0,A)") "process: ", char (cmd%id), " (", & size (cmd%pn_pdg_in), " -> X)" call cmd%write_options (u, indent) end subroutine cmd_process_write @ %def cmd_process_write @ Compile. Find and assign the parse nodes. <>= procedure :: compile => cmd_process_compile <>= subroutine cmd_process_compile (cmd, global) class(cmd_process_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_id, pn_in, pn_codes integer :: i pn_id => parse_node_get_sub_ptr (cmd%pn, 2) pn_in => parse_node_get_next_ptr (pn_id, 2) cmd%pn_out => parse_node_get_next_ptr (pn_in, 2) cmd%pn_opt => parse_node_get_next_ptr (cmd%pn_out) call cmd%compile_options (global) cmd%id = parse_node_get_string (pn_id) cmd%n_in = parse_node_get_n_sub (pn_in) pn_codes => parse_node_get_sub_ptr (pn_in) allocate (cmd%pn_pdg_in (cmd%n_in)) do i = 1, cmd%n_in cmd%pn_pdg_in(i)%ptr => pn_codes pn_codes => parse_node_get_next_ptr (pn_codes) end do end subroutine cmd_process_compile @ %def cmd_process_compile @ Command execution. Evaluate the subevents, transform PDG codes into strings, and add the current process configuration to the process library. The initial state will be unique (one or two particles). For the final state, we allow for expressions. The expressions will be expanded until we have a sum of final states. Each distinct final state will get its own process component. To identify equivalent final states, we transform the final state into an array of PDG codes, which we sort and compare. If a particle entry is actually a PDG array, only the first entry in the array is used for the comparison. The user should make sure that there is no overlap between different particles or arrays which would make the expansion ambiguous. There are two possibilities that a process contains more than component: by an explicit component statement by the user for inclusive processes, or by having one process at NLO level. The first option is determined in the routine [[scan_components]], and determines [[n_components]]. <>= procedure :: execute => cmd_process_execute <>= subroutine cmd_process_execute (cmd, global) class(cmd_process_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(pdg_array_t) :: pdg_in, pdg_out type(pdg_array_t), dimension(:), allocatable :: pdg_out_tab type(string_t), dimension(:), allocatable :: prt_in type(string_t) :: prt_out, prt_out1 type(process_configuration_t) :: prc_config type(prt_expr_t) :: prt_expr_out type(prt_spec_t), dimension(:), allocatable :: prt_spec_in type(prt_spec_t), dimension(:), allocatable :: prt_spec_out type(var_list_t), pointer :: var_list integer, dimension(:), allocatable :: pdg integer, dimension(:), allocatable :: i_term integer, dimension(:), allocatable :: nlo_comp integer :: i, j, n_in, n_out, n_terms, n_components logical :: nlo_fixed_order logical :: qcd_corr, qed_corr type(string_t), dimension(:), allocatable :: prt_in_nlo, prt_out_nlo type(radiation_generator_t) :: radiation_generator type(pdg_list_t) :: pl_in, pl_out, pl_excluded_gauge_splittings type(string_t) :: method, born_me_method, loop_me_method, & correlation_me_method, real_tree_me_method, dglap_me_method integer, dimension(:), allocatable :: i_list logical :: use_real_finite logical :: gks_active logical :: initial_state_colored integer :: comp_mult integer :: gks_multiplicity integer :: n_components_init integer :: alpha_power, alphas_power logical :: requires_soft_mismatch, requires_dglap_remnants if (debug_on) call msg_debug (D_CORE, "cmd_process_execute") var_list => cmd%local%get_var_list_ptr () n_in = size (cmd%pn_pdg_in) allocate (prt_in (n_in), prt_spec_in (n_in)) do i = 1, n_in pdg_in = & eval_pdg_array (cmd%pn_pdg_in(i)%ptr, var_list) prt_in(i) = make_flavor_string (pdg_in, cmd%local%model) prt_spec_in(i) = new_prt_spec (prt_in(i)) end do call compile_prt_expr & (prt_expr_out, cmd%pn_out, var_list, cmd%local%model) call prt_expr_out%expand () call scan_components () allocate (nlo_comp (n_components)) nlo_fixed_order = cmd%local%nlo_fixed_order gks_multiplicity = var_list%get_ival (var_str ('gks_multiplicity')) gks_active = gks_multiplicity > 2 call check_for_nlo_corrections () method = var_list%get_sval (var_str ("$method")) born_me_method = var_list%get_sval (var_str ("$born_me_method")) if (born_me_method == var_str ("")) born_me_method = method use_real_finite = var_list%get_lval (var_str ('?nlo_use_real_partition')) if (nlo_fixed_order) then real_tree_me_method = & var_list%get_sval (var_str ("$real_tree_me_method")) if (real_tree_me_method == var_str ("")) & real_tree_me_method = method loop_me_method = var_list%get_sval (var_str ("$loop_me_method")) if (loop_me_method == var_str ("")) & loop_me_method = method correlation_me_method = & var_list%get_sval (var_str ("$correlation_me_method")) if (correlation_me_method == var_str ("")) & correlation_me_method = method dglap_me_method = var_list%get_sval (var_str ("$dglap_me_method")) if (dglap_me_method == var_str ("")) & dglap_me_method = method call check_nlo_options (cmd%local) end if call determine_needed_components () call prc_config%init (cmd%id, n_in, n_components_init, & cmd%local%model, cmd%local%var_list, & nlo_process = nlo_fixed_order) alpha_power = var_list%get_ival (var_str ("alpha_power")) alphas_power = var_list%get_ival (var_str ("alphas_power")) call prc_config%set_coupling_powers (alpha_power, alphas_power) call setup_components () call prc_config%record (cmd%local) contains <> end subroutine cmd_process_execute @ %def cmd_process_execute @ <>= elemental function is_threshold (method) logical :: is_threshold type(string_t), intent(in) :: method is_threshold = method == var_str ("threshold") end function is_threshold subroutine check_threshold_consistency () if (nlo_fixed_order .and. is_threshold (born_me_method)) then if (.not. (is_threshold (real_tree_me_method) .and. is_threshold (loop_me_method) & .and. is_threshold (correlation_me_method))) then print *, 'born: ', char (born_me_method) print *, 'real: ', char (real_tree_me_method) print *, 'loop: ', char (loop_me_method) print *, 'correlation: ', char (correlation_me_method) call msg_fatal ("Inconsistent methods: All components need to be threshold") end if end if end subroutine check_threshold_consistency @ %def check_threshold_consistency <>= subroutine check_for_nlo_corrections () type(string_t) :: nlo_correction_type type(pdg_array_t), dimension(:), allocatable :: pdg if (nlo_fixed_order .or. gks_active) then nlo_correction_type = & var_list%get_sval (var_str ('$nlo_correction_type')) select case (char(nlo_correction_type)) case ("QCD") qcd_corr = .true.; qed_corr = .false. case ("QED") qcd_corr = .false.; qed_corr = .true. case ("Full") qcd_corr =.true.; qed_corr = .true. case default call msg_fatal ("Invalid NLO correction type! " // & "Valid inputs are: QCD, QED, Full (default: QCD)") end select call check_for_excluded_gauge_boson_splitting_partners () call setup_radiation_generator () end if if (nlo_fixed_order) then call radiation_generator%find_splittings () if (debug2_active (D_CORE)) then print *, '' print *, 'Found (pdg) splittings: ' do i = 1, radiation_generator%if_table%get_length () call radiation_generator%if_table%get_pdg_out (i, pdg) call pdg_array_write_set (pdg) print *, '----------------' end do end if nlo_fixed_order = radiation_generator%contains_emissions () if (.not. nlo_fixed_order) call msg_warning & (arr = [var_str ("No NLO corrections found for process ") // & cmd%id // var_str("."), var_str ("Proceed with usual " // & "leading-order integration and simulation")]) end if end subroutine check_for_nlo_corrections @ %def check_for_nlo_corrections @ <>= subroutine check_for_excluded_gauge_boson_splitting_partners () type(string_t) :: str_excluded_partners type(string_t), dimension(:), allocatable :: excluded_partners type(pdg_list_t) :: pl_tmp, pl_anti integer :: i, n_anti str_excluded_partners = var_list%get_sval & (var_str ("$exclude_gauge_splittings")) if (str_excluded_partners == "") then return else call split_string (str_excluded_partners, & var_str (":"), excluded_partners) call pl_tmp%init (size (excluded_partners)) do i = 1, size (excluded_partners) call pl_tmp%set (i, & cmd%local%model%get_pdg (excluded_partners(i), .true.)) end do call pl_tmp%create_antiparticles (pl_anti, n_anti) call pl_excluded_gauge_splittings%init (pl_tmp%get_size () + n_anti) do i = 1, pl_tmp%get_size () call pl_excluded_gauge_splittings%set (i, pl_tmp%get(i)) end do do i = 1, n_anti j = i + pl_tmp%get_size () call pl_excluded_gauge_splittings%set (j, pl_anti%get(i)) end do end if end subroutine check_for_excluded_gauge_boson_splitting_partners @ %def check_for_excluded_gauge_boson_splitting_partners @ <>= subroutine determine_needed_components () type(string_t) :: fks_method comp_mult = 1 if (nlo_fixed_order) then fks_method = var_list%get_sval (var_str ('$fks_mapping_type')) call check_threshold_consistency () requires_soft_mismatch = fks_method == var_str ('resonances') comp_mult = needed_extra_components (requires_dglap_remnants, & use_real_finite, requires_soft_mismatch) allocate (i_list (comp_mult)) else if (gks_active) then call radiation_generator%generate_multiple & (gks_multiplicity, cmd%local%model) comp_mult = radiation_generator%get_n_gks_states () + 1 end if n_components_init = n_components * comp_mult end subroutine determine_needed_components @ %def determine_needed_components @ <>= subroutine setup_radiation_generator () call split_prt (prt_spec_in, n_in, pl_in) call split_prt (prt_spec_out, n_out, pl_out) call radiation_generator%init (pl_in, pl_out, & pl_excluded_gauge_splittings, qcd = qcd_corr, qed = qed_corr) call radiation_generator%set_n (n_in, n_out, 0) initial_state_colored = pdg_in%has_colored_particles () if ((n_in == 2 .and. initial_state_colored) .or. qed_corr) then requires_dglap_remnants = n_in == 2 .and. initial_state_colored call radiation_generator%set_initial_state_emissions () else requires_dglap_remnants = .false. end if call radiation_generator%set_constraints (.false., .false., .true., .true.) call radiation_generator%setup_if_table (cmd%local%model) end subroutine setup_radiation_generator @ %def setup_radiation_generator @ <>= subroutine scan_components () n_terms = prt_expr_out%get_n_terms () allocate (pdg_out_tab (n_terms)) allocate (i_term (n_terms), source = 0) n_components = 0 SCAN: do i = 1, n_terms if (allocated (pdg)) deallocate (pdg) call prt_expr_out%term_to_array (prt_spec_out, i) n_out = size (prt_spec_out) allocate (pdg (n_out)) do j = 1, n_out prt_out = prt_spec_out(j)%to_string () call split (prt_out, prt_out1, ":") pdg(j) = cmd%local%model%get_pdg (prt_out1) end do pdg_out = sort (pdg) do j = 1, n_components if (pdg_out == pdg_out_tab(j)) cycle SCAN end do n_components = n_components + 1 i_term(n_components) = i pdg_out_tab(n_components) = pdg_out end do SCAN end subroutine scan_components @ <>= subroutine split_prt (prt, n_out, pl) type(prt_spec_t), intent(in), dimension(:), allocatable :: prt integer, intent(in) :: n_out type(pdg_list_t), intent(out) :: pl type(pdg_array_t) :: pdg type(string_t) :: prt_string, prt_tmp integer, parameter :: max_particle_number = 25 integer, dimension(max_particle_number) :: i_particle integer :: i, j, n i_particle = 0 call pl%init (n_out) do i = 1, n_out n = 1 prt_string = prt(i)%to_string () do call split (prt_string, prt_tmp, ":") if (prt_tmp /= "") then i_particle(n) = cmd%local%model%get_pdg (prt_tmp) n = n + 1 else exit end if end do call pdg_array_init (pdg, n - 1) do j = 1, n - 1 call pdg%set (j, i_particle(j)) end do call pl%set (i, pdg) call pdg_array_delete (pdg) end do end subroutine split_prt @ %def split_prt @ <>= subroutine setup_components() integer :: k, i_comp, add_index i_comp = 0 add_index = 0 if (debug_on) call msg_debug (D_CORE, "setup_components") do i = 1, n_components call prt_expr_out%term_to_array (prt_spec_out, i_term(i)) if (nlo_fixed_order) then associate (selected_nlo_parts => cmd%local%selected_nlo_parts) if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 1) call prc_config%setup_component (i_comp + 1, & prt_spec_in, prt_spec_out, & cmd%local%model, var_list, BORN, & can_be_integrated = selected_nlo_parts (BORN)) call radiation_generator%generate_real_particle_strings & (prt_in_nlo, prt_out_nlo) if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 2) call prc_config%setup_component (i_comp + 2, & new_prt_spec (prt_in_nlo), new_prt_spec (prt_out_nlo), & cmd%local%model, var_list, NLO_REAL, & can_be_integrated = selected_nlo_parts (NLO_REAL)) if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 3) call prc_config%setup_component (i_comp + 3, & prt_spec_in, prt_spec_out, & cmd%local%model, var_list, NLO_VIRTUAL, & can_be_integrated = selected_nlo_parts (NLO_VIRTUAL)) if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 4) call prc_config%setup_component (i_comp + 4, & prt_spec_in, prt_spec_out, & cmd%local%model, var_list, NLO_SUBTRACTION, & can_be_integrated = selected_nlo_parts (NLO_SUBTRACTION)) do k = 1, 4 i_list(k) = i_comp + k end do if (requires_dglap_remnants) then if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 5) call prc_config%setup_component (i_comp + 5, & prt_spec_in, prt_spec_out, & cmd%local%model, var_list, NLO_DGLAP, & can_be_integrated = selected_nlo_parts (NLO_DGLAP)) i_list(5) = i_comp + 5 add_index = add_index + 1 end if if (use_real_finite) then if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 5 + add_index) call prc_config%setup_component (i_comp + 5 + add_index, & new_prt_spec (prt_in_nlo), new_prt_spec (prt_out_nlo), & cmd%local%model, var_list, NLO_REAL, & can_be_integrated = selected_nlo_parts (NLO_REAL)) i_list(5 + add_index) = i_comp + 5 + add_index add_index = add_index + 1 end if if (requires_soft_mismatch) then if (debug_on) call msg_debug (D_CORE, "Setting up this NLO component:", & i_comp + 5 + add_index) call prc_config%setup_component (i_comp + 5 + add_index, & prt_spec_in, prt_spec_out, & cmd%local%model, var_list, NLO_MISMATCH, & can_be_integrated = selected_nlo_parts (NLO_MISMATCH)) i_list(5 + add_index) = i_comp + 5 + add_index end if call prc_config%set_component_associations (i_list, & requires_dglap_remnants, use_real_finite, & requires_soft_mismatch) end associate else if (gks_active) then call prc_config%setup_component (i_comp + 1, prt_spec_in, & prt_spec_out, cmd%local%model, var_list, BORN, & can_be_integrated = .true.) call radiation_generator%reset_queue () do j = 1, comp_mult prt_out_nlo = radiation_generator%get_next_state () call prc_config%setup_component (i_comp + 1 + j, & new_prt_spec (prt_in), new_prt_spec (prt_out_nlo), & cmd%local%model, var_list, GKS, can_be_integrated = .false.) end do else call prc_config%setup_component (i, & prt_spec_in, prt_spec_out, & cmd%local%model, var_list, can_be_integrated = .true.) end if i_comp = i_comp + comp_mult end do end subroutine setup_components @ @ These three functions should be bundled with the logicals they depend on into an object (the pcm?). <>= subroutine check_nlo_options (local) type(rt_data_t), intent(in) :: local type(var_list_t), pointer :: var_list => null () logical :: nlo, combined, powheg logical :: case_lo_but_any_other logical :: case_nlo_powheg_but_not_combined logical :: vamp_equivalences_enabled logical :: fixed_order_nlo_events var_list => local%get_var_list_ptr () nlo = local%nlo_fixed_order combined = var_list%get_lval (var_str ('?combined_nlo_integration')) powheg = var_list%get_lval (var_str ('?powheg_matching')) case_lo_but_any_other = .not. nlo .and. any ([combined, powheg]) case_nlo_powheg_but_not_combined = & nlo .and. powheg .and. .not. combined if (case_lo_but_any_other) then call msg_fatal ("Option mismatch: Leading order process is selected & &but either powheg_matching or combined_nlo_integration & &is set to true.") else if (case_nlo_powheg_but_not_combined) then call msg_fatal ("POWHEG requires the 'combined_nlo_integration'-option & &to be set to true.") end if fixed_order_nlo_events = & var_list%get_lval (var_str ('?fixed_order_nlo_events')) if (fixed_order_nlo_events .and. .not. combined .and. & all (local%selected_nlo_parts)) & call msg_fatal ("Option mismatch: Fixed order NLO events of the full ", & [var_str ("process are requested, but ?combined_nlo_integration"), & var_str ("is false. You can either switch to the combined NLO"), & var_str ("integration mode or choose one individual NLO component"), & var_str ("to generate events with.")]) vamp_equivalences_enabled = var_list%get_lval & (var_str ('?use_vamp_equivalences')) if (nlo .and. vamp_equivalences_enabled) & call msg_warning ("You have not disabled VAMP equivalences. ", & [var_str (" Note that they are automatically switched off "), & var_str (" for NLO calculations.")]) end subroutine check_nlo_options @ %def check_nlo_options @ There are four components for a general NLO process, namely Born, real, virtual and subtraction. There will be additional components for DGLAP remnant, in case real contributions are split into singular and finite pieces, and for resonance-aware FKS subtraction for the needed soft mismatch component. <>= pure function needed_extra_components (requires_dglap_remnant, & use_real_finite, requires_soft_mismatch) result (n) integer :: n logical, intent(in) :: requires_dglap_remnant, & use_real_finite, requires_soft_mismatch n = 4 if (requires_dglap_remnant) n = n + 1 if (use_real_finite) n = n + 1 if (requires_soft_mismatch) n = n + 1 end function needed_extra_components @ %def needed_extra_components @ This is a method of the eval tree, but cannot be coded inside the [[expressions]] module since it uses the [[model]] and [[flv]] types which are not available there. <>= function make_flavor_string (aval, model) result (prt) type(string_t) :: prt type(pdg_array_t), intent(in) :: aval type(model_t), intent(in), target :: model integer, dimension(:), allocatable :: pdg type(flavor_t), dimension(:), allocatable :: flv integer :: i pdg = aval allocate (flv (size (pdg))) call flv%init (pdg, model) if (size (pdg) /= 0) then prt = flv(1)%get_name () do i = 2, size (flv) prt = prt // ":" // flv(i)%get_name () end do else prt = "?" end if end function make_flavor_string @ %def make_flavor_string @ Create a pdg array from a particle-specification array <>= function make_pdg_array (prt, model) result (pdg_array) type(prt_spec_t), intent(in), dimension(:) :: prt type(model_t), intent(in) :: model integer, dimension(:), allocatable :: aval type(pdg_array_t) :: pdg_array type(flavor_t) :: flv integer :: k allocate (aval (size (prt))) do k = 1, size (prt) call flv%init (prt(k)%to_string (), model) aval (k) = flv%get_pdg () end do pdg_array = aval end function make_pdg_array @ %def make_pdg_array @ Compile a (possible nested) expression, to obtain a particle-specifier expression which we can process further. <>= recursive subroutine compile_prt_expr (prt_expr, pn, var_list, model) type(prt_expr_t), intent(out) :: prt_expr type(parse_node_t), intent(in), target :: pn type(var_list_t), intent(in), target :: var_list type(model_t), intent(in), target :: model type(parse_node_t), pointer :: pn_entry, pn_term, pn_addition type(pdg_array_t) :: pdg type(string_t) :: prt_string integer :: n_entry, n_term, i select case (char (parse_node_get_rule_key (pn))) case ("prt_state_list") n_entry = parse_node_get_n_sub (pn) pn_entry => parse_node_get_sub_ptr (pn) if (n_entry == 1) then call compile_prt_expr (prt_expr, pn_entry, var_list, model) else call prt_expr%init_list (n_entry) select type (x => prt_expr%x) type is (prt_spec_list_t) do i = 1, n_entry call compile_prt_expr (x%expr(i), pn_entry, var_list, model) pn_entry => parse_node_get_next_ptr (pn_entry) end do end select end if case ("prt_state_sum") n_term = parse_node_get_n_sub (pn) pn_term => parse_node_get_sub_ptr (pn) pn_addition => pn_term if (n_term == 1) then call compile_prt_expr (prt_expr, pn_term, var_list, model) else call prt_expr%init_sum (n_term) select type (x => prt_expr%x) type is (prt_spec_sum_t) do i = 1, n_term call compile_prt_expr (x%expr(i), pn_term, var_list, model) pn_addition => parse_node_get_next_ptr (pn_addition) if (associated (pn_addition)) & pn_term => parse_node_get_sub_ptr (pn_addition, 2) end do end select end if case ("cexpr") pdg = eval_pdg_array (pn, var_list) prt_string = make_flavor_string (pdg, model) call prt_expr%init_spec (new_prt_spec (prt_string)) case default call parse_node_write_rec (pn) call msg_bug ("compile prt expr: impossible syntax rule") end select end subroutine compile_prt_expr @ %def compile_prt_expr @ \subsubsection{Initiating a NLO calculation} <>= type, extends (command_t) :: cmd_nlo_t private integer, dimension(:), allocatable :: nlo_component contains <> end type cmd_nlo_t @ %def cmd_nlo_t @ <>= procedure :: write => cmd_nlo_write <>= subroutine cmd_nlo_write (cmd, unit, indent) class(cmd_nlo_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent end subroutine cmd_nlo_write @ %def cmd_nlo_write @ As it is, the NLO calculation is switched on by putting {nlo} behind the process definition. This should be made nicer in the future. <>= procedure :: compile => cmd_nlo_compile <>= subroutine cmd_nlo_compile (cmd, global) class(cmd_nlo_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_comp integer :: i, n_comp pn_arg => parse_node_get_sub_ptr (cmd%pn, 3) if (associated (pn_arg)) then n_comp = parse_node_get_n_sub (pn_arg) allocate (cmd%nlo_component (n_comp)) pn_comp => parse_node_get_sub_ptr (pn_arg) i = 0 do while (associated (pn_comp)) i = i + 1 cmd%nlo_component(i) = component_status & (parse_node_get_rule_key (pn_comp)) pn_comp => parse_node_get_next_ptr (pn_comp) end do else allocate (cmd%nlo_component (0)) end if end subroutine cmd_nlo_compile @ %def cmd_nlo_compile @ <>= procedure :: execute => cmd_nlo_execute <>= subroutine cmd_nlo_execute (cmd, global) class(cmd_nlo_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(string_t) :: string integer :: n, i, j logical, dimension(0:5) :: selected_nlo_parts if (debug_on) call msg_debug (D_CORE, "cmd_nlo_execute") selected_nlo_parts = .false. if (allocated (cmd%nlo_component)) then n = size (cmd%nlo_component) else n = 0 end if do i = 1, n select case (cmd%nlo_component (i)) case (BORN, NLO_VIRTUAL, NLO_MISMATCH, NLO_DGLAP, NLO_REAL) selected_nlo_parts(cmd%nlo_component (i)) = .true. case (NLO_FULL) selected_nlo_parts = .true. selected_nlo_parts (NLO_SUBTRACTION) = .false. case default string = var_str ("") do j = BORN, NLO_DGLAP string = string // component_status (j) // ", " end do string = string // component_status (NLO_FULL) call msg_fatal ("Invalid NLO mode. Valid modes are: " // & char (string)) end select end do global%nlo_fixed_order = any (selected_nlo_parts) global%selected_nlo_parts = selected_nlo_parts allocate (global%nlo_component (size (cmd%nlo_component))) global%nlo_component = cmd%nlo_component end subroutine cmd_nlo_execute @ %def cmd_nlo_execute @ \subsubsection{Process compilation} <>= type, extends (command_t) :: cmd_compile_t private type(string_t), dimension(:), allocatable :: libname logical :: make_executable = .false. type(string_t) :: exec_name contains <> end type cmd_compile_t @ %def cmd_compile_t @ Output: list all libraries to be compiled. <>= procedure :: write => cmd_compile_write <>= subroutine cmd_compile_write (cmd, unit, indent) class(cmd_compile_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "compile (" if (allocated (cmd%libname)) then do i = 1, size (cmd%libname) if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "('""',A,'""')", advance="no") char (cmd%libname(i)) end do end if write (u, "(A)") ")" end subroutine cmd_compile_write @ %def cmd_compile_write @ Compile the libraries specified in the argument. If the argument is empty, compile all libraries which can be found in the process library stack. <>= procedure :: compile => cmd_compile_compile <>= subroutine cmd_compile_compile (cmd, global) class(cmd_compile_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_cmd, pn_clause, pn_arg, pn_lib type(parse_node_t), pointer :: pn_exec_name_spec, pn_exec_name integer :: n_lib, i pn_cmd => parse_node_get_sub_ptr (cmd%pn) pn_clause => parse_node_get_sub_ptr (pn_cmd) pn_exec_name_spec => parse_node_get_sub_ptr (pn_clause, 2) if (associated (pn_exec_name_spec)) then pn_exec_name => parse_node_get_sub_ptr (pn_exec_name_spec, 2) else pn_exec_name => null () end if pn_arg => parse_node_get_next_ptr (pn_clause) cmd%pn_opt => parse_node_get_next_ptr (pn_cmd) call cmd%compile_options (global) if (associated (pn_arg)) then n_lib = parse_node_get_n_sub (pn_arg) else n_lib = 0 end if if (n_lib > 0) then allocate (cmd%libname (n_lib)) pn_lib => parse_node_get_sub_ptr (pn_arg) do i = 1, n_lib cmd%libname(i) = parse_node_get_string (pn_lib) pn_lib => parse_node_get_next_ptr (pn_lib) end do end if if (associated (pn_exec_name)) then cmd%make_executable = .true. cmd%exec_name = parse_node_get_string (pn_exec_name) end if end subroutine cmd_compile_compile @ %def cmd_compile_compile @ Command execution. Generate code, write driver, compile and link. Do this for all libraries in the list. If no library names have been given and stored while compiling this command, we collect all libraries from the current stack and compile those. As a bonus, a compiled library may be able to spawn new process libraries. For instance, a processes may ask for a set of resonant subprocesses which go into their own library, but this can be determined only after the process is available as a compiled object. Therefore, the compilation loop is implemented as a recursive internal subroutine. We can compile static libraries (which actually just loads them). However, we can't incorporate in a generated executable. <>= procedure :: execute => cmd_compile_execute <>= subroutine cmd_compile_execute (cmd, global) class(cmd_compile_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(string_t), dimension(:), allocatable :: libname, libname_static integer :: i, n_lib <> <> if (allocated (cmd%libname)) then allocate (libname (size (cmd%libname))) libname = cmd%libname else call cmd%local%prclib_stack%get_names (libname) end if n_lib = size (libname) if (cmd%make_executable) then call get_prclib_static (libname_static) do i = 1, n_lib if (any (libname_static == libname(i))) then call msg_fatal ("Compile: can't include static library '" & // char (libname(i)) // "'") end if end do call compile_executable (cmd%exec_name, libname, cmd%local) else call compile_libraries (libname) call global%update_prclib & (global%prclib_stack%get_library_ptr (libname(n_lib))) end if <> contains recursive subroutine compile_libraries (libname) type(string_t), dimension(:), intent(in) :: libname integer :: i type(string_t), dimension(:), allocatable :: libname_extra type(process_library_t), pointer :: lib_saved do i = 1, size (libname) call compile_library (libname(i), cmd%local) lib_saved => global%prclib call spawn_extra_libraries & (libname(i), cmd%local, global, libname_extra) call compile_libraries (libname_extra) call global%update_prclib (lib_saved) end do end subroutine compile_libraries end subroutine cmd_compile_execute @ %def cmd_compile_execute <>= @ <>= @ <>= @ @ The parallelization leads to undefined behavior while writing simultaneously to one file. The master worker has to initialize single-handed the corresponding library files. The slave worker will wait with a blocking [[MPI_BCAST]] until they receive a logical flag. <>= logical :: compile_init integer :: rank, n_size <>= if (debug_on) call msg_debug (D_MPI, "cmd_compile_execute") compile_init = .false. call mpi_get_comm_id (n_size, rank) if (debug_on) call msg_debug (D_MPI, "n_size", rank) if (debug_on) call msg_debug (D_MPI, "rank", rank) if (rank /= 0) then if (debug_on) call msg_debug (D_MPI, "wait for master") call MPI_bcast (compile_init, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD) else compile_init = .true. end if if (compile_init) then <>= if (rank == 0) then if (debug_on) call msg_debug (D_MPI, "load slaves") call MPI_bcast (compile_init, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD) end if end if call MPI_barrier (MPI_COMM_WORLD) @ %def cmd_compile_execute_mpi @ This is the interface to the external procedure which returns the names of all static libraries which are part of the executable. (The default is none.) The routine must allocate the array. <>= public :: get_prclib_static <>= interface subroutine get_prclib_static (libname) import type(string_t), dimension(:), intent(inout), allocatable :: libname end subroutine get_prclib_static end interface @ %def get_prclib_static @ Spawn extra libraries. We can ask the processes within a compiled library, which we have available at this point, whether they need additional processes which should go into their own libraries. The current implementation only concerns resonant subprocesses. Note that the libraries should be created (source code), but not be compiled here. This is done afterwards. <>= subroutine spawn_extra_libraries (libname, local, global, libname_extra) type(string_t), intent(in) :: libname type(rt_data_t), intent(inout), target :: local type(rt_data_t), intent(inout), target :: global type(string_t), dimension(:), allocatable, intent(out) :: libname_extra type(string_t), dimension(:), allocatable :: libname_res allocate (libname_extra (0)) call spawn_resonant_subprocess_libraries & (libname, local, global, libname_res) if (allocated (libname_res)) libname_extra = [libname_extra, libname_res] end subroutine spawn_extra_libraries @ %def spawn_extra_libraries @ \subsubsection{Execute a shell command} The argument is a string expression. <>= type, extends (command_t) :: cmd_exec_t private type(parse_node_t), pointer :: pn_command => null () contains <> end type cmd_exec_t @ %def cmd_exec_t @ Simply tell the status. <>= procedure :: write => cmd_exec_write <>= subroutine cmd_exec_write (cmd, unit, indent) class(cmd_exec_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) if (associated (cmd%pn_command)) then write (u, "(1x,A)") "exec: [command associated]" else write (u, "(1x,A)") "exec: [undefined]" end if end subroutine cmd_exec_write @ %def cmd_exec_write @ Compile the exec command. <>= procedure :: compile => cmd_exec_compile <>= subroutine cmd_exec_compile (cmd, global) class(cmd_exec_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_command pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) pn_command => parse_node_get_sub_ptr (pn_arg) cmd%pn_command => pn_command end subroutine cmd_exec_compile @ %def cmd_exec_compile @ Execute the specified shell command. <>= procedure :: execute => cmd_exec_execute <>= subroutine cmd_exec_execute (cmd, global) class(cmd_exec_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(string_t) :: command logical :: is_known integer :: status command = eval_string (cmd%pn_command, global%var_list, is_known=is_known) if (is_known) then if (command /= "") then call os_system_call (command, status, verbose=.true.) if (status /= 0) then write (msg_buffer, "(A,I0)") "Return code = ", status call msg_message () call msg_error ("System command returned with nonzero status code") end if end if end if end subroutine cmd_exec_execute @ %def cmd_exec_execute @ \subsubsection{Variable declaration} A variable can have various types. Hold the definition as an eval tree. There are intrinsic variables, user variables, and model variables. The latter are further divided in independent variables and dependent variables. Regarding model variables: When dealing with them, we always look at two variable lists in parallel. The global (or local) variable list contains the user-visible values. It includes variables that correspond to variables in the current model's list. These, in turn, are pointers to the model's parameter list, so the model is always in sync, internally. To keep the global variable list in sync with the model, the global variables carry the [[is_copy]] property and contain a separate pointer to the model variable. (The pointer is reassigned whenever the model changes.) Modifying the global variable changes two values simultaneously: the visible value and the model variable, via this extra pointer. After each modification, we update dependent parameters in the model variable list and re-synchronize the global variable list (again, using these pointers) with the model variable this. In the last step, modifications in the derived parameters become visible. When we integrate a process, we capture the current variable list of the current model in a separate model instance, which is stored in the process object. Thus, the model parameters associated to this process at this time are preserved for the lifetime of the process object. When we generate or rescan events, we can again capture a local model variable list in a model instance. This allows us to reweight event by event with different parameter sets simultaneously. <>= type, extends (command_t) :: cmd_var_t private type(string_t) :: name integer :: type = V_NONE type(parse_node_t), pointer :: pn_value => null () logical :: is_intrinsic = .false. logical :: is_model_var = .false. contains <> end type cmd_var_t @ %def cmd_var_t @ Output. We know name, type, and properties, but not the value. <>= procedure :: write => cmd_var_write <>= subroutine cmd_var_write (cmd, unit, indent) class(cmd_var_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A,A)", advance="no") "var: ", char (cmd%name), " (" select case (cmd%type) case (V_NONE) write (u, "(A)", advance="no") "[unknown]" case (V_LOG) write (u, "(A)", advance="no") "logical" case (V_INT) write (u, "(A)", advance="no") "int" case (V_REAL) write (u, "(A)", advance="no") "real" case (V_CMPLX) write (u, "(A)", advance="no") "complex" case (V_STR) write (u, "(A)", advance="no") "string" case (V_PDG) write (u, "(A)", advance="no") "alias" end select if (cmd%is_intrinsic) then write (u, "(A)", advance="no") ", intrinsic" end if if (cmd%is_model_var) then write (u, "(A)", advance="no") ", model" end if write (u, "(A)") ")" end subroutine cmd_var_write @ %def cmd_var_write @ Compile the lhs and determine the variable name and type. Check whether this variable can be created or modified as requested, and append the value to the variable list, if appropriate. The value is initially undefined. The rhs is assigned to a pointer, to be compiled and evaluated when the command is executed. <>= procedure :: compile => cmd_var_compile <>= subroutine cmd_var_compile (cmd, global) class(cmd_var_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_var, pn_name type(parse_node_t), pointer :: pn_result, pn_proc type(string_t) :: var_name type(var_list_t), pointer :: model_vars integer :: type logical :: new pn_result => null () new = .false. select case (char (parse_node_get_rule_key (cmd%pn))) case ("cmd_log_decl"); type = V_LOG pn_var => parse_node_get_sub_ptr (cmd%pn, 2) if (.not. associated (pn_var)) then ! handle masked syntax error cmd%type = V_NONE; return end if pn_name => parse_node_get_sub_ptr (pn_var, 2) new = .true. case ("cmd_log"); type = V_LOG pn_name => parse_node_get_sub_ptr (cmd%pn, 2) case ("cmd_int"); type = V_INT pn_name => parse_node_get_sub_ptr (cmd%pn, 2) new = .true. case ("cmd_real"); type = V_REAL pn_name => parse_node_get_sub_ptr (cmd%pn, 2) new = .true. case ("cmd_complex"); type = V_CMPLX pn_name => parse_node_get_sub_ptr (cmd%pn, 2) new = .true. case ("cmd_num"); type = V_NONE pn_name => parse_node_get_sub_ptr (cmd%pn) case ("cmd_string_decl"); type = V_STR pn_var => parse_node_get_sub_ptr (cmd%pn, 2) if (.not. associated (pn_var)) then ! handle masked syntax error cmd%type = V_NONE; return end if pn_name => parse_node_get_sub_ptr (pn_var, 2) new = .true. case ("cmd_string"); type = V_STR pn_name => parse_node_get_sub_ptr (cmd%pn, 2) case ("cmd_alias"); type = V_PDG pn_name => parse_node_get_sub_ptr (cmd%pn, 2) new = .true. case ("cmd_result"); type = V_REAL pn_name => parse_node_get_sub_ptr (cmd%pn) pn_result => parse_node_get_sub_ptr (pn_name) pn_proc => parse_node_get_next_ptr (pn_result) case default call parse_node_mismatch & ("logical|int|real|complex|?|$|alias|var_name", cmd%pn) ! $ end select if (.not. associated (pn_name)) then ! handle masked syntax error cmd%type = V_NONE; return end if if (.not. associated (pn_result)) then var_name = parse_node_get_string (pn_name) else var_name = parse_node_get_key (pn_result) & // "(" // parse_node_get_string (pn_proc) // ")" end if select case (type) case (V_LOG); var_name = "?" // var_name case (V_STR); var_name = "$" // var_name ! $ end select if (associated (global%model)) then model_vars => global%model%get_var_list_ptr () else model_vars => null () end if call var_list_check_observable (global%var_list, var_name, type) call var_list_check_result_var (global%var_list, var_name, type) call global%var_list%check_user_var (var_name, type, new) cmd%name = var_name cmd%pn_value => parse_node_get_next_ptr (pn_name, 2) if (global%var_list%contains (cmd%name, follow_link = .false.)) then ! local variable cmd%is_intrinsic = & global%var_list%is_intrinsic (cmd%name, follow_link = .false.) cmd%type = & global%var_list%get_type (cmd%name, follow_link = .false.) else if (new) cmd%type = type if (global%var_list%contains (cmd%name, follow_link = .true.)) then ! global variable cmd%is_intrinsic = & global%var_list%is_intrinsic (cmd%name, follow_link = .true.) if (cmd%type == V_NONE) then cmd%type = & global%var_list%get_type (cmd%name, follow_link = .true.) end if else if (associated (model_vars)) then ! check model variable cmd%is_model_var = & model_vars%contains (cmd%name) if (cmd%type == V_NONE) then cmd%type = & model_vars%get_type (cmd%name) end if end if if (cmd%type == V_NONE) then call msg_fatal ("Variable '" // char (cmd%name) // "' " & // "set without declaration") cmd%type = V_NONE; return end if if (cmd%is_model_var) then if (new) then call msg_fatal ("Model variable '" // char (cmd%name) // "' " & // "redeclared") else if (model_vars%is_locked (cmd%name)) then call msg_fatal ("Model variable '" // char (cmd%name) // "' " & // "is locked") end if else select case (cmd%type) case (V_LOG) call global%var_list%append_log (cmd%name, & intrinsic=cmd%is_intrinsic, user=.true.) case (V_INT) call global%var_list%append_int (cmd%name, & intrinsic=cmd%is_intrinsic, user=.true.) case (V_REAL) call global%var_list%append_real (cmd%name, & intrinsic=cmd%is_intrinsic, user=.true.) case (V_CMPLX) call global%var_list%append_cmplx (cmd%name, & intrinsic=cmd%is_intrinsic, user=.true.) case (V_PDG) call global%var_list%append_pdg_array (cmd%name, & intrinsic=cmd%is_intrinsic, user=.true.) case (V_STR) call global%var_list%append_string (cmd%name, & intrinsic=cmd%is_intrinsic, user=.true.) end select end if end if end subroutine cmd_var_compile @ %def cmd_var_compile @ Execute. Evaluate the definition and assign the variable value. If the variable is a model variable, take a snapshot of the model if necessary and set the variable in the local model. <>= procedure :: execute => cmd_var_execute <>= subroutine cmd_var_execute (cmd, global) class(cmd_var_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list real(default) :: rval logical :: is_known, pacified var_list => global%get_var_list_ptr () if (cmd%is_model_var) then pacified = var_list%get_lval (var_str ("?pacify")) rval = eval_real (cmd%pn_value, var_list, is_known=is_known) call global%model_set_real & (cmd%name, rval, verbose=.true., pacified=pacified) else if (cmd%type /= V_NONE) then call cmd%set_value (var_list, verbose=.true.) end if end subroutine cmd_var_execute @ %def cmd_var_execute @ Copy the value to the variable list, where the variable should already exist. <>= procedure :: set_value => cmd_var_set_value <>= subroutine cmd_var_set_value (var, var_list, verbose, model_name) class(cmd_var_t), intent(inout) :: var type(var_list_t), intent(inout), target :: var_list logical, intent(in), optional :: verbose type(string_t), intent(in), optional :: model_name logical :: lval, pacified integer :: ival real(default) :: rval complex(default) :: cval type(pdg_array_t) :: aval type(string_t) :: sval logical :: is_known pacified = var_list%get_lval (var_str ("?pacify")) select case (var%type) case (V_LOG) lval = eval_log (var%pn_value, var_list, is_known=is_known) call var_list%set_log (var%name, & lval, is_known, verbose=verbose, model_name=model_name) case (V_INT) ival = eval_int (var%pn_value, var_list, is_known=is_known) call var_list%set_int (var%name, & ival, is_known, verbose=verbose, model_name=model_name) case (V_REAL) rval = eval_real (var%pn_value, var_list, is_known=is_known) call var_list%set_real (var%name, & rval, is_known, verbose=verbose, & model_name=model_name, pacified = pacified) case (V_CMPLX) cval = eval_cmplx (var%pn_value, var_list, is_known=is_known) call var_list%set_cmplx (var%name, & cval, is_known, verbose=verbose, & model_name=model_name, pacified = pacified) case (V_PDG) aval = eval_pdg_array (var%pn_value, var_list, is_known=is_known) call var_list%set_pdg_array (var%name, & aval, is_known, verbose=verbose, model_name=model_name) case (V_STR) sval = eval_string (var%pn_value, var_list, is_known=is_known) call var_list%set_string (var%name, & sval, is_known, verbose=verbose, model_name=model_name) end select end subroutine cmd_var_set_value @ %def cmd_var_set_value @ \subsubsection{SLHA} Read a SLHA (SUSY Les Houches Accord) file to fill the appropriate model parameters. We do not access the current variable record, but directly work on the appropriate SUSY model, which is loaded if necessary. We may be in read or write mode. In the latter case, we may write just input parameters, or the complete spectrum, or the spectrum with all decays. <>= type, extends (command_t) :: cmd_slha_t private type(string_t) :: file logical :: write_mode = .false. contains <> end type cmd_slha_t @ %def cmd_slha_t @ Output. <>= procedure :: write => cmd_slha_write <>= subroutine cmd_slha_write (cmd, unit, indent) class(cmd_slha_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A)") "slha: file name = ", char (cmd%file) write (u, "(1x,A,L1)") "slha: write mode = ", cmd%write_mode end subroutine cmd_slha_write @ %def cmd_slha_write @ Compile. Read the filename and store it. <>= procedure :: compile => cmd_slha_compile <>= subroutine cmd_slha_compile (cmd, global) class(cmd_slha_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_key, pn_arg, pn_file pn_key => parse_node_get_sub_ptr (cmd%pn) pn_arg => parse_node_get_next_ptr (pn_key) pn_file => parse_node_get_sub_ptr (pn_arg) call cmd%compile_options (global) cmd%pn_opt => parse_node_get_next_ptr (pn_arg) select case (char (parse_node_get_key (pn_key))) case ("read_slha") cmd%write_mode = .false. case ("write_slha") cmd%write_mode = .true. case default call parse_node_mismatch ("read_slha|write_slha", cmd%pn) end select cmd%file = parse_node_get_string (pn_file) end subroutine cmd_slha_compile @ %def cmd_slha_compile @ Execute. Read or write the specified SLHA file. Behind the scenes, this will first read the WHIZARD model file, then read the SLHA file and assign the SLHA parameters as far as determined by [[dispatch_slha]]. Finally, the global variables are synchronized with the model. This is similar to executing [[cmd_model]]. <>= procedure :: execute => cmd_slha_execute <>= subroutine cmd_slha_execute (cmd, global) class(cmd_slha_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global logical :: input, spectrum, decays if (cmd%write_mode) then input = .true. spectrum = .false. decays = .false. if (.not. associated (cmd%local%model)) then call msg_fatal ("SLHA: local model not associated") return end if call slha_write_file & (cmd%file, cmd%local%model, & input = input, spectrum = spectrum, decays = decays) else if (.not. associated (global%model)) then call msg_fatal ("SLHA: global model not associated") return end if call dispatch_slha (cmd%local%var_list, & input = input, spectrum = spectrum, decays = decays) call global%ensure_model_copy () call slha_read_file & (cmd%file, cmd%local%os_data, global%model, & input = input, spectrum = spectrum, decays = decays) end if end subroutine cmd_slha_execute @ %def cmd_slha_execute @ \subsubsection{Show values} This command shows the current values of variables or other objects, in a suitably condensed form. <>= type, extends (command_t) :: cmd_show_t private type(string_t), dimension(:), allocatable :: name contains <> end type cmd_show_t @ %def cmd_show_t @ Output: list the object names, not values. <>= procedure :: write => cmd_show_write <>= subroutine cmd_show_write (cmd, unit, indent) class(cmd_show_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "show: " if (allocated (cmd%name)) then do i = 1, size (cmd%name) write (u, "(1x,A)", advance="no") char (cmd%name(i)) end do write (u, *) else write (u, "(5x,A)") "[undefined]" end if end subroutine cmd_show_write @ %def cmd_show_write @ Compile. Allocate an array which is filled with the names of the variables to show. <>= procedure :: compile => cmd_show_compile <>= subroutine cmd_show_compile (cmd, global) class(cmd_show_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_var, pn_prefix, pn_name type(string_t) :: key integer :: i, n_args pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) if (associated (pn_arg)) then select case (char (parse_node_get_rule_key (pn_arg))) case ("show_arg") cmd%pn_opt => parse_node_get_next_ptr (pn_arg) case default cmd%pn_opt => pn_arg pn_arg => null () end select end if call cmd%compile_options (global) if (associated (pn_arg)) then n_args = parse_node_get_n_sub (pn_arg) allocate (cmd%name (n_args)) pn_var => parse_node_get_sub_ptr (pn_arg) i = 0 do while (associated (pn_var)) i = i + 1 select case (char (parse_node_get_rule_key (pn_var))) case ("model", "library", "beams", "iterations", & "cuts", "weight", "int", "real", "complex", & "scale", "factorization_scale", "renormalization_scale", & "selection", "reweight", "analysis", "pdg", & "stable", "unstable", "polarized", "unpolarized", & "results", "expect", "intrinsic", "string", "logical") cmd%name(i) = parse_node_get_key (pn_var) case ("result_var") pn_prefix => parse_node_get_sub_ptr (pn_var) pn_name => parse_node_get_next_ptr (pn_prefix) if (associated (pn_name)) then cmd%name(i) = parse_node_get_key (pn_prefix) & // "(" // parse_node_get_string (pn_name) // ")" else cmd%name(i) = parse_node_get_key (pn_prefix) end if case ("log_var", "string_var", "alias_var") pn_prefix => parse_node_get_sub_ptr (pn_var) pn_name => parse_node_get_next_ptr (pn_prefix) key = parse_node_get_key (pn_prefix) if (associated (pn_name)) then select case (char (parse_node_get_rule_key (pn_name))) case ("var_name") select case (char (key)) case ("?", "$") ! $ sign cmd%name(i) = key // parse_node_get_string (pn_name) case ("alias") cmd%name(i) = parse_node_get_string (pn_name) end select case default call parse_node_mismatch & ("var_name", pn_name) end select else cmd%name(i) = key end if case default cmd%name(i) = parse_node_get_string (pn_var) end select pn_var => parse_node_get_next_ptr (pn_var) end do else allocate (cmd%name (0)) end if end subroutine cmd_show_compile @ %def cmd_show_compile @ Execute. Scan the list of objects to show. <>= integer, parameter, public :: SHOW_BUFFER_SIZE = 4096 <>= procedure :: execute => cmd_show_execute <>= subroutine cmd_show_execute (cmd, global) class(cmd_show_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list, model_vars type(model_t), pointer :: model type(string_t) :: name integer :: n, pdg type(flavor_t) :: flv type(process_library_t), pointer :: prc_lib type(process_t), pointer :: process logical :: pacified character(SHOW_BUFFER_SIZE) :: buffer type(string_t) :: out_file integer :: i, j, u, u_log, u_out, u_ext u = free_unit () var_list => cmd%local%var_list if (associated (cmd%local%model)) then model_vars => cmd%local%model%get_var_list_ptr () else model_vars => null () end if pacified = var_list%get_lval (var_str ("?pacify")) out_file = var_list%get_sval (var_str ("$out_file")) if (file_list_is_open (global%out_files, out_file, action="write")) then call msg_message ("show: copying output to file '" & // char (out_file) // "'") u_ext = file_list_get_unit (global%out_files, out_file) else u_ext = -1 end if open (u, status = "scratch", action = "readwrite") if (associated (cmd%local%model)) then name = cmd%local%model%get_name () end if if (size (cmd%name) == 0) then if (associated (model_vars)) then call model_vars%write (model_name = name, & unit = u, pacified = pacified, follow_link = .false.) end if call var_list%write (unit = u, pacified = pacified) else do i = 1, size (cmd%name) select case (char (cmd%name(i))) case ("model") if (associated (cmd%local%model)) then call cmd%local%model%show (u) else write (u, "(A)") "Model: [undefined]" end if case ("library") if (associated (cmd%local%prclib)) then call cmd%local%prclib%show (u) else write (u, "(A)") "Process library: [undefined]" end if case ("beams") call cmd%local%show_beams (u) case ("iterations") call cmd%local%it_list%write (u) case ("results") call cmd%local%process_stack%show (u, fifo=.true.) case ("stable") call cmd%local%model%show_stable (u) case ("polarized") call cmd%local%model%show_polarized (u) case ("unpolarized") call cmd%local%model%show_unpolarized (u) case ("unstable") model => cmd%local%model call model%show_unstable (u) n = model%get_n_field () do j = 1, n pdg = model%get_pdg (j) call flv%init (pdg, model) if (.not. flv%is_stable ()) & call show_unstable (cmd%local, pdg, u) if (flv%has_antiparticle ()) then associate (anti => flv%anti ()) if (.not. anti%is_stable ()) & call show_unstable (cmd%local, -pdg, u) end associate end if end do case ("cuts", "weight", "scale", & "factorization_scale", "renormalization_scale", & "selection", "reweight", "analysis") call cmd%local%pn%show (cmd%name(i), u) case ("expect") call expect_summary (force = .true.) case ("intrinsic") call var_list%write (intrinsic=.true., unit=u, & pacified = pacified) case ("logical") if (associated (model_vars)) then call model_vars%write (only_type=V_LOG, & model_name = name, unit=u, pacified = pacified, & follow_link=.false.) end if call var_list%write (& only_type=V_LOG, unit=u, pacified = pacified) case ("int") if (associated (model_vars)) then call model_vars%write (only_type=V_INT, & model_name = name, unit=u, pacified = pacified, & follow_link=.false.) end if call var_list%write (only_type=V_INT, & unit=u, pacified = pacified) case ("real") if (associated (model_vars)) then call model_vars%write (only_type=V_REAL, & model_name = name, unit=u, pacified = pacified, & follow_link=.false.) end if call var_list%write (only_type=V_REAL, & unit=u, pacified = pacified) case ("complex") if (associated (model_vars)) then call model_vars%write (only_type=V_CMPLX, & model_name = name, unit=u, pacified = pacified, & follow_link=.false.) end if call var_list%write (only_type=V_CMPLX, & unit=u, pacified = pacified) case ("pdg") if (associated (model_vars)) then call model_vars%write (only_type=V_PDG, & model_name = name, unit=u, pacified = pacified, & follow_link=.false.) end if call var_list%write (only_type=V_PDG, & unit=u, pacified = pacified) case ("string") if (associated (model_vars)) then call model_vars%write (only_type=V_STR, & model_name = name, unit=u, pacified = pacified, & follow_link=.false.) end if call var_list%write (only_type=V_STR, & unit=u, pacified = pacified) case default if (analysis_exists (cmd%name(i))) then call analysis_write (cmd%name(i), u) else if (cmd%local%process_stack%exists (cmd%name(i))) then process => cmd%local%process_stack%get_process_ptr (cmd%name(i)) call process%show (u) else if (associated (cmd%local%prclib_stack%get_library_ptr & (cmd%name(i)))) then prc_lib => cmd%local%prclib_stack%get_library_ptr (cmd%name(i)) call prc_lib%show (u) else if (associated (model_vars)) then if (model_vars%contains (cmd%name(i), follow_link=.false.)) then call model_vars%write_var (cmd%name(i), & unit = u, model_name = name, pacified = pacified) else if (var_list%contains (cmd%name(i))) then call var_list%write_var (cmd%name(i), & unit = u, pacified = pacified) else call msg_error ("show: object '" // char (cmd%name(i)) & // "' not found") end if else if (var_list%contains (cmd%name(i))) then call var_list%write_var (cmd%name(i), & unit = u, pacified = pacified) else call msg_error ("show: object '" // char (cmd%name(i)) & // "' not found") end if end select end do end if rewind (u) u_log = logfile_unit () u_out = given_output_unit () do read (u, "(A)", end = 1) buffer if (u_log > 0) write (u_log, "(A)") trim (buffer) if (u_out > 0) write (u_out, "(A)") trim (buffer) if (u_ext > 0) write (u_ext, "(A)") trim (buffer) end do 1 close (u) if (u_log > 0) flush (u_log) if (u_out > 0) flush (u_out) if (u_ext > 0) flush (u_ext) end subroutine cmd_show_execute @ %def cmd_show_execute @ \subsubsection{Clear values} This command clears the current values of variables or other objects, where this makes sense. It parallels the [[show]] command. The objects are cleared, but not deleted. <>= type, extends (command_t) :: cmd_clear_t private type(string_t), dimension(:), allocatable :: name contains <> end type cmd_clear_t @ %def cmd_clear_t @ Output: list the names of the objects to be cleared. <>= procedure :: write => cmd_clear_write <>= subroutine cmd_clear_write (cmd, unit, indent) class(cmd_clear_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "clear: " if (allocated (cmd%name)) then do i = 1, size (cmd%name) write (u, "(1x,A)", advance="no") char (cmd%name(i)) end do write (u, *) else write (u, "(5x,A)") "[undefined]" end if end subroutine cmd_clear_write @ %def cmd_clear_write @ Compile. Allocate an array which is filled with the names of the objects to be cleared. Note: there is currently no need to account for options, but we prepare for that possibility. <>= procedure :: compile => cmd_clear_compile <>= subroutine cmd_clear_compile (cmd, global) class(cmd_clear_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_var, pn_prefix, pn_name type(string_t) :: key integer :: i, n_args pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) if (associated (pn_arg)) then select case (char (parse_node_get_rule_key (pn_arg))) case ("clear_arg") cmd%pn_opt => parse_node_get_next_ptr (pn_arg) case default cmd%pn_opt => pn_arg pn_arg => null () end select end if call cmd%compile_options (global) if (associated (pn_arg)) then n_args = parse_node_get_n_sub (pn_arg) allocate (cmd%name (n_args)) pn_var => parse_node_get_sub_ptr (pn_arg) i = 0 do while (associated (pn_var)) i = i + 1 select case (char (parse_node_get_rule_key (pn_var))) case ("beams", "iterations", & "cuts", "weight", & "scale", "factorization_scale", "renormalization_scale", & "selection", "reweight", "analysis", & "unstable", "polarized", & "expect") cmd%name(i) = parse_node_get_key (pn_var) case ("log_var", "string_var") pn_prefix => parse_node_get_sub_ptr (pn_var) pn_name => parse_node_get_next_ptr (pn_prefix) key = parse_node_get_key (pn_prefix) if (associated (pn_name)) then select case (char (parse_node_get_rule_key (pn_name))) case ("var_name") select case (char (key)) case ("?", "$") ! $ sign cmd%name(i) = key // parse_node_get_string (pn_name) end select case default call parse_node_mismatch & ("var_name", pn_name) end select else cmd%name(i) = key end if case default cmd%name(i) = parse_node_get_string (pn_var) end select pn_var => parse_node_get_next_ptr (pn_var) end do else allocate (cmd%name (0)) end if end subroutine cmd_clear_compile @ %def cmd_clear_compile @ Execute. Scan the list of objects to clear. Objects that can be shown but not cleared: model, library, results <>= procedure :: execute => cmd_clear_execute <>= subroutine cmd_clear_execute (cmd, global) class(cmd_clear_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global integer :: i logical :: success type(var_list_t), pointer :: model_vars if (size (cmd%name) == 0) then call msg_warning ("clear: no object specified") else do i = 1, size (cmd%name) success = .true. select case (char (cmd%name(i))) case ("beams") call cmd%local%clear_beams () case ("iterations") call cmd%local%it_list%clear () case ("polarized") call cmd%local%model%clear_polarized () case ("unstable") call cmd%local%model%clear_unstable () case ("cuts", "weight", "scale", & "factorization_scale", "renormalization_scale", & "selection", "reweight", "analysis") call cmd%local%pn%clear (cmd%name(i)) case ("expect") call expect_clear () case default if (analysis_exists (cmd%name(i))) then call analysis_clear (cmd%name(i)) else if (cmd%local%var_list%contains (cmd%name(i))) then if (.not. cmd%local%var_list%is_locked (cmd%name(i))) then call cmd%local%var_list%unset (cmd%name(i)) else call msg_error ("clear: variable '" // char (cmd%name(i)) & // "' is locked and can't be cleared") success = .false. end if else if (associated (cmd%local%model)) then model_vars => cmd%local%model%get_var_list_ptr () if (model_vars%contains (cmd%name(i), follow_link=.false.)) then call msg_error ("clear: variable '" // char (cmd%name(i)) & // "' is a model variable and can't be cleared") else call msg_error ("clear: object '" // char (cmd%name(i)) & // "' not found") end if success = .false. else call msg_error ("clear: object '" // char (cmd%name(i)) & // "' not found") success = .false. end if end select if (success) call msg_message ("cleared: " // char (cmd%name(i))) end do end if end subroutine cmd_clear_execute @ %def cmd_clear_execute @ \subsubsection{Compare values of variables to expectation} The implementation is similar to the [[show]] command. There are just two arguments: two values that should be compared. For providing local values for the numerical tolerance, the command has a local argument list. If the expectation fails, an error condition is recorded. <>= type, extends (command_t) :: cmd_expect_t private type(parse_node_t), pointer :: pn_lexpr => null () contains <> end type cmd_expect_t @ %def cmd_expect_t @ Simply tell the status. <>= procedure :: write => cmd_expect_write <>= subroutine cmd_expect_write (cmd, unit, indent) class(cmd_expect_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) if (associated (cmd%pn_lexpr)) then write (u, "(1x,A)") "expect: [expression associated]" else write (u, "(1x,A)") "expect: [undefined]" end if end subroutine cmd_expect_write @ %def cmd_expect_write @ Compile. This merely assigns the parse node, the actual compilation is done at execution. This is necessary because the origin of variables (local/global) may change during execution. <>= procedure :: compile => cmd_expect_compile <>= subroutine cmd_expect_compile (cmd, global) class(cmd_expect_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_arg) cmd%pn_lexpr => parse_node_get_sub_ptr (pn_arg) call cmd%compile_options (global) end subroutine cmd_expect_compile @ %def cmd_expect_compile @ Execute. Evaluate both arguments, print them and their difference (if numerical), and whether they agree. Record the result. <>= procedure :: execute => cmd_expect_execute <>= subroutine cmd_expect_execute (cmd, global) class(cmd_expect_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list logical :: success, is_known var_list => cmd%local%get_var_list_ptr () success = eval_log (cmd%pn_lexpr, var_list, is_known=is_known) if (is_known) then if (success) then call msg_message ("expect: success") else call msg_error ("expect: failure") end if else call msg_error ("expect: undefined result") success = .false. end if call expect_record (success) end subroutine cmd_expect_execute @ %def cmd_expect_execute @ \subsubsection{Beams} The beam command includes both beam and structure-function definition. <>= type, extends (command_t) :: cmd_beams_t private integer :: n_in = 0 type(parse_node_p), dimension(:), allocatable :: pn_pdg integer :: n_sf_record = 0 integer, dimension(:), allocatable :: n_entry type(parse_node_p), dimension(:,:), allocatable :: pn_sf_entry contains <> end type cmd_beams_t @ %def cmd_beams_t @ Output. The particle expressions are not resolved. <>= procedure :: write => cmd_beams_write <>= subroutine cmd_beams_write (cmd, unit, indent) class(cmd_beams_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_in) case (1) write (u, "(1x,A)") "beams: 1 [decay]" case (2) write (u, "(1x,A)") "beams: 2 [scattering]" case default write (u, "(1x,A)") "beams: [undefined]" end select if (allocated (cmd%n_entry)) then if (cmd%n_sf_record > 0) then write (u, "(1x,A,99(1x,I0))") "structure function entries:", & cmd%n_entry end if end if end subroutine cmd_beams_write @ %def cmd_beams_write @ Compile. Find and assign the parse nodes. Note: local environments are not yet supported. <>= procedure :: compile => cmd_beams_compile <>= subroutine cmd_beams_compile (cmd, global) class(cmd_beams_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_beam_def, pn_beam_spec type(parse_node_t), pointer :: pn_beam_list type(parse_node_t), pointer :: pn_codes type(parse_node_t), pointer :: pn_strfun_seq, pn_strfun_pair type(parse_node_t), pointer :: pn_strfun_def integer :: i pn_beam_def => parse_node_get_sub_ptr (cmd%pn, 3) pn_beam_spec => parse_node_get_sub_ptr (pn_beam_def) pn_strfun_seq => parse_node_get_next_ptr (pn_beam_spec) pn_beam_list => parse_node_get_sub_ptr (pn_beam_spec) call cmd%compile_options (global) cmd%n_in = parse_node_get_n_sub (pn_beam_list) allocate (cmd%pn_pdg (cmd%n_in)) pn_codes => parse_node_get_sub_ptr (pn_beam_list) do i = 1, cmd%n_in cmd%pn_pdg(i)%ptr => pn_codes pn_codes => parse_node_get_next_ptr (pn_codes) end do if (associated (pn_strfun_seq)) then cmd%n_sf_record = parse_node_get_n_sub (pn_beam_def) - 1 allocate (cmd%n_entry (cmd%n_sf_record), source = 1) allocate (cmd%pn_sf_entry (2, cmd%n_sf_record)) do i = 1, cmd%n_sf_record pn_strfun_pair => parse_node_get_sub_ptr (pn_strfun_seq, 2) pn_strfun_def => parse_node_get_sub_ptr (pn_strfun_pair) cmd%pn_sf_entry(1,i)%ptr => pn_strfun_def pn_strfun_def => parse_node_get_next_ptr (pn_strfun_def) cmd%pn_sf_entry(2,i)%ptr => pn_strfun_def if (associated (pn_strfun_def)) cmd%n_entry(i) = 2 pn_strfun_seq => parse_node_get_next_ptr (pn_strfun_seq) end do else allocate (cmd%n_entry (0)) allocate (cmd%pn_sf_entry (0, 0)) end if end subroutine cmd_beams_compile @ %def cmd_beams_compile @ Command execution: Determine beam particles and structure-function names, if any. The results are stored in the [[beam_structure]] component of the [[global]] data block. <>= procedure :: execute => cmd_beams_execute <>= subroutine cmd_beams_execute (cmd, global) class(cmd_beams_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(pdg_array_t) :: pdg_array integer, dimension(:), allocatable :: pdg type(flavor_t), dimension(:), allocatable :: flv type(parse_node_t), pointer :: pn_key type(string_t) :: sf_name integer :: i, j call lhapdf_global_reset () var_list => cmd%local%get_var_list_ptr () allocate (flv (cmd%n_in)) do i = 1, cmd%n_in pdg_array = eval_pdg_array (cmd%pn_pdg(i)%ptr, var_list) pdg = pdg_array select case (size (pdg)) case (1) call flv(i)%init ( pdg(1), cmd%local%model) case default call msg_fatal ("Beams: beam particles must be unique") end select end do select case (cmd%n_in) case (1) if (cmd%n_sf_record > 0) then call msg_fatal ("Beam setup: no structure functions allowed & &for decay") end if call global%beam_structure%init_sf (flv%get_name ()) case (2) call global%beam_structure%init_sf (flv%get_name (), cmd%n_entry) do i = 1, cmd%n_sf_record do j = 1, cmd%n_entry(i) pn_key => parse_node_get_sub_ptr (cmd%pn_sf_entry(j,i)%ptr) sf_name = parse_node_get_key (pn_key) call global%beam_structure%set_sf (i, j, sf_name) end do end do end select end subroutine cmd_beams_execute @ %def cmd_beams_execute @ \subsubsection{Density matrices for beam polarization} For holding beam polarization, we define a notation and a data structure for sparse matrices. The entries (and the index expressions) are numerical expressions, so we use evaluation trees. Each entry in the sparse matrix is an n-tuple of expressions. The first tuple elements represent index values, the last one is an arbitrary (complex) number. Absent expressions are replaced by default-value rules. Note: Here, and in some other commands, we would like to store an evaluation tree, not just a parse node pointer. However, the current expression handler wants all variables defined, so the evaluation tree can only be built by [[evaluate]], i.e., compiled just-in-time and evaluated immediately. <>= type :: sentry_expr_t type(parse_node_p), dimension(:), allocatable :: expr contains <> end type sentry_expr_t @ %def sentry_expr_t @ Compile parse nodes into evaluation trees. <>= procedure :: compile => sentry_expr_compile <>= subroutine sentry_expr_compile (sentry, pn) class(sentry_expr_t), intent(out) :: sentry type(parse_node_t), intent(in), target :: pn type(parse_node_t), pointer :: pn_expr, pn_extra integer :: n_expr, i n_expr = parse_node_get_n_sub (pn) allocate (sentry%expr (n_expr)) if (n_expr > 0) then i = 0 pn_expr => parse_node_get_sub_ptr (pn) pn_extra => parse_node_get_next_ptr (pn_expr) do i = 1, n_expr sentry%expr(i)%ptr => pn_expr if (associated (pn_extra)) then pn_expr => parse_node_get_sub_ptr (pn_extra, 2) pn_extra => parse_node_get_next_ptr (pn_extra) end if end do end if end subroutine sentry_expr_compile @ %def sentry_expr_compile @ Evaluate the expressions and return an index array of predefined length together with a complex value. If the value (as the last expression) is undefined, set it to unity. If index values are undefined, repeat the previous index value. <>= procedure :: evaluate => sentry_expr_evaluate <>= subroutine sentry_expr_evaluate (sentry, index, value, global) class(sentry_expr_t), intent(inout) :: sentry integer, dimension(:), intent(out) :: index complex(default), intent(out) :: value type(rt_data_t), intent(in), target :: global type(var_list_t), pointer :: var_list integer :: i, n_expr, n_index type(eval_tree_t) :: eval_tree var_list => global%get_var_list_ptr () n_expr = size (sentry%expr) n_index = size (index) if (n_expr <= n_index + 1) then do i = 1, min (n_expr, n_index) associate (expr => sentry%expr(i)) call eval_tree%init_expr (expr%ptr, var_list) call eval_tree%evaluate () if (eval_tree%is_known ()) then index(i) = eval_tree%get_int () else call msg_fatal ("Evaluating density matrix: undefined index") end if end associate end do do i = n_expr + 1, n_index index(i) = index(n_expr) end do if (n_expr == n_index + 1) then associate (expr => sentry%expr(n_expr)) call eval_tree%init_expr (expr%ptr, var_list) call eval_tree%evaluate () if (eval_tree%is_known ()) then value = eval_tree%get_cmplx () else call msg_fatal ("Evaluating density matrix: undefined index") end if call eval_tree%final () end associate else value = 1 end if else call msg_fatal ("Evaluating density matrix: index expression too long") end if end subroutine sentry_expr_evaluate @ %def sentry_expr_evaluate @ The sparse matrix itself consists of an arbitrary number of entries. <>= type :: smatrix_expr_t type(sentry_expr_t), dimension(:), allocatable :: entry contains <> end type smatrix_expr_t @ %def smatrix_expr_t @ Compile: assign sub-nodes to sentry-expressions and compile those. <>= procedure :: compile => smatrix_expr_compile <>= subroutine smatrix_expr_compile (smatrix_expr, pn) class(smatrix_expr_t), intent(out) :: smatrix_expr type(parse_node_t), intent(in), target :: pn type(parse_node_t), pointer :: pn_arg, pn_entry integer :: n_entry, i pn_arg => parse_node_get_sub_ptr (pn, 2) if (associated (pn_arg)) then n_entry = parse_node_get_n_sub (pn_arg) allocate (smatrix_expr%entry (n_entry)) pn_entry => parse_node_get_sub_ptr (pn_arg) do i = 1, n_entry call smatrix_expr%entry(i)%compile (pn_entry) pn_entry => parse_node_get_next_ptr (pn_entry) end do else allocate (smatrix_expr%entry (0)) end if end subroutine smatrix_expr_compile @ %def smatrix_expr_compile @ Evaluate the entries and build a new [[smatrix]] object, which contains just the numerical results. <>= procedure :: evaluate => smatrix_expr_evaluate <>= subroutine smatrix_expr_evaluate (smatrix_expr, smatrix, global) class(smatrix_expr_t), intent(inout) :: smatrix_expr type(smatrix_t), intent(out) :: smatrix type(rt_data_t), intent(in), target :: global integer, dimension(2) :: idx complex(default) :: value integer :: i, n_entry n_entry = size (smatrix_expr%entry) call smatrix%init (2, n_entry) do i = 1, n_entry call smatrix_expr%entry(i)%evaluate (idx, value, global) call smatrix%set_entry (i, idx, value) end do end subroutine smatrix_expr_evaluate @ %def smatrix_expr_evaluate @ \subsubsection{Beam polarization density} The beam polarization command defines spin density matrix for one or two beams (scattering or decay). <>= type, extends (command_t) :: cmd_beams_pol_density_t private integer :: n_in = 0 type(smatrix_expr_t), dimension(:), allocatable :: smatrix contains <> end type cmd_beams_pol_density_t @ %def cmd_beams_pol_density_t @ Output. <>= procedure :: write => cmd_beams_pol_density_write <>= subroutine cmd_beams_pol_density_write (cmd, unit, indent) class(cmd_beams_pol_density_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_in) case (1) write (u, "(1x,A)") "beams polarization setup: 1 [decay]" case (2) write (u, "(1x,A)") "beams polarization setup: 2 [scattering]" case default write (u, "(1x,A)") "beams polarization setup: [undefined]" end select end subroutine cmd_beams_pol_density_write @ %def cmd_beams_pol_density_write @ Compile. Find and assign the parse nodes. Note: local environments are not yet supported. <>= procedure :: compile => cmd_beams_pol_density_compile <>= subroutine cmd_beams_pol_density_compile (cmd, global) class(cmd_beams_pol_density_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_pol_spec, pn_smatrix integer :: i pn_pol_spec => parse_node_get_sub_ptr (cmd%pn, 3) call cmd%compile_options (global) cmd%n_in = parse_node_get_n_sub (pn_pol_spec) allocate (cmd%smatrix (cmd%n_in)) pn_smatrix => parse_node_get_sub_ptr (pn_pol_spec) do i = 1, cmd%n_in call cmd%smatrix(i)%compile (pn_smatrix) pn_smatrix => parse_node_get_next_ptr (pn_smatrix) end do end subroutine cmd_beams_pol_density_compile @ %def cmd_beams_pol_density_compile @ Command execution: Fill polarization density matrices. No check yet, the matrices are checked and normalized when the actual beam object is created, just before integration. For intermediate storage, we use the [[beam_structure]] object in the [[global]] data set. <>= procedure :: execute => cmd_beams_pol_density_execute <>= subroutine cmd_beams_pol_density_execute (cmd, global) class(cmd_beams_pol_density_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(smatrix_t) :: smatrix integer :: i call global%beam_structure%init_pol (cmd%n_in) do i = 1, cmd%n_in call cmd%smatrix(i)%evaluate (smatrix, global) call global%beam_structure%set_smatrix (i, smatrix) end do end subroutine cmd_beams_pol_density_execute @ %def cmd_beams_pol_density_execute @ \subsubsection{Beam polarization fraction} In addition to the polarization density matrix, we can independently specify the polarization fraction for one or both beams. <>= type, extends (command_t) :: cmd_beams_pol_fraction_t private integer :: n_in = 0 type(parse_node_p), dimension(:), allocatable :: expr contains <> end type cmd_beams_pol_fraction_t @ %def cmd_beams_pol_fraction_t @ Output. <>= procedure :: write => cmd_beams_pol_fraction_write <>= subroutine cmd_beams_pol_fraction_write (cmd, unit, indent) class(cmd_beams_pol_fraction_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_in) case (1) write (u, "(1x,A)") "beams polarization fraction: 1 [decay]" case (2) write (u, "(1x,A)") "beams polarization fraction: 2 [scattering]" case default write (u, "(1x,A)") "beams polarization fraction: [undefined]" end select end subroutine cmd_beams_pol_fraction_write @ %def cmd_beams_pol_fraction_write @ Compile. Find and assign the parse nodes. Note: local environments are not yet supported. <>= procedure :: compile => cmd_beams_pol_fraction_compile <>= subroutine cmd_beams_pol_fraction_compile (cmd, global) class(cmd_beams_pol_fraction_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_frac_spec, pn_expr integer :: i pn_frac_spec => parse_node_get_sub_ptr (cmd%pn, 3) call cmd%compile_options (global) cmd%n_in = parse_node_get_n_sub (pn_frac_spec) allocate (cmd%expr (cmd%n_in)) pn_expr => parse_node_get_sub_ptr (pn_frac_spec) do i = 1, cmd%n_in cmd%expr(i)%ptr => pn_expr pn_expr => parse_node_get_next_ptr (pn_expr) end do end subroutine cmd_beams_pol_fraction_compile @ %def cmd_beams_pol_fraction_compile @ Command execution: Retrieve the numerical values of the beam polarization fractions. The results are stored in the [[beam_structure]] component of the [[global]] data block. <>= procedure :: execute => cmd_beams_pol_fraction_execute <>= subroutine cmd_beams_pol_fraction_execute (cmd, global) class(cmd_beams_pol_fraction_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list real(default), dimension(:), allocatable :: pol_f type(eval_tree_t) :: expr integer :: i var_list => global%get_var_list_ptr () allocate (pol_f (cmd%n_in)) do i = 1, cmd%n_in call expr%init_expr (cmd%expr(i)%ptr, var_list) call expr%evaluate () if (expr%is_known ()) then pol_f(i) = expr%get_real () else call msg_fatal ("beams polarization fraction: undefined value") end if call expr%final () end do call global%beam_structure%set_pol_f (pol_f) end subroutine cmd_beams_pol_fraction_execute @ %def cmd_beams_pol_fraction_execute @ \subsubsection{Beam momentum} This is completely analogous to the previous command, hence we can use inheritance. <>= type, extends (cmd_beams_pol_fraction_t) :: cmd_beams_momentum_t contains <> end type cmd_beams_momentum_t @ %def cmd_beams_momentum_t @ Output. <>= procedure :: write => cmd_beams_momentum_write <>= subroutine cmd_beams_momentum_write (cmd, unit, indent) class(cmd_beams_momentum_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_in) case (1) write (u, "(1x,A)") "beams momentum: 1 [decay]" case (2) write (u, "(1x,A)") "beams momentum: 2 [scattering]" case default write (u, "(1x,A)") "beams momentum: [undefined]" end select end subroutine cmd_beams_momentum_write @ %def cmd_beams_momentum_write @ Compile: inherited. Command execution: Not inherited, but just the error string and the final command are changed. <>= procedure :: execute => cmd_beams_momentum_execute <>= subroutine cmd_beams_momentum_execute (cmd, global) class(cmd_beams_momentum_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list real(default), dimension(:), allocatable :: p type(eval_tree_t) :: expr integer :: i var_list => global%get_var_list_ptr () allocate (p (cmd%n_in)) do i = 1, cmd%n_in call expr%init_expr (cmd%expr(i)%ptr, var_list) call expr%evaluate () if (expr%is_known ()) then p(i) = expr%get_real () else call msg_fatal ("beams momentum: undefined value") end if call expr%final () end do call global%beam_structure%set_momentum (p) end subroutine cmd_beams_momentum_execute @ %def cmd_beams_momentum_execute @ \subsubsection{Beam angles} Again, this is analogous. There are two angles, polar angle $\theta$ and azimuthal angle $\phi$, which can be set independently for both beams. <>= type, extends (cmd_beams_pol_fraction_t) :: cmd_beams_theta_t contains <> end type cmd_beams_theta_t type, extends (cmd_beams_pol_fraction_t) :: cmd_beams_phi_t contains <> end type cmd_beams_phi_t @ %def cmd_beams_theta_t @ %def cmd_beams_phi_t @ Output. <>= procedure :: write => cmd_beams_theta_write <>= procedure :: write => cmd_beams_phi_write <>= subroutine cmd_beams_theta_write (cmd, unit, indent) class(cmd_beams_theta_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_in) case (1) write (u, "(1x,A)") "beams theta: 1 [decay]" case (2) write (u, "(1x,A)") "beams theta: 2 [scattering]" case default write (u, "(1x,A)") "beams theta: [undefined]" end select end subroutine cmd_beams_theta_write subroutine cmd_beams_phi_write (cmd, unit, indent) class(cmd_beams_phi_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_in) case (1) write (u, "(1x,A)") "beams phi: 1 [decay]" case (2) write (u, "(1x,A)") "beams phi: 2 [scattering]" case default write (u, "(1x,A)") "beams phi: [undefined]" end select end subroutine cmd_beams_phi_write @ %def cmd_beams_theta_write @ %def cmd_beams_phi_write @ Compile: inherited. Command execution: Not inherited, but just the error string and the final command are changed. <>= procedure :: execute => cmd_beams_theta_execute <>= procedure :: execute => cmd_beams_phi_execute <>= subroutine cmd_beams_theta_execute (cmd, global) class(cmd_beams_theta_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list real(default), dimension(:), allocatable :: theta type(eval_tree_t) :: expr integer :: i var_list => global%get_var_list_ptr () allocate (theta (cmd%n_in)) do i = 1, cmd%n_in call expr%init_expr (cmd%expr(i)%ptr, var_list) call expr%evaluate () if (expr%is_known ()) then theta(i) = expr%get_real () else call msg_fatal ("beams theta: undefined value") end if call expr%final () end do call global%beam_structure%set_theta (theta) end subroutine cmd_beams_theta_execute subroutine cmd_beams_phi_execute (cmd, global) class(cmd_beams_phi_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list real(default), dimension(:), allocatable :: phi type(eval_tree_t) :: expr integer :: i var_list => global%get_var_list_ptr () allocate (phi (cmd%n_in)) do i = 1, cmd%n_in call expr%init_expr (cmd%expr(i)%ptr, var_list) call expr%evaluate () if (expr%is_known ()) then phi(i) = expr%get_real () else call msg_fatal ("beams phi: undefined value") end if call expr%final () end do call global%beam_structure%set_phi (phi) end subroutine cmd_beams_phi_execute @ %def cmd_beams_theta_execute @ %def cmd_beams_phi_execute @ \subsubsection{Cuts} Define a cut expression. We store the parse tree for the right-hand side instead of compiling it. Compilation is deferred to the process environment where the cut expression is used. <>= type, extends (command_t) :: cmd_cuts_t private type(parse_node_t), pointer :: pn_lexpr => null () contains <> end type cmd_cuts_t @ %def cmd_cuts_t @ Output. Do not print the parse tree, since this may get cluttered. Just a message that cuts have been defined. <>= procedure :: write => cmd_cuts_write <>= subroutine cmd_cuts_write (cmd, unit, indent) class(cmd_cuts_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "cuts: [defined]" end subroutine cmd_cuts_write @ %def cmd_cuts_write @ Compile. Simply store the parse (sub)tree. <>= procedure :: compile => cmd_cuts_compile <>= subroutine cmd_cuts_compile (cmd, global) class(cmd_cuts_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_lexpr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_cuts_compile @ %def cmd_cuts_compile @ Instead of evaluating the cut expression, link the parse tree to the global data set, such that it is compiled and executed in the appropriate process context. <>= procedure :: execute => cmd_cuts_execute <>= subroutine cmd_cuts_execute (cmd, global) class(cmd_cuts_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%cuts_lexpr => cmd%pn_lexpr end subroutine cmd_cuts_execute @ %def cmd_cuts_execute @ \subsubsection{General, Factorization and Renormalization Scales} Define a scale expression for either the renormalization or the factorization scale. We store the parse tree for the right-hand side instead of compiling it. Compilation is deferred to the process environment where the expression is used. <>= type, extends (command_t) :: cmd_scale_t private type(parse_node_t), pointer :: pn_expr => null () contains <> end type cmd_scale_t @ %def cmd_scale_t <>= type, extends (command_t) :: cmd_fac_scale_t private type(parse_node_t), pointer :: pn_expr => null () contains <> end type cmd_fac_scale_t @ %def cmd_fac_scale_t <>= type, extends (command_t) :: cmd_ren_scale_t private type(parse_node_t), pointer :: pn_expr => null () contains <> end type cmd_ren_scale_t @ %def cmd_ren_scale_t @ Output. Do not print the parse tree, since this may get cluttered. Just a message that scale, renormalization and factorization have been defined, respectively. <>= procedure :: write => cmd_scale_write <>= subroutine cmd_scale_write (cmd, unit, indent) class(cmd_scale_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "scale: [defined]" end subroutine cmd_scale_write @ %def cmd_scale_write @ <>= procedure :: write => cmd_fac_scale_write <>= subroutine cmd_fac_scale_write (cmd, unit, indent) class(cmd_fac_scale_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "factorization scale: [defined]" end subroutine cmd_fac_scale_write @ %def cmd_fac_scale_write @ <>= procedure :: write => cmd_ren_scale_write <>= subroutine cmd_ren_scale_write (cmd, unit, indent) class(cmd_ren_scale_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "renormalization scale: [defined]" end subroutine cmd_ren_scale_write @ %def cmd_ren_scale_write @ Compile. Simply store the parse (sub)tree. <>= procedure :: compile => cmd_scale_compile <>= subroutine cmd_scale_compile (cmd, global) class(cmd_scale_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_expr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_scale_compile @ %def cmd_scale_compile @ <>= procedure :: compile => cmd_fac_scale_compile <>= subroutine cmd_fac_scale_compile (cmd, global) class(cmd_fac_scale_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_expr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_fac_scale_compile @ %def cmd_fac_scale_compile @ <>= procedure :: compile => cmd_ren_scale_compile <>= subroutine cmd_ren_scale_compile (cmd, global) class(cmd_ren_scale_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_expr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_ren_scale_compile @ %def cmd_ren_scale_compile @ Instead of evaluating the scale expression, link the parse tree to the global data set, such that it is compiled and executed in the appropriate process context. <>= procedure :: execute => cmd_scale_execute <>= subroutine cmd_scale_execute (cmd, global) class(cmd_scale_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%scale_expr => cmd%pn_expr end subroutine cmd_scale_execute @ %def cmd_scale_execute @ <>= procedure :: execute => cmd_fac_scale_execute <>= subroutine cmd_fac_scale_execute (cmd, global) class(cmd_fac_scale_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%fac_scale_expr => cmd%pn_expr end subroutine cmd_fac_scale_execute @ %def cmd_fac_scale_execute @ <>= procedure :: execute => cmd_ren_scale_execute <>= subroutine cmd_ren_scale_execute (cmd, global) class(cmd_ren_scale_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%ren_scale_expr => cmd%pn_expr end subroutine cmd_ren_scale_execute @ %def cmd_ren_scale_execute @ \subsubsection{Weight} Define a weight expression. The weight is applied to a process to be integrated, event by event. We store the parse tree for the right-hand side instead of compiling it. Compilation is deferred to the process environment where the expression is used. <>= type, extends (command_t) :: cmd_weight_t private type(parse_node_t), pointer :: pn_expr => null () contains <> end type cmd_weight_t @ %def cmd_weight_t @ Output. Do not print the parse tree, since this may get cluttered. Just a message that scale, renormalization and factorization have been defined, respectively. <>= procedure :: write => cmd_weight_write <>= subroutine cmd_weight_write (cmd, unit, indent) class(cmd_weight_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "weight expression: [defined]" end subroutine cmd_weight_write @ %def cmd_weight_write @ Compile. Simply store the parse (sub)tree. <>= procedure :: compile => cmd_weight_compile <>= subroutine cmd_weight_compile (cmd, global) class(cmd_weight_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_expr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_weight_compile @ %def cmd_weight_compile @ Instead of evaluating the expression, link the parse tree to the global data set, such that it is compiled and executed in the appropriate process context. <>= procedure :: execute => cmd_weight_execute <>= subroutine cmd_weight_execute (cmd, global) class(cmd_weight_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%weight_expr => cmd%pn_expr end subroutine cmd_weight_execute @ %def cmd_weight_execute @ \subsubsection{Selection} Define a selection expression. This is to be applied upon simulation or event-file rescanning, event by event. We store the parse tree for the right-hand side instead of compiling it. Compilation is deferred to the environment where the expression is used. <>= type, extends (command_t) :: cmd_selection_t private type(parse_node_t), pointer :: pn_expr => null () contains <> end type cmd_selection_t @ %def cmd_selection_t @ Output. Do not print the parse tree, since this may get cluttered. Just a message that scale, renormalization and factorization have been defined, respectively. <>= procedure :: write => cmd_selection_write <>= subroutine cmd_selection_write (cmd, unit, indent) class(cmd_selection_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "selection expression: [defined]" end subroutine cmd_selection_write @ %def cmd_selection_write @ Compile. Simply store the parse (sub)tree. <>= procedure :: compile => cmd_selection_compile <>= subroutine cmd_selection_compile (cmd, global) class(cmd_selection_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_expr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_selection_compile @ %def cmd_selection_compile @ Instead of evaluating the expression, link the parse tree to the global data set, such that it is compiled and executed in the appropriate process context. <>= procedure :: execute => cmd_selection_execute <>= subroutine cmd_selection_execute (cmd, global) class(cmd_selection_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%selection_lexpr => cmd%pn_expr end subroutine cmd_selection_execute @ %def cmd_selection_execute @ \subsubsection{Reweight} Define a reweight expression. This is to be applied upon simulation or event-file rescanning, event by event. We store the parse tree for the right-hand side instead of compiling it. Compilation is deferred to the environment where the expression is used. <>= type, extends (command_t) :: cmd_reweight_t private type(parse_node_t), pointer :: pn_expr => null () contains <> end type cmd_reweight_t @ %def cmd_reweight_t @ Output. Do not print the parse tree, since this may get cluttered. Just a message that scale, renormalization and factorization have been defined, respectively. <>= procedure :: write => cmd_reweight_write <>= subroutine cmd_reweight_write (cmd, unit, indent) class(cmd_reweight_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "reweight expression: [defined]" end subroutine cmd_reweight_write @ %def cmd_reweight_write @ Compile. Simply store the parse (sub)tree. <>= procedure :: compile => cmd_reweight_compile <>= subroutine cmd_reweight_compile (cmd, global) class(cmd_reweight_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_expr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_reweight_compile @ %def cmd_reweight_compile @ Instead of evaluating the expression, link the parse tree to the global data set, such that it is compiled and executed in the appropriate process context. <>= procedure :: execute => cmd_reweight_execute <>= subroutine cmd_reweight_execute (cmd, global) class(cmd_reweight_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%reweight_expr => cmd%pn_expr end subroutine cmd_reweight_execute @ %def cmd_reweight_execute @ \subsubsection{Alternative Simulation Setups} Together with simulation, we can re-evaluate event weights in the context of alternative setups. The [[cmd_alt_setup_t]] object is designed to hold these setups, which are brace-enclosed command lists. Compilation is deferred to the simulation environment where the setup expression is used. <>= type, extends (command_t) :: cmd_alt_setup_t private type(parse_node_p), dimension(:), allocatable :: setup contains <> end type cmd_alt_setup_t @ %def cmd_alt_setup_t @ Output. Print just a message that the alternative setup list has been defined. <>= procedure :: write => cmd_alt_setup_write <>= subroutine cmd_alt_setup_write (cmd, unit, indent) class(cmd_alt_setup_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,I0,A)") "alt_setup: ", size (cmd%setup), " entries" end subroutine cmd_alt_setup_write @ %def cmd_alt_setup_write @ Compile. Store the parse sub-trees in an array. <>= procedure :: compile => cmd_alt_setup_compile <>= subroutine cmd_alt_setup_compile (cmd, global) class(cmd_alt_setup_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_list, pn_setup integer :: i pn_list => parse_node_get_sub_ptr (cmd%pn, 3) if (associated (pn_list)) then allocate (cmd%setup (parse_node_get_n_sub (pn_list))) i = 1 pn_setup => parse_node_get_sub_ptr (pn_list) do while (associated (pn_setup)) cmd%setup(i)%ptr => pn_setup i = i + 1 pn_setup => parse_node_get_next_ptr (pn_setup) end do else allocate (cmd%setup (0)) end if end subroutine cmd_alt_setup_compile @ %def cmd_alt_setup_compile @ Execute. Transfer the array of command lists to the global environment. <>= procedure :: execute => cmd_alt_setup_execute <>= subroutine cmd_alt_setup_execute (cmd, global) class(cmd_alt_setup_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (allocated (global%pn%alt_setup)) deallocate (global%pn%alt_setup) allocate (global%pn%alt_setup (size (cmd%setup))) global%pn%alt_setup = cmd%setup end subroutine cmd_alt_setup_execute @ %def cmd_alt_setup_execute @ \subsubsection{Integration} Integrate several processes, consecutively with identical parameters. <>= type, extends (command_t) :: cmd_integrate_t private integer :: n_proc = 0 type(string_t), dimension(:), allocatable :: process_id contains <> end type cmd_integrate_t @ %def cmd_integrate_t @ Output: we know the process IDs. <>= procedure :: write => cmd_integrate_write <>= subroutine cmd_integrate_write (cmd, unit, indent) class(cmd_integrate_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "integrate (" do i = 1, cmd%n_proc if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "(A)", advance="no") char (cmd%process_id(i)) end do write (u, "(A)") ")" end subroutine cmd_integrate_write @ %def cmd_integrate_write @ Compile. <>= procedure :: compile => cmd_integrate_compile <>= subroutine cmd_integrate_compile (cmd, global) class(cmd_integrate_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_proclist, pn_proc integer :: i pn_proclist => parse_node_get_sub_ptr (cmd%pn, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_proclist) call cmd%compile_options (global) cmd%n_proc = parse_node_get_n_sub (pn_proclist) allocate (cmd%process_id (cmd%n_proc)) pn_proc => parse_node_get_sub_ptr (pn_proclist) do i = 1, cmd%n_proc cmd%process_id(i) = parse_node_get_string (pn_proc) call global%process_stack%init_result_vars (cmd%process_id(i)) pn_proc => parse_node_get_next_ptr (pn_proc) end do end subroutine cmd_integrate_compile @ %def cmd_integrate_compile @ Command execution. Integrate the process(es) with the predefined number of passes, iterations and calls. For structure functions, cuts, weight and scale, use local definitions if present; by default, the local definitions are initialized with the global ones. The [[integrate]] procedure should take its input from the currently active local environment, but produce a process record in the stack of the global environment. Since the process acquires a snapshot of the variable list, so if the global list (or the local one) is deleted, this does no harm. This implies that later changes of the variable list do not affect the stored process. <>= procedure :: execute => cmd_integrate_execute <>= subroutine cmd_integrate_execute (cmd, global) class(cmd_integrate_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global integer :: i if (debug_on) call msg_debug (D_CORE, "cmd_integrate_execute") do i = 1, cmd%n_proc if (debug_on) call msg_debug (D_CORE, "cmd%process_id(i) ", cmd%process_id(i)) call integrate_process (cmd%process_id(i), cmd%local, global) call global%process_stack%fill_result_vars (cmd%process_id(i)) call global%process_stack%update_result_vars & (cmd%process_id(i), global%var_list) if (signal_is_pending ()) return end do end subroutine cmd_integrate_execute @ %def cmd_integrate_execute @ \subsubsection{Observables} Declare an observable. After the declaration, it can be used to record data, and at the end one can retrieve average and error. <>= type, extends (command_t) :: cmd_observable_t private type(string_t) :: id contains <> end type cmd_observable_t @ %def cmd_observable_t @ Output. We know the ID. <>= procedure :: write => cmd_observable_write <>= subroutine cmd_observable_write (cmd, unit, indent) class(cmd_observable_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A)") "observable: ", char (cmd%id) end subroutine cmd_observable_write @ %def cmd_observable_write @ Compile. Just record the observable ID. <>= procedure :: compile => cmd_observable_compile <>= subroutine cmd_observable_compile (cmd, global) class(cmd_observable_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_tag pn_tag => parse_node_get_sub_ptr (cmd%pn, 2) if (associated (pn_tag)) then cmd%pn_opt => parse_node_get_next_ptr (pn_tag) end if call cmd%compile_options (global) select case (char (parse_node_get_rule_key (pn_tag))) case ("analysis_id") cmd%id = parse_node_get_string (pn_tag) case default call msg_bug ("observable: name expression not implemented (yet)") end select end subroutine cmd_observable_compile @ %def cmd_observable_compile @ Command execution. This declares the observable and allocates it in the analysis store. <>= procedure :: execute => cmd_observable_execute <>= subroutine cmd_observable_execute (cmd, global) class(cmd_observable_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(graph_options_t) :: graph_options type(string_t) :: label, unit var_list => cmd%local%get_var_list_ptr () label = var_list%get_sval (var_str ("$obs_label")) unit = var_list%get_sval (var_str ("$obs_unit")) call graph_options_init (graph_options) call set_graph_options (graph_options, var_list) call analysis_init_observable (cmd%id, label, unit, graph_options) end subroutine cmd_observable_execute @ %def cmd_observable_execute @ \subsubsection{Histograms} Declare a histogram. At minimum, we have to set lower and upper bound and bin width. <>= type, extends (command_t) :: cmd_histogram_t private type(string_t) :: id type(parse_node_t), pointer :: pn_lower_bound => null () type(parse_node_t), pointer :: pn_upper_bound => null () type(parse_node_t), pointer :: pn_bin_width => null () contains <> end type cmd_histogram_t @ %def cmd_histogram_t @ Output. Just print the ID. <>= procedure :: write => cmd_histogram_write <>= subroutine cmd_histogram_write (cmd, unit, indent) class(cmd_histogram_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A)") "histogram: ", char (cmd%id) end subroutine cmd_histogram_write @ %def cmd_histogram_write @ Compile. Record the histogram ID and initialize lower, upper bound and bin width. <>= procedure :: compile => cmd_histogram_compile <>= subroutine cmd_histogram_compile (cmd, global) class(cmd_histogram_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_tag, pn_args, pn_arg1, pn_arg2, pn_arg3 character(*), parameter :: e_illegal_use = & "illegal usage of 'histogram': insufficient number of arguments" pn_tag => parse_node_get_sub_ptr (cmd%pn, 2) pn_args => parse_node_get_next_ptr (pn_tag) if (associated (pn_args)) then pn_arg1 => parse_node_get_sub_ptr (pn_args) if (.not. associated (pn_arg1)) call msg_fatal (e_illegal_use) pn_arg2 => parse_node_get_next_ptr (pn_arg1) if (.not. associated (pn_arg2)) call msg_fatal (e_illegal_use) pn_arg3 => parse_node_get_next_ptr (pn_arg2) cmd%pn_opt => parse_node_get_next_ptr (pn_args) end if call cmd%compile_options (global) select case (char (parse_node_get_rule_key (pn_tag))) case ("analysis_id") cmd%id = parse_node_get_string (pn_tag) case default call msg_bug ("histogram: name expression not implemented (yet)") end select cmd%pn_lower_bound => pn_arg1 cmd%pn_upper_bound => pn_arg2 cmd%pn_bin_width => pn_arg3 end subroutine cmd_histogram_compile @ %def cmd_histogram_compile @ Command execution. This declares the histogram and allocates it in the analysis store. <>= procedure :: execute => cmd_histogram_execute <>= subroutine cmd_histogram_execute (cmd, global) class(cmd_histogram_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list real(default) :: lower_bound, upper_bound, bin_width integer :: bin_number logical :: bin_width_is_used, normalize_bins type(string_t) :: obs_label, obs_unit type(graph_options_t) :: graph_options type(drawing_options_t) :: drawing_options var_list => cmd%local%get_var_list_ptr () lower_bound = eval_real (cmd%pn_lower_bound, var_list) upper_bound = eval_real (cmd%pn_upper_bound, var_list) if (associated (cmd%pn_bin_width)) then bin_width = eval_real (cmd%pn_bin_width, var_list) bin_width_is_used = .true. else if (var_list%is_known (var_str ("n_bins"))) then bin_number = & var_list%get_ival (var_str ("n_bins")) bin_width_is_used = .false. else call msg_error ("Cmd '" // char (cmd%id) // & "': neither bin width nor number is defined") end if normalize_bins = & var_list%get_lval (var_str ("?normalize_bins")) obs_label = & var_list%get_sval (var_str ("$obs_label")) obs_unit = & var_list%get_sval (var_str ("$obs_unit")) call graph_options_init (graph_options) call set_graph_options (graph_options, var_list) call drawing_options_init_histogram (drawing_options) call set_drawing_options (drawing_options, var_list) if (bin_width_is_used) then call analysis_init_histogram & (cmd%id, lower_bound, upper_bound, bin_width, & normalize_bins, & obs_label, obs_unit, & graph_options, drawing_options) else call analysis_init_histogram & (cmd%id, lower_bound, upper_bound, bin_number, & normalize_bins, & obs_label, obs_unit, & graph_options, drawing_options) end if end subroutine cmd_histogram_execute @ %def cmd_histogram_execute @ Set the graph options from a variable list. <>= subroutine set_graph_options (gro, var_list) type(graph_options_t), intent(inout) :: gro type(var_list_t), intent(in) :: var_list call graph_options_set (gro, title = & var_list%get_sval (var_str ("$title"))) call graph_options_set (gro, description = & var_list%get_sval (var_str ("$description"))) call graph_options_set (gro, x_label = & var_list%get_sval (var_str ("$x_label"))) call graph_options_set (gro, y_label = & var_list%get_sval (var_str ("$y_label"))) call graph_options_set (gro, width_mm = & var_list%get_ival (var_str ("graph_width_mm"))) call graph_options_set (gro, height_mm = & var_list%get_ival (var_str ("graph_height_mm"))) call graph_options_set (gro, x_log = & var_list%get_lval (var_str ("?x_log"))) call graph_options_set (gro, y_log = & var_list%get_lval (var_str ("?y_log"))) if (var_list%is_known (var_str ("x_min"))) & call graph_options_set (gro, x_min = & var_list%get_rval (var_str ("x_min"))) if (var_list%is_known (var_str ("x_max"))) & call graph_options_set (gro, x_max = & var_list%get_rval (var_str ("x_max"))) if (var_list%is_known (var_str ("y_min"))) & call graph_options_set (gro, y_min = & var_list%get_rval (var_str ("y_min"))) if (var_list%is_known (var_str ("y_max"))) & call graph_options_set (gro, y_max = & var_list%get_rval (var_str ("y_max"))) call graph_options_set (gro, gmlcode_bg = & var_list%get_sval (var_str ("$gmlcode_bg"))) call graph_options_set (gro, gmlcode_fg = & var_list%get_sval (var_str ("$gmlcode_fg"))) end subroutine set_graph_options @ %def set_graph_options @ Set the drawing options from a variable list. <>= subroutine set_drawing_options (dro, var_list) type(drawing_options_t), intent(inout) :: dro type(var_list_t), intent(in) :: var_list if (var_list%is_known (var_str ("?draw_histogram"))) then if (var_list%get_lval (var_str ("?draw_histogram"))) then call drawing_options_set (dro, with_hbars = .true.) else call drawing_options_set (dro, with_hbars = .false., & with_base = .false., fill = .false., piecewise = .false.) end if end if if (var_list%is_known (var_str ("?draw_base"))) then if (var_list%get_lval (var_str ("?draw_base"))) then call drawing_options_set (dro, with_base = .true.) else call drawing_options_set (dro, with_base = .false., fill = .false.) end if end if if (var_list%is_known (var_str ("?draw_piecewise"))) then if (var_list%get_lval (var_str ("?draw_piecewise"))) then call drawing_options_set (dro, piecewise = .true.) else call drawing_options_set (dro, piecewise = .false.) end if end if if (var_list%is_known (var_str ("?fill_curve"))) then if (var_list%get_lval (var_str ("?fill_curve"))) then call drawing_options_set (dro, fill = .true., with_base = .true.) else call drawing_options_set (dro, fill = .false.) end if end if if (var_list%is_known (var_str ("?draw_curve"))) then if (var_list%get_lval (var_str ("?draw_curve"))) then call drawing_options_set (dro, draw = .true.) else call drawing_options_set (dro, draw = .false.) end if end if if (var_list%is_known (var_str ("?draw_errors"))) then if (var_list%get_lval (var_str ("?draw_errors"))) then call drawing_options_set (dro, err = .true.) else call drawing_options_set (dro, err = .false.) end if end if if (var_list%is_known (var_str ("?draw_symbols"))) then if (var_list%get_lval (var_str ("?draw_symbols"))) then call drawing_options_set (dro, symbols = .true.) else call drawing_options_set (dro, symbols = .false.) end if end if if (var_list%is_known (var_str ("$fill_options"))) then call drawing_options_set (dro, fill_options = & var_list%get_sval (var_str ("$fill_options"))) end if if (var_list%is_known (var_str ("$draw_options"))) then call drawing_options_set (dro, draw_options = & var_list%get_sval (var_str ("$draw_options"))) end if if (var_list%is_known (var_str ("$err_options"))) then call drawing_options_set (dro, err_options = & var_list%get_sval (var_str ("$err_options"))) end if if (var_list%is_known (var_str ("$symbol"))) then call drawing_options_set (dro, symbol = & var_list%get_sval (var_str ("$symbol"))) end if if (var_list%is_known (var_str ("$gmlcode_bg"))) then call drawing_options_set (dro, gmlcode_bg = & var_list%get_sval (var_str ("$gmlcode_bg"))) end if if (var_list%is_known (var_str ("$gmlcode_fg"))) then call drawing_options_set (dro, gmlcode_fg = & var_list%get_sval (var_str ("$gmlcode_fg"))) end if end subroutine set_drawing_options @ %def set_drawing_options @ \subsubsection{Plots} Declare a plot. No mandatory arguments, just options. <>= type, extends (command_t) :: cmd_plot_t private type(string_t) :: id contains <> end type cmd_plot_t @ %def cmd_plot_t @ Output. Just print the ID. <>= procedure :: write => cmd_plot_write <>= subroutine cmd_plot_write (cmd, unit, indent) class(cmd_plot_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A)") "plot: ", char (cmd%id) end subroutine cmd_plot_write @ %def cmd_plot_write @ Compile. Record the plot ID and initialize lower, upper bound and bin width. <>= procedure :: compile => cmd_plot_compile <>= subroutine cmd_plot_compile (cmd, global) class(cmd_plot_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_tag pn_tag => parse_node_get_sub_ptr (cmd%pn, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_tag) call cmd%init (pn_tag, global) end subroutine cmd_plot_compile @ %def cmd_plot_compile @ This init routine is separated because it is reused below for graph initialization. <>= procedure :: init => cmd_plot_init <>= subroutine cmd_plot_init (plot, pn_tag, global) class(cmd_plot_t), intent(inout) :: plot type(parse_node_t), intent(in), pointer :: pn_tag type(rt_data_t), intent(inout), target :: global call plot%compile_options (global) select case (char (parse_node_get_rule_key (pn_tag))) case ("analysis_id") plot%id = parse_node_get_string (pn_tag) case default call msg_bug ("plot: name expression not implemented (yet)") end select end subroutine cmd_plot_init @ %def cmd_plot_init @ Command execution. This declares the plot and allocates it in the analysis store. <>= procedure :: execute => cmd_plot_execute <>= subroutine cmd_plot_execute (cmd, global) class(cmd_plot_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(graph_options_t) :: graph_options type(drawing_options_t) :: drawing_options var_list => cmd%local%get_var_list_ptr () call graph_options_init (graph_options) call set_graph_options (graph_options, var_list) call drawing_options_init_plot (drawing_options) call set_drawing_options (drawing_options, var_list) call analysis_init_plot (cmd%id, graph_options, drawing_options) end subroutine cmd_plot_execute @ %def cmd_plot_execute @ \subsubsection{Graphs} Declare a graph. The graph is defined in terms of its contents. Both the graph and its contents may carry options. The graph object contains its own ID as well as the IDs of its elements. For the elements, we reuse the [[cmd_plot_t]] defined above. <>= type, extends (command_t) :: cmd_graph_t private type(string_t) :: id integer :: n_elements = 0 type(cmd_plot_t), dimension(:), allocatable :: el type(string_t), dimension(:), allocatable :: element_id contains <> end type cmd_graph_t @ %def cmd_graph_t @ Output. Just print the ID. <>= procedure :: write => cmd_graph_write <>= subroutine cmd_graph_write (cmd, unit, indent) class(cmd_graph_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,A,A,I0,A)") "graph: ", char (cmd%id), & " (", cmd%n_elements, " entries)" end subroutine cmd_graph_write @ %def cmd_graph_write @ Compile. Record the graph ID and initialize lower, upper bound and bin width. For compiling the graph element syntax, we use part of the [[cmd_plot_t]] compiler. Note: currently, we do not respect options, therefore just IDs on the RHS. <>= procedure :: compile => cmd_graph_compile <>= subroutine cmd_graph_compile (cmd, global) class(cmd_graph_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_term, pn_tag, pn_def, pn_app integer :: i pn_term => parse_node_get_sub_ptr (cmd%pn, 2) pn_tag => parse_node_get_sub_ptr (pn_term) cmd%pn_opt => parse_node_get_next_ptr (pn_tag) call cmd%compile_options (global) select case (char (parse_node_get_rule_key (pn_tag))) case ("analysis_id") cmd%id = parse_node_get_string (pn_tag) case default call msg_bug ("graph: name expression not implemented (yet)") end select pn_def => parse_node_get_next_ptr (pn_term, 2) cmd%n_elements = parse_node_get_n_sub (pn_def) allocate (cmd%element_id (cmd%n_elements)) allocate (cmd%el (cmd%n_elements)) pn_term => parse_node_get_sub_ptr (pn_def) pn_tag => parse_node_get_sub_ptr (pn_term) cmd%el(1)%pn_opt => parse_node_get_next_ptr (pn_tag) call cmd%el(1)%init (pn_tag, global) cmd%element_id(1) = parse_node_get_string (pn_tag) pn_app => parse_node_get_next_ptr (pn_term) do i = 2, cmd%n_elements pn_term => parse_node_get_sub_ptr (pn_app, 2) pn_tag => parse_node_get_sub_ptr (pn_term) cmd%el(i)%pn_opt => parse_node_get_next_ptr (pn_tag) call cmd%el(i)%init (pn_tag, global) cmd%element_id(i) = parse_node_get_string (pn_tag) pn_app => parse_node_get_next_ptr (pn_app) end do end subroutine cmd_graph_compile @ %def cmd_graph_compile @ Command execution. This declares the graph, allocates it in the analysis store, and copies the graph elements. For the graph, we set graph and default drawing options. For the elements, we reset individual drawing options. This accesses internals of the contained elements of type [[cmd_plot_t]], see above. We might disentangle such an interdependency when this code is rewritten using proper type extension. <>= procedure :: execute => cmd_graph_execute <>= subroutine cmd_graph_execute (cmd, global) class(cmd_graph_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(graph_options_t) :: graph_options type(drawing_options_t) :: drawing_options integer :: i, type var_list => cmd%local%get_var_list_ptr () call graph_options_init (graph_options) call set_graph_options (graph_options, var_list) call analysis_init_graph (cmd%id, cmd%n_elements, graph_options) do i = 1, cmd%n_elements if (associated (cmd%el(i)%options)) then call cmd%el(i)%options%execute (cmd%el(i)%local) end if type = analysis_store_get_object_type (cmd%element_id(i)) select case (type) case (AN_HISTOGRAM) call drawing_options_init_histogram (drawing_options) case (AN_PLOT) call drawing_options_init_plot (drawing_options) end select call set_drawing_options (drawing_options, var_list) if (associated (cmd%el(i)%options)) then call set_drawing_options (drawing_options, cmd%el(i)%local%var_list) end if call analysis_fill_graph (cmd%id, i, cmd%element_id(i), drawing_options) end do end subroutine cmd_graph_execute @ %def cmd_graph_execute @ \subsubsection{Analysis} Hold the analysis ID either as a string or as an expression: <>= type :: analysis_id_t type(string_t) :: tag type(parse_node_t), pointer :: pn_sexpr => null () end type analysis_id_t @ %def analysis_id_t @ Define the analysis expression. We store the parse tree for the right-hand side instead of compiling it. Compilation is deferred to the process environment where the analysis expression is used. <>= type, extends (command_t) :: cmd_analysis_t private type(parse_node_t), pointer :: pn_lexpr => null () contains <> end type cmd_analysis_t @ %def cmd_analysis_t @ Output. Print just a message that analysis has been defined. <>= procedure :: write => cmd_analysis_write <>= subroutine cmd_analysis_write (cmd, unit, indent) class(cmd_analysis_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "analysis: [defined]" end subroutine cmd_analysis_write @ %def cmd_analysis_write @ Compile. Simply store the parse (sub)tree. <>= procedure :: compile => cmd_analysis_compile <>= subroutine cmd_analysis_compile (cmd, global) class(cmd_analysis_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%pn_lexpr => parse_node_get_sub_ptr (cmd%pn, 3) end subroutine cmd_analysis_compile @ %def cmd_analysis_compile @ Instead of evaluating the cut expression, link the parse tree to the global data set, such that it is compiled and executed in the appropriate process context. <>= procedure :: execute => cmd_analysis_execute <>= subroutine cmd_analysis_execute (cmd, global) class(cmd_analysis_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global global%pn%analysis_lexpr => cmd%pn_lexpr end subroutine cmd_analysis_execute @ %def cmd_analysis_execute @ \subsubsection{Write histograms and plots} The data type encapsulating the command: <>= type, extends (command_t) :: cmd_write_analysis_t private type(analysis_id_t), dimension(:), allocatable :: id type(string_t), dimension(:), allocatable :: tag contains <> end type cmd_write_analysis_t @ %def analysis_id_t @ %def cmd_write_analysis_t @ Output. Just the keyword. <>= procedure :: write => cmd_write_analysis_write <>= subroutine cmd_write_analysis_write (cmd, unit, indent) class(cmd_write_analysis_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "write_analysis" end subroutine cmd_write_analysis_write @ %def cmd_write_analysis_write @ Compile. <>= procedure :: compile => cmd_write_analysis_compile <>= subroutine cmd_write_analysis_compile (cmd, global) class(cmd_write_analysis_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_clause, pn_args, pn_id integer :: n, i pn_clause => parse_node_get_sub_ptr (cmd%pn) pn_args => parse_node_get_sub_ptr (pn_clause, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_clause) call cmd%compile_options (global) if (associated (pn_args)) then n = parse_node_get_n_sub (pn_args) allocate (cmd%id (n)) do i = 1, n pn_id => parse_node_get_sub_ptr (pn_args, i) if (char (parse_node_get_rule_key (pn_id)) == "analysis_id") then cmd%id(i)%tag = parse_node_get_string (pn_id) else cmd%id(i)%pn_sexpr => pn_id end if end do else allocate (cmd%id (0)) end if end subroutine cmd_write_analysis_compile @ %def cmd_write_analysis_compile @ The output format for real data values: <>= character(*), parameter, public :: & DEFAULT_ANALYSIS_FILENAME = "whizard_analysis.dat" character(len=1), dimension(2), parameter, public :: & FORBIDDEN_ENDINGS1 = [ "o", "a" ] character(len=2), dimension(6), parameter, public :: & FORBIDDEN_ENDINGS2 = [ "mp", "ps", "vg", "pg", "lo", "la" ] character(len=3), dimension(18), parameter, public :: & FORBIDDEN_ENDINGS3 = [ "aux", "dvi", "evt", "evx", "f03", "f90", & "f95", "log", "ltp", "mpx", "olc", "olp", "pdf", "phs", "sin", & "tex", "vg2", "vgx" ] @ %def DEFAULT_ANALYSIS_FILENAME @ %def FORBIDDEN_ENDINGS1 @ %def FORBIDDEN_ENDINGS2 @ %def FORBIDDEN_ENDINGS3 @ As this contains a lot of similar code to [[cmd_compile_analysis_execute]] we outsource the main code to a subroutine. <>= procedure :: execute => cmd_write_analysis_execute <>= subroutine cmd_write_analysis_execute (cmd, global) class(cmd_write_analysis_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list var_list => cmd%local%get_var_list_ptr () call write_analysis_wrap (var_list, global%out_files, & cmd%id, tag = cmd%tag) end subroutine cmd_write_analysis_execute @ %def cmd_write_analysis_execute @ If the [[data_file]] optional argument is present, this is called from [[cmd_compile_analysis_execute]], which needs the file name for further processing, and requires the default format. For the moment, parameters and macros for custom data processing are disabled. <>= subroutine write_analysis_wrap (var_list, out_files, id, tag, data_file) type(var_list_t), intent(inout), target :: var_list type(file_list_t), intent(inout), target :: out_files type(analysis_id_t), dimension(:), intent(in), target :: id type(string_t), dimension(:), allocatable, intent(out) :: tag type(string_t), intent(out), optional :: data_file type(string_t) :: defaultfile, file integer :: i logical :: keep_open !, custom, header, columns type(string_t) :: extension !, comment_prefix, separator !!! JRR: WK please check (#542) ! integer :: type ! type(ifile_t) :: ifile logical :: one_file !, has_writer ! type(analysis_iterator_t) :: iterator ! type(rt_data_t), target :: sandbox ! type(command_list_t) :: writer defaultfile = var_list%get_sval (var_str ("$out_file")) if (present (data_file)) then if (defaultfile == "" .or. defaultfile == ".") then defaultfile = DEFAULT_ANALYSIS_FILENAME else if (scan (".", defaultfile) > 0) then call split (defaultfile, extension, ".", back=.true.) if (any (lower_case (char(extension)) == FORBIDDEN_ENDINGS1) .or. & any (lower_case (char(extension)) == FORBIDDEN_ENDINGS2) .or. & any (lower_case (char(extension)) == FORBIDDEN_ENDINGS3)) & call msg_fatal ("The ending " // char(extension) // & " is internal and not allowed as data file.") if (extension /= "") then if (defaultfile /= "") then defaultfile = defaultfile // "." // extension else defaultfile = "whizard_analysis." // extension end if else defaultfile = defaultfile // ".dat" endif else defaultfile = defaultfile // ".dat" end if end if data_file = defaultfile end if one_file = defaultfile /= "" if (one_file) then file = defaultfile keep_open = file_list_is_open (out_files, file, & action = "write") if (keep_open) then if (present (data_file)) then call msg_fatal ("Compiling analysis: File '" & // char (data_file) & // "' can't be used, it is already open.") else call msg_message ("Appending analysis data to file '" & // char (file) // "'") end if else call file_list_open (out_files, file, & action = "write", status = "replace", position = "asis") call msg_message ("Writing analysis data to file '" & // char (file) // "'") end if end if !!! JRR: WK please check. Custom data output. Ticket #542 ! if (present (data_file)) then ! custom = .false. ! else ! custom = var_list%get_lval (& ! var_str ("?out_custom")) ! end if ! comment_prefix = var_list%get_sval (& ! var_str ("$out_comment")) ! header = var_list%get_lval (& ! var_str ("?out_header")) ! write_yerr = var_list%get_lval (& ! var_str ("?out_yerr")) ! write_xerr = var_list%get_lval (& ! var_str ("?out_xerr")) call get_analysis_tags (tag, id, var_list) do i = 1, size (tag) call file_list_write_analysis & (out_files, file, tag(i)) end do if (one_file .and. .not. keep_open) then call file_list_close (out_files, file) end if contains subroutine get_analysis_tags (analysis_tag, id, var_list) type(string_t), dimension(:), intent(out), allocatable :: analysis_tag type(analysis_id_t), dimension(:), intent(in) :: id type(var_list_t), intent(in), target :: var_list if (size (id) /= 0) then allocate (analysis_tag (size (id))) do i = 1, size (id) if (associated (id(i)%pn_sexpr)) then analysis_tag(i) = eval_string (id(i)%pn_sexpr, var_list) else analysis_tag(i) = id(i)%tag end if end do else call analysis_store_get_ids (tag) end if end subroutine get_analysis_tags end subroutine write_analysis_wrap @ %def write_analysis_wrap \subsubsection{Compile analysis results} This command writes files in a form suitable for GAMELAN and executes the appropriate commands to compile them. The first part is identical to [[cmd_write_analysis]]. <>= type, extends (command_t) :: cmd_compile_analysis_t private type(analysis_id_t), dimension(:), allocatable :: id type(string_t), dimension(:), allocatable :: tag contains <> end type cmd_compile_analysis_t @ %def cmd_compile_analysis_t @ Output. Just the keyword. <>= procedure :: write => cmd_compile_analysis_write <>= subroutine cmd_compile_analysis_write (cmd, unit, indent) class(cmd_compile_analysis_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "compile_analysis" end subroutine cmd_compile_analysis_write @ %def cmd_compile_analysis_write @ Compile. <>= procedure :: compile => cmd_compile_analysis_compile <>= subroutine cmd_compile_analysis_compile (cmd, global) class(cmd_compile_analysis_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_clause, pn_args, pn_id integer :: n, i pn_clause => parse_node_get_sub_ptr (cmd%pn) pn_args => parse_node_get_sub_ptr (pn_clause, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_clause) call cmd%compile_options (global) if (associated (pn_args)) then n = parse_node_get_n_sub (pn_args) allocate (cmd%id (n)) do i = 1, n pn_id => parse_node_get_sub_ptr (pn_args, i) if (char (parse_node_get_rule_key (pn_id)) == "analysis_id") then cmd%id(i)%tag = parse_node_get_string (pn_id) else cmd%id(i)%pn_sexpr => pn_id end if end do else allocate (cmd%id (0)) end if end subroutine cmd_compile_analysis_compile @ %def cmd_compile_analysis_compile @ First write the analysis data to file, then write a GAMELAN driver and produce MetaPost and \TeX\ output. <>= procedure :: execute => cmd_compile_analysis_execute <>= subroutine cmd_compile_analysis_execute (cmd, global) class(cmd_compile_analysis_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(string_t) :: file, basename, extension, driver_file, & makefile integer :: u_driver, u_makefile logical :: has_gmlcode, only_file var_list => cmd%local%get_var_list_ptr () call write_analysis_wrap (var_list, & global%out_files, cmd%id, tag = cmd%tag, & data_file = file) basename = file if (scan (".", basename) > 0) then call split (basename, extension, ".", back=.true.) else extension = "" end if driver_file = basename // ".tex" makefile = basename // "_ana.makefile" u_driver = free_unit () open (unit=u_driver, file=char(driver_file), & action="write", status="replace") if (allocated (cmd%tag)) then call analysis_write_driver (file, cmd%tag, unit=u_driver) has_gmlcode = analysis_has_plots (cmd%tag) else call analysis_write_driver (file, unit=u_driver) has_gmlcode = analysis_has_plots () end if close (u_driver) u_makefile = free_unit () open (unit=u_makefile, file=char(makefile), & action="write", status="replace") call analysis_write_makefile (basename, u_makefile, & has_gmlcode, global%os_data) close (u_makefile) call msg_message ("Compiling analysis results display in '" & // char (driver_file) // "'") call msg_message ("Providing analysis steering makefile '" & // char (makefile) // "'") only_file = global%var_list%get_lval & (var_str ("?analysis_file_only")) if (.not. only_file) call analysis_compile_tex & (basename, has_gmlcode, global%os_data) end subroutine cmd_compile_analysis_execute @ %def cmd_compile_analysis_execute @ \subsection{User-controlled output to data files} \subsubsection{Open file (output)} Open a file for output. <>= type, extends (command_t) :: cmd_open_out_t private type(parse_node_t), pointer :: file_expr => null () contains <> end type cmd_open_out_t @ %def cmd_open_out @ Finalizer for the embedded eval tree. <>= subroutine cmd_open_out_final (object) class(cmd_open_out_t), intent(inout) :: object end subroutine cmd_open_out_final @ %def cmd_open_out_final @ Output (trivial here). <>= procedure :: write => cmd_open_out_write <>= subroutine cmd_open_out_write (cmd, unit, indent) class(cmd_open_out_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "open_out: " end subroutine cmd_open_out_write @ %def cmd_open_out_write @ Compile: create an eval tree for the filename expression. <>= procedure :: compile => cmd_open_out_compile <>= subroutine cmd_open_out_compile (cmd, global) class(cmd_open_out_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global cmd%file_expr => parse_node_get_sub_ptr (cmd%pn, 2) if (associated (cmd%file_expr)) then cmd%pn_opt => parse_node_get_next_ptr (cmd%file_expr) end if call cmd%compile_options (global) end subroutine cmd_open_out_compile @ %def cmd_open_out_compile @ Execute: append the file to the global list of open files. <>= procedure :: execute => cmd_open_out_execute <>= subroutine cmd_open_out_execute (cmd, global) class(cmd_open_out_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(eval_tree_t) :: file_expr type(string_t) :: file var_list => cmd%local%get_var_list_ptr () call file_expr%init_sexpr (cmd%file_expr, var_list) call file_expr%evaluate () if (file_expr%is_known ()) then file = file_expr%get_string () call file_list_open (global%out_files, file, & action = "write", status = "replace", position = "asis") else call msg_fatal ("open_out: file name argument evaluates to unknown") end if call file_expr%final () end subroutine cmd_open_out_execute @ %def cmd_open_out_execute \subsubsection{Open file (output)} Close an output file. Except for the [[execute]] method, everything is analogous to the open command, so we can just inherit. <>= type, extends (cmd_open_out_t) :: cmd_close_out_t private contains <> end type cmd_close_out_t @ %def cmd_close_out @ Execute: remove the file from the global list of output files. <>= procedure :: execute => cmd_close_out_execute <>= subroutine cmd_close_out_execute (cmd, global) class(cmd_close_out_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(eval_tree_t) :: file_expr type(string_t) :: file var_list => cmd%local%var_list call file_expr%init_sexpr (cmd%file_expr, var_list) call file_expr%evaluate () if (file_expr%is_known ()) then file = file_expr%get_string () call file_list_close (global%out_files, file) else call msg_fatal ("close_out: file name argument evaluates to unknown") end if call file_expr%final () end subroutine cmd_close_out_execute @ %def cmd_close_out_execute @ \subsection{Print custom-formatted values} <>= type, extends (command_t) :: cmd_printf_t private type(parse_node_t), pointer :: sexpr => null () type(parse_node_t), pointer :: sprintf_fun => null () type(parse_node_t), pointer :: sprintf_clause => null () type(parse_node_t), pointer :: sprintf => null () contains <> end type cmd_printf_t @ %def cmd_printf_t @ Finalize. <>= procedure :: final => cmd_printf_final <>= subroutine cmd_printf_final (cmd) class(cmd_printf_t), intent(inout) :: cmd call parse_node_final (cmd%sexpr, recursive = .false.) deallocate (cmd%sexpr) call parse_node_final (cmd%sprintf_fun, recursive = .false.) deallocate (cmd%sprintf_fun) call parse_node_final (cmd%sprintf_clause, recursive = .false.) deallocate (cmd%sprintf_clause) call parse_node_final (cmd%sprintf, recursive = .false.) deallocate (cmd%sprintf) end subroutine cmd_printf_final @ %def cmd_printf_final @ Output. Do not print the parse tree, since this may get cluttered. Just a message that cuts have been defined. <>= procedure :: write => cmd_printf_write <>= subroutine cmd_printf_write (cmd, unit, indent) class(cmd_printf_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "printf:" end subroutine cmd_printf_write @ %def cmd_printf_write @ Compile. We create a fake parse node (subtree) with a [[sprintf]] command with identical arguments which can then be handled by the corresponding evaluation procedure. <>= procedure :: compile => cmd_printf_compile <>= subroutine cmd_printf_compile (cmd, global) class(cmd_printf_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_cmd, pn_clause, pn_args, pn_format pn_cmd => parse_node_get_sub_ptr (cmd%pn) pn_clause => parse_node_get_sub_ptr (pn_cmd) pn_format => parse_node_get_sub_ptr (pn_clause, 2) pn_args => parse_node_get_next_ptr (pn_clause) cmd%pn_opt => parse_node_get_next_ptr (pn_cmd) call cmd%compile_options (global) allocate (cmd%sexpr) call parse_node_create_branch (cmd%sexpr, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("sexpr"))) allocate (cmd%sprintf_fun) call parse_node_create_branch (cmd%sprintf_fun, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("sprintf_fun"))) allocate (cmd%sprintf_clause) call parse_node_create_branch (cmd%sprintf_clause, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("sprintf_clause"))) allocate (cmd%sprintf) call parse_node_create_key (cmd%sprintf, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("sprintf"))) call parse_node_append_sub (cmd%sprintf_clause, cmd%sprintf) call parse_node_append_sub (cmd%sprintf_clause, pn_format) call parse_node_freeze_branch (cmd%sprintf_clause) call parse_node_append_sub (cmd%sprintf_fun, cmd%sprintf_clause) if (associated (pn_args)) then call parse_node_append_sub (cmd%sprintf_fun, pn_args) end if call parse_node_freeze_branch (cmd%sprintf_fun) call parse_node_append_sub (cmd%sexpr, cmd%sprintf_fun) call parse_node_freeze_branch (cmd%sexpr) end subroutine cmd_printf_compile @ %def cmd_printf_compile @ Execute. Evaluate the string (pretending this is a [[sprintf]] expression) and print it. <>= procedure :: execute => cmd_printf_execute <>= subroutine cmd_printf_execute (cmd, global) class(cmd_printf_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(string_t) :: string, file type(eval_tree_t) :: sprintf_expr logical :: advance var_list => cmd%local%get_var_list_ptr () advance = var_list%get_lval (& var_str ("?out_advance")) file = var_list%get_sval (& var_str ("$out_file")) call sprintf_expr%init_sexpr (cmd%sexpr, var_list) call sprintf_expr%evaluate () if (sprintf_expr%is_known ()) then string = sprintf_expr%get_string () if (len (file) == 0) then call msg_result (char (string)) else call file_list_write (global%out_files, file, string, advance) end if end if end subroutine cmd_printf_execute @ %def cmd_printf_execute @ \subsubsection{Record data} The expression syntax already contains a [[record]] keyword; this evaluates to a logical which is always true, but it has the side-effect of recording data into analysis objects. Here we define a command as an interface to this construct. <>= type, extends (command_t) :: cmd_record_t private type(parse_node_t), pointer :: pn_lexpr => null () contains <> end type cmd_record_t @ %def cmd_record_t @ Output. With the compile hack below, there is nothing of interest to print here. <>= procedure :: write => cmd_record_write <>= subroutine cmd_record_write (cmd, unit, indent) class(cmd_record_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)") "record" end subroutine cmd_record_write @ %def cmd_record_write @ Compile. This is a hack which transforms the [[record]] command into a [[record]] expression, which we handle in the [[expressions]] module. <>= procedure :: compile => cmd_record_compile <>= subroutine cmd_record_compile (cmd, global) class(cmd_record_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_lexpr, pn_lsinglet, pn_lterm, pn_record call parse_node_create_branch (pn_lexpr, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("lexpr"))) call parse_node_create_branch (pn_lsinglet, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("lsinglet"))) call parse_node_append_sub (pn_lexpr, pn_lsinglet) call parse_node_create_branch (pn_lterm, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("lterm"))) call parse_node_append_sub (pn_lsinglet, pn_lterm) pn_record => parse_node_get_sub_ptr (cmd%pn) call parse_node_append_sub (pn_lterm, pn_record) cmd%pn_lexpr => pn_lexpr end subroutine cmd_record_compile @ %def cmd_record_compile @ Command execution. Again, transfer this to the embedded expression and just forget the logical result. <>= procedure :: execute => cmd_record_execute <>= subroutine cmd_record_execute (cmd, global) class(cmd_record_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list logical :: lval var_list => global%get_var_list_ptr () lval = eval_log (cmd%pn_lexpr, var_list) end subroutine cmd_record_execute @ %def cmd_record_execute @ \subsubsection{Unstable particles} Mark a particle as unstable. For each unstable particle, we store a number of decay channels and compute their respective BRs. <>= type, extends (command_t) :: cmd_unstable_t private integer :: n_proc = 0 type(string_t), dimension(:), allocatable :: process_id type(parse_node_t), pointer :: pn_prt_in => null () contains <> end type cmd_unstable_t @ %def cmd_unstable_t @ Output: we know the process IDs. <>= procedure :: write => cmd_unstable_write <>= subroutine cmd_unstable_write (cmd, unit, indent) class(cmd_unstable_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,1x,I0,1x,A)", advance="no") & "unstable:", 1, "(" do i = 1, cmd%n_proc if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "(A)", advance="no") char (cmd%process_id(i)) end do write (u, "(A)") ")" end subroutine cmd_unstable_write @ %def cmd_unstable_write @ Compile. Initiate an eval tree for the decaying particle and determine the decay channel process IDs. <>= procedure :: compile => cmd_unstable_compile <>= subroutine cmd_unstable_compile (cmd, global) class(cmd_unstable_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_list, pn_proc integer :: i cmd%pn_prt_in => parse_node_get_sub_ptr (cmd%pn, 2) pn_list => parse_node_get_next_ptr (cmd%pn_prt_in) if (associated (pn_list)) then select case (char (parse_node_get_rule_key (pn_list))) case ("unstable_arg") cmd%n_proc = parse_node_get_n_sub (pn_list) cmd%pn_opt => parse_node_get_next_ptr (pn_list) case default cmd%n_proc = 0 cmd%pn_opt => pn_list pn_list => null () end select end if call cmd%compile_options (global) if (associated (pn_list)) then allocate (cmd%process_id (cmd%n_proc)) pn_proc => parse_node_get_sub_ptr (pn_list) do i = 1, cmd%n_proc cmd%process_id(i) = parse_node_get_string (pn_proc) call cmd%local%process_stack%init_result_vars (cmd%process_id(i)) pn_proc => parse_node_get_next_ptr (pn_proc) end do else allocate (cmd%process_id (0)) end if end subroutine cmd_unstable_compile @ %def cmd_unstable_compile @ Command execution. Evaluate the decaying particle and mark the decays in the current model object. <>= procedure :: execute => cmd_unstable_execute <>= subroutine cmd_unstable_execute (cmd, global) class(cmd_unstable_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list logical :: auto_decays, auto_decays_radiative integer :: auto_decays_multiplicity logical :: isotropic_decay, diagonal_decay, polarized_decay integer :: decay_helicity type(pdg_array_t) :: pa_in integer :: pdg_in type(string_t) :: libname_cur, libname_dec type(string_t), dimension(:), allocatable :: auto_id, tmp_id integer :: n_proc_user integer :: i, u_tmp character(80) :: buffer var_list => cmd%local%get_var_list_ptr () auto_decays = & var_list%get_lval (var_str ("?auto_decays")) if (auto_decays) then auto_decays_multiplicity = & var_list%get_ival (var_str ("auto_decays_multiplicity")) auto_decays_radiative = & var_list%get_lval (var_str ("?auto_decays_radiative")) end if isotropic_decay = & var_list%get_lval (var_str ("?isotropic_decay")) if (isotropic_decay) then diagonal_decay = .false. polarized_decay = .false. else diagonal_decay = & var_list%get_lval (var_str ("?diagonal_decay")) if (diagonal_decay) then polarized_decay = .false. else polarized_decay = & var_list%is_known (var_str ("decay_helicity")) if (polarized_decay) then decay_helicity = var_list%get_ival (var_str ("decay_helicity")) end if end if end if pa_in = eval_pdg_array (cmd%pn_prt_in, var_list) if (pdg_array_get_length (pa_in) /= 1) & call msg_fatal ("Unstable: decaying particle must be unique") pdg_in = pdg_array_get (pa_in, 1) n_proc_user = cmd%n_proc if (auto_decays) then call create_auto_decays (pdg_in, & auto_decays_multiplicity, auto_decays_radiative, & libname_dec, auto_id, cmd%local) allocate (tmp_id (cmd%n_proc + size (auto_id))) tmp_id(:cmd%n_proc) = cmd%process_id tmp_id(cmd%n_proc+1:) = auto_id call move_alloc (from = tmp_id, to = cmd%process_id) cmd%n_proc = size (cmd%process_id) end if libname_cur = cmd%local%prclib%get_name () do i = 1, cmd%n_proc if (i == n_proc_user + 1) then call cmd%local%update_prclib & (cmd%local%prclib_stack%get_library_ptr (libname_dec)) end if if (.not. global%process_stack%exists (cmd%process_id(i))) then call var_list%set_log & (var_str ("?decay_rest_frame"), .false., is_known = .true.) call integrate_process (cmd%process_id(i), cmd%local, global) call global%process_stack%fill_result_vars (cmd%process_id(i)) end if end do call cmd%local%update_prclib & (cmd%local%prclib_stack%get_library_ptr (libname_cur)) if (cmd%n_proc > 0) then if (polarized_decay) then call global%modify_particle (pdg_in, stable = .false., & decay = cmd%process_id, & isotropic_decay = .false., & diagonal_decay = .false., & decay_helicity = decay_helicity, & polarized = .false.) else call global%modify_particle (pdg_in, stable = .false., & decay = cmd%process_id, & isotropic_decay = isotropic_decay, & diagonal_decay = diagonal_decay, & polarized = .false.) end if u_tmp = free_unit () open (u_tmp, status = "scratch", action = "readwrite") call show_unstable (global, pdg_in, u_tmp) rewind (u_tmp) do read (u_tmp, "(A)", end = 1) buffer write (msg_buffer, "(A)") trim (buffer) call msg_message () end do 1 continue close (u_tmp) else call err_unstable (global, pdg_in) end if end subroutine cmd_unstable_execute @ %def cmd_unstable_execute @ Show data for the current unstable particle. This is called both by the [[unstable]] and by the [[show]] command. To determine decay branching rations, we look at the decay process IDs and inspect the corresponding [[integral()]] result variables. <>= subroutine show_unstable (global, pdg, u) type(rt_data_t), intent(in), target :: global integer, intent(in) :: pdg, u type(flavor_t) :: flv type(string_t), dimension(:), allocatable :: decay real(default), dimension(:), allocatable :: br real(default) :: width type(process_t), pointer :: process type(process_component_def_t), pointer :: prc_def type(string_t), dimension(:), allocatable :: prt_out, prt_out_str integer :: i, j logical :: opened call flv%init (pdg, global%model) call flv%get_decays (decay) if (.not. allocated (decay)) return allocate (prt_out_str (size (decay))) allocate (br (size (decay))) do i = 1, size (br) process => global%process_stack%get_process_ptr (decay(i)) prc_def => process%get_component_def_ptr (1) call prc_def%get_prt_out (prt_out) prt_out_str(i) = prt_out(1) do j = 2, size (prt_out) prt_out_str(i) = prt_out_str(i) // ", " // prt_out(j) end do br(i) = global%get_rval ("integral(" // decay(i) // ")") end do if (all (br >= 0)) then if (any (br > 0)) then width = sum (br) br = br / sum (br) write (u, "(A)") "Unstable particle " & // char (flv%get_name ()) & // ": computed branching ratios:" do i = 1, size (br) write (u, "(2x,A,':'," // FMT_14 // ",3x,A)") & char (decay(i)), br(i), char (prt_out_str(i)) end do write (u, "(2x,'Total width ='," // FMT_14 // ",' GeV (computed)')") width write (u, "(2x,' ='," // FMT_14 // ",' GeV (preset)')") & flv%get_width () if (flv%decays_isotropically ()) then write (u, "(2x,A)") "Decay options: isotropic" else if (flv%decays_diagonal ()) then write (u, "(2x,A)") "Decay options: & &projection on diagonal helicity states" else if (flv%has_decay_helicity ()) then write (u, "(2x,A,1x,I0)") "Decay options: projection onto helicity =", & flv%get_decay_helicity () else write (u, "(2x,A)") "Decay options: helicity treated exactly" end if else inquire (unit = u, opened = opened) if (opened .and. .not. mask_fatal_errors) close (u) call msg_fatal ("Unstable particle " & // char (flv%get_name ()) & // ": partial width vanishes for all decay channels") end if else inquire (unit = u, opened = opened) if (opened .and. .not. mask_fatal_errors) close (u) call msg_fatal ("Unstable particle " & // char (flv%get_name ()) & // ": partial width is negative") end if end subroutine show_unstable @ %def show_unstable @ If no decays have been found, issue a non-fatal error. <>= subroutine err_unstable (global, pdg) type(rt_data_t), intent(in), target :: global integer, intent(in) :: pdg type(flavor_t) :: flv call flv%init (pdg, global%model) call msg_error ("Unstable: no allowed decays found for particle " & // char (flv%get_name ()) // ", keeping as stable") end subroutine err_unstable @ %def err_unstable @ Auto decays: create process IDs and make up process configurations, using the PDG codes generated by the [[ds_table]] make method. We allocate and use a self-contained process library that contains only the decay processes of the current particle. When done, we revert the global library pointer to the original library but return the name of the new one. The new library becomes part of the global library stack and can thus be referred to at any time. <>= subroutine create_auto_decays & (pdg_in, mult, rad, libname_dec, process_id, global) integer, intent(in) :: pdg_in integer, intent(in) :: mult logical, intent(in) :: rad type(string_t), intent(out) :: libname_dec type(string_t), dimension(:), allocatable, intent(out) :: process_id type(rt_data_t), intent(inout) :: global type(prclib_entry_t), pointer :: lib_entry type(process_library_t), pointer :: lib type(ds_table_t) :: ds_table type(split_constraints_t) :: constraints type(pdg_array_t), dimension(:), allocatable :: pa_out character(80) :: buffer character :: p_or_a type(string_t) :: process_string, libname_cur type(flavor_t) :: flv_in, flv_out type(string_t) :: prt_in type(string_t), dimension(:), allocatable :: prt_out type(process_configuration_t) :: prc_config integer :: i, j, k call flv_in%init (pdg_in, global%model) if (rad) then call constraints%init (2) else call constraints%init (3) call constraints%set (3, constrain_radiation ()) end if call constraints%set (1, constrain_n_tot (mult)) call constraints%set (2, & constrain_mass_sum (flv_in%get_mass (), margin = 0._default)) call ds_table%make (global%model, pdg_in, constraints) prt_in = flv_in%get_name () if (pdg_in > 0) then p_or_a = "p" else p_or_a = "a" end if if (ds_table%get_length () == 0) then call msg_warning ("Auto-decays: Particle " // char (prt_in) // ": " & // "no decays found") libname_dec = "" allocate (process_id (0)) else call msg_message ("Creating decay process library for particle " & // char (prt_in)) libname_cur = global%prclib%get_name () write (buffer, "(A,A,I0)") "_d", p_or_a, abs (pdg_in) libname_dec = libname_cur // trim (buffer) lib => global%prclib_stack%get_library_ptr (libname_dec) if (.not. (associated (lib))) then allocate (lib_entry) call lib_entry%init (libname_dec) lib => lib_entry%process_library_t call global%add_prclib (lib_entry) else call global%update_prclib (lib) end if allocate (process_id (ds_table%get_length ())) do i = 1, size (process_id) write (buffer, "(A,'_',A,I0,'_',I0)") & "decay", p_or_a, abs (pdg_in), i process_id(i) = trim (buffer) process_string = process_id(i) // ": " // prt_in // " =>" call ds_table%get_pdg_out (i, pa_out) allocate (prt_out (size (pa_out))) do j = 1, size (pa_out) do k = 1, pa_out(j)%get_length () call flv_out%init (pa_out(j)%get (k), global%model) if (k == 1) then prt_out(j) = flv_out%get_name () else prt_out(j) = prt_out(j) // ":" // flv_out%get_name () end if end do process_string = process_string // " " // prt_out(j) end do call msg_message (char (process_string)) call prc_config%init (process_id(i), 1, 1, & global%model, global%var_list, & nlo_process = global%nlo_fixed_order) !!! Causes runtime error with gfortran 4.9.1 ! call prc_config%setup_component (1, & ! new_prt_spec ([prt_in]), new_prt_spec (prt_out), global%model, global%var_list) !!! Workaround: call prc_config%setup_component (1, & [new_prt_spec (prt_in)], new_prt_spec (prt_out), global%model, global%var_list) call prc_config%record (global) deallocate (prt_out) deallocate (pa_out) end do lib => global%prclib_stack%get_library_ptr (libname_cur) call global%update_prclib (lib) end if call ds_table%final () end subroutine create_auto_decays @ %def create_auto_decays @ \subsubsection{(Stable particles} Revert the unstable declaration for a list of particles. <>= type, extends (command_t) :: cmd_stable_t private type(parse_node_p), dimension(:), allocatable :: pn_pdg contains <> end type cmd_stable_t @ %def cmd_stable_t @ Output: we know only the number of particles. <>= procedure :: write => cmd_stable_write <>= subroutine cmd_stable_write (cmd, unit, indent) class(cmd_stable_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,1x,I0)") "stable:", size (cmd%pn_pdg) end subroutine cmd_stable_write @ %def cmd_stable_write @ Compile. Assign parse nodes for the particle IDs. <>= procedure :: compile => cmd_stable_compile <>= subroutine cmd_stable_compile (cmd, global) class(cmd_stable_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_list, pn_prt integer :: n, i pn_list => parse_node_get_sub_ptr (cmd%pn, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_list) call cmd%compile_options (global) n = parse_node_get_n_sub (pn_list) allocate (cmd%pn_pdg (n)) pn_prt => parse_node_get_sub_ptr (pn_list) i = 1 do while (associated (pn_prt)) cmd%pn_pdg(i)%ptr => pn_prt pn_prt => parse_node_get_next_ptr (pn_prt) i = i + 1 end do end subroutine cmd_stable_compile @ %def cmd_stable_compile @ Execute: apply the modifications to the current model. <>= procedure :: execute => cmd_stable_execute <>= subroutine cmd_stable_execute (cmd, global) class(cmd_stable_t), intent(inout) :: cmd type(rt_data_t), target, intent(inout) :: global type(var_list_t), pointer :: var_list type(pdg_array_t) :: pa integer :: pdg type(flavor_t) :: flv integer :: i var_list => cmd%local%get_var_list_ptr () do i = 1, size (cmd%pn_pdg) pa = eval_pdg_array (cmd%pn_pdg(i)%ptr, var_list) if (pdg_array_get_length (pa) /= 1) & call msg_fatal ("Stable: listed particles must be unique") pdg = pdg_array_get (pa, 1) call global%modify_particle (pdg, stable = .true., & isotropic_decay = .false., & diagonal_decay = .false., & polarized = .false.) call flv%init (pdg, cmd%local%model) call msg_message ("Particle " & // char (flv%get_name ()) & // " declared as stable") end do end subroutine cmd_stable_execute @ %def cmd_stable_execute @ \subsubsection{Polarized particles} These commands mark particles as (un)polarized, to be applied in subsequent simulation passes. Since this is technically the same as the [[stable]] command, we take a shortcut and make this an extension, just overriding methods. <>= type, extends (cmd_stable_t) :: cmd_polarized_t contains <> end type cmd_polarized_t type, extends (cmd_stable_t) :: cmd_unpolarized_t contains <> end type cmd_unpolarized_t @ %def cmd_polarized_t cmd_unpolarized_t @ Output: we know only the number of particles. <>= procedure :: write => cmd_polarized_write <>= procedure :: write => cmd_unpolarized_write <>= subroutine cmd_polarized_write (cmd, unit, indent) class(cmd_polarized_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,1x,I0)") "polarized:", size (cmd%pn_pdg) end subroutine cmd_polarized_write subroutine cmd_unpolarized_write (cmd, unit, indent) class(cmd_unpolarized_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,1x,I0)") "unpolarized:", size (cmd%pn_pdg) end subroutine cmd_unpolarized_write @ %def cmd_polarized_write @ %def cmd_unpolarized_write @ Compile: accounted for by the base command. Execute: apply the modifications to the current model. <>= procedure :: execute => cmd_polarized_execute <>= procedure :: execute => cmd_unpolarized_execute <>= subroutine cmd_polarized_execute (cmd, global) class(cmd_polarized_t), intent(inout) :: cmd type(rt_data_t), target, intent(inout) :: global type(var_list_t), pointer :: var_list type(pdg_array_t) :: pa integer :: pdg type(flavor_t) :: flv integer :: i var_list => cmd%local%get_var_list_ptr () do i = 1, size (cmd%pn_pdg) pa = eval_pdg_array (cmd%pn_pdg(i)%ptr, var_list) if (pdg_array_get_length (pa) /= 1) & call msg_fatal ("Polarized: listed particles must be unique") pdg = pdg_array_get (pa, 1) call global%modify_particle (pdg, polarized = .true., & stable = .true., & isotropic_decay = .false., & diagonal_decay = .false.) call flv%init (pdg, cmd%local%model) call msg_message ("Particle " & // char (flv%get_name ()) & // " declared as polarized") end do end subroutine cmd_polarized_execute subroutine cmd_unpolarized_execute (cmd, global) class(cmd_unpolarized_t), intent(inout) :: cmd type(rt_data_t), target, intent(inout) :: global type(var_list_t), pointer :: var_list type(pdg_array_t) :: pa integer :: pdg type(flavor_t) :: flv integer :: i var_list => cmd%local%get_var_list_ptr () do i = 1, size (cmd%pn_pdg) pa = eval_pdg_array (cmd%pn_pdg(i)%ptr, var_list) if (pdg_array_get_length (pa) /= 1) & call msg_fatal ("Unpolarized: listed particles must be unique") pdg = pdg_array_get (pa, 1) call global%modify_particle (pdg, polarized = .false., & stable = .true., & isotropic_decay = .false., & diagonal_decay = .false.) call flv%init (pdg, cmd%local%model) call msg_message ("Particle " & // char (flv%get_name ()) & // " declared as unpolarized") end do end subroutine cmd_unpolarized_execute @ %def cmd_polarized_execute @ %def cmd_unpolarized_execute @ \subsubsection{Parameters: formats for event-sample output} Specify all event formats that are to be used for output files in the subsequent simulation run. (The raw format is on by default and can be turned off here.) <>= type, extends (command_t) :: cmd_sample_format_t private type(string_t), dimension(:), allocatable :: format contains <> end type cmd_sample_format_t @ %def cmd_sample_format_t @ Output: here, everything is known. <>= procedure :: write => cmd_sample_format_write <>= subroutine cmd_sample_format_write (cmd, unit, indent) class(cmd_sample_format_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "sample_format = " do i = 1, size (cmd%format) if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "(A)", advance="no") char (cmd%format(i)) end do write (u, "(A)") end subroutine cmd_sample_format_write @ %def cmd_sample_format_write @ Compile. Initialize evaluation trees. <>= procedure :: compile => cmd_sample_format_compile <>= subroutine cmd_sample_format_compile (cmd, global) class(cmd_sample_format_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg type(parse_node_t), pointer :: pn_format integer :: i, n_format pn_arg => parse_node_get_sub_ptr (cmd%pn, 3) if (associated (pn_arg)) then n_format = parse_node_get_n_sub (pn_arg) allocate (cmd%format (n_format)) pn_format => parse_node_get_sub_ptr (pn_arg) i = 0 do while (associated (pn_format)) i = i + 1 cmd%format(i) = parse_node_get_string (pn_format) pn_format => parse_node_get_next_ptr (pn_format) end do else allocate (cmd%format (0)) end if end subroutine cmd_sample_format_compile @ %def cmd_sample_format_compile @ Execute. Transfer the list of format specifications to the corresponding array in the runtime data set. <>= procedure :: execute => cmd_sample_format_execute <>= subroutine cmd_sample_format_execute (cmd, global) class(cmd_sample_format_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (allocated (global%sample_fmt)) deallocate (global%sample_fmt) allocate (global%sample_fmt (size (cmd%format)), source = cmd%format) end subroutine cmd_sample_format_execute @ %def cmd_sample_format_execute @ \subsubsection{The simulate command} This is the actual SINDARIN command. <>= type, extends (command_t) :: cmd_simulate_t ! not private anymore as required by the whizard-c-interface integer :: n_proc = 0 type(string_t), dimension(:), allocatable :: process_id contains <> end type cmd_simulate_t @ %def cmd_simulate_t @ Output: we know the process IDs. <>= procedure :: write => cmd_simulate_write <>= subroutine cmd_simulate_write (cmd, unit, indent) class(cmd_simulate_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "simulate (" do i = 1, cmd%n_proc if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "(A)", advance="no") char (cmd%process_id(i)) end do write (u, "(A)") ")" end subroutine cmd_simulate_write @ %def cmd_simulate_write @ Compile. In contrast to WHIZARD 1 the confusing option to give the number of unweighted events for weighted events as if unweighting were to take place has been abandoned. (We both use [[n_events]] for weighted and unweighted events, the variable [[n_calls]] from WHIZARD 1 has been discarded. <>= procedure :: compile => cmd_simulate_compile <>= subroutine cmd_simulate_compile (cmd, global) class(cmd_simulate_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_proclist, pn_proc integer :: i pn_proclist => parse_node_get_sub_ptr (cmd%pn, 2) cmd%pn_opt => parse_node_get_next_ptr (pn_proclist) call cmd%compile_options (global) cmd%n_proc = parse_node_get_n_sub (pn_proclist) allocate (cmd%process_id (cmd%n_proc)) pn_proc => parse_node_get_sub_ptr (pn_proclist) do i = 1, cmd%n_proc cmd%process_id(i) = parse_node_get_string (pn_proc) call global%process_stack%init_result_vars (cmd%process_id(i)) pn_proc => parse_node_get_next_ptr (pn_proc) end do end subroutine cmd_simulate_compile @ %def cmd_simulate_compile @ Execute command: Simulate events. This is done via a [[simulation_t]] object and its associated methods. Signal handling: the [[generate]] method may exit abnormally if there is a pending signal. The current logic ensures that the [[es_array]] output channels are closed before the [[execute]] routine returns. The program will terminate then in [[command_list_execute]]. <>= procedure :: execute => cmd_simulate_execute <>= subroutine cmd_simulate_execute (cmd, global) class(cmd_simulate_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(rt_data_t), dimension(:), allocatable, target :: alt_env integer :: n_events, n_fmt type(string_t) :: sample, sample_suffix logical :: rebuild_events, read_raw, write_raw type(simulation_t), target :: sim type(string_t), dimension(:), allocatable :: sample_fmt type(event_stream_array_t) :: es_array type(event_sample_data_t) :: data integer :: i, checkpoint, callback <> var_list => cmd%local%var_list if (allocated (cmd%local%pn%alt_setup)) then allocate (alt_env (size (cmd%local%pn%alt_setup))) do i = 1, size (alt_env) call build_alt_setup (alt_env(i), cmd%local, & cmd%local%pn%alt_setup(i)%ptr) end do call sim%init (cmd%process_id, .true., .true., cmd%local, global, & alt_env) else call sim%init (cmd%process_id, .true., .true., cmd%local, global) end if if (signal_is_pending ()) return if (sim%is_valid ()) then call sim%init_process_selector () call openmp_set_num_threads_verbose & (var_list%get_ival (var_str ("openmp_num_threads")), & var_list%get_lval (var_str ("?openmp_logging"))) call sim%compute_n_events (n_events, var_list) sample_suffix = "" <> sample = var_list%get_sval (var_str ("$sample")) if (sample == "") then sample = sim%get_default_sample_name () // sample_suffix else sample = var_list%get_sval (var_str ("$sample")) // sample_suffix end if rebuild_events = & var_list%get_lval (var_str ("?rebuild_events")) read_raw = & var_list%get_lval (var_str ("?read_raw")) & .and. .not. rebuild_events write_raw = & var_list%get_lval (var_str ("?write_raw")) checkpoint = & var_list%get_ival (var_str ("checkpoint")) callback = & var_list%get_ival (var_str ("event_callback_interval")) if (read_raw) then inquire (file = char (sample) // ".evx", exist = read_raw) end if if (allocated (cmd%local%sample_fmt)) then n_fmt = size (cmd%local%sample_fmt) else n_fmt = 0 end if data = sim%get_data () data%n_evt = n_events data%nlo_multiplier = sim%get_n_nlo_entries (1) if (read_raw) then allocate (sample_fmt (n_fmt)) if (n_fmt > 0) sample_fmt = cmd%local%sample_fmt call es_array%init (sample, & sample_fmt, cmd%local, & data = data, & input = var_str ("raw"), & allow_switch = write_raw, & checkpoint = checkpoint, & callback = callback) call sim%generate (n_events, es_array) call es_array%final () else if (write_raw) then allocate (sample_fmt (n_fmt + 1)) if (n_fmt > 0) sample_fmt(:n_fmt) = cmd%local%sample_fmt sample_fmt(n_fmt+1) = var_str ("raw") call es_array%init (sample, & sample_fmt, cmd%local, & data = data, & checkpoint = checkpoint, & callback = callback) call sim%generate (n_events, es_array) call es_array%final () else if (allocated (cmd%local%sample_fmt) & .or. checkpoint > 0 & .or. callback > 0) then allocate (sample_fmt (n_fmt)) if (n_fmt > 0) sample_fmt = cmd%local%sample_fmt call es_array%init (sample, & sample_fmt, cmd%local, & data = data, & checkpoint = checkpoint, & callback = callback) call sim%generate (n_events, es_array) call es_array%final () else call sim%generate (n_events) end if if (allocated (alt_env)) then do i = 1, size (alt_env) call alt_env(i)%local_final () end do end if end if call sim%final () end subroutine cmd_simulate_execute @ %def cmd_simulate_execute <>= @ <>= @ <>= logical :: mpi_logging integer :: rank, n_size @ Append rank id to sample name. <>= call mpi_get_comm_id (n_size, rank) if (n_size > 1) then sample_suffix = var_str ("_") // str (rank) end if mpi_logging = (("vamp2" == char (var_list%get_sval (var_str ("$integration_method"))) & & .and. (n_size > 1)) & & .or. var_list%get_lval (var_str ("?mpi_logging"))) call mpi_set_logging (mpi_logging) @ @ Build an alternative setup: the parse tree is stored in the global environment. We create a temporary command list to compile and execute this; the result is an alternative local environment [[alt_env]] which we can hand over to the [[simulate]] command. <>= recursive subroutine build_alt_setup (alt_env, global, pn) type(rt_data_t), intent(inout), target :: alt_env type(rt_data_t), intent(inout), target :: global type(parse_node_t), intent(in), target :: pn type(command_list_t), allocatable :: alt_options allocate (alt_options) call alt_env%local_init (global) call alt_env%activate () call alt_options%compile (pn, alt_env) call alt_options%execute (alt_env) call alt_env%deactivate (global, keep_local = .true.) call alt_options%final () end subroutine build_alt_setup @ %def build_alt_setup @ \subsubsection{The rescan command} This is the actual SINDARIN command. <>= type, extends (command_t) :: cmd_rescan_t ! private type(parse_node_t), pointer :: pn_filename => null () integer :: n_proc = 0 type(string_t), dimension(:), allocatable :: process_id contains <> end type cmd_rescan_t @ %def cmd_rescan_t @ Output: we know the process IDs. <>= procedure :: write => cmd_rescan_write <>= subroutine cmd_rescan_write (cmd, unit, indent) class(cmd_rescan_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "rescan (" do i = 1, cmd%n_proc if (i > 1) write (u, "(A,1x)", advance="no") "," write (u, "(A)", advance="no") char (cmd%process_id(i)) end do write (u, "(A)") ")" end subroutine cmd_rescan_write @ %def cmd_rescan_write @ Compile. The command takes a suffix argument, namely the file name of requested event file. <>= procedure :: compile => cmd_rescan_compile <>= subroutine cmd_rescan_compile (cmd, global) class(cmd_rescan_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_filename, pn_proclist, pn_proc integer :: i pn_filename => parse_node_get_sub_ptr (cmd%pn, 2) pn_proclist => parse_node_get_next_ptr (pn_filename) cmd%pn_opt => parse_node_get_next_ptr (pn_proclist) call cmd%compile_options (global) cmd%pn_filename => pn_filename cmd%n_proc = parse_node_get_n_sub (pn_proclist) allocate (cmd%process_id (cmd%n_proc)) pn_proc => parse_node_get_sub_ptr (pn_proclist) do i = 1, cmd%n_proc cmd%process_id(i) = parse_node_get_string (pn_proc) pn_proc => parse_node_get_next_ptr (pn_proc) end do end subroutine cmd_rescan_compile @ %def cmd_rescan_compile @ Execute command: Rescan events. This is done via a [[simulation_t]] object and its associated methods. <>= procedure :: execute => cmd_rescan_execute <>= subroutine cmd_rescan_execute (cmd, global) class(cmd_rescan_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(rt_data_t), dimension(:), allocatable, target :: alt_env type(string_t) :: sample, sample_suffix logical :: exist, write_raw, update_event, update_sqme type(simulation_t), target :: sim type(event_sample_data_t) :: input_data, data type(string_t) :: input_sample integer :: n_fmt type(string_t), dimension(:), allocatable :: sample_fmt type(string_t) :: input_format, input_ext, input_file type(string_t) :: lhef_extension, extension_hepmc, extension_lcio type(event_stream_array_t) :: es_array integer :: i, n_events <> var_list => cmd%local%var_list if (allocated (cmd%local%pn%alt_setup)) then allocate (alt_env (size (cmd%local%pn%alt_setup))) do i = 1, size (alt_env) call build_alt_setup (alt_env(i), cmd%local, & cmd%local%pn%alt_setup(i)%ptr) end do call sim%init (cmd%process_id, .false., .false., cmd%local, global, & alt_env) else call sim%init (cmd%process_id, .false., .false., cmd%local, global) end if call sim%compute_n_events (n_events, var_list) input_sample = eval_string (cmd%pn_filename, var_list) input_format = var_list%get_sval (& var_str ("$rescan_input_format")) sample_suffix = "" <> sample = var_list%get_sval (var_str ("$sample")) if (sample == "") then sample = sim%get_default_sample_name () // sample_suffix else sample = var_list%get_sval (var_str ("$sample")) // sample_suffix end if write_raw = var_list%get_lval (var_str ("?write_raw")) if (allocated (cmd%local%sample_fmt)) then n_fmt = size (cmd%local%sample_fmt) else n_fmt = 0 end if if (write_raw) then if (sample == input_sample) then call msg_error ("Rescan: ?write_raw = true: " & // "suppressing raw event output (filename clashes with input)") allocate (sample_fmt (n_fmt)) if (n_fmt > 0) sample_fmt = cmd%local%sample_fmt else allocate (sample_fmt (n_fmt + 1)) if (n_fmt > 0) sample_fmt(:n_fmt) = cmd%local%sample_fmt sample_fmt(n_fmt+1) = var_str ("raw") end if else allocate (sample_fmt (n_fmt)) if (n_fmt > 0) sample_fmt = cmd%local%sample_fmt end if update_event = & var_list%get_lval (var_str ("?update_event")) update_sqme = & var_list%get_lval (var_str ("?update_sqme")) if (update_event .or. update_sqme) then call msg_message ("Recalculating observables") if (update_sqme) then call msg_message ("Recalculating squared matrix elements") end if end if lhef_extension = & var_list%get_sval (var_str ("$lhef_extension")) extension_hepmc = & var_list%get_sval (var_str ("$extension_hepmc")) extension_lcio = & var_list%get_sval (var_str ("$extension_lcio")) select case (char (input_format)) case ("raw"); input_ext = "evx" call cmd%local%set_log & (var_str ("?recover_beams"), .false., is_known=.true.) case ("lhef"); input_ext = lhef_extension case ("hepmc"); input_ext = extension_hepmc case ("lcio"); input_ext = extension_lcio case default call msg_fatal ("rescan: input sample format '" // char (input_format) & // "' not supported") end select input_file = input_sample // "." // input_ext inquire (file = char (input_file), exist = exist) if (exist) then input_data = sim%get_data (alt = .false.) input_data%n_evt = n_events data = sim%get_data () data%n_evt = n_events input_data%md5sum_cfg = "" call es_array%init (sample, & sample_fmt, cmd%local, data, & input = input_format, input_sample = input_sample, & input_data = input_data, & allow_switch = .false.) call sim%rescan (n_events, es_array, global = cmd%local) call es_array%final () else call msg_fatal ("Rescan: event file '" & // char (input_file) // "' not found") end if if (allocated (alt_env)) then do i = 1, size (alt_env) call alt_env(i)%local_final () end do end if call sim%final () end subroutine cmd_rescan_execute @ %def cmd_rescan_execute @ <>= @ <>= @ <>= logical :: mpi_logging integer :: rank, n_size @ Append rank id to sample name. <>= call mpi_get_comm_id (n_size, rank) if (n_size > 1) then sample_suffix = var_str ("_") // str (rank) end if mpi_logging = (("vamp2" == char (var_list%get_sval (var_str ("$integration_method"))) & & .and. (n_size > 1)) & & .or. var_list%get_lval (var_str ("?mpi_logging"))) call mpi_set_logging (mpi_logging) @ \subsubsection{Parameters: number of iterations} Specify number of iterations and number of calls for one integration pass. <>= type, extends (command_t) :: cmd_iterations_t private integer :: n_pass = 0 type(parse_node_p), dimension(:), allocatable :: pn_expr_n_it type(parse_node_p), dimension(:), allocatable :: pn_expr_n_calls type(parse_node_p), dimension(:), allocatable :: pn_sexpr_adapt contains <> end type cmd_iterations_t @ %def cmd_iterations_t @ Output. Display the number of passes, which is known after compilation. <>= procedure :: write => cmd_iterations_write <>= subroutine cmd_iterations_write (cmd, unit, indent) class(cmd_iterations_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) select case (cmd%n_pass) case (0) write (u, "(1x,A)") "iterations: [empty]" case (1) write (u, "(1x,A,I0,A)") "iterations: ", cmd%n_pass, " pass" case default write (u, "(1x,A,I0,A)") "iterations: ", cmd%n_pass, " passes" end select end subroutine cmd_iterations_write @ %def cmd_iterations_write @ Compile. Initialize evaluation trees. <>= procedure :: compile => cmd_iterations_compile <>= subroutine cmd_iterations_compile (cmd, global) class(cmd_iterations_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_n_it, pn_n_calls, pn_adapt type(parse_node_t), pointer :: pn_it_spec, pn_calls_spec, pn_adapt_spec integer :: i pn_arg => parse_node_get_sub_ptr (cmd%pn, 3) if (associated (pn_arg)) then cmd%n_pass = parse_node_get_n_sub (pn_arg) allocate (cmd%pn_expr_n_it (cmd%n_pass)) allocate (cmd%pn_expr_n_calls (cmd%n_pass)) allocate (cmd%pn_sexpr_adapt (cmd%n_pass)) pn_it_spec => parse_node_get_sub_ptr (pn_arg) i = 1 do while (associated (pn_it_spec)) pn_n_it => parse_node_get_sub_ptr (pn_it_spec) pn_calls_spec => parse_node_get_next_ptr (pn_n_it) pn_n_calls => parse_node_get_sub_ptr (pn_calls_spec, 2) pn_adapt_spec => parse_node_get_next_ptr (pn_calls_spec) if (associated (pn_adapt_spec)) then pn_adapt => parse_node_get_sub_ptr (pn_adapt_spec, 2) else pn_adapt => null () end if cmd%pn_expr_n_it(i)%ptr => pn_n_it cmd%pn_expr_n_calls(i)%ptr => pn_n_calls cmd%pn_sexpr_adapt(i)%ptr => pn_adapt i = i + 1 pn_it_spec => parse_node_get_next_ptr (pn_it_spec) end do else allocate (cmd%pn_expr_n_it (0)) allocate (cmd%pn_expr_n_calls (0)) end if end subroutine cmd_iterations_compile @ %def cmd_iterations_compile @ Execute. Evaluate the trees and transfer the results to the iteration list in the runtime data set. <>= procedure :: execute => cmd_iterations_execute <>= subroutine cmd_iterations_execute (cmd, global) class(cmd_iterations_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list integer, dimension(cmd%n_pass) :: n_it, n_calls logical, dimension(cmd%n_pass) :: custom_adapt type(string_t), dimension(cmd%n_pass) :: adapt_code integer :: i var_list => global%get_var_list_ptr () do i = 1, cmd%n_pass n_it(i) = eval_int (cmd%pn_expr_n_it(i)%ptr, var_list) n_calls(i) = & eval_int (cmd%pn_expr_n_calls(i)%ptr, var_list) if (associated (cmd%pn_sexpr_adapt(i)%ptr)) then adapt_code(i) = & eval_string (cmd%pn_sexpr_adapt(i)%ptr, & var_list, is_known = custom_adapt(i)) else custom_adapt(i) = .false. end if end do call global%it_list%init (n_it, n_calls, custom_adapt, adapt_code) end subroutine cmd_iterations_execute @ %def cmd_iterations_execute @ \subsubsection{Range expressions} We need a special type for storing and evaluating range expressions. <>= integer, parameter :: STEP_NONE = 0 integer, parameter :: STEP_ADD = 1 integer, parameter :: STEP_SUB = 2 integer, parameter :: STEP_MUL = 3 integer, parameter :: STEP_DIV = 4 integer, parameter :: STEP_COMP_ADD = 11 integer, parameter :: STEP_COMP_MUL = 13 @ There is an abstract base type and two implementations: scan over integers and scan over reals. <>= type, abstract :: range_t type(parse_node_t), pointer :: pn_expr => null () type(parse_node_t), pointer :: pn_term => null () type(parse_node_t), pointer :: pn_factor => null () type(parse_node_t), pointer :: pn_value => null () type(parse_node_t), pointer :: pn_literal => null () type(parse_node_t), pointer :: pn_beg => null () type(parse_node_t), pointer :: pn_end => null () type(parse_node_t), pointer :: pn_step => null () type(eval_tree_t) :: expr_beg type(eval_tree_t) :: expr_end type(eval_tree_t) :: expr_step integer :: step_mode = 0 integer :: n_step = 0 contains <> end type range_t @ %def range_t @ These are the implementations: <>= type, extends (range_t) :: range_int_t integer :: i_beg = 0 integer :: i_end = 0 integer :: i_step = 0 contains <> end type range_int_t type, extends (range_t) :: range_real_t real(default) :: r_beg = 0 real(default) :: r_end = 0 real(default) :: r_step = 0 real(default) :: lr_beg = 0 real(default) :: lr_end = 0 real(default) :: lr_step = 0 contains <> end type range_real_t @ %def range_int_t range_real_t @ Finalize the allocated dummy node. The other nodes are just pointers. <>= procedure :: final => range_final <>= subroutine range_final (object) class(range_t), intent(inout) :: object if (associated (object%pn_expr)) then call parse_node_final (object%pn_expr, recursive = .false.) call parse_node_final (object%pn_term, recursive = .false.) call parse_node_final (object%pn_factor, recursive = .false.) call parse_node_final (object%pn_value, recursive = .false.) call parse_node_final (object%pn_literal, recursive = .false.) deallocate (object%pn_expr) deallocate (object%pn_term) deallocate (object%pn_factor) deallocate (object%pn_value) deallocate (object%pn_literal) end if end subroutine range_final @ %def range_final @ Output. <>= procedure (range_write), deferred :: write procedure :: base_write => range_write <>= procedure :: write => range_int_write <>= procedure :: write => range_real_write <>= subroutine range_write (object, unit) class(range_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) write (u, "(1x,A)") "Range specification:" if (associated (object%pn_expr)) then write (u, "(1x,A)") "Dummy value:" call parse_node_write_rec (object%pn_expr, u) end if if (associated (object%pn_beg)) then write (u, "(1x,A)") "Initial value:" call parse_node_write_rec (object%pn_beg, u) call object%expr_beg%write (u) if (associated (object%pn_end)) then write (u, "(1x,A)") "Final value:" call parse_node_write_rec (object%pn_end, u) call object%expr_end%write (u) if (associated (object%pn_step)) then write (u, "(1x,A)") "Step value:" call parse_node_write_rec (object%pn_step, u) select case (object%step_mode) case (STEP_ADD); write (u, "(1x,A)") "Step mode: +" case (STEP_SUB); write (u, "(1x,A)") "Step mode: -" case (STEP_MUL); write (u, "(1x,A)") "Step mode: *" case (STEP_DIV); write (u, "(1x,A)") "Step mode: /" case (STEP_COMP_ADD); write (u, "(1x,A)") "Division mode: +" case (STEP_COMP_MUL); write (u, "(1x,A)") "Division mode: *" end select end if end if else write (u, "(1x,A)") "Expressions: [undefined]" end if end subroutine range_write subroutine range_int_write (object, unit) class(range_int_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) call object%base_write (unit) write (u, "(1x,A)") "Range parameters:" write (u, "(3x,A,I0)") "i_beg = ", object%i_beg write (u, "(3x,A,I0)") "i_end = ", object%i_end write (u, "(3x,A,I0)") "i_step = ", object%i_step write (u, "(3x,A,I0)") "n_step = ", object%n_step end subroutine range_int_write subroutine range_real_write (object, unit) class(range_real_t), intent(in) :: object integer, intent(in), optional :: unit integer :: u u = given_output_unit (unit) call object%base_write (unit) write (u, "(1x,A)") "Range parameters:" write (u, "(3x,A," // FMT_19 // ")") "r_beg = ", object%r_beg write (u, "(3x,A," // FMT_19 // ")") "r_end = ", object%r_end write (u, "(3x,A," // FMT_19 // ")") "r_step = ", object%r_end write (u, "(3x,A,I0)") "n_step = ", object%n_step end subroutine range_real_write @ %def range_write @ Initialize, given a range expression parse node. This is common to the implementations. <>= procedure :: init => range_init <>= subroutine range_init (range, pn) class(range_t), intent(out) :: range type(parse_node_t), intent(in), target :: pn type(parse_node_t), pointer :: pn_spec, pn_end, pn_step_spec, pn_op select case (char (parse_node_get_rule_key (pn))) case ("expr") case ("range_expr") range%pn_beg => parse_node_get_sub_ptr (pn) pn_spec => parse_node_get_next_ptr (range%pn_beg) if (associated (pn_spec)) then pn_end => parse_node_get_sub_ptr (pn_spec, 2) range%pn_end => pn_end pn_step_spec => parse_node_get_next_ptr (pn_end) if (associated (pn_step_spec)) then pn_op => parse_node_get_sub_ptr (pn_step_spec) range%pn_step => parse_node_get_next_ptr (pn_op) select case (char (parse_node_get_rule_key (pn_op))) case ("/+"); range%step_mode = STEP_ADD case ("/-"); range%step_mode = STEP_SUB case ("/*"); range%step_mode = STEP_MUL case ("//"); range%step_mode = STEP_DIV case ("/+/"); range%step_mode = STEP_COMP_ADD case ("/*/"); range%step_mode = STEP_COMP_MUL case default call range%write () call msg_bug ("Range: step mode not implemented") end select else range%step_mode = STEP_ADD end if else range%step_mode = STEP_NONE end if call range%create_value_node () case default call msg_bug ("range expression: node type '" & // char (parse_node_get_rule_key (pn)) & // "' not implemented") end select end subroutine range_init @ %def range_init @ This method manually creates a parse node (actually, a cascade of parse nodes) that hold a constant value as a literal. The idea is that this node is inserted as the right-hand side of a fake variable assignment, which is prepended to each scan iteration. Before the variable assignment is compiled and executed, we can manually reset the value of the literal and thus pretend that the loop variable is assigned this value. <>= procedure :: create_value_node => range_create_value_node <>= subroutine range_create_value_node (range) class(range_t), intent(inout) :: range allocate (range%pn_literal) allocate (range%pn_value) select type (range) type is (range_int_t) call parse_node_create_value (range%pn_literal, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("integer_literal")),& ival = 0) call parse_node_create_branch (range%pn_value, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("integer_value"))) type is (range_real_t) call parse_node_create_value (range%pn_literal, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("real_literal")),& rval = 0._default) call parse_node_create_branch (range%pn_value, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("real_value"))) class default call msg_bug ("range: create value node: type not implemented") end select call parse_node_append_sub (range%pn_value, range%pn_literal) call parse_node_freeze_branch (range%pn_value) allocate (range%pn_factor) call parse_node_create_branch (range%pn_factor, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("factor"))) call parse_node_append_sub (range%pn_factor, range%pn_value) call parse_node_freeze_branch (range%pn_factor) allocate (range%pn_term) call parse_node_create_branch (range%pn_term, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("term"))) call parse_node_append_sub (range%pn_term, range%pn_factor) call parse_node_freeze_branch (range%pn_term) allocate (range%pn_expr) call parse_node_create_branch (range%pn_expr, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("expr"))) call parse_node_append_sub (range%pn_expr, range%pn_term) call parse_node_freeze_branch (range%pn_expr) end subroutine range_create_value_node @ %def range_create_value_node @ Compile, given an environment. <>= procedure :: compile => range_compile <>= subroutine range_compile (range, global) class(range_t), intent(inout) :: range type(rt_data_t), intent(in), target :: global type(var_list_t), pointer :: var_list var_list => global%get_var_list_ptr () if (associated (range%pn_beg)) then call range%expr_beg%init_expr (range%pn_beg, var_list) if (associated (range%pn_end)) then call range%expr_end%init_expr (range%pn_end, var_list) if (associated (range%pn_step)) then call range%expr_step%init_expr (range%pn_step, var_list) end if end if end if end subroutine range_compile @ %def range_compile @ Evaluate: compute the actual bounds and parameters that determine the values that we can iterate. This is implementation-specific. <>= procedure (range_evaluate), deferred :: evaluate <>= abstract interface subroutine range_evaluate (range) import class(range_t), intent(inout) :: range end subroutine range_evaluate end interface @ %def range_evaluate @ The version for an integer variable. If the step is subtractive, we invert the sign and treat it as an additive step. For a multiplicative step, the step must be greater than one, and the initial and final values must be of same sign and strictly ordered. Analogously for a division step. <>= procedure :: evaluate => range_int_evaluate <>= subroutine range_int_evaluate (range) class(range_int_t), intent(inout) :: range integer :: ival if (associated (range%pn_beg)) then call range%expr_beg%evaluate () if (range%expr_beg%is_known ()) then range%i_beg = range%expr_beg%get_int () else call range%write () call msg_fatal & ("Range expression: initial value evaluates to unknown") end if if (associated (range%pn_end)) then call range%expr_end%evaluate () if (range%expr_end%is_known ()) then range%i_end = range%expr_end%get_int () if (associated (range%pn_step)) then call range%expr_step%evaluate () if (range%expr_step%is_known ()) then range%i_step = range%expr_step%get_int () select case (range%step_mode) case (STEP_SUB); range%i_step = - range%i_step end select else call range%write () call msg_fatal & ("Range expression: step value evaluates to unknown") end if else range%i_step = 1 end if else call range%write () call msg_fatal & ("Range expression: final value evaluates to unknown") end if else range%i_end = range%i_beg range%i_step = 1 end if select case (range%step_mode) case (STEP_NONE) range%n_step = 1 case (STEP_ADD, STEP_SUB) if (range%i_step /= 0) then if (range%i_beg == range%i_end) then range%n_step = 1 else if (sign (1, range%i_end - range%i_beg) & == sign (1, range%i_step)) then range%n_step = (range%i_end - range%i_beg) / range%i_step + 1 else range%n_step = 0 end if else call msg_fatal ("range evaluation (add): step value is zero") end if case (STEP_MUL) if (range%i_step > 1) then if (range%i_beg == range%i_end) then range%n_step = 1 else if (range%i_beg == 0) then call msg_fatal ("range evaluation (mul): initial value is zero") else if (sign (1, range%i_beg) == sign (1, range%i_end) & .and. abs (range%i_beg) < abs (range%i_end)) then range%n_step = 0 ival = range%i_beg do while (abs (ival) <= abs (range%i_end)) range%n_step = range%n_step + 1 ival = ival * range%i_step end do else range%n_step = 0 end if else call msg_fatal & ("range evaluation (mult): step value is one or less") end if case (STEP_DIV) if (range%i_step > 1) then if (range%i_beg == range%i_end) then range%n_step = 1 else if (sign (1, range%i_beg) == sign (1, range%i_end) & .and. abs (range%i_beg) > abs (range%i_end)) then range%n_step = 0 ival = range%i_beg do while (abs (ival) >= abs (range%i_end)) range%n_step = range%n_step + 1 if (ival == 0) exit ival = ival / range%i_step end do else range%n_step = 0 end if else call msg_fatal & ("range evaluation (div): step value is one or less") end if case (STEP_COMP_ADD) call msg_fatal ("range evaluation: & &step mode /+/ not allowed for integer variable") case (STEP_COMP_MUL) call msg_fatal ("range evaluation: & &step mode /*/ not allowed for integer variable") case default call range%write () call msg_bug ("range evaluation: step mode not implemented") end select end if end subroutine range_int_evaluate @ %def range_int_evaluate @ The version for a real variable. <>= procedure :: evaluate => range_real_evaluate <>= subroutine range_real_evaluate (range) class(range_real_t), intent(inout) :: range if (associated (range%pn_beg)) then call range%expr_beg%evaluate () if (range%expr_beg%is_known ()) then range%r_beg = range%expr_beg%get_real () else call range%write () call msg_fatal & ("Range expression: initial value evaluates to unknown") end if if (associated (range%pn_end)) then call range%expr_end%evaluate () if (range%expr_end%is_known ()) then range%r_end = range%expr_end%get_real () if (associated (range%pn_step)) then if (range%expr_step%is_known ()) then select case (range%step_mode) case (STEP_ADD, STEP_SUB, STEP_MUL, STEP_DIV) call range%expr_step%evaluate () range%r_step = range%expr_step%get_real () select case (range%step_mode) case (STEP_SUB); range%r_step = - range%r_step end select case (STEP_COMP_ADD, STEP_COMP_MUL) range%n_step = & max (range%expr_step%get_int (), 0) end select else call range%write () call msg_fatal & ("Range expression: step value evaluates to unknown") end if else call range%write () call msg_fatal & ("Range expression (real): step value must be provided") end if else call range%write () call msg_fatal & ("Range expression: final value evaluates to unknown") end if else range%r_end = range%r_beg range%r_step = 1 end if select case (range%step_mode) case (STEP_NONE) range%n_step = 1 case (STEP_ADD, STEP_SUB) if (range%r_step /= 0) then if (sign (1._default, range%r_end - range%r_beg) & == sign (1._default, range%r_step)) then range%n_step = & nint ((range%r_end - range%r_beg) / range%r_step + 1) else range%n_step = 0 end if else call msg_fatal ("range evaluation (add): step value is zero") end if case (STEP_MUL) if (range%r_step > 1) then if (range%r_beg == 0 .or. range%r_end == 0) then call msg_fatal ("range evaluation (mul): bound is zero") else if (sign (1._default, range%r_beg) & == sign (1._default, range%r_end) & .and. abs (range%r_beg) <= abs (range%r_end)) then range%lr_beg = log (abs (range%r_beg)) range%lr_end = log (abs (range%r_end)) range%lr_step = log (range%r_step) range%n_step = nint & (abs ((range%lr_end - range%lr_beg) / range%lr_step) + 1) else range%n_step = 0 end if else call msg_fatal & ("range evaluation (mult): step value is one or less") end if case (STEP_DIV) if (range%r_step > 1) then if (range%r_beg == 0 .or. range%r_end == 0) then call msg_fatal ("range evaluation (div): bound is zero") else if (sign (1._default, range%r_beg) & == sign (1._default, range%r_end) & .and. abs (range%r_beg) >= abs (range%r_end)) then range%lr_beg = log (abs (range%r_beg)) range%lr_end = log (abs (range%r_end)) range%lr_step = -log (range%r_step) range%n_step = nint & (abs ((range%lr_end - range%lr_beg) / range%lr_step) + 1) else range%n_step = 0 end if else call msg_fatal & ("range evaluation (mult): step value is one or less") end if case (STEP_COMP_ADD) ! Number of steps already known case (STEP_COMP_MUL) ! Number of steps already known if (range%r_beg == 0 .or. range%r_end == 0) then call msg_fatal ("range evaluation (mul): bound is zero") else if (sign (1._default, range%r_beg) & == sign (1._default, range%r_end)) then range%lr_beg = log (abs (range%r_beg)) range%lr_end = log (abs (range%r_end)) else range%n_step = 0 end if case default call range%write () call msg_bug ("range evaluation: step mode not implemented") end select end if end subroutine range_real_evaluate @ %def range_real_evaluate @ Return the number of iterations: <>= procedure :: get_n_iterations => range_get_n_iterations <>= function range_get_n_iterations (range) result (n) class(range_t), intent(in) :: range integer :: n n = range%n_step end function range_get_n_iterations @ %def range_get_n_iterations @ Compute the value for iteration [[i]] and store it in the embedded token. <>= procedure (range_set_value), deferred :: set_value <>= abstract interface subroutine range_set_value (range, i) import class(range_t), intent(inout) :: range integer, intent(in) :: i end subroutine range_set_value end interface @ %def range_set_value @ In the integer case, we compute the value directly for additive step. For multiplicative step, we perform a loop in the same way as above, where the number of iteration was determined. <>= procedure :: set_value => range_int_set_value <>= subroutine range_int_set_value (range, i) class(range_int_t), intent(inout) :: range integer, intent(in) :: i integer :: k, ival select case (range%step_mode) case (STEP_NONE) ival = range%i_beg case (STEP_ADD, STEP_SUB) ival = range%i_beg + (i - 1) * range%i_step case (STEP_MUL) ival = range%i_beg do k = 1, i - 1 ival = ival * range%i_step end do case (STEP_DIV) ival = range%i_beg do k = 1, i - 1 ival = ival / range%i_step end do case default call range%write () call msg_bug ("range iteration: step mode not implemented") end select call parse_node_set_value (range%pn_literal, ival = ival) end subroutine range_int_set_value @ %def range_int_set_value @ In the integer case, we compute the value directly for additive step. For multiplicative step, we perform a loop in the same way as above, where the number of iteration was determined. <>= procedure :: set_value => range_real_set_value <>= subroutine range_real_set_value (range, i) class(range_real_t), intent(inout) :: range integer, intent(in) :: i real(default) :: rval, x select case (range%step_mode) case (STEP_NONE) rval = range%r_beg case (STEP_ADD, STEP_SUB, STEP_COMP_ADD) if (range%n_step > 1) then x = real (i - 1, default) / (range%n_step - 1) else x = 1._default / 2 end if rval = x * range%r_end + (1 - x) * range%r_beg case (STEP_MUL, STEP_DIV, STEP_COMP_MUL) if (range%n_step > 1) then x = real (i - 1, default) / (range%n_step - 1) else x = 1._default / 2 end if rval = sign & (exp (x * range%lr_end + (1 - x) * range%lr_beg), range%r_beg) case default call range%write () call msg_bug ("range iteration: step mode not implemented") end select call parse_node_set_value (range%pn_literal, rval = rval) end subroutine range_real_set_value @ %def range_real_set_value @ \subsubsection{Scan over parameters and other objects} The scan command allocates a new parse node for the variable assignment (the lhs). The rhs of this parse node is assigned from the available rhs expressions in the scan list, one at a time, so the compiled parse node can be prepended to the scan body. Note: for the integer/real range array, the obvious implementation as a polymorphic array is suspended because in gfortran 4.7, polymorphic arrays are apparently broken. <>= type, extends (command_t) :: cmd_scan_t private type(string_t) :: name integer :: n_values = 0 type(parse_node_p), dimension(:), allocatable :: scan_cmd !!! !!! gfortran 4.7.x memory corruption !!! class(range_t), dimension(:), allocatable :: range type(range_int_t), dimension(:), allocatable :: range_int type(range_real_t), dimension(:), allocatable :: range_real contains <> end type cmd_scan_t @ %def cmd_scan_t @ Finalizer. The auxiliary parse nodes that we have constructed have to be treated carefully: the embedded pointers all point to persistent objects somewhere else and should not be finalized, so we should not call the finalizer recursively. <>= procedure :: final => cmd_scan_final <>= recursive subroutine cmd_scan_final (cmd) class(cmd_scan_t), intent(inout) :: cmd type(parse_node_t), pointer :: pn_var_single, pn_decl_single type(string_t) :: key integer :: i if (allocated (cmd%scan_cmd)) then do i = 1, size (cmd%scan_cmd) pn_var_single => parse_node_get_sub_ptr (cmd%scan_cmd(i)%ptr) key = parse_node_get_rule_key (pn_var_single) select case (char (key)) case ("scan_string_decl", "scan_log_decl") pn_decl_single => parse_node_get_sub_ptr (pn_var_single, 2) call parse_node_final (pn_decl_single, recursive=.false.) deallocate (pn_decl_single) end select call parse_node_final (pn_var_single, recursive=.false.) deallocate (pn_var_single) end do deallocate (cmd%scan_cmd) end if !!! !!! gfortran 4.7.x memory corruption !!! if (allocated (cmd%range)) then !!! do i = 1, size (cmd%range) !!! call cmd%range(i)%final () !!! end do !!! end if if (allocated (cmd%range_int)) then do i = 1, size (cmd%range_int) call cmd%range_int(i)%final () end do end if if (allocated (cmd%range_real)) then do i = 1, size (cmd%range_real) call cmd%range_real(i)%final () end do end if end subroutine cmd_scan_final @ %def cmd_scan_final @ Output. <>= procedure :: write => cmd_scan_write <>= subroutine cmd_scan_write (cmd, unit, indent) class(cmd_scan_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,1x,A,1x,'(',I0,')')") "scan:", char (cmd%name), & cmd%n_values end subroutine cmd_scan_write @ %def cmd_scan_write @ Compile the scan command. We construct a new parse node that implements the variable assignment for a single element on the rhs, instead of the whole list that we get from the original parse tree. By simply copying the node, we copy all pointers and inherit the targets from the original. During execution, we should replace the rhs by the stored rhs pointers (the list elements), one by one, then (re)compile the redefined node. <>= procedure :: compile => cmd_scan_compile <>= recursive subroutine cmd_scan_compile (cmd, global) class(cmd_scan_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list type(parse_node_t), pointer :: pn_var, pn_body, pn_body_first type(parse_node_t), pointer :: pn_decl, pn_name type(parse_node_t), pointer :: pn_arg, pn_scan_cmd, pn_rhs type(parse_node_t), pointer :: pn_decl_single, pn_var_single type(syntax_rule_t), pointer :: var_rule_decl, var_rule type(string_t) :: key integer :: var_type integer :: i if (debug_on) call msg_debug (D_CORE, "cmd_scan_compile") if (debug_active (D_CORE)) call parse_node_write_rec (cmd%pn) pn_var => parse_node_get_sub_ptr (cmd%pn, 2) pn_body => parse_node_get_next_ptr (pn_var) if (associated (pn_body)) then pn_body_first => parse_node_get_sub_ptr (pn_body) else pn_body_first => null () end if key = parse_node_get_rule_key (pn_var) select case (char (key)) case ("scan_num") pn_name => parse_node_get_sub_ptr (pn_var) cmd%name = parse_node_get_string (pn_name) var_rule => syntax_get_rule_ptr (syntax_cmd_list, var_str ("cmd_num")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_int") pn_name => parse_node_get_sub_ptr (pn_var, 2) cmd%name = parse_node_get_string (pn_name) var_rule => syntax_get_rule_ptr (syntax_cmd_list, var_str ("cmd_int")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_real") pn_name => parse_node_get_sub_ptr (pn_var, 2) cmd%name = parse_node_get_string (pn_name) var_rule => syntax_get_rule_ptr (syntax_cmd_list, var_str ("cmd_real")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_complex") pn_name => parse_node_get_sub_ptr (pn_var, 2) cmd%name = parse_node_get_string (pn_name) var_rule => syntax_get_rule_ptr (syntax_cmd_list, var_str("cmd_complex")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_alias") pn_name => parse_node_get_sub_ptr (pn_var, 2) cmd%name = parse_node_get_string (pn_name) var_rule => syntax_get_rule_ptr (syntax_cmd_list, var_str ("cmd_alias")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_string_decl") pn_decl => parse_node_get_sub_ptr (pn_var, 2) pn_name => parse_node_get_sub_ptr (pn_decl, 2) cmd%name = parse_node_get_string (pn_name) var_rule_decl => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_string")) var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_string_decl")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_log_decl") pn_decl => parse_node_get_sub_ptr (pn_var, 2) pn_name => parse_node_get_sub_ptr (pn_decl, 2) cmd%name = parse_node_get_string (pn_name) var_rule_decl => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_log")) var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_log_decl")) pn_arg => parse_node_get_next_ptr (pn_name, 2) case ("scan_cuts") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_cuts")) cmd%name = "cuts" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_weight") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_weight")) cmd%name = "weight" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_scale") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_scale")) cmd%name = "scale" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_ren_scale") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_ren_scale")) cmd%name = "renormalization_scale" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_fac_scale") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_fac_scale")) cmd%name = "factorization_scale" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_selection") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_selection")) cmd%name = "selection" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_reweight") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_reweight")) cmd%name = "reweight" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_analysis") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_analysis")) cmd%name = "analysis" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_model") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_model")) cmd%name = "model" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case ("scan_library") var_rule => syntax_get_rule_ptr (syntax_cmd_list, & var_str ("cmd_library")) cmd%name = "library" pn_arg => parse_node_get_sub_ptr (pn_var, 3) case default call msg_bug ("scan: case '" // char (key) // "' not implemented") end select if (associated (pn_arg)) then cmd%n_values = parse_node_get_n_sub (pn_arg) end if var_list => global%get_var_list_ptr () allocate (cmd%scan_cmd (cmd%n_values)) select case (char (key)) case ("scan_num") var_type = & var_list%get_type (cmd%name) select case (var_type) case (V_INT) !!! !!! gfortran 4.7.x memory corruption !!! allocate (range_int_t :: cmd%range (cmd%n_values)) allocate (cmd%range_int (cmd%n_values)) case (V_REAL) !!! !!! gfortran 4.7.x memory corruption !!! allocate (range_real_t :: cmd%range (cmd%n_values)) allocate (cmd%range_real (cmd%n_values)) case (V_CMPLX) call msg_fatal ("scan over complex variable not implemented") case (V_NONE) call msg_fatal ("scan: variable '" // char (cmd%name) //"' undefined") case default call msg_bug ("scan: impossible variable type") end select case ("scan_int") !!! !!! gfortran 4.7.x memory corruption !!! allocate (range_int_t :: cmd%range (cmd%n_values)) allocate (cmd%range_int (cmd%n_values)) case ("scan_real") !!! !!! gfortran 4.7.x memory corruption !!! allocate (range_real_t :: cmd%range (cmd%n_values)) allocate (cmd%range_real (cmd%n_values)) case ("scan_complex") call msg_fatal ("scan over complex variable not implemented") end select i = 1 if (associated (pn_arg)) then pn_rhs => parse_node_get_sub_ptr (pn_arg) else pn_rhs => null () end if do while (associated (pn_rhs)) allocate (pn_scan_cmd) call parse_node_create_branch (pn_scan_cmd, & syntax_get_rule_ptr (syntax_cmd_list, var_str ("command_list"))) allocate (pn_var_single) pn_var_single = pn_var call parse_node_replace_rule (pn_var_single, var_rule) select case (char (key)) case ("scan_num", "scan_int", "scan_real", & "scan_complex", "scan_alias", & "scan_cuts", "scan_weight", & "scan_scale", "scan_ren_scale", "scan_fac_scale", & "scan_selection", "scan_reweight", "scan_analysis", & "scan_model", "scan_library") if (allocated (cmd%range_int)) then call cmd%range_int(i)%init (pn_rhs) !!! !!! gfortran 4.7.x memory corruption !!! call cmd%range_int(i)%compile (global) call parse_node_replace_last_sub & (pn_var_single, cmd%range_int(i)%pn_expr) else if (allocated (cmd%range_real)) then call cmd%range_real(i)%init (pn_rhs) !!! !!! gfortran 4.7.x memory corruption !!! call cmd%range_real(i)%compile (global) call parse_node_replace_last_sub & (pn_var_single, cmd%range_real(i)%pn_expr) else call parse_node_replace_last_sub (pn_var_single, pn_rhs) end if case ("scan_string_decl", "scan_log_decl") allocate (pn_decl_single) pn_decl_single = pn_decl call parse_node_replace_rule (pn_decl_single, var_rule_decl) call parse_node_replace_last_sub (pn_decl_single, pn_rhs) call parse_node_freeze_branch (pn_decl_single) call parse_node_replace_last_sub (pn_var_single, pn_decl_single) case default call msg_bug ("scan: case '" // char (key) & // "' broken") end select call parse_node_freeze_branch (pn_var_single) call parse_node_append_sub (pn_scan_cmd, pn_var_single) call parse_node_append_sub (pn_scan_cmd, pn_body_first) call parse_node_freeze_branch (pn_scan_cmd) cmd%scan_cmd(i)%ptr => pn_scan_cmd i = i + 1 pn_rhs => parse_node_get_next_ptr (pn_rhs) end do if (debug_active (D_CORE)) then do i = 1, cmd%n_values print *, "scan command ", i call parse_node_write_rec (cmd%scan_cmd(i)%ptr) if (allocated (cmd%range_int)) call cmd%range_int(i)%write () if (allocated (cmd%range_real)) call cmd%range_real(i)%write () end do print *, "original" call parse_node_write_rec (cmd%pn) end if end subroutine cmd_scan_compile @ %def cmd_scan_compile @ Execute the loop for all values in the step list. We use the parse trees with single variable assignment that we have stored, to iteratively create a local environment, execute the stored commands, and destroy it again. When we encounter a range object, we execute the commands for each value that this object provides. Computing this value has the side effect of modifying the rhs of the variable assignment that heads the local command list, directly in the local parse tree. <>= procedure :: execute => cmd_scan_execute <>= recursive subroutine cmd_scan_execute (cmd, global) class(cmd_scan_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(rt_data_t), allocatable :: local integer :: i, j do i = 1, cmd%n_values if (allocated (cmd%range_int)) then call cmd%range_int(i)%compile (global) call cmd%range_int(i)%evaluate () do j = 1, cmd%range_int(i)%get_n_iterations () call cmd%range_int(i)%set_value (j) allocate (local) call build_alt_setup (local, global, cmd%scan_cmd(i)%ptr) call local%local_final () deallocate (local) end do else if (allocated (cmd%range_real)) then call cmd%range_real(i)%compile (global) call cmd%range_real(i)%evaluate () do j = 1, cmd%range_real(i)%get_n_iterations () call cmd%range_real(i)%set_value (j) allocate (local) call build_alt_setup (local, global, cmd%scan_cmd(i)%ptr) call local%local_final () deallocate (local) end do else allocate (local) call build_alt_setup (local, global, cmd%scan_cmd(i)%ptr) call local%local_final () deallocate (local) end if end do end subroutine cmd_scan_execute @ %def cmd_scan_execute @ \subsubsection{Conditionals} Conditionals are implemented as a list that is compiled and evaluated recursively; this allows for a straightforward representation of [[else if]] constructs. A [[cmd_if_t]] object can hold either an [[else_if]] clause which is another object of this type, or an [[else_body]], but not both. If- or else-bodies are no scoping units, so all data remain global and no copy-in copy-out is needed. <>= type, extends (command_t) :: cmd_if_t private type(parse_node_t), pointer :: pn_if_lexpr => null () type(command_list_t), pointer :: if_body => null () type(cmd_if_t), dimension(:), pointer :: elsif_cmd => null () type(command_list_t), pointer :: else_body => null () contains <> end type cmd_if_t @ %def cmd_if_t @ Finalizer. There are no local options, therefore we can simply override the default finalizer. <>= procedure :: final => cmd_if_final <>= recursive subroutine cmd_if_final (cmd) class(cmd_if_t), intent(inout) :: cmd integer :: i if (associated (cmd%if_body)) then call command_list_final (cmd%if_body) deallocate (cmd%if_body) end if if (associated (cmd%elsif_cmd)) then do i = 1, size (cmd%elsif_cmd) call cmd_if_final (cmd%elsif_cmd(i)) end do deallocate (cmd%elsif_cmd) end if if (associated (cmd%else_body)) then call command_list_final (cmd%else_body) deallocate (cmd%else_body) end if end subroutine cmd_if_final @ %def cmd_if_final @ Output. Recursively write the command lists. <>= procedure :: write => cmd_if_write <>= subroutine cmd_if_write (cmd, unit, indent) class(cmd_if_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, ind, i u = given_output_unit (unit); if (u < 0) return ind = 0; if (present (indent)) ind = indent call write_indent (u, indent) write (u, "(A)") "if then" if (associated (cmd%if_body)) then call cmd%if_body%write (unit, ind + 1) end if if (associated (cmd%elsif_cmd)) then do i = 1, size (cmd%elsif_cmd) call write_indent (u, indent) write (u, "(A)") "elsif then" if (associated (cmd%elsif_cmd(i)%if_body)) then call cmd%elsif_cmd(i)%if_body%write (unit, ind + 1) end if end do end if if (associated (cmd%else_body)) then call write_indent (u, indent) write (u, "(A)") "else" call cmd%else_body%write (unit, ind + 1) end if end subroutine cmd_if_write @ %def cmd_if_write @ Compile the conditional. <>= procedure :: compile => cmd_if_compile <>= recursive subroutine cmd_if_compile (cmd, global) class(cmd_if_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_lexpr, pn_body type(parse_node_t), pointer :: pn_elsif_clauses, pn_cmd_elsif type(parse_node_t), pointer :: pn_else_clause, pn_cmd_else integer :: i, n_elsif pn_lexpr => parse_node_get_sub_ptr (cmd%pn, 2) cmd%pn_if_lexpr => pn_lexpr pn_body => parse_node_get_next_ptr (pn_lexpr, 2) select case (char (parse_node_get_rule_key (pn_body))) case ("command_list") allocate (cmd%if_body) call cmd%if_body%compile (pn_body, global) pn_elsif_clauses => parse_node_get_next_ptr (pn_body) case default pn_elsif_clauses => pn_body end select select case (char (parse_node_get_rule_key (pn_elsif_clauses))) case ("elsif_clauses") n_elsif = parse_node_get_n_sub (pn_elsif_clauses) allocate (cmd%elsif_cmd (n_elsif)) pn_cmd_elsif => parse_node_get_sub_ptr (pn_elsif_clauses) do i = 1, n_elsif pn_lexpr => parse_node_get_sub_ptr (pn_cmd_elsif, 2) cmd%elsif_cmd(i)%pn_if_lexpr => pn_lexpr pn_body => parse_node_get_next_ptr (pn_lexpr, 2) if (associated (pn_body)) then allocate (cmd%elsif_cmd(i)%if_body) call cmd%elsif_cmd(i)%if_body%compile (pn_body, global) end if pn_cmd_elsif => parse_node_get_next_ptr (pn_cmd_elsif) end do pn_else_clause => parse_node_get_next_ptr (pn_elsif_clauses) case default pn_else_clause => pn_elsif_clauses end select select case (char (parse_node_get_rule_key (pn_else_clause))) case ("else_clause") pn_cmd_else => parse_node_get_sub_ptr (pn_else_clause) pn_body => parse_node_get_sub_ptr (pn_cmd_else, 2) if (associated (pn_body)) then allocate (cmd%else_body) call cmd%else_body%compile (pn_body, global) end if end select end subroutine cmd_if_compile @ %def global @ (Recursively) execute the condition. Context remains global in all cases. <>= procedure :: execute => cmd_if_execute <>= recursive subroutine cmd_if_execute (cmd, global) class(cmd_if_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list logical :: lval, is_known integer :: i var_list => global%get_var_list_ptr () lval = eval_log (cmd%pn_if_lexpr, var_list, is_known=is_known) if (is_known) then if (lval) then if (associated (cmd%if_body)) then call cmd%if_body%execute (global) end if return end if else call error_undecided () return end if if (associated (cmd%elsif_cmd)) then SCAN_ELSIF: do i = 1, size (cmd%elsif_cmd) lval = eval_log (cmd%elsif_cmd(i)%pn_if_lexpr, var_list, & is_known=is_known) if (is_known) then if (lval) then if (associated (cmd%elsif_cmd(i)%if_body)) then call cmd%elsif_cmd(i)%if_body%execute (global) end if return end if else call error_undecided () return end if end do SCAN_ELSIF end if if (associated (cmd%else_body)) then call cmd%else_body%execute (global) end if contains subroutine error_undecided () call msg_error ("Undefined result of cmditional expression: " & // "neither branch will be executed") end subroutine error_undecided end subroutine cmd_if_execute @ %def cmd_if_execute @ \subsubsection{Include another command-list file} The include command allocates a local parse tree. This must not be deleted before the command object itself is deleted, since pointers may point to subobjects of it. <>= type, extends (command_t) :: cmd_include_t private type(string_t) :: file type(command_list_t), pointer :: command_list => null () type(parse_tree_t) :: parse_tree contains <> end type cmd_include_t @ %def cmd_include_t @ Finalizer: delete the command list. No options, so we can simply override the default finalizer. <>= procedure :: final => cmd_include_final <>= subroutine cmd_include_final (cmd) class(cmd_include_t), intent(inout) :: cmd call parse_tree_final (cmd%parse_tree) if (associated (cmd%command_list)) then call cmd%command_list%final () deallocate (cmd%command_list) end if end subroutine cmd_include_final @ %def cmd_include_final @ Write: display the command list as-is, if allocated. <>= procedure :: write => cmd_include_write <>= subroutine cmd_include_write (cmd, unit, indent) class(cmd_include_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, ind u = given_output_unit (unit) ind = 0; if (present (indent)) ind = indent call write_indent (u, indent) write (u, "(A,A,A,A)") "include ", '"', char (cmd%file), '"' if (associated (cmd%command_list)) then call cmd%command_list%write (u, ind + 1) end if end subroutine cmd_include_write @ %def cmd_include_write @ Compile file contents: First parse the file, then immediately compile its contents. Use the global data set. <>= procedure :: compile => cmd_include_compile <>= subroutine cmd_include_compile (cmd, global) class(cmd_include_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_file type(string_t) :: file logical :: exist integer :: u type(stream_t), target :: stream type(lexer_t) :: lexer pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) pn_file => parse_node_get_sub_ptr (pn_arg) file = parse_node_get_string (pn_file) inquire (file=char(file), exist=exist) if (exist) then cmd%file = file else cmd%file = global%os_data%whizard_cutspath // "/" // file inquire (file=char(cmd%file), exist=exist) if (.not. exist) then call msg_error ("Include file '" // char (file) // "' not found") return end if end if u = free_unit () call lexer_init_cmd_list (lexer, global%lexer) call stream_init (stream, char (cmd%file)) call lexer_assign_stream (lexer, stream) call parse_tree_init (cmd%parse_tree, syntax_cmd_list, lexer) call stream_final (stream) call lexer_final (lexer) close (u) allocate (cmd%command_list) call cmd%command_list%compile (cmd%parse_tree%get_root_ptr (), & global) end subroutine cmd_include_compile @ %def cmd_include_compile @ Execute file contents in the global context. <>= procedure :: execute => cmd_include_execute <>= subroutine cmd_include_execute (cmd, global) class(cmd_include_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global if (associated (cmd%command_list)) then call msg_message & ("Including Sindarin from '" // char (cmd%file) // "'") call cmd%command_list%execute (global) call msg_message & ("End of included '" // char (cmd%file) // "'") end if end subroutine cmd_include_execute @ %def cmd_include_execute @ \subsubsection{Export values} This command exports the current values of variables or other objects to the surrounding scope. By default, a scope enclosed by braces keeps all objects local to it. The [[export]] command exports the values that are generated within the scope to the corresponding object in the outer scope. The allowed set of exportable objects is, in principle, the same as the set of objects that the [[show]] command supports. This includes some convenience abbreviations. TODO: The initial implementation inherits syntax from [[show]], but supports only the [[results]] pseudo-object. The results (i.e., the process stack) is appended to the outer process stack instead of being discarded. The behavior of the [[export]] command for other object kinds is to be defined on a case-by-case basis. It may involve replacing the outer value or, instead, doing some sort of appending or reduction. <>= type, extends (command_t) :: cmd_export_t private type(string_t), dimension(:), allocatable :: name contains <> end type cmd_export_t @ %def cmd_export_t @ Output: list the object names, not values. <>= procedure :: write => cmd_export_write <>= subroutine cmd_export_write (cmd, unit, indent) class(cmd_export_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u, i u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A)", advance="no") "export: " if (allocated (cmd%name)) then do i = 1, size (cmd%name) write (u, "(1x,A)", advance="no") char (cmd%name(i)) end do write (u, *) else write (u, "(5x,A)") "[undefined]" end if end subroutine cmd_export_write @ %def cmd_export_write @ Compile. Allocate an array which is filled with the names of the variables to export. <>= procedure :: compile => cmd_export_compile <>= subroutine cmd_export_compile (cmd, global) class(cmd_export_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg, pn_var, pn_prefix, pn_name type(string_t) :: key integer :: i, n_args pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) if (associated (pn_arg)) then select case (char (parse_node_get_rule_key (pn_arg))) case ("show_arg") cmd%pn_opt => parse_node_get_next_ptr (pn_arg) case default cmd%pn_opt => pn_arg pn_arg => null () end select end if call cmd%compile_options (global) if (associated (pn_arg)) then n_args = parse_node_get_n_sub (pn_arg) allocate (cmd%name (n_args)) pn_var => parse_node_get_sub_ptr (pn_arg) i = 0 do while (associated (pn_var)) i = i + 1 select case (char (parse_node_get_rule_key (pn_var))) case ("model", "library", "beams", "iterations", & "cuts", "weight", "int", "real", "complex", & "scale", "factorization_scale", "renormalization_scale", & "selection", "reweight", "analysis", "pdg", & "stable", "unstable", "polarized", "unpolarized", & "results", "expect", "intrinsic", "string", "logical") cmd%name(i) = parse_node_get_key (pn_var) case ("result_var") pn_prefix => parse_node_get_sub_ptr (pn_var) pn_name => parse_node_get_next_ptr (pn_prefix) if (associated (pn_name)) then cmd%name(i) = parse_node_get_key (pn_prefix) & // "(" // parse_node_get_string (pn_name) // ")" else cmd%name(i) = parse_node_get_key (pn_prefix) end if case ("log_var", "string_var", "alias_var") pn_prefix => parse_node_get_sub_ptr (pn_var) pn_name => parse_node_get_next_ptr (pn_prefix) key = parse_node_get_key (pn_prefix) if (associated (pn_name)) then select case (char (parse_node_get_rule_key (pn_name))) case ("var_name") select case (char (key)) case ("?", "$") ! $ sign cmd%name(i) = key // parse_node_get_string (pn_name) case ("alias") cmd%name(i) = parse_node_get_string (pn_name) end select case default call parse_node_mismatch & ("var_name", pn_name) end select else cmd%name(i) = key end if case default cmd%name(i) = parse_node_get_string (pn_var) end select !!! restriction imposed by current lack of implementation select case (char (parse_node_get_rule_key (pn_var))) case ("results") case default call msg_fatal ("export: object (type) '" & // char (parse_node_get_rule_key (pn_var)) & // "' not supported yet") end select pn_var => parse_node_get_next_ptr (pn_var) end do else allocate (cmd%name (0)) end if end subroutine cmd_export_compile @ %def cmd_export_compile @ Execute. Scan the list of objects to export. <>= procedure :: execute => cmd_export_execute <>= subroutine cmd_export_execute (cmd, global) class(cmd_export_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global call global%append_exports (cmd%name) end subroutine cmd_export_execute @ %def cmd_export_execute @ \subsubsection{Quit command execution} The code is the return code of the whole program if it is terminated by this command. <>= type, extends (command_t) :: cmd_quit_t private logical :: has_code = .false. type(parse_node_t), pointer :: pn_code_expr => null () contains <> end type cmd_quit_t @ %def cmd_quit_t @ Output. <>= procedure :: write => cmd_quit_write <>= subroutine cmd_quit_write (cmd, unit, indent) class(cmd_quit_t), intent(in) :: cmd integer, intent(in), optional :: unit, indent integer :: u u = given_output_unit (unit); if (u < 0) return call write_indent (u, indent) write (u, "(1x,A,L1)") "quit: has_code = ", cmd%has_code end subroutine cmd_quit_write @ %def cmd_quit_write @ Compile: allocate a [[quit]] object which serves as a placeholder. <>= procedure :: compile => cmd_quit_compile <>= subroutine cmd_quit_compile (cmd, global) class(cmd_quit_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_arg pn_arg => parse_node_get_sub_ptr (cmd%pn, 2) if (associated (pn_arg)) then cmd%pn_code_expr => parse_node_get_sub_ptr (pn_arg) cmd%has_code = .true. end if end subroutine cmd_quit_compile @ %def cmd_quit_compile @ Execute: The quit command does not execute anything, it just stops command execution. This is achieved by setting quit flag and quit code in the global variable list. However, the return code, if present, is an expression which has to be evaluated. <>= procedure :: execute => cmd_quit_execute <>= subroutine cmd_quit_execute (cmd, global) class(cmd_quit_t), intent(inout) :: cmd type(rt_data_t), intent(inout), target :: global type(var_list_t), pointer :: var_list logical :: is_known var_list => global%get_var_list_ptr () if (cmd%has_code) then global%quit_code = eval_int (cmd%pn_code_expr, var_list, & is_known=is_known) if (.not. is_known) then call msg_error ("Undefined return code of quit/exit command") end if end if global%quit = .true. end subroutine cmd_quit_execute @ %def cmd_quit_execute @ \subsection{The command list} The command list holds a list of commands and relevant global data. <>= public :: command_list_t <>= type :: command_list_t ! not private anymore as required by the whizard-c-interface class(command_t), pointer :: first => null () class(command_t), pointer :: last => null () contains <> end type command_list_t @ %def command_list_t @ Output. <>= procedure :: write => command_list_write <>= recursive subroutine command_list_write (cmd_list, unit, indent) class(command_list_t), intent(in) :: cmd_list integer, intent(in), optional :: unit, indent class(command_t), pointer :: cmd cmd => cmd_list%first do while (associated (cmd)) call cmd%write (unit, indent) cmd => cmd%next end do end subroutine command_list_write @ %def command_list_write @ Append a new command to the list and free the original pointer. <>= procedure :: append => command_list_append <>= subroutine command_list_append (cmd_list, command) class(command_list_t), intent(inout) :: cmd_list class(command_t), intent(inout), pointer :: command if (associated (cmd_list%last)) then cmd_list%last%next => command else cmd_list%first => command end if cmd_list%last => command command => null () end subroutine command_list_append @ %def command_list_append @ Finalize. <>= procedure :: final => command_list_final <>= recursive subroutine command_list_final (cmd_list) class(command_list_t), intent(inout) :: cmd_list class(command_t), pointer :: command do while (associated (cmd_list%first)) command => cmd_list%first cmd_list%first => cmd_list%first%next call command%final () deallocate (command) end do cmd_list%last => null () end subroutine command_list_final @ %def command_list_final @ \subsection{Compiling the parse tree} Transform a parse tree into a command list. Initialization is assumed to be done. After each command, we set a breakpoint. <>= procedure :: compile => command_list_compile <>= recursive subroutine command_list_compile (cmd_list, pn, global) class(command_list_t), intent(inout), target :: cmd_list type(parse_node_t), intent(in), target :: pn type(rt_data_t), intent(inout), target :: global type(parse_node_t), pointer :: pn_cmd class(command_t), pointer :: command integer :: i pn_cmd => parse_node_get_sub_ptr (pn) do i = 1, parse_node_get_n_sub (pn) call dispatch_command (command, pn_cmd) call command%compile (global) call cmd_list%append (command) call terminate_now_if_signal () pn_cmd => parse_node_get_next_ptr (pn_cmd) end do end subroutine command_list_compile @ %def command_list_compile @ \subsection{Executing the command list} Before executing a command we should execute its options (if any). After that, reset the options, i.e., remove temporary effects from the global state. Also here, after each command we set a breakpoint. <>= procedure :: execute => command_list_execute <>= recursive subroutine command_list_execute (cmd_list, global) class(command_list_t), intent(in) :: cmd_list type(rt_data_t), intent(inout), target :: global class(command_t), pointer :: command command => cmd_list%first COMMAND_COND: do while (associated (command)) call command%execute_options (global) call command%execute (global) call command%reset_options (global) call terminate_now_if_signal () if (global%quit) exit COMMAND_COND command => command%next end do COMMAND_COND end subroutine command_list_execute @ %def command_list_execute @ \subsection{Command list syntax} <>= public :: syntax_cmd_list <>= type(syntax_t), target, save :: syntax_cmd_list @ %def syntax_cmd_list <>= public :: syntax_cmd_list_init <>= subroutine syntax_cmd_list_init () type(ifile_t) :: ifile call define_cmd_list_syntax (ifile) call syntax_init (syntax_cmd_list, ifile) call ifile_final (ifile) end subroutine syntax_cmd_list_init @ %def syntax_cmd_list_init <>= public :: syntax_cmd_list_final <>= subroutine syntax_cmd_list_final () call syntax_final (syntax_cmd_list) end subroutine syntax_cmd_list_final @ %def syntax_cmd_list_final <>= public :: syntax_cmd_list_write <>= subroutine syntax_cmd_list_write (unit) integer, intent(in), optional :: unit call syntax_write (syntax_cmd_list, unit) end subroutine syntax_cmd_list_write @ %def syntax_cmd_list_write <>= subroutine define_cmd_list_syntax (ifile) type(ifile_t), intent(inout) :: ifile call ifile_append (ifile, "SEQ command_list = command*") call ifile_append (ifile, "ALT command = " & // "cmd_model | cmd_library | cmd_iterations | cmd_sample_format | " & // "cmd_var | cmd_slha | " & // "cmd_show | cmd_clear | " & // "cmd_expect | " & // "cmd_cuts | cmd_scale | cmd_fac_scale | cmd_ren_scale | " & // "cmd_weight | cmd_selection | cmd_reweight | " & // "cmd_beams | cmd_beams_pol_density | cmd_beams_pol_fraction | " & // "cmd_beams_momentum | cmd_beams_theta | cmd_beams_phi | " & // "cmd_integrate | " & // "cmd_observable | cmd_histogram | cmd_plot | cmd_graph | " & // "cmd_record | " & // "cmd_analysis | cmd_alt_setup | " & // "cmd_unstable | cmd_stable | cmd_simulate | cmd_rescan | " & // "cmd_process | cmd_compile | cmd_exec | " & // "cmd_scan | cmd_if | cmd_include | cmd_quit | " & // "cmd_export | " & // "cmd_polarized | cmd_unpolarized | " & // "cmd_open_out | cmd_close_out | cmd_printf | " & // "cmd_write_analysis | cmd_compile_analysis | cmd_nlo | cmd_components") call ifile_append (ifile, "GRO options = '{' local_command_list '}'") call ifile_append (ifile, "SEQ local_command_list = local_command*") call ifile_append (ifile, "ALT local_command = " & // "cmd_model | cmd_library | cmd_iterations | cmd_sample_format | " & // "cmd_var | cmd_slha | " & // "cmd_show | " & // "cmd_expect | " & // "cmd_cuts | cmd_scale | cmd_fac_scale | cmd_ren_scale | " & // "cmd_weight | cmd_selection | cmd_reweight | " & // "cmd_beams | cmd_beams_pol_density | cmd_beams_pol_fraction | " & // "cmd_beams_momentum | cmd_beams_theta | cmd_beams_phi | " & // "cmd_observable | cmd_histogram | cmd_plot | cmd_graph | " & // "cmd_clear | cmd_record | " & // "cmd_analysis | cmd_alt_setup | " & // "cmd_open_out | cmd_close_out | cmd_printf | " & // "cmd_write_analysis | cmd_compile_analysis | cmd_nlo | cmd_components") call ifile_append (ifile, "SEQ cmd_model = model '=' model_name model_arg?") call ifile_append (ifile, "KEY model") call ifile_append (ifile, "ALT model_name = model_id | string_literal") call ifile_append (ifile, "IDE model_id") call ifile_append (ifile, "ARG model_arg = ( model_scheme? )") call ifile_append (ifile, "ALT model_scheme = " & // "ufo_spec | scheme_id | string_literal") call ifile_append (ifile, "SEQ ufo_spec = ufo ufo_arg?") call ifile_append (ifile, "KEY ufo") call ifile_append (ifile, "ARG ufo_arg = ( string_literal )") call ifile_append (ifile, "IDE scheme_id") call ifile_append (ifile, "SEQ cmd_library = library '=' lib_name") call ifile_append (ifile, "KEY library") call ifile_append (ifile, "ALT lib_name = lib_id | string_literal") call ifile_append (ifile, "IDE lib_id") call ifile_append (ifile, "ALT cmd_var = " & // "cmd_log_decl | cmd_log | " & // "cmd_int | cmd_real | cmd_complex | cmd_num | " & // "cmd_string_decl | cmd_string | cmd_alias | " & // "cmd_result") call ifile_append (ifile, "SEQ cmd_log_decl = logical cmd_log") call ifile_append (ifile, "SEQ cmd_log = '?' var_name '=' lexpr") call ifile_append (ifile, "SEQ cmd_int = int var_name '=' expr") call ifile_append (ifile, "SEQ cmd_real = real var_name '=' expr") call ifile_append (ifile, "SEQ cmd_complex = complex var_name '=' expr") call ifile_append (ifile, "SEQ cmd_num = var_name '=' expr") call ifile_append (ifile, "SEQ cmd_string_decl = string cmd_string") call ifile_append (ifile, "SEQ cmd_string = " & // "'$' var_name '=' sexpr") ! $ call ifile_append (ifile, "SEQ cmd_alias = alias var_name '=' cexpr") call ifile_append (ifile, "SEQ cmd_result = result '=' expr") call ifile_append (ifile, "SEQ cmd_slha = slha_action slha_arg options?") call ifile_append (ifile, "ALT slha_action = " & // "read_slha | write_slha") call ifile_append (ifile, "KEY read_slha") call ifile_append (ifile, "KEY write_slha") call ifile_append (ifile, "ARG slha_arg = ( string_literal )") call ifile_append (ifile, "SEQ cmd_show = show show_arg options?") call ifile_append (ifile, "KEY show") call ifile_append (ifile, "ARG show_arg = ( showable* )") call ifile_append (ifile, "ALT showable = " & // "model | library | beams | iterations | " & // "cuts | weight | logical | string | pdg | " & // "scale | factorization_scale | renormalization_scale | " & // "selection | reweight | analysis | " & // "stable | unstable | polarized | unpolarized | " & // "expect | intrinsic | int | real | complex | " & // "alias_var | string | results | result_var | " & // "log_var | string_var | var_name") call ifile_append (ifile, "KEY results") call ifile_append (ifile, "KEY intrinsic") call ifile_append (ifile, "SEQ alias_var = alias var_name") call ifile_append (ifile, "SEQ result_var = result_key result_arg?") call ifile_append (ifile, "SEQ log_var = '?' var_name") call ifile_append (ifile, "SEQ string_var = '$' var_name") ! $ call ifile_append (ifile, "SEQ cmd_clear = clear clear_arg options?") call ifile_append (ifile, "KEY clear") call ifile_append (ifile, "ARG clear_arg = ( clearable* )") call ifile_append (ifile, "ALT clearable = " & // "beams | iterations | " & // "cuts | weight | " & // "scale | factorization_scale | renormalization_scale | " & // "selection | reweight | analysis | " & // "unstable | polarized | " & // "expect | " & // "log_var | string_var | var_name") call ifile_append (ifile, "SEQ cmd_expect = expect expect_arg options?") call ifile_append (ifile, "KEY expect") call ifile_append (ifile, "ARG expect_arg = ( lexpr )") call ifile_append (ifile, "SEQ cmd_cuts = cuts '=' lexpr") call ifile_append (ifile, "SEQ cmd_scale = scale '=' expr") call ifile_append (ifile, "SEQ cmd_fac_scale = " & // "factorization_scale '=' expr") call ifile_append (ifile, "SEQ cmd_ren_scale = " & // "renormalization_scale '=' expr") call ifile_append (ifile, "SEQ cmd_weight = weight '=' expr") call ifile_append (ifile, "SEQ cmd_selection = selection '=' lexpr") call ifile_append (ifile, "SEQ cmd_reweight = reweight '=' expr") call ifile_append (ifile, "KEY cuts") call ifile_append (ifile, "KEY scale") call ifile_append (ifile, "KEY factorization_scale") call ifile_append (ifile, "KEY renormalization_scale") call ifile_append (ifile, "KEY weight") call ifile_append (ifile, "KEY selection") call ifile_append (ifile, "KEY reweight") call ifile_append (ifile, "SEQ cmd_process = process process_id '=' " & // "process_prt '=>' prt_state_list options?") call ifile_append (ifile, "KEY process") call ifile_append (ifile, "KEY '=>'") call ifile_append (ifile, "LIS process_prt = cexpr+") call ifile_append (ifile, "LIS prt_state_list = prt_state_sum+") call ifile_append (ifile, "SEQ prt_state_sum = " & // "prt_state prt_state_addition*") call ifile_append (ifile, "SEQ prt_state_addition = '+' prt_state") call ifile_append (ifile, "ALT prt_state = grouped_prt_state_list | cexpr") call ifile_append (ifile, "GRO grouped_prt_state_list = " & // "( prt_state_list )") call ifile_append (ifile, "SEQ cmd_compile = compile_cmd options?") call ifile_append (ifile, "SEQ compile_cmd = compile_clause compile_arg?") call ifile_append (ifile, "SEQ compile_clause = compile exec_name_spec?") call ifile_append (ifile, "KEY compile") call ifile_append (ifile, "SEQ exec_name_spec = as exec_name") call ifile_append (ifile, "KEY as") call ifile_append (ifile, "ALT exec_name = exec_id | string_literal") call ifile_append (ifile, "IDE exec_id") call ifile_append (ifile, "ARG compile_arg = ( lib_name* )") call ifile_append (ifile, "SEQ cmd_exec = exec exec_arg") call ifile_append (ifile, "KEY exec") call ifile_append (ifile, "ARG exec_arg = ( sexpr )") call ifile_append (ifile, "SEQ cmd_beams = beams '=' beam_def") call ifile_append (ifile, "KEY beams") call ifile_append (ifile, "SEQ beam_def = beam_spec strfun_seq*") call ifile_append (ifile, "SEQ beam_spec = beam_list") call ifile_append (ifile, "LIS beam_list = cexpr, cexpr?") call ifile_append (ifile, "SEQ cmd_beams_pol_density = " & // "beams_pol_density '=' beams_pol_spec") call ifile_append (ifile, "KEY beams_pol_density") call ifile_append (ifile, "LIS beams_pol_spec = smatrix, smatrix?") call ifile_append (ifile, "SEQ smatrix = '@' smatrix_arg") ! call ifile_append (ifile, "KEY '@'") !!! Key already exists call ifile_append (ifile, "ARG smatrix_arg = ( sentry* )") call ifile_append (ifile, "SEQ sentry = expr extra_sentry*") call ifile_append (ifile, "SEQ extra_sentry = ':' expr") call ifile_append (ifile, "SEQ cmd_beams_pol_fraction = " & // "beams_pol_fraction '=' beams_par_spec") call ifile_append (ifile, "KEY beams_pol_fraction") call ifile_append (ifile, "SEQ cmd_beams_momentum = " & // "beams_momentum '=' beams_par_spec") call ifile_append (ifile, "KEY beams_momentum") call ifile_append (ifile, "SEQ cmd_beams_theta = " & // "beams_theta '=' beams_par_spec") call ifile_append (ifile, "KEY beams_theta") call ifile_append (ifile, "SEQ cmd_beams_phi = " & // "beams_phi '=' beams_par_spec") call ifile_append (ifile, "KEY beams_phi") call ifile_append (ifile, "LIS beams_par_spec = expr, expr?") call ifile_append (ifile, "SEQ strfun_seq = '=>' strfun_pair") call ifile_append (ifile, "LIS strfun_pair = strfun_def, strfun_def?") call ifile_append (ifile, "SEQ strfun_def = strfun_id") call ifile_append (ifile, "ALT strfun_id = " & // "none | lhapdf | lhapdf_photon | pdf_builtin | pdf_builtin_photon | " & // "isr | epa | ewa | circe1 | circe2 | energy_scan | " & // "gaussian | beam_events") call ifile_append (ifile, "KEY none") call ifile_append (ifile, "KEY lhapdf") call ifile_append (ifile, "KEY lhapdf_photon") call ifile_append (ifile, "KEY pdf_builtin") call ifile_append (ifile, "KEY pdf_builtin_photon") call ifile_append (ifile, "KEY isr") call ifile_append (ifile, "KEY epa") call ifile_append (ifile, "KEY ewa") call ifile_append (ifile, "KEY circe1") call ifile_append (ifile, "KEY circe2") call ifile_append (ifile, "KEY energy_scan") call ifile_append (ifile, "KEY gaussian") call ifile_append (ifile, "KEY beam_events") call ifile_append (ifile, "SEQ cmd_integrate = " & // "integrate proc_arg options?") call ifile_append (ifile, "KEY integrate") call ifile_append (ifile, "ARG proc_arg = ( proc_id* )") call ifile_append (ifile, "IDE proc_id") call ifile_append (ifile, "SEQ cmd_iterations = " & // "iterations '=' iterations_list") call ifile_append (ifile, "KEY iterations") call ifile_append (ifile, "LIS iterations_list = iterations_spec+") call ifile_append (ifile, "ALT iterations_spec = it_spec") call ifile_append (ifile, "SEQ it_spec = expr calls_spec adapt_spec?") call ifile_append (ifile, "SEQ calls_spec = ':' expr") call ifile_append (ifile, "SEQ adapt_spec = ':' sexpr") call ifile_append (ifile, "SEQ cmd_components = " & // "active '=' component_list") call ifile_append (ifile, "KEY active") call ifile_append (ifile, "LIS component_list = sexpr+") call ifile_append (ifile, "SEQ cmd_sample_format = " & // "sample_format '=' event_format_list") call ifile_append (ifile, "KEY sample_format") call ifile_append (ifile, "LIS event_format_list = event_format+") call ifile_append (ifile, "IDE event_format") call ifile_append (ifile, "SEQ cmd_observable = " & // "observable analysis_tag options?") call ifile_append (ifile, "KEY observable") call ifile_append (ifile, "SEQ cmd_histogram = " & // "histogram analysis_tag histogram_arg " & // "options?") call ifile_append (ifile, "KEY histogram") call ifile_append (ifile, "ARG histogram_arg = (expr, expr, expr?)") call ifile_append (ifile, "SEQ cmd_plot = plot analysis_tag options?") call ifile_append (ifile, "KEY plot") call ifile_append (ifile, "SEQ cmd_graph = graph graph_term '=' graph_def") call ifile_append (ifile, "KEY graph") call ifile_append (ifile, "SEQ graph_term = analysis_tag options?") call ifile_append (ifile, "SEQ graph_def = graph_term graph_append*") call ifile_append (ifile, "SEQ graph_append = '&' graph_term") call ifile_append (ifile, "SEQ cmd_analysis = analysis '=' lexpr") call ifile_append (ifile, "KEY analysis") call ifile_append (ifile, "SEQ cmd_alt_setup = " & // "alt_setup '=' option_list_expr") call ifile_append (ifile, "KEY alt_setup") call ifile_append (ifile, "ALT option_list_expr = " & // "grouped_option_list | option_list") call ifile_append (ifile, "GRO grouped_option_list = ( option_list_expr )") call ifile_append (ifile, "LIS option_list = options+") call ifile_append (ifile, "SEQ cmd_open_out = open_out open_arg options?") call ifile_append (ifile, "SEQ cmd_close_out = close_out open_arg options?") call ifile_append (ifile, "KEY open_out") call ifile_append (ifile, "KEY close_out") call ifile_append (ifile, "ARG open_arg = (sexpr)") call ifile_append (ifile, "SEQ cmd_printf = printf_cmd options?") call ifile_append (ifile, "SEQ printf_cmd = printf_clause sprintf_args?") call ifile_append (ifile, "SEQ printf_clause = printf sexpr") call ifile_append (ifile, "KEY printf") call ifile_append (ifile, "SEQ cmd_record = record_cmd") call ifile_append (ifile, "SEQ cmd_unstable = " & // "unstable cexpr unstable_arg options?") call ifile_append (ifile, "KEY unstable") call ifile_append (ifile, "ARG unstable_arg = ( proc_id* )") call ifile_append (ifile, "SEQ cmd_stable = stable stable_list options?") call ifile_append (ifile, "KEY stable") call ifile_append (ifile, "LIS stable_list = cexpr+") call ifile_append (ifile, "KEY polarized") call ifile_append (ifile, "SEQ cmd_polarized = polarized polarized_list options?") call ifile_append (ifile, "LIS polarized_list = cexpr+") call ifile_append (ifile, "KEY unpolarized") call ifile_append (ifile, "SEQ cmd_unpolarized = unpolarized unpolarized_list options?") call ifile_append (ifile, "LIS unpolarized_list = cexpr+") call ifile_append (ifile, "SEQ cmd_simulate = " & // "simulate proc_arg options?") call ifile_append (ifile, "KEY simulate") call ifile_append (ifile, "SEQ cmd_rescan = " & // "rescan sexpr proc_arg options?") call ifile_append (ifile, "KEY rescan") call ifile_append (ifile, "SEQ cmd_scan = scan scan_var scan_body?") call ifile_append (ifile, "KEY scan") call ifile_append (ifile, "ALT scan_var = " & // "scan_log_decl | scan_log | " & // "scan_int | scan_real | scan_complex | scan_num | " & // "scan_string_decl | scan_string | scan_alias | " & // "scan_cuts | scan_weight | " & // "scan_scale | scan_ren_scale | scan_fac_scale | " & // "scan_selection | scan_reweight | scan_analysis | " & // "scan_model | scan_library") call ifile_append (ifile, "SEQ scan_log_decl = logical scan_log") call ifile_append (ifile, "SEQ scan_log = '?' var_name '=' scan_log_arg") call ifile_append (ifile, "ARG scan_log_arg = ( lexpr* )") call ifile_append (ifile, "SEQ scan_int = int var_name '=' scan_num_arg") call ifile_append (ifile, "SEQ scan_real = real var_name '=' scan_num_arg") call ifile_append (ifile, "SEQ scan_complex = " & // "complex var_name '=' scan_num_arg") call ifile_append (ifile, "SEQ scan_num = var_name '=' scan_num_arg") call ifile_append (ifile, "ARG scan_num_arg = ( range* )") call ifile_append (ifile, "ALT range = grouped_range | range_expr") call ifile_append (ifile, "GRO grouped_range = ( range_expr )") call ifile_append (ifile, "SEQ range_expr = expr range_spec?") call ifile_append (ifile, "SEQ range_spec = '=>' expr step_spec?") call ifile_append (ifile, "SEQ step_spec = step_op expr") call ifile_append (ifile, "ALT step_op = " & // "'/+' | '/-' | '/*' | '//' | '/+/' | '/*/'") call ifile_append (ifile, "KEY '/+'") call ifile_append (ifile, "KEY '/-'") call ifile_append (ifile, "KEY '/*'") call ifile_append (ifile, "KEY '//'") call ifile_append (ifile, "KEY '/+/'") call ifile_append (ifile, "KEY '/*/'") call ifile_append (ifile, "SEQ scan_string_decl = string scan_string") call ifile_append (ifile, "SEQ scan_string = " & // "'$' var_name '=' scan_string_arg") call ifile_append (ifile, "ARG scan_string_arg = ( sexpr* )") call ifile_append (ifile, "SEQ scan_alias = " & // "alias var_name '=' scan_alias_arg") call ifile_append (ifile, "ARG scan_alias_arg = ( cexpr* )") call ifile_append (ifile, "SEQ scan_cuts = cuts '=' scan_lexpr_arg") call ifile_append (ifile, "ARG scan_lexpr_arg = ( lexpr* )") call ifile_append (ifile, "SEQ scan_scale = scale '=' scan_expr_arg") call ifile_append (ifile, "ARG scan_expr_arg = ( expr* )") call ifile_append (ifile, "SEQ scan_fac_scale = " & // "factorization_scale '=' scan_expr_arg") call ifile_append (ifile, "SEQ scan_ren_scale = " & // "renormalization_scale '=' scan_expr_arg") call ifile_append (ifile, "SEQ scan_weight = weight '=' scan_expr_arg") call ifile_append (ifile, "SEQ scan_selection = selection '=' scan_lexpr_arg") call ifile_append (ifile, "SEQ scan_reweight = reweight '=' scan_expr_arg") call ifile_append (ifile, "SEQ scan_analysis = analysis '=' scan_lexpr_arg") call ifile_append (ifile, "SEQ scan_model = model '=' scan_model_arg") call ifile_append (ifile, "ARG scan_model_arg = ( model_name* )") call ifile_append (ifile, "SEQ scan_library = library '=' scan_library_arg") call ifile_append (ifile, "ARG scan_library_arg = ( lib_name* )") call ifile_append (ifile, "GRO scan_body = '{' command_list '}'") call ifile_append (ifile, "SEQ cmd_if = " & // "if lexpr then command_list elsif_clauses else_clause endif") call ifile_append (ifile, "SEQ elsif_clauses = cmd_elsif*") call ifile_append (ifile, "SEQ cmd_elsif = elsif lexpr then command_list") call ifile_append (ifile, "SEQ else_clause = cmd_else?") call ifile_append (ifile, "SEQ cmd_else = else command_list") call ifile_append (ifile, "SEQ cmd_include = include include_arg") call ifile_append (ifile, "KEY include") call ifile_append (ifile, "ARG include_arg = ( string_literal )") call ifile_append (ifile, "SEQ cmd_quit = quit_cmd quit_arg?") call ifile_append (ifile, "ALT quit_cmd = quit | exit") call ifile_append (ifile, "KEY quit") call ifile_append (ifile, "KEY exit") call ifile_append (ifile, "ARG quit_arg = ( expr )") call ifile_append (ifile, "SEQ cmd_export = export show_arg options?") call ifile_append (ifile, "KEY export") call ifile_append (ifile, "SEQ cmd_write_analysis = " & // "write_analysis_clause options?") call ifile_append (ifile, "SEQ cmd_compile_analysis = " & // "compile_analysis_clause options?") call ifile_append (ifile, "SEQ write_analysis_clause = " & // "write_analysis write_analysis_arg?") call ifile_append (ifile, "SEQ compile_analysis_clause = " & // "compile_analysis write_analysis_arg?") call ifile_append (ifile, "KEY write_analysis") call ifile_append (ifile, "KEY compile_analysis") call ifile_append (ifile, "ARG write_analysis_arg = ( analysis_tag* )") call ifile_append (ifile, "SEQ cmd_nlo = " & // "nlo_calculation '=' nlo_calculation_list") call ifile_append (ifile, "KEY nlo_calculation") call ifile_append (ifile, "LIS nlo_calculation_list = nlo_comp+") call ifile_append (ifile, "ALT nlo_comp = " // & "full | born | real | virtual | dglap | subtraction | " // & "mismatch | GKS") call ifile_append (ifile, "KEY full") call ifile_append (ifile, "KEY born") call ifile_append (ifile, "KEY virtual") call ifile_append (ifile, "KEY dglap") call ifile_append (ifile, "KEY subtraction") call ifile_append (ifile, "KEY mismatch") call ifile_append (ifile, "KEY GKS") call define_expr_syntax (ifile, particles=.true., analysis=.true.) end subroutine define_cmd_list_syntax @ %def define_cmd_list_syntax <>= public :: lexer_init_cmd_list <>= subroutine lexer_init_cmd_list (lexer, parent_lexer) type(lexer_t), intent(out) :: lexer type(lexer_t), intent(in), optional, target :: parent_lexer call lexer_init (lexer, & comment_chars = "#!", & quote_chars = '"', & quote_match = '"', & single_chars = "()[]{},;:&%?$@", & special_class = [ "+-*/^", "<>=~ " ] , & keyword_list = syntax_get_keyword_list_ptr (syntax_cmd_list), & parent = parent_lexer) end subroutine lexer_init_cmd_list @ %def lexer_init_cmd_list @ \subsection{Unit Tests} Test module, followed by the corresponding implementation module. <<[[commands_ut.f90]]>>= <> module commands_ut use unit_tests use commands_uti <> <> contains <> end module commands_ut @ %def commands_ut @ <<[[commands_uti.f90]]>>= <> module commands_uti <> use kinds, only: i64 <> use io_units use ifiles use parser use interactions, only: reset_interaction_counter use prclib_stacks use analysis use variables, only: var_list_t use models use slha_interface use rt_data use event_base, only: generic_event_t, event_callback_t use commands <> <> <> contains <> <> end module commands_uti @ %def commands_uti @ API: driver for the unit tests below. <>= public :: commands_test <>= subroutine commands_test (u, results) integer, intent(in) :: u type(test_results_t), intent(inout) :: results <> end subroutine commands_test @ %def commands_test @ \subsubsection{Prepare Sindarin code} This routine parses an internal file, prints the parse tree, and returns a parse node to the root. We use the routine in the tests below. <>= public :: parse_ifile <>= subroutine parse_ifile (ifile, pn_root, u) use ifiles use lexers use parser use commands type(ifile_t), intent(in) :: ifile type(parse_node_t), pointer, intent(out) :: pn_root integer, intent(in), optional :: u type(stream_t), target :: stream type(lexer_t), target :: lexer type(parse_tree_t) :: parse_tree call lexer_init_cmd_list (lexer) call stream_init (stream, ifile) call lexer_assign_stream (lexer, stream) call parse_tree_init (parse_tree, syntax_cmd_list, lexer) if (present (u)) call parse_tree_write (parse_tree, u) pn_root => parse_tree%get_root_ptr () call stream_final (stream) call lexer_final (lexer) end subroutine parse_ifile @ %def parse_ifile @ \subsubsection{Empty command list} Compile and execute an empty command list. Should do nothing but test the integrity of the workflow. <>= call test (commands_1, "commands_1", & "empty command list", & u, results) <>= public :: commands_1 <>= subroutine commands_1 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_1" write (u, "(A)") "* Purpose: compile and execute empty command list" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Parse empty file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" if (associated (pn_root)) then call command_list%compile (pn_root, global) end if write (u, "(A)") write (u, "(A)") "* Execute command list" call global%activate () call command_list%execute (global) call global%deactivate () write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call syntax_cmd_list_final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_1" end subroutine commands_1 @ %def commands_1 @ \subsubsection{Read model} Execute a [[model]] assignment. <>= call test (commands_2, "commands_2", & "model", & u, results) <>= public :: commands_2 <>= subroutine commands_2 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_2" write (u, "(A)") "* Purpose: set model" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_write (ifile, u) write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_2" end subroutine commands_2 @ %def commands_2 @ \subsubsection{Declare Process} Read a model, then declare a process. The process library is allocated explicitly. For the process definition, We take the default ([[omega]]) method. Since we do not compile, \oMega\ is not actually called. <>= call test (commands_3, "commands_3", & "process declaration", & u, results) <>= public :: commands_3 <>= subroutine commands_3 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_3" write (u, "(A)") "* Purpose: define process" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%var_list%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) allocate (lib) call lib%init (var_str ("lib_cmd3")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process t3 = s, s => s, s') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%prclib_stack%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_3" end subroutine commands_3 @ %def commands_3 @ \subsubsection{Compile Process} Read a model, then declare a process and compile the library. The process library is allocated explicitly. For the process definition, We take the default ([[unit_test]]) method. There is no external code, so compilation of the library is merely a formal status change. <>= call test (commands_4, "commands_4", & "compilation", & u, results) <>= public :: commands_4 <>= subroutine commands_4 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_4" write (u, "(A)") "* Purpose: define process and compile library" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) allocate (lib) call lib%init (var_str ("lib_cmd4")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process t4 = s, s => s, s') call ifile_append (ifile, 'compile ("lib_cmd4")') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%prclib_stack%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_4" end subroutine commands_4 @ %def commands_4 @ \subsubsection{Integrate Process} Read a model, then declare a process, compile the library, and integrate over phase space. We take the default ([[unit_test]]) method and use the simplest methods of phase-space parameterization and integration. <>= call test (commands_5, "commands_5", & "integration", & u, results) <>= public :: commands_5 <>= subroutine commands_5 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_5" write (u, "(A)") "* Purpose: define process, iterations, and integrate" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) call global%var_list%set_int (var_str ("seed"), 0, is_known=.true.) allocate (lib) call lib%init (var_str ("lib_cmd5")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process t5 = s, s => s, s') call ifile_append (ifile, 'compile') call ifile_append (ifile, 'iterations = 1:1000') call ifile_append (ifile, 'integrate (t5)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call reset_interaction_counter () call command_list%execute (global) call global%it_list%write (u) write (u, "(A)") call global%process_stack%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_5" end subroutine commands_5 @ %def commands_5 @ \subsubsection{Variables} Set intrinsic and user-defined variables. <>= call test (commands_6, "commands_6", & "variables", & u, results) <>= public :: commands_6 <>= subroutine commands_6 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_6" write (u, "(A)") "* Purpose: define and set variables" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () call global%write_vars (u, [ & var_str ("$run_id"), & var_str ("?unweighted"), & var_str ("sqrts")]) write (u, "(A)") write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$run_id = "run1"') call ifile_append (ifile, '?unweighted = false') call ifile_append (ifile, 'sqrts = 1000') call ifile_append (ifile, 'int j = 10') call ifile_append (ifile, 'real x = 1000.') call ifile_append (ifile, 'complex z = 5') call ifile_append (ifile, 'string $text = "abcd"') call ifile_append (ifile, 'logical ?flag = true') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_vars (u, [ & var_str ("$run_id"), & var_str ("?unweighted"), & var_str ("sqrts"), & var_str ("j"), & var_str ("x"), & var_str ("z"), & var_str ("$text"), & var_str ("?flag")]) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call syntax_cmd_list_final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_6" end subroutine commands_6 @ %def commands_6 @ \subsubsection{Process library} Open process libraries explicitly. <>= call test (commands_7, "commands_7", & "process library", & u, results) <>= public :: commands_7 <>= subroutine commands_7 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_7" write (u, "(A)") "* Purpose: declare process libraries" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () call global%var_list%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) global%os_data%fc = "Fortran-compiler" global%os_data%fcflags = "Fortran-flags" write (u, "(A)") write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'library = "lib_cmd7_1"') call ifile_append (ifile, 'library = "lib_cmd7_2"') call ifile_append (ifile, 'library = "lib_cmd7_1"') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_libraries (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call syntax_cmd_list_final () call global%final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_7" end subroutine commands_7 @ %def commands_7 @ \subsubsection{Generate events} Read a model, then declare a process, compile the library, and generate weighted events. We take the default ([[unit_test]]) method and use the simplest methods of phase-space parameterization and integration. <>= call test (commands_8, "commands_8", & "event generation", & u, results) <>= public :: commands_8 <>= subroutine commands_8 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_8" write (u, "(A)") "* Purpose: define process, integrate, generate events" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) allocate (lib) call lib%init (var_str ("lib_cmd8")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process commands_8_p = s, s => s, s') call ifile_append (ifile, 'compile') call ifile_append (ifile, 'iterations = 1:1000') call ifile_append (ifile, 'integrate (commands_8_p)') call ifile_append (ifile, '?unweighted = false') call ifile_append (ifile, 'n_events = 3') call ifile_append (ifile, '?read_raw = false') call ifile_append (ifile, 'simulate (commands_8_p)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" call command_list%execute (global) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_8" end subroutine commands_8 @ %def commands_8 @ \subsubsection{Define cuts} Declare a cut expression. <>= call test (commands_9, "commands_9", & "cuts", & u, results) <>= public :: commands_9 <>= subroutine commands_9 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(string_t), dimension(0) :: no_vars write (u, "(A)") "* Test output: commands_9" write (u, "(A)") "* Purpose: define cuts" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'cuts = all Pt > 0 [particle]') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write (u, vars = no_vars) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_9" end subroutine commands_9 @ %def commands_9 @ \subsubsection{Beams} Define beam setup. <>= call test (commands_10, "commands_10", & "beams", & u, results) <>= public :: commands_10 <>= subroutine commands_10 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_10" write (u, "(A)") "* Purpose: define beams" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = QCD') call ifile_append (ifile, 'sqrts = 1000') call ifile_append (ifile, 'beams = p, p') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_beams (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_10" end subroutine commands_10 @ %def commands_10 @ \subsubsection{Structure functions} Define beam setup with structure functions <>= call test (commands_11, "commands_11", & "structure functions", & u, results) <>= public :: commands_11 <>= subroutine commands_11 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_11" write (u, "(A)") "* Purpose: define beams with structure functions" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = QCD') call ifile_append (ifile, 'sqrts = 1100') call ifile_append (ifile, 'beams = p, p => lhapdf => pdf_builtin, isr') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_beams (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_11" end subroutine commands_11 @ %def commands_11 @ \subsubsection{Rescan events} Read a model, then declare a process, compile the library, and generate weighted events. We take the default ([[unit_test]]) method and use the simplest methods of phase-space parameterization and integration. Then, rescan the generated event sample. <>= call test (commands_12, "commands_12", & "event rescanning", & u, results) <>= public :: commands_12 <>= subroutine commands_12 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_12" write (u, "(A)") "* Purpose: generate events and rescan" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%var_list%append_log (& var_str ("?rebuild_phase_space"), .false., & intrinsic=.true.) call global%var_list%append_log (& var_str ("?rebuild_grids"), .false., & intrinsic=.true.) call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) allocate (lib) call lib%init (var_str ("lib_cmd12")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process commands_12_p = s, s => s, s') call ifile_append (ifile, 'compile') call ifile_append (ifile, 'iterations = 1:1000') call ifile_append (ifile, 'integrate (commands_12_p)') call ifile_append (ifile, '?unweighted = false') call ifile_append (ifile, 'n_events = 3') call ifile_append (ifile, '?read_raw = false') call ifile_append (ifile, 'simulate (commands_12_p)') call ifile_append (ifile, '?write_raw = false') call ifile_append (ifile, 'rescan "commands_12_p" (commands_12_p)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" call command_list%execute (global) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_12" end subroutine commands_12 @ %def commands_12 @ \subsubsection{Event Files} Set output formats for event files. <>= call test (commands_13, "commands_13", & "event output formats", & u, results) <>= public :: commands_13 <>= subroutine commands_13 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib logical :: exist write (u, "(A)") "* Test output: commands_13" write (u, "(A)") "* Purpose: generate events and rescan" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) allocate (lib) call lib%init (var_str ("lib_cmd13")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process commands_13_p = s, s => s, s') call ifile_append (ifile, 'compile') call ifile_append (ifile, 'iterations = 1:1000') call ifile_append (ifile, 'integrate (commands_13_p)') call ifile_append (ifile, '?unweighted = false') call ifile_append (ifile, 'n_events = 1') call ifile_append (ifile, '?read_raw = false') call ifile_append (ifile, 'sample_format = weight_stream') call ifile_append (ifile, 'simulate (commands_13_p)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" call command_list%execute (global) write (u, "(A)") write (u, "(A)") "* Verify output files" write (u, "(A)") inquire (file = "commands_13_p.evx", exist = exist) if (exist) write (u, "(1x,A)") "raw" inquire (file = "commands_13_p.weights.dat", exist = exist) if (exist) write (u, "(1x,A)") "weight_stream" write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_13" end subroutine commands_13 @ %def commands_13 @ \subsubsection{Compile Empty Libraries} (This is a regression test:) Declare two empty libraries and compile them. <>= call test (commands_14, "commands_14", & "empty libraries", & u, results) <>= public :: commands_14 <>= subroutine commands_14 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_14" write (u, "(A)") "* Purpose: define and compile empty libraries" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_model_file_init () call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'library = "lib1"') call ifile_append (ifile, 'library = "lib2"') call ifile_append (ifile, 'compile ()') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%prclib_stack%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_14" end subroutine commands_14 @ %def commands_14 @ \subsubsection{Compile Process} Read a model, then declare a process and compile the library. The process library is allocated explicitly. For the process definition, We take the default ([[unit_test]]) method. There is no external code, so compilation of the library is merely a formal status change. <>= call test (commands_15, "commands_15", & "compilation", & u, results) <>= public :: commands_15 <>= subroutine commands_15 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_15" write (u, "(A)") "* Purpose: define process and compile library" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) allocate (lib) call lib%init (var_str ("lib_cmd15")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process t15 = s, s => s, s') call ifile_append (ifile, 'iterations = 1:1000') call ifile_append (ifile, 'integrate (t15)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%prclib_stack%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_15" end subroutine commands_15 @ %def commands_15 @ \subsubsection{Observable} Declare an observable, fill it and display. <>= call test (commands_16, "commands_16", & "observables", & u, results) <>= public :: commands_16 <>= subroutine commands_16 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_16" write (u, "(A)") "* Purpose: declare an observable" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$obs_label = "foo"') call ifile_append (ifile, '$obs_unit = "cm"') call ifile_append (ifile, '$title = "Observable foo"') call ifile_append (ifile, '$description = "This is observable foo"') call ifile_append (ifile, 'observable foo') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Record two data items" write (u, "(A)") call analysis_record_data (var_str ("foo"), 1._default) call analysis_record_data (var_str ("foo"), 3._default) write (u, "(A)") "* Display analysis store" write (u, "(A)") call analysis_write (u, verbose=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_16" end subroutine commands_16 @ %def commands_16 @ \subsubsection{Histogram} Declare a histogram, fill it and display. <>= call test (commands_17, "commands_17", & "histograms", & u, results) <>= public :: commands_17 <>= subroutine commands_17 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(string_t), dimension(3) :: name integer :: i write (u, "(A)") "* Test output: commands_17" write (u, "(A)") "* Purpose: declare histograms" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$obs_label = "foo"') call ifile_append (ifile, '$obs_unit = "cm"') call ifile_append (ifile, '$title = "Histogram foo"') call ifile_append (ifile, '$description = "This is histogram foo"') call ifile_append (ifile, 'histogram foo (0,5,1)') call ifile_append (ifile, '$title = "Histogram bar"') call ifile_append (ifile, '$description = "This is histogram bar"') call ifile_append (ifile, 'n_bins = 2') call ifile_append (ifile, 'histogram bar (0,5)') call ifile_append (ifile, '$title = "Histogram gee"') call ifile_append (ifile, '$description = "This is histogram gee"') call ifile_append (ifile, '?normalize_bins = true') call ifile_append (ifile, 'histogram gee (0,5)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Record two data items" write (u, "(A)") name(1) = "foo" name(2) = "bar" name(3) = "gee" do i = 1, 3 call analysis_record_data (name(i), 0.1_default, & weight = 0.25_default) call analysis_record_data (name(i), 3.1_default) call analysis_record_data (name(i), 4.1_default, & excess = 0.5_default) call analysis_record_data (name(i), 7.1_default) end do write (u, "(A)") "* Display analysis store" write (u, "(A)") call analysis_write (u, verbose=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_17" end subroutine commands_17 @ %def commands_17 @ \subsubsection{Plot} Declare a plot, fill it and display contents. <>= call test (commands_18, "commands_18", & "plots", & u, results) <>= public :: commands_18 <>= subroutine commands_18 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_18" write (u, "(A)") "* Purpose: declare a plot" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$obs_label = "foo"') call ifile_append (ifile, '$obs_unit = "cm"') call ifile_append (ifile, '$title = "Plot foo"') call ifile_append (ifile, '$description = "This is plot foo"') call ifile_append (ifile, '$x_label = "x axis"') call ifile_append (ifile, '$y_label = "y axis"') call ifile_append (ifile, '?x_log = false') call ifile_append (ifile, '?y_log = true') call ifile_append (ifile, 'x_min = -1') call ifile_append (ifile, 'x_max = 1') call ifile_append (ifile, 'y_min = 0.1') call ifile_append (ifile, 'y_max = 1000') call ifile_append (ifile, 'plot foo') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Record two data items" write (u, "(A)") call analysis_record_data (var_str ("foo"), 0._default, 20._default, & xerr = 0.25_default) call analysis_record_data (var_str ("foo"), 0.5_default, 0.2_default, & yerr = 0.07_default) call analysis_record_data (var_str ("foo"), 3._default, 2._default) write (u, "(A)") "* Display analysis store" write (u, "(A)") call analysis_write (u, verbose=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_18" end subroutine commands_18 @ %def commands_18 @ \subsubsection{Graph} Combine two (empty) plots to a graph. <>= call test (commands_19, "commands_19", & "graphs", & u, results) <>= public :: commands_19 <>= subroutine commands_19 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_19" write (u, "(A)") "* Purpose: combine two plots to a graph" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'plot a') call ifile_append (ifile, 'plot b') call ifile_append (ifile, '$title = "Graph foo"') call ifile_append (ifile, '$description = "This is graph foo"') call ifile_append (ifile, 'graph foo = a & b') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Display analysis object" write (u, "(A)") call analysis_write (var_str ("foo"), u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_19" end subroutine commands_19 @ %def commands_19 @ \subsubsection{Record Data} Record data in previously allocated analysis objects. <>= call test (commands_20, "commands_20", & "record data", & u, results) <>= public :: commands_20 <>= subroutine commands_20 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_20" write (u, "(A)") "* Purpose: record data" write (u, "(A)") write (u, "(A)") "* Initialization: create observable, histogram, plot" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () call analysis_init_observable (var_str ("o")) call analysis_init_histogram (var_str ("h"), 0._default, 1._default, 3, & normalize_bins = .false.) call analysis_init_plot (var_str ("p")) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'record o (1.234)') call ifile_append (ifile, 'record h (0.5)') call ifile_append (ifile, 'record p (1, 2)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Display analysis object" write (u, "(A)") call analysis_write (u, verbose = .true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_20" end subroutine commands_20 @ %def commands_20 @ \subsubsection{Analysis} Declare an analysis expression and use it to fill an observable during event generation. <>= call test (commands_21, "commands_21", & "analysis expression", & u, results) <>= public :: commands_21 <>= subroutine commands_21 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_21" write (u, "(A)") "* Purpose: create and use analysis expression" write (u, "(A)") write (u, "(A)") "* Initialization: create observable" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) allocate (lib) call lib%init (var_str ("lib_cmd8")) call global%add_prclib (lib) call analysis_init_observable (var_str ("m")) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process commands_21_p = s, s => s, s') call ifile_append (ifile, 'compile') call ifile_append (ifile, 'iterations = 1:100') call ifile_append (ifile, 'integrate (commands_21_p)') call ifile_append (ifile, '?unweighted = true') call ifile_append (ifile, 'n_events = 3') call ifile_append (ifile, '?read_raw = false') call ifile_append (ifile, 'observable m') call ifile_append (ifile, 'analysis = record m (eval M [s])') call ifile_append (ifile, 'simulate (commands_21_p)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Display analysis object" write (u, "(A)") call analysis_write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_21" end subroutine commands_21 @ %def commands_21 @ \subsubsection{Write Analysis} Write accumulated analysis data to file. <>= call test (commands_22, "commands_22", & "write analysis", & u, results) <>= public :: commands_22 <>= subroutine commands_22 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root integer :: u_file, iostat logical :: exist character(80) :: buffer write (u, "(A)") "* Test output: commands_22" write (u, "(A)") "* Purpose: write analysis data" write (u, "(A)") write (u, "(A)") "* Initialization: create observable" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () call analysis_init_observable (var_str ("m")) call analysis_record_data (var_str ("m"), 125._default) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$out_file = "commands_22.dat"') call ifile_append (ifile, 'write_analysis') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Display analysis data" write (u, "(A)") inquire (file = "commands_22.dat", exist = exist) if (.not. exist) then write (u, "(A)") "ERROR: File commands_22.dat not found" return end if u_file = free_unit () open (u_file, file = "commands_22.dat", & action = "read", status = "old") do read (u_file, "(A)", iostat = iostat) buffer if (iostat /= 0) exit write (u, "(A)") trim (buffer) end do close (u_file) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_22" end subroutine commands_22 @ %def commands_22 @ \subsubsection{Compile Analysis} Write accumulated analysis data to file and compile. <>= call test (commands_23, "commands_23", & "compile analysis", & u, results) <>= public :: commands_23 <>= subroutine commands_23 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root integer :: u_file, iostat character(256) :: buffer logical :: exist type(graph_options_t) :: graph_options write (u, "(A)") "* Test output: commands_23" write (u, "(A)") "* Purpose: write and compile analysis data" write (u, "(A)") write (u, "(A)") "* Initialization: create and fill histogram" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () call graph_options_init (graph_options) call graph_options_set (graph_options, & title = var_str ("Histogram for test: commands 23"), & description = var_str ("This is a test."), & width_mm = 125, height_mm = 85) call analysis_init_histogram (var_str ("h"), & 0._default, 10._default, 2._default, .false., & graph_options = graph_options) call analysis_record_data (var_str ("h"), 1._default) call analysis_record_data (var_str ("h"), 1._default) call analysis_record_data (var_str ("h"), 1._default) call analysis_record_data (var_str ("h"), 1._default) call analysis_record_data (var_str ("h"), 3._default) call analysis_record_data (var_str ("h"), 3._default) call analysis_record_data (var_str ("h"), 3._default) call analysis_record_data (var_str ("h"), 5._default) call analysis_record_data (var_str ("h"), 7._default) call analysis_record_data (var_str ("h"), 7._default) call analysis_record_data (var_str ("h"), 7._default) call analysis_record_data (var_str ("h"), 7._default) call analysis_record_data (var_str ("h"), 9._default) call analysis_record_data (var_str ("h"), 9._default) call analysis_record_data (var_str ("h"), 9._default) call analysis_record_data (var_str ("h"), 9._default) call analysis_record_data (var_str ("h"), 9._default) call analysis_record_data (var_str ("h"), 9._default) call analysis_record_data (var_str ("h"), 9._default) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$out_file = "commands_23.dat"') call ifile_append (ifile, 'compile_analysis') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Delete Postscript output" write (u, "(A)") inquire (file = "commands_23.ps", exist = exist) if (exist) then u_file = free_unit () open (u_file, file = "commands_23.ps", action = "write", status = "old") close (u_file, status = "delete") end if inquire (file = "commands_23.ps", exist = exist) write (u, "(1x,A,L1)") "Postcript output exists = ", exist write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* TeX file" write (u, "(A)") inquire (file = "commands_23.tex", exist = exist) if (.not. exist) then write (u, "(A)") "ERROR: File commands_23.tex not found" return end if u_file = free_unit () open (u_file, file = "commands_23.tex", & action = "read", status = "old") do read (u_file, "(A)", iostat = iostat) buffer if (iostat /= 0) exit write (u, "(A)") trim (buffer) end do close (u_file) write (u, *) inquire (file = "commands_23.ps", exist = exist) write (u, "(1x,A,L1)") "Postcript output exists = ", exist write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_23" end subroutine commands_23 @ %def commands_23 @ \subsubsection{Histogram} Declare a histogram, fill it and display. <>= call test (commands_24, "commands_24", & "drawing options", & u, results) <>= public :: commands_24 <>= subroutine commands_24 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_24" write (u, "(A)") "* Purpose: check graph and drawing options" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, '$title = "Title"') call ifile_append (ifile, '$description = "Description"') call ifile_append (ifile, '$x_label = "X Label"') call ifile_append (ifile, '$y_label = "Y Label"') call ifile_append (ifile, 'graph_width_mm = 111') call ifile_append (ifile, 'graph_height_mm = 222') call ifile_append (ifile, 'x_min = -11') call ifile_append (ifile, 'x_max = 22') call ifile_append (ifile, 'y_min = -33') call ifile_append (ifile, 'y_max = 44') call ifile_append (ifile, '$gmlcode_bg = "GML Code BG"') call ifile_append (ifile, '$gmlcode_fg = "GML Code FG"') call ifile_append (ifile, '$fill_options = "Fill Options"') call ifile_append (ifile, '$draw_options = "Draw Options"') call ifile_append (ifile, '$err_options = "Error Options"') call ifile_append (ifile, '$symbol = "Symbol"') call ifile_append (ifile, 'histogram foo (0,1)') call ifile_append (ifile, 'plot bar') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Display analysis store" write (u, "(A)") call analysis_write (u, verbose=.true.) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_24" end subroutine commands_24 @ %def commands_24 @ \subsubsection{Local Environment} Declare a local environment. <>= call test (commands_25, "commands_25", & "local process environment", & u, results) <>= public :: commands_25 <>= subroutine commands_25 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_25" write (u, "(A)") "* Purpose: declare local environment for process" write (u, "(A)") call syntax_model_file_init () call syntax_cmd_list_init () call global%global_init () call global%var_list%set_log (var_str ("?omega_openmp"), & .false., is_known = .true.) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'library = "commands_25_lib"') call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process commands_25_p1 = g, g => g, g & &{ model = "QCD" }') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_libraries (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_25" end subroutine commands_25 @ %def commands_25 @ \subsubsection{Alternative Setups} Declare a list of alternative setups. <>= call test (commands_26, "commands_26", & "alternative setups", & u, results) <>= public :: commands_26 <>= subroutine commands_26 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_26" write (u, "(A)") "* Purpose: declare alternative setups for simulation" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'int i = 0') call ifile_append (ifile, 'alt_setup = ({ i = 1 }, { i = 2 })') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_expr (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_26" end subroutine commands_26 @ %def commands_26 @ \subsubsection{Unstable Particle} Define decay processes and declare a particle as unstable. Also check the commands stable, polarized, unpolarized. <>= call test (commands_27, "commands_27", & "unstable and polarized particles", & u, results) <>= public :: commands_27 <>= subroutine commands_27 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib write (u, "(A)") "* Test output: commands_27" write (u, "(A)") "* Purpose: modify particle properties" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call global%global_init () call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) allocate (lib) call lib%init (var_str ("commands_27_lib")) call global%add_prclib (lib) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'ff = 0.4') call ifile_append (ifile, 'process d1 = s => f, fbar') call ifile_append (ifile, 'unstable s (d1)') call ifile_append (ifile, 'polarized f, fbar') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Show model" write (u, "(A)") call global%model%write (u) write (u, "(A)") write (u, "(A)") "* Extra Input" write (u, "(A)") call ifile_final (ifile) call ifile_append (ifile, '?diagonal_decay = true') call ifile_append (ifile, 'unstable s (d1)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%final () call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Show model" write (u, "(A)") call global%model%write (u) write (u, "(A)") write (u, "(A)") "* Extra Input" write (u, "(A)") call ifile_final (ifile) call ifile_append (ifile, '?isotropic_decay = true') call ifile_append (ifile, 'unstable s (d1)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%final () call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Show model" write (u, "(A)") call global%model%write (u) write (u, "(A)") write (u, "(A)") "* Extra Input" write (u, "(A)") call ifile_final (ifile) call ifile_append (ifile, 'stable s') call ifile_append (ifile, 'unpolarized f') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%final () call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Show model" write (u, "(A)") call global%model%write (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_model_file_init () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_27" end subroutine commands_27 @ %def commands_27 @ \subsubsection{Quit the program} Quit the program. <>= call test (commands_28, "commands_28", & "quit", & u, results) <>= public :: commands_28 <>= subroutine commands_28 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root1, pn_root2 type(string_t), dimension(0) :: no_vars write (u, "(A)") "* Test output: commands_28" write (u, "(A)") "* Purpose: quit the program" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file: quit without code" write (u, "(A)") call ifile_append (ifile, 'quit') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root1, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root1, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write (u, vars = no_vars) write (u, "(A)") write (u, "(A)") "* Input file: quit with code" write (u, "(A)") call ifile_final (ifile) call command_list%final () call ifile_append (ifile, 'quit ( 3 + 4 )') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root2, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root2, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write (u, vars = no_vars) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_28" end subroutine commands_28 @ %def commands_28 @ \subsubsection{SLHA interface} Testing commands steering the SLHA interface. <>= call test (commands_29, "commands_29", & "SLHA interface", & u, results) <>= public :: commands_29 <>= subroutine commands_29 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(var_list_t), pointer :: model_vars type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_29" write (u, "(A)") "* Purpose: test SLHA interface" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call syntax_model_file_init () call syntax_slha_init () call global%global_init () write (u, "(A)") "* Model MSSM, read SLHA file" write (u, "(A)") call ifile_append (ifile, 'model = "MSSM"') call ifile_append (ifile, '?slha_read_decays = true') call ifile_append (ifile, 'read_slha ("sps1ap_decays.slha")') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Model MSSM, default values:" write (u, "(A)") call global%model%write (u, verbose = .false., & show_vertices = .false., show_particles = .false.) write (u, "(A)") write (u, "(A)") "* Selected global variables" write (u, "(A)") model_vars => global%model%get_var_list_ptr () call model_vars%write_var (var_str ("mch1"), u) call model_vars%write_var (var_str ("wch1"), u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") "* Model MSSM, values from SLHA file" write (u, "(A)") call global%model%write (u, verbose = .false., & show_vertices = .false., show_particles = .false.) write (u, "(A)") write (u, "(A)") "* Selected global variables" write (u, "(A)") model_vars => global%model%get_var_list_ptr () call model_vars%write_var (var_str ("mch1"), u) call model_vars%write_var (var_str ("wch1"), u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_slha_final () call syntax_model_file_final () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_29" end subroutine commands_29 @ %def commands_29 @ \subsubsection{Expressions for scales} Declare a scale, factorization scale or factorization scale expression. <>= call test (commands_30, "commands_30", & "scales", & u, results) <>= public :: commands_30 <>= subroutine commands_30 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_30" write (u, "(A)") "* Purpose: define scales" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'scale = 200 GeV') call ifile_append (ifile, & 'factorization_scale = eval Pt [particle]') call ifile_append (ifile, & 'renormalization_scale = eval E [particle]') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_expr (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_30" end subroutine commands_30 @ %def commands_30 @ \subsubsection{Weight and reweight expressions} Declare an expression for event weights and reweighting. <>= call test (commands_31, "commands_31", & "event weights/reweighting", & u, results) <>= public :: commands_31 <>= subroutine commands_31 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_31" write (u, "(A)") "* Purpose: define weight/reweight" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'weight = eval Pz [particle]') call ifile_append (ifile, 'reweight = eval M2 [particle]') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_expr (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_31" end subroutine commands_31 @ %def commands_31 @ \subsubsection{Selecting events} Declare an expression for selecting events in an analysis. <>= call test (commands_32, "commands_32", & "event selection", & u, results) <>= public :: commands_32 <>= subroutine commands_32 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root write (u, "(A)") "* Test output: commands_32" write (u, "(A)") "* Purpose: define selection" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'selection = any PDG == 13 [particle]') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) call global%write_expr (u) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_32" end subroutine commands_32 @ %def commands_32 @ \subsubsection{Executing shell commands} Execute a shell command. <>= call test (commands_33, "commands_33", & "execute shell command", & u, results) <>= public :: commands_33 <>= subroutine commands_33 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root integer :: u_file, iostat character(3) :: buffer write (u, "(A)") "* Test output: commands_33" write (u, "(A)") "* Purpose: execute shell command" write (u, "(A)") write (u, "(A)") "* Initialization" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'exec ("echo foo >> bar")') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root, u) write (u, "(A)") write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) u_file = free_unit () open (u_file, file = "bar", & action = "read", status = "old") do read (u_file, "(A)", iostat = iostat) buffer if (iostat /= 0) exit end do write (u, "(A,A)") "should be 'foo': ", trim (buffer) close (u_file) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call command_list%final () call global%final () call syntax_cmd_list_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_33" end subroutine commands_33 @ %def commands_33 @ \subsubsection{Callback} Instead of an explicit write, use the callback feature to write the analysis file during event generation. We generate 4 events and arrange that the callback is executed while writing the 3rd event. <>= call test (commands_34, "commands_34", & "analysis via callback", & u, results) <>= public :: commands_34 <>= subroutine commands_34 (u) integer, intent(in) :: u type(ifile_t) :: ifile type(command_list_t), target :: command_list type(rt_data_t), target :: global type(parse_node_t), pointer :: pn_root type(prclib_entry_t), pointer :: lib type(event_callback_34_t) :: event_callback write (u, "(A)") "* Test output: commands_34" write (u, "(A)") "* Purpose: write analysis data" write (u, "(A)") write (u, "(A)") "* Initialization: create observable" write (u, "(A)") call syntax_cmd_list_init () call global%global_init () call syntax_model_file_init () call global%global_init () call global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) call global%var_list%set_string (var_str ("$method"), & var_str ("unit_test"), is_known=.true.) call global%var_list%set_string (var_str ("$phs_method"), & var_str ("single"), is_known=.true.) call global%var_list%set_string (var_str ("$integration_method"),& var_str ("midpoint"), is_known=.true.) call global%var_list%set_real (var_str ("sqrts"), & 1000._default, is_known=.true.) call global%var_list%set_log (var_str ("?vis_history"),& .false., is_known=.true.) call global%var_list%set_log (var_str ("?integration_timer"),& .false., is_known = .true.) allocate (lib) call lib%init (var_str ("lib_cmd34")) call global%add_prclib (lib) write (u, "(A)") "* Prepare callback for writing analysis to I/O unit" write (u, "(A)") event_callback%u = u call global%set_event_callback (event_callback) write (u, "(A)") "* Input file" write (u, "(A)") call ifile_append (ifile, 'model = "Test"') call ifile_append (ifile, 'process commands_34_p = s, s => s, s') call ifile_append (ifile, 'compile') call ifile_append (ifile, 'iterations = 1:1000') call ifile_append (ifile, 'integrate (commands_34_p)') call ifile_append (ifile, 'observable sq') call ifile_append (ifile, 'analysis = record sq (sqrts)') call ifile_append (ifile, 'n_events = 4') call ifile_append (ifile, 'event_callback_interval = 3') call ifile_append (ifile, 'simulate (commands_34_p)') call ifile_write (ifile, u) write (u, "(A)") write (u, "(A)") "* Parse file" write (u, "(A)") call parse_ifile (ifile, pn_root) write (u, "(A)") "* Compile command list" write (u, "(A)") call command_list%compile (pn_root, global) call command_list%write (u) write (u, "(A)") write (u, "(A)") "* Execute command list" write (u, "(A)") call command_list%execute (global) write (u, "(A)") write (u, "(A)") "* Cleanup" call ifile_final (ifile) call analysis_final () call command_list%final () call global%final () call syntax_cmd_list_final () call syntax_model_file_final () write (u, "(A)") write (u, "(A)") "* Test output end: commands_34" end subroutine commands_34 @ %def commands_34 @ For this test, we invent a callback object which simply writes the analysis file, using the standard call for this. Here we rely on the fact that the analysis data are stored as a global entity, otherwise we would have to access them via the event object. <>= type, extends (event_callback_t) :: event_callback_34_t private integer :: u = 0 contains procedure :: write => event_callback_34_write procedure :: proc => event_callback_34 end type event_callback_34_t @ %def event_callback_t @ The output routine is unused. The actual callback should write the analysis data to the output unit that we have injected into the callback object. <>= subroutine event_callback_34_write (event_callback, unit) class(event_callback_34_t), intent(in) :: event_callback integer, intent(in), optional :: unit end subroutine event_callback_34_write subroutine event_callback_34 (event_callback, i, event) class(event_callback_34_t), intent(in) :: event_callback integer(i64), intent(in) :: i class(generic_event_t), intent(in) :: event call analysis_write (event_callback%u) end subroutine event_callback_34 @ %def event_callback_34_write @ %def event_callback_34 @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Toplevel module WHIZARD} <<[[whizard.f90]]>>= <> module whizard use io_units <> use system_defs, only: VERSION_STRING use system_defs, only: EOF, BACKSLASH use diagnostics use os_interface use ifiles use lexers use parser use eval_trees use models use phs_forests use prclib_stacks use slha_interface use blha_config use rt_data use commands <> <> <> save contains <> end module whizard @ %def whizard @ \subsection{Options} Here we introduce a wrapper that holds various user options, so they can transparently be passed from the main program to the [[whizard]] object. Most parameters are used for initializing the [[global]] state. <>= public :: whizard_options_t <>= type :: whizard_options_t type(string_t) :: job_id type(string_t), dimension(:), allocatable :: pack_args type(string_t), dimension(:), allocatable :: unpack_args type(string_t) :: preload_model type(string_t) :: default_lib type(string_t) :: preload_libraries logical :: rebuild_library = .false. logical :: recompile_library = .false. logical :: rebuild_user logical :: rebuild_phs = .false. logical :: rebuild_grids = .false. logical :: rebuild_events = .false. end type whizard_options_t @ %def whizard_options_t @ \subsection{Parse tree stack} We collect all parse trees that we generate in the [[whizard]] object. To this end, we create a stack of parse trees. They must not be finalized before the [[global]] object is finalized, because items such as a cut definition may contain references to the parse tree from which they were generated. <>= type, extends (parse_tree_t) :: pt_entry_t type(pt_entry_t), pointer :: previous => null () end type pt_entry_t @ %def pt_entry_t @ This is the stack. Since we always prepend, we just need the [[last]] pointer. <>= type :: pt_stack_t type(pt_entry_t), pointer :: last => null () contains <> end type pt_stack_t @ %def pt_stack_t @ The finalizer is called at the very end. <>= procedure :: final => pt_stack_final <>= subroutine pt_stack_final (pt_stack) class(pt_stack_t), intent(inout) :: pt_stack type(pt_entry_t), pointer :: current do while (associated (pt_stack%last)) current => pt_stack%last pt_stack%last => current%previous call parse_tree_final (current%parse_tree_t) deallocate (current) end do end subroutine pt_stack_final @ %def pt_stack_final @ Create and push a new entry, keeping the previous ones. <>= procedure :: push => pt_stack_push <>= subroutine pt_stack_push (pt_stack, parse_tree) class(pt_stack_t), intent(inout) :: pt_stack type(parse_tree_t), intent(out), pointer :: parse_tree type(pt_entry_t), pointer :: current allocate (current) parse_tree => current%parse_tree_t current%previous => pt_stack%last pt_stack%last => current end subroutine pt_stack_push @ %def pt_stack_push @ \subsection{The [[whizard]] object} An object of type [[whizard_t]] is the top-level wrapper for a \whizard\ instance. The object holds various default settings and the current state of the generator, the [[global]] object of type [[rt_data_t]]. This object contains, for instance, the list of variables and the process libraries. Since components of the [[global]] subobject are frequently used as targets, the [[whizard]] object should also consistently carry the [[target]] attribute. The various self-tests do no not use this object. They initialize only specific subsets of the system, according to their needs. Note: we intend to allow several concurrent instances. In the current implementation, there are still a few obstacles to this: the model library and the syntax tables are global variables, and the error handling uses global state. This should be improved. <>= public :: whizard_t <>= type :: whizard_t type(whizard_options_t) :: options type(rt_data_t) :: global type(pt_stack_t) :: pt_stack contains <> end type whizard_t @ %def whizard_t @ \subsection{Initialization and finalization} <>= procedure :: init => whizard_init <>= subroutine whizard_init (whizard, options, paths, logfile) class(whizard_t), intent(out), target :: whizard type(whizard_options_t), intent(in) :: options type(paths_t), intent(in), optional :: paths type(string_t), intent(in), optional :: logfile call init_syntax_tables () whizard%options = options call whizard%global%global_init (paths, logfile) call whizard%init_job_id () call whizard%init_rebuild_flags () call whizard%unpack_files () call whizard%preload_model () call whizard%preload_library () call whizard%global%init_fallback_model & (var_str ("SM_hadrons"), var_str ("SM_hadrons.mdl")) end subroutine whizard_init @ %def whizard_init @ Apart from the global data which have been initialized above, the process and model lists need to be finalized. <>= procedure :: final => whizard_final <>= subroutine whizard_final (whizard) class(whizard_t), intent(inout), target :: whizard call whizard%global%final () call whizard%pt_stack%final () call whizard%pack_files () !!! JRR: WK please check (#529) ! call user_code_final () call final_syntax_tables () end subroutine whizard_final @ %def whizard_final @ Set the job ID, if nonempty. If the ID string is empty, the value remains undefined. <>= procedure :: init_job_id => whizard_init_job_id <>= subroutine whizard_init_job_id (whizard) class(whizard_t), intent(inout), target :: whizard associate (var_list => whizard%global%var_list, options => whizard%options) if (options%job_id /= "") then call var_list%set_string (var_str ("$job_id"), & options%job_id, is_known=.true.) end if end associate end subroutine whizard_init_job_id @ %def whizard_init_job_id @ Set the rebuild flags. They can be specified on the command line and set the initial value for the associated logical variables. <>= procedure :: init_rebuild_flags => whizard_init_rebuild_flags <>= subroutine whizard_init_rebuild_flags (whizard) class(whizard_t), intent(inout), target :: whizard associate (var_list => whizard%global%var_list, options => whizard%options) call var_list%append_log (var_str ("?rebuild_library"), & options%rebuild_library, intrinsic=.true.) call var_list%append_log (var_str ("?recompile_library"), & options%recompile_library, intrinsic=.true.) call var_list%append_log (var_str ("?rebuild_phase_space"), & options%rebuild_phs, intrinsic=.true.) call var_list%append_log (var_str ("?rebuild_grids"), & options%rebuild_grids, intrinsic=.true.) call var_list%append_log (var_str ("?powheg_rebuild_grids"), & options%rebuild_grids, intrinsic=.true.) call var_list%append_log (var_str ("?rebuild_events"), & options%rebuild_events, intrinsic=.true.) end associate end subroutine whizard_init_rebuild_flags @ %def whizard_init_rebuild_flags @ Pack/unpack files in the working directory, if requested. <>= procedure :: pack_files => whizard_pack_files procedure :: unpack_files => whizard_unpack_files <>= subroutine whizard_pack_files (whizard) class(whizard_t), intent(in), target :: whizard logical :: exist integer :: i type(string_t) :: file if (allocated (whizard%options%pack_args)) then do i = 1, size (whizard%options%pack_args) file = whizard%options%pack_args(i) call msg_message ("Packing file/dir '" // char (file) // "'") exist = os_file_exist (file) .or. os_dir_exist (file) if (exist) then call os_pack_file (whizard%options%pack_args(i), & whizard%global%os_data) else call msg_error ("File/dir '" // char (file) // "' not found") end if end do end if end subroutine whizard_pack_files subroutine whizard_unpack_files (whizard) class(whizard_t), intent(in), target :: whizard logical :: exist integer :: i type(string_t) :: file if (allocated (whizard%options%unpack_args)) then do i = 1, size (whizard%options%unpack_args) file = whizard%options%unpack_args(i) call msg_message ("Unpacking file '" // char (file) // "'") exist = os_file_exist (file) if (exist) then call os_unpack_file (whizard%options%unpack_args(i), & whizard%global%os_data) else call msg_error ("File '" // char (file) // "' not found") end if end do end if end subroutine whizard_unpack_files @ %def whizard_pack_files @ %def whizard_unpack_files @ This procedure preloads a model, if a model name is given. <>= procedure :: preload_model => whizard_preload_model <>= subroutine whizard_preload_model (whizard) class(whizard_t), intent(inout), target :: whizard type(string_t) :: model_name model_name = whizard%options%preload_model if (model_name /= "") then call whizard%global%read_model (model_name, whizard%global%preload_model) whizard%global%model => whizard%global%preload_model if (associated (whizard%global%model)) then call whizard%global%model%link_var_list (whizard%global%var_list) call msg_message ("Preloaded model: " & // char (model_name)) else call msg_fatal ("Preloading model " // char (model_name) & // " failed") end if else call msg_message ("No model preloaded") end if end subroutine whizard_preload_model @ %def whizard_preload_model @ This procedure preloads a library, if a library name is given. Note: This version just opens a new library with that name. It does not load (yet) an existing library on file, as previous \whizard\ versions would do. <>= procedure :: preload_library => whizard_preload_library <>= subroutine whizard_preload_library (whizard) class(whizard_t), intent(inout), target :: whizard type(string_t) :: library_name, libs type(string_t), dimension(:), allocatable :: libname_static type(prclib_entry_t), pointer :: lib_entry integer :: i call get_prclib_static (libname_static) do i = 1, size (libname_static) allocate (lib_entry) call lib_entry%init_static (libname_static(i)) call whizard%global%add_prclib (lib_entry) end do libs = adjustl (whizard%options%preload_libraries) if (libs == "" .and. whizard%options%default_lib /= "") then allocate (lib_entry) call lib_entry%init (whizard%options%default_lib) call whizard%global%add_prclib (lib_entry) call msg_message ("Preloaded library: " // & char (whizard%options%default_lib)) end if SCAN_LIBS: do while (libs /= "") call split (libs, library_name, " ") if (library_name /= "") then allocate (lib_entry) call lib_entry%init (library_name) call whizard%global%add_prclib (lib_entry) call msg_message ("Preloaded library: " // char (library_name)) end if end do SCAN_LIBS end subroutine whizard_preload_library @ %def whizard_preload_library @ \subsection{Initialization and finalization (old version)} These procedures initialize and finalize global variables. Most of them are collected in the [[global]] data record located here, the others are syntax tables located in various modules, which do not change during program execution. Furthermore, there is a global model list and a global process store, which get filled during program execution but are finalized here. During initialization, we can preload a default model and initialize a default library for setting up processes. The default library is loaded if requested by the setup. Further libraries can be loaded as specified by command-line flags. @ Initialize/finalize the syntax tables used by WHIZARD: <>= public :: init_syntax_tables public :: final_syntax_tables <>= subroutine init_syntax_tables () call syntax_model_file_init () call syntax_phs_forest_init () call syntax_pexpr_init () call syntax_slha_init () call syntax_cmd_list_init () end subroutine init_syntax_tables subroutine final_syntax_tables () call syntax_model_file_final () call syntax_phs_forest_final () call syntax_pexpr_final () call syntax_slha_final () call syntax_cmd_list_final () end subroutine final_syntax_tables @ %def init_syntax_tables @ %def final_syntax_tables @ Write the syntax tables to external files. <>= public :: write_syntax_tables <>= subroutine write_syntax_tables () integer :: unit character(*), parameter :: file_model = "whizard.model_file.syntax" character(*), parameter :: file_phs = "whizard.phase_space_file.syntax" character(*), parameter :: file_pexpr = "whizard.prt_expressions.syntax" character(*), parameter :: file_slha = "whizard.slha.syntax" character(*), parameter :: file_sindarin = "whizard.sindarin.syntax" unit = free_unit () print *, "Writing file '" // file_model // "'" open (unit=unit, file=file_model, status="replace", action="write") write (unit, "(A)") VERSION_STRING write (unit, "(A)") "Syntax definition file: " // file_model call syntax_model_file_write (unit) close (unit) print *, "Writing file '" // file_phs // "'" open (unit=unit, file=file_phs, status="replace", action="write") write (unit, "(A)") VERSION_STRING write (unit, "(A)") "Syntax definition file: " // file_phs call syntax_phs_forest_write (unit) close (unit) print *, "Writing file '" // file_pexpr // "'" open (unit=unit, file=file_pexpr, status="replace", action="write") write (unit, "(A)") VERSION_STRING write (unit, "(A)") "Syntax definition file: " // file_pexpr call syntax_pexpr_write (unit) close (unit) print *, "Writing file '" // file_slha // "'" open (unit=unit, file=file_slha, status="replace", action="write") write (unit, "(A)") VERSION_STRING write (unit, "(A)") "Syntax definition file: " // file_slha call syntax_slha_write (unit) close (unit) print *, "Writing file '" // file_sindarin // "'" open (unit=unit, file=file_sindarin, status="replace", action="write") write (unit, "(A)") VERSION_STRING write (unit, "(A)") "Syntax definition file: " // file_sindarin call syntax_cmd_list_write (unit) close (unit) end subroutine write_syntax_tables @ %def write_syntax_tables @ \subsection{Execute command lists} Process commands given on the command line, stored as an [[ifile]]. The whole input is read, compiled and executed as a whole. <>= procedure :: process_ifile => whizard_process_ifile <>= subroutine whizard_process_ifile (whizard, ifile, quit, quit_code) class(whizard_t), intent(inout), target :: whizard type(ifile_t), intent(in) :: ifile logical, intent(out) :: quit integer, intent(out) :: quit_code type(lexer_t), target :: lexer type(stream_t), target :: stream call msg_message ("Reading commands given on the command line") call lexer_init_cmd_list (lexer) call stream_init (stream, ifile) call whizard%process_stream (stream, lexer, quit, quit_code) call stream_final (stream) call lexer_final (lexer) end subroutine whizard_process_ifile @ %def whizard_process_ifile @ Process standard input as a command list. The whole input is read, compiled and executed as a whole. <>= procedure :: process_stdin => whizard_process_stdin <>= subroutine whizard_process_stdin (whizard, quit, quit_code) class(whizard_t), intent(inout), target :: whizard logical, intent(out) :: quit integer, intent(out) :: quit_code type(lexer_t), target :: lexer type(stream_t), target :: stream call msg_message ("Reading commands from standard input") call lexer_init_cmd_list (lexer) call stream_init (stream, 5) call whizard%process_stream (stream, lexer, quit, quit_code) call stream_final (stream) call lexer_final (lexer) end subroutine whizard_process_stdin @ %def whizard_process_stdin @ Process a file as a command list. <>= procedure :: process_file => whizard_process_file <>= subroutine whizard_process_file (whizard, file, quit, quit_code) class(whizard_t), intent(inout), target :: whizard type(string_t), intent(in) :: file logical, intent(out) :: quit integer, intent(out) :: quit_code type(lexer_t), target :: lexer type(stream_t), target :: stream logical :: exist call msg_message ("Reading commands from file '" // char (file) // "'") inquire (file=char(file), exist=exist) if (exist) then call lexer_init_cmd_list (lexer) call stream_init (stream, char (file)) call whizard%process_stream (stream, lexer, quit, quit_code) call stream_final (stream) call lexer_final (lexer) else call msg_error ("File '" // char (file) // "' not found") end if end subroutine whizard_process_file @ %def whizard_process_file @ <>= procedure :: process_stream => whizard_process_stream <>= subroutine whizard_process_stream (whizard, stream, lexer, quit, quit_code) class(whizard_t), intent(inout), target :: whizard type(stream_t), intent(inout), target :: stream type(lexer_t), intent(inout), target :: lexer logical, intent(out) :: quit integer, intent(out) :: quit_code type(parse_tree_t), pointer :: parse_tree type(command_list_t), target :: command_list call lexer_assign_stream (lexer, stream) call whizard%pt_stack%push (parse_tree) call parse_tree_init (parse_tree, syntax_cmd_list, lexer) if (associated (parse_tree%get_root_ptr ())) then whizard%global%lexer => lexer call command_list%compile (parse_tree%get_root_ptr (), & whizard%global) end if call whizard%global%activate () call command_list%execute (whizard%global) call command_list%final () quit = whizard%global%quit quit_code = whizard%global%quit_code end subroutine whizard_process_stream @ %def whizard_process_stream @ \subsection{The WHIZARD shell} This procedure implements interactive mode. One line is processed at a time. <>= procedure :: shell => whizard_shell <>= subroutine whizard_shell (whizard, quit_code) class(whizard_t), intent(inout), target :: whizard integer, intent(out) :: quit_code type(lexer_t), target :: lexer type(stream_t), target :: stream type(string_t) :: prompt1 type(string_t) :: prompt2 type(string_t) :: input type(string_t) :: extra integer :: last integer :: iostat logical :: mask_tmp logical :: quit call msg_message ("Launching interactive shell") call lexer_init_cmd_list (lexer) prompt1 = "whish? " prompt2 = " > " COMMAND_LOOP: do call put (6, prompt1) call get (5, input, iostat=iostat) if (iostat > 0 .or. iostat == EOF) exit COMMAND_LOOP CONTINUE_INPUT: do last = len_trim (input) if (extract (input, last, last) /= BACKSLASH) exit CONTINUE_INPUT call put (6, prompt2) call get (5, extra, iostat=iostat) if (iostat > 0) exit COMMAND_LOOP input = replace (input, last, extra) end do CONTINUE_INPUT call stream_init (stream, input) mask_tmp = mask_fatal_errors mask_fatal_errors = .true. call whizard%process_stream (stream, lexer, quit, quit_code) msg_count = 0 mask_fatal_errors = mask_tmp call stream_final (stream) if (quit) exit COMMAND_LOOP end do COMMAND_LOOP print * call lexer_final (lexer) end subroutine whizard_shell @ %def whizard_shell @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Tools for the command line} -We don't intent to be very smart here, but this module provides a few +We do not intent to be very smart here, but this module provides a few small tools that simplify dealing with the command line. + +The [[unquote_value]] subroutine handles an option value that begins with a +single/double quote character. It swallows extra option strings until it +finds a value that ends with another quote character. The returned string +consists of all argument strings between quotes, concatenated by blanks (with +a leading blank). Note that more complex patterns, such as quoted or embedded +quotes, or multiple blanks, are not accounted for. <<[[cmdline_options.f90]]>>= <> module cmdline_options <> use diagnostics <> public :: init_options public :: no_option_value public :: get_option_value <> abstract interface subroutine msg end subroutine msg end interface procedure (msg), pointer :: print_usage => null () contains subroutine init_options (usage_msg) procedure (msg) :: usage_msg print_usage => usage_msg end subroutine init_options subroutine no_option_value (option, value) type(string_t), intent(in) :: option, value if (value /= "") then call msg_error (" Option '" // char (option) // "' should have no value") end if end subroutine no_option_value function get_option_value (i, option, value) result (string) type(string_t) :: string integer, intent(inout) :: i type(string_t), intent(in) :: option type(string_t), intent(in), optional :: value character(CMDLINE_ARG_LEN) :: arg_value integer :: arg_len, arg_status logical :: has_value if (present (value)) then has_value = value /= "" else has_value = .false. end if if (has_value) then - string = value + call unquote_value (i, option, value, string) else i = i + 1 call get_command_argument (i, arg_value, arg_len, arg_status) select case (arg_status) case (0) case (-1) call msg_error (" Option value truncated: '" // arg_value // "'") case default call print_usage () call msg_fatal (" Option '" // char (option) // "' needs a value") end select select case (arg_value(1:1)) case ("-") call print_usage () call msg_fatal (" Option '" // char (option) // "' needs a value") end select - string = trim (arg_value) + call unquote_value (i, option, var_str (trim (arg_value)), string) end if end function get_option_value + subroutine unquote_value (i, option, value, string) + integer, intent(inout) :: i + type(string_t), intent(in) :: option + type(string_t), intent(in) :: value + type(string_t), intent(out) :: string + character(1) :: quote + character(CMDLINE_ARG_LEN) :: arg_value + integer :: arg_len, arg_status + quote = extract (value, 1, 1) + select case (quote) + case ("'", '"') + string = "" + arg_value = extract (value, 2) + arg_len = len_trim (value) + APPEND_QUOTED: do + if (extract (arg_value, arg_len, arg_len) == quote) then + string = string // " " // extract (arg_value, 1, arg_len-1) + exit APPEND_QUOTED + else + string = string // " " // trim (arg_value) + i = i + 1 + call get_command_argument (i, arg_value, arg_len, arg_status) + select case (arg_status) + case (0) + case (-1) + call msg_error (" Quoted option value truncated: '" & + // char (string) // "'") + case default + call print_usage () + call msg_fatal (" Option '" // char (option) & + // "': unterminated quoted value") + end select + end if + end do APPEND_QUOTED + case default + string = value + end select + end subroutine unquote_value + end module cmdline_options @ %def init_options @ %def no_option_value @ %def get_option_value @ %def cmdline_options @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Query Feature Support} This module accesses the various optional features (modules) that WHIZARD can support and repors on their availability. <<[[features.f90]]>>= module features use string_utils, only: lower_case use system_dependencies, only: WHIZARD_VERSION <> <> <> contains <> end module features @ %def features @ \subsection{Output} <>= public :: print_features <>= subroutine print_features () print "(A)", "WHIZARD " // WHIZARD_VERSION print "(A)", "Build configuration:" <> print "(A)", "Optional features available in this build:" <> end subroutine print_features @ %def print_features @ \subsection{Query function} <>= subroutine check (feature, recognized, result, help) character(*), intent(in) :: feature logical, intent(out) :: recognized character(*), intent(out) :: result, help recognized = .true. result = "no" select case (lower_case (trim (feature))) <> case default recognized = .false. end select end subroutine check @ %def check @ Print this result: <>= subroutine print_check (feature) character(*), intent(in) :: feature character(16) :: f logical :: recognized character(10) :: result character(48) :: help call check (feature, recognized, result, help) if (.not. recognized) then result = "unknown" help = "" end if f = feature print "(2x,A,1x,A,'(',A,')')", f, result, trim (help) end subroutine print_check @ %def print_check @ \subsection{Basic configuration} <>= call print_check ("precision") <>= use kinds, only: default <>= case ("precision") write (result, "(I0)") precision (1._default) help = "significant decimals of real/complex numbers" @ \subsection{Optional features case by case} <>= call print_check ("OpenMP") <>= use system_dependencies, only: openmp_is_active <>= case ("openmp") if (openmp_is_active ()) then result = "yes" end if help = "OpenMP parallel execution" @ <>= call print_check ("GoSam") <>= use system_dependencies, only: GOSAM_AVAILABLE <>= case ("gosam") if (GOSAM_AVAILABLE) then result = "yes" end if help = "external NLO matrix element provider" @ <>= call print_check ("OpenLoops") <>= use system_dependencies, only: OPENLOOPS_AVAILABLE <>= case ("openloops") if (OPENLOOPS_AVAILABLE) then result = "yes" end if help = "external NLO matrix element provider" @ <>= call print_check ("Recola") <>= use system_dependencies, only: RECOLA_AVAILABLE <>= case ("recola") if (RECOLA_AVAILABLE) then result = "yes" end if help = "external NLO matrix element provider" @ <>= call print_check ("LHAPDF") <>= use system_dependencies, only: LHAPDF5_AVAILABLE use system_dependencies, only: LHAPDF6_AVAILABLE <>= case ("lhapdf") if (LHAPDF5_AVAILABLE) then result = "v5" else if (LHAPDF6_AVAILABLE) then result = "v6" end if help = "PDF library" @ <>= call print_check ("HOPPET") <>= use system_dependencies, only: HOPPET_AVAILABLE <>= case ("hoppet") if (HOPPET_AVAILABLE) then result = "yes" end if help = "PDF evolution package" @ <>= call print_check ("fastjet") <>= use jets, only: fastjet_available <>= case ("fastjet") if (fastjet_available ()) then result = "yes" end if help = "jet-clustering package" @ <>= call print_check ("Pythia6") <>= use system_dependencies, only: PYTHIA6_AVAILABLE <>= case ("pythia6") if (PYTHIA6_AVAILABLE) then result = "yes" end if help = "direct access for shower/hadronization" @ <>= call print_check ("Pythia8") <>= use system_dependencies, only: PYTHIA8_AVAILABLE <>= case ("pythia8") if (PYTHIA8_AVAILABLE) then result = "yes" end if help = "direct access for shower/hadronization" @ <>= call print_check ("StdHEP") <>= case ("stdhep") result = "yes" help = "event I/O format" @ <>= call print_check ("HepMC") <>= use hepmc_interface, only: hepmc_is_available <>= case ("hepmc") if (hepmc_is_available ()) then result = "yes" end if help = "event I/O format" @ <>= call print_check ("LCIO") <>= use lcio_interface, only: lcio_is_available <>= case ("lcio") if (lcio_is_available ()) then result = "yes" end if help = "event I/O format" @ <>= call print_check ("MetaPost") <>= use system_dependencies, only: EVENT_ANALYSIS <>= case ("metapost") result = EVENT_ANALYSIS help = "graphical event analysis via LaTeX/MetaPost" @ @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Driver program} The main program handles command options, initializes the environment, and runs WHIZARD in a particular mode (interactive, file, standard input). This is also used in the C interface: <>= integer, parameter :: CMDLINE_ARG_LEN = 1000 @ %def CMDLINE_ARG_LEN @ The actual main program: <<[[main.f90]]>>= <> program main <> use system_dependencies use diagnostics use ifiles use os_interface use rt_data, only: show_description_of_string, show_tex_descriptions use whizard use cmdline_options use features <> implicit none <> !!! (WK 02/2016) Interface for the separate external routine below interface subroutine print_usage () end subroutine print_usage end interface ! Main program variable declarations character(CMDLINE_ARG_LEN) :: arg character(2) :: option type(string_t) :: long_option, value integer :: i, j, arg_len, arg_status logical :: look_for_options logical :: interactive logical :: banner type(string_t) :: job_id, files, this, model, default_lib, library, libraries type(string_t) :: logfile, query_string logical :: user_code_enable = .false. integer :: n_user_src = 0, n_user_lib = 0 type(string_t) :: user_src, user_lib, user_target type(paths_t) :: paths type(string_t) :: pack_arg, unpack_arg type(string_t), dimension(:), allocatable :: pack_args, unpack_args type(string_t), dimension(:), allocatable :: tmp_strings logical :: rebuild_library, rebuild_user logical :: rebuild_phs, rebuild_grids, rebuild_events logical :: recompile_library type(ifile_t) :: commands - type(string_t) :: command + type(string_t) :: command, cmdfile + integer :: cmdfile_unit + logical :: cmdfile_exists type(whizard_options_t), allocatable :: options type(whizard_t), allocatable, target :: whizard_instance ! Exit status logical :: quit = .false. integer :: quit_code = 0 ! Initial values look_for_options = .true. interactive = .false. job_id = "" files = "" model = "SM" default_lib = "default_lib" library = "" libraries = "" banner = .true. logging = .true. msg_level = RESULT logfile = "whizard.log" user_src = "" user_lib = "" user_target = "" rebuild_library = .false. rebuild_user = .false. rebuild_phs = .false. rebuild_grids = .false. rebuild_events = .false. recompile_library = .false. call paths_init (paths) <> ! Read and process options call init_options (print_usage) i = 0 SCAN_CMDLINE: do i = i + 1 call get_command_argument (i, arg, arg_len, arg_status) select case (arg_status) case (0) case (-1) call msg_error (" Command argument truncated: '" // arg // "'") case default exit SCAN_CMDLINE end select if (look_for_options) then select case (arg(1:2)) case ("--") value = trim (arg) call split (value, long_option, "=") select case (char (long_option)) case ("--version") call no_option_value (long_option, value) call print_version (); stop case ("--help") call no_option_value (long_option, value) call print_usage (); stop case ("--prefix") paths%prefix = get_option_value (i, long_option, value) cycle scan_cmdline case ("--exec-prefix") paths%exec_prefix = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--bindir") paths%bindir = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--libdir") paths%libdir = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--includedir") paths%includedir = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--datarootdir") paths%datarootdir = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--libtool") paths%libtool = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--lhapdfdir") paths%lhapdfdir = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--check") call print_usage () call msg_fatal ("Option --check not supported & &(for unit tests, run whizard_ut instead)") case ("--show-config") call no_option_value (long_option, value) call print_features (); stop case ("--execute") command = get_option_value (i, long_option, value) call ifile_append (commands, command) cycle SCAN_CMDLINE + case ("--file") + cmdfile = get_option_value (i, long_option, value) + inquire (file=char(cmdfile), exist=cmdfile_exists) + if (cmdfile_exists) then + open (newunit=cmdfile_unit, file=char(cmdfile), & + action="read", status="old") + call ifile_append (commands, cmdfile_unit) + close (cmdfile_unit) + else + call msg_error & + ("Sindarin file '" // char (cmdfile) // "' not found") + end if + cycle SCAN_CMDLINE case ("--interactive") call no_option_value (long_option, value) interactive = .true. cycle SCAN_CMDLINE case ("--job-id") job_id = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--library") library = get_option_value (i, long_option, value) libraries = libraries // " " // library cycle SCAN_CMDLINE case ("--no-library") call no_option_value (long_option, value) default_lib = "" library = "" libraries = "" cycle SCAN_CMDLINE case ("--localprefix") paths%localprefix = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--logfile") logfile = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--no-logfile") call no_option_value (long_option, value) logfile = "" cycle SCAN_CMDLINE case ("--logging") call no_option_value (long_option, value) logging = .true. cycle SCAN_CMDLINE case ("--no-logging") call no_option_value (long_option, value) logging = .false. cycle SCAN_CMDLINE case ("--query") call no_option_value (long_option, value) query_string = get_option_value (i, long_option, value) call show_description_of_string (query_string) call exit (0) case ("--generate-variables-tex") call no_option_value (long_option, value) call show_tex_descriptions () call exit (0) case ("--debug") call no_option_value (long_option, value) call set_debug_levels (get_option_value (i, long_option, value)) cycle SCAN_CMDLINE case ("--debug2") call no_option_value (long_option, value) call set_debug2_levels (get_option_value (i, long_option, value)) cycle SCAN_CMDLINE case ("--single-event") call no_option_value (long_option, value) single_event = .true. cycle SCAN_CMDLINE case ("--banner") call no_option_value (long_option, value) banner = .true. cycle SCAN_CMDLINE case ("--no-banner") call no_option_value (long_option, value) banner = .false. cycle SCAN_CMDLINE case ("--pack") pack_arg = get_option_value (i, long_option, value) if (allocated (pack_args)) then call move_alloc (from=pack_args, to=tmp_strings) allocate (pack_args (size (tmp_strings)+1)) pack_args(1:size(tmp_strings)) = tmp_strings else allocate (pack_args (1)) end if pack_args(size(pack_args)) = pack_arg cycle SCAN_CMDLINE case ("--unpack") unpack_arg = get_option_value (i, long_option, value) if (allocated (unpack_args)) then call move_alloc (from=unpack_args, to=tmp_strings) allocate (unpack_args (size (tmp_strings)+1)) unpack_args(1:size(tmp_strings)) = tmp_strings else allocate (unpack_args (1)) end if unpack_args(size(unpack_args)) = unpack_arg cycle SCAN_CMDLINE case ("--model") model = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--no-model") call no_option_value (long_option, value) model = "" cycle SCAN_CMDLINE case ("--rebuild") call no_option_value (long_option, value) rebuild_library = .true. rebuild_user = .true. rebuild_phs = .true. rebuild_grids = .true. rebuild_events = .true. cycle SCAN_CMDLINE case ("--no-rebuild") call no_option_value (long_option, value) rebuild_library = .false. recompile_library = .false. rebuild_user = .false. rebuild_phs = .false. rebuild_grids = .false. rebuild_events = .false. cycle SCAN_CMDLINE case ("--rebuild-library") call no_option_value (long_option, value) rebuild_library = .true. cycle SCAN_CMDLINE case ("--rebuild-user") call no_option_value (long_option, value) rebuild_user = .true. cycle SCAN_CMDLINE case ("--rebuild-phase-space") call no_option_value (long_option, value) rebuild_phs = .true. cycle SCAN_CMDLINE case ("--rebuild-grids") call no_option_value (long_option, value) rebuild_grids = .true. cycle SCAN_CMDLINE case ("--rebuild-events") call no_option_value (long_option, value) rebuild_events = .true. cycle SCAN_CMDLINE case ("--recompile") call no_option_value (long_option, value) recompile_library = .true. rebuild_grids = .true. cycle SCAN_CMDLINE case ("--user") user_code_enable = .true. cycle SCAN_CMDLINE case ("--user-src") if (user_src == "") then user_src = get_option_value (i, long_option, value) else user_src = user_src // " " & // get_option_value (i, long_option, value) end if n_user_src = n_user_src + 1 cycle SCAN_CMDLINE case ("--user-lib") if (user_lib == "") then user_lib = get_option_value (i, long_option, value) else user_lib = user_lib // " " & // get_option_value (i, long_option, value) end if n_user_lib = n_user_lib + 1 cycle SCAN_CMDLINE case ("--user-target") user_target = get_option_value (i, long_option, value) cycle SCAN_CMDLINE case ("--write-syntax-tables") call no_option_value (long_option, value) call init_syntax_tables () call write_syntax_tables () call final_syntax_tables () stop cycle SCAN_CMDLINE case default call print_usage () call msg_fatal ("Option '" // trim (arg) // "' not recognized") end select end select select case (arg(1:1)) case ("-") j = 1 if (len_trim (arg) == 1) then look_for_options = .false. else SCAN_SHORT_OPTIONS: do j = j + 1 if (j > len_trim (arg)) exit SCAN_SHORT_OPTIONS option = "-" // arg(j:j) select case (option) case ("-V") call print_version (); stop case ("-?", "-h") call print_usage (); stop case ("-e") command = get_option_value (i, var_str (option)) call ifile_append (commands, command) cycle SCAN_CMDLINE + case ("-f") + cmdfile = get_option_value (i, var_str (option)) + inquire (file=char(cmdfile), exist=cmdfile_exists) + if (cmdfile_exists) then + open (newunit=cmdfile_unit, file=char(cmdfile), & + action="read", status="old") + call ifile_append (commands, cmdfile_unit) + close (cmdfile_unit) + else + call msg_error ("Sindarin file '" & + // char (cmdfile) // "' not found") + end if + cycle SCAN_CMDLINE case ("-i") interactive = .true. cycle SCAN_SHORT_OPTIONS case ("-J") if (j == len_trim (arg)) then job_id = get_option_value (i, var_str (option)) else job_id = trim (arg(j+1:)) end if cycle SCAN_CMDLINE case ("-l") if (j == len_trim (arg)) then library = get_option_value (i, var_str (option)) else library = trim (arg(j+1:)) end if libraries = libraries // " " // library cycle SCAN_CMDLINE case ("-L") if (j == len_trim (arg)) then logfile = get_option_value (i, var_str (option)) else logfile = trim (arg(j+1:)) end if cycle SCAN_CMDLINE case ("-m") if (j < len_trim (arg)) call msg_fatal & ("Option '" // option // "' needs a value") model = get_option_value (i, var_str (option)) cycle SCAN_CMDLINE case ("-q") call no_option_value (long_option, value) query_string = get_option_value (i, long_option, value) call show_description_of_string (query_string) call exit (0) case ("-r") rebuild_library = .true. rebuild_user = .true. rebuild_phs = .true. rebuild_grids = .true. rebuild_events = .true. cycle SCAN_SHORT_OPTIONS case ("-u") user_code_enable = .true. cycle SCAN_SHORT_OPTIONS case default call print_usage () call msg_fatal & ("Option '" // option // "' not recognized") end select end do SCAN_SHORT_OPTIONS end if case default files = files // " " // trim (arg) end select else files = files // " " // trim (arg) end if end do SCAN_CMDLINE ! Overall initialization if (logfile /= "") call logfile_init (logfile) if (banner) call msg_banner () allocate (options) allocate (whizard_instance) if (.not. quit) then ! Set options and initialize the whizard object options%job_id = job_id if (allocated (pack_args)) then options%pack_args = pack_args else allocate (options%pack_args (0)) end if if (allocated (unpack_args)) then options%unpack_args = unpack_args else allocate (options%unpack_args (0)) end if options%preload_model = model options%default_lib = default_lib options%preload_libraries = libraries options%rebuild_library = rebuild_library options%recompile_library = recompile_library options%rebuild_user = rebuild_user options%rebuild_phs = rebuild_phs options%rebuild_grids = rebuild_grids options%rebuild_events = rebuild_events <> call whizard_instance%init (options, paths, logfile) call mask_term_signals () end if ! Run commands given on the command line if (.not. quit .and. ifile_get_length (commands) > 0) then call whizard_instance%process_ifile (commands, quit, quit_code) end if if (.not. quit) then ! Process commands from standard input if (.not. interactive .and. files == "") then call whizard_instance%process_stdin (quit, quit_code) ! ... or process commands from file else files = trim (adjustl (files)) SCAN_FILES: do while (files /= "") call split (files, this, " ") call whizard_instance%process_file (this, quit, quit_code) if (quit) exit SCAN_FILES end do SCAN_FILES end if end if ! Enter an interactive shell if requested if (.not. quit .and. interactive) then call whizard_instance%shell (quit_code) end if ! Overall finalization call ifile_final (commands) deallocate (options) call whizard_instance%final () deallocate (whizard_instance) <> call terminate_now_if_signal () call release_term_signals () call msg_terminate (quit_code = quit_code) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! contains subroutine print_version () print "(A)", "WHIZARD " // WHIZARD_VERSION print "(A)", "Copyright (C) 1999-2019 Wolfgang Kilian, Thorsten Ohl, Juergen Reuter" print "(A)", " --------------------------------------- " print "(A)", "This is free software; see the source for copying conditions. There is NO" print "(A)", "warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." print * end subroutine print_version end program main !!! (WK 02/2016) !!! Separate subroutine, because this becomes a procedure pointer target !!! Internal procedures as targets are not supported by some compilers. subroutine print_usage () use system_dependencies, only: WHIZARD_VERSION print "(A)", "WHIZARD " // WHIZARD_VERSION print "(A)", "Usage: whizard [OPTIONS] [FILE]" print "(A)", "Run WHIZARD with the command list taken from FILE(s)" print "(A)", "Options for resetting default directories and tools" & // "(GNU naming conventions):" print "(A)", " --prefix DIR" print "(A)", " --exec-prefix DIR" print "(A)", " --bindir DIR" print "(A)", " --libdir DIR" print "(A)", " --includedir DIR" print "(A)", " --datarootdir DIR" print "(A)", " --libtool LOCAL_LIBTOOL" print "(A)", " --lhapdfdir DIR (PDF sets directory)" print "(A)", "Other options:" print "(A)", "-h, --help display this help and exit" print "(A)", " --banner display banner at startup (default)" print "(A)", " --debug AREA switch on debug output for AREA." print "(A)", " AREA can be one of Whizard's src dirs or 'all'" print "(A)", " --debug2 AREA switch on more verbose debug output for AREA." print "(A)", " --single-event only compute one phase-space point (for debugging)" print "(A)", "-e, --execute CMDS execute SINDARIN CMDS before reading FILE(s)" + print "(A)", "-f, --file CMDFILE execute SINDARIN from CMDFILE before reading FILE(s)" print "(A)", "-i, --interactive run interactively after reading FILE(s)" print "(A)", "-J, --job-id STRING set job ID to STRING (default: empty)" print "(A)", "-l, --library LIB preload process library NAME" print "(A)", " --localprefix DIR" print "(A)", " search in DIR for local models (default: ~/.whizard)" print "(A)", "-L, --logfile FILE write log to FILE (default: 'whizard.log'" print "(A)", " --logging switch on logging at startup (default)" print "(A)", "-m, --model NAME preload model NAME (default: 'SM')" print "(A)", " --no-banner do not display banner at startup" print "(A)", " --no-library do not preload process library" print "(A)", " --no-logfile do not write a logfile" print "(A)", " --no-logging switch off logging at startup" print "(A)", " --no-model do not preload a model" print "(A)", " --no-rebuild do not force rebuilding" print "(A)", " --pack DIR tar/gzip DIR after job" print "(A)", "-q, --query VARIABLE display documentation of VARIABLE" print "(A)", "-r, --rebuild rebuild all (see below)" print "(A)", " --rebuild-library" print "(A)", " rebuild process code library" print "(A)", " --rebuild-user rebuild user-provided code" print "(A)", " --rebuild-phase-space" print "(A)", " rebuild phase-space configuration" print "(A)", " --rebuild-grids rebuild integration grids" print "(A)", " --rebuild-events rebuild event samples" print "(A)", " --recompile recompile process code" print "(A)", " --show-config show build-time configuration" print "(A)", " --unpack FILE untar/gunzip FILE before job" print "(A)", "-u --user enable user-provided code" print "(A)", " --user-src FILE user-provided source file" print "(A)", " --user-lib FILE user-provided library file" print "(A)", " --user-target BN basename of created user library (default: user)" print "(A)", "-V, --version output version information and exit" print "(A)", " --write-syntax-tables" print "(A)", " write the internal syntax tables to files and exit" print "(A)", "- further options are taken as filenames" print * print "(A)", "With no FILE, read standard input." end subroutine print_usage @ %def main @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Driver program for the unit tests} This is a variant of the above main program that takes unit-test names as command-line options and runs those tests. <<[[main_ut.f90]]>>= <> program main_ut <> use unit_tests use io_units use system_dependencies use diagnostics use os_interface use cmdline_options use model_testbed !NODEP! <> <> implicit none <> !!! (WK 02/2016) Interface for the separate external routine below interface subroutine print_usage () end subroutine print_usage end interface ! Main program variable declarations character(CMDLINE_ARG_LEN) :: arg character(2) :: option type(string_t) :: long_option, value integer :: i, j, arg_len, arg_status logical :: look_for_options logical :: banner type(string_t) :: check, checks type(test_results_t) :: test_results logical :: success ! Exit status integer :: quit_code = 0 ! Initial values look_for_options = .true. banner = .true. logging = .false. msg_level = RESULT check = "" checks = "" <> ! Read and process options call init_options (print_usage) i = 0 SCAN_CMDLINE: do i = i + 1 call get_command_argument (i, arg, arg_len, arg_status) select case (arg_status) case (0) case (-1) call msg_error (" Command argument truncated: '" // arg // "'") case default exit SCAN_CMDLINE end select if (look_for_options) then select case (arg(1:2)) case ("--") value = trim (arg) call split (value, long_option, "=") select case (char (long_option)) case ("--version") call no_option_value (long_option, value) call print_version (); stop case ("--help") call no_option_value (long_option, value) call print_usage (); stop case ("--banner") call no_option_value (long_option, value) banner = .true. cycle SCAN_CMDLINE case ("--no-banner") call no_option_value (long_option, value) banner = .false. cycle SCAN_CMDLINE case ("--check") check = get_option_value (i, long_option, value) checks = checks // " " // check cycle SCAN_CMDLINE case ("--debug") call no_option_value (long_option, value) call set_debug_levels (get_option_value (i, long_option, value)) cycle SCAN_CMDLINE case ("--debug2") call no_option_value (long_option, value) call set_debug2_levels (get_option_value (i, long_option, value)) cycle SCAN_CMDLINE case default call print_usage () call msg_fatal ("Option '" // trim (arg) // "' not recognized") end select end select select case (arg(1:1)) case ("-") j = 1 if (len_trim (arg) == 1) then look_for_options = .false. else SCAN_SHORT_OPTIONS: do j = j + 1 if (j > len_trim (arg)) exit SCAN_SHORT_OPTIONS option = "-" // arg(j:j) select case (option) case ("-V") call print_version (); stop case ("-?", "-h") call print_usage (); stop case default call print_usage () call msg_fatal & ("Option '" // option // "' not recognized") end select end do SCAN_SHORT_OPTIONS end if case default call print_usage () call msg_fatal ("Option '" // trim (arg) // "' not recognized") end select else call print_usage () call msg_fatal ("Option '" // trim (arg) // "' not recognized") end if end do SCAN_CMDLINE ! Overall initialization if (banner) call msg_banner () ! Run any self-checks (and no commands) if (checks /= "") then checks = trim (adjustl (checks)) RUN_CHECKS: do while (checks /= "") call split (checks, check, " ") call whizard_check (check, test_results) end do RUN_CHECKS call test_results%wrapup (6, success) if (.not. success) quit_code = 7 end if <> call msg_terminate (quit_code = quit_code) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! contains subroutine print_version () print "(A)", "WHIZARD " // WHIZARD_VERSION // " (unit test driver)" print "(A)", "Copyright (C) 1999-2019 Wolfgang Kilian, Thorsten Ohl, Juergen Reuter" print "(A)", " --------------------------------------- " print "(A)", "This is free software; see the source for copying conditions. There is NO" print "(A)", "warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." print * end subroutine print_version <> end program main_ut !!! (WK 02/2016) !!! Separate subroutine, because this becomes a procedure pointer target !!! Internal procedures as targets are not supported by some compilers. subroutine print_usage () use system_dependencies, only: WHIZARD_VERSION print "(A)", "WHIZARD " // WHIZARD_VERSION // " (unit test driver)" print "(A)", "Usage: whizard_ut [OPTIONS] [FILE]" print "(A)", "Run WHIZARD unit tests as given on the command line" print "(A)", "Options:" print "(A)", "-h, --help display this help and exit" print "(A)", " --banner display banner at startup (default)" print "(A)", " --no-banner do not display banner at startup" print "(A)", " --debug AREA switch on debug output for AREA." print "(A)", " AREA can be one of Whizard's src dirs or 'all'" print "(A)", " --debug2 AREA switch on more verbose debug output for AREA." print "(A)", "-V, --version output version information and exit" print "(A)", " --check TEST run unit test TEST" end subroutine print_usage @ %def main_ut @ <>= @ <>= @ @ MPI init. <>= call MPI_init () <>= call MPI_finalize () @ %def MPI_init MPI_finalize <>= @ Every rebuild action is forbidden for the slave workers except [[rebuild_grids]], which is handled correctly inside the corresponding integration object. <>= if (.not. mpi_is_comm_master ()) then options%rebuild_library = .false. options%recompile_library = .false. options%rebuild_user = .false. options%rebuild_phs = .false. options%rebuild_events = .false. end if @ \subsection{Self-tests} For those self-tests, we need some auxiliary routines that provide an enviroment. The environment depends on things that are not available at the level of the module that we want to test. \subsubsection{Testbed for event I/O} This subroutine prepares a test process with a single event. All objects are allocated via anonymous pointers, because we want to recover the pointers and delete the objects in a separate procedure. <>= subroutine prepare_eio_test (event, unweighted, n_alt) use variables, only: var_list_t use model_data use process, only: process_t use instances, only: process_instance_t use processes_ut, only: prepare_test_process use event_base use events class(generic_event_t), intent(inout), pointer :: event logical, intent(in), optional :: unweighted integer, intent(in), optional :: n_alt type(model_data_t), pointer :: model type(var_list_t) :: var_list type(process_t), pointer :: proc type(process_instance_t), pointer :: process_instance allocate (model) call model%init_test () allocate (proc) allocate (process_instance) call prepare_test_process (proc, process_instance, model, & run_id = var_str ("run_test")) call process_instance%setup_event_data () call model%final () deallocate (model) allocate (event_t :: event) select type (event) type is (event_t) if (present (unweighted)) then call var_list%append_log (& var_str ("?unweighted"), unweighted, & intrinsic = .true.) else call var_list%append_log (& var_str ("?unweighted"), .true., & intrinsic = .true.) end if call var_list%append_string (& var_str ("$sample_normalization"), & var_str ("auto"), intrinsic = .true.) call event%basic_init (var_list, n_alt) call event%connect (process_instance, proc%get_model_ptr ()) call var_list%final () end select end subroutine prepare_eio_test @ %def prepare_eio_test_event @ Recover those pointers, finalize the objects and deallocate. <>= subroutine cleanup_eio_test (event) use model_data use process, only: process_t use instances, only: process_instance_t use processes_ut, only: cleanup_test_process use event_base use events class(generic_event_t), intent(inout), pointer :: event type(process_t), pointer :: proc type(process_instance_t), pointer :: process_instance select type (event) type is (event_t) proc => event%get_process_ptr () process_instance => event%get_process_instance_ptr () call cleanup_test_process (proc, process_instance) deallocate (process_instance) deallocate (proc) call event%final () end select deallocate (event) end subroutine cleanup_eio_test @ %def cleanup_eio_test_event @ Assign those procedures to appropriate pointers (module variables) in the [[eio_base]] module, so they can be called as if they were module procedures. <>= use eio_base_ut, only: eio_prepare_test use eio_base_ut, only: eio_cleanup_test <>= eio_prepare_test => prepare_eio_test eio_cleanup_test => cleanup_eio_test @ \subsubsection{Any Model} This procedure reads any model from file and, optionally, assigns a var-list pointer. If the model pointer is still null, we allocate the model object first, with concrete type [[model_t]]. This is a service for modules which do just have access to the [[model_data_t]] base type. <>= subroutine prepare_whizard_model (model, name, vars) <> use os_interface use model_data use var_base use models class(model_data_t), intent(inout), pointer :: model type(string_t), intent(in) :: name class(vars_t), pointer, intent(out), optional :: vars type(os_data_t) :: os_data call syntax_model_file_init () call os_data%init () if (.not. associated (model)) allocate (model_t :: model) select type (model) type is (model_t) call model%read (name // ".mdl", os_data) if (present (vars)) then vars => model%get_var_list_ptr () end if end select end subroutine prepare_whizard_model @ %def prepare_whizard_model @ Cleanup after use. Includes deletion of the model-file syntax. <>= subroutine cleanup_whizard_model (model) use model_data use models class(model_data_t), intent(inout), target :: model call model%final () call syntax_model_file_final () end subroutine cleanup_whizard_model @ %def cleanup_whizard_model @ Assign those procedures to appropriate pointers (module variables) in the [[model_testbed]] module, so they can be called as if they were module procedures. <>= prepare_model => prepare_whizard_model cleanup_model => cleanup_whizard_model @ \subsubsection{Fallback model: hadrons} Some event format tests require the hadronic SM implementation, which has to be read from file. We provide the functionality here, so the tests do not depend on model I/O. <>= subroutine prepare_fallback_model (model) use model_data class(model_data_t), intent(inout), pointer :: model call prepare_whizard_model (model, var_str ("SM_hadrons")) end subroutine prepare_fallback_model @ %def prepare_fallback_model @ Assign those procedures to appropriate pointers (module variables) in the [[eio_base]] module, so they can be called as if they were module procedures. <>= use eio_base_ut, only: eio_prepare_fallback_model use eio_base_ut, only: eio_cleanup_fallback_model <>= eio_prepare_fallback_model => prepare_fallback_model eio_cleanup_fallback_model => cleanup_model @ \subsubsection{Access to the test random-number generator} This generator is not normally available for the dispatcher. We assign an additional dispatch routine to the hook in the [[dispatch]] module which will be checked before the default rule. <>= use dispatch_rng, only: dispatch_rng_factory_fallback use dispatch_rng_ut, only: dispatch_rng_factory_test <>= dispatch_rng_factory_fallback => dispatch_rng_factory_test @ \subsubsection{Access to the test structure functions} These are not normally available for the dispatcher. We assign an additional dispatch routine to the hook in the [[dispatch]] module which will be checked before the default rule. <>= use dispatch_beams, only: dispatch_sf_data_extra use dispatch_ut, only: dispatch_sf_data_test <>= dispatch_sf_data_extra => dispatch_sf_data_test @ \subsubsection{Procedure for Checking} This is for developers only, but needs a well-defined interface. <>= subroutine whizard_check (check, results) type(string_t), intent(in) :: check type(test_results_t), intent(inout) :: results type(os_data_t) :: os_data integer :: u call os_data%init () u = free_unit () open (u, file="whizard_check." // char (check) // ".log", & action="write", status="replace") call msg_message (repeat ('=', 76), 0) call msg_message ("Running self-test: " // char (check), 0) call msg_message (repeat ('-', 76), 0) <> select case (char (check)) <> case ("all") <> case default call msg_fatal ("Self-test '" // char (check) // "' not implemented.") end select close (u) end subroutine whizard_check @ %def whizard_check @ \subsection{Unit test references} \subsubsection{Formats} <>= use formats_ut, only: format_test <>= case ("formats") call format_test (u, results) <>= call format_test (u, results) @ \subsubsection{MD5} <>= use md5_ut, only: md5_test <>= case ("md5") call md5_test (u, results) <>= call md5_test (u, results) @ \subsubsection{OS Interface} <>= use os_interface_ut, only: os_interface_test <>= case ("os_interface") call os_interface_test (u, results) <>= call os_interface_test (u, results) @ \subsubsection{Sorting} <>= use sorting_ut, only: sorting_test <>= case ("sorting") call sorting_test (u, results) <>= call sorting_test (u, results) @ \subsubsection{Grids} <>= use grids_ut, only: grids_test <>= case ("grids") call grids_test (u, results) <>= call grids_test (u, results) @ \subsubsection{Solver} <>= use solver_ut, only: solver_test <>= case ("solver") call solver_test (u, results) <>= call solver_test (u, results) @ \subsubsection{CPU Time} <>= use cputime_ut, only: cputime_test <>= case ("cputime") call cputime_test (u, results) <>= call cputime_test (u, results) @ \subsubsection{SM QCD} <>= use sm_qcd_ut, only: sm_qcd_test <>= case ("sm_qcd") call sm_qcd_test (u, results) <>= call sm_qcd_test (u, results) @ \subsubsection{SM physics} <>= use sm_physics_ut, only: sm_physics_test <>= case ("sm_physics") call sm_physics_test (u, results) <>= call sm_physics_test (u, results) @ \subsubsection{Lexers} <>= use lexers_ut, only: lexer_test <>= case ("lexers") call lexer_test (u, results) <>= call lexer_test (u, results) @ \subsubsection{Parser} <>= use parser_ut, only: parse_test <>= case ("parser") call parse_test (u, results) <>= call parse_test (u, results) @ \subsubsection{XML} <>= use xml_ut, only: xml_test <>= case ("xml") call xml_test (u, results) <>= call xml_test (u, results) @ \subsubsection{Colors} <>= use colors_ut, only: color_test <>= case ("colors") call color_test (u, results) <>= call color_test (u, results) @ \subsubsection{State matrices} <>= use state_matrices_ut, only: state_matrix_test <>= case ("state_matrices") call state_matrix_test (u, results) <>= call state_matrix_test (u, results) @ \subsubsection{Analysis} <>= use analysis_ut, only: analysis_test <>= case ("analysis") call analysis_test (u, results) <>= call analysis_test (u, results) @ \subsubsection{Particles} <>= use particles_ut, only: particles_test <>= case ("particles") call particles_test (u, results) <>= call particles_test (u, results) @ \subsubsection{Models} <>= use models_ut, only: models_test <>= case ("models") call models_test (u, results) <>= call models_test (u, results) @ \subsubsection{Auto Components} <>= use auto_components_ut, only: auto_components_test <>= case ("auto_components") call auto_components_test (u, results) <>= call auto_components_test (u, results) @ \subsubsection{Radiation Generator} <>= use radiation_generator_ut, only: radiation_generator_test <>= case ("radiation_generator") call radiation_generator_test (u, results) <>= call radiation_generator_test (u, results) @ \subsection{BLHA} <>= use blha_ut, only: blha_test <>= case ("blha") call blha_test (u, results) <>= call blha_test (u, results) @ \subsubsection{Evaluators} <>= use evaluators_ut, only: evaluator_test <>= case ("evaluators") call evaluator_test (u, results) <>= call evaluator_test (u, results) @ \subsubsection{Expressions} <>= use eval_trees_ut, only: expressions_test <>= case ("expressions") call expressions_test (u, results) <>= call expressions_test (u, results) @ \subsubsection{Resonances} <>= use resonances_ut, only: resonances_test <>= case ("resonances") call resonances_test (u, results) <>= call resonances_test (u, results) @ \subsubsection{PHS Trees} <>= use phs_trees_ut, only: phs_trees_test <>= case ("phs_trees") call phs_trees_test (u, results) <>= call phs_trees_test (u, results) @ \subsubsection{PHS Forests} <>= use phs_forests_ut, only: phs_forests_test <>= case ("phs_forests") call phs_forests_test (u, results) <>= call phs_forests_test (u, results) @ \subsubsection{Beams} <>= use beams_ut, only: beams_test <>= case ("beams") call beams_test (u, results) <>= call beams_test (u, results) @ \subsubsection{$su(N)$ Algebra} <>= use su_algebra_ut, only: su_algebra_test <>= case ("su_algebra") call su_algebra_test (u, results) <>= call su_algebra_test (u, results) @ \subsubsection{Bloch Vectors} <>= use bloch_vectors_ut, only: bloch_vectors_test <>= case ("bloch_vectors") call bloch_vectors_test (u, results) <>= call bloch_vectors_test (u, results) @ \subsubsection{Polarizations} <>= use polarizations_ut, only: polarizations_test <>= case ("polarizations") call polarizations_test (u, results) <>= call polarizations_test (u, results) @ \subsubsection{SF Aux} <>= use sf_aux_ut, only: sf_aux_test <>= case ("sf_aux") call sf_aux_test (u, results) <>= call sf_aux_test (u, results) @ \subsubsection{SF Mappings} <>= use sf_mappings_ut, only: sf_mappings_test <>= case ("sf_mappings") call sf_mappings_test (u, results) <>= call sf_mappings_test (u, results) @ \subsubsection{SF Base} <>= use sf_base_ut, only: sf_base_test <>= case ("sf_base") call sf_base_test (u, results) <>= call sf_base_test (u, results) @ \subsubsection{SF PDF Builtin} <>= use sf_pdf_builtin_ut, only: sf_pdf_builtin_test <>= case ("sf_pdf_builtin") call sf_pdf_builtin_test (u, results) <>= call sf_pdf_builtin_test (u, results) @ \subsubsection{SF LHAPDF} <>= use sf_lhapdf_ut, only: sf_lhapdf_test <>= case ("sf_lhapdf") call sf_lhapdf_test (u, results) <>= call sf_lhapdf_test (u, results) @ \subsubsection{SF ISR} <>= use sf_isr_ut, only: sf_isr_test <>= case ("sf_isr") call sf_isr_test (u, results) <>= call sf_isr_test (u, results) @ \subsubsection{SF EPA} <>= use sf_epa_ut, only: sf_epa_test <>= case ("sf_epa") call sf_epa_test (u, results) <>= call sf_epa_test (u, results) @ \subsubsection{SF EWA} <>= use sf_ewa_ut, only: sf_ewa_test <>= case ("sf_ewa") call sf_ewa_test (u, results) <>= call sf_ewa_test (u, results) @ \subsubsection{SF CIRCE1} <>= use sf_circe1_ut, only: sf_circe1_test <>= case ("sf_circe1") call sf_circe1_test (u, results) <>= call sf_circe1_test (u, results) @ \subsubsection{SF CIRCE2} <>= use sf_circe2_ut, only: sf_circe2_test <>= case ("sf_circe2") call sf_circe2_test (u, results) <>= call sf_circe2_test (u, results) @ \subsubsection{SF Gaussian} <>= use sf_gaussian_ut, only: sf_gaussian_test <>= case ("sf_gaussian") call sf_gaussian_test (u, results) <>= call sf_gaussian_test (u, results) @ \subsubsection{SF Beam Events} <>= use sf_beam_events_ut, only: sf_beam_events_test <>= case ("sf_beam_events") call sf_beam_events_test (u, results) <>= call sf_beam_events_test (u, results) @ \subsubsection{SF EScan} <>= use sf_escan_ut, only: sf_escan_test <>= case ("sf_escan") call sf_escan_test (u, results) <>= call sf_escan_test (u, results) @ \subsubsection{PHS Base} <>= use phs_base_ut, only: phs_base_test <>= case ("phs_base") call phs_base_test (u, results) <>= call phs_base_test (u, results) @ \subsubsection{PHS None} <>= use phs_none_ut, only: phs_none_test <>= case ("phs_none") call phs_none_test (u, results) <>= call phs_none_test (u, results) @ \subsubsection{PHS Single} <>= use phs_single_ut, only: phs_single_test <>= case ("phs_single") call phs_single_test (u, results) <>= call phs_single_test (u, results) @ \subsubsection{PHS Rambo} <>= use phs_rambo_ut, only: phs_rambo_test <>= case ("phs_rambo") call phs_rambo_test (u, results) <>= call phs_rambo_test (u, results) @ \subsubsection{PHS Wood} <>= use phs_wood_ut, only: phs_wood_test use phs_wood_ut, only: phs_wood_vis_test <>= case ("phs_wood") call phs_wood_test (u, results) case ("phs_wood_vis") call phs_wood_vis_test (u, results) <>= call phs_wood_test (u, results) call phs_wood_vis_test (u, results) @ \subsubsection{PHS FKS Generator} <>= use phs_fks_ut, only: phs_fks_generator_test <>= case ("phs_fks_generator") call phs_fks_generator_test (u, results) <>= call phs_fks_generator_test (u, results) @ \subsubsection{FKS regions} <>= use fks_regions_ut, only: fks_regions_test <>= case ("fks_regions") call fks_regions_test (u, results) <>= call fks_regions_test (u, results) @ \subsubsection{Real subtraction} <>= use real_subtraction_ut, only: real_subtraction_test <>= case ("real_subtraction") call real_subtraction_test (u, results) <>= call real_subtraction_test (u, results) @ \subsubsection{RECOLA} <>= use prc_recola_ut, only: prc_recola_test <>= case ("prc_recola") call prc_recola_test (u, results) <>= call prc_recola_test (u, results) @ \subsubsection{RNG Base} <>= use rng_base_ut, only: rng_base_test <>= case ("rng_base") call rng_base_test (u, results) <>= call rng_base_test (u, results) @ \subsubsection{RNG Tao} <>= use rng_tao_ut, only: rng_tao_test <>= case ("rng_tao") call rng_tao_test (u, results) <>= call rng_tao_test (u, results) @ \subsubsection{RNG Stream} <>= use rng_stream_ut, only: rng_stream_test <>= case ("rng_stream") call rng_stream_test (u, results) <>= call rng_stream_test (u, results) @ \subsubsection{Selectors} <>= use selectors_ut, only: selectors_test <>= case ("selectors") call selectors_test (u, results) <>= call selectors_test (u, results) @ \subsubsection{VEGAS} <>= use vegas_ut, only: vegas_test <>= case ("vegas") call vegas_test (u, results) <>= call vegas_test (u, results) @ \subsubsection{VAMP2} <>= use vamp2_ut, only: vamp2_test <>= case ("vamp2") call vamp2_test (u, results) <>= call vamp2_test (u, results) @ \subsubsection{MCI Base} <>= use mci_base_ut, only: mci_base_test <>= case ("mci_base") call mci_base_test (u, results) <>= call mci_base_test (u, results) @ \subsubsection{MCI None} <>= use mci_none_ut, only: mci_none_test <>= case ("mci_none") call mci_none_test (u, results) <>= call mci_none_test (u, results) @ \subsubsection{MCI Midpoint} <>= use mci_midpoint_ut, only: mci_midpoint_test <>= case ("mci_midpoint") call mci_midpoint_test (u, results) <>= call mci_midpoint_test (u, results) @ \subsubsection{MCI VAMP} <>= use mci_vamp_ut, only: mci_vamp_test <>= case ("mci_vamp") call mci_vamp_test (u, results) <>= call mci_vamp_test (u, results) @ \subsubsection{MCI VAMP2} <>= use mci_vamp2_ut, only: mci_vamp2_test <>= case ("mci_vamp2") call mci_vamp2_test (u, results) <>= call mci_vamp2_test (u, results) @ \subsubsection{Integration Results} <>= use integration_results_ut, only: integration_results_test <>= case ("integration_results") call integration_results_test (u, results) <>= call integration_results_test (u, results) @ \subsubsection{PRCLib Interfaces} <>= use prclib_interfaces_ut, only: prclib_interfaces_test <>= case ("prclib_interfaces") call prclib_interfaces_test (u, results) <>= call prclib_interfaces_test (u, results) @ \subsubsection{Particle Specifiers} <>= use particle_specifiers_ut, only: particle_specifiers_test <>= case ("particle_specifiers") call particle_specifiers_test (u, results) <>= call particle_specifiers_test (u, results) @ \subsubsection{Process Libraries} <>= use process_libraries_ut, only: process_libraries_test <>= case ("process_libraries") call process_libraries_test (u, results) <>= call process_libraries_test (u, results) @ \subsubsection{PRCLib Stacks} <>= use prclib_stacks_ut, only: prclib_stacks_test <>= case ("prclib_stacks") call prclib_stacks_test (u, results) <>= call prclib_stacks_test (u, results) @ \subsubsection{HepMC} <>= use hepmc_interface_ut, only: hepmc_interface_test <>= case ("hepmc") call hepmc_interface_test (u, results) <>= call hepmc_interface_test (u, results) @ \subsubsection{LCIO} <>= use lcio_interface_ut, only: lcio_interface_test <>= case ("lcio") call lcio_interface_test (u, results) <>= call lcio_interface_test (u, results) @ \subsubsection{Jets} <>= use jets_ut, only: jets_test <>= case ("jets") call jets_test (u, results) <>= call jets_test (u, results) @ \subsection{LHA User Process WHIZARD} <>= use whizard_lha_ut, only: whizard_lha_test <>= case ("whizard_lha") call whizard_lha_test (u, results) <>= call whizard_lha_test (u, results) @ \subsection{Pythia8} <>= use pythia8_ut, only: pythia8_test <>= case ("pythia8") call pythia8_test (u, results) <>= call pythia8_test (u, results) @ \subsubsection{PDG Arrays} <>= use pdg_arrays_ut, only: pdg_arrays_test <>= case ("pdg_arrays") call pdg_arrays_test (u, results) <>= call pdg_arrays_test (u, results) @ \subsubsection{interactions} <>= use interactions_ut, only: interaction_test <>= case ("interactions") call interaction_test (u, results) <>= call interaction_test (u, results) @ \subsubsection{SLHA} <>= use slha_interface_ut, only: slha_test <>= case ("slha_interface") call slha_test (u, results) <>= call slha_test (u, results) @ \subsubsection{Cascades} <>= use cascades_ut, only: cascades_test <>= case ("cascades") call cascades_test (u, results) <>= call cascades_test (u, results) @ \subsubsection{Cascades2 lexer} <>= use cascades2_lexer_ut, only: cascades2_lexer_test <>= case ("cascades2_lexer") call cascades2_lexer_test (u, results) <>= call cascades2_lexer_test (u, results) @ \subsubsection{Cascades2} <>= use cascades2_ut, only: cascades2_test <>= case ("cascades2") call cascades2_test (u, results) <>= call cascades2_test (u, results) @ \subsubsection{PRC Test} <>= use prc_test_ut, only: prc_test_test <>= case ("prc_test") call prc_test_test (u, results) <>= call prc_test_test (u, results) @ \subsubsection{PRC Template ME} <>= use prc_template_me_ut, only: prc_template_me_test <>= case ("prc_template_me") call prc_template_me_test (u, results) <>= call prc_template_me_test (u, results) @ \subsubsection{PRC OMega} <>= use prc_omega_ut, only: prc_omega_test use prc_omega_ut, only: prc_omega_diags_test <>= case ("prc_omega") call prc_omega_test (u, results) case ("prc_omega_diags") call prc_omega_diags_test (u, results) <>= call prc_omega_test (u, results) call prc_omega_diags_test (u, results) @ \subsubsection{Parton States} <>= use parton_states_ut, only: parton_states_test <>= case ("parton_states") call parton_states_test (u, results) <>= call parton_states_test (u, results) @ \subsubsection{Subevt Expr} <>= use expr_tests_ut, only: subevt_expr_test <>= case ("subevt_expr") call subevt_expr_test (u, results) <>= call subevt_expr_test (u, results) @ \subsubsection{Processes} <>= use processes_ut, only: processes_test <>= case ("processes") call processes_test (u, results) <>= call processes_test (u, results) @ \subsubsection{Process Stacks} <>= use process_stacks_ut, only: process_stacks_test <>= case ("process_stacks") call process_stacks_test (u, results) <>= call process_stacks_test (u, results) @ \subsubsection{Event Transforms} <>= use event_transforms_ut, only: event_transforms_test <>= case ("event_transforms") call event_transforms_test (u, results) <>= call event_transforms_test (u, results) @ \subsubsection{Resonance Insertion Transform} <>= use resonance_insertion_ut, only: resonance_insertion_test <>= case ("resonance_insertion") call resonance_insertion_test (u, results) <>= call resonance_insertion_test (u, results) @ \subsubsection{Recoil Kinematics} <>= use recoil_kinematics_ut, only: recoil_kinematics_test <>= case ("recoil_kinematics") call recoil_kinematics_test (u, results) <>= call recoil_kinematics_test (u, results) @ \subsubsection{ISR Handler} <>= use isr_epa_handler_ut, only: isr_handler_test <>= case ("isr_handler") call isr_handler_test (u, results) <>= call isr_handler_test (u, results) @ \subsubsection{EPA Handler} <>= use isr_epa_handler_ut, only: epa_handler_test <>= case ("epa_handler") call epa_handler_test (u, results) <>= call epa_handler_test (u, results) @ \subsubsection{Decays} <>= use decays_ut, only: decays_test <>= case ("decays") call decays_test (u, results) <>= call decays_test (u, results) @ \subsubsection{Shower} <>= use shower_ut, only: shower_test <>= case ("shower") call shower_test (u, results) <>= call shower_test (u, results) @ \subsubsection{Events} <>= use events_ut, only: events_test <>= case ("events") call events_test (u, results) <>= call events_test (u, results) @ \subsubsection{HEP Events} <>= use hep_events_ut, only: hep_events_test <>= case ("hep_events") call hep_events_test (u, results) <>= call hep_events_test (u, results) @ \subsubsection{EIO Data} <>= use eio_data_ut, only: eio_data_test <>= case ("eio_data") call eio_data_test (u, results) <>= call eio_data_test (u, results) @ \subsubsection{EIO Base} <>= use eio_base_ut, only: eio_base_test <>= case ("eio_base") call eio_base_test (u, results) <>= call eio_base_test (u, results) @ \subsubsection{EIO Direct} <>= use eio_direct_ut, only: eio_direct_test <>= case ("eio_direct") call eio_direct_test (u, results) <>= call eio_direct_test (u, results) @ \subsubsection{EIO Raw} <>= use eio_raw_ut, only: eio_raw_test <>= case ("eio_raw") call eio_raw_test (u, results) <>= call eio_raw_test (u, results) @ \subsubsection{EIO Checkpoints} <>= use eio_checkpoints_ut, only: eio_checkpoints_test <>= case ("eio_checkpoints") call eio_checkpoints_test (u, results) <>= call eio_checkpoints_test (u, results) @ \subsubsection{EIO LHEF} <>= use eio_lhef_ut, only: eio_lhef_test <>= case ("eio_lhef") call eio_lhef_test (u, results) <>= call eio_lhef_test (u, results) @ \subsubsection{EIO HepMC} <>= use eio_hepmc_ut, only: eio_hepmc_test <>= case ("eio_hepmc") call eio_hepmc_test (u, results) <>= call eio_hepmc_test (u, results) @ \subsubsection{EIO LCIO} <>= use eio_lcio_ut, only: eio_lcio_test <>= case ("eio_lcio") call eio_lcio_test (u, results) <>= call eio_lcio_test (u, results) @ \subsubsection{EIO StdHEP} <>= use eio_stdhep_ut, only: eio_stdhep_test <>= case ("eio_stdhep") call eio_stdhep_test (u, results) <>= call eio_stdhep_test (u, results) @ \subsubsection{EIO ASCII} <>= use eio_ascii_ut, only: eio_ascii_test <>= case ("eio_ascii") call eio_ascii_test (u, results) <>= call eio_ascii_test (u, results) @ \subsubsection{EIO Weights} <>= use eio_weights_ut, only: eio_weights_test <>= case ("eio_weights") call eio_weights_test (u, results) <>= call eio_weights_test (u, results) @ \subsubsection{EIO Dump} <>= use eio_dump_ut, only: eio_dump_test <>= case ("eio_dump") call eio_dump_test (u, results) <>= call eio_dump_test (u, results) @ \subsubsection{Iterations} <>= use iterations_ut, only: iterations_test <>= case ("iterations") call iterations_test (u, results) <>= call iterations_test (u, results) @ \subsubsection{Beam Structures} <>= use beam_structures_ut, only: beam_structures_test <>= case ("beam_structures") call beam_structures_test (u, results) <>= call beam_structures_test (u, results) @ \subsubsection{RT Data} <>= use rt_data_ut, only: rt_data_test <>= case ("rt_data") call rt_data_test (u, results) <>= call rt_data_test (u, results) @ \subsubsection{Dispatch} <>= use dispatch_ut, only: dispatch_test <>= case ("dispatch") call dispatch_test (u, results) <>= call dispatch_test (u, results) @ \subsubsection{Dispatch RNG} <>= use dispatch_rng_ut, only: dispatch_rng_test <>= case ("dispatch_rng") call dispatch_rng_test (u, results) <>= call dispatch_rng_test (u, results) @ \subsubsection{Dispatch MCI} <>= use dispatch_mci_ut, only: dispatch_mci_test <>= case ("dispatch_mci") call dispatch_mci_test (u, results) <>= call dispatch_mci_test (u, results) @ \subsubsection{Dispatch PHS} <>= use dispatch_phs_ut, only: dispatch_phs_test <>= case ("dispatch_phs") call dispatch_phs_test (u, results) <>= call dispatch_phs_test (u, results) @ \subsubsection{Dispatch transforms} <>= use dispatch_transforms_ut, only: dispatch_transforms_test <>= case ("dispatch_transforms") call dispatch_transforms_test (u, results) <>= call dispatch_transforms_test (u, results) @ \subsubsection{Shower partons} <>= use shower_base_ut, only: shower_base_test <>= case ("shower_base") call shower_base_test (u, results) <>= call shower_base_test (u, results) @ \subsubsection{Process Configurations} <>= use process_configurations_ut, only: process_configurations_test <>= case ("process_configurations") call process_configurations_test (u, results) <>= call process_configurations_test (u, results) @ \subsubsection{Compilations} <>= use compilations_ut, only: compilations_test use compilations_ut, only: compilations_static_test <>= case ("compilations") call compilations_test (u, results) case ("compilations_static") call compilations_static_test (u, results) <>= call compilations_test (u, results) call compilations_static_test (u, results) @ \subsubsection{Integrations} <>= use integrations_ut, only: integrations_test use integrations_ut, only: integrations_history_test <>= case ("integrations") call integrations_test (u, results) case ("integrations_history") call integrations_history_test (u, results) <>= call integrations_test (u, results) call integrations_history_test (u, results) @ \subsubsection{Event Streams} <>= use event_streams_ut, only: event_streams_test <>= case ("event_streams") call event_streams_test (u, results) <>= call event_streams_test (u, results) @ \subsubsection{Restricted Subprocesses} <>= use restricted_subprocesses_ut, only: restricted_subprocesses_test <>= case ("restricted_subprocesses") call restricted_subprocesses_test (u, results) <>= call restricted_subprocesses_test (u, results) @ \subsubsection{Simulations} <>= use simulations_ut, only: simulations_test <>= case ("simulations") call simulations_test (u, results) <>= call simulations_test (u, results) @ \subsubsection{Commands} <>= use commands_ut, only: commands_test <>= case ("commands") call commands_test (u, results) <>= call commands_test (u, results) @ \subsubsection{$ttV$ formfactors} <>= use ttv_formfactors_ut, only: ttv_formfactors_test <>= case ("ttv_formfactors") call ttv_formfactors_test (u, results) <>= call ttv_formfactors_test (u, results) @ \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Whizard-C-Interface} <<[[whizard-c-interface.f90]]>>= <> <> <> <> <> @ <>= subroutine c_whizard_convert_string (c_string, f_string) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none character(kind=c_char), intent(in) :: c_string(*) type(string_t), intent(inout) :: f_string character(len=1) :: dummy_char integer :: dummy_i = 1 f_string = "" do if (c_string(dummy_i) == c_null_char) then exit else if (c_string(dummy_i) == c_new_line) then dummy_char = CHAR(13) f_string = f_string // dummy_char dummy_char = CHAR(10) else dummy_char = c_string (dummy_i) end if f_string = f_string // dummy_char dummy_i = dummy_i + 1 end do dummy_i = 1 end subroutine c_whizard_convert_string subroutine c_whizard_commands (w_c_instance, cmds) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! use commands use diagnostics use lexers use models use parser use whizard type(c_ptr), intent(inout) :: w_c_instance type(whizard_t), pointer :: whizard_instance type(string_t) :: cmds type(parse_tree_t) :: parse_tree type(parse_node_t), pointer :: pn_root type(stream_t), target :: stream type(lexer_t) :: lexer type(command_list_t), target :: cmd_list call c_f_pointer (w_c_instance, whizard_instance) call lexer_init_cmd_list (lexer) call syntax_cmd_list_init () call stream_init (stream, cmds) call lexer_assign_stream (lexer, stream) call parse_tree_init (parse_tree, syntax_cmd_list, lexer) pn_root => parse_tree%get_root_ptr () if (associated (pn_root)) then call cmd_list%compile (pn_root, whizard_instance%global) end if call whizard_instance%global%activate () call cmd_list%execute (whizard_instance%global) call cmd_list%final () call parse_tree_final (parse_tree) call stream_final (stream) call lexer_final (lexer) call syntax_cmd_list_final () end subroutine c_whizard_commands @ <>= subroutine c_whizard_init (w_c_instance) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! use system_dependencies use diagnostics use ifiles use os_interface use whizard implicit none <> type(c_ptr), intent(out) :: w_c_instance logical :: banner type(string_t) :: files, model, default_lib, library, libraries ! type(string_t) :: check, checks type(string_t) :: logfile type(string_t) :: user_src, user_lib type(paths_t) :: paths logical :: rebuild_library, rebuild_user logical :: rebuild_phs, rebuild_grids, rebuild_events type(whizard_options_t), allocatable :: options type(whizard_t), pointer :: whizard_instance ! Initial values files = "" model = "SM" default_lib = "default_lib" library = "" libraries = "" banner = .true. logging = .true. logfile = "whizard.log" ! check = "" ! checks = "" user_src = "" user_lib = "" rebuild_library = .false. rebuild_user = .false. rebuild_phs = .false. rebuild_grids = .false. rebuild_events = .false. call paths_init (paths) ! Overall initialization if (logfile /= "") call logfile_init (logfile) call mask_term_signals () if (banner) call msg_banner () ! Set options and initialize the whizard object allocate (options) options%preload_model = model options%default_lib = default_lib options%preload_libraries = libraries options%rebuild_library = rebuild_library options%rebuild_user = rebuild_user options%rebuild_phs = rebuild_phs options%rebuild_grids = rebuild_grids options%rebuild_events = rebuild_events allocate (whizard_instance) call whizard_instance%init (options, paths) ! if (checks /= "") then ! checks = trim (adjustl (checks)) ! RUN_CHECKS: do while (checks /= "") ! call split (checks, check, " ") ! call whizard_check (check, test_results) ! end do RUN_CHECKS ! call test_results%wrapup (6, success) ! if (.not. success) quit_code = 7 ! quit = .true. ! end if w_c_instance = c_loc (whizard_instance) end subroutine c_whizard_init subroutine c_whizard_finalize (w_c_instance) bind(C) use, intrinsic :: iso_c_binding use system_dependencies use diagnostics use ifiles use os_interface use whizard type(c_ptr), intent(in) :: w_c_instance type(whizard_t), pointer :: whizard_instance integer :: quit_code = 0 call c_f_pointer (w_c_instance, whizard_instance) call whizard_instance%final () deallocate (whizard_instance) call terminate_now_if_signal () call release_term_signals () call msg_terminate (quit_code = quit_code) end subroutine c_whizard_finalize subroutine c_whizard_process_string (w_c_instance, c_cmds_in) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_cmds_in(*) type(string_t) :: f_cmds call c_whizard_convert_string (c_cmds_in, f_cmds) call c_whizard_commands (w_c_instance, f_cmds) end subroutine c_whizard_process_string @ <>= subroutine c_whizard_model (w_c_instance, c_model) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_model(*) type(string_t) :: model, mdl_str call c_whizard_convert_string (c_model, model) mdl_str = "model = " // model call c_whizard_commands (w_c_instance, mdl_str) end subroutine c_whizard_model subroutine c_whizard_library (w_c_instance, c_library) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_library(*) type(string_t) :: library, lib_str call c_whizard_convert_string(c_library, library) lib_str = "library = " // library call c_whizard_commands (w_c_instance, lib_str) end subroutine c_whizard_library subroutine c_whizard_process (w_c_instance, c_id, c_in, c_out) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_id(*), c_in(*), c_out(*) type(string_t) :: proc_str, id, in, out call c_whizard_convert_string (c_id, id) call c_whizard_convert_string (c_in, in) call c_whizard_convert_string (c_out, out) proc_str = "process " // id // " = " // in // " => " // out call c_whizard_commands (w_c_instance, proc_str) end subroutine c_whizard_process subroutine c_whizard_compile (w_c_instance) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! type(c_ptr), intent(inout) :: w_c_instance type(string_t) :: cmp_str cmp_str = "compile" call c_whizard_commands (w_c_instance, cmp_str) end subroutine c_whizard_compile subroutine c_whizard_beams (w_c_instance, c_specs) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_specs(*) type(string_t) :: specs, beam_str call c_whizard_convert_string (c_specs, specs) beam_str = "beams = " // specs call c_whizard_commands (w_c_instance, beam_str) end subroutine c_whizard_beams subroutine c_whizard_integrate (w_c_instance, c_process) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_process(*) type(string_t) :: process, int_str call c_whizard_convert_string (c_process, process) int_str = "integrate (" // process //")" call c_whizard_commands (w_c_instance, int_str) end subroutine c_whizard_integrate subroutine c_whizard_matrix_element_test & (w_c_instance, c_process, n_calls) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance integer(kind=c_int) :: n_calls character(kind=c_char) :: c_process(*) type(string_t) :: process, me_str character(len=8) :: buffer call c_whizard_convert_string (c_process, process) write (buffer, "(I0)") n_calls me_str = "integrate (" // process // ") { ?phs_only = true" // & " n_calls_test = " // trim (buffer) call c_whizard_commands (w_c_instance, me_str) end subroutine c_whizard_matrix_element_test subroutine c_whizard_simulate (w_c_instance, c_id) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_id(*) type(string_t) :: sim_str, id call c_whizard_convert_string(c_id, id) sim_str = "simulate (" // id // ")" call c_whizard_commands (w_c_instance, sim_str) end subroutine c_whizard_simulate subroutine c_whizard_sqrts (w_c_instance, c_value, c_unit) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! implicit none type(c_ptr), intent(inout) :: w_c_instance character(kind=c_char) :: c_unit(*) integer(kind=c_int) :: c_value integer :: f_value character(len=8) :: f_val type(string_t) :: val, unit, sqrts_str f_value = c_value write (f_val,'(i8)') f_value val = f_val call c_whizard_convert_string (c_unit, unit) sqrts_str = "sqrts =" // val // unit call c_whizard_commands (w_c_instance, sqrts_str) end subroutine c_whizard_sqrts @ <>= type(c_ptr) function c_whizard_hepmc_test & (w_c_instance, c_id, c_proc_id, c_event_id) bind(C) use, intrinsic :: iso_c_binding use iso_varying_string, string_t => varying_string !NODEP! use commands use diagnostics use events use hepmc_interface use lexers use models use parser use instances use rt_data use simulations use whizard use os_interface implicit none type(c_ptr), intent(inout) :: w_c_instance type(string_t) :: sim_str type(parse_tree_t) :: parse_tree type(parse_node_t), pointer :: pn_root type(stream_t), target :: stream type(lexer_t) :: lexer type(command_list_t), pointer :: cmd_list type(whizard_t), pointer :: whizard_instance type(simulation_t), target :: sim character(kind=c_char), intent(in) :: c_id(*) type(string_t) :: id integer(kind=c_int), value :: c_proc_id, c_event_id integer :: proc_id type(hepmc_event_t), pointer :: hepmc_event call c_f_pointer (w_c_instance, whizard_instance) call c_whizard_convert_string (c_id, id) sim_str = "simulate (" // id // ")" proc_id = c_proc_id allocate (hepmc_event) call hepmc_event_init (hepmc_event, c_proc_id, c_event_id) call syntax_cmd_list_init () call lexer_init_cmd_list (lexer) call stream_init (stream, sim_str) call lexer_assign_stream (lexer, stream) call parse_tree_init (parse_tree, syntax_cmd_list, lexer) pn_root => parse_tree%get_root_ptr () allocate (cmd_list) if (associated (pn_root)) then call cmd_list%compile (pn_root, whizard_instance%global) end if call sim%init ([id], .true., .true., whizard_instance%global) !!! This should generate a HepMC event as hepmc_event_t type call msg_message ("Not enabled for the moment.") call sim%final () call cmd_list%final () call parse_tree_final (parse_tree) call stream_final (stream) call lexer_final (lexer) call syntax_cmd_list_final () c_whizard_hepmc_test = c_loc(hepmc_event) return end function c_whizard_hepmc_test @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Index: trunk/share/tests/Makefile.am =================================================================== --- trunk/share/tests/Makefile.am (revision 8346) +++ trunk/share/tests/Makefile.am (revision 8347) @@ -1,1448 +1,1452 @@ ## Makefile.am -- Makefile for WHIZARD tests ## ## Process this file with automake to produce Makefile.in ## ######################################################################## # # Copyright (C) 1999-2019 by # Wolfgang Kilian # Thorsten Ohl # Juergen Reuter # with contributions from # cf. main AUTHORS file # # WHIZARD is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # WHIZARD is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # ######################################################################## EXTRA_DIST = \ $(TESTSUITE_MACROS) $(TESTSUITES_M4) $(TESTSUITES_SIN) \ $(TESTSUITE_TOOLS) \ $(REF_OUTPUT_FILES) \ cascades2_lexer_1.fds \ cascades2_1.fds \ cascades2_2.fds \ functional_tests/structure_2_inc.sin functional_tests/testproc_3.phs \ functional_tests/user_cuts.f90 \ functional_tests/susyhit.in \ ext_tests_nmssm/nmssm.slha TESTSUITE_MACROS = testsuite.m4 TESTSUITE_TOOLS = \ check-debug-output.py \ check-debug-output-hadro.py \ check-hepmc-weights.py \ compare-integrals.py \ compare-integrals-multi.py \ compare-methods.py \ compare-histograms.py REF_OUTPUT_FILES = \ extra_integration_results.dat \ $(REF_OUTPUT_FILES_BASE) $(REF_OUTPUT_FILES_DOUBLE) \ $(REF_OUTPUT_FILES_PREC) $(REF_OUTPUT_FILES_EXT) \ $(REF_OUTPUT_FILES_QUAD) REF_OUTPUT_FILES_BASE = \ unit_tests/ref-output/analysis_1.ref \ unit_tests/ref-output/pdg_arrays_1.ref \ unit_tests/ref-output/pdg_arrays_2.ref \ unit_tests/ref-output/pdg_arrays_3.ref \ unit_tests/ref-output/pdg_arrays_4.ref \ unit_tests/ref-output/pdg_arrays_5.ref \ unit_tests/ref-output/expressions_1.ref \ unit_tests/ref-output/expressions_2.ref \ unit_tests/ref-output/expressions_3.ref \ unit_tests/ref-output/expressions_4.ref \ unit_tests/ref-output/su_algebra_1.ref \ unit_tests/ref-output/su_algebra_2.ref \ unit_tests/ref-output/su_algebra_3.ref \ unit_tests/ref-output/su_algebra_4.ref \ unit_tests/ref-output/bloch_vectors_1.ref \ unit_tests/ref-output/bloch_vectors_2.ref \ unit_tests/ref-output/bloch_vectors_3.ref \ unit_tests/ref-output/bloch_vectors_4.ref \ unit_tests/ref-output/bloch_vectors_5.ref \ unit_tests/ref-output/bloch_vectors_6.ref \ unit_tests/ref-output/bloch_vectors_7.ref \ unit_tests/ref-output/polarization_1.ref \ unit_tests/ref-output/polarization_2.ref \ unit_tests/ref-output/beam_1.ref \ unit_tests/ref-output/beam_2.ref \ unit_tests/ref-output/beam_3.ref \ unit_tests/ref-output/md5_1.ref \ unit_tests/ref-output/cputime_1.ref \ unit_tests/ref-output/cputime_2.ref \ unit_tests/ref-output/lexer_1.ref \ unit_tests/ref-output/parse_1.ref \ unit_tests/ref-output/color_1.ref \ unit_tests/ref-output/color_2.ref \ unit_tests/ref-output/os_interface_1.ref \ unit_tests/ref-output/evaluator_1.ref \ unit_tests/ref-output/evaluator_2.ref \ unit_tests/ref-output/evaluator_3.ref \ unit_tests/ref-output/evaluator_4.ref \ unit_tests/ref-output/format_1.ref \ unit_tests/ref-output/sorting_1.ref \ unit_tests/ref-output/grids_1.ref \ unit_tests/ref-output/grids_2.ref \ unit_tests/ref-output/grids_3.ref \ unit_tests/ref-output/grids_4.ref \ unit_tests/ref-output/grids_5.ref \ unit_tests/ref-output/solver_1.ref \ unit_tests/ref-output/state_matrix_1.ref \ unit_tests/ref-output/state_matrix_2.ref \ unit_tests/ref-output/state_matrix_3.ref \ unit_tests/ref-output/state_matrix_4.ref \ unit_tests/ref-output/state_matrix_5.ref \ unit_tests/ref-output/state_matrix_6.ref \ unit_tests/ref-output/state_matrix_7.ref \ unit_tests/ref-output/interaction_1.ref \ unit_tests/ref-output/xml_1.ref \ unit_tests/ref-output/xml_2.ref \ unit_tests/ref-output/xml_3.ref \ unit_tests/ref-output/xml_4.ref \ unit_tests/ref-output/sm_qcd_1.ref \ unit_tests/ref-output/sm_physics_1.ref \ unit_tests/ref-output/sm_physics_2.ref \ unit_tests/ref-output/models_1.ref \ unit_tests/ref-output/models_2.ref \ unit_tests/ref-output/models_3.ref \ unit_tests/ref-output/models_4.ref \ unit_tests/ref-output/models_5.ref \ unit_tests/ref-output/models_6.ref \ unit_tests/ref-output/models_7.ref \ unit_tests/ref-output/models_8.ref \ unit_tests/ref-output/models_9.ref \ unit_tests/ref-output/auto_components_1.ref \ unit_tests/ref-output/auto_components_2.ref \ unit_tests/ref-output/auto_components_3.ref \ unit_tests/ref-output/radiation_generator_1.ref \ unit_tests/ref-output/radiation_generator_2.ref \ unit_tests/ref-output/radiation_generator_3.ref \ unit_tests/ref-output/radiation_generator_4.ref \ unit_tests/ref-output/particles_1.ref \ unit_tests/ref-output/particles_2.ref \ unit_tests/ref-output/particles_3.ref \ unit_tests/ref-output/particles_4.ref \ unit_tests/ref-output/particles_5.ref \ unit_tests/ref-output/particles_6.ref \ unit_tests/ref-output/particles_7.ref \ unit_tests/ref-output/particles_8.ref \ unit_tests/ref-output/particles_9.ref \ unit_tests/ref-output/beam_structures_1.ref \ unit_tests/ref-output/beam_structures_2.ref \ unit_tests/ref-output/beam_structures_3.ref \ unit_tests/ref-output/beam_structures_4.ref \ unit_tests/ref-output/beam_structures_5.ref \ unit_tests/ref-output/beam_structures_6.ref \ unit_tests/ref-output/sf_aux_1.ref \ unit_tests/ref-output/sf_aux_2.ref \ unit_tests/ref-output/sf_aux_3.ref \ unit_tests/ref-output/sf_aux_4.ref \ unit_tests/ref-output/sf_mappings_1.ref \ unit_tests/ref-output/sf_mappings_2.ref \ unit_tests/ref-output/sf_mappings_3.ref \ unit_tests/ref-output/sf_mappings_4.ref \ unit_tests/ref-output/sf_mappings_5.ref \ unit_tests/ref-output/sf_mappings_6.ref \ unit_tests/ref-output/sf_mappings_7.ref \ unit_tests/ref-output/sf_mappings_8.ref \ unit_tests/ref-output/sf_mappings_9.ref \ unit_tests/ref-output/sf_mappings_10.ref \ unit_tests/ref-output/sf_mappings_11.ref \ unit_tests/ref-output/sf_mappings_12.ref \ unit_tests/ref-output/sf_mappings_13.ref \ unit_tests/ref-output/sf_mappings_14.ref \ unit_tests/ref-output/sf_mappings_15.ref \ unit_tests/ref-output/sf_mappings_16.ref \ unit_tests/ref-output/sf_base_1.ref \ unit_tests/ref-output/sf_base_2.ref \ unit_tests/ref-output/sf_base_3.ref \ unit_tests/ref-output/sf_base_4.ref \ unit_tests/ref-output/sf_base_5.ref \ unit_tests/ref-output/sf_base_6.ref \ unit_tests/ref-output/sf_base_7.ref \ unit_tests/ref-output/sf_base_8.ref \ unit_tests/ref-output/sf_base_9.ref \ unit_tests/ref-output/sf_base_10.ref \ unit_tests/ref-output/sf_base_11.ref \ unit_tests/ref-output/sf_base_12.ref \ unit_tests/ref-output/sf_base_13.ref \ unit_tests/ref-output/sf_base_14.ref \ unit_tests/ref-output/sf_pdf_builtin_1.ref \ unit_tests/ref-output/sf_pdf_builtin_2.ref \ unit_tests/ref-output/sf_pdf_builtin_3.ref \ unit_tests/ref-output/sf_lhapdf5_1.ref \ unit_tests/ref-output/sf_lhapdf5_2.ref \ unit_tests/ref-output/sf_lhapdf5_3.ref \ unit_tests/ref-output/sf_lhapdf6_1.ref \ unit_tests/ref-output/sf_lhapdf6_2.ref \ unit_tests/ref-output/sf_lhapdf6_3.ref \ unit_tests/ref-output/sf_isr_1.ref \ unit_tests/ref-output/sf_isr_2.ref \ unit_tests/ref-output/sf_isr_3.ref \ unit_tests/ref-output/sf_isr_4.ref \ unit_tests/ref-output/sf_isr_5.ref \ unit_tests/ref-output/sf_epa_1.ref \ unit_tests/ref-output/sf_epa_2.ref \ unit_tests/ref-output/sf_epa_3.ref \ unit_tests/ref-output/sf_epa_4.ref \ unit_tests/ref-output/sf_epa_5.ref \ unit_tests/ref-output/sf_ewa_1.ref \ unit_tests/ref-output/sf_ewa_2.ref \ unit_tests/ref-output/sf_ewa_3.ref \ unit_tests/ref-output/sf_ewa_4.ref \ unit_tests/ref-output/sf_ewa_5.ref \ unit_tests/ref-output/sf_circe1_1.ref \ unit_tests/ref-output/sf_circe1_2.ref \ unit_tests/ref-output/sf_circe1_3.ref \ unit_tests/ref-output/sf_circe2_1.ref \ unit_tests/ref-output/sf_circe2_2.ref \ unit_tests/ref-output/sf_circe2_3.ref \ unit_tests/ref-output/sf_gaussian_1.ref \ unit_tests/ref-output/sf_gaussian_2.ref \ unit_tests/ref-output/sf_beam_events_1.ref \ unit_tests/ref-output/sf_beam_events_2.ref \ unit_tests/ref-output/sf_beam_events_3.ref \ unit_tests/ref-output/sf_escan_1.ref \ unit_tests/ref-output/sf_escan_2.ref \ unit_tests/ref-output/phs_base_1.ref \ unit_tests/ref-output/phs_base_2.ref \ unit_tests/ref-output/phs_base_3.ref \ unit_tests/ref-output/phs_base_4.ref \ unit_tests/ref-output/phs_base_5.ref \ unit_tests/ref-output/phs_none_1.ref \ unit_tests/ref-output/phs_single_1.ref \ unit_tests/ref-output/phs_single_2.ref \ unit_tests/ref-output/phs_single_3.ref \ unit_tests/ref-output/phs_single_4.ref \ unit_tests/ref-output/phs_rambo_1.ref \ unit_tests/ref-output/phs_rambo_2.ref \ unit_tests/ref-output/phs_rambo_3.ref \ unit_tests/ref-output/phs_rambo_4.ref \ unit_tests/ref-output/resonances_1.ref \ unit_tests/ref-output/resonances_2.ref \ unit_tests/ref-output/resonances_3.ref \ unit_tests/ref-output/resonances_4.ref \ unit_tests/ref-output/resonances_5.ref \ unit_tests/ref-output/resonances_6.ref \ unit_tests/ref-output/resonances_7.ref \ unit_tests/ref-output/phs_tree_1.ref \ unit_tests/ref-output/phs_tree_2.ref \ unit_tests/ref-output/phs_forest_1.ref \ unit_tests/ref-output/phs_forest_2.ref \ unit_tests/ref-output/phs_wood_1.ref \ unit_tests/ref-output/phs_wood_2.ref \ unit_tests/ref-output/phs_wood_3.ref \ unit_tests/ref-output/phs_wood_4.ref \ unit_tests/ref-output/phs_wood_5.ref \ unit_tests/ref-output/phs_wood_6.ref \ unit_tests/ref-output/phs_wood_vis_1.ref \ unit_tests/ref-output/phs_fks_generator_1.ref \ unit_tests/ref-output/phs_fks_generator_2.ref \ unit_tests/ref-output/phs_fks_generator_3.ref \ unit_tests/ref-output/phs_fks_generator_4.ref \ unit_tests/ref-output/phs_fks_generator_5.ref \ unit_tests/ref-output/phs_fks_generator_6.ref \ unit_tests/ref-output/phs_fks_generator_7.ref \ unit_tests/ref-output/fks_regions_1.ref \ unit_tests/ref-output/fks_regions_2.ref \ unit_tests/ref-output/fks_regions_3.ref \ unit_tests/ref-output/fks_regions_4.ref \ unit_tests/ref-output/fks_regions_5.ref \ unit_tests/ref-output/fks_regions_6.ref \ unit_tests/ref-output/fks_regions_7.ref \ unit_tests/ref-output/fks_regions_8.ref \ unit_tests/ref-output/real_subtraction_1.ref \ unit_tests/ref-output/prc_recola_1.ref \ unit_tests/ref-output/prc_recola_2.ref \ unit_tests/ref-output/rng_base_1.ref \ unit_tests/ref-output/rng_base_2.ref \ unit_tests/ref-output/rng_tao_1.ref \ unit_tests/ref-output/rng_tao_2.ref \ unit_tests/ref-output/rng_stream_1.ref \ unit_tests/ref-output/rng_stream_2.ref \ unit_tests/ref-output/rng_stream_3.ref \ unit_tests/ref-output/selectors_1.ref \ unit_tests/ref-output/selectors_2.ref \ unit_tests/ref-output/vegas_1.ref \ unit_tests/ref-output/vegas_2.ref \ unit_tests/ref-output/vegas_3.ref \ unit_tests/ref-output/vegas_4.ref \ unit_tests/ref-output/vegas_5.ref \ unit_tests/ref-output/vegas_6.ref \ unit_tests/ref-output/vamp2_1.ref \ unit_tests/ref-output/vamp2_2.ref \ unit_tests/ref-output/vamp2_3.ref \ unit_tests/ref-output/vamp2_4.ref \ unit_tests/ref-output/vamp2_5.ref \ unit_tests/ref-output/mci_base_1.ref \ unit_tests/ref-output/mci_base_2.ref \ unit_tests/ref-output/mci_base_3.ref \ unit_tests/ref-output/mci_base_4.ref \ unit_tests/ref-output/mci_base_5.ref \ unit_tests/ref-output/mci_base_6.ref \ unit_tests/ref-output/mci_base_7.ref \ unit_tests/ref-output/mci_base_8.ref \ unit_tests/ref-output/mci_none_1.ref \ unit_tests/ref-output/mci_midpoint_1.ref \ unit_tests/ref-output/mci_midpoint_2.ref \ unit_tests/ref-output/mci_midpoint_3.ref \ unit_tests/ref-output/mci_midpoint_4.ref \ unit_tests/ref-output/mci_midpoint_5.ref \ unit_tests/ref-output/mci_midpoint_6.ref \ unit_tests/ref-output/mci_midpoint_7.ref \ unit_tests/ref-output/mci_vamp_1.ref \ unit_tests/ref-output/mci_vamp_2.ref \ unit_tests/ref-output/mci_vamp_3.ref \ unit_tests/ref-output/mci_vamp_4.ref \ unit_tests/ref-output/mci_vamp_5.ref \ unit_tests/ref-output/mci_vamp_6.ref \ unit_tests/ref-output/mci_vamp_7.ref \ unit_tests/ref-output/mci_vamp_8.ref \ unit_tests/ref-output/mci_vamp_9.ref \ unit_tests/ref-output/mci_vamp_10.ref \ unit_tests/ref-output/mci_vamp_11.ref \ unit_tests/ref-output/mci_vamp_12.ref \ unit_tests/ref-output/mci_vamp_13.ref \ unit_tests/ref-output/mci_vamp_14.ref \ unit_tests/ref-output/mci_vamp_15.ref \ unit_tests/ref-output/mci_vamp_16.ref \ unit_tests/ref-output/mci_vamp2_1.ref \ unit_tests/ref-output/mci_vamp2_2.ref \ unit_tests/ref-output/mci_vamp2_3.ref \ unit_tests/ref-output/integration_results_1.ref \ unit_tests/ref-output/integration_results_2.ref \ unit_tests/ref-output/integration_results_3.ref \ unit_tests/ref-output/integration_results_4.ref \ unit_tests/ref-output/integration_results_5.ref \ unit_tests/ref-output/prclib_interfaces_1.ref \ unit_tests/ref-output/prclib_interfaces_2.ref \ unit_tests/ref-output/prclib_interfaces_3.ref \ unit_tests/ref-output/prclib_interfaces_4.ref \ unit_tests/ref-output/prclib_interfaces_5.ref \ unit_tests/ref-output/prclib_interfaces_6.ref \ unit_tests/ref-output/prclib_interfaces_7.ref \ unit_tests/ref-output/particle_specifiers_1.ref \ unit_tests/ref-output/particle_specifiers_2.ref \ unit_tests/ref-output/process_libraries_1.ref \ unit_tests/ref-output/process_libraries_2.ref \ unit_tests/ref-output/process_libraries_3.ref \ unit_tests/ref-output/process_libraries_4.ref \ unit_tests/ref-output/process_libraries_5.ref \ unit_tests/ref-output/process_libraries_6.ref \ unit_tests/ref-output/process_libraries_7.ref \ unit_tests/ref-output/process_libraries_8.ref \ unit_tests/ref-output/prclib_stacks_1.ref \ unit_tests/ref-output/prclib_stacks_2.ref \ unit_tests/ref-output/slha_1.ref \ unit_tests/ref-output/slha_2.ref \ unit_tests/ref-output/prc_test_1.ref \ unit_tests/ref-output/prc_test_2.ref \ unit_tests/ref-output/prc_test_3.ref \ unit_tests/ref-output/prc_test_4.ref \ unit_tests/ref-output/prc_template_me_1.ref \ unit_tests/ref-output/prc_template_me_2.ref \ unit_tests/ref-output/prc_omega_1.ref \ unit_tests/ref-output/prc_omega_2.ref \ unit_tests/ref-output/prc_omega_3.ref \ unit_tests/ref-output/prc_omega_4.ref \ unit_tests/ref-output/prc_omega_5.ref \ unit_tests/ref-output/prc_omega_6.ref \ unit_tests/ref-output/prc_omega_diags_1.ref \ unit_tests/ref-output/parton_states_1.ref \ unit_tests/ref-output/subevt_expr_1.ref \ unit_tests/ref-output/subevt_expr_2.ref \ unit_tests/ref-output/processes_1.ref \ unit_tests/ref-output/processes_2.ref \ unit_tests/ref-output/processes_3.ref \ unit_tests/ref-output/processes_4.ref \ unit_tests/ref-output/processes_5.ref \ unit_tests/ref-output/processes_6.ref \ unit_tests/ref-output/processes_7.ref \ unit_tests/ref-output/processes_8.ref \ unit_tests/ref-output/processes_9.ref \ unit_tests/ref-output/processes_10.ref \ unit_tests/ref-output/processes_11.ref \ unit_tests/ref-output/processes_12.ref \ unit_tests/ref-output/processes_13.ref \ unit_tests/ref-output/processes_14.ref \ unit_tests/ref-output/processes_15.ref \ unit_tests/ref-output/processes_16.ref \ unit_tests/ref-output/processes_17.ref \ unit_tests/ref-output/processes_18.ref \ unit_tests/ref-output/processes_19.ref \ unit_tests/ref-output/process_stacks_1.ref \ unit_tests/ref-output/process_stacks_2.ref \ unit_tests/ref-output/process_stacks_3.ref \ unit_tests/ref-output/process_stacks_4.ref \ unit_tests/ref-output/cascades_1.ref \ unit_tests/ref-output/cascades_2.ref \ unit_tests/ref-output/cascades2_lexer_1.ref \ unit_tests/ref-output/cascades2_1.ref \ unit_tests/ref-output/cascades2_2.ref \ unit_tests/ref-output/event_transforms_1.ref \ unit_tests/ref-output/recoil_kinematics_1.ref \ unit_tests/ref-output/recoil_kinematics_2.ref \ unit_tests/ref-output/recoil_kinematics_3.ref \ unit_tests/ref-output/recoil_kinematics_4.ref \ unit_tests/ref-output/recoil_kinematics_5.ref \ unit_tests/ref-output/resonance_insertion_1.ref \ unit_tests/ref-output/resonance_insertion_2.ref \ unit_tests/ref-output/resonance_insertion_3.ref \ unit_tests/ref-output/resonance_insertion_4.ref \ unit_tests/ref-output/resonance_insertion_5.ref \ unit_tests/ref-output/resonance_insertion_6.ref \ unit_tests/ref-output/isr_handler_1.ref \ unit_tests/ref-output/isr_handler_2.ref \ unit_tests/ref-output/isr_handler_3.ref \ unit_tests/ref-output/epa_handler_1.ref \ unit_tests/ref-output/epa_handler_2.ref \ unit_tests/ref-output/epa_handler_3.ref \ unit_tests/ref-output/decays_1.ref \ unit_tests/ref-output/decays_2.ref \ unit_tests/ref-output/decays_3.ref \ unit_tests/ref-output/decays_4.ref \ unit_tests/ref-output/decays_5.ref \ unit_tests/ref-output/decays_6.ref \ unit_tests/ref-output/shower_1.ref \ unit_tests/ref-output/shower_2.ref \ unit_tests/ref-output/shower_base_1.ref \ unit_tests/ref-output/events_1.ref \ unit_tests/ref-output/events_2.ref \ unit_tests/ref-output/events_3.ref \ unit_tests/ref-output/events_4.ref \ unit_tests/ref-output/events_5.ref \ unit_tests/ref-output/events_6.ref \ unit_tests/ref-output/events_7.ref \ unit_tests/ref-output/hep_events_1.ref \ unit_tests/ref-output/eio_data_1.ref \ unit_tests/ref-output/eio_data_2.ref \ unit_tests/ref-output/eio_base_1.ref \ unit_tests/ref-output/eio_direct_1.ref \ unit_tests/ref-output/eio_raw_1.ref \ unit_tests/ref-output/eio_raw_2.ref \ unit_tests/ref-output/eio_checkpoints_1.ref \ unit_tests/ref-output/eio_lhef_1.ref \ unit_tests/ref-output/eio_lhef_2.ref \ unit_tests/ref-output/eio_lhef_3.ref \ unit_tests/ref-output/eio_lhef_4.ref \ unit_tests/ref-output/eio_lhef_5.ref \ unit_tests/ref-output/eio_lhef_6.ref \ unit_tests/ref-output/eio_stdhep_1.ref \ unit_tests/ref-output/eio_stdhep_2.ref \ unit_tests/ref-output/eio_stdhep_3.ref \ unit_tests/ref-output/eio_stdhep_4.ref \ unit_tests/ref-output/eio_hepmc2_1.ref \ unit_tests/ref-output/eio_hepmc2_2.ref \ unit_tests/ref-output/eio_hepmc3_1.ref \ unit_tests/ref-output/eio_hepmc3_2.ref \ unit_tests/ref-output/eio_lcio_1.ref \ unit_tests/ref-output/eio_lcio_2.ref \ unit_tests/ref-output/eio_ascii_1.ref \ unit_tests/ref-output/eio_ascii_2.ref \ unit_tests/ref-output/eio_ascii_3.ref \ unit_tests/ref-output/eio_ascii_4.ref \ unit_tests/ref-output/eio_ascii_5.ref \ unit_tests/ref-output/eio_ascii_6.ref \ unit_tests/ref-output/eio_ascii_7.ref \ unit_tests/ref-output/eio_ascii_8.ref \ unit_tests/ref-output/eio_ascii_9.ref \ unit_tests/ref-output/eio_ascii_10.ref \ unit_tests/ref-output/eio_weights_1.ref \ unit_tests/ref-output/eio_weights_2.ref \ unit_tests/ref-output/eio_weights_3.ref \ unit_tests/ref-output/eio_dump_1.ref \ unit_tests/ref-output/iterations_1.ref \ unit_tests/ref-output/iterations_2.ref \ unit_tests/ref-output/rt_data_1.ref \ unit_tests/ref-output/rt_data_2.ref \ unit_tests/ref-output/rt_data_3.ref \ unit_tests/ref-output/rt_data_4.ref \ unit_tests/ref-output/rt_data_5.ref \ unit_tests/ref-output/rt_data_6.ref \ unit_tests/ref-output/rt_data_7.ref \ unit_tests/ref-output/rt_data_8.ref \ unit_tests/ref-output/rt_data_9.ref \ unit_tests/ref-output/rt_data_10.ref \ unit_tests/ref-output/rt_data_11.ref \ unit_tests/ref-output/dispatch_1.ref \ unit_tests/ref-output/dispatch_2.ref \ unit_tests/ref-output/dispatch_7.ref \ unit_tests/ref-output/dispatch_8.ref \ unit_tests/ref-output/dispatch_10.ref \ unit_tests/ref-output/dispatch_11.ref \ unit_tests/ref-output/dispatch_rng_1.ref \ unit_tests/ref-output/dispatch_phs_1.ref \ unit_tests/ref-output/dispatch_phs_2.ref \ unit_tests/ref-output/dispatch_mci_1.ref \ unit_tests/ref-output/dispatch_transforms_1.ref \ unit_tests/ref-output/dispatch_transforms_2.ref \ unit_tests/ref-output/process_configurations_1.ref \ unit_tests/ref-output/process_configurations_2.ref \ unit_tests/ref-output/event_streams_1.ref \ unit_tests/ref-output/event_streams_2.ref \ unit_tests/ref-output/event_streams_3.ref \ unit_tests/ref-output/event_streams_4.ref \ unit_tests/ref-output/compilations_1.ref \ unit_tests/ref-output/compilations_2.ref \ unit_tests/ref-output/compilations_3.ref \ unit_tests/ref-output/compilations_static_1.ref \ unit_tests/ref-output/compilations_static_2.ref \ unit_tests/ref-output/integrations_1.ref \ unit_tests/ref-output/integrations_2.ref \ unit_tests/ref-output/integrations_3.ref \ unit_tests/ref-output/integrations_4.ref \ unit_tests/ref-output/integrations_5.ref \ unit_tests/ref-output/integrations_6.ref \ unit_tests/ref-output/integrations_7.ref \ unit_tests/ref-output/integrations_8.ref \ unit_tests/ref-output/integrations_9.ref \ unit_tests/ref-output/integrations_history_1.ref \ unit_tests/ref-output/restricted_subprocesses_1.ref \ unit_tests/ref-output/restricted_subprocesses_2.ref \ unit_tests/ref-output/restricted_subprocesses_3.ref \ unit_tests/ref-output/restricted_subprocesses_4.ref \ unit_tests/ref-output/restricted_subprocesses_5.ref \ unit_tests/ref-output/restricted_subprocesses_6.ref \ unit_tests/ref-output/simulations_1.ref \ unit_tests/ref-output/simulations_2.ref \ unit_tests/ref-output/simulations_3.ref \ unit_tests/ref-output/simulations_4.ref \ unit_tests/ref-output/simulations_5.ref \ unit_tests/ref-output/simulations_6.ref \ unit_tests/ref-output/simulations_7.ref \ unit_tests/ref-output/simulations_8.ref \ unit_tests/ref-output/simulations_9.ref \ unit_tests/ref-output/simulations_10.ref \ unit_tests/ref-output/simulations_11.ref \ unit_tests/ref-output/simulations_12.ref \ unit_tests/ref-output/simulations_13.ref \ unit_tests/ref-output/simulations_14.ref \ unit_tests/ref-output/simulations_15.ref \ unit_tests/ref-output/commands_1.ref \ unit_tests/ref-output/commands_2.ref \ unit_tests/ref-output/commands_3.ref \ unit_tests/ref-output/commands_4.ref \ unit_tests/ref-output/commands_5.ref \ unit_tests/ref-output/commands_6.ref \ unit_tests/ref-output/commands_7.ref \ unit_tests/ref-output/commands_8.ref \ unit_tests/ref-output/commands_9.ref \ unit_tests/ref-output/commands_10.ref \ unit_tests/ref-output/commands_11.ref \ unit_tests/ref-output/commands_12.ref \ unit_tests/ref-output/commands_13.ref \ unit_tests/ref-output/commands_14.ref \ unit_tests/ref-output/commands_15.ref \ unit_tests/ref-output/commands_16.ref \ unit_tests/ref-output/commands_17.ref \ unit_tests/ref-output/commands_18.ref \ unit_tests/ref-output/commands_19.ref \ unit_tests/ref-output/commands_20.ref \ unit_tests/ref-output/commands_21.ref \ unit_tests/ref-output/commands_22.ref \ unit_tests/ref-output/commands_23.ref \ unit_tests/ref-output/commands_24.ref \ unit_tests/ref-output/commands_25.ref \ unit_tests/ref-output/commands_26.ref \ unit_tests/ref-output/commands_27.ref \ unit_tests/ref-output/commands_28.ref \ unit_tests/ref-output/commands_29.ref \ unit_tests/ref-output/commands_30.ref \ unit_tests/ref-output/commands_31.ref \ unit_tests/ref-output/commands_32.ref \ unit_tests/ref-output/commands_33.ref \ unit_tests/ref-output/commands_34.ref \ unit_tests/ref-output/jets_1.ref \ unit_tests/ref-output/hepmc2_interface_1.ref \ unit_tests/ref-output/hepmc3_interface_1.ref \ unit_tests/ref-output/lcio_interface_1.ref \ unit_tests/ref-output/ttv_formfactors_1.ref \ unit_tests/ref-output/ttv_formfactors_2.ref \ unit_tests/ref-output/blha_1.ref \ unit_tests/ref-output/blha_2.ref \ unit_tests/ref-output/blha_3.ref \ unit_tests/ref-output/whizard_lha_1.ref \ functional_tests/ref-output/pack_1.ref \ functional_tests/ref-output/structure_1.ref \ functional_tests/ref-output/structure_2.ref \ functional_tests/ref-output/structure_3.ref \ functional_tests/ref-output/structure_4.ref \ functional_tests/ref-output/structure_5.ref \ functional_tests/ref-output/structure_6.ref \ functional_tests/ref-output/structure_7.ref \ functional_tests/ref-output/structure_8.ref \ functional_tests/ref-output/vars.ref \ functional_tests/ref-output/extpar.ref \ functional_tests/ref-output/testproc_1.ref \ functional_tests/ref-output/testproc_2.ref \ functional_tests/ref-output/testproc_3.ref \ functional_tests/ref-output/testproc_4.ref \ functional_tests/ref-output/testproc_5.ref \ functional_tests/ref-output/testproc_6.ref \ functional_tests/ref-output/testproc_7.ref \ functional_tests/ref-output/testproc_8.ref \ functional_tests/ref-output/testproc_9.ref \ functional_tests/ref-output/testproc_10.ref \ functional_tests/ref-output/testproc_11.ref \ functional_tests/ref-output/testproc_12.ref \ functional_tests/ref-output/template_me_1.ref \ functional_tests/ref-output/template_me_2.ref \ functional_tests/ref-output/susyhit.ref \ functional_tests/ref-output/restrictions.ref \ functional_tests/ref-output/process_log.ref \ functional_tests/ref-output/static_1.ref \ functional_tests/ref-output/static_2.ref \ functional_tests/ref-output/libraries_1.ref \ functional_tests/ref-output/libraries_2.ref \ functional_tests/ref-output/libraries_4.ref \ functional_tests/ref-output/job_id_1.ref \ functional_tests/ref-output/job_id_2.ref \ functional_tests/ref-output/job_id_3.ref \ functional_tests/ref-output/job_id_4.ref \ functional_tests/ref-output/rebuild_2.ref \ functional_tests/ref-output/rebuild_3.ref \ functional_tests/ref-output/rebuild_4.ref \ functional_tests/ref-output/fatal.ref \ + functional_tests/ref-output/cmdline_1.ref \ functional_tests/ref-output/model_change_1.ref \ functional_tests/ref-output/model_change_2.ref \ functional_tests/ref-output/model_change_3.ref \ functional_tests/ref-output/model_scheme_1.ref \ functional_tests/ref-output/model_test.ref \ functional_tests/ref-output/cuts.ref \ functional_tests/ref-output/user_cuts.ref \ functional_tests/ref-output/user_prc_threshold_1.ref \ functional_tests/ref-output/user_prc_threshold_2.ref \ functional_tests/ref-output/qedtest_1.ref \ functional_tests/ref-output/qedtest_2.ref \ functional_tests/ref-output/qedtest_5.ref \ functional_tests/ref-output/qedtest_6.ref \ functional_tests/ref-output/qedtest_7.ref \ functional_tests/ref-output/qedtest_8.ref \ functional_tests/ref-output/qedtest_9.ref \ functional_tests/ref-output/qedtest_10.ref \ functional_tests/ref-output/qcdtest_4.ref \ functional_tests/ref-output/qcdtest_5.ref \ functional_tests/ref-output/qcdtest_6.ref \ functional_tests/ref-output/rambo_vamp_1.ref \ functional_tests/ref-output/rambo_vamp_2.ref \ functional_tests/ref-output/beam_setup_1.ref \ functional_tests/ref-output/beam_setup_2.ref \ functional_tests/ref-output/beam_setup_3.ref \ functional_tests/ref-output/beam_setup_4.ref \ functional_tests/ref-output/observables_1.ref \ functional_tests/ref-output/event_weights_1.ref \ functional_tests/ref-output/event_weights_2.ref \ functional_tests/ref-output/event_eff_1.ref \ functional_tests/ref-output/event_eff_2.ref \ functional_tests/ref-output/event_dump_1.ref \ functional_tests/ref-output/event_dump_2.ref \ functional_tests/ref-output/reweight_1.ref \ functional_tests/ref-output/reweight_2.ref \ functional_tests/ref-output/reweight_3.ref \ functional_tests/ref-output/reweight_4.ref \ functional_tests/ref-output/reweight_5.ref \ functional_tests/ref-output/reweight_6.ref \ functional_tests/ref-output/reweight_7.ref \ functional_tests/ref-output/reweight_8.ref \ functional_tests/ref-output/analyze_1.ref \ functional_tests/ref-output/analyze_2.ref \ functional_tests/ref-output/analyze_3.ref \ functional_tests/ref-output/analyze_4.ref \ functional_tests/ref-output/analyze_5.ref \ functional_tests/ref-output/analyze_6.ref \ functional_tests/ref-output/bjet_cluster.ref \ functional_tests/ref-output/colors.ref \ functional_tests/ref-output/colors_hgg.ref \ functional_tests/ref-output/alphas.ref \ functional_tests/ref-output/jets_xsec.ref \ functional_tests/ref-output/shower_err_1.ref \ functional_tests/ref-output/parton_shower_1.ref \ functional_tests/ref-output/pythia6_1.ref \ functional_tests/ref-output/pythia6_2.ref \ functional_tests/ref-output/hadronize_1.ref \ functional_tests/ref-output/mlm_matching_fsr.ref \ functional_tests/ref-output/mlm_pythia6_isr.ref \ functional_tests/ref-output/hepmc_1.ref \ functional_tests/ref-output/hepmc_2.ref \ functional_tests/ref-output/hepmc_3.ref \ functional_tests/ref-output/hepmc_4.ref \ functional_tests/ref-output/hepmc_5.ref \ functional_tests/ref-output/hepmc_6.ref \ functional_tests/ref-output/hepmc_7.ref \ functional_tests/ref-output/hepmc_9.ref \ functional_tests/ref-output/hepmc_10.ref \ functional_tests/ref-output/lhef_1.ref \ functional_tests/ref-output/lhef_2.ref \ functional_tests/ref-output/lhef_3.ref \ functional_tests/ref-output/lhef_4.ref \ functional_tests/ref-output/lhef_5.ref \ functional_tests/ref-output/lhef_6.ref \ functional_tests/ref-output/lhef_9.ref \ functional_tests/ref-output/lhef_10.ref \ functional_tests/ref-output/lhef_11.ref \ functional_tests/ref-output/select_1.ref \ functional_tests/ref-output/select_2.ref \ functional_tests/ref-output/stdhep_1.ref \ functional_tests/ref-output/stdhep_2.ref \ functional_tests/ref-output/stdhep_3.ref \ functional_tests/ref-output/stdhep_4.ref \ functional_tests/ref-output/stdhep_5.ref \ functional_tests/ref-output/stdhep_6.ref \ functional_tests/ref-output/lcio_1.ref \ functional_tests/ref-output/lcio_3.ref \ functional_tests/ref-output/lcio_4.ref \ functional_tests/ref-output/lcio_5.ref \ functional_tests/ref-output/lcio_6.ref \ functional_tests/ref-output/lcio_8.ref \ functional_tests/ref-output/lcio_9.ref \ functional_tests/ref-output/lcio_10.ref \ functional_tests/ref-output/fatal_beam_decay.ref \ functional_tests/ref-output/smtest_1.ref \ functional_tests/ref-output/smtest_3.ref \ functional_tests/ref-output/smtest_4.ref \ functional_tests/ref-output/smtest_5.ref \ functional_tests/ref-output/smtest_6.ref \ functional_tests/ref-output/smtest_7.ref \ functional_tests/ref-output/smtest_9.ref \ functional_tests/ref-output/smtest_10.ref \ functional_tests/ref-output/smtest_11.ref \ functional_tests/ref-output/smtest_12.ref \ functional_tests/ref-output/smtest_13.ref \ functional_tests/ref-output/smtest_14.ref \ functional_tests/ref-output/smtest_15.ref \ functional_tests/ref-output/smtest_16.ref \ functional_tests/ref-output/photon_isolation_1.ref \ functional_tests/ref-output/photon_isolation_2.ref \ functional_tests/ref-output/sm_cms_1.ref \ functional_tests/ref-output/resonances_5.ref \ functional_tests/ref-output/resonances_6.ref \ functional_tests/ref-output/resonances_7.ref \ functional_tests/ref-output/resonances_8.ref \ functional_tests/ref-output/resonances_9.ref \ functional_tests/ref-output/resonances_12.ref \ functional_tests/ref-output/ufo_1.ref \ functional_tests/ref-output/ufo_2.ref \ functional_tests/ref-output/ufo_3.ref \ functional_tests/ref-output/ufo_4.ref \ functional_tests/ref-output/nlo_1.ref \ functional_tests/ref-output/nlo_2.ref \ functional_tests/ref-output/nlo_6.ref \ functional_tests/ref-output/real_partition_1.ref \ functional_tests/ref-output/fks_res_2.ref \ functional_tests/ref-output/openloops_1.ref \ functional_tests/ref-output/openloops_2.ref \ functional_tests/ref-output/openloops_4.ref \ functional_tests/ref-output/openloops_5.ref \ functional_tests/ref-output/openloops_6.ref \ functional_tests/ref-output/openloops_7.ref \ functional_tests/ref-output/openloops_8.ref \ functional_tests/ref-output/openloops_9.ref \ functional_tests/ref-output/openloops_10.ref \ functional_tests/ref-output/openloops_11.ref \ functional_tests/ref-output/openloops_12.ref \ functional_tests/ref-output/openloops_13.ref \ functional_tests/ref-output/recola_1.ref \ functional_tests/ref-output/recola_2.ref \ functional_tests/ref-output/recola_3.ref \ functional_tests/ref-output/recola_4.ref \ functional_tests/ref-output/recola_5.ref \ functional_tests/ref-output/recola_6.ref \ functional_tests/ref-output/recola_7.ref \ functional_tests/ref-output/recola_8.ref \ functional_tests/ref-output/nlo_decay_1.ref \ functional_tests/ref-output/mssmtest_1.ref \ functional_tests/ref-output/mssmtest_2.ref \ functional_tests/ref-output/mssmtest_3.ref \ functional_tests/ref-output/spincor_1.ref \ functional_tests/ref-output/show_1.ref \ functional_tests/ref-output/show_2.ref \ functional_tests/ref-output/show_3.ref \ functional_tests/ref-output/show_4.ref \ functional_tests/ref-output/show_5.ref \ functional_tests/ref-output/method_ovm_1.ref \ functional_tests/ref-output/multi_comp_4.ref \ functional_tests/ref-output/flvsum_1.ref \ functional_tests/ref-output/br_redef_1.ref \ functional_tests/ref-output/decay_err_1.ref \ functional_tests/ref-output/decay_err_2.ref \ functional_tests/ref-output/decay_err_3.ref \ functional_tests/ref-output/polarized_1.ref \ functional_tests/ref-output/circe1_1.ref \ functional_tests/ref-output/circe1_2.ref \ functional_tests/ref-output/circe1_3.ref \ functional_tests/ref-output/circe1_6.ref \ functional_tests/ref-output/circe1_10.ref \ functional_tests/ref-output/circe1_errors_1.ref \ functional_tests/ref-output/circe2_1.ref \ functional_tests/ref-output/circe2_2.ref \ functional_tests/ref-output/circe2_3.ref \ functional_tests/ref-output/isr_1.ref \ functional_tests/ref-output/epa_1.ref \ functional_tests/ref-output/epa_2.ref \ functional_tests/ref-output/isr_epa_1.ref \ functional_tests/ref-output/ep_3.ref \ functional_tests/ref-output/ewa_4.ref \ functional_tests/ref-output/gaussian_1.ref \ functional_tests/ref-output/gaussian_2.ref \ functional_tests/ref-output/beam_events_1.ref \ functional_tests/ref-output/beam_events_4.ref \ functional_tests/ref-output/energy_scan_1.ref \ functional_tests/ref-output/cascades2_phs_1.ref \ functional_tests/ref-output/vamp2_1.ref \ functional_tests/ref-output/vamp2_2.ref \ ext_tests_nlo/ref-output/nlo_ee4j.ref \ ext_tests_nlo/ref-output/nlo_ee4t.ref \ ext_tests_nlo/ref-output/nlo_ee5j.ref \ ext_tests_nlo/ref-output/nlo_eejj.ref \ ext_tests_nlo/ref-output/nlo_eejjj.ref \ ext_tests_nlo/ref-output/nlo_eett.ref \ ext_tests_nlo/ref-output/nlo_eetth.ref \ ext_tests_nlo/ref-output/nlo_eetthh.ref \ ext_tests_nlo/ref-output/nlo_eetthj.ref \ ext_tests_nlo/ref-output/nlo_eetthz.ref \ ext_tests_nlo/ref-output/nlo_eettwjj.ref \ ext_tests_nlo/ref-output/nlo_eettww.ref \ ext_tests_nlo/ref-output/nlo_eettz.ref \ ext_tests_nlo/ref-output/nlo_eettzj.ref \ ext_tests_nlo/ref-output/nlo_eettzjj.ref \ ext_tests_nlo/ref-output/nlo_eettzz.ref \ ext_tests_nlo/ref-output/nlo_pptttt.ref \ ext_tests_nlo/ref-output/nlo_ppzw.ref \ ext_tests_nlo/ref-output/nlo_ppzz.ref # Reference files that depend on the numerical precision REF_OUTPUT_FILES_DOUBLE = \ functional_tests/ref-output-double/qedtest_3.ref \ functional_tests/ref-output-double/qedtest_4.ref \ functional_tests/ref-output-double/qcdtest_1.ref \ functional_tests/ref-output-double/qcdtest_2.ref \ functional_tests/ref-output-double/qcdtest_3.ref \ functional_tests/ref-output-double/smtest_2.ref \ functional_tests/ref-output-double/smtest_8.ref \ functional_tests/ref-output-double/observables_2.ref \ functional_tests/ref-output-double/colors_2.ref \ functional_tests/ref-output-double/resonances_1.ref \ functional_tests/ref-output-double/resonances_2.ref \ functional_tests/ref-output-double/resonances_3.ref \ functional_tests/ref-output-double/resonances_4.ref \ functional_tests/ref-output-double/resonances_10.ref \ functional_tests/ref-output-double/resonances_11.ref \ functional_tests/ref-output-double/beam_setup_5.ref \ functional_tests/ref-output-double/nlo_3.ref \ functional_tests/ref-output-double/nlo_4.ref \ functional_tests/ref-output-double/nlo_5.ref \ functional_tests/ref-output-double/fks_res_1.ref \ functional_tests/ref-output-double/fks_res_3.ref \ functional_tests/ref-output-double/openloops_3.ref \ functional_tests/ref-output-double/powheg_1.ref \ functional_tests/ref-output-double/defaultcuts.ref \ functional_tests/ref-output-double/parton_shower_2.ref \ functional_tests/ref-output-double/helicity.ref \ functional_tests/ref-output-double/lhef_7.ref \ functional_tests/ref-output-double/hepmc_8.ref \ functional_tests/ref-output-double/lcio_2.ref \ functional_tests/ref-output-double/lcio_7.ref \ functional_tests/ref-output-double/multi_comp_1.ref \ functional_tests/ref-output-double/multi_comp_2.ref \ functional_tests/ref-output-double/multi_comp_3.ref \ functional_tests/ref-output-double/pdf_builtin.ref \ functional_tests/ref-output-double/lhapdf5.ref \ functional_tests/ref-output-double/lhapdf6.ref \ functional_tests/ref-output-double/ep_1.ref \ functional_tests/ref-output-double/ep_2.ref \ functional_tests/ref-output-double/circe1_4.ref \ functional_tests/ref-output-double/circe1_5.ref \ functional_tests/ref-output-double/circe1_7.ref \ functional_tests/ref-output-double/circe1_8.ref \ functional_tests/ref-output-double/circe1_9.ref \ functional_tests/ref-output-double/circe1_photons_1.ref \ functional_tests/ref-output-double/circe1_photons_2.ref \ functional_tests/ref-output-double/circe1_photons_3.ref \ functional_tests/ref-output-double/circe1_photons_4.ref \ functional_tests/ref-output-double/circe1_photons_5.ref \ functional_tests/ref-output-double/isr_2.ref \ functional_tests/ref-output-double/isr_3.ref \ functional_tests/ref-output-double/isr_4.ref \ functional_tests/ref-output-double/isr_5.ref \ functional_tests/ref-output-double/pythia6_3.ref \ functional_tests/ref-output-double/pythia6_4.ref \ functional_tests/ref-output-double/tauola_1.ref \ functional_tests/ref-output-double/tauola_2.ref \ functional_tests/ref-output-double/mlm_matching_isr.ref \ functional_tests/ref-output-double/ewa_1.ref \ functional_tests/ref-output-double/ewa_2.ref \ functional_tests/ref-output-double/ewa_3.ref \ functional_tests/ref-output-double/ilc.ref \ functional_tests/ref-output-double/beam_events_2.ref \ functional_tests/ref-output-double/beam_events_3.ref REF_OUTPUT_FILES_PREC = \ functional_tests/ref-output-prec/qedtest_3.ref \ functional_tests/ref-output-prec/qedtest_4.ref \ functional_tests/ref-output-prec/qcdtest_1.ref \ functional_tests/ref-output-prec/qcdtest_2.ref \ functional_tests/ref-output-prec/qcdtest_3.ref \ functional_tests/ref-output-prec/smtest_2.ref \ functional_tests/ref-output-prec/smtest_8.ref \ functional_tests/ref-output-prec/colors_2.ref \ functional_tests/ref-output-prec/beam_setup_5.ref \ functional_tests/ref-output-prec/nlo_3.ref \ functional_tests/ref-output-prec/nlo_4.ref \ functional_tests/ref-output-prec/fks_res_1.ref \ functional_tests/ref-output-prec/fks_res_3.ref \ functional_tests/ref-output-prec/openloops_3.ref \ functional_tests/ref-output-prec/defaultcuts.ref \ functional_tests/ref-output-prec/parton_shower_2.ref \ functional_tests/ref-output-prec/helicity.ref \ functional_tests/ref-output-prec/lhef_7.ref \ functional_tests/ref-output-prec/multi_comp_1.ref \ functional_tests/ref-output-prec/multi_comp_2.ref \ functional_tests/ref-output-prec/multi_comp_3.ref \ functional_tests/ref-output-prec/pdf_builtin.ref \ functional_tests/ref-output-prec/lhapdf5.ref \ functional_tests/ref-output-prec/lhapdf6.ref \ functional_tests/ref-output-prec/ep_1.ref \ functional_tests/ref-output-prec/ep_2.ref \ functional_tests/ref-output-prec/ilc.ref \ functional_tests/ref-output-prec/circe1_9.ref \ functional_tests/ref-output-prec/circe1_photons_1.ref \ functional_tests/ref-output-prec/circe1_photons_2.ref \ functional_tests/ref-output-prec/circe1_photons_3.ref \ functional_tests/ref-output-prec/circe1_photons_4.ref \ functional_tests/ref-output-prec/circe1_photons_5.ref \ functional_tests/ref-output-prec/ewa_1.ref REF_OUTPUT_FILES_EXT = \ functional_tests/ref-output-ext/observables_2.ref \ functional_tests/ref-output-ext/resonances_1.ref \ functional_tests/ref-output-ext/resonances_2.ref \ functional_tests/ref-output-ext/resonances_3.ref \ functional_tests/ref-output-ext/resonances_4.ref \ functional_tests/ref-output-ext/resonances_10.ref \ functional_tests/ref-output-ext/resonances_11.ref \ functional_tests/ref-output-ext/circe1_4.ref \ functional_tests/ref-output-ext/circe1_5.ref \ functional_tests/ref-output-ext/circe1_7.ref \ functional_tests/ref-output-ext/circe1_8.ref \ functional_tests/ref-output-ext/isr_2.ref \ functional_tests/ref-output-ext/isr_3.ref \ functional_tests/ref-output-ext/isr_4.ref \ functional_tests/ref-output-ext/isr_5.ref \ functional_tests/ref-output-ext/nlo_5.ref \ functional_tests/ref-output-ext/powheg_1.ref \ functional_tests/ref-output-ext/pythia6_3.ref \ functional_tests/ref-output-ext/pythia6_4.ref \ functional_tests/ref-output-ext/tauola_1.ref \ functional_tests/ref-output-ext/tauola_2.ref \ functional_tests/ref-output-ext/ewa_2.ref \ functional_tests/ref-output-ext/ewa_3.ref \ functional_tests/ref-output-ext/beam_events_2.ref \ functional_tests/ref-output-ext/beam_events_3.ref \ functional_tests/ref-output-ext/mlm_matching_isr.ref \ functional_tests/ref-output-ext/hepmc_8.ref \ functional_tests/ref-output-ext/lcio_2.ref \ functional_tests/ref-output-ext/lcio_7.ref REF_OUTPUT_FILES_QUAD = \ functional_tests/ref-output-quad/observables_2.ref \ functional_tests/ref-output-quad/resonances_1.ref \ functional_tests/ref-output-quad/resonances_2.ref \ functional_tests/ref-output-quad/resonances_3.ref \ functional_tests/ref-output-quad/resonances_4.ref \ functional_tests/ref-output-quad/resonances_10.ref \ functional_tests/ref-output-quad/resonances_11.ref \ functional_tests/ref-output-quad/circe1_4.ref \ functional_tests/ref-output-quad/circe1_5.ref \ functional_tests/ref-output-quad/circe1_7.ref \ functional_tests/ref-output-quad/circe1_8.ref \ functional_tests/ref-output-quad/isr_2.ref \ functional_tests/ref-output-quad/isr_3.ref \ functional_tests/ref-output-quad/isr_4.ref \ functional_tests/ref-output-quad/isr_5.ref \ functional_tests/ref-output-quad/nlo_5.ref \ functional_tests/ref-output-quad/powheg_1.ref \ functional_tests/ref-output-quad/pythia6_3.ref \ functional_tests/ref-output-quad/pythia6_4.ref \ functional_tests/ref-output-quad/tauola_1.ref \ functional_tests/ref-output-quad/tauola_2.ref \ functional_tests/ref-output-quad/ewa_2.ref \ functional_tests/ref-output-quad/ewa_3.ref \ functional_tests/ref-output-quad/beam_events_2.ref \ functional_tests/ref-output-quad/beam_events_3.ref \ functional_tests/ref-output-quad/mlm_matching_isr.ref \ functional_tests/ref-output-quad/hepmc_8.ref \ functional_tests/ref-output-quad/lcio_2.ref \ functional_tests/ref-output-quad/lcio_7.ref TESTSUITES_M4 = \ $(MISC_TESTS_M4) \ $(EXT_MSSM_M4) \ $(EXT_NMSSM_M4) TESTSUITES_SIN = \ $(MISC_TESTS_SIN) \ $(EXT_ILC_SIN) \ $(EXT_MSSM_SIN) \ $(EXT_NMSSM_SIN) \ $(EXT_SHOWER_SIN) \ $(EXT_NLO_SIN) \ $(EXT_NLO_ADD_SIN) MISC_TESTS_M4 = MISC_TESTS_SIN = \ functional_tests/empty.sin \ functional_tests/fatal.sin \ + functional_tests/cmdline_1_a.sin \ + functional_tests/cmdline_1_b.sin \ + functional_tests/cmdline_1.sin \ functional_tests/pack_1.sin \ functional_tests/defaultcuts.sin \ functional_tests/cuts.sin \ functional_tests/model_change_1.sin \ functional_tests/model_change_2.sin \ functional_tests/model_change_3.sin \ functional_tests/model_scheme_1.sin \ functional_tests/model_test.sin \ functional_tests/structure_1.sin \ functional_tests/structure_2.sin \ functional_tests/structure_3.sin \ functional_tests/structure_4.sin \ functional_tests/structure_5.sin \ functional_tests/structure_6.sin \ functional_tests/structure_7.sin \ functional_tests/structure_8.sin \ functional_tests/vars.sin \ functional_tests/extpar.sin \ functional_tests/testproc_1.sin \ functional_tests/testproc_2.sin \ functional_tests/testproc_3.sin \ functional_tests/testproc_4.sin \ functional_tests/testproc_5.sin \ functional_tests/testproc_6.sin \ functional_tests/testproc_7.sin \ functional_tests/testproc_8.sin \ functional_tests/testproc_9.sin \ functional_tests/testproc_10.sin \ functional_tests/testproc_11.sin \ functional_tests/testproc_12.sin \ functional_tests/template_me_1.sin \ functional_tests/template_me_2.sin \ functional_tests/libraries_1.sin \ functional_tests/libraries_2.sin \ functional_tests/libraries_3.sin \ functional_tests/libraries_4.sin \ functional_tests/job_id_1.sin \ functional_tests/job_id_2.sin \ functional_tests/job_id_3.sin \ functional_tests/job_id_4.sin \ functional_tests/rebuild_1.sin \ functional_tests/rebuild_2.sin \ functional_tests/rebuild_3.sin \ functional_tests/rebuild_4.sin \ functional_tests/rebuild_5.sin \ functional_tests/qedtest_1.sin \ functional_tests/qedtest_2.sin \ functional_tests/qedtest_3.sin \ functional_tests/qedtest_4.sin \ functional_tests/qedtest_5.sin \ functional_tests/qedtest_6.sin \ functional_tests/qedtest_7.sin \ functional_tests/qedtest_8.sin \ functional_tests/qedtest_9.sin \ functional_tests/qedtest_10.sin \ functional_tests/rambo_vamp_1.sin \ functional_tests/rambo_vamp_2.sin \ functional_tests/beam_setup_1.sin \ functional_tests/beam_setup_2.sin \ functional_tests/beam_setup_3.sin \ functional_tests/beam_setup_4.sin \ functional_tests/beam_setup_5.sin \ functional_tests/qcdtest_1.sin \ functional_tests/qcdtest_2.sin \ functional_tests/qcdtest_3.sin \ functional_tests/qcdtest_4.sin \ functional_tests/qcdtest_5.sin \ functional_tests/qcdtest_6.sin \ functional_tests/observables_1.sin \ functional_tests/observables_2.sin \ functional_tests/event_weights_1.sin \ functional_tests/event_weights_2.sin \ functional_tests/event_eff_1.sin \ functional_tests/event_eff_2.sin \ functional_tests/event_dump_1.sin \ functional_tests/event_dump_2.sin \ functional_tests/reweight_1.sin \ functional_tests/reweight_2.sin \ functional_tests/reweight_3.sin \ functional_tests/reweight_4.sin \ functional_tests/reweight_5.sin \ functional_tests/reweight_6.sin \ functional_tests/reweight_7.sin \ functional_tests/reweight_8.sin \ functional_tests/analyze_1.sin \ functional_tests/analyze_2.sin \ functional_tests/analyze_3.sin \ functional_tests/analyze_4.sin \ functional_tests/analyze_5.sin \ functional_tests/analyze_6.sin \ functional_tests/bjet_cluster.sin \ functional_tests/colors.sin \ functional_tests/colors_2.sin \ functional_tests/colors_hgg.sin \ functional_tests/alphas.sin \ functional_tests/jets_xsec.sin \ functional_tests/lhef_1.sin \ functional_tests/lhef_2.sin \ functional_tests/lhef_3.sin \ functional_tests/lhef_4.sin \ functional_tests/lhef_5.sin \ functional_tests/lhef_6.sin \ functional_tests/lhef_7.sin \ functional_tests/lhef_8.sin \ functional_tests/lhef_9.sin \ functional_tests/lhef_10.sin \ functional_tests/lhef_11.sin \ functional_tests/select_1.sin \ functional_tests/select_2.sin \ functional_tests/shower_err_1.sin \ functional_tests/parton_shower_1.sin \ functional_tests/parton_shower_2.sin \ functional_tests/pythia6_1.sin \ functional_tests/pythia6_2.sin \ functional_tests/pythia6_3.sin \ functional_tests/pythia6_4.sin \ functional_tests/pythia8_1.sin \ functional_tests/pythia8_2.sin \ functional_tests/hadronize_1.sin \ functional_tests/tauola_1.sin \ functional_tests/tauola_2.sin \ functional_tests/mlm_matching_fsr.sin \ functional_tests/mlm_matching_isr.sin \ functional_tests/mlm_pythia6_isr.sin \ functional_tests/hepmc_1.sin \ functional_tests/hepmc_2.sin \ functional_tests/hepmc_3.sin \ functional_tests/hepmc_4.sin \ functional_tests/hepmc_5.sin \ functional_tests/hepmc_6.sin \ functional_tests/hepmc_7.sin \ functional_tests/hepmc_8.sin \ functional_tests/hepmc_9.sin \ functional_tests/hepmc_10.sin \ functional_tests/stdhep_1.sin \ functional_tests/stdhep_2.sin \ functional_tests/stdhep_3.sin \ functional_tests/stdhep_4.sin \ functional_tests/stdhep_5.sin \ functional_tests/stdhep_6.sin \ functional_tests/lcio_1.sin \ functional_tests/lcio_2.sin \ functional_tests/lcio_3.sin \ functional_tests/lcio_4.sin \ functional_tests/lcio_5.sin \ functional_tests/lcio_6.sin \ functional_tests/lcio_7.sin \ functional_tests/lcio_8.sin \ functional_tests/lcio_9.sin \ functional_tests/lcio_10.sin \ functional_tests/fatal_beam_decay.sin \ functional_tests/smtest_1.sin \ functional_tests/smtest_2.sin \ functional_tests/smtest_3.sin \ functional_tests/smtest_4.sin \ functional_tests/smtest_5.sin \ functional_tests/smtest_6.sin \ functional_tests/smtest_7.sin \ functional_tests/smtest_8.sin \ functional_tests/smtest_9.sin \ functional_tests/smtest_10.sin \ functional_tests/smtest_11.sin \ functional_tests/smtest_12.sin \ functional_tests/smtest_13.sin \ functional_tests/smtest_14.sin \ functional_tests/smtest_15.sin \ functional_tests/smtest_16.sin \ functional_tests/photon_isolation_1.sin \ functional_tests/photon_isolation_2.sin \ functional_tests/resonances_1.sin \ functional_tests/resonances_2.sin \ functional_tests/resonances_3.sin \ functional_tests/resonances_4.sin \ functional_tests/resonances_5.sin \ functional_tests/resonances_6.sin \ functional_tests/resonances_7.sin \ functional_tests/resonances_8.sin \ functional_tests/resonances_9.sin \ functional_tests/resonances_10.sin \ functional_tests/resonances_11.sin \ functional_tests/resonances_12.sin \ functional_tests/sm_cms_1.sin \ functional_tests/ufo_1.sin \ functional_tests/ufo_2.sin \ functional_tests/ufo_3.sin \ functional_tests/ufo_4.sin \ functional_tests/nlo_1.sin \ functional_tests/nlo_2.sin \ functional_tests/nlo_3.sin \ functional_tests/nlo_4.sin \ functional_tests/nlo_5.sin \ functional_tests/nlo_6.sin \ functional_tests/nlo_decay_1.sin \ functional_tests/real_partition_1.sin \ functional_tests/fks_res_1.sin \ functional_tests/fks_res_2.sin \ functional_tests/fks_res_3.sin \ functional_tests/openloops_1.sin \ functional_tests/openloops_2.sin \ functional_tests/openloops_3.sin \ functional_tests/openloops_4.sin \ functional_tests/openloops_5.sin \ functional_tests/openloops_6.sin \ functional_tests/openloops_7.sin \ functional_tests/openloops_8.sin \ functional_tests/openloops_9.sin \ functional_tests/openloops_10.sin \ functional_tests/openloops_11.sin \ functional_tests/openloops_12.sin \ functional_tests/openloops_13.sin \ functional_tests/recola_1.sin \ functional_tests/recola_2.sin \ functional_tests/recola_3.sin \ functional_tests/recola_4.sin \ functional_tests/recola_5.sin \ functional_tests/recola_6.sin \ functional_tests/recola_7.sin \ functional_tests/recola_8.sin \ functional_tests/powheg_1.sin \ functional_tests/mssmtest_1.sin \ functional_tests/mssmtest_2.sin \ functional_tests/mssmtest_3.sin \ functional_tests/spincor_1.sin \ functional_tests/show_1.sin \ functional_tests/show_2.sin \ functional_tests/show_3.sin \ functional_tests/show_4.sin \ functional_tests/show_5.sin \ functional_tests/method_ovm_1.sin \ functional_tests/multi_comp_1.sin \ functional_tests/multi_comp_2.sin \ functional_tests/multi_comp_3.sin \ functional_tests/multi_comp_4.sin \ functional_tests/flvsum_1.sin \ functional_tests/br_redef_1.sin \ functional_tests/decay_err_1.sin \ functional_tests/decay_err_2.sin \ functional_tests/decay_err_3.sin \ functional_tests/polarized_1.sin \ functional_tests/pdf_builtin.sin \ functional_tests/lhapdf5.sin \ functional_tests/lhapdf6.sin \ functional_tests/ep_1.sin \ functional_tests/ep_2.sin \ functional_tests/ep_3.sin \ functional_tests/circe1_1.sin \ functional_tests/circe1_2.sin \ functional_tests/circe1_3.sin \ functional_tests/circe1_4.sin \ functional_tests/circe1_5.sin \ functional_tests/circe1_6.sin \ functional_tests/circe1_7.sin \ functional_tests/circe1_8.sin \ functional_tests/circe1_9.sin \ functional_tests/circe1_10.sin \ functional_tests/circe1_photons_1.sin \ functional_tests/circe1_photons_2.sin \ functional_tests/circe1_photons_3.sin \ functional_tests/circe1_photons_4.sin \ functional_tests/circe1_photons_5.sin \ functional_tests/circe1_errors_1.sin \ functional_tests/circe2_1.sin \ functional_tests/circe2_2.sin \ functional_tests/circe2_3.sin \ functional_tests/isr_1.sin \ functional_tests/isr_2.sin \ functional_tests/isr_3.sin \ functional_tests/isr_4.sin \ functional_tests/isr_5.sin \ functional_tests/epa_1.sin \ functional_tests/epa_2.sin \ functional_tests/isr_epa_1.sin \ functional_tests/ewa_1.sin \ functional_tests/ewa_2.sin \ functional_tests/ewa_3.sin \ functional_tests/ewa_4.sin \ functional_tests/ilc.sin \ functional_tests/gaussian_1.sin \ functional_tests/gaussian_2.sin \ functional_tests/beam_events_1.sin \ functional_tests/beam_events_2.sin \ functional_tests/beam_events_3.sin \ functional_tests/beam_events_4.sin \ functional_tests/energy_scan_1.sin \ functional_tests/susyhit.sin \ functional_tests/restrictions.sin \ functional_tests/helicity.sin \ functional_tests/process_log.sin \ functional_tests/static_1.sin \ functional_tests/static_1.exe.sin \ functional_tests/static_2.sin \ functional_tests/static_2.exe.sin \ functional_tests/user_cuts.sin \ functional_tests/user_prc_threshold_1.sin \ functional_tests/cascades2_phs_1.sin \ functional_tests/user_prc_threshold_2.sin \ functional_tests/vamp2_1.sin \ functional_tests/vamp2_2.sin EXT_MSSM_M4 = \ ext_tests_mssm/mssm_ext-ee.m4 \ ext_tests_mssm/mssm_ext-ee2.m4 \ ext_tests_mssm/mssm_ext-en.m4 \ ext_tests_mssm/mssm_ext-tn.m4 \ ext_tests_mssm/mssm_ext-uu.m4 \ ext_tests_mssm/mssm_ext-uu2.m4 \ ext_tests_mssm/mssm_ext-uuckm.m4 \ ext_tests_mssm/mssm_ext-dd.m4 \ ext_tests_mssm/mssm_ext-dd2.m4 \ ext_tests_mssm/mssm_ext-ddckm.m4 \ ext_tests_mssm/mssm_ext-bb.m4 \ ext_tests_mssm/mssm_ext-bt.m4 \ ext_tests_mssm/mssm_ext-tt.m4 \ ext_tests_mssm/mssm_ext-ug.m4 \ ext_tests_mssm/mssm_ext-dg.m4 \ ext_tests_mssm/mssm_ext-aa.m4 \ ext_tests_mssm/mssm_ext-wa.m4 \ ext_tests_mssm/mssm_ext-za.m4 \ ext_tests_mssm/mssm_ext-ww.m4 \ ext_tests_mssm/mssm_ext-wz.m4 \ ext_tests_mssm/mssm_ext-zz.m4 \ ext_tests_mssm/mssm_ext-gg.m4 \ ext_tests_mssm/mssm_ext-ga.m4 \ ext_tests_mssm/mssm_ext-gw.m4 \ ext_tests_mssm/mssm_ext-gz.m4 EXT_NMSSM_M4 = \ ext_tests_nmssm/nmssm_ext-aa.m4 \ ext_tests_nmssm/nmssm_ext-bb1.m4 \ ext_tests_nmssm/nmssm_ext-bb2.m4 \ ext_tests_nmssm/nmssm_ext-bt.m4 \ ext_tests_nmssm/nmssm_ext-dd1.m4 \ ext_tests_nmssm/nmssm_ext-dd2.m4 \ ext_tests_nmssm/nmssm_ext-ee1.m4 \ ext_tests_nmssm/nmssm_ext-ee2.m4 \ ext_tests_nmssm/nmssm_ext-en.m4 \ ext_tests_nmssm/nmssm_ext-ga.m4 \ ext_tests_nmssm/nmssm_ext-gg.m4 \ ext_tests_nmssm/nmssm_ext-gw.m4 \ ext_tests_nmssm/nmssm_ext-gz.m4 \ ext_tests_nmssm/nmssm_ext-qg.m4 \ ext_tests_nmssm/nmssm_ext-tn.m4 \ ext_tests_nmssm/nmssm_ext-tt1.m4 \ ext_tests_nmssm/nmssm_ext-tt2.m4 \ ext_tests_nmssm/nmssm_ext-uu1.m4 \ ext_tests_nmssm/nmssm_ext-uu2.m4 \ ext_tests_nmssm/nmssm_ext-wa.m4 \ ext_tests_nmssm/nmssm_ext-ww1.m4 \ ext_tests_nmssm/nmssm_ext-ww2.m4 \ ext_tests_nmssm/nmssm_ext-wz.m4 \ ext_tests_nmssm/nmssm_ext-za.m4 \ ext_tests_nmssm/nmssm_ext-zz1.m4 \ ext_tests_nmssm/nmssm_ext-zz2.m4 EXT_MSSM_SIN = $(EXT_MSSM_M4:.m4=.sin) EXT_NMSSM_SIN = $(EXT_NMSSM_M4:.m4=.sin) EXT_ILC_SIN = \ ext_tests_ilc/ilc_ext.sin EXT_SHOWER_SIN = \ ext_tests_shower/shower_1_norad.sin \ ext_tests_shower/shower_2_aall.sin \ ext_tests_shower/shower_3_bb.sin \ ext_tests_shower/shower_3_jj.sin \ ext_tests_shower/shower_3_qqqq.sin \ ext_tests_shower/shower_3_tt.sin \ ext_tests_shower/shower_3_z_nu.sin \ ext_tests_shower/shower_3_z_tau.sin \ ext_tests_shower/shower_4_ee.sin \ ext_tests_shower/shower_5.sin \ ext_tests_shower/shower_6.sin EXT_NLO_SIN = \ ext_tests_nlo/nlo_settings.sin \ ext_tests_nlo/nlo_eejj.sin \ ext_tests_nlo/nlo_eejjj.sin \ ext_tests_nlo/nlo_ee4j.sin \ ext_tests_nlo/nlo_ee5j.sin \ ext_tests_nlo/nlo_eebb.sin \ ext_tests_nlo/nlo_eebbj.sin \ ext_tests_nlo/nlo_eebbjj.sin \ ext_tests_nlo/nlo_ee4b.sin \ ext_tests_nlo/nlo_eett.sin \ ext_tests_nlo/nlo_eettj.sin \ ext_tests_nlo/nlo_eettjj.sin \ ext_tests_nlo/nlo_eettjjj.sin \ ext_tests_nlo/nlo_eettbb.sin \ ext_tests_nlo/nlo_eetta.sin \ ext_tests_nlo/nlo_eettaa.sin \ ext_tests_nlo/nlo_eettaj.sin \ ext_tests_nlo/nlo_eettajj.sin \ ext_tests_nlo/nlo_eettaz.sin \ ext_tests_nlo/nlo_eettah.sin \ ext_tests_nlo/nlo_eettz.sin \ ext_tests_nlo/nlo_eettzj.sin \ ext_tests_nlo/nlo_eettzjj.sin \ ext_tests_nlo/nlo_eettzz.sin \ ext_tests_nlo/nlo_eettwjj.sin \ ext_tests_nlo/nlo_eettww.sin \ ext_tests_nlo/nlo_eetth.sin \ ext_tests_nlo/nlo_eetthj.sin \ ext_tests_nlo/nlo_eetthjj.sin \ ext_tests_nlo/nlo_eetthh.sin \ ext_tests_nlo/nlo_eetthz.sin \ ext_tests_nlo/nlo_ee4t.sin \ ext_tests_nlo/nlo_ee4tj.sin \ ext_tests_nlo/nlo_ppzz.sin \ ext_tests_nlo/nlo_ppzw.sin \ ext_tests_nlo/nlo_pptttt.sin EXT_NLO_ADD_SIN = \ ext_tests_nlo_add/nlo_decay_tbw.sin \ ext_tests_nlo_add/nlo_tt.sin \ ext_tests_nlo_add/nlo_tt_powheg.sin \ ext_tests_nlo_add/nlo_tt_powheg_sudakov.sin \ ext_tests_nlo_add/nlo_uu.sin \ ext_tests_nlo_add/nlo_uu_powheg.sin \ ext_tests_nlo_add/nlo_qq_powheg.sin \ ext_tests_nlo_add/nlo_threshold.sin \ ext_tests_nlo_add/nlo_threshold_factorized.sin \ ext_tests_nlo_add/nlo_methods_gosam.sin \ ext_tests_nlo_add/nlo_jets.sin \ ext_tests_nlo_add/nlo_fks_delta_o_eejj.sin \ ext_tests_nlo_add/nlo_fks_delta_i_ppee.sin all-local: $(TESTSUITES_SIN) if M4_AVAILABLE SUFFIXES = .m4 .sin .m4.sin: case "$@" in \ */*) \ mkdir -p `sed 's,/.[^/]*$$,,g' <<< "$@"` ;; \ esac $(M4) $(srcdir)/$(TESTSUITE_MACROS) $< > $@ endif M4_AVAILABLE Index: trunk/share/tests/functional_tests/ref-output/cmdline_1.ref =================================================================== --- trunk/share/tests/functional_tests/ref-output/cmdline_1.ref (revision 0) +++ trunk/share/tests/functional_tests/ref-output/cmdline_1.ref (revision 8347) @@ -0,0 +1,6 @@ +[user variable] i = 4 +[user variable] a = 12 +[user variable] b = 5 +[user variable] q = 3 +| WHIZARD run finished. +|=============================================================================| Index: trunk/share/tests/functional_tests/cmdline_1_a.sin =================================================================== --- trunk/share/tests/functional_tests/cmdline_1_a.sin (revision 0) +++ trunk/share/tests/functional_tests/cmdline_1_a.sin (revision 8347) @@ -0,0 +1,2 @@ +int a = 2 +a = 3 Index: trunk/share/tests/functional_tests/cmdline_1.sin =================================================================== --- trunk/share/tests/functional_tests/cmdline_1.sin (revision 0) +++ trunk/share/tests/functional_tests/cmdline_1.sin (revision 8347) @@ -0,0 +1,7 @@ +?logging = true + +show (i) +show (a) +show (b) +show (q) + Index: trunk/share/tests/functional_tests/cmdline_1_b.sin =================================================================== --- trunk/share/tests/functional_tests/cmdline_1_b.sin (revision 0) +++ trunk/share/tests/functional_tests/cmdline_1_b.sin (revision 8347) @@ -0,0 +1,2 @@ +int b = 5 + Index: trunk/share/doc/manual.tex =================================================================== --- trunk/share/doc/manual.tex (revision 8346) +++ trunk/share/doc/manual.tex (revision 8347) @@ -1,17527 +1,17548 @@ \documentclass[12pt]{book} % \usepackage{feynmp} \usepackage{microtype} \usepackage{graphics,graphicx} \usepackage{color} \usepackage{amsmath,amssymb} \usepackage[colorlinks,bookmarks,bookmarksnumbered=true]{hyperref} \usepackage{thophys} \usepackage{fancyvrb} \usepackage{makeidx} \usepackage{units} \usepackage{ifpdf} %HEVEA\pdftrue \makeindex \usepackage{url} \usepackage[latin1]{inputenc} %HEVEA\@def@charset{UTF-8} %BEGIN LATEX \usepackage{supertabular,fancyvrb} \usepackage{hevea} %END LATEX \renewcommand{\topfraction}{0.9} \renewcommand{\bottomfraction}{0.8} \renewcommand{\textfraction}{0.1} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Macro section %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\email}[2]{\thanks{\ahref{#1@{}#2}{#1@{}#2}}} \newcommand{\hepforgepage}{\url{https://whizard.hepforge.org}} \newcommand{\whizardwiki}{\url{https://whizard.hepforge.org/trac/wiki}} \tocnumber %BEGIN LATEX \DeclareMathOperator{\diag}{diag} %END LATEX %BEGIN LATEX \makeatletter \newif\if@preliminary \@preliminaryfalse \def\preliminary{\@preliminarytrue} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Changes referring to article.cls % %%% Title page \def\preprintno#1{\def\@preprintno{#1}} \def\address#1{\def\@address{#1}} \def\email#1#2{\thanks{\tt #1@{}#2}} \def\abstract#1{\def\@abstract{#1}} \newcommand\abstractname{ABSTRACT} \newlength\preprintnoskip \setlength\preprintnoskip{\textwidth\@plus -1cm} \newlength\abstractwidth \setlength\abstractwidth{\textwidth\@plus -3cm} % \@titlepagetrue \renewcommand\maketitle{\begin{titlepage}% \let\footnotesize\small \hfill\parbox{\preprintnoskip}{% \begin{flushright}\@preprintno\end{flushright}}\hspace*{1cm} \vskip 60\p@ \begin{center}% {\Large\bf\boldmath \@title \par}\vskip 1cm% {\sc\@author \par}\vskip 3mm% {\@address \par}% \if@preliminary \vskip 2cm {\large\sf PRELIMINARY DRAFT \par \@date}% \fi \end{center}\par \@thanks \vfill \begin{center}% \parbox{\abstractwidth}{\centerline{\abstractname}% \vskip 3mm% \@abstract} \end{center} \end{titlepage}% \setcounter{footnote}{0}% \let\thanks\relax\let\maketitle\relax \gdef\@thanks{}\gdef\@author{}\gdef\@address{}% \gdef\@title{}\gdef\@abstract{}\gdef\@preprintno{} }% % %%% New settings of dimensions \topmargin -1.5cm \textheight 22cm \textwidth 17cm \oddsidemargin 0cm \evensidemargin 0cm % %%% Original Latex definition of citex, except for the removal of %%% 'space' following a ','. \citerange replaces the ',' by '--'. \def\@citex[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi \def\@citea{}\@cite{\@for\@citeb:=#2\do {\@citea\def\@citea{,\penalty\@m}\@ifundefined {b@\@citeb}{{\bf ?}\@warning {Citation `\@citeb' on page \thepage \space undefined}}% \hbox{\csname b@\@citeb\endcsname}}}{#1}} \def\citerange{\@ifnextchar [{\@tempswatrue\@citexr}{\@tempswafalse\@citexr[]}} \def\@citexr[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi \def\@citea{}\@cite{\@for\@citeb:=#2\do {\@citea\def\@citea{--\penalty\@m}\@ifundefined {b@\@citeb}{{\bf ?}\@warning {Citation `\@citeb' on page \thepage \space undefined}}% \hbox{\csname b@\@citeb\endcsname}}}{#1}} % %%% Captions set in italics \long\def\@makecaption#1#2{% \vskip\abovecaptionskip \sbox\@tempboxa{#1: \emph{#2}}% \ifdim \wd\@tempboxa >\hsize #1: \emph{#2}\par \else \hbox to\hsize{\hfil\box\@tempboxa\hfil}% \fi \vskip\belowcaptionskip} % %%% Other useful macros \def\fmslash{\@ifnextchar[{\fmsl@sh}{\fmsl@sh[0mu]}} \def\fmsl@sh[#1]#2{% \mathchoice {\@fmsl@sh\displaystyle{#1}{#2}}% {\@fmsl@sh\textstyle{#1}{#2}}% {\@fmsl@sh\scriptstyle{#1}{#2}}% {\@fmsl@sh\scriptscriptstyle{#1}{#2}}} \def\@fmsl@sh#1#2#3{\m@th\ooalign{$\hfil#1\mkern#2/\hfil$\crcr$#1#3$}} \makeatother % Labelling command for Feynman graphs generated by package FEYNMF %\def\fmfL(#1,#2,#3)#4{\put(#1,#2){\makebox(0,0)[#3]{#4}}} %END LATEX %%%% Environment for showing user input and program response \newenvironment{interaction}% {\begingroup\small \Verbatim}% {\endVerbatim \endgroup\noindent} %BEGIN LATEX %%%% Environment for typesetting listings verbatim \newenvironment{code}% {\begingroup\footnotesize \quote \Verbatim}% {\endVerbatim \endquote \endgroup\noindent} %%%% Boxed environment for typesetting listings verbatim \newenvironment{Code}% {\begingroup\footnotesize \quote \Verbatim[frame=single]}% {\endVerbatim \endquote \endgroup\noindent} %%% Environment for displaying syntax \newenvironment{syntax}% {\begin{quote} \begin{flushleft}\tt}% {\end{flushleft} \end{quote}} \newcommand{\var}[1]{$\langle$\textit{#1}$\rangle$} %END LATEX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros specific for this paper %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\ttt}[1]{\texttt{#1}} \newcommand{\whizard}{\ttt{WHIZARD}} \newcommand{\oMega}{\ttt{O'Mega}} \newcommand{\vamp}{\ttt{VAMP}} \newcommand{\vamptwo}{\ttt{VAMP2}} \newcommand{\vegas}{\ttt{VEGAS}} \newcommand{\madgraph}{\ttt{MadGraph}} \newcommand{\CalcHep}{\ttt{CalcHep}} \newcommand{\helas}{\ttt{HELAS}} \newcommand{\herwig}{\ttt{HERWIG}} \newcommand{\isajet}{\ttt{ISAJET}} \newcommand{\pythia}{\ttt{PYTHIA}} \newcommand{\pythiasix}{\ttt{PYTHIA6}} \newcommand{\pythiaeight}{\ttt{PYTHIA8}} \newcommand{\jetset}{\ttt{JETSET}} \newcommand{\comphep}{\ttt{CompHEP}} \newcommand{\circe}{\ttt{CIRCE}} \newcommand{\circeone}{\ttt{CIRCE1}} \newcommand{\circetwo}{\ttt{CIRCE2}} \newcommand{\gamelan}{\textsf{gamelan}} \newcommand{\stdhep}{\ttt{STDHEP}} \newcommand{\lcio}{\ttt{LCIO}} \newcommand{\pdflib}{\ttt{PDFLIB}} \newcommand{\lhapdf}{\ttt{LHAPDF}} \newcommand{\hepmc}{\ttt{HepMC}} \newcommand{\fastjet}{\ttt{FastJet}} \newcommand{\hoppet}{\ttt{HOPPET}} \newcommand{\metapost}{\ttt{MetaPost}} \newcommand{\sarah}{\ttt{SARAH}} \newcommand{\spheno}{\ttt{SPheno}} \newcommand{\Mathematica}{\ttt{Mathematica}} \newcommand{\FeynRules}{\ttt{FeynRules}} \newcommand{\UFO}{\ttt{UFO}} \newcommand{\gosam}{\ttt{Gosam}} \newcommand{\openloops}{\ttt{OpenLoops}} \newcommand{\recola}{\ttt{Recola}} \newcommand{\collier}{\ttt{Collier}} \newcommand{\powheg}{\ttt{POWHEG}} %%%%% \newcommand{\sindarin}{\ttt{SINDARIN}} \newcommand{\cpp}{\ttt{C++}} \newcommand{\fortran}{\ttt{Fortran}} \newcommand{\fortranSeventySeven}{\ttt{FORTRAN77}} \newcommand{\fortranNinetyFive}{\ttt{Fortran95}} \newcommand{\fortranOThree}{\ttt{Fortran2003}} \newcommand{\ocaml}{\ttt{OCaml}} \newcommand{\python}{\ttt{Python}} \newenvironment{commands}{\begin{quote}\tt}{\end{quote}} \newcommand{\eemm}{$e^+e^- \to \mu^+\mu^-$} %\def\~{$\sim$} \newcommand{\sgn}{\mathop{\rm sgn}\nolimits} \newcommand{\GeV}{\textrm{GeV}} \newcommand{\fb}{\textrm{fb}} \newcommand{\ab}{\textrm{ab}} \newenvironment{parameters}{% \begin{center} \begin{tabular}{lccp{65mm}} \hline Parameter & Value & Default & Description \\ \hline }{% \hline \end{tabular} \end{center} } \newenvironment{options}{% \begin{center} \begin{tabular}{llcp{80mm}} \hline Option & Long version & Value & Description \\ \hline }{% \hline \end{tabular} \end{center} } %BEGIN LATEX \renewenvironment{options}{% \begin{center} \tablehead{\hline Option & Long version & Value & Description \\ \hline } \begin{supertabular}{llcp{80mm}} }{% \hline \end{supertabular} \end{center} } %END LATEX %BEGIN LATEX \renewenvironment{parameters}{% \begin{center} \tablehead{\hline Parameter & Value & Default & Description \\ \hline } \begin{supertabular}{lccp{65mm}} }{% \hline \end{supertabular} \end{center} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %END LATEX \newcommand{\thisversion}{2.8.3} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %BEGIN LATEX \preprintno{} %%%\preprintno{arXiv:0708.4233 (also based on LC-TOOL-2001-039 (revised))} %END LATEX \title{% %HEVEA WHIZARD 2.8 \\ %BEGIN LATEX \ttt{\huge WHIZARD 2.8} \\[\baselineskip] %END LATEX A generic \\ Monte-Carlo integration and event generation package \\ for multi-particle processes\\[\baselineskip] MANUAL \footnote{% This work is supported by Helmholtz-Alliance ``Physics at the Terascale''. In former stages this work has also been supported by the Helmholtz-Gemeinschaft VH--NG--005 \\ E-mail: \ttt{whizard@desy.de} } \\[\baselineskip] } % \def\authormail{\ttt{kilian@physik.uni-siegen.de}, % \ttt{ohl@physik.uni-wuerzburg.de}, % \ttt{juergen.reuter@desy.de}, \ttt{cnspeckn@googlemail.com}} \author{% Wolfgang Kilian,% Thorsten Ohl,% J\"urgen Reuter,% with contributions from Fabian Bach, % Simon Bra\ss, Bijan Chokouf\'{e} Nejad, % Christian Fleper, % Vincent Rothe, % Sebastian Schmidt, % Marco Sekulla, % Christian Speckner, % So Young Shim, % Florian Staub, % Christian Weiss} %BEGIN LATEX \address{% Universit\"at Siegen, Emmy-Noether-Campus, Walter-Flex-Str. 3, D--57068 Siegen, Germany \\ Universit\"at W\"urzburg, Emil-Hilb-Weg 22, D--97074 W\"urzburg, Germany \\ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D--22603 Hamburg, Germany \\ %% \authormail \vspace{1cm} \begin{center} \includegraphics[width=4cm]{Whizard-Logo} \end{center} \mbox{} \\ \vspace{2cm} \mbox{} when using \whizard\ please cite: \\ W. Kilian, T. Ohl, J. Reuter, \\ {\em WHIZARD: Simulating Multi-Particle Processes at LHC and ILC}, \\ Eur.Phys.J.{\bf C71} (2011) 1742, arXiv: 0708.4233 [hep-ph]; \\ M. Moretti, T. Ohl, J. Reuter, \\ {\em O'Mega: An Optimizing Matrix Element Generator}, \\ arXiv: hep-ph/0102195 } %END LATEX %BEGIN LATEX \abstract{% \whizard\ is a program system designed for the efficient calculation of multi-particle scattering cross sections and simulated event samples. The generated events can be written to file in various formats (including HepMC, LHEF, STDHEP, LCIO, and ASCII) or analyzed directly on the parton or hadron level using a built-in \LaTeX-compatible graphics package. \\[\baselineskip] Complete tree-level matrix elements are generated automatically for arbitrary partonic multi-particle processes by calling the built-in matrix-element generator \oMega. Beyond hard matrix elements, \whizard\ can generate (cascade) decays with complete spin correlations. Various models beyond the SM are implemented, in particular, the MSSM is supported with an interface to the SUSY Les Houches Accord input format. Matrix elements obtained by alternative methods (e.g., including loop corrections) may be interfaced as well. \\[\baselineskip] The program uses an adaptive multi-channel method for phase space integration, which allows to calculate numerically stable signal and background cross sections and generate unweighted event samples with reasonable efficiency for processes with up to eight and more final-state particles. Polarization is treated exactly for both the initial and final states. Quark or lepton flavors can be summed over automatically where needed. \\[\baselineskip] For hadron collider physics, we ship the package with the most recent PDF sets from the MSTW/MMHT and CTEQ/CT10/CJ12/CJ15/CT14 collaborations. Furthermore, an interface to the \lhapdf\ library is provided. \\[\baselineskip] For Linear Collider physics, beamstrahlung (\circeone, \circetwo), Compton and ISR spectra are included for electrons and photons, including the most recent ILC and CLIC collider designs. Alternatively, beam-crossing events can be read directly from file. \\[\baselineskip] For parton showering and matching/merging with hard matrix elements , fragmenting and hadronizing the final state, a first version of two different parton shower algorithms are included in the \whizard\ package. This also includes infrastructure for the MLM matching and merging algorithm. For hadronization and hadronic decays, \pythia\ and \herwig\ interfaces are provided which follow the Les Houches Accord. In addition, the last and final version of (\fortran) \pythia\ is included in the package. \\[\baselineskip] The \whizard\ distribution is available at %%% \begin{center} %%% \ttt{http://whizard.event-generator.org} %%% \end{center} %%% or at \begin{center} \url{https://whizard.hepforge.org} \end{center} where also the \ttt{svn} repository is located. } %END LATEX % \maketitle %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Text %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{fmffile} \tableofcontents \newpage \chapter{Introduction} \section{Disclaimer} \emph{This is a preliminary version of the WHIZARD manual. Many parts are still missing or incomplete, and some parts will be rewritten and improved soon. To find updated versions of the manual, visit the \whizard\ website} \begin{center} \hepforgepage \end{center} \emph{or consult the current version in the \ttt{svn} repository on \hepforgepage\ directly. Note, that the most recent version of the manual might contain information about features of the current \ttt{svn} version, which are not contained in the last official release version!} \emph{For information that is not (yet) written in the manual, please consult the examples in the \whizard\ distribution. You will find these in the subdirectory \ttt{share/examples} of the main directory where \whizard\ is installed. More information about the examples can be found on the \whizard\ Wiki page} \begin{center} \whizardwiki . \end{center} %%%%% \clearpage \section{Overview} \whizard\ is a multi-purpose event generator that covers all parts of event generation (unweighted and weighted), either through intrinsic components or interfaces to external packages. Realistic collider environments are covered through sophisticated descriptions for beam structures at hadron colliders, lepton colliders, lepton-hadron colliders, both circular and linear machines. Other options include scattering processes e.g. for dark matter annihilation or particle decays. \whizard\ contains its in-house generator for (tree-level) high-multiplicity matrix elements, \oMega\, that supports the whole Standard Model (SM) of particle physics and basically all possibile extensions of it. QCD parton shower describe high-multiplicity partonic jet events that can be matched with matrix elements. At the moment, only hadron collider parton distribution functions (PDFs) and hadronization are handled by packages not written by the main authors. This manual is organized mainly along the lines of the way how to run \whizard: this is done through a command language, \sindarin\ (Scripting INtegration, Data Analysis, Results display and INterfaces.) Though this seems a complication at first glance, the user is rewarded with a large possibility, flexibility and versatility on how to steer \whizard. After some general remarks in the follow-up sections, in Chap.~\ref{chap:installation} we describe how to get the program, the package structure, the prerequisites, possible external extensions of the program and the basics of the installation (both as superuser and locally). Also, a first technical overview how to work with \whizard\ on single computer, batch clusters and farms are given. Furthermore, some rare uncommon possible build problems are discussed, and a tour through options for debugging, testing and validation is being made. A first dive into the running of the program is made in Chap.~\ref{chap:start}. This is following by an extensive, but rather technical introduction into the steering language \sindarin\ in Chap.~\ref{chap:sindarinintro}. Here, the basic elements of the language like commands, statements, control structures, expressions and variables as well as the form of warnings and error messages are explained in detail. Chap.~\ref{chap:sindarin} contains the application of the \sindarin\ command language to the main tasks in running \whizard\ in a physics framework: the defintion of particles, subevents, cuts, and event selections. The specification of a particular physics models is \begin{figure}[t] \centering \includegraphics[width=0.9\textwidth]{whizstruct} \caption{General structure of the \whizard\ package.} \end{figure} discussed, while the next sections are devoted to the setup and compilation of code for particular processes, the specification of beams, beam structure and polarization. The next step is the integration, controlling the integration, phase space, generator cuts, scales and weights, proceeding further to event generation and decays. At the end of this chapter, \whizard's internal data analysis methods and graphical visualization options are documented. The following chapters are dedicated to the physics implemented in \whizard: methods for hard matrix interactions in Chap.~\ref{chap:hardint}. Then, in Chap.~\ref{chap:physics}, implemented methods for adaptive multi-channel integration, particularly the integrator \vamp\ are explained, together with the algorithms for the generation of the phase-space in \whizard. Finally, an overview is given over the physics models implemented in \whizard\ and its matrix element generator \oMega, together with possibilities for their extension. After that, the next chapter discusses parton showering, matching and hadronization as well as options for event normalizations and supported event formats. Also weighted event generation is explained along the lines with options for negative weights. Then, in Chap.~\ref{chap:user}, options for user to plug-in self-written code into the \whizard\ framework are detailed, e.g. for observables, selections and cut functions, or for spectra and structure functions. Also, static executables are discussed. Chap.~\ref{chap:visualization} is a stand-alone documentation of GAMELAN, the interal graphics support for the visualization of data and analysis. The next chapter, Chap.~\ref{chap:userint} details user interfaces: how to use more options of the \whizard\ command on the command line, how to use \whizard\ interactively, and how to include \whizard\ as a library into the user's own program. Then, an extensive list of examples in Chap.~\ref{chap:examples} documenting physics examples from the LEP, SLC, HERA, Tevatron, and LHC colliders to future linear and circular colliders. This chapter is a particular good reference for the beginning, as the whole chain from choosing a model, setting up processes, the beam structure, the integration, and finally simulation and (graphical) analysis are explained in detail. More technical details about efficiency, tuning and advance usage of \whizard\ are collected in Chap.~\ref{chap:tuning}. Then, Chap.~\ref{chap:extmodels} shows how to set up your own new physics model with the help of external programs like \sarah\ or \FeynRules\ program or the Universal Feynrules Output, UFO, and include it into the \whizard\ event generator. In the appendices, we e.g. give an exhaustive reference list of \sindarin\ commands and built-in variables. Please report any inconsistencies, bugs, problems or simply pose open questions to our contact \url{whizard@desy.de}. %%%%% \section{Historical remarks} This section gives a historical overview over the development of \whizard\ and can be easily skipped in a (first) reading of the manual. \whizard\ has been developed in a first place as a tool for the physics at the then planned linear electron-positron collider TESLA around 1999. The intention was to have a tool at hand to describe electroweak physics of multiple weak bosons and the Higgs boson as precise as possible with full matrix elements. Hence, the acronym: \ttt{WHiZard}, which stood for $\mathbf{W}$, {\bf H}iggs, $\mathbf{Z}$, {\bf a}nd {\bf r}espective {\bf d}ecays. Several components of the \whizard\ package that are also available as independent sub-packages have been published already before the first versions of the \whizard\ generator itself: the multi-channel adaptive Monte-Carlo integration package \vamp\ has been released mid 1998~\cite{VAMP}. The dedicated packages for the simulation of linear lepton collider beamstrahlung and the option for a photon collider on Compton backscattering (\ttt{CIRCE1/2}) date back even to mid 1996~\cite{CIRCE}. Also parts of the code for \whizard's internal graphical analysis (the \gamelan\ module) came into existence already around 1998. After first inofficial versions, the official version 1 of \whizard\ was release in the year 2000. The development, improvement and incorporation of new features continued for roughly a decade. Major milestones in the development were the full support of all kinds of beyond the Standard Model (BSM) models including spin 3/2 and spin 2 particles and the inclusion of the MSSM, the NMSSM, Little Higgs models and models for anomalous couplings as well as extra-dimensional models from version 1.90 on. In the beginning, several methods for matrix elements have been used, until the in-house matrix element generator \oMega\ became available from version 1.20 on. It was included as a part of the \whizard\ package from version 1.90 on. The support for full color amplitudes came with version 1.50, but in a full-fledged version from 2.0 on. Version 1.40 brought the necessary setups for all kinds of collider environments, i.e. asymmetric beams, decay processes, and intrinsic $p_T$ in structure functions. Version 2.0 was released in April 2010 as an almost complete rewriting of the original code. It brought the construction of an internal density-matrix formalism which allowed the use of factorized production and (cascade) decay processes including complete color and spin correlations. Another big new feature was the command-line language \sindarin\ for steering all parts of the program. Also, many performance improvement have taken place in the new release series, like OpenMP parallelization, speed gain in matrix element generation etc. Version 2.2 came out in May 2014 as a major refactoring of the program internals but keeping (almost everywhere) the same user interface. New features are inclusive processes, reweighting, and more interfaces for QCD environments (BLHA/HOPPET). The following tables shows some of the major steps (physics implementation and/or technical improvements) in the development of \whizard: \begin{center} \begin{tabular}{|l|l|l|}\hline 0.99 & 08/1999 & Beta version \\\hline 1.00 & 12/2000 & First public version \\\hline 1.10 & 03/2001 & Libraries; \pythiasix\ interface \\ 1.11 & 04/2001 & PDF support; anomalous couplings \\ \hline 1.20 & 02/2002 & \oMega\ matrix elements; \ttt{CIRCE} support\\ 1.22 & 03/2002 & QED ISR; beam remnants, phase space improvements \\ 1.25 & 05/2003 & MSSM; weighted events; user-code plug-in \\ 1.28 & 04/2004 & Improved phase space; SLHA interface; signal catching \\\hline 1.30 & 09/2004 & Major technical overhaul \\\hline 1.40 & 12/2004 & Asymmetric beams; decays; $p_T$ in structure functions \\\hline 1.50 & 02/2006 & QCD support in \oMega\ (color flows); LHA format \\ 1.51 & 06/2006 & $Hgg$, $H\gamma\gamma$; Spin 3/2 + 2; BSM models \\\hline 1.90 & 11/2007 & \oMega\ included; LHAPDF support; $Z'$; $WW$ scattering \\ 1.92 & 03/2008 & LHE format; UED; parton shower beta version \\ 1.93 & 04/2009 & NMSSM; SLHA2 accord; improved color/flavor sums \\ 1.95 & 02/2010 & MLM matching; development stop in version 1 \\ 1.97 & 05/2011 & Manual for version 1 completed. \\\hline\hline %%% \end{tabular} %%% \end{center} %%% \begin{center} %%% \begin{tabular}{|l|l|l|}\hline 2.0.0 & 04/2010 & Major refactoring: automake setup; dynamic libraries \\ & & improved speed; cascades; OpenMP; \sindarin\ steering language \\ 2.0.3 & 07/2010 & QCD ISR+FSR shower; polarized beams \\ 2.0.5 & 05/2011 & Builtin PDFs; static builds; relocation scripts \\ 2.0.6 & 12/2011 & Anomalous top couplings; unit tests \\\hline 2.1.0 & 06/2012 & Analytic ISR+FSR parton shower; anomalous Higgs couplings \\\hline 2.2.0 & 05/2014 & Major technical refactoring: abstract object-orientation; THDM; \\ & & reweighting; LHE v2/3; BLHA; HOPPET interface; inclusive processes \\ 2.2.1 & 05/2014 & CJ12 PDFs; FastJet interface \\ 2.2.2 & 07/2014 & LHAPDF6 support; correlated LC beams; GuineaPig interface \\ 2.2.3 & 11/2014 & O'Mega virtual machine; lepton collider top pair threshold; Higgs singlet extension \\ 2.2.4 & 02/2015 & LCIO support; progress on NLO; many technical bug fixes \\ 2.2.7 & 08/2015 & progress on POWHEG; fixed-order NLO events; revalidation of ILC event chain \\ 2.2.8 & 11/2015 & support for quadruple precision; StdHEP included; SM dim 6 operators supported \\\hline 2.3.0 & 07/2016 & NLO: resonance mappings for FKS subtraction; more advanced cascade syntax; \\ & & GUI ($\alpha$ version); UFO support ($\alpha$ version); ILC v1.9x-v2.x final validation \\ 2.3.1 & 08/2016 & Complex mass scheme \\\hline 2.4.0 & 11/2016 & Refactoring of NLO setup \\ 2.4.1 & 03/2017 & $\alpha$ version of new VEGAS implementation \\\hline 2.5.0 & 05/2017 & Full UFO support (SM-like models) \\\hline 2.6.0 & 09/2017 & MPI parallel integration and event generation; resonance histories \\ & & for showers; RECOLA support \\ 2.6.1 & 11/2017 & EPA/ISR transverse distributions, handling of shower resonances; \\ & & more efficient (alternative) phase space generation \\ 2.6.2 & 12/2017 & $Hee$ coupling, improved resonance matching \\ 2.6.3 & 02/2018 & Partial NLO refactoring for quantum numbers, unified RECOLA 1/2 interface. \\ 2.6.4 & 08/2018 & Gridpack functionality; Bug fixes: color flows, HSExt model, MPI setup \\\hline 2.7.0 & 01/2019 & PYTHIA8 interface, process setup refactoring, RAMBO PS option; \\ & & \quad gfortran 5.0+ necessary \\\hline 2.8.0 & 08/2019 & (Almost) complete UFO support, general Lorentz structures, n-point vertices \\ 2.8.1 & 09/2019 & HepMC3, NLO QCD pp (almost) complete, b/c jet selection, photon isolation \\ 2.8.2 & 10/2019 & Support for OCaml $\geq$ 4.06.0, UFO Spin-2 support, LCIO alternative weights \\\hline \end{tabular} \end{center} \vspace{.5cm} For a detailed overview over the historical development of the code confer the \ttt{ChangeLog} file and the commit messages in our revision control system repository. %%%%% \section{About examples in this manual} Although \whizard\ has been designed as a Monte Carlo event generator for LHC physics, several elementary steps and aspects of its usage throughout the manual will be demonstrated with the famous textbook example of $e^+e^- \to \mu^+ \mu^-$. This is the same process, the textbook by Peskin/Schroeder \cite{PeskinSchroeder} uses as a prime example to teach the basics of quantum field theory. We use this example not because it is very special for \whizard\ or at the time being a relevant physics case, but simply because it is the easiest fundamental field theoretic process without the complications of structured beams (which can nevertheless be switched on like for ISR and beamstrahlung!), the need for jet definitions/algorithms and flavor sums; furthermore, it easily accomplishes a demonstration of polarized beams. After the basics of \whizard\ usage have been explained, we move on to actual physics cases from LHC (or Tevatron). \newpage \chapter{Installation} \label{chap:installation} \section{Package Structure} \whizard\ is a software package that consists of a main executable program (which is called \ttt{whizard}), libraries, auxiliary executable programs, and machine-independent data files. The whole package can be installed by the system administrator, by default, on a central location in the file system (\ttt{/usr/local} with its proper subdirectories). Alternatively, it is possible to install it in a user's home directory, without administrator privileges, or at any other location. A \whizard\ run requires a workspace, i.e., a writable directory where it can put generated code and data. There are no constraints on the location of this directory, but we recommend to use a separate directory for each \whizard\ project, or even for each \whizard\ run. Since \whizard\ generates the matrix elements for scattering and decay processes in form of \fortran\ code that is automatically compiled and dynamically linked into the running program, it requires a working \fortran\ compiler not just for the installation, but also at runtime. The previous major version \whizard1 did put more constraints on the setup. In a nutshell, not just the matrix element code was compiled at runtime, but other parts of the program as well, so the whole package was interleaved and had to be installed in user space. The workflow was controlled by \ttt{make} and PERL scripts. These constraints are gone in the present version in favor of a clean separation of installation and runtime workspace. \section{\label{sec:prerequisites}Prerequisites} \subsection{No Binary Distribution} \whizard\ is currently not distributed as a binary package, nor is it available as a debian or RPM package. This might change in the future. However, compiling from source is very simple (see below). Since the package needs a compiler also at runtime, it would not work without some development tools installed on the machine, anyway. Note, however, that we support an install script, that downloads all necessary prerequisites, and does the configuration and compilation described below automatically. This is called the ``instant WHIZARD'' and is accessible through the WHIZARD webpage from version 2.1.1 on: \url{https://whizard.hepforge.org/versions/install/install-whizard-2.X.X.sh}. Download this shell script, make it executable by \begin{interaction} chmod +x install-whizard-2.X.X.sh \end{interaction} and execute it. Note that this also involves compilation of the required \ttt{Fortran} compiler which takes 1-3 hours depending on your system. \ttt{Darwin} operating systems (a.k.a. as \ttt{Mac OS X}) have a very similar general system for all sorts of software, called \ttt{MacPorts} (\url{http://www.macports.org}). This offers to install \whizard\ as one of its software ports, and is very similar to ``instant WHIZARD'' described above. \subsection{Tarball Distribution} This is the recommended way of obtaining \whizard. You may download the current stable distribution from the \whizard\ webpage, hosted at the HepForge webpage \begin{quote} \hepforgepage \end{quote} The distribution is a single file, say \ttt{whizard-\thisversion.tgz} for version \thisversion. You need the additional prerequisites: \begin{itemize} \item GNU \ttt{tar} (or \ttt{gunzip} and \ttt{tar}) for unpacking the tarball. \item The \ttt{make} utility. Other standard Unix utilities (\ttt{sed}, \ttt{grep}, etc.) are usually installed by default. \item A modern \fortran\ compiler (see Sec.~\ref{sec:compilers} for details). \item The \ocaml\ system. \ocaml\ is a functional and object-oriented language. Version 4.02.3 or newer is required to compile all components of \whizard. The package is freely available either as a debian/RPM package on your system (it might be necessary to install it from the usual repositories), or you can obtain it directly from \begin{quote} \url{http://caml.inria.fr} \end{quote} and install it yourself. If desired, the package can be installed in user space without administrator privileges\footnote{ Unfortunately, the version of the \ocaml\ compiler from 3.12.0 broke backwards compatibility. Therefore, versions of \oMega/\whizard\ up to 2.0.2 only compile with older versions (3.11.x works). This has been fixed in versions 2.0.3 and later. See also Sec.~\ref{sec:buildproblems}. \whizard\ versions up to 2.7.1 were still backwards compatible with \ocaml\ 3.12.0}. \end{itemize} The following optional external packages are not required, but used for certain purposes. Make sure to check whether you will need any of them, before you install \whizard. \begin{itemize} \item \LaTeX\ and \metapost\ for data visualization. Both are part of the \TeX\ program family. These programs are not absolutely necessary, but \whizard\ will lack the tools for visualization without them. \item The \lhapdf\ structure-function library. See Sec.~\ref{sec:lhapdf_install}. \item The \hoppet\ structure-function matching tool. See Sec.~\ref{sec:hoppet}. \item The \hepmc\ event-format package. See Sec.~\ref{sec:hepmc}. \item The \fastjet\ jet-algorithm package. See Sec.~\ref{sec:fastjet}. \item The \lcio\ event-format package. See Sec.~\ref{sec:lcio}. \end{itemize} Until version v2.2.7 of \whizard, the event-format package \stdhep\ used to be available as an external package. As their distribution is frozen with the final version v5.06.01, and it used to be notoriously difficult to compile and link \stdhep\ into \whizard, it was decided to include \stdhep\ into \whizard. This is the case from version v2.2.8 of \whizard\ on. Linking against an external version of \stdhep\ is precluded from there on. Nevertheless, we list some explanations in Sec.~\ref{sec:stdhep}, particularly on the need to install the \ttt{libtirpc} headers for the legacy support of this event format. Once these prerequisites are met, you may unpack the package in a directory of your choice \begin{quote}\small\tt some-directory> tar xzf whizard-\thisversion.tgz \end{quote} and proceed.\footnote{Without GNU \ttt{tar}, this would read \ttt{\small gunzip -c whizard-\thisversion.tgz | tar xz -}} For using external physics models that are directly supported by \whizard\ and \oMega, the user can use tools like \sarah\ or \FeynRules. There installation and linking to \whizard\ will be explained in Chap.~\ref{chap:extmodels}. Besides this, also new models can be conveniently included via \UFO\ files, which will be explained as well in that chapter. The directory will then contain a subdirectory \ttt{whizard-\thisversion} where the complete source tree is located. To update later to a new version, repeat these steps. Each new version will unpack in a separate directory with the appropriate name. \subsection{SVN Repository Version} If you want to install the latest development version, you have to check it out from the \whizard\ SVN repository. In addition to the prerequisites listed in the previous section, you need: \begin{itemize} \item The \ttt{subversion} package (\ttt{svn}), the tool for dealing with SVN repositories. \item The \ttt{autoconf} package, part of the \ttt{autotools} development system. \ttt{automake} is needed with version \ttt{1.12.2} or newer. \item The \ttt{noweb} package, a light-weight tool for literate programming. This package is nowadays often part of Linux distributions\footnote{In Ubuntu from version 10.04 on, and in Debian since squeeze. For \ttt{Mac OS X}, \ttt{noweb} is available via the \ttt{MacPorts} system.}. You can obtain the source code from\footnote{Please, do not use any of the binary builds from this webpage. Probably all of them are quite old and broken.} \begin{quote} \url{http://www.cs.tufts.edu/~nr/noweb/} \end{quote} \end{itemize} To start, go to a directory of your choice and execute \begin{interaction} your-src-directory> svn checkout svn+ssh://vcs@phab.hepforge.org/source/whizardsvn/trunk \;\; . \end{interaction} Note that for the time being after the HepForge system modernization early September 2018, a HepForge account with a local ssl key is necessary to checkout the subversion repository. This is enforced by the phabricator framework of HepForge, and will hopefully be relaxed in the future. The SVN source tree will appear in the current directory. To update later, you just have to execute \begin{interaction} your-src-directory> svn update \end{interaction} within that directory. After checking out the sources, you first have to create \ttt{configure.ac} by executing the shell script \ttt{build\_master.sh}. In order to build the \ttt{configure} script, the \ttt{autotools} package \ttt{autoreconf} has to be run. On some \ttt{Unix} systems the \ttt{RPC} headers needed for the legacy support of the \stdhep\ event format are provided by the \ttt{TIRPC} library (cf. Sec.~\ref{sec:stdhep}). To easily check for them, \ttt{configure.ac} processed by \ttt{autoreconf} makes use of the \ttt{pkg-config} tool which needs to be installed for the developer version. So now, run\footnote{At least, version 2.65 of the \ttt{autoconf} package is required.} \begin{interaction} your-src-directory> autoreconf \end{interaction} This will generate a \ttt{configure} script. \subsection{\label{sec:compilers}Fortran Compilers} \whizard\ is written in modern \fortran. To be precise, it uses a subset of the \fortranOThree\ standard. At the time of this writing, this subset is supported by, at least, the following compilers: \begin{itemize} \item \ttt{gfortran} (GNU, Open Source). You will need version 5.1.0 or higher\footnote{Note that \whizard\ versions 2.0.0 until 2.3.1 compiled with \ttt{gfortran} 4.7.4, but the object-oriented refactoring of the \whizard\ code from 2.4.0 on until version 2.6.5 made a switch to \ttt{gfortran} 4.8.4 or higher necessary. In the same way, since version 2.7.0, \ttt{gfortran} 5.1.0 or newer is needed}. We recommend to use at least version 5.4 or higher, as especially the the early version of the \texttt{gfortran} experience some bugs. \ttt{gfortran} 6.5.0 has a severe regression and cannot be used. \item \ttt{nagfor} (NAG). You will need version 6.2 or higher. \item \ttt{ifort} (Intel). You will need version 17.0.4 or higher. Version 19.0.0 unfortunately has a severe regression and cannot be used. \end{itemize} %%%%% \subsection{LHAPDF} \label{sec:lhapdf_install} For computing scattering processes at hadron colliders such as the LHC, \whizard\ has a small set of standard structure-function parameterizations built in, cf.\ Sec.~\ref{sec:built-in-pdf}. For many applications, this will be sufficient, and you can skip this section. However, if you need structure-function parameterizations that are not in the default set (e.g. PDF error sets), you can use the \lhapdf\ structure-function library, which is an external package. It has to be linked during \whizard\ installation. For use with \whizard, version 5.3.0 or higher of the library is required\footnote{ Note that PDF sets which contain photons as partons are only supported with \whizard\ for \lhapdf\ version 5.7.1 or higher}. The \lhapdf\ package has undergone a major rewriting from \fortran\ version 5 to \ttt{C++} version 6. While still maintaining the interface for the \lhapdf\ version 5 series, from version 2.2.2 of \whizard\ on, the new release series of \lhapdf, version 6.0 and higher, is also supported. If \lhapdf\ is not yet installed on your system, you can download it from \begin{quote} \url{https://lhapdf.hepforge.org} \end{quote} for the most recent LHAPDF version 6 and newer, or \begin{quote} \url{https://lhapdf.hepforge.org/lhapdf5} \end{quote} for version 5 and older, and install it. The website contains comprehensive documentation on the configuring and installation procedure. Make sure that you have downloaded and installed not just the package, but also the data sets. Note that \lhapdf\ version 5 needs both a \fortran\ and a \ttt{C++} compiler. During \whizard\ configuration, \whizard\ looks for the script \ttt{lhapdf} (which is present in \lhapdf\ series 6) first, and then for \ttt{lhapdf-config} (which is present since \lhapdf\ version 4.1.0): if those are in an executable path (or only the latter for \lhapdf\ version 5), the environment variables for \lhapdf\ are automatically recognized by \whizard, as well as the version number. This should look like this in the \ttt{configure} output (for \lhapdf\ version 6 or newer), \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LHAPDF --- configure: checking for lhapdf... /usr/local/bin/lhapdf checking for lhapdf-config... /usr/local/bin/lhapdf-config checking the LHAPDF version... 6.2.1 checking the major version... 6 checking the LHAPDF pdfsets path... /usr/local/share/LHAPDF checking the standard PDF sets... all standard PDF sets installed checking if LHAPDF is functional... yes checking LHAPDF... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} while for \lhapdf\ version 5 and older it looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LHAPDF --- configure: checking for lhapdf... no checking for lhapdf-config... /usr/local/bin/lhapdf-config checking the LHAPDF version... 5.9.1 checking the major version... 5 checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets checking the standard PDF sets... all standard PDF sets installed checking for getxminm in -lLHAPDF... yes checking for has_photon in -lLHAPDF... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} If you want to use a different \lhapdf\ (e.g. because the one installed on your system by default is an older one), the preferred way to do so is to put the \ttt{lhapdf} (and/or \ttt{lhapdf-config}) scripts in an executable path that is checked before the system paths, e.g. \ttt{/bin}. For the old series, \lhapdf\ version 5, a possible error could arise if \lhapdf\ had been compiled with a different \fortran\ compiler than \whizard, and if the run-time library of that \fortran\ compiler had not been included in the \whizard\ configure process. The output then looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LHAPDF --- configure: checking for lhapdf... no checking for lhapdf-config... /usr/local/bin/lhapdf-config checking the LHAPDF version... 5.9.1 checking the major version... 5 checking the LHAPDF pdfsets path... /usr/local/share/lhapdf/PDFsets checking for standard PDF sets... all standard PDF sets installed checking for getxminm in -lLHAPDF... no checking for has_photon in -lLHAPDF... no configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} So, the \whizard\ configure found the \lhapdf\ distribution, but could not link because it could not resolve the symbols inside the library. In case of failure, for more details confer the \ttt{config.log}. If \lhapdf\ is installed in a non-default directory where \whizard\ would not find it, set the environment variable \ttt{LHAPDF\_DIR} to the correct installation path when configuring \whizard. The check for the standard PDF sets are those sets that are used in the default \whizard\ self tests in the case \lhapdf\ is enabled and correctly linked. If some of them are missing, then this test will result in a failure. They are the \ttt{CT10} set for \lhapdf\ version 6 (for version 5, \ttt{cteq61.LHpdf}, \ttt{cteq6ll.LHpdf}, \ttt{cteq5l.LHgrid}, and \ttt{GSG961.LHgrid} are demanded). If you want to use \lhapdf\ inside \whizard\ please install them such that \whizard\ could perform all its sanity checks with them. The last check is for the \ttt{has\_photon} flag, which tests whether photon PDFs are available in the found \lhapdf\ installation. %%%%% \subsection{HOPPET} \label{sec:hoppet} \hoppet\ (not Hobbit) is a tool for the QCD DGLAP evolution of PDFs for hadron colliders. It provides possibilities for matching algorithms for 4- and 5-flavor schemes, that are important for precision simulations of $b$-parton initiated processes at hadron colliders. If you are not interested in those features, you can skip this section. Note that this feature is not enabled by default (unlike e.g. \lhapdf), but has to be explicitly during the configuration (see below): \begin{interaction} your-build-directory> your-src-directory/configure --enable-hoppet \end{interaction} If you \ttt{configure} messages like the following: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- HOPPET --- configure: checking for hoppet-config... /usr/local/bin/hoppet-config checking for hoppetAssign in -lhoppet_v1... yes checking the HOPPET version... 1.2.0 configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} then you know that \hoppet\ has been found and was correctly linked. If that is not the case, you have to specify the location of the \hoppet\ library, e.g. by adding \begin{interaction} HOPPET=/lib \end{interaction} to the \ttt{configure} options above. For more details, please confer the \hoppet\ manual. %%%%% \subsection{HepMC} \label{sec:hepmc} With version 2.8.1, \whizard\ supports both the "classical" version 2 as well as the newly designed version 3 (release 2019). The configure step can successfully recognize the two different versions, the user do not have to specify which version is installed. \hepmc\ is a \ttt{C++} class library for handling collider scattering events. In particular, it provides a portable format for event files. If you want to use this format, you should link \whizard\ with \hepmc, otherwise you can skip this section. If it is not already installed on your system, you may obtain \hepmc\ from one of these two webpages: \begin{quote} \url{http://hepmc.web.cern.ch/hepmc/} \end{quote} or \begin{quote} \url{http://hepmc.web.cern.ch/hepmc/} \end{quote} If the \hepmc\ library is linked with the installation, \whizard\ is able to read and write files in the \hepmc\ format. Detailed information on the installation and usage can be found on the \hepmc\ homepage. We give here only some brief details relevant for the usage with \whizard: For the compilation of HepMC one needs a \ttt{C++} compiler. Then the procedure is the same as for the \whizard\ package, namely configure HepMC: \begin{interaction} configure --with-momentum=GEV --with-length=MM --prefix= \end{interaction} Note that the particle momentum and decay length flags are mandatory, and we highly recommend to set them to the values \ttt{GEV} and \ttt{MM}, respectively. After configuration, do \ttt{make}, an optional \ttt{make check} (which might sometimes fail for non-standard values of momentum and length), and finally \ttt{make install}. The latest version of \hepmc\ (2.6.10) as well as the new relase series use \texttt{cmake} for their build process. For more information, confer the \hepmc\ webpage. A \whizard\ configuration for HepMC looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- HepMC --- configure: checking for HepMC-config... no checking HepMC3 or newer... no configure: HepMC3 not found, incompatible, or HepMC-config not found configure: looking for HepMC2 instead ... checking the HepMC version... 2.06.10 checking for GenEvent class in -lHepMC... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} If \hepmc\ is installed in a non-default directory where \whizard\ would not find it, set the environment variable \ttt{HEPMC\_DIR} to the correct installation path when configuring \whizard. Furthermore, the environment variable \ttt{CXXFLAGS} allows you to set specific \ttt{C/C++} preprocessor flags, e.g. non-standard include paths for header files. %%%%% \subsection{PYTHIA8} \label{sec:pythia8} \emph{NOTE: This is at the moment not yet supported, but merely a stub with the only purpose to be recognized by the build system.} \pythiaeight\ is a \ttt{C++} class library for handling hadronization, showering and underlying event. If you want to use this feature (once it is fully supported in \whizard), you should link \whizard\ with \pythiaeight, otherwise you can skip this section. If it is not already installed on your system, you may obtain \pythiaeight\ from \begin{quote} \url{http://home.thep.lu.se/~torbjorn/Pythia.html} \end{quote} If the \pythiaeight\ library is linked with the installation, \whizard\ will be able to use its hadronization and showering, once this is fully supported within \whizard. To link a \pythiaeight\ installation to \whizard, you should specify the flag \begin{quote} \ttt{--enable-pythia8} \end{quote} to \ttt{configure}. If \pythiaeight\ is installed in a non-default directory where \whizard\ would not find it, specify also \begin{quote} \ttt{--with-pythia8=\emph{}} \end{quote} A successful \whizard\ configuration should produce a screen output similar to this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- SHOWERS PYTHIA6 PYTHIA8 MPI --- configure: [....] checking for pythia8-config... /usr/local/bin/pythia8-config checking if PYTHIA8 is functional... yes checking PYTHIA8... yes configure: WARNING: PYTHIA8 configure is for testing purposes at the moment. configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} %%%%% \subsection{FastJet} \label{sec:fastjet} \fastjet\ is a \ttt{C++} class library for handling jet clustering. If you want to use this feature, you should link \whizard\ with \fastjet, otherwise you can skip this section. If it is not already installed on your system, you may obtain \fastjet\ from \begin{quote} \url{http://fastjet.fr} \end{quote} If the \fastjet\ library is linked with the installation, \whizard\ is able to call the jet algorithms provided by this program for the purposes of applying cuts and analysis. To link a \fastjet\ installation to \whizard, you should specify the flag \begin{quote} \ttt{--enable-fastjet} \end{quote} to \ttt{configure}. If \fastjet\ is installed in a non-default directory where \whizard\ would not find it, specify also \begin{quote} \ttt{--with-fastjet=\emph{}} \end{quote} A successful \whizard\ configuration should produce a screen output similar to this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- FASTJET --- configure: checking for fastjet-config... /usr/local/bin/fastjet-config checking if FastJet is functional... yes checking FastJet... yes checking the FastJet version... 3.3.0 configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} %%%%% \subsection{STDHEP} \label{sec:stdhep} \stdhep\ is a library for handling collider scattering events~\cite{stdhep}. In particular, it provides a portable format for event files. Until version 2.2.7 of \whizard, \stdhep\ that was maintained by Fermilab, could be linked as an externally compiled library. As the \stdhep\ package is frozen in its final release v5.06.1 and no longer maintained, it has from version 2.2.8 been included \whizard. This eases many things, as it was notoriously difficult to compile and link \stdhep\ in a way compatible with \whizard. Not the full package has been included, but only the libraries for file I/O (\ttt{mcfio}, the library for the XDR conversion), while the various translation tools for \pythia, \herwig, etc. have been abandoned. Note that \stdhep\ has largely been replaced in the hadron collider community by the \hepmc\ format, and in the lepton collider community by \lcio. \whizard\ might serve as a conversion tools for all these formats, but other tools also exist, of course. Note that the \ttt{mcfio} framework makes use of the \ttt{RPC} headers. These come -- provided by \ttt{SunOS/Oracle America, Inc.} -- together with the system headers, but on some \ttt{Unix} systems (e.g. \ttt{ArchLinux}, \ttt{Fedora}) have been replaced by the \ttt{libtirpc} headers . The \ttt{configure} script searches for these headers so these have to be installed mandatorily. If the \stdhep\ library is linked with the installation, \whizard\ is able to write files in the \stdhep\ format, the corresponding configure output notifies you that \stdhep\ is always included: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- STDHEP --- configure: checking for pkg-config... /opt/local/bin/pkg-config checking pkg-config is at least version 0.9.0... yes checking for libtirpc... no configure: for StdHEP legacy code: using SunRPC headers and library configure: StdHEP v5.06.01 is included internally configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} %%%%% \subsection{LCIO} \label{sec:lcio} \lcio\ is a \ttt{C++} class library for handling collider scattering events. In particular, it provides a portable format for event files. If you want to use this format, you should link \whizard\ with \lcio, otherwise you can skip this section. If it is not already installed on your system, you may obtain \lcio\ from: \begin{quote} \url{http://lcio.desy.de} \end{quote} If the \lcio\ library is linked with the installation, \whizard\ is able to read and write files in the \lcio\ format. Detailed information on the installation and usage can be found on the \lcio\ homepage. We give here only some brief details relevant for the usage with \whizard: For the compilation of \lcio\ one needs a \ttt{C++} compiler. \lcio\ is based on \ttt{cmake}. For the corresponding options please confer the \lcio\ manual. A \whizard\ configuration for \lcio\ looks like this: \begin{footnotesize} \begin{verbatim} configure: -------------------------------------------------------------- configure: --- LCIO --- configure: checking the LCIO version... 2.12.1 checking for LCEventImpl class in -llcio... yes configure: -------------------------------------------------------------- \end{verbatim} \end{footnotesize} If \lcio\ is installed in a non-default directory where \whizard\ would not find it, set the environment variable \ttt{LCIO} or \ttt{LCIO\_DIR} to the correct installation path when configuring \whizard. The first one is the variable exported by the \ttt{setup.sh} script while the second one is analogous to the environment variables of other external packages. \ttt{LCIO} takes precedence over \ttt{LCIO\_DIR}. Furthermore, the environment variable \ttt{CXXFLAGS} allows you to set specific \ttt{C/C++} preprocessor flags, e.g. non-standard include paths for header files. %%%%% \section{Installation} \label{sec:installation} Once you have unpacked the source (either the tarball or the SVN version), you are ready to compile it. There are several options. \subsection{Central Installation} This is the default and recommended way, but it requires adminstrator privileges. Make sure that all prerequisites are met (Sec.~\ref{sec:prerequisites}). \begin{enumerate} \item Create a fresh directory for the \whizard\ build. It is recommended to keep this separate from the source directory. \item Go to that directory and execute \begin{interaction} your-build-directory> your-src-directory/configure \end{interaction} This will analyze your system and prepare the compilation of \whizard\ in the build directory. Make sure to set the proper options to \ttt{configure}, see Sec.~\ref{sec:configure-options} below. \item Call \ttt{make} to compile and link \whizard: \begin{interaction} your-build-directory> make \end{interaction} \item If you want to make sure that everything works, run \begin{interaction} your-build-directory> make check \end{interaction} This will take some more time. \item Become superuser and say \begin{interaction} your-build-directory> make install \end{interaction} \end{enumerate} \whizard\ should now installed in the default locations, and the executable should be available in the standard path. Try to call \ttt{whizard --help} in order to check this. \subsection{Installation in User Space} You may lack administrator privileges on your system. In that case, you can still install and run \whizard. Make sure that all prerequisites are met (Sec.~\ref{sec:prerequisites}). \begin{enumerate} \item Create a fresh directory for the \whizard\ build. It is recommended to keep this separate from the source directory. \item Reserve a directory in user space for the \whizard\ installation. It should be empty, or yet non-existent. \item Go to that directory and execute \begin{interaction} your-build-directory> your-src-directory/configure --prefix=your-install-directory \end{interaction} This will analyze your system and prepare the compilation of \whizard\ in the build directory. Make sure to set the proper additional options to \ttt{configure}, see Sec.~\ref{sec:configure-options} below. \item Call \ttt{make} to compile and link \whizard: \begin{interaction} your-build-directory> make \end{interaction} \item If you want to make sure that everything works, run \begin{interaction} your-build-directory> make check \end{interaction} This will take some more time. \item Install: \begin{interaction} your-build-directory> make install \end{interaction} \end{enumerate} \whizard\ should now be installed in the installation directory of your choice. If the installation is not in your standard search paths, you have to account for this by extending the paths appropriately, see Sec.~\ref{sec:workspace}. \subsection{Configure Options} \label{sec:configure-options} The configure script accepts environment variables and flags. They can be given as arguments to the \ttt{configure} program in arbitrary order. You may run \ttt{configure --help} for a listing; only the last part of this long listing is specific for the \whizard\ system. Here is an example: \begin{interaction} configure FC=gfortran-5.4 FCFLAGS="-g -O3" --enable-fc-openmp \end{interaction} The most important options are \begin{itemize} \item \ttt{FC} (variable): The \fortran\ compiler. This is necessary if you need a compiler different from the standard compiler on the system, e.g., if the latter is too old. \item \ttt{FCFLAGS} (variable): The flags to be given to the Fortran compiler. The main use is to control the level of optimization. \item \ttt{--prefix=\var{directory-name}}: Specify a non-default directory for installation. \item \ttt{--enable-fc-openmp}: Enable parallel executing via OpenMP on a multi-processor/multi-core machine. This works only if OpenMP is supported by the compiler (e.g., \ttt{gfortran}). When running \whizard, the number of processors that are actually requested can be controlled by the user. Without this option, \whizard\ will run in serial mode on a single core. See Sec.~\ref{sec:openmp} for further details. \item \ttt{--enable-fc-mpi}: Enable parallel executing via MPI on a single machine using several cores or several machines. This works only if a MPI library is installed (e.g. \ttt{OpenMPI}) and \ttt{FC=mpifort CC=mpicc CXX=mpic++} is set. Without this option, \whizard\ will run in serial mode on a single core. The flag can be combined with \ttt{--enable-fc-openmp}. See Sec.~\ref{sec:mpi} for further details. \item \ttt{LHADPF\_DIR} (variable): The location of the optional \lhapdf\ package, if non-default. \item \ttt{LOOPTOOLS\_DIR} (variable): The location of the optional \ttt{LOOPTOOLS} package, if non-default. \item \ttt{OPENLOOPS\_DIR} (variable): The location of the optional \openloops\ package, if non-default. \item \ttt{GOSAM\_DIR} (variable): The location of the optional \gosam\ package, if non-default. \item \ttt{HOPPET\_DIR} (variable): The location of the optional \hoppet\ package, if non-default. \item \ttt{HEPMC\_DIR} (variable): The location of the optional \hepmc\ package, if non-default. \item \ttt{LCIO}/\ttt{LCIO\_DIR} (variable): The location of the optional \lcio\ package, if non-default. \end{itemize} Other flags that might help to work around possible problems are the flags for the $C$ and $C++$ compilers as well as the \ttt{Fortran77} compiler, or the linker flags and additional libraries for the linking process. \begin{itemize} \item \ttt{CC} (variable): \ttt{C} compiler command \item \ttt{F77} (variable): \ttt{Fortran77} compiler command \item \ttt{CXX} (variable): \ttt{C++} compiler command \item \ttt{CPP} (variable): \ttt{C} preprocessor \item \ttt{CXXCPP} (variable): \ttt{C++} preprocessor \item \ttt{CFLAGS} (variable): \ttt{C} compiler flags \item \ttt{FFLAGS} (variable): \ttt{Fortran77} compiler flags \item \ttt{CXXFLAGS} (variable): \ttt{C++} compiler flags \item \ttt{LIBS} (variable): libraries to be passed to the linker as \ttt{-l{\em library}} \item \ttt{LDFLAGS} (variable): non-standard linker flags \end{itemize} For other options (like e.g. \ttt{--with-precision=...} etc.) please see the \ttt{configure --help} option. %%%%% \subsection{Details on the Configure Process} The configure process checks for the build and host system type; only if this is not detected automatically, the user would have to specify this by himself. After that system-dependent files are searched for, LaTeX and Acroread for documentation and plots, the \fortran\ compiler is checked, and finally the \ocaml\ compiler. The next step is the checks for external programs like \lhapdf\ and \ttt{HepMC}. Finally, all the Makefiles are being built. The compilation is done by invoking \ttt{make} and finally \ttt{make install}. You could also do a \ttt{make check} in order to test whether the compilation has produced sane files on your system. This is highly recommended. Be aware that there be problems for the installation if the install path or a user's home directory is part of an AFS file system. Several times problems were encountered connected with conflicts with permissions inside the OS permission environment variables and the AFS permission flags which triggered errors during the \ttt{make install} procedure. Also please avoid using \ttt{make -j} options of parallel execution of \ttt{Makefile} directives as AFS filesystems might not be fast enough to cope with this. For specific problems that might have been encountered in rare circumstances for some FORTRAN compilers confer the webpage \url{https://whizard.hepforge.org/compilers.html}. Note that the \pythia\ bundle for showering and hadronization (and some other external legacy code pieces) do still contain good old \ttt{Fortran77} code. These parts should better be compiled with the very same \ttt{Fortran2003} compiler as the \whizard\ core. There is, however, one subtlety: when the \ttt{configure} flag \ttt{FC} gets a full system path as argument, \ttt{libtool} is not able to recognize this as a valid (GNU) \ttt{Fortran77} compiler. It then searches automatically for binaries like \ttt{f77}, \ttt{g77} etc. or a standard system compiler. This might result in a compilation failure of the \ttt{Fortran77} code. A viable solution is to define an executable link and use this (not the full path!) as \ttt{FC} flag. It is possible to compile \whizard\ without the \ocaml\ parts of \oMega, namely by using the \ttt{--disable-omega} option of the configure. This will result in a built of \whizard\ with the \oMega\ Fortran library, but without the binaries for the matrix element generation. All selftests (cf. \ref{sec:selftests}) requiring \oMega\ matrix elements are thereby switched off. Note that you can install such a built (e.g. on a batch system without \ocaml\ installation), but the try to build a distribution (all \ttt{make distxxx} targets) will fail. %%%%%%%%%%% \subsection{\whizard\ self tests/checks} \label{sec:selftests} \whizard\ has a number of self-consistency checks and tests which assure that most of its features are running in the intended way. The standard procedure to invoke these self tests is to perform a \ttt{make check} from the \ttt{build} directory. If \ttt{src} and \ttt{build} directories are the same, all relevant files for these self-tests reside in the \ttt{tests} subdirectory of the main \whizard\ directory. In that case, one could in principle just call the scripts individually from the command line. Note, that if \ttt{src} and \ttt{build} directory are different as recommended, then the input files will have been installed in \ttt{prefix/share/whizard/test}, while the corresponding test shell scripts remain in the \ttt{srcdir/test} directory. As the main shell script \ttt{run\_whizard.sh} has been built in the \ttt{build} directory, one now has to copy the files over by and set the correct paths by hand, if one wishes to run the test scripts individually. \ttt{make check} still correctly performs all \whizard\ self-consistency tests. The tests itself fall into two categories, unit self test that individually test the modular structure of \whizard, and tests that are run by \sindarin\ files. In future releases of \whizard, these two categories of tests will be better separated than in the 2.2.1 release. There are additional, quite extensiv numerical tests for validation and backwards compatibility checks for SM and MSSM processes. As a standard, these extended self tests are not invoked. However, they can be enabled by executing the corresponding specific \ttt{make check} operations in the subdirectories for these extensive tests. As the new \whizard\ testsuite does very thorough and scrupulous tests of the whole \whizard\ structure, it is always possible that some tests are failing due to some weird circumstances or because of numerical fluctuations. In such a case do not panic, contact the developers (\ttt{whizard@desy.de}) and provide them with the logfiles of the failing test as well as the setup of your configuration. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \chapter{Working with \whizard} \label{chap:start} \whizard\ can run as a stand-alone program. You (the user) can steer \whizard\ either interactively or by a script file. We will first describe the latter method, since it will be the most common way to interact with the \whizard\ system. \section{Hello World} The legacy version series 1 of the program relied on a bunch of input files that the user had to provide in some obfuscated format. This approach is sufficient for straightforward applications. However, once you get experienced with a program, you start thinking about uses that the program's authors did not foresee. In case of a Monte Carlo package, typical abuses are parameter scans, complex patterns of cuts and reweighting factors, or data analysis without recourse to external packages. This requires more flexibility. Instead of transferring control over data input to some generic scripting language like PERL or PYTHON (or even C++), which come with their own peculiarities and learning curves, we decided to unify data input and scripting in a dedicated steering language that is particularly adapted to the needs of Monte-Carlo integration, simulation, and simple analysis of the results. Thus we discovered what everybody knew anyway: that W(h)izards communicate in \sindarin, Scripting INtegration, Data Analysis, Results display and INterfaces. \sindarin\ is a DSL -- a domain-specific scripting language -- that is designed for the single purpose of steering and talking to \whizard. Now since \sindarin\ is a programming language, we honor the old tradition of starting with the famous Hello World program. In \sindarin\ this reads simply \begin{quote} \begin{verbatim} printf "Hello World!" \end{verbatim} \end{quote} Open your favorite editor, type this text, and save it into a file named \verb|hello.sin|. \begin{figure} \centering \begin{scriptsize} \begin{Verbatim}[frame=single] | Writing log to 'whizard.log' |=============================================================================| | | | WW WW WW WW WW WWWWWW WW WWWWW WWWW | | WW WW WW WW WW WW WW WWWW WW WW WW WW | | WW WW WW WW WWWWWWW WW WW WW WW WWWWW WW WW | | WWWW WWWW WW WW WW WW WWWWWWWW WW WW WW WW | | WW WW WW WW WW WWWWWW WW WW WW WW WWWW | | | | | | W | | sW | | WW | | sWW | | WWW | | wWWW | | wWWWW | | WW WW | | WW WW | | wWW WW | | wWW WW | | WW WW | | WW WW | | WW WW | | WW WW | | WW WW | | WW WW | | wwwwww WW WW | | WWWWWww WW WW | | WWWWWwwwww WW WW | | wWWWwwwwwWW WW | | wWWWWWWWWWWwWWW WW | | wWWWWW wW WWWWWWW | | WWWW wW WW wWWWWWWWwww | | WWWW wWWWWWWWwwww | | WWWW WWWW WWw | | WWWWww WWWW | | WWWwwww WWWW | | wWWWWwww wWWWWW | | WwwwwwwwwWWW | | | | | | | | by: Wolfgang Kilian, Thorsten Ohl, Juergen Reuter | | with contributions from Christian Speckner | | Contact: | | | | if you use WHIZARD please cite: | | W. Kilian, T. Ohl, J. Reuter, Eur.Phys.J.C71 (2011) 1742 | | [arXiv: 0708.4233 [hep-ph]] | | M. Moretti, T. Ohl, J. Reuter, arXiv: hep-ph/0102195 | | | |=============================================================================| | WHIZARD 2.8.3 |=============================================================================| | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM | Process library 'default_lib': initialized | Preloaded library: default_lib | Reading commands from file 'hello.sin' Hello World! | WHIZARD run finished. |=============================================================================| \end{Verbatim} \end{scriptsize} \caption{Output of the \ttt{"Hello world!"} \sindarin\ script.\label{fig:helloworld}} \end{figure} Now we assume that you -- or your kind system administrator -- has installed \whizard\ in your executable path. Then you should open a command shell and execute (we will come to the meaning of the \verb|-r| option later.) \begin{verbatim} /home/user$ whizard -r hello.sin \end{verbatim} and if everything works well, you get the output (the complete output including the \whizard\ banner is shown in Fig.~\ref{fig:helloworld}) \begin{footnotesize} \begin{verbatim} | Writing log to 'whizard.log' \end{verbatim} \centerline{[... here a banner is displayed]} \begin{Verbatim} |=============================================================================| | WHIZARD 2.8.3 |=============================================================================| | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM ! Process library 'default_lib': initialized ! Preloaded library: default_lib | Reading commands from file 'hello.sin' Hello World! | WHIZARD run finished. |=============================================================================| \end{Verbatim} \end{footnotesize} If this has just worked for you, you can be confident that you have a working \whizard\ installation, and you have been able to successfully run the program. \section{A Simple Calculation} You may object that \whizard\ is not exactly designed for printing out plain text. So let us demonstrate a more useful example. Looking at the Hello World output, we first observe that the program writes a log file named (by default) \verb|whizard.log|. This file receives all screen output, except for the output of external programs that are called by \whizard. You don't have to cache \whizard's screen output yourself. After the welcome banner, \whizard\ tells you that it reads a physics \emph{model}, and that it initializes and preloads a \emph{process library}. The process library is initially empty. It is ready for receiving definitions of elementary high-energy physics processes (scattering or decay) that you provide. The processes are set in the context of a definite model of high-energy physics. By default this is the Standard Model, dubbed \verb|SM|. Here is the \sindarin\ code for defining a SM physics process, computing its cross section, and generating a simulated event sample in Les Houches event format: \begin{quote} \begin{Verbatim} process ee = e1, E1 => e2, E2 sqrts = 360 GeV n_events = 10 sample_format = lhef simulate (ee) \end{Verbatim} \end{quote} As before, you save this text in a file (named, e.g., \verb|ee.sin|) which is run by \begin{verbatim} /home/user$ whizard -r ee.sin \end{verbatim} (We will come to the meaning of the \verb|-r| option later.) This produces a lot of output which looks similar to this: \begin{footnotesize} \begin{verbatim} | Writing log to 'whizard.log' [... banner ...] |=============================================================================| | WHIZARD 2.8.3 |=============================================================================| | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM | Process library 'default_lib': initialized | Preloaded library: default_lib | Reading commands from file 'ee.sin' | Process library 'default_lib': recorded process 'ee' sqrts = 3.600000000000E+02 n_events = 10 \end{verbatim} \begin{verbatim} | Starting simulation for process 'ee' | Simulate: process 'ee' needs integration | Integrate: current process library needs compilation | Process library 'default_lib': compiling ... | Process library 'default_lib': writing makefile | Process library 'default_lib': removing old files rm -f default_lib.la rm -f default_lib.lo default_lib_driver.mod opr_ee_i1.mod ee_i1.lo rm -f ee_i1.f90 | Process library 'default_lib': writing driver | Process library 'default_lib': creating source code rm -f ee_i1.f90 rm -f opr_ee_i1.mod rm -f ee_i1.lo /usr/local/bin/omega_SM.opt -o ee_i1.f90 -target:whizard -target:parameter_module parameters_SM -target:module opr_ee_i1 -target:md5sum '70DB728462039A6DC1564328E2F3C3A5' -fusion:progress -scatter 'e- e+ -> mu- mu+' [1/1] e- e+ -> mu- mu+ ... allowed. [time: 0.00 secs, total: 0.00 secs, remaining: 0.00 secs] all processes done. [total time: 0.00 secs] SUMMARY: 6 fusions, 2 propagators, 2 diagrams | Process library 'default_lib': compiling sources [.....] \end{verbatim} \begin{verbatim} | Process library 'default_lib': loading | Process library 'default_lib': ... success. | Integrate: compilation done | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 9616 | Initializing integration for process ee: | ------------------------------------------------------------------------ | Process [scattering]: 'ee' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'ee_i1': e-, e+ => mu-, mu+ [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 3.600000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'ee_i1.phs' | Phase space: 2 channels, 2 dimensions | Phase space: found 2 channels, collected in 2 groves. | Phase space: Using 2 equivalences between channels. | Phase space: wood Warning: No cuts have been defined. \end{verbatim} \begin{verbatim} | Starting integration for process 'ee' | Integrate: iterations not specified, using default | Integrate: iterations = 3:1000:"gw", 3:10000:"" | Integrator: 2 chains, 2 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 1000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 784 8.3282892E+02 1.68E+00 0.20 0.06* 39.99 2 784 8.3118961E+02 1.23E+00 0.15 0.04* 76.34 3 784 8.3278951E+02 1.36E+00 0.16 0.05 54.45 |-----------------------------------------------------------------------------| 3 2352 8.3211789E+02 8.01E-01 0.10 0.05 54.45 0.50 3 |-----------------------------------------------------------------------------| 4 9936 8.3331732E+02 1.22E-01 0.01 0.01* 54.51 5 9936 8.3341072E+02 1.24E-01 0.01 0.01 54.52 6 9936 8.3331151E+02 1.23E-01 0.01 0.01* 54.51 |-----------------------------------------------------------------------------| 6 29808 8.3334611E+02 7.10E-02 0.01 0.01 54.51 0.20 3 |=============================================================================| \end{verbatim} \begin{verbatim} [.....] | Simulate: integration done | Simulate: using integration grids from file 'ee_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 9617 | Simulation: requested number of events = 10 | corr. to luminosity [fb-1] = 1.2000E-02 | Events: writing to LHEF file 'ee.lhe' | Events: writing to raw file 'ee.evx' | Events: generating 10 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. | Events: closing LHEF file 'ee.lhe' | Events: closing raw file 'ee.evx' | There were no errors and 1 warning(s). | WHIZARD run finished. |=============================================================================| \end{verbatim} \end{footnotesize} %$ The final result is the desired event file, \ttt{ee.lhe}. Let us discuss the output quickly to walk you through the procedures of a \whizard\ run: after the logfile message and the banner, the reading of the physics model and the initialization of a process library, the recorded process with tag \ttt{'ee'} is recorded. Next, user-defined parameters like the center-of-mass energy and the number of demanded (unweighted) events are displayed. As a next step, \whizard\ is starting the simulation of the process with tag \ttt{'ee'}. It recognizes that there has not yet been an integration over phase space (done by an optional \ttt{integrate} command, cf. Sec.~\ref{sec:integrate}), and consequently starts the integration. It then acknowledges, that the process code for the process \ttt{'ee'} needs to be compiled first (done by an optional \ttt{compile} command, cf. Sec.~\ref{sec:compilation}). So, \whizard\ compiles the process library, writes the makefile for its steering, and as a safeguard against garbage removes possibly existing files. Then, the source code for the library and its processes are generated: for the process code, the default method -- the matrix element generator \oMega\ is called (cf. Sec.~\ref{sec:omega_me}); and the sources are being compiled. The next steps are the loading of the process library, and \whizard\ reports the completion of the integration. For the Monte-Carlo integration, a random number generator is initialized. Here, it is the default generator, TAO (for more details, cf. Sec.~\ref{sec:tao}, while the random seed is set to a value initialized by the system clock, as no seed has been provided in the \sindarin\ input file. Now, the integration for the process \ttt{'ee'} is initialized, and information about the process (its name, the name of its process library, its index inside the library, and the process components out of which it consists, cf. Sec.~\ref{sec:processcomp}) are displayed. Then, the beam structure is shown, which in that case are symmetric partonic electron and positron beams with the center-of-mass energy provided by the user (360 GeV). The next step is the generation of the phase space, for which the default phase space method \ttt{wood} (for more details cf. Sec.~\ref{sec:wood}) is selected. The integration is performed, and the result with absolute and relative error, unweighting efficiency, accuracy, $\chi^2$ quality is shown. The final step is the event generation (cf. Chap.~\ref{chap:events}). The integration grids are now being used, again the random number generator is initialized. Finally, event generation of ten unweighted events starts (\whizard\ let us know to which integrated luminosity that would correspond), and events are written both in an internal (binary) event format as well as in the demanded LHE format. This concludes the \whizard\ run. After a more comprehensive introduction into the \sindarin\ steering language in the next chapter, Chap.~\ref{chap:sindarinintro}, we will discuss all the details of the different steps of this introductory example. \clearpage \section{WHIZARD in a Computing Environment} \subsection{Working on a Single Computer} \label{sec:workspace} After installation, \whizard\ is ready for use. There is a slight complication if \whizard\ has been installed in a location that is not in your standard search paths. In that case, to successfully run \whizard, you may either \begin{itemize} \item manually add \ttt{your-install-directory/bin} to your execution PATH\\ and \ttt{your-install-directory/lib} to your library search path (LD\_LIBRARY\_PATH), or \item whenever you start a project, execute \begin{interaction} your-workspace> . your-install-directory/bin/whizard-setup.sh \end{interaction} which will enable the paths in your current environment, or \item source \ttt{whizard-setup.sh} script in your shell startup file. \end{itemize} In either case, try to call \ttt{whizard --help} in order to check whether this is done correctly. For a new \whizard\ project, you should set up a new (empty) directory. Depending on the complexity of your task, you may want to set up separate directories for each subproblem that you want to tackle, or even for each separate run. The location of the directories is arbitrary. To run, \whizard\ needs only a single input file, a \sindarin\ command script with extension \ttt{.sin} (by convention). Running \whizard\ is as simple as \begin{interaction} your-workspace> whizard your-input.sin \end{interaction} No other configuration files are needed. The total number of auxiliary and output files generated in a single run may get quite large, however, and they may clutter your workspace. This is the reason behind keeping subdirectories on a per-run basis. Basic usage of \whizard\ is explained in Chapter~\ref{chap:start}, for more details, consult the following chapters. In Sec.~\ref{sec:cmdline-options} we give an account of the command-line options that \whizard\ accepts. \subsection{Working Parallel on Several Computers} \label{sec:mpi} For integration (only VAMP2), \whizard\ supports parallel execution via MPI by communicating between parallel tasks on a single machine or distributed over several machines. During integration the calculation of channels is distributed along several workers where a master worker collects the results and adapts weights and grids. In wortwhile cases (e.g. high number of calls in one channel), the calculation of a single grid is distributed. In order to use these advancements, \whizard\ requires an installed MPI-3.1 capable library (e.g. OpenMPI) and configuration and compilation with the appropriate flags, cf.~Sec.~\ref{sec:installation}. MPI support is only active when the integration method is set to VAMP2. Additionally, to preserve the numerical properties of a single task run, it is recommended to use the RNGstream as random number generator. \begin{code} $integration_method = 'vamp2' $rng_method = 'rng_stream' \end{code} \whizard\ has then to be called by mpirun \begin{footnotesize} \begin{Verbatim}[frame=single] your-workspace> mpirun -f hostfile -np 4 --output-filename mpi.log whizard your-input.sin \end{Verbatim} \end{footnotesize} where the number of parallel tasks can be set by \ttt{-np} and a hostfile can be given by \ttt{--hostfile}. It is recommended to use \ttt{--output-filename} which lets mpirun redirect the standard (error) output to a file, for each worker separatly. \subsubsection{Notes on Parallelization with MPI} The parallelization of \whizard\ requires that all instances of the parallel run be able to write and read all files by produced \whizard\ in a network file system as the current implementation does not handle parallel I/O. Usually, high-performance clusters have support for at least one network filesystem. Furthermore, not all functions of \whizard\ are currently supported or are only supported in a limited way in parallel mode. Currently the \verb|?rebuild_| for the phase space and the matrix element library are not yet available, as well as the calculation of matrix elements with resonance history. Some features that have been missing in the very first implementation of the parallelized integration have now been made available, like the support of run IDs and the parallelization of the event generation. A final remark on the stability of the numerical results in terms of the number of workers involved. Under certain circumstances, results between different numbers of workers but using otherwise an identical \sindarin\ file can lead to slightly numerically different (but statistically compatible) results for integration or event generation This is related to the execution of the computational operations in MPI, which we use to reduce results from all workers. If the order of the numbers in the arithmetical operations changes, for example, by different setups of the workers, then the numerical results change slightly, which in turn is amplified under the influence of the adaptation. Nevertheless, the results are all statistically consistent. \subsection{Stopping and Resuming WHIZARD Jobs} On a Unix-like system, it is possible to prematurely stop running jobs by a \ttt{kill(1)} command, or by entering \ttt{Ctrl-C} on the terminal. If the system supports this, \whizard\ traps these signals. It also traps some signals that a batch operating system might issue, e.g., for exceeding a predefined execution time limit. \whizard\ tries to complete the calculation of the current event and gracefully close open files. Then, the program terminates with a message and a nonzero return code. Usually, this should not take more than a fraction of a second. If, for any reason, the program does not respond to an interrupt, it is always possible to kill it by \ttt{kill -9}. A convenient method, on a terminal, would be to suspend it first by \ttt{Ctrl-Z} and then to kill the suspended process. The program is usually able to recover after being stopped. Simply run the job again from start, with the same input, all output files generated so far left untouched. The results obtained so far will be quickly recovered or gathered from files written in the previous run, and the actual time-consuming calculation is resumed near the point where it was interrupted.\footnote{This holds for simple workflow. In case of scans and repeated integrations of the same process, there may be name clashes on the written files which prevent resuming. A future \whizard\ version will address this problem.} If the interruption happened during an integration step, it is resumed after the last complete iteration. If it was during event generation, the previous events are taken from file and event generation is continued. The same mechanism allows for efficiently redoing a calculation with similar, somewhat modified input. For instance, you might want to add a further observable to event analysis, or write the events in a different format. The time for rerunning the program is determined just by the time it takes to read the existing integration or event files, and the additional calculation is done on the recovered information. By managing various checksums on its input and output files, \whizard\ detects changes that affect further calculations, so it does a real recalculation only where it is actually needed. This applies to all steps that are potentially time-consuming: matrix-element code generation, compilation, phase-space setup, integration, and event generation. If desired, you can set command-line options or \sindarin\ parameters that explicitly discard previously generated information. \subsection{Files and Directories: default and customization} \whizard\ jobs take a small set of files as input. In many cases, this is just a single \sindarin\ script provided by the user. When running, \whizard\ can produce a set of auxiliary and output files: \begin{enumerate} \item \textbf{Job.} Files pertaining to the \whizard\ job as a whole. This is the default log file \ttt{whizard.log}. \item \textbf{Process compilation.} Files that originate from generating and compiling process code. If the default \oMega\ generator is used, these files include Fortran source code as well as compiled libraries that are dynamically linked to the running executable. The file names are derived from either the process-library name or the individual process names, as defined in the \sindarin\ input. The default library name is \ttt{default\_lib}. \item \textbf{Integration.} Files that are created by integration, i.e., when calculating the total cross section for a scattering process using the Monte-Carlo algorithm. The file names are derived from the process name. \item \textbf{Simulation.} Files that are created during simulation, i.e., generating event samples for a process or a set of processes. By default, the file names are derived from the name of the first process. Event-file formats are distinguished by appropriate file name extensions. \item \textbf{Result Analysis.} Files that are created by the internal analysis tools and written by the command \ttt{write\_analysis} (or \ttt{compile\_analysis}). The default base name is \ttt{whizard\_analysis}. \end{enumerate} A complex workflow with several processes, parameter sets, or runs, can easily lead to in file-name clashes or a messy working directory. Furthermore, running a batch job on a dedicated computing environment often requires transferring data from a user directory to the server and back. Custom directory and file names can be used to organize things and facilitate dealing with the environment, along with the available batch-system tools for coordinating file transfer. \begin{enumerate} \item \textbf{Job.} \begin{itemize} \item The \ttt{-L} option on the command line defines a custom base name for the log file. \item The \ttt{-J} option on the command line defines a job ID. For instance, this may be set to the job ID assigned by the batch system. Within the \sindarin\ script, the job ID is available as the string variable \ttt{\$job\_id} and can be used for constructing custom job-specific file and directory names, as described below. \end{itemize} \item \textbf{Process compilation.} \begin{itemize} \item The user can require the program to put all files created during the compilation step including the library to be linked, in a subdirectory of the working directory. To enable this, set the string variable \ttt{\$compile\_workspace} within the \sindarin\ script. \end{itemize} \item \textbf{Integration.} \begin{itemize} \item The value of the string variable \ttt{\$run\_id}, if set, is appended to the base name of all files created by integration, separated by dots. If the \sindarin\ script scans over parameters, varying the run ID avoids repeatedly overwriting files with identical name during the scan. \item The user can require the program to put the important files created during the integration step -- the phase-space configuration file and the \vamp\ grid files -- in a subdirectory of the working directory. To enable this, set the string variable \ttt{\$integrate\_workspace} within the \sindarin\ script. (\ttt{\$compile\_workspace} and \ttt{\$integrate\_workspace} may be set to the same value.) \end{itemize} Log files produced during the integration step are put in the working directory. \item \textbf{Simulation.} \begin{itemize} \item The value of the string variable \ttt{\$run\_id}, if set, identifies the specific integration run that is used for the event sample. It is also inserted into default event-sample file names. \item The variable \ttt{\$sample}, if set, defines an arbitrary base name for the files related to the event sample. \end{itemize} Files resulting from simulation are put in the working directory. \item \textbf{Result Analysis.} \begin{itemize} \item The variable \ttt{\$out\_file}, if set, defines an arbitrary base name for the analysis data and auxiliary files. \end{itemize} Files resulting from result analysis are put in the working directory. \end{enumerate} \subsection{Batch jobs on a different machine} It is possible to separate the tasks of process-code compilation, integration, and simulation, and execute them on different machines. To make use of this feature, the local and remote machines including all installed libraries that are relevant for \whizard, must be binary-compatible. \begin{enumerate} \item Process-code compilation may be done once on a local machine, while the time-consuming tasks of integration and event generation for specific parameter sets are delegated to a remote machine, e.g., a batch cluster. To enable this, prepare a \sindarin\ script that just produces process code (i.e., terminates with a \ttt{compile} command) for the local machine. You may define \ttt{\$compile\_workspace} such that all generated code conveniently ends up in a single subdirectory. To start the batch job, transfer the workspace subdirectory to the remote machine and start \whizard\ there. The \sindarin\ script on the remote machine must include the local script unchanged in all parts that are relevant for process definition. The program will recognize the contents of the workspace, skip compilation and instead link the process library immediately. To proceed further, the script should define the run-specific parameters and contain the appropriate commands for integration and simulation. \item Analogously, you may execute both process-code compilation and integration locally, but generate event samples on a remote machine. To this end, prepare a \sindarin\ script that produces process code and computes integrals (i.e., terminates with an \ttt{integrate} command) for the local machine. You may define \ttt{\$compile\_workspace} and \ttt{\$integrate\_workspace} (which may coincide) such that all generated code, phase-space and integration grid data conveniently end up in subdirectories. To start the batch job, transfer the workspace(s) to the remote machine and start \whizard\ there. The \sindarin\ script on the remote machine must include the local script unchanged in all parts that are relevant for process definition and integration. The program will recognize the contents of the workspace, skip compilation and integration and instead load the process library and integration results immediately. To proceed further, the script should define the sample-specific parameters and contain the appropriate commands for simulation. \end{enumerate} To simplify transferring whole directories, \whizard\ supports the \ttt{--pack} and \ttt{--unpack} options. You may specify any number of these options for a \whizard\ run. (The feature relies on the GNU version of the \ttt{tar} utility.) For instance, \begin{code} whizard script1.sin --pack my_ws \end{code} runs \whizard\ with the \sindarin\ script \ttt{script1.sin} as input, where within the script you have defined \begin{code} $compile_workspace = "my_ws" \end{code} as the target directory for process-compilation files. After completion, the program will tar and gzip the target directory as \ttt{my\_ws.tgz}. You should copy this file to the remote machine as one of the job's input files. On the remote machine, you can then run the program with \begin{code} whizard script2.sin --unpack my_ws.tgz \end{code} where \ttt{script2.sin} should include \ttt{script1.sin}, and add integration or simulation commands. The contents of \ttt{ws.tgz} will thus be unpacked and reused on the remote machine, instead of generating new process code. \subsection{Static Linkage} In its default running mode, \whizard\ compiles process-specific matrix element code on the fly and dynamically links the resulting library. On the computing server, this requires availability of the appropriate Fortran compiler, as well as the \ocaml\ compiler suite, and the dynamical linking feature. Since this may be unavailable or undesired, there is a possibility to distribute \whizard\ as a statically linked executable that contains a pre-compiled library of processes. This removes the need for the Fortran compiler, the \ocaml\ system, and extra dynamic linking. Any external libraries that are accessed (the \fortran\ runtime environment, and possibly some dynamically linked external libraries and/or the C++ runtime library, must still be available on the target system, binary-compatible. Otherwise, there is no need for transferring the complete \whizard\ installation or process-code compilation data. Generating, compiling and linking matrix element code is done in advance on a machine that can access the required tools and produces compatible libraries. This procedure is accomplished by \sindarin\ commands, explained below in Sec.~\ref{sec:static}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage \section{Troubleshooting} \label{sec:troubleshooting} In this section, we list known issues or problems and give advice on what can be done in case something does not work as intended. \subsection{Possible (uncommon) build problems} \label{sec:buildproblems} \subsubsection{\ocaml\ versions and \oMega\ builds} For the matrix element generator \oMega\ of \whizard\, the functional programming language \ocaml\ is used. Unfortunately, the versions of the \ocaml\ compiler from 3.12.0 on broke backwards compatibility. Therefore, versions of \oMega/\whizard\ up to v2.0.2 only compile with older versions (3.04 to 3.11 works). This has been fixed in all \whizard\ versions from 2.0.3 on. \subsubsection{Identical Build and Source directories} There is a problem that only occurred with version 2.0.0 and has been corected for all follow-up versions. It can only appear if you compile the \whizard\ sources in the source directory. Then an error like this may occur: \begin{footnotesize} \begin{Verbatim}[frame=single] ... libtool: compile: gfortran -I../misc -I../vamp -g -O2 -c processes.f90 -fPIC -o .libs/processes.o libtool: compile: gfortran -I../misc -I../vamp -g -O2 -c processes.f90 -o processes.o >/dev/null 2>&1 make[2]: *** No rule to make target `limits.lo', needed by `decays.lo'. Stop. ... make: *** [all-recursive] Error 1 \end{Verbatim} \end{footnotesize} In this case, please unpack a fresh copy of \whizard\ and configure it in a separate directory (not necessarily a subdirectory). Then the compilation will go through: \begin{footnotesize} \begin{Verbatim}[frame=single] $ zcat whizard-2.0.0.tar.gz | tar xf - $ cd whizard-2.0.0 $ mkdir _build $ cd _build $ ../configure FC=gfortran $ make \end{Verbatim} \end{footnotesize} The developers use this setup to be able to test different compilers. Therefore building in the same directory is not as thoroughly tested. This behavior has been patched from version 2.0.1 on. But note that in general it is always adviced to keep build and source directory apart from each other. %%%%% \subsection{What happens if \whizard\ throws an error?} \label{ref:errors} \subsubsection{Particle name special characters in process declarations} Trying to use a process declaration like \begin{code} process foo = e-, e+ => mu-, mu+ \end{code} will lead to a \sindarin\ syntax error: \begin{Code} process foo = e-, e+ => mu-, mu+ ^^ | Expected syntax: SEQUENCE = process '=' "mu-", "mu+"}. \subsubsection{Missing collider energy} This happens if you forgot to set the collider energy in the integration of a scattering process: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts) ****************************************************************************** ****************************************************************************** \end{Code} This will solve your problem: \begin{code} sqrts = \end{code} \subsubsection{Missing process declaration} If you try to integrate or simulate a process that has not declared before (and is also not available in a library that might be loaded), \whizard\ will complain: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Process library doesn't contain process 'f00' ****************************************************************************** ****************************************************************************** \end{Code} Note that this could sometimes be a simple typo, e.g. in that case an \ttt{integrate (f00)} instead of \ttt{integrate (foo)} \subsubsection{Ambiguous initial state without beam declaration} When the user declares a process with a flavor sum in the initial state, e.g. \begin{code} process qqaa = u:d, U:D => A, A sqrts = integrate (qqaa) \end{code} then a fatal error will be issued: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Setting up process 'qqaa': *** -------------------------------------------- *** Inconsistent initial state. This happens if either *** several processes with non-matching initial states *** have been added, or for a single process with an *** initial state flavor sum. In that case, please set beams *** explicitly [singling out a flavor / structure function.] ****************************************************************************** ****************************************************************************** \end{Code} What now? Either a structure function providing a tensor structure in flavors has to be provided like \begin{code} beams = p, pbar => pdf_builtin \end{code} or, if the partonic process was intended, a specific flavor has to be singled out, \begin{code} beams = u, U \end{code} which would take only the up-quarks. Note that a sum over process components with varying initial states is not possible. \subsubsection{Invalid or unsupported beam structure} An error message like \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Beam structure: [.......] not supported ****************************************************************************** ****************************************************************************** \end{Code} This happens if you try to use a beam structure with is either not supported by \whizard\ (meaning that there is no phase-space parameterization for Monte-Carlo integration available in order to allow an efficient sampling), or you have chosen a combination of beam structure functions that do not make sense physically. Here is an example for the latter (lepton collider ISR applied to protons, then proton PDFs): \begin{code} beams = p, p => isr => pdf_builtin \end{code} \subsubsection{Mismatch in beams} Sometimes you get a rather long error output statement followed by a fatal error: \begin{Code} Evaluator product First interaction Interaction: 6 Virtual: Particle 1 [momentum undefined] [.......] State matrix: norm = 1.000000000000E+00 [f(2212)] [f(11)] [f(92) c(1 )] [f(-6) c(-1 )] => ME(1) = ( 0.000000000000E+00, 0.000000000000E+00) [.......] ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Product of density matrices is empty *** -------------------------------------------- *** This happens when two density matrices are convoluted *** but the processes they belong to (e.g., production *** and decay) do not match. This could happen if the *** beam specification does not match the hard *** process. Or it may indicate a WHIZARD bug. ****************************************************************************** ****************************************************************************** \end{Code} As \whizard\ indicates, this could have happened because the hard process setup did not match the specification of the beams as in: \begin{code} process neutral_current_DIS = e1, u => e1, u beams_momentum = 27.5 GeV, 920 GeV beams = p, e => pdf_builtin, none integrate (neutral_current_DIS) \end{code} In that case, the order of the beam particles simply was wrong, exchange proton and electron (together with the structure functions) into \ttt{beams = e, p => none, pdf\_builtin}, and \whizard\ will be happy. \subsubsection{Unstable heavy beam particles} If you try to use unstable particles as beams that can potentially decay into the final state particles, you might encounter the following error message: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Phase space: Initial beam particle can decay ****************************************************************************** ****************************************************************************** \end{Code} This happens basically only for processes in testing/validation (like $t \bar t \to b \bar b$). In principle, it could also happen in a real physics setup, e.g. when simulating electron pairs at a muon collider: \begin{code} process mmee = "mu-", "mu+" => "e-", "e+" \end{code} However, \whizard\ at the moment does not allow a muon width, and so \whizard\ is not able to decay a muon in a scattering process. A possibile decay of the beam particle into (part of) the final state might lead to instabilities in the phase space setup. Hence, \whizard\ do not let you perform such an integration right away. When you nevertheless encounter such a rare occasion in your setup, there is a possibility to convert this fatal error into a simple warning by setting the flag: \begin{code} ?fatal_beam_decay = false \end{code} \subsubsection{Impossible beam polarization} If you specify a beam polarization that cannot correspond to any physically allowed spin density matrix, e.g., \begin{code} beams = e1, E1 beams_pol_density = @(-1), @(1:1:.5, -1, 1:-1) \end{code} \whizard\ will throw a fatal error like this: \begin{Code} Trace of matrix square = 1.4444444444444444 Polarization: spin density matrix spin type = 2 multiplicity = 2 massive = F chirality = 0 pol.degree = 1.0000000 pure state = F @(+1: +1: ( 3.333333333333E-01, 0.000000000000E+00)) @(-1: -1: ( 6.666666666667E-01, 0.000000000000E+00)) @(-1: +1: ( 6.666666666667E-01, 0.000000000000E+00)) ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Spin density matrix: not permissible as density matrix ****************************************************************************** ****************************************************************************** \end{Code} \subsubsection{Beams with crossing angle} Specifying a crossing angle (e.g. at a linear lepton collider) without explicitly setting the beam momenta, \begin{code} sqrts = 1 TeV beams = e1, E1 beams\_theta = 0, 10 degree \end{code} triggers a fatal: \begin{Code} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Beam structure: angle theta/phi specified but momentum/a p undefined ****************************************************************************** ****************************************************************************** \end{Code} In that case the single beam momenta have to be explicitly set: \begin{code} beams = e1, E1 beams\_momentum = 500 GeV, 500 GeV beams\_theta = 0, 10 degree \end{code} \subsubsection{Phase-space generation failed} Sometimes an error might be issued that \whizard\ could not generate a valid phase-space parameterization: \begin{Code} | Phase space: ... failed. Increasing phs_off_shell ... | Phase space: ... failed. Increasing phs_off_shell ... | Phase space: ... failed. Increasing phs_off_shell ... | Phase space: ... failed. Increasing phs_off_shell ... ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Phase-space: generation failed ****************************************************************************** ****************************************************************************** \end{Code} You see that \whizard\ tried to increase the number of off-shell lines that are taken into account for the phase-space setup. The second most important parameter for the phase-space setup, \ttt{phs\_t\_channel}, however, is not increased automatically. Its default value is $6$, so e.g. for the process $e^+ e^- \to 8\gamma$ you will run into the problem above. Setting \begin{code} phs_off_shell = -1 \end{code} where \ttt{} is the number of final-state particles will solve the problem. \subsubsection{Non-converging process integration} There could be several reasons for this to happen. The most prominent one is that no cuts have been specified for the process (\whizard\ttt{2} does not apply default cuts), and there are singular regions in the phase space over which the integration stumbles. If cuts have been specified, it could be that they are not sufficient. E.g. in $pp \to jj$ a distance cut between the two jets prevents singular collinear splitting in their generation, but if no $p_T$ cut have been set, there is still singular collinear splitting from the beams. \subsubsection{Why is there no event file?} If no event file has been generated, \whizard\ stumled over some error and should have told you, or, you simply forgot to set a \ttt{simulate} command for your process. In case there was a \ttt{simulate} command but the process under consideration is not possible (e.g. a typo, \ttt{e1, E1 => e2, E3} instead of \ttt{e1, E1 => e3, E3}), then you get an error like that: \begin{Code} ****************************************************************************** *** ERROR: Simulate: no process has a valid matrix element. ****************************************************************************** \end{Code} \subsubsection{Why is the event file empty?} In order to get events, you need to set either a desired number of events: \begin{code} n_events = \end{code} or you have to specify a certain integrated luminosity (the default unit being inverse femtobarn: \begin{code} luminosity = / 1 fbarn \end{code} In case you set both, \whizard\ will take the one that leads to the higher number of events. \subsubsection{Parton showering fails} For BSM models containing massive stable or long-lived particles parton showering with \pythiasix\ fails: \begin{Code} Advisory warning type 3 given after 0 PYEXEC calls: (PYRESD:) Failed to decay particle 1000022 with mass 15.000 ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Simulation: failed to generate valid event after 10000 tries ****************************************************************************** ****************************************************************************** \end{Code} The solution to that problem is discussed in Sec.~\ref{sec:pythia6}. \vspace{1cm} %%%%% \subsection{Debugging, testing, and validation} \subsubsection{Catching/tracking arithmetic exceptions} Catching arithmetic exceptions is not automatically supported by \fortran\ compilers. In general, flags that cause the compiler to keep track of arithmetic exceptions are diminishing the maximally possible performance, and hence they should not be used in production runs. Hence, we refrained from making these flags a default. They can be added using the \ttt{FCFLAGS = {\em }} settings during configuration. For the \ttt{NAG} \fortran\ compiler we use the flags \ttt{-C=all -nan -gline} for debugging purposes. For the \ttt{gfortran} compilers, the flags \ttt{-ffpe-trap=invalid,zero,overflow} are the corresponding debugging flags. For tests, debugging or first sanity checks on your setup, you might want to make use of these flags in order to track possible numerical exceptions in the produced code. Some compilers started to include \ttt{IEEE} exception handling support (\ttt{Fortran 2008} status), but we do not use these implementations in the \whizard\ code (yet). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Steering WHIZARD: \sindarin\ Overview} \label{chap:sindarinintro} \section{The command language for WHIZARD} A conventional physics application program gets its data from a set of input files. Alternatively, it is called as a library, so the user has to write his own code to interface it, or it combines these two approaches. \whizard~1 was built in this way: there were some input files which were written by the user, and it could be called both stand-alone or as an external library. \whizard~2 is also a stand-alone program. It comes with its own full-fledged script language, called \sindarin. All interaction between the user and the program is done in \sindarin\ expressions, commands, and scripts. Two main reasons led us to this choice: \begin{itemize} \item In any nontrivial physics study, cuts and (parton- or hadron-level) analysis are of central importance. The task of specifying appropriate kinematics and particle selection for a given process is well defined, but it is impossible to cover all possiblities in a simple format like the cut files of \whizard~1. The usual way of dealing with this problem is to write analysis driver code (often in \ttt{C++}), using external libraries for Lorentz algebra etc. However, the overhead of writing correct \ttt{C++} or \ttt{Fortran} greatly blows up problems that could be formulated in a few lines of text. \item While many problems lead to a repetitive workflow (process definition, integration, simulation), there are more involved tasks that involve parameter scans, comparisons of different processes, conditional execution, or writing output in widely different formats. This is easily done by a steering script, which should be formulated in a complete language. \end{itemize} The \sindarin\ language is built specifically around event analysis, suitably extended to support steering, including data types, loops, conditionals, and I/O. It would have been possible to use an established general-purpose language for these tasks. For instance, \ocaml\ which is a functional language would be a suitable candidate, and the matrix-element generator \oMega\ is written in that language. Another candidate would be a popular scripting language such as PYTHON. We started to support interfaces for commonly used languages: prime examples for \ttt{C}, \ttt{C++}, and PYTHON are found in the \ttt{share/interfaces} subdirectory. However, introducing a special-purpose language has the three distinct advantages: First, it is compiled and executed by the very \ttt{Fortran} code that handles data and thus accesses it without interfaces. Second, it can be designed with a syntax especially suited to the task of event handling and Monte-Carlo steering, and third, the user is not forced to learn all those features of a generic language that are of no relevance to the application he/she is interested in. \section{\sindarin\ scripts} A \sindarin\ script tells the \whizard\ program what it has to do. Typically, the script is contained in a file which you (the user) create. The file name is arbitrary; by convention, it has the extension `\verb|.sin|'. \whizard\ takes the file name as its argument on the command line and executes the contained script: \begin{verbatim} /home/user$ whizard script.sin \end{verbatim} Alternatively, you can call \whizard\ interactively and execute statements line by line; we describe this below in Sec.\ref{sec:whish}. A \sindarin\ script is a sequence of \emph{statements}, similar to the statements in any imperative language such as \ttt{Fortran} or \ttt{C}. Examples of statements are commands like \ttt{integrate}, variable declarations like \ttt{logical ?flag} or assigments like \ttt{mH = 130 GeV}. The script is free-form, i.e., indentation, extra whitespace and newlines are syntactically insignificant. In contrast to most languages, there is no statement separator. Statements simply follow each other, just separated by whitespace. \begin{code} statement1 statement2 statement3 statement4 \end{code} Nevertheless, for clarity we recommend to write one statement per line where possible, and to use proper indentation for longer statements, nested and bracketed expressions. A command may consist of a \emph{keyword}, a list of \emph{arguments} in parantheses \ttt{(}\ldots\ttt{)}, and an \emph{option} script which itself is a sequence of statements. \begin{code} command command_with_args (arg1, arg2) command_with_option { option } command_with_options (arg) { option_statement1 option_statement2 } \end{code} As a rule, parentheses \ttt{()} enclose arguments and expressions, as you would expect. Arguments enclosed in square brackets \ttt{[]} also exist. They have a special meaning, they denote subevents (collections of momenta) in event analysis. Braces \ttt{\{\}} enclose blocks of \sindarin\ code. In particular, the option script associated with a command is a block of code that may contain local parameter settings, for instance. Braces always indicate a scoping unit, so parameters will be restored their previous values when the execution of that command is completed. The script can contain comments. Comments are initiated by either a \verb|#| or a \verb|!| character and extend to the end of the current line. \begin{code} statement # This is a comment statement ! This is also a comment \end{code} %%%%%%%%%%%%%%% \section{Errors} \label{sec:errors} Before turning to proper \sindarin\ syntax, let us consider error messages. \sindarin\ distinguishes syntax errors and runtime errors. Syntax errors are recognized when the script is read and compiled, before any part is executed. Look at this example: \begin{code} process foo = u, ubar => d, dbar md = 10 integrade (foo) \end{code} \whizard\ will fail with the error message \begin{interaction} sqrts = 1 TeV integrade (foo) ^^ | Expected syntax: SEQUENCE = '=' | Found token: KEYWORD: '(' ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Syntax error (at or before the location indicated above) ****************************************************************************** ****************************************************************************** WHIZARD run aborted. \end{interaction} which tells you that you have misspelled the command \verb|integrate|, so the compiler tried to interpret it as a variable. Runtime errors are categorized by their severity. A warning is simply printed: \begin{interaction} Warning: No cuts have been defined. \end{interaction} This indicates a condition that is suspicious, but may actually be intended by the user. When an error is encountered, it is printed with more emphasis \begin{interaction} ****************************************************************************** *** ERROR: Variable 'md' set without declaration ****************************************************************************** \end{interaction} and the program tries to continue. However, this usually indicates that there is something wrong. (The $d$ quark is defined massless, so \verb|md| is not a model parameter.) \whizard\ counts errors and warnings and tells you at the end \begin{interaction} | There were 1 error(s) and no warnings. \end{interaction} just in case you missed the message. Other errors are considered fatal, and execution stops at this point. \begin{interaction} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts) ****************************************************************************** ****************************************************************************** \end{interaction} Here, \whizard\ was unable to do anything sensible. But at least (in this case) it told the user what to do to resolve the problem. %%%%%%%%%%%%%%% \section{Statements} \label{sec:statements} \sindarin\ statements are executed one by one. For an overview, we list the most common statements in the order in which they typically appear in a \sindarin\ script, and quote the basic syntax and simple examples. This should give an impression on the \whizard's capabilities and on the user interface. The list is not complete. Note that there are no mandatory commands (although an empty \sindarin\ script is not really useful). The details and options are explained in later sections. \subsection{Process Configuration} \subsubsection{model} \begin{syntax} model = \var{model-name} \end{syntax} This assignment sets or resets the current physics model. The Standard Model is already preloaded, so the \ttt{model} assignment applies to non-default models. Obviously, the model must be known to \whizard. Example: \begin{code} model = MSSM \end{code} See Sec.~\ref{sec:models}. \subsubsection{alias} \begin{syntax} alias \var{alias-name} = \var{alias-definition} \end{syntax} Particles are specified by their names. For most particles, there are various equivalent names. Names containing special characters such as a \verb|+| sign have to be quoted. The \ttt{alias} assignment defines an alias for a list of particles. This is useful for setting up processes with sums over flavors, cut expressions, and more. The alias name is then used like a simple particle name. Example: \begin{syntax} alias jet = u:d:s:U:D:S:g \end{syntax} See Sec.~\ref{sec:alias}. \subsubsection{process} \begin{syntax} process \var{tag} = \var{incoming} \verb|=>| \var{outgoing} \end{syntax} Define a process. You give the process a name \var{tag} by which it is identified later, and specify the incoming and outgoing particles, and possibly options. You can define an arbitrary number of processes as long as they are distinguished by their names. Example: \begin{code} process w_plus_jets = g, g => "W+", jet, jet \end{code} See Sec.~\ref{sec:processes}. \subsubsection{sqrts} \begin{syntax} sqrts = \var{energy-value} \end{syntax} Define the center-of-mass energy for collision processes. The default setup will assume head-on central collisions of two beams. Example: \begin{code} sqrts = 500 GeV \end{code} See Sec.~\ref{sec:beam-setup}. \subsubsection{beams} \begin{syntax} beams = \var{beam-particles} \\ beams = \var{beam-particles} => \var{structure-function-setup} \end{syntax} Declare beam particles and properties. The current value of \ttt{sqrts} is used, unless specified otherwise. Example: \begin{code} beams = u:d:s, U:D:S => lhapdf \end{code} With options, the assignment allows for defining beam structure in some detail. This includes beamstrahlung and ISR for lepton colliders, precise structure function definition for hadron colliders, asymmetric beams, beam polarization, and more. See Sec.~\ref{sec:beams}. \subsection{Parameters} \subsubsection{Parameter settings} \begin{syntax} \var{parameter} = \var{value} \\ \var{type} \var{user-parameter} \\ \var{type} \var{user-parameter} = \var{value} \end{syntax} Specify a value for a parameter. There are predefined parameters that affect the behavior of a command, model-specific parameters (masses, couplings), and user-defined parameters. The latter have to be declared with a type, which may be \ttt{int} (integer), \ttt{real}, \ttt{complex}, \ttt{logical}, \ttt{string}, or \ttt{alias}. Logical parameter names begin with a question mark, string parameter names with a dollar sign. Examples: \begin{code} mb = 4.2 GeV ?rebuild_grids = true real mass_sum = mZ + mW string $message = "This is a string" \end{code} % $ The value need not be a literal, it can be an arbitrary expression of the correct type. See Sec.~\ref{sec:variables}. \subsubsection{read\_slha} \begin{syntax} read\_slha (\var{filename}) \end{syntax} This is useful only for supersymmetric models: read a parameter file in the SUSY Les Houches Accord format. The file defines parameter values and, optionally, decay widths, so this command removes the need for writing assignments for each of them. \begin{code} read_slha ("sps1a.slha") \end{code} See Sec.~\ref{sec:slha}. \subsubsection{show} \begin{syntax} show (\var{data-objects}) \end{syntax} Print the current value of some data object. This includes not just variables, but also models, libraries, cuts, etc. This is rather a debugging aid, so don't expect the output to be concise in the latter cases. Example: \begin{code} show (mH, wH) \end{code} See Sec.~\ref{sec:I/O}. \subsubsection{printf} \begin{syntax} printf \var{format-string} (\var{data-objects}) \end{syntax} Pretty-print the data objects according to the given format string. If there are no data objects, just print the format string. This command is borrowed from the \ttt{C} programming language; it is actually an interface to the system's \ttt{printf(3)} function. The conversion specifiers are restricted to \ttt{d,i,e,f,g,s}, corresponding to the output of integer, real, and string variables. Example: \begin{code} printf "The Higgs mass is %f GeV" (mH) \end{code} See Sec.~\ref{sec:I/O}. \subsection{Integration} \subsubsection{cuts} \begin{syntax} cuts = \var{logical-cut-expression} \end{syntax} The cut expression is a logical macro expression that is evaluated for each phase space point during integration and event generation. You may construct expressions out of various observables that are computed for the (partonic) particle content of the current event. If the expression evaluates to \verb|true|, the matrix element is calculated and the event is used. If it evaluates to \verb|false|, the matrix element is set zero and the event is discarded. Note that for collisions the expression is evaluated in the lab frame, while for decays it is evaluated in the rest frame of the decaying particle. In case you want to impose cuts on a factorized process, i.e. a combination of a production process and one or more decay processes, you have to use the \ttt{selection} keyword instead. Example for the keyword \ttt{cuts}: \begin{code} cuts = all Pt > 20 GeV [jet] and all mZ - 10 GeV < M < mZ + 10 GeV [lepton, lepton] and no abs (Eta) < 2 [jet] \end{code} See Sec.~\ref{sec:cuts}. \subsubsection{integrate} \begin{syntax} integrate (\var{process-tags}) \end{syntax} Compute the total cross section for a process. The command takes into account the definition of the process, the beam setup, cuts, and parameters as defined in the script. Parameters may also be specified as options to the command. Integration is necessary for each process for which you want to know total or differential cross sections, or event samples. Apart from computing a value, it sets up and adapts phase space and integration grids that are used in event generation. If you just need an event sample, you can omit an explicit \ttt{integrate} command; the \ttt{simulate} command will call it automatically. Example: \begin{code} integrate (w_plus_jets, z_plus_jets) \end{code} See Sec.~\ref{sec:integrate}. \subsubsection{?phs\_only/n\_calls\_test} \begin{syntax} integrate (\var{process-tag}) \{ ?phs\_only = true n\_calls\_test = 1000 \} \end{syntax} These are just optional settings for the \ttt{integrate} command discussed just a second ago. The \ttt{?phs\_only = true} (note that variables starting with a question mark are logicals) option tells \whizard\ to prepare a process for integration, but instead of performing the integration, just to generate a phase space parameterization. \ttt{n\_calls\_test = } evaluates the sampling function for random integration channels and random momenta. \vamp\ integration grids are neither generated nor used, so the channel selection corresponds to the first integration pass, before any grids or channel weights are adapted. The number of sampling points is given by \verb||. The output contains information about the timing, number of sampling points that passed the kinematics selection, and the number of matrix-element values that were actually evaluated. This command is useful mainly for debugging and diagnostics. Example: \begin{code} integrate (some_large_process) { ?phs_only = true n_calls_test = 1000 } \end{code} (Note that there used to be a separate command \ttt{matrix\_element\_test} until version 2.1.1 of \whizard\ which has been discarded in order to simplify the \sindarin\ syntax.) \subsection{Events} \subsubsection{histogram} \begin{syntax} histogram \var{tag} (\var{lower-bound}, \var{upper-bound}) \\ histogram \var{tag} (\var{lower-bound}, \var{upper-bound}, \var{step}) \\ \end{syntax} Declare a histogram for event analysis. The histogram is filled by an analysis expression, which is evaluated once for each event during a subsequent simulation step. Example: \begin{code} histogram pt_distribution (0, 150 GeV, 10 GeV) \end{code} See Sec.~\ref{sec:histogram}. \subsubsection{plot} \begin{syntax} plot \var{tag} \end{syntax} Declare a plot for displaying data points. The plot may be filled by an analysis expression that is evaluated for each event; this would result in a scatter plot. More likely, you will use this feature for displaying data such as the energy dependence of a cross section. Example: \begin{code} plot total_cross_section \end{code} See Sec.~\ref{sec:plot}. \subsubsection{selection} \begin{syntax} selection = \var{selection-expression} \end{syntax} The selection expression is a logical macro expression that is evaluated once for each event. It is applied to the event record, after all decays have been executed (if any). It is therefore intended e.g. for modelling detector acceptance cuts etc. For unfactorized processes the usage of \ttt{cuts} or \ttt{selection} leads to the same results. Events for which the selection expression evaluates to false are dropped; they are neither analyzed nor written to any user-defined output file. However, the dropped events are written to \whizard's native event file. For unfactorized processes it is therefore preferable to implement all cuts using the \ttt{cuts} keyword for the integration, see \ttt{cuts} above. Example: \begin{code} selection = all Pt > 50 GeV [lepton] \end{code} The syntax is generically the same as for the \ttt{cuts expression}, see Sec.~\ref{sec:cuts}. For more information see also Sec.~\ref{sec:analysis}. \subsubsection{analysis} \begin{syntax} analysis = \var{analysis-expression} \end{syntax} The analysis expression is a logical macro expression that is evaluated once for each event that passes the integration and selection cuts in a subsequent simulation step. The expression has type logical in analogy with the cut expression; however, its main use will be in side effects caused by embedded \ttt{record} expressions. The \ttt{record} expression books a value, calculated from observables evaluated for the current event, in one of the predefined histograms or plots. Example: \begin{code} analysis = record pt_distribution (eval Pt [photon]) and record mval (eval M [lepton, lepton]) \end{code} See Sec.~\ref{sec:analysis}. \subsubsection{unstable} \begin{syntax} unstable \var{particle} (\var{decay-channels}) \end{syntax} Specify that a particle can decay, if it occurs in the final state of a subsequent simulation step. (In the integration step, all final-state particles are considered stable.) The decay channels are processes which should have been declared before by a \ttt{process} command (alternatively, there are options that \whizard\ takes care of this automatically; cf. Sec.~\ref{sec:decays}). They may be integrated explicitly, otherwise the \ttt{unstable} command will take care of the integration before particle decays are generated. Example: \begin{code} unstable Z (z_ee, z_jj) \end{code} Note that the decay is an on-shell approximation. Alternatively, \whizard\ is capable of generating the final state(s) directly, automatically including the particle as an internal resonance together with irreducible background. Depending on the physical problem and on the complexity of the matrix-element calculation, either option may be more appropriate. See Sec.~\ref{sec:decays}. \subsubsection{n\_events} \begin{syntax} n\_events = \var{integer} \end{syntax} Specify the number of events that a subsequent simulation step should produce. By default, simulated events are unweighted. (Unweighting is done by a rejection operation on weighted events, so the usual caveats on event unweighting by a numerical Monte-Carlo generator do apply.) Example: \begin{code} n_events = 20000 \end{code} See Sec.~\ref{sec:simulation}. \subsubsection{simulate} \begin{syntax} simulate (\var{process-tags}) \end{syntax} Generate an event sample. The command allows for analyzing the generated events by the \ttt{analysis} expression. Furthermore, events can be written to file in various formats. Optionally, the partonic events can be showered and hadronized, partly using included external (\pythia) or truly external programs called by \whizard. Example: \begin{code} simulate (w_plus_jets) { sample_format = lhef } \end{code} See Sec.~\ref{sec:simulation} and Chapter~\ref{chap:events}. \subsubsection{graph} \begin{syntax} graph (\var{tag}) = \var{histograms-and-plots} \end{syntax} Combine existing histograms and plots into a common graph. Also useful for pretty-printing single histograms or plots. Example: \begin{code} graph comparison { $title = "$p_T$ distribution for two different values of $m_h$" } = hist1 & hist2 \end{code} % $ See Sec.~\ref{sec:graphs}. \subsubsection{write\_analysis} \begin{syntax} write\_analysis (\var{analysis-objects}) \end{syntax} Writes out data tables for the specified analysis objects (plots, graphs, histograms). If the argument is empty or absent, write all analysis objects currently available. The tables are available for feeding external programs. Example: \begin{code} write_analysis \end{code} See Sec.~\ref{sec:analysis}. \subsubsection{compile\_analysis} \begin{syntax} compile\_analysis (\var{analysis-objects}) \end{syntax} Analogous to \ttt{write\_analysis}, but the generated data tables are processed by \LaTeX\ and \gamelan, which produces Postscript and PDF versions of the displayed data. Example: \begin{code} compile_analysis \end{code} See Sec.~\ref{sec:analysis}. \section{Control Structures} Like any complete programming language, \sindarin\ provides means for branching and looping the program flow. \subsection{Conditionals} \subsubsection{if} \begin{syntax} if \var{logical\_expression} then \var{statements} \\ elsif \var{logical\_expression} then \var{statements} \\ else \var{statements} \\ endif \end{syntax} Execute statements conditionally, depending on the value of a logical expression. There may be none or multiple \ttt{elsif} branches, and the \ttt{else} branch is also optional. Example: \begin{code} if (sqrts > 2 * mtop) then integrate (top_pair_production) else printf "Top pair production is not possible" endif \end{code} The current \sindarin\ implementation puts some restriction on the statements that can appear in a conditional. For instance, process definitions must be done unconditionally. \subsection{Loops} \subsubsection{scan} \begin{syntax} scan \var{variable} = (\var{value-list}) \{ \var{statements} \} \end{syntax} Execute the statements repeatedly, once for each value of the scan variable. The statements are executed in a local context, analogous to the option statement list for commands. The value list is a comma-separated list of expressions, where each item evaluates to the value that is assigned to \ttt{\var{variable}} for this iteration. The type of the variable is not restricted to numeric, scans can be done for various object types. For instance, here is a scan over strings: \begin{code} scan string $str = ("%.3g", "%.4g", "%.5g") { printf $str (mW) } \end{code} % $ The output: \begin{interaction} [user variable] $str = "%.3g" 80.4 [user variable] $str = "%.4g" 80.42 [user variable] $str = "%.5g" 80.419 \end{interaction} % $ For a numeric scan variable in particular, there are iterators that implement the usual functionality of \ttt{for} loops. If the scan variable is of type integer, an iterator may take one of the forms \begin{syntax} \var{start-value} \verb|=>| \var{end-value} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/+| \var{add-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/-| \var{subtract-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/*| \var{multiplicator} \\ \var{start-value} \verb|=>| \var{end-value} \verb|//| \var{divisor} \\ \end{syntax} The iterator can be put in place of an expression in the \ttt{\var{value-list}}. Here is an example: \begin{code} scan int i = (1, (3 => 5), (10 => 20 /+ 4)) \end{code} which results in the output \begin{interaction} [user variable] i = 1 [user variable] i = 3 [user variable] i = 4 [user variable] i = 5 [user variable] i = 10 [user variable] i = 14 [user variable] i = 18 \end{interaction} [Note that the \ttt{\var{statements}} part of the scan construct may be empty or absent.] For real scan variables, there are even more possibilities for iterators: \begin{syntax} \var{start-value} \verb|=>| \var{end-value} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/+| \var{add-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/-| \var{subtract-step} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/*| \var{multiplicator} \\ \var{start-value} \verb|=>| \var{end-value} \verb|//| \var{divisor} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/+/| \var{n-points-linear} \\ \var{start-value} \verb|=>| \var{end-value} \verb|/*/| \var{n-points-logarithmic} \\ \end{syntax} The first variant is equivalent to \ttt{/+ 1}. The \ttt{/+} and \ttt{/-} operators are intended to add or subtract the given step once for each iteration. Since in floating-point arithmetic this would be plagued by rounding ambiguities, the actual implementation first determines the (integer) number of iterations from the provided step value, then recomputes the step so that the iterations are evenly spaced with the first and last value included. The \ttt{/*} and \ttt{//} operators are analogous. Here, the initial value is intended to be multiplied by the step value once for each iteration. After determining the integer number of iterations, the actual scan values will be evenly spaced on a logarithmic scale. Finally, the \ttt{/+/} and \ttt{/*/} operators allow to specify the number of iterations (not counting the initial value) directly. The \ttt{\var{start-value}} and \ttt{\var{end-value}} are always included, and the intermediate values will be evenly spaced on a linear (\ttt{/+/}) or logarithmic (\ttt{/*/}) scale. Example: \begin{code} scan real mh = (130 GeV, (140 GeV => 160 GeV /+ 5 GeV), 180 GeV, (200 GeV => 1 TeV /*/ 10)) { integrate (higgs_decay) } \end{code} \subsection{Including Files} \subsubsection{include} \begin{syntax} include (\var{file-name}) \end{syntax} Include a \sindarin\ script from the specified file. The contents must be complete commands; they are compiled and executed as if they were part of the current script. Example: \begin{code} include ("default_cuts.sin") \end{code} \section{Expressions} \sindarin\ expressions are classified by their types. The type of an expression is verified when the script is compiled, before it is executed. This provides some safety against simple coding errors. Within expressions, grouping is done using ordinary brackets \ttt{()}. For subevent expressions, use square brackets \ttt{[]}. \subsection{Numeric} The language supports the classical numeric types \begin{itemize} \item \ttt{int} for integer: machine-default, usually 32 bit; \item \ttt{real}, usually \emph{double precision} or 64 bit; \item \ttt{complex}, consisting of real and imaginary part equivalent to a \ttt{real} each. \end{itemize} \sindarin\ supports arithmetic expressions similar to conventional languages. In arithmetic expressions, the three numeric types can be mixed as appropriate. The computation essentially follows the rules for mixed arithmetic in \ttt{Fortran}. The arithmetic operators are \verb|+|, \verb|-|, \verb|*|, \verb|/|, \verb|^|. Standard functions such as \ttt{sin}, \ttt{sqrt}, etc. are available. See Sec.~\ref{sec:real} to Sec.~\ref{sec:complex}. Numeric values can be associated with units. Units evaluate to numerical factors, and their use is optional, but they can be useful in the physics context for which \whizard\ is designed. Note that the default energy/mass unit is \verb|GeV|, and the default unit for cross sections is \verb|fbarn|. \subsection{Logical and String} The language also has the following standard types: \begin{itemize} \item \ttt{logical} (a.k.a.\ boolean). Logical variable names have a \ttt{?} (question mark) as prefix. \item \ttt{string} (arbitrary length). String variable names have a \ttt{\$} (dollar) sign as prefix. \end{itemize} There are comparisons, logical operations, string concatenation, and a mechanism for formatting objects as strings for output. \subsection{Special} Furthermore, \sindarin\ deals with a bunch of data types tailored specifically for Monte Carlo applications: \begin{itemize} \item \ttt{alias} objects denote a set of particle species. \item \ttt{subevt} objects denote a collection of particle momenta within an event. They have their uses in cut and analysis expressions. \item \ttt{process} object are generated by a \ttt{process} statement. There are no expressions involving processes, but they are referred to by \ttt{integrate} and \ttt{simulate} commands. \item \ttt{model}: There is always a current object of type and name \ttt{model}. Several models can be used concurrently by appropriately defining processes, but this happens behind the scenes. \item \ttt{beams}: Similarly, the current implementation allows only for a single object of this type at a given time, which is assigned by a \ttt{beams =} statement and used by \ttt{integrate}. \end{itemize} In the current implementation, \sindarin\ has no container data types derived from basic types, such as lists, arrays, or hashes, and there are no user-defined data types. (The \ttt{subevt} type is a container for particles in the context of events, but there is no type for an individual particle: this is represented as a one-particle \ttt{subevt}). There are also containers for inclusive processes which are however simply handled as an expansion into several components of a master process tag. \section{Variables} \label{sec:variables} \sindarin\ supports global variables, variables local to a scoping unit (the option body of a command, the body of a \ttt{scan} loop), and variables local to an expression. Some variables are predefined by the system (\emph{intrinsic variables}). They are further separated into \emph{independent} variables that can be reset by the user, and \emph{derived} or locked variables that are automatically computed by the program, but not directly user-modifiable. On top of that, the user is free to introduce his own variables (\emph{user variables}). The names of numerical variables consist of alphanumeric characters and underscores. The first character must not be a digit. Logical variable names are furthermore prefixed by a \ttt{?} (question mark) sign, while string variable names begin with a \ttt{\$} (dollar) sign. Character case does matter. In this manual we follow the convention that variable names consist of lower-case letters, digits, and underscores only, but you may also use upper-case letters if you wish. Physics models contain their own, specific set of numeric variables (masses, couplings). They are attached to the model where they are defined, so they appear and disappear with the model that is currently loaded. In particular, if two different models contain a variable with the same name, these two variables are nevertheless distinct: setting one doesn't affect the other. This feature might be called, in computer-science jargon, a \emph{mixin}. User variables -- global or local -- are declared by their type when they are introduced, and acquire an initial value upon declaration. Examples: \begin{quote} \begin{footnotesize} \begin{verbatim} int i = 3 real my_cut_value = 10 GeV complex c = 3 - 4 * I logical ?top_decay_allowed = mH > 2 * mtop string $hello = "Hello world!" alias q = d:u:s:c \end{verbatim} \end{footnotesize} \end{quote} An existing user variable can be assigned a new value without a declaration: \begin{quote} \begin{footnotesize} \begin{verbatim} i = i + 1 \end{verbatim} \end{footnotesize} \end{quote} and it may also be redeclared if the new declaration specifies the same type, this is equivalent to assigning a new value. Variables local to an expression are introduced by the \ttt{let ... in} contruct. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} real a = let int n = 2 in x^n + y^n \end{verbatim} \end{footnotesize} \end{quote} The explicit \ttt{int} declaration is necessary only if the variable \ttt{n} has not been declared before. An intrinsic variable must not be declared: \ttt{let mtop = 175.3 GeV in \ldots} \ttt{let} constructs can be concatenated if several local variables need to be assigned: \ttt{let a = 3 in let b = 4 in \textit{expression}}. Variables of type \ttt{subevt} can only be defined in \ttt{let} constructs. Exclusively in the context of particle selections (event analysis), there are \emph{observables} as special numeric objects. They are used like numeric variables, but they are never declared or assigned. They get their value assigned dynamically, computed from the particle momentum configuration. Hence, they may be understood as (intrinsic and predefined) macros. By convention, observable names begin with a capital letter. Further macros are \begin{itemize} \item \ttt{cuts} and \ttt{analysis}. They are of type logical, and can be assigned an expression by the user. They are evaluated once for each event. \item \ttt{scale}, \ttt{factorization\_scale} and \ttt{renormalization\_scale} are real numeric macros which define the energy scale(s) of an event. The latter two override the former. If no scale is defined, the partonic energy is used as the process scale. \item \ttt{weight} is a real numeric macro. If it is assigned an expression, the expression is evaluated for each valid phase-space point, and the result multiplies the matrix element. \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{\sindarin\ in Details} \label{chap:sindarin} \section{Data and expressions} \subsection{Real-valued objects} \label{sec:real} Real literals have their usual form, mantissa and, optionally, exponent: \begin{center} \ttt{0.}\quad \ttt{3.14}\quad \ttt{-.5}\quad \ttt{2.345e-3}\quad \ttt{.890E-023} \end{center} Internally, real values are treated as double precision. The values are read by the Fortran library, so details depend on its implementation. A special feature of \sindarin\ is that numerics (real and integer) can be immediately followed by a physical unit. The supported units are presently hard-coded, they are \begin{center} \ttt{meV}\quad \ttt{eV}\quad \ttt{keV}\quad \ttt{MeV}\quad \ttt{GeV}\quad \ttt{TeV} \\ \ttt{nbarn}\quad \ttt{pbarn}\quad \ttt{fbarn}\quad \ttt{abarn} \\ \ttt{rad}\quad \ttt{mrad}\quad \ttt{degree} \\ \ttt{\%} \end{center} If a number is followed by a unit, it is automatically normalized to the corresponding default unit: \ttt{14.TeV} is transformed into the real number \ttt{14000.} Default units are \ttt{GeV}, \ttt{fbarn}, and \ttt{rad}. The \ttt{\%} sign after a number has the effect that the number is multiplied by $0.01$. Note that no checks for consistency of units are done, so you can add \ttt{1 meV + 3 abarn} if you absolutely wish to. Omitting units is always allowed, in that case, the default unit is assumed. Units are not treated as variables. In particular, you can't write \ttt{theta / degree}, the correct form is \ttt{theta / 1 degree}. There is a single predefined real constant, namely $\pi$ which is referred to by the keyword \ttt{pi}. In addition, there is a single predefined complex constant, which is the complex unit $i$, being referred to by the keyword \ttt{I}. The arithmetic operators are \begin{center} \verb|+| \verb|-| \verb|*| \verb|/| \verb|^| \end{center} with their obvious meaning and the usual precedence rules. \sindarin\ supports a bunch of standard numerical functions, mostly equivalent to their Fortran counterparts: \begin{center} \ttt{abs}\quad \ttt{conjg}\quad \ttt{sgn}\quad \ttt{mod}\quad \ttt{modulo} \\ \ttt{sqrt}\quad \ttt{exp}\quad \ttt{log}\quad \ttt{log10} \\ \ttt{sin}\quad \ttt{cos}\quad \ttt{tan}\quad \ttt{asin}\quad \ttt{acos}\quad \ttt{atan} \\ \ttt{sinh}\quad \ttt{cosh}\quad \ttt{tanh} \end{center} (Unlike Fortran, the \ttt{sgn} function takes only one argument and returns $1.$, or $-1.$) The function argument is enclosed in brackets: \ttt{sqrt (2.)}, \ttt{tan (11.5 degree)}. There are two functions with two real arguments: \begin{center} \ttt{max}\quad \ttt{min} \end{center} Example: \verb|real lighter_mass = min (mZ, mH)| The following functions of a real convert to integer: \begin{center} \ttt{int}\quad \ttt{nint}\quad \ttt{floor}\quad \ttt{ceiling} %% \; . \end{center} and this converts to complex type: \begin{center} \ttt{complex} \end{center} Real values can be compared by the following operators, the result is a logical value: \begin{center} \verb|==|\quad \verb|<>| \\ \verb|>|\quad \verb|<|\quad \verb|>=|\quad \verb|<=| \end{center} In \sindarin, it is possible to have more than two operands in a logical expressions. The comparisons are done from left to right. Hence, \begin{center} \verb|115 GeV < mH < 180 GeV| \end{center} is valid \sindarin\ code and evaluates to \ttt{true} if the Higgs mass is in the given range. Tests for equality and inequality with machine-precision real numbers are notoriously unreliable and should be avoided altogether. To deal with this problem, \sindarin\ has the possibility to make the comparison operators ``fuzzy'' which should be read as ``equal (unequal) up to an absolute tolerance'', where the tolerance is given by the real-valued intrinsic variable \ttt{tolerance}. This variable is initially zero, but can be set to any value (for instance, \ttt{tolerance = 1.e-13} by the user. Note that for non-zero tolerance, operators like \verb|==| and \verb|<>| or \verb|<| and \verb|>| are not mutually exclusive\footnote{In older versions of \whizard, until v2.1.1, there used to be separate comparators for the comparisons up to a tolerance, namely \ttt{==\~{}} and \ttt{<>\~{}}. These have been discarded from v2.2.0 on in order to simplify the syntax.}. %%%%%%%%%%%%%%% \subsection{Integer-valued objects} \label{sec:integer} Integer literals are obvious: \begin{center} \ttt{1}\quad \ttt{-98765}\quad \ttt{0123} \end{center} Integers are always signed. Their range is the default-integer range as determined by the \fortran\ compiler. Like real values, integer values can be followed by a physical unit: \ttt{1 TeV}, \ttt{30 degree}. This actually transforms the integer into a real. Standard arithmetics is supported: \begin{center} \verb|+| \verb|-| \verb|*| \verb|/| \verb|^| \end{center} It is important to note that there is no fraction datatype, and pure integer arithmetics does not convert to real. Hence \ttt{3/4} evaluates to \ttt{0}, but \ttt{3 GeV / 4 GeV} evaluates to \ttt{0.75}. Since all arithmetics is handled by the underlying \fortran\ library, integer overflow is not detected. If in doubt, do real arithmetics. Integer functions are more restricted than real functions. We support the following: \begin{center} \ttt{abs}\quad \ttt{sgn}\quad \ttt{mod}\quad \ttt{modulo} \\ \ttt{max}\quad \ttt{min} \end{center} and the conversion functions \begin{center} \ttt{real}\quad \ttt{complex} \end{center} Comparisons of integers among themselves and with reals are possible using the same set of comparison operators as for real values. This includes the operators with a finite tolerance. %%%%%%%%%%%%%%%% \subsection{Complex-valued objects} \label{sec:complex} Complex variables and values are currently not yet used by the physics models implemented in \whizard. There complex input coupling constants are always split into their real and imaginary parts (or modulus and phase). They are exclusively available for arithmetic calculations. There is no form for complex literals. Complex values must be created via an arithmetic expression, \begin{center} \ttt{complex c = 1 + 2 * I} \end{center} where the imaginary unit \ttt{I} is predefined as a constant. The standard arithmetic operations are supported (also mixed with real and integer). Support for functions is currently still incomplete, among the supported functions there are \ttt{sqrt}, \ttt{log}, \ttt{exp}. \subsection{Logical-valued objects} There are two predefined logical constants, \ttt{true} and \ttt{false}. Logicals are \emph{not} equivalent to integers (like in C) or to strings (like in PERL), but they make up a type of their own. Only in \verb|printf| output, they are treated as strings, that is, they require the \verb|%s| conversion specifier. The names of logical variables begin with a question mark \ttt{?}. Here is the declaration of a logical user variable: \begin{quote} \begin{footnotesize} \begin{footnotesize} \begin{verbatim} logical ?higgs_decays_into_tt = mH > 2 * mtop \end{verbatim} \end{footnotesize} \end{footnotesize} \end{quote} Logical expressions use the standard boolean operations \begin{center} \ttt{or}\quad \ttt{and}\quad \ttt{not} \end{center} The results of comparisons (see above) are logicals. There is also a special logical operator with lower priority, concatenation by a semicolon: \begin{center} \ttt{\textit{lexpr1} ; \textit{lexpr2}} \end{center} This evaluates \textit{lexpr1} and throws its result away, then evaluates \textit{lexpr2} and returns that result. This feature is to used with logical expressions that have a side effect, namely the \ttt{record} function within analysis expressions. The primary use for intrinsic logicals are flags that change the behavior of commands. For instance, \ttt{?unweighted = true} and \ttt{?unweighted = false} switch the unweighting of simulated event samples on and off. \subsection{String-valued objects and string operations} \label{sec:sprintf} String literals are enclosed in double quotes: \ttt{"This is a string."} The empty string is \ttt{""}. String variables begin with the dollar sign: \verb|$|. There is only one string operation, concatenation \begin{quote} \begin{footnotesize} \begin{verbatim} string $foo = "abc" & "def" \end{verbatim} \end{footnotesize} \end{quote} However, it is possible to transform variables and values to a string using the \ttt{sprintf} function. This function is an interface to the system's \ttt{C} function \ttt{sprintf} with some restrictions and modifications. The allowed conversion specifiers are \begin{center} \verb|%d|\quad \verb|%i| (integer) \\ \verb|%e|\quad \verb|%f|\quad \verb|%g|\quad \verb|%E|\quad \verb|%F|\quad \verb|%G| (real) \\ \verb|%s| (string and logical) \end{center} The conversions can use flag parameter, field width, and precision, but length modifiers are not supported since they have no meaning for the application. (See also Sec.~\ref{sec:I/O}.) The \ttt{sprintf} function has the syntax \begin{center} \ttt{sprintf} \textit{format-string} \ttt{(}\textit{arg-list}\ttt{)} \end{center} This is an expression that evaluates to a string. The format string contains the mentioned conversion specifiers. The argument list is optional. The arguments are separated by commas. Allowed arguments are integer, real, logical, and string variables, and numeric expressions. Logical and string expressions can also be printed, but they have to be dressed as \emph{anonymous variables}. A logical anonymous variable has the form \ttt{?(}\textit{logical\_expr}\ttt{)} (example: \ttt{?(mH > 115 GeV)}). A string anonymous variable has the form \ttt{\$(}\textit{string-expr}\ttt{)}. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} string $unit = "GeV" string $str = sprintf "mW = %f %s" (mW, $unit) \end{verbatim} \end{footnotesize} \end{quote} The related \ttt{printf} command with the same syntax prints the formatted string to standard output\footnote{In older versions of \whizard, until v2.1.1, there also used to be a \ttt{sprintd} function and a \ttt{printd} command for default formats without a format string. They have been discarded in order to simplify the syntax from version v2.2.0 on.}. \section{Particles and (sub)events} \subsection{Particle aliases} \label{sec:alias} A particle species is denoted by its name as a string: \verb|"W+"|. Alternatively, it can be addressed by an \ttt{alias}. For instance, the $W^+$ boson has the alias \ttt{Wp}. Aliases are used like variables in a context where a particle species is expected, and the user can specify his/her own aliases. An alias may either denote a single particle species or a class of particles species. A colon \ttt{:} concatenates particle names and aliases to yield multi-species aliases: \begin{quote} \begin{footnotesize} \begin{verbatim} alias quark = u:d:s alias wboson = "W+":"W-" \end{verbatim} \end{footnotesize} \end{quote} Such aliases are used for defining processes with summation over flavors, and for defining classes of particles for analysis. Each model files define both names and (single-particle) aliases for all particles it contains. Furthermore, it defines the class aliases \verb|colored| and \verb|charged| which are particularly useful for event analysis. \subsection{Subevents} Subevents are sets of particles, extracted from an event. The sets are unordered by default, but may be ordered by appropriate functions. Obviously, subevents are meaningful only in a context where an event is available. The possible context may be the specification of a cut, weight, scale, or analysis expression. To construct a simple subevent, we put a particle alias or an expression of type particle alias into square brackets: \begin{quote} \begin{footnotesize} \verb|["W+"]|\quad \verb|[u:d:s]|\quad \verb|[colored]| \end{footnotesize} \end{quote} These subevents evaluate to the set of all $W^+$ bosons (to be precise, their four-momenta), all $u$, $d$, or $s$ quarks, and all colored particles, respectively. A subevent can contain pseudoparticles, i.e., particle combinations. That is, the four-momenta of distinct particles are combined (added conmponent-wise), and the results become subevent elements just like ordinary particles. The (pseudo)particles in a subevent are non-overlapping. That is, for any of the particles in the original event, there is at most one (pseudo)particle in the subevent in which it is contained. Sometimes, variables (actually, named constants) of type subevent are useful. Subevent variables are declared by the \ttt{subevt} keyword, and their names carry the prefix \verb|@|. Subevent variables exist only within the scope of a \verb|cuts| (or \verb|scale|, \verb|analysis|, etc.) macro, which is evaluated in the presence of an actual event. In the macro body, they are assigned via the \ttt{let} construct: \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = let subevt @jets = select if Pt > 10 GeV [colored] in all Theta > 10 degree [@jets, @jets] \end{verbatim} \end{footnotesize} \end{quote} In this expression, we first define \verb|@jets| to stand for the set of all colored partons with $p_T>10\;\mathrm{GeV}$. This abbreviation is then used in a logical expression, which evaluates to true if all relative angles between distinct jets are greater than $10$ degree. We note that the example also introduces pairs of subevents: the square bracket with two entries evaluates to the list of all possible pairs which do not overlap. The objects within square brackets can be either subevents or alias expressions. The latter are transformed into subevents before they are used. As a special case, the original event is always available as the predefined subevent \verb|@evt|. \subsection{Subevent functions} There are several functions that take a subevent (or an alias) as an argument and return a new subevent. Here we describe them: \subsubsection{collect} \begin{quote} \begin{footnotesize} \ttt{collect [\textit{particles}]} \\ \ttt{collect if \textit{condition} [\textit{particles}]} \\ \ttt{collect if \textit{condition} [\textit{particles}, \textit{ref\_particles}]} \end{footnotesize} \end{quote} First version: collect all particle momenta in the argument and combine them to a single four-momentum. The \textit{particles} argument may either be a \ttt{subevt} expression or an \ttt{alias} expression. The result is a one-entry \ttt{subevt}. In the second form, only those particles are collected which satisfy the \textit{condition}, a logical expression. Example: \ttt{collect if Pt > 10 GeV [colored]} The third version is useful if you want to put binary observables (i.e., observables constructed from two different particles) in the condition. The \textit{ref\_particles} provide the second argument for binary observables in the \textit{condition}. A particle is taken into account if the condition is true with respect to all reference particles that do not overlap with this particle. Example: \ttt{collect if Theta > 5 degree [photon, charged]}: combine all photons that are separated by 5 degrees from all charged particles. \subsubsection{cluster} \begin{quote} \begin{footnotesize} \ttt{cluster [\textit{particles}]} \\ \ttt{cluster if \textit{condition} [\textit{particles}]} \\ \end{footnotesize} \end{quote} First version: collect all particle momenta in the argument and cluster them to a set of jets. The \textit{particles} argument may either be a \ttt{subevt} expression or an \ttt{alias} expression. The result is a one-entry \ttt{subevt}. In the second form, only those particles are clustered which satisfy the \textit{condition}, a logical expression. Example: \ttt{cluster if Pt > 10 GeV [colored]} % The third version is usefule if you want to put binary observables (i.e., % observables constructed from two different particles) in the condition. The % \textit{ref\_particles} provide the second argument for binary observables in % the \textit{condition}. A particle is taken into account if the condition is % true with respect to all reference particles that do not overlap with this % particle. Example: \ttt{cluster if Theta > 5 degree [photon, charged]}: % combine all photons that are separated by 5 degrees from all charged % particles. This command is available from \whizard\ version 2.2.1 on, and only if the \fastjet\ package has been installed and linked with \whizard\ (cf. Sec.\ref{sec:fastjet}); in a future version of \whizard\ it is foreseen to have also an intrinsic clustering package inside \whizard\ which will be able to support some of the clustering algorithms below. To use it in an analysis, you have to set the variable \ttt{jet\_algorithm} to one of the predefined jet-algorithm values (integer constants): \begin{quote} \begin{footnotesize} \ttt{kt\_algorithm}\\ \ttt{cambridge\_algorithm}\\ \ttt{antikt\_algorithm}\\ \ttt{genkt\_algorithm}\\ \ttt{cambridge\_for\_passive\_algorithm}\\ \ttt{genkt\_for\_passive\_algorithm}\\ \ttt{ee\_kt\_algorithm}\\ \ttt{ee\_genkt\_algorithm}\\ \ttt{plugin\_algorithm} \end{footnotesize} \end{quote} and the variable \ttt{jet\_r} to the desired $R$ parameter value, as appropriate for the analysis and the jet algorithm. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} jet_algorithm = antikt_algorithm jet_r = 0.7 cuts = all Pt > 15 GeV [cluster if Pt > 5 GeV [colored]] \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{select\_b\_jet, select\_non\_b\_jet, select\_c\_jet, select\_light\_jet} This command is available from \whizard\ version 2.8.1 on, and it only generates anything non-trivial if the \fastjet\ package has been installed and linked with \whizard\ (cf. Sec.\ref{sec:fastjet}). It only returns sensible results when it is applied to subevents after the \ttt{cluster} command (cf. the paragraph before). It is similar to the \ttt{select} command, and accepts a logical expression as a possible condition. The four commands \ttt{select\_b\_jet}, \ttt{select\_non\_b\_jet}, \ttt{select\_c\_jet}, and \ttt{select\_light\_jet} select $b$ jets, non-$b$ jets (anything lighter than $b$s), $c$ jets (neither $b$ nor light) and light jets (anything besides $b$ and $c$), respectively. An example looks like this: \begin{quote} \begin{footnotesize} \begin{verbatim} alias lightjet = u:U:d:D:s:S:c:C:gl alias jet = b:B:lightjet process eebbjj = e1, E1 => b, B, lightjet, lightjet jet_algorithm = antikt_algorithm jet_r = 0.5 cuts = let subevt @clustered_jets = cluster [jet] in let subevt @bjets = select_b_jet [@clustered_jets] in ..... \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{photon\_isolation} This command is available from \whizard\ version 2.8.1 on. It provides isolation of photons from hadronic (and possibly electromagnetic) activity in the event to define a (especially) NLO cross section that is completely perturbative. The isolation criterion according to Frixione, cf.~\cite{Frixione:1998jh}, removes the non-perturbative contribution from the photon fragmentation function. This command can in principle be applied to elementary hard process partons (and leptons), but generates something sensible only if the \fastjet\ package has been installed and linked with \whizard\ (cf. Sec.\ref{sec:fastjet}). There are three parameters which allow to tune the isolation, \ttt{photon\_iso\_r0}, which is the radius $R^0_\gamma$ of the isolation cone, \ttt{photon\_iso\_eps}, which is the fraction $\epsilon_\gamma$ of the photon (transverse) energy that enters the isolation criterion, and the exponent of the isolation cone, \ttt{photon\_iso\_n}, $n^\gamma$. For more information cf.~\cite{Frixione:1998jh}. The command allows also a conditional cut on the photon which is applied before the isolation takes place. The first argument are the photons in the event, the second the particles from which they should be isolated. If also the electromagnetic activity is to be isolated, photons need to be isolated from themselves and must be included in the second argument. This is mandatory if leptons appear in the second argument. Two examples look like this: \begin{quote} \begin{footnotesize} \begin{verbatim} alias jet = u:U:d:D:s:S:c:C:gl process eeaajj = e1, E1 => A, A, jet, jet jet_algorithm = antikt_algorithm jet_r = 0.5 cuts = photon_isolation if Pt > 10 GeV [A, jet] .... cuts = let subevt @jets = cluster [jet] in photon_isolation if Pt > 10 GeV [A, @jets] ..... process eeajmm = e1, E1 => A, jet, e2, E2 cuts = let subevt @jets = cluster [jet] in let subevt @iso = join [@jets, A:e2:E2] photon_isolation [A, @iso] \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{combine} \begin{quote} \begin{footnotesize} \ttt{combine [\textit{particles\_1}, \textit{particles\_2}]} \\ \ttt{combine if \textit{condition}} [\textit{particles\_1}, \textit{particles\_2}] \end{footnotesize} \end{quote} Make a new subevent of composite particles. The composites are generated by combining all particles from subevent \textit{particles\_1} with all particles from subevent \textit{particles\_2} in all possible combinations. Overlapping combinations are excluded, however: if a (composite) particle in the first argument has a constituent in common with a composite particle in the second argument, the combination is dropped. In particular, this applies if the particles are identical. If a \textit{condition} is provided, the combination is done only when the logical expression, applied to the particle pair in question, returns true. For instance, here we reconstruct intermediate $W^-$ bosons: \begin{quote} \begin{footnotesize} \begin{verbatim} let @W_candidates = combine if 70 GeV < M < 80 GeV ["mu-", "numubar"] in ... \end{verbatim} \end{footnotesize} \end{quote} Note that the combination may fail, so the resulting subevent could be empty. \subsubsection{operator +} If there is no condition, the $+$ operator provides a convenient shorthand for the \verb|combine| command. In particular, it can be used if there are several particles to combine. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible] \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{select} \begin{quote} \begin{footnotesize} \ttt{select if \textit{condition} [\textit{particles}]} \\ \ttt{select if \textit{condition} [\textit{particles}, \textit{ref\_particles}]} \end{footnotesize} \end{quote} One argument: select all particles in the argument that satisfy the \textit{condition} and drop the rest. Two arguments: the \textit{ref\_particles} provide a second argument for binary observables. Select particles if the condition is satisfied for all reference particles. \subsubsection{extract} \begin{quote} \begin{footnotesize} \ttt{extract [\textit{particles}]} \\ \ttt{extract index \textit{index-value} [\textit{particles}]} \end{footnotesize} \end{quote} Return a single-particle subevent. In the first version, it contains the first particle in the subevent \textit{particles}. In the second version, the particle with index \textit{index-value} is returned, where \textit{index-value} is an integer expression. If its value is negative, the index is counted from the end of the subevent. The order of particles in an event or subevent is not always well-defined, so you may wish to sort the subevent before applying the \textit{extract} function to it. \subsubsection{sort} \begin{quote} \begin{footnotesize} \ttt{sort [\textit{particles}]} \\ \ttt{sort by \textit{observable} [\textit{particles}]} \\ \ttt{sort by \textit{observable} [\textit{particles}, \textit{ref\_particle}]} \end{footnotesize} \end{quote} Sort the subevent according to some criterion. If no criterion is supplied (first version), the subevent is sorted by increasing PDG code (first particles, then antiparticles). In the second version, the \textit{observable} is a real expression which is evaluated for each particle of the subevent in turn. The subevent is sorted by increasing value of this expression, for instance: \begin{quote} \begin{footnotesize} \begin{verbatim} let @sorted_evt = sort by Pt [@evt] in ... \end{verbatim} \end{footnotesize} \end{quote} In the third version, a reference particle is provided as second argument, so the sorting can be done for binary observables. It doesn't make much sense to have several reference particles at once, so the \ttt{sort} function uses only the first entry in the subevent \textit{ref-particle}, if it has more than one. \subsubsection{join} \begin{quote} \begin{footnotesize} \ttt{join [\textit{particles}, \textit{new\_particles}]} \\ \ttt{join if \textit{condition} [\textit{particles}, \textit{new\_particles}]} \end{footnotesize} \end{quote} This commands appends the particles in subevent \textit{new\_particles} to the subevent \textit{particles}, i.e., it joins the two particle sets. To be precise, a (pseudo)particle from \textit{new\_particles} is only appended if it does not overlap with any of the (pseudo)particles present in \textit{particles}, so the function will not produce overlapping entries. In the second version, each particle from \textit{new\_particles} is also checked with all particles in the first set whether \textit{condition} is fulfilled. If yes, and there is no overlap, it is appended, otherwise it is dropped. \subsubsection{operator \&} Subevents can also be concatenated by the operator \verb|&|. This effectively applies \ttt{join} to all operands in turn. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} let @visible = select if Pt > 10 GeV and E > 5 GeV [photon] & select if Pt > 20 GeV and E > 10 GeV [colored] & select if Pt > 10 GeV [lepton] in ... \end{verbatim} \end{footnotesize} \end{quote} \subsection{Calculating observables} Observables (invariant mass \ttt{M}, energy \ttt{E}, \ldots) are used in expressions just like ordinary numeric variables. By convention, their names start with a capital letter. They are computed using a particle momentum (or two particle momenta) which are taken from a subsequent subevent argument. We can extract the value of an observable for an event and make it available for computing the \ttt{scale} value, or for histogramming etc.: \subsubsection{eval} \begin{quote} \begin{footnotesize} \ttt{eval \textit{expr} [\textit{particles}]} \\ \ttt{eval \textit{expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The function \ttt{eval} takes an expression involving observables and evaluates it for the first momentum (or momentum pair) of the subevent (or subevent pair) in square brackets that follows the expression. For example, \begin{quote} \begin{footnotesize} \begin{verbatim} eval Pt [colored] \end{verbatim} \end{footnotesize} \end{quote} evaluates to the transverse momentum of the first colored particle, \begin{quote} \begin{footnotesize} \begin{verbatim} eval M [@jets, @jets] \end{verbatim} \end{footnotesize} \end{quote} evaluates to the invariant mass of the first distinct pair of jets (assuming that \verb|@jets| has been defined in a \ttt{let} construct), and \begin{quote} \begin{footnotesize} \begin{verbatim} eval E - M [combine [e1, N1]] \end{verbatim} \end{footnotesize} \end{quote} evaluates to the difference of energy and mass of the combination of the first electron-neutrino pair in the event. The last example illustrates why observables are treated like variables, even though they are functions of particles: the \ttt{eval} construct with the particle reference in square brackets after the expression allows to compute derived observables -- observables which are functions of new observables -- without the need for hard-coding them as new functions. \subsection{Cuts and event selection} \label{sec:cuts} Instead of a numeric value, we can use observables to compute a logical value. \subsubsection{all} \begin{quote} \begin{footnotesize} \ttt{all \textit{logical\_expr} [\textit{particles}]} \\ \ttt{all \textit{logical\_expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The \ttt{all} construct expects a logical expression and one or two subevent arguments in square brackets. \begin{quote} \begin{footnotesize} \begin{verbatim} all Pt > 10 GeV [charged] all 80 GeV < M < 100 GeV [lepton, antilepton] \end{verbatim} \end{footnotesize} \end{quote} In the second example, \ttt{lepton} and \ttt{antilepton} should be aliases defined in a \ttt{let} construct. (Recall that aliases are promoted to subevents if they occur within square brackets.) This construction defines a cut. The result value is \ttt{true} if the logical expression evaluates to \ttt{true} for all particles in the subevent in square brackets. In the two-argument case it must be \ttt{true} for all non-overlapping combinations of particles in the two subevents. If one of the arguments is the empty subevent, the result is also \ttt{true}. \subsubsection{any} \begin{quote} \begin{footnotesize} \ttt{any \textit{logical\_expr} [\textit{particles}]} \\ \ttt{any \textit{logical\_expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The \ttt{any} construct is true if the logical expression is true for at least one particle or non-overlapping particle combination: \begin{quote} \begin{footnotesize} \begin{verbatim} any E > 100 GeV [photon] \end{verbatim} \end{footnotesize} \end{quote} This defines a trigger or selection condition. If a subevent argument is empty, it evaluates to \ttt{false} \subsubsection{no} \begin{quote} \begin{footnotesize} \ttt{no \textit{logical\_expr} [\textit{particles}]} \\ \ttt{no \textit{logical\_expr} [\textit{particles\_1}, \textit{particles\_2}]} \end{footnotesize} \end{quote} The \ttt{no} construct is true if the logical expression is true for no single one particle or non-overlapping particle combination: \begin{quote} \begin{footnotesize} \begin{verbatim} no 5 degree < Theta < 175 degree ["e-":"e+"] \end{verbatim} \end{footnotesize} \end{quote} This defines a veto condition. If a subevent argument is empty, it evaluates to \ttt{true}. It is equivalent to \ttt{not any\ldots}, but included for notational convenience. \subsection{More particle functions} \subsubsection{count} \begin{quote} \begin{footnotesize} \ttt{count [\textit{particles}]} \\ \ttt{count [\textit{particles\_1}, \textit{particles\_2}]} \\ \ttt{count if \textit{logical-expr} [\textit{particles}]} \\ \ttt{count if \textit{logical-expr} [\textit{particles}, \textit{ref\_particles}]} \end{footnotesize} \end{quote} This counts the number of events in a subevent, the result is of type \ttt{int}. If there is a conditional expression, it counts the number of \ttt{particle} in the subevent that pass the test. If there are two arguments, it counts the number of non-overlapping particle pairs (that pass the test, if any). \subsubsection{Predefined observables} The following real-valued observables are available in \sindarin\ for use in \ttt{eval}, \ttt{all}, \ttt{any}, \ttt{no}, and \ttt{count} constructs. The argument is always the subevent or alias enclosed in square brackets. \begin{itemize} \item \ttt{M2} \begin{itemize} \item One argument: Invariant mass squared of the (composite) particle in the argument. \item Two arguments: Invariant mass squared of the sum of the two momenta. \end{itemize} \item \ttt{M} \begin{itemize} \item Signed square root of \ttt{M2}: positive if $\ttt{M2}>0$, negative if $\ttt{M2}<0$. \end{itemize} \item \ttt{E} \begin{itemize} \item One argument: Energy of the (composite) particle in the argument. \item Two arguments: Sum of the energies of the two momenta. \end{itemize} \item \ttt{Px}, \ttt{Py}, \ttt{Pz} \begin{itemize} \item Like \ttt{E}, but returning the spatial momentum components. \end{itemize} \item \ttt{P} \begin{itemize} \item Like \ttt{E}, returning the absolute value of the spatial momentum. \end{itemize} \item \ttt{Pt}, \ttt{Pl} \begin{itemize} \item Like \ttt{E}, returning the transversal and longitudinal momentum, respectively. \end{itemize} \item \ttt{Theta} \begin{itemize} \item One argument: Absolute polar angle in the lab frame \item Two arguments: Angular distance of two particles in the lab frame. \end{itemize} \item \ttt{Theta\_star} Only with two arguments, gives the relative polar angle of the two momenta in the rest system of the momentum sum (i.e. mother particle). \item \ttt{Phi} \begin{itemize} \item One argument: Absolute azimuthal angle in the lab frame \item Two arguments: Azimuthal distance of two particles in the lab frame \end{itemize} \item \ttt{Rap}, \ttt{Eta} \begin{itemize} \item One argument: rapidity / pseudorapidity \item Two arguments: rapidity / pseudorapidity difference \end{itemize} \item \ttt{Dist} \begin{itemize} \item Two arguments: Distance on the $\eta$-$\phi$ cylinder, i.e., $\sqrt{\Delta\eta^2 + \Delta\phi^2}$ \end{itemize} \item \ttt{kT} \begin{itemize} \item Two arguments: $k_T$ jet clustering variable: $2 \min (E_{j1}^2, E_{j2}^2) / Q^2 \times (1 - \cos\theta_{j1,j2})$. At the moment, $Q^2 = 1$ GeV$^2$. \end{itemize} \end{itemize} There are also integer-valued observables: \begin{itemize} \item \ttt{PDG} \begin{itemize} \item One argument: PDG code of the particle. For a composite particle, the code is undefined (value 0). For flavor sums in the \ttt{cuts} statement, this observable always returns the same flavor, i.e. the first one from the flavor list. It is thus only sensible to use it in an \ttt{analysis} or \ttt{selection} statement when simulating events. \end{itemize} \item \ttt{Ncol} \begin{itemize} \item One argument: Number of open color lines. Only count color lines, not anticolor lines. This is defined only if the global flag \ttt{?colorize\_subevt} is true. \end{itemize} \item \ttt{Nacl} \begin{itemize} \item One argument: Number of open anticolor lines. Only count anticolor lines, not color lines. This is defined only if the global flag \ttt{?colorize\_subevt} is true. \end{itemize} \end{itemize} %%%%%%%%%%%%%%% \section{Physics Models} \label{sec:models} A physics model is a combination of particles, numerical parameters (masses, couplings, widths), and Feynman rules. Many physics analyses are done in the context of the Standard Model (SM). The SM is also the default model for \whizard. Alternatively, you can choose a subset of the SM (QED or QCD), variants of the SM (e.g., with or without nontrivial CKM matrix), or various extensions of the SM. The complete list is displayed in Table~\ref{tab:models}. The model definitions are contained in text files with filename extension \ttt{.mdl}, e.g., \ttt{SM.mdl}, which are located in the \ttt{share/models} subdirectory of the \whizard\ installation. These files are easily readable, so if you need details of a model implementation, inspect their contents. The model file contains the complete particle and parameter definitions as well as their default values. It also contains a list of vertices. This is used only for phase-space setup; the vertices used for generating amplitudes and the corresponding Feynman rules are stored in different files within the \oMega\ source tree. In a \sindarin\ script, a model is a special object of type \ttt{model}. There is always a \emph{current} model. Initially, this is the SM, so on startup \whizard\ reads the \ttt{SM.mdl} model file and assigns its content to the current model object. (You can change the default model by the \ttt{--model} option on the command line. Also the preloading of a model can be switched off with the \ttt{--no-model} option) Once the model has been loaded, you can define processes for the model, and you have all independent model parameters at your disposal. As noted before, these are intrinsic parameters which need not be declared when you assign them a value, for instance: \begin{quote} \begin{footnotesize} \begin{verbatim} mW = 80.33 GeV wH = 243.1 MeV \end{verbatim} \end{footnotesize} \end{quote} Other parameters are \emph{derived}. They can be used in expressions like any other parameter, they are also intrinsic, but they cannot be modified directly at all. For instance, the electromagnetic coupling \ttt{ee} is a derived parameter. If you change either \ttt{GF} (the Fermi constant), \ttt{mW} (the $W$ mass), or \ttt{mZ} (the $Z$ mass), this parameter will reflect the change, but setting it directly is an error. In other words, the SM is defined within \whizard\ in the $G_F$-$m_W$-$m_Z$ scheme. (While this scheme is unusual for loop calculations, it is natural for a tree-level event generator where the $Z$ and $W$ poles have to be at their experimentally determined location\footnote{In future versions of \whizard\ it is foreseen to implement other electroweak schemes.}.) The model also defines the particle names and aliases that you can use for defining processes, cuts, or analyses. If you would like to generate a SUSY process instead, for instance, you can assign a different model (cf.\ Table~\ref{tab:models}) to the current model object: \begin{quote} \begin{footnotesize} \begin{verbatim} model = MSSM \end{verbatim} \end{footnotesize} \end{quote} This assignment has the consequence that the list of SM parameters and particles is replaced by the corresponding MSSM list (which is much longer). The MSSM contains essentially all SM parameters by the same name, but in fact they are different parameters. This is revealed when you say \begin{quote} \begin{footnotesize} \begin{verbatim} model = SM mb = 5.0 GeV model = MSSM show (mb) \end{verbatim} \end{footnotesize} \end{quote} After the model is reassigned, you will see the MSSM value of $m_b$ which still has its default value, not the one you have given. However, if you revert to the SM later, \begin{quote} \begin{footnotesize} \begin{verbatim} model = SM show (mb) \end{verbatim} \end{footnotesize} \end{quote} you will see that your modification of the SM's $m_b$ value has been remembered. If you want both mass values to agree, you have to set them separately in the context of their respective model. Although this might seem cumbersome at first, it is nevertheless a sensible procedure since the parameters defined by the user might anyhow not be defined or available for all chosen models. When using two different models which need an SLHA input file, these {\em have} to be provided for both models. Within a given scope, there is only one current model. The current model can be reset permanently as above. It can also be temporarily be reset in a local scope, i.e., the option body of a command or the body of a \ttt{scan} loop. It is thus possible to use several models within the same script. For instance, you may define a SUSY signal process and a pure-SM background process. Each process depends only on the respective model's parameter set, and a change to a parameter in one of the models affects only the corresponding process. \section{Processes} \label{sec:processes} The purpose of \whizard\ is the integration and simulation of high-energy physics processes: scatterings and decays. Hence, \ttt{process} objects play the central role in \sindarin\ scripts. A \sindarin\ script may contain an arbitrary number of process definitions. The initial states need not agree, and the processes may belong to different physics models. \subsection{Process definition} \label{sec:procdef} A process object is defined in a straightforward notation. The definition syntax is straightforward: \begin{quote} \begin{footnotesize} \ttt{process \textit{process-id} = \textit{incoming-particles}} \verb|=>| \ttt{\textit{outgoing-particles}} \end{footnotesize} \end{quote} Here are typical examples: \begin{quote} \begin{footnotesize} \begin{verbatim} process w_pair_production = e1, E1 => "W+", "W-" process zdecay = Z => u, ubar \end{verbatim} \end{footnotesize} \end{quote} Throughout the program, the process will be identified by its \textit{process-id}, so this is the name of the process object. This identifier is arbitrary, chosen by the user. It follows the rules for variable names, so it consists of alphanumeric characters and underscores, where the first character is not numeric. As a special rule, it must not contain upper-case characters. The reason is that this name is used for identifying the process not just within the script, but also within the \fortran\ code that the matrix-element generator produces for this process. After the equals sign, there follow the lists of incoming and outgoing particles. The number of incoming particles is either one or two: scattering processes and decay processes. The number of outgoing particles should be two or larger (as $2\to 1$ processes are proportional to a $\delta$ function they can only be sensibly integrated when using a structure function like a hadron collider PDF or a beamstrahlung spectrum.). There is no hard upper limit; the complexity of processes that \whizard\ can handle depends only on the practical computing limitations (CPU time and memory). Roughly speaking, one can assume that processes up to $2\to 6$ particles are safe, $2\to 8$ processes are feasible given sufficient time for reaching a stable integration, while more complicated processes are largely unexplored. We emphasize that in the default setup, the matrix element of a physics process is computed exactly in leading-order perturbation theory, i.e., at tree level. There is no restriction of intermediate states, the result always contains the complete set of Feynman graphs that connect the initial with the final state. If the result would actually be expanded in Feynman graphs (which is not done by the \oMega\ matrix element generator that \whizard\ uses), the number of graphs can easily reach several thousands, depending on the complexity of the process and on the physics model. More details about the different methods for quantum field-theoretical matrix elements can be found in Chap.~\ref{chap:hardint}. In the following, we will discuss particle names, options for processes like restrictions on intermediate states, parallelization, flavor sums and process components for inclusive event samples (process containers). \subsection{Particle names} The particle names are taken from the particle definition in the current model file. Looking at the SM, for instance, the electron entry in \ttt{share/models/SM.mdl} reads \begin{quote} \begin{footnotesize} \begin{verbatim} particle E_LEPTON 11 spin 1/2 charge -1 isospin -1/2 name "e-" e1 electron e anti "e+" E1 positron tex_name "e^-" tex_anti "e^+" mass me \end{verbatim} \end{footnotesize} \end{quote} This tells that you can identify an electron either as \verb|"e-"|, \verb|e1|, \verb|electron|, or simply \verb|e|. The first version is used for output, but needs to be quoted, because otherwise \sindarin\ would interpret the minus sign as an operator. (Technically, unquoted particle identifiers are aliases, while the quoted versions -- you can say either \verb|e1| or \verb|"e1"| -- are names. On input, this makes no difference.) The alternative version \verb|e1| follows a convention, inherited from \comphep~\cite{Boos:2004kh}, that particles are indicated by lower case, antiparticles by upper case, and for leptons, the generation index is appended: \verb|e2| is the muon, \verb|e3| the tau. These alternative names need not be quoted because they contain no special characters. In Table~\ref{tab:SM-particles}, we list the recommended names as well as mass and width parameters for all SM particles. For other models, you may look up the names in the corresponding model file. \begin{table}[p] \begin{center} \begin{tabular}{|l|l|l|l|cc|} \hline & Particle & Output name & Alternative names & Mass & Width\\ \hline\hline Leptons &$e^-$ & \verb|e-| & \ttt{e1}\quad\ttt{electron} & \ttt{me} & \\ &$e^+$ & \verb|e+| & \ttt{E1}\quad\ttt{positron} & \ttt{me} & \\ \hline &$\mu^-$ & \verb|mu-| & \ttt{e2}\quad\ttt{muon} & \ttt{mmu} & \\ &$\mu^+$ & \verb|mu+| & \ttt{E2} & \ttt{mmu} & \\ \hline &$\tau^-$ & \verb|tau-| & \ttt{e3}\quad\ttt{tauon} & \ttt{mtau} & \\ &$\tau^+$ & \verb|tau+| & \ttt{E3} & \ttt{mtau} & \\ \hline\hline Neutrinos &$\nu_e$ & \verb|nue| & \ttt{n1} & & \\ &$\bar\nu_e$ & \verb|nuebar| & \ttt{N1} & & \\ \hline &$\nu_\mu$ & \verb|numu| & \ttt{n2} & & \\ &$\bar\nu_\mu$ & \verb|numubar| & \ttt{N2} & & \\ \hline &$\nu_\tau$ & \verb|nutau| & \ttt{n3} & & \\ &$\bar\nu_\tau$ & \verb|nutaubar| & \ttt{N3} & & \\ \hline\hline Quarks &$d$ & \verb|d| & \ttt{down} & & \\ &$\bar d$ & \verb|dbar| & \ttt{D} & & \\ \hline &$u$ & \verb|u| & \ttt{up} & & \\ &$\bar u$ & \verb|ubar| & \ttt{U} & & \\ \hline &$s$ & \verb|s| & \ttt{strange} & \ttt{ms} & \\ &$\bar s$ & \verb|sbar| & \ttt{S} & \ttt{ms} & \\ \hline &$c$ & \verb|c| & \ttt{charm} & \ttt{mc} & \\ &$\bar c$ & \verb|cbar| & \ttt{C} & \ttt{mc} & \\ \hline &$b$ & \verb|b| & \ttt{bottom} & \ttt{mb} & \\ &$\bar b$ & \verb|bbar| & \ttt{B} & \ttt{mb} & \\ \hline &$t$ & \verb|t| & \ttt{top} & \ttt{mtop} & \ttt{wtop} \\ &$\bar t$ & \verb|tbar| & \ttt{T} & \ttt{mtop} & \ttt{wtop} \\ \hline\hline Vector bosons &$g$ & \verb|gl| & \ttt{g}\quad\ttt{G}\quad\ttt{gluon} & & \\ \hline &$\gamma$ & \verb|A| & \ttt{gamma}\quad\ttt{photon} & & \\ \hline &$Z$ & \verb|Z| & & \ttt{mZ} & \ttt{wZ} \\ \hline &$W^+$ & \verb|W+| & \ttt{Wp} & \ttt{mW} & \ttt{wW} \\ &$W^-$ & \verb|W-| & \ttt{Wm} & \ttt{mW} & \ttt{wW} \\ \hline\hline Scalar bosons &$H$ & \verb|H| & \ttt{h}\quad \ttt{Higgs} & \ttt{mH} & \ttt{wH} \\ \hline \end{tabular} \end{center} \caption{\label{tab:SM-particles} Names that can be used for SM particles. Also shown are the intrinsic variables that can be used to set mass and width, if applicable.} \end{table} Where no mass or width parameters are listed in the table, the particle is assumed to be massless or stable, respectively. This is obvious for particles such as the photon. For neutrinos, the mass is meaningless to particle physics collider experiments, so it is zero. For quarks, the $u$ or $d$ quark mass is unobservable directly, so we also set it zero. For the heavier quarks, the mass may play a role, so it is kept. (The $s$ quark is borderline; one may argue that its mass is also unobservable directly.) On the other hand, the electron mass is relevant, e.g., in photon radiation without cuts, so it is not zero by default. It pays off to set particle masses to zero, if the approximation is justified, since fewer helicity states will contribute to the matrix element. Switching off one of the helicity states of an external fermion speeds up the calculation by a factor of two. Therefore, script files will usually contain the assignments \begin{quote} \begin{footnotesize} \begin{verbatim} me = 0 mmu = 0 ms = 0 mc = 0 \end{verbatim} \end{footnotesize} \end{quote} unless they deal with processes where this simplification is phenomenologically unacceptable. Often $m_\tau$ and $m_b$ can also be neglected, but this excludes processes where the Higgs couplings of $\tau$ or $b$ are relevant. Setting fermion masses to zero enables, furthermore, the possibility to define multi-flavor aliases \begin{quote} \begin{footnotesize} \begin{verbatim} alias q = d:u:s:c alias Q = D:U:S:C \end{verbatim} \end{footnotesize} \end{quote} and handle processes such as \begin{quote} \begin{footnotesize} \begin{verbatim} process two_jets_at_ilc = e1, E1 => q, Q process w_pairs_at_lhc = q, Q => Wp, Wm \end{verbatim} \end{footnotesize} \end{quote} where a sum over all allowed flavor combination is automatically included. For technical reasons, such flavor sums are possible only for massless particles (or more general for mass-degenerate particles). If you want to generate inclusive processes with sums over particles of different masses (e.g. summing over $W/Z$ in the final state etc.), confer below the section about process components, Sec.~\ref{sec:processcomp}. Assignments of masses, widths and other parameters are actually in effect when a process is integrated, not when it is defined. So, these assignments may come before or after the process definition, with no significant difference. However, since flavor summation requires masses to be zero, the assignments may be put before the alias definition which is used in the process. The muon, tau, and the heavier quarks are actually unstable. However, the width is set to zero because their decay is a macroscopic effect and, except for the muon, affected by hadron physics, so it is not described by \whizard. (In the current \whizard\ setup, all decays occur at the production vertex. A future version may describe hadronic physics and/or macroscopic particle propagation, and this restriction may be eventually removed.) \subsection{Options for processes} \label{sec:process options} The \ttt{process} definition may contain an optional argument: \begin{quote} \begin{footnotesize} \ttt{process \textit{process-id} = \textit{incoming-particles}} \verb|=>| \ttt{\textit{outgoing-particles}} \ttt{\{\textit{options\ldots}\}} \end{footnotesize} \end{quote} The \textit{options} are a \sindarin\ script that is executed in a context local to the \ttt{process} command. The assignments it contains apply only to the process that is defined. In the following, we describe the set of potentially useful options (which all can be also set globally): \subsubsection{Model reassignment} It is possible to locally reassign the model via a \ttt{model =} statment, permitting the definition of process using a model other than the globally selected model. The process will retain this association during integration and event generation. \subsubsection{Restrictions on matrix elements} \label{subsec:restrictions} Another useful option is the setting \begin{quote} \begin{footnotesize} \verb|$restrictions =| \ttt{\textit{string}} \end{footnotesize} \end{quote} This option allows to select particular classes of Feynman graphs for the process when using the \oMega\ matrix element generator. The \verb|$restrictions| string specifies e.g. propagators that the graph must contain. Here is an example: \begin{code} process zh_invis = e1, E1 => n1:n2:n3, N1:N2:N3, H { $restrictions = "1+2 ~ Z" } \end{code} The complete process $e^-e^+ \to \nu\bar\nu H$, summed over all neutrino generations, contains both $ZH$ pair production (Higgs-strahlung) and $W^+W^-\to H$ fusion. The restrictions string selects the Higgs-strahlung graph where the initial electrons combine to a $Z$ boson. Here, the particles in the process are consecutively numbered, starting with the initial particles. An alternative for the same selection would be \verb|$restrictions = "3+4 ~ Z"|. Restrictions can be combined using \verb|&&|, for instance \begin{code} $restrictions = "1+2 ~ Z && 3 + 4 ~ Z" \end{code} which is redundant here, however. The restriction keeps the full energy dependence in the intermediate propagator, so the Breit-Wigner shape can be observed in distributions. This breaks gauge invariance, in particular if the intermediate state is off shell, so you should use the feature only if you know the implications. For more details, cf. the Chap.~\ref{chap:hardint} and the \oMega\ manual. Other restrictions that can be combined with the restrictions above on intermediate propagators allow to exclude certain particles from intermediate propagators, or to exclude certain vertices from the matrix elements. For example, \begin{code} process eemm = e1, E1 => e2, E2 { $restrictions = "!A" } \end{code} would exclude all photon propagators from the matrix element and leaves only the $Z$ exchange here. In the same way, \verb|$restrictions = "!gl"| would exclude all gluon exchange. This exclusion of internal propagators works also for lists of particles, like \begin{code} $restrictions = "!Z:H" \end{code} excludes all $Z$ and $H$ propagators from the matrix elements. Besides excluding certain particles as internal lines, it is also possible to exclude certain vertices using the restriction command \begin{code} process eeww = e1, E1 => Wp, Wm { $restrictions = "^[W+,W-,Z]" } \end{code} This would generate the matrix element for the production of two $W$ bosons at LEP without the non-Abelian vertex $W^+W^-Z$. Again, these restrictions are able to work on lists, so \begin{code} $restrictions = "^[W+,W-,A:Z]" \end{code} would exclude all triple gauge boson vertices from the above process and leave only the $t$-channel neutrino exchange. It is also possible to exlude vertices by their coupling constants, e.g. the photon exchange in the process $e^+ e^- \to \mu^+ \mu^-$ can also be removed by the following restriction: \begin{code} $restrictions = "^qlep" \end{code} Here, \ttt{qlep} is the \fortran\ variable for the coupling constant of the electron-positron-photon vertex. \begin{table} \begin{center} \begin{tabular}{|l|l|} \hline \verb|3+4~Z| & external particles 3 and 4 must come from intermediate $Z$ \\\hline \verb| && | & logical ``and'', e.g. in \verb| 3+5~t && 4+6~tbar| \\\hline \verb| !A | & exclude all $\gamma$ propagators \\\hline \verb| !e+:nue | & exclude a list of propagators, here $\gamma$, $\nu_e$ \\\hline \verb|^qlep:gnclep| & exclude all vertices with \ttt{qlep},\ttt{gnclep} coupling constants \\\hline \verb|^[A:Z,W+,W-]| & exclude all vertices $W^+W^-Z$, $W^+W^-\gamma$ \\\hline \verb|^c1:c2:c3[H,H,H]| & exclude all triple Higgs couplings with $c_i$ constants \\\hline \end{tabular} \end{center} \caption{List of possible restrictions that can be applied to \oMega\ matrix elements.} \label{tab:restrictions} \end{table} The Tab.~\ref{tab:restrictions} gives a list of options that can be applied to the \oMega\ matrix elements. \subsubsection{Other options} There are some further options that the \oMega\ matrix-element generator can take. If desired, any string of options that is contained in this variable \begin{quote} \begin{footnotesize} \verb|$omega_flags =| \ttt{\textit{string}} \end{footnotesize} \end{quote} will be copied verbatim to the \oMega\ call, after all other options. One important application is the scheme of treating the width of unstable particles in the $t$-channel. This is modified by the \verb|model:| class of \oMega\ options. It is well known that for some processes, e.g., single $W$ production from photon-$W$ fusion, gauge invariance puts constraints on the treatment of the unstable-particle width. By default, \oMega\ puts a nonzero width in the $s$ channel only. This correctly represents the resummed Dyson series for the propagator, but it violates QED gauge invariance, although the effect is only visible if the cuts permit the photon to be almost on-shell. An alternative is \begin{quote} \begin{footnotesize} \verb|$omega_flags = "-model:fudged_width"| \end{footnotesize} \end{quote} which puts zero width in the matrix element, so that gauge cancellations hold, and reinstates the $s$-channel width in the appropriate places by an overall factor that multiplies the whole matrix element. Another possibility is \begin{quote} \begin{footnotesize} \verb|$omega_flags = "-model:constant_width"| \end{footnotesize} \end{quote} which puts the width both in the $s$ and in the $t$ channel everywhere. Note that both options apply only to charged unstable particles, such as the $W$ boson. \subsubsection{Multithreaded calculation of helicity sums via OpenMP} \label{sec:openmp} On multicore and / or multiprocessor systems, it is possible to speed up the calculation by using multiple threads to perform the helicity sum in the matrix element calculation. As the processing time used by \whizard\ is not used up solely in the matrix element, the speedup thus achieved varies greatly depending on the process under consideration; while simple processes without flavor sums do not profit significantly from this parallelization, the computation time for processes involving flavor sums with four or more particles in the final state is typically reduced by a factor between two and three when utilizing four parallel threads. The parallization is implemented using \ttt{OpenMP} and requires \whizard\ to be compiled with an \ttt{OpenMP} aware compiler and the appropiate compiler flags This is done in the configuration step, cf.\ Sec.~\ref{sec:installation}. As with all \ttt{OpenMP} programs, the default number of threads used at runtime is up to the compiler runtime support and typically set to the number of independent hardware threads (cores / processors / hyperthreads) available in the system. This default can be adjusted by setting the \ttt{OMP\_NUM\_THREADS} environment variable prior to calling WHIZARD. Alternatively, the available number of threads can be reset anytime by the \sindarin\ parameter \ttt{openmp\_num\_threads}. Note however that the total number of threads that can be sensibly used is limited by the number of nonvanishing helicity combinations. %%%%%%%%%%%%%%% \subsection{Process components} \label{sec:processcomp} It was mentioned above that processes with flavor sums (in the initial or final state or both) have to be mass-degenerate (in most cases massless) in all particles that are summed over at a certain position. This condition is necessary in order to use the same phase-space parameterization and integration for the flavor-summed process. However, in many applications the user wants to handle inclusive process definitions, e.g. by defining inclusive decays, inclusive SUSY samples at hadron colliders (gluino pairs, squark pairs, gluino-squark associated production), or maybe lepton-inclusive samples where the tau and muon mass should be kept at different values. In \whizard\, from version v2.2.0 on, there is the possibility to define such inclusive process containers. The infrastructure for this feature is realized via so-called process components: processes are allowed to contain several process components. Those components need not be provided by the same matrix element generator, e.g. internal matrix elements, \oMega\ matrix elements, external matrix element (e.g. from a one-loop program, OLP) can be mixed. The very same infrastructure can also be used for next-to-leading order (NLO) calculations, containing the born with real emission, possible subtraction terms to make the several components infrared- and collinear finite, as well as the virtual corrections. Here, we want to discuss the use for inclusive particle samples. There are several options, the simplest of which to add up different final states by just using the \ttt{+} operator in \sindarin, e.g.: \begin{quote} \begin{footnotesize} \begin{verbatim} process multi_comp = e1, E1 => (e2, E2) + (e3, E3) + (A, A) \end{verbatim} \end{footnotesize} \end{quote} The brackets are not only used for a better grouping of the expressions, they are not mandatory for \whizard\ to interpret the sum correctly. When integrating, \whizard\ tells you that this a process with three different components: \begin{footnotesize} \begin{Verbatim} | Initializing integration for process multi_comp_1_p1: | ------------------------------------------------------------------------ | Process [scattering]: 'multi_comp' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'multi_comp_i1': e-, e+ => m-, m+ [omega] | 2: 'multi_comp_i2': e-, e+ => t-, t+ [omega] | 3: 'multi_comp_i3': e-, e+ => A, A [omega] | ------------------------------------------------------------------------ \end{Verbatim} \end{footnotesize} A different phase-space setup is used for each different component. The integration for each different component is performed separately, and displayed on screen. At the end, a sum of all components is shown. All files that depend on the components are being attached an \ttt{\_i{\em }} where \ttt{{\em }} is the number of the process component that appears in the list above: the \fortran\ code for the matrix element, the \ttt{.phs} file for the phase space parameterization, and the grid files for the \vamp\ Monte-Carlo integration (or any other integration method). However, there will be only one event file for the inclusive process, into which a mixture of events according to the size of the individual process component cross section enter. More options are to specify additive lists of particles. \whizard\ then expands the final states according to tensor product algebra: \begin{quote} \begin{footnotesize} \begin{verbatim} process multi_tensor = e1, E1 => e2 + e3 + A, E2 + E3 + A \end{verbatim} \end{footnotesize} \end{quote} This gives the same three process components as above, but \whizard\ recognized that e.g. $e^- e^+ \to \mu^- \gamma$ is a vanishing process, hence the numbering is different: \begin{footnotesize} \begin{Verbatim} | Process component 'multi_tensor_i2': matrix element vanishes | Process component 'multi_tensor_i3': matrix element vanishes | Process component 'multi_tensor_i4': matrix element vanishes | Process component 'multi_tensor_i6': matrix element vanishes | Process component 'multi_tensor_i7': matrix element vanishes | Process component 'multi_tensor_i8': matrix element vanishes | ------------------------------------------------------------------------ | Process [scattering]: 'multi_tensor' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'multi_tensor_i1': e-, e+ => m-, m+ [omega] | 5: 'multi_tensor_i5': e-, e+ => t-, t+ [omega] | 9: 'multi_tensor_i9': e-, e+ => A, A [omega] | ------------------------------------------------------------------------ \end{Verbatim} \end{footnotesize} Identical copies of the same process that would be created by expanding the tensor product of final states are eliminated and appear only once in the final sum of process components. Naturally, inclusive process definitions are also available for decays: \begin{quote} \begin{footnotesize} \begin{Verbatim} process multi_dec = Wp => E2 + E3, n2 + n3 \end{Verbatim} \end{footnotesize} \end{quote} This yields: \begin{footnotesize} \begin{Verbatim} | Process component 'multi_dec_i2': matrix element vanishes | Process component 'multi_dec_i3': matrix element vanishes | ------------------------------------------------------------------------ | Process [decay]: 'multi_dec' | Library name = 'default_lib' | Process index = 2 | Process components: | 1: 'multi_dec_i1': W+ => mu+, numu [omega] | 4: 'multi_dec_i4': W+ => tau+, nutau [omega] | ------------------------------------------------------------------------ \end{Verbatim} \end{footnotesize} %%%%%%%%%%%%%%% \subsection{Compilation} \label{sec:compilation} Once processes have been set up, to make them available for integration they have to be compiled. More precisely, the matrix-element generator \oMega\ (and it works similarly if a different matrix element method is chosen) is called to generate matrix element code, the compiler is called to transform this \fortran\ code into object files, and the linker is called to collect this in a dynamically loadable library. Finally, this library is linked to the program. From version v2.2.0 of \whizard\ this is no longer done by system calls of the OS but steered via process library Makefiles. Hence, the user can execute and manipulate those Makefiles in order to manually intervene in the particular steps, if he/she wants to do so. All this is done automatically when an \ttt{integrate}, \ttt{unstable}, or \ttt{simulate} command is encountered for the first time. You may also force compilation explicitly by the command \begin{quote} \begin{footnotesize} \begin{verbatim} compile \end{verbatim} \end{footnotesize} \end{quote} which performs all steps as listed above, including loading the generated library. The \fortran\ part of the compilation will be done using the \fortran\ compiler specified by the string variable \verb|$fc| and the compiler flags specified as \verb|$fcflags|. The default settings are those that have been used for compiling \whizard\ itself during installation. For library compatibility, you should stick to the compiler. The flags may be set differently. They are applied in the compilation and loading steps, and they are processed by \ttt{libtool}, so \ttt{libtool}-specific flags can also be given. \whizard\ has some precautions against unnecessary repetitions. Hence, when a \ttt{compile} command is executed (explicitly, or implicitly by the first integration), the program checks first whether the library is already loaded, and whether source code already exists for the requested processes. If yes, this code is used and no calls to \oMega\ (or another matrix element method) or to the compiler are issued. Otherwise, it will detect any modification to the process configuration and regenerate the matrix element or recompile accordingly. Thus, a \sindarin\ script can be executed repeatedly without rebuilding everything from scratch, and you can safely add more processes to a script in a subsequent run without having to worry about the processes that have already been treated. This default behavior can be changed. By setting \begin{quote} \begin{footnotesize} \begin{verbatim} ?rebuild_library = true \end{verbatim} \end{footnotesize} \end{quote} code will be re-generated and re-compiled even if \whizard\ would think that this is unncessary. The same effect is achieved by calling \whizard\ with a command-line switch, \begin{quote} \begin{footnotesize} \begin{verbatim} /home/user$ whizard --rebuild_library \end{verbatim} \end{footnotesize} \end{quote} There are further \ttt{rebuild} switches which are described below. If everything is to be rebuilt, you can set a master switch \ttt{?rebuild} or the command line option \verb|--rebuild|. The latter can be abbreviated as a short command-line option: \begin{quote} \begin{footnotesize} \begin{verbatim} /home/user$ whizard -r \end{verbatim} \end{footnotesize} \end{quote} Setting this switch is always a good idea when starting a new project, just in case some old files clutter the working directory. When re-running the same script, possibly modified, the \verb|-r| switch should be omitted, so the existing files can be reused. \subsection{Process libraries} Processes are collected in \emph{libraries}. A script may use more than one library, although for most applications a single library will probably be sufficient. The default library is \ttt{default\_lib}. If you do not specify anything else, the processes you compile will be collected by a driver file \ttt{default\_lib.f90} which is compiled together with the process code and combined as a libtool archive \ttt{default\_lib.la}, which is dynamically linked to the running \whizard\ process. Once in a while, you work on several projects at once, and you didn't care about opening a new working directory for each. If the \verb|-r| option is given, a new run will erase the existing library, which may contain processes needed for the other project. You could omit \verb|-r|, so all processes will be collected in the same library (this does not hurt), but you may wish to cleanly separate the projects. In that case, you should open a separate library for each project. Again, there are two possibilities. You may start the script with the specification \begin{quote} \begin{footnotesize} \begin{verbatim} library = "my_lhc_proc" \end{verbatim} \end{footnotesize} \end{quote} to open a library \verb|my_lhc_proc| in place of the default library. Repeating the command with different arguments, you may introduce several libraries in the script. The active library is always the one specified last. It is possible to issue this command locally, so a particular process goes into its own library. Alternatively, you may call \whizard\ with the option \begin{quote} \begin{footnotesize} \begin{verbatim} /home/user$ whizard --library=my_lhc_proc \end{verbatim} \end{footnotesize} \end{quote} If several libraries are open simultaneously, the \ttt{compile} command will compile all libraries that the script has referenced so far. If this is not intended, you may give the command an argument, \begin{quote} \begin{footnotesize} \begin{verbatim} compile ("my_lhc_proc", "my_other_proc") \end{verbatim} \end{footnotesize} \end{quote} to compile only a specific subset. The command \begin{quote} \begin{footnotesize} \begin{verbatim} show (library) \end{verbatim} \end{footnotesize} \end{quote} will display the contents of the actually loaded library together with a status code which indicates the status of the library and the processes within. %%%%%%%%%%%%%%% \subsection{Stand-alone \whizard\ with precompiled processes} \label{sec:static} Once you have set up a process library, it is straightforward to make a special stand-alone \whizard\ executable which will have this library preloaded on startup. This is a matter of convenience, and it is also useful if you need a statically linked executable for reasons of profiling, batch processing, etc. For this task, there is a variant of the \ttt{compile} command: \begin{quote} \begin{footnotesize} \begin{verbatim} compile as "my_whizard" () \end{verbatim} \end{footnotesize} \end{quote} which produces an executable \verb|my_whizard|. You can omit the library argument if you simply want to include everything. (Note that this command will \emph{not} load a library into the current process, it is intended for creating a separate program that will be started independently.) As an example, the script \begin{quote} \begin{footnotesize} \begin{verbatim} process proc1 = e1, E1 => e1, E1 process proc2 = e1, E1 => e2, E2 process proc3 = e1, E1 => e3, E3 compile as "whizard-leptons" () \end{verbatim} \end{footnotesize} \end{quote} will make a new executable program \verb|whizard-leptons|. This program behaves completely identical to vanilla \whizard, except for the fact that the processes \ttt{proc1}, \ttt{proc2}, and \ttt{proc3} are available without configuring them or loading any library. % This feature is particularly useful when compiling with the \ttt{-static} % flag. As long as the architecture is compatible, the resulting binary may be % run on a different computer where no \whizard\ libraries are present. (The % program will still need to find its model files, however.) \section{Beams} \label{sec:beams} Before processes can be integrated and simulated, the program has to know about the collider properties. They can be specified by the \ttt{beams} statement. In the command script, it is irrelevant whether a \ttt{beams} statement comes before or after process specification. The \ttt{integrate} or \ttt{simulate} commands will use the \ttt{beams} statement that was issued last. \subsection{Beam setup} \label{sec:beam-setup} If the beams have no special properties, and the colliding particles are the incoming particles in the process themselves, there is no need for a \ttt{beams} statement at all. You only \emph{must} specify the center-of-momentum energy of the collider by setting the value of $\sqrt{s}$, for instance \begin{quote} \begin{footnotesize} \begin{verbatim} sqrts = 14 TeV \end{verbatim} \end{footnotesize} \end{quote} The \ttt{beams} statement comes into play if \begin{itemize} \item the beams have nontrivial structure, e.g., parton structure in hadron collision or photon radiation in lepton collision, or \item the beams have non-standard properties: polarization, asymmetry, crossing angle. \end{itemize} Note that some of the abovementioned beam properties had not yet been reimplemented in the \whizard\ttt{2} release series. From version v2.2.0 on all options of the legacy series \whizard\ttt{1} are available again. From version v2.1 to version v2.2 of \whizard\ there has also been a change in possible options to the \ttt{beams} statement: in the early versions of \whizard\ttt{2} (v2.0/v2.1), local options could be specified within the beam settings, e.g. \ttt{beams = p, p { sqrts = 14 TeV } => pdf\_builtin}. These possibility has been abandoned from version v2.2 on, and the \ttt{beams} command does not allow for {\em any} optional arguments any more. Hence, beam parameters can -- with the exception of the specification of structure functions -- be specified only globally: \begin{quote} \begin{footnotesize} \begin{verbatim} sqrts = 14 TeV beams = p, p => lhapdf \end{verbatim} \end{footnotesize} \end{quote} It does not make any difference whether the value of \ttt{sqrts} is set before or after the \ttt{beams} statement, the last value found before an \ttt{integrate} or \ttt{simulate} is the relevant one. This in particularly allows to specify the beam structure, and then after that perform a loop or scan over beam energies, beam parameters, or structure function settings. The \ttt{beams} statement also applies to particle decay processes, where there is only a single beam. Here, it is usually redundant because no structure functions are possible, and the energy is fixed to the decaying particle's mass. However, it is needed for computing polarized decay, e.g. \begin{quote} \begin{footnotesize} \begin{verbatim} beams = Z beams_pol_density = @(0) \end{verbatim} \end{footnotesize} \end{quote} where for a boson at rest, the polarization axis is defined to be the $z$ axis. Beam polarization is described in detail below in Sec.~\ref{sec:polarization}. Note also that future versions of \whizard\ might give support for single-beam events, where structure functions for single particles indeed do make sense. In the following sections we list the available options for structure functions or spectra inside \whizard\ and explain their usage. More about the physics of the implemented structure functions can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Asymmetric beams and Crossing angles} \label{sec:asymmetricbeams} \whizard\ not only allows symmetric beam collisions, but basically arbitrary collider setups. In the case there are two different beam energies, the command \begin{quote} \begin{footnotesize} \ttt{beams\_momentum = {\em }, {\em }} \end{footnotesize} \end{quote} allows to specify the momentum (or as well energies for massless particles) for the beams. Note that for scattering processes both values for the beams must be present. So the following to setups for 14 TeV LHC proton-proton collisions are equivalent: \begin{quote} \begin{footnotesize} \ttt{beams = p, p => pdf\_builtin} \newline \ttt{sqrts = 14 TeV} \end{footnotesize} \end{quote} and \begin{quote} \begin{footnotesize} \ttt{beams = p, p => pdf\_builtin} \newline \ttt{beams\_momentum = 7 TeV, 7 TeV} \end{footnotesize} \end{quote} Asymmetric setups can be set by using different values for the two beam momenta, e.g. in a HERA setup: \begin{quote} \begin{footnotesize} \ttt{beams = e, p => none, pdf\_builtin} \ttt{beams\_momentum = 27.5 GeV, 920 GeV} \end{footnotesize} \end{quote} or for the BELLE experiment at the KEKB accelerator: \begin{quote} \begin{footnotesize} \ttt{beams = e1, E1} \ttt{beams\_momentum = 8 GeV, 3.5 GeV} \end{footnotesize} \end{quote} \whizard\ lets you know about the beam structure and calculates for you that the center of mass energy corresponds to 10.58 GeV: \begin{quote} \begin{footnotesize} \begin{Verbatim} | Beam structure: e-, e+ | momentum = 8.000000000000E+00, 3.500000000000E+00 | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 1.058300530253E+01 GeV | Beam structure: lab and c.m. frame differ \end{Verbatim} \end{footnotesize} \end{quote} It is also possible to specify beams for decaying particles, where \ttt{beams\_momentum} then only has a single argument, e.g.: \begin{quote} \begin{footnotesize} \ttt{process zee = Z => "e-", "e+"} \\ \ttt{beams = Z} \\ \ttt{beams\_momentum = 500 GeV} \\ \ttt{simulate (zee) \{ n\_events = 100 \} } \end{footnotesize} \end{quote} This would corresponds to a beam of $Z$ bosons with a momentum of 500 GeV. Note, however, that \whizard\ will always do the integration of the particle width in the particle's rest frame, while the moving beam is then only taken into account for the frame of reference for the simulation. Further options then simply having different beam energies describe a non-vanishing between the two incoming beams. Such concepts are quite common e.g. for linear colliders to improve the beam properties in the collimation region at the beam interaction points. Such crossing angles can be specified in the beam setup, too, using the \ttt{beams\_theta} command: \begin{quote} \begin{footnotesize} \ttt{beams = e1, E1} \\ \ttt{beams\_momentum = 500 GeV, 500 GeV} \\ \ttt{beams\_theta = 0, 10 degree} \end{footnotesize} \end{quote} It is important that when a crossing angle is being specified, and the collision system consequently never is the center-of-momentum system, the beam momenta have to explicitly set. Besides a planar crossing angle, one is even able to rotate an azimuthal distance: \begin{quote} \begin{footnotesize} \ttt{beams = e1, E1} \\ \ttt{beams\_momentum = 500 GeV, 500 GeV} \\ \ttt{beams\_theta = 0, 10 degree} \\ \ttt{beams\_phi = 0, 45 degree} \end{footnotesize} \end{quote} %%%%%%%%%%%%%%% \subsection{LHAPDF} \label{sec:lhapdf} For incoming hadron beams, the \ttt{beams} statement specifies which structure functions are used. The simplest example is the study of parton-parton scattering processes at a hadron-hadron collider such as LHC or Tevatron. The \lhapdf\ structure function set is selected by a syntax similar to the process setup, namely the example already shown above: \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => lhapdf \end{verbatim} \end{footnotesize} \end{quote} Note that there are slight differences in using the \lhapdf\ release series 6 and the older \fortran\ \lhapdf\ release series 5, at least concerning the naming conventions for the PDF sets~\footnote{Until \whizard\ version 2.2.1 including, only the \lhapdf\ series 5 was supported, while from version 2.2.2 on also the \lhapdf\ release series 6 has been supported.}. The above \ttt{beams} statement selects a default \lhapdf\ structure-function set for both proton beams (which is the \ttt{CT10} central set for \lhapdf\ 6, and \ttt{cteq6ll.LHpdf} central set for \lhapdf 5). The structure function will apply for all quarks, antiquarks, and the gluon as far as supported by the particular \lhapdf\ set. Choosing a different set is done by adding the filename as a local option to the \ttt{lhapdf} keyword: \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => lhapdf $lhapdf_file = "MSTW2008lo68cl" \end{verbatim} \end{footnotesize} \end{quote} for the actual \lhapdf\ 6 series, and \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => lhapdf $lhapdf_file = "MSTW2008lo68cl.LHgrid" \end{verbatim} \end{footnotesize} \end{quote} for \lhapdf 5.Similarly, a member within the set is selected by the numeric variable \verb|lhapdf_member| (for both release series of \lhapdf). In some cases, different structure functions have to be chosen for the two beams. For instance, we may look at $ep$ collisions: \begin{quote} \begin{footnotesize} \begin{verbatim} beams = "e-", p => none, lhapdf \end{verbatim} \end{footnotesize} \end{quote} Here, there is a list of two independent structure functions (each with its own option set, if applicable) which applies to the two beams. Another mixed case is $p\gamma$ collisions, where the photon is to be resolved as a hadron. The simple assignment \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, gamma => lhapdf, lhapdf_photon \end{verbatim} \end{footnotesize} \end{quote} will be understood as follows: \whizard\ selects the appropriate default structure functions (here we are using \lhapdf\ 5 as an example as the support of photon and pion PDFs in \lhapdf\ 6 has been dropped), \ttt{cteq6ll.LHpdf} for the proton and \ttt{GSG960.LHgrid} for the photon. The photon case has an additional integer-valued parameter \verb|lhapdf_photon_scheme|. (There are also pion structure functions available.) For modifying the default, you have to specify separate structure functions \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, gamma => lhapdf, lhapdf_photon $lhapdf_file = ... $lhapdf_photon_file = ... \end{verbatim} \end{footnotesize} \end{quote} Finally, the scattering of elementary photons on partons is described by \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, gamma => lhapdf, none \end{verbatim} \end{footnotesize} \end{quote} Note that for \lhapdf\ version 5.7.1 or higher and for PDF sets which support it, photons can be used as partons. There is one more option for the \lhapdf\ PDFs, namely to specify the path where the \lhapdf\ PDF sets reside: this is done with the string variable \ttt{\$lhapdf\_dir = "{\em }"}. Usually, it is not necessary to set this because \whizard\ detects this path via the \ttt{lhapdf-config} script during configuration, but in the case paths have been moved, or special files/special locations are to be used, the user can specify this location explicitly. %%%%%%%%%%%%%%% \subsection{Built-in PDFs} \label{sec:built-in-pdf} In addition to the possibility of linking against \lhapdf, \whizard\ comes with a couple of built-in PDFs which are selected via the \verb?pdf_builtin? keyword % \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => pdf_builtin \end{verbatim} \end{footnotesize} \end{quote} % The default PDF set is CTEQ6L, but other choices are also available by setting the string variable \verb?$pdf_builtin_set? to an appropiate value. E.g, modifying the above setup to % \begin{quote} \begin{footnotesize} \begin{verbatim} beams = p, p => pdf_builtin $pdf_builtin_set = "mrst2004qedp" \end{verbatim} \end{footnotesize} \end{quote} % would select the proton PDF from the MRST2004QED set. A list of all currently available PDFs can be found in Table~\ref{tab:pdfs}. % \begin{table} \centerline{\begin{tabular}{|l||l|p{0.2\textwidth}|l|} \hline Tag & Name & Notes & References \\\hline\hline % \ttt{cteq6l} & CTEQ6L & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \ttt{cteq6l1} & CTEQ6L1 & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \ttt{cteq6d} & CTEQ6D & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \ttt{cteq6m} & CTEQ6M & \mbox{}\hfill---\hfill\mbox{} & \cite{Pumplin:2002vw} \\\hline \hline \ttt{mrst2004qedp} & MRST2004QED (proton) & includes photon & \cite{Martin:2004dh} \\\hline \hline \ttt{mrst2004qedn} & MRST2004QED (neutron) & includes photon & \cite{Martin:2004dh} \\\hline \hline \ttt{mstw2008lo} & MSTW2008LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Martin:2009iq} \\\hline \ttt{mstw2008nlo} & MSTW2008NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Martin:2009iq} \\\hline \ttt{mstw2008nnlo} & MSTW2008NNLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Martin:2009iq} \\\hline \hline \ttt{ct10} & CT10 & \mbox{}\hfill---\hfill\mbox{} & \cite{Lai:2010vv} \\\hline \hline \ttt{CJ12\_max} & CJ12\_max & \mbox{}\hfill---\hfill\mbox{} & \cite{Owens:2012bv} \\\hline \ttt{CJ12\_mid} & CJ12\_mid & \mbox{}\hfill---\hfill\mbox{} & \cite{Owens:2012bv} \\\hline \ttt{CJ12\_min} & CJ12\_min & \mbox{}\hfill---\hfill\mbox{} & \cite{Owens:2012bv} \\\hline \hline \ttt{CJ15LO} & CJ15LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Accardi:2016qay} \\\hline \ttt{CJ15NLO} & CJ15NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Accardi:2016qay} \\\hline \hline \ttt{mmht2014lo} & MMHT2014LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Harland-Lang:2014zoa} \\\hline \ttt{mmht2014nlo} & MMHT2014NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Harland-Lang:2014zoa} \\\hline \ttt{mmht2014nnlo} & MMHT2014NNLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Harland-Lang:2014zoa} \\\hline \hline \ttt{CT14LL} & CT14LLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \ttt{CT14L} & CT14LO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \ttt{CT14N} & CT1414NLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \ttt{CT14NN} & CT14NNLO & \mbox{}\hfill---\hfill\mbox{} & \cite{Dulat:2015mca} \\\hline \hline % \end{tabular}} \caption{All PDF sets available as builtin sets. The two MRST2004QED sets also contain a photon.} \label{tab:pdfs} \end{table} The two MRST2004QED sets also contain the photon as a parton, which can be used in the same way as for \lhapdf\ from v5.7.1 on. Note, however, that there is no builtin PDF that contains a photon structure function. There is a \ttt{beams} structure function specifier \ttt{pdf\_builtin\_photon}, but at the moment this throws an error. It just has been implemented for the case that in future versions of \whizard\ a photon structure function might be included. Note that in general only the data sets for the central values of the different PDFs ship with \whizard. Using the error sets is possible, i.e. it is supported in the syntax of the code, but you have to download the corresponding data sets from the web pages of the PDF fitting collaborations. %%%%%%%%%%%%%%% \subsection{HOPPET $b$ parton matching} When the \hoppet\ tool~\cite{Salam:2008qg} for hadron-collider PDF structure functions and their manipulations are correctly linked to \whizard, it can be used for advanced calculations and simulations of hadron collider physics. Its main usage inside \whizard\ is for matching schemes between 4-flavor and 5-flavor schemes in $b$-parton initiated processes at hadron colliders. Note that in versions 2.2.0 and 2.2.1 it only worked together with \lhapdf\ version 5, while with the \lhapdf\ version 6 interface from version 2.2.2 on it can be used also with the modern version of PDFs from \lhapdf. Furthermore, from version 2.2.2, the \hoppet\ $b$ parton matching also works for the builtin PDFs. It depends on the corresponding process and the energy scales involved whether it is a better description to use the $g\to b\bar b$ splitting from the DGLAP evolution inside the PDF and just take the $b$ parton content of a PDF, e.g. in BSM Higgs production for large $\tan\beta$: $pp \to H$ with a partonic subprocess $b\bar b \to H$, or directly take the gluon PDFs and use $pp \to b\bar b H$ with a partonic subprocess $gg \to b \bar b H$. Elaborate schemes for a proper matching between the two prescriptions have been developed and have been incorporated into the \hoppet\ interface. Another prime example for using these matching schemes is single top production at hadron colliders. Let us consider the following setup: \begin{quote} \begin{footnotesize} \begin{Verbatim} process proc1 = b, u => t, d process proc2 = u, b => t, d process proc3 = g, u => t, d, B { $restrictions = "2+4 ~ W+" } process proc4 = u, g => t, d, B { $restrictions = "1+4 ~ W+" } beams = p,p => pdf_builtin sqrts = 14 TeV ?hoppet_b_matching = true $sample = "single_top_matched" luminosity = 1 / 1 fbarn simulate (proc1, proc2, proc3, proc4) \end{Verbatim} \end{footnotesize}%$ \end{quote} The first two processes are single top production from $b$ PDFs, the last two processes contain an explicit $g\to b\bar b$ splitting (the restriction, cf. Sec.~\ref{sec:process options} has been placed in order to single out the single top production signal process). PDFs are then chosen from the default builtin PDF (which is \ttt{CTEQ6L}), and the \hoppet\ matching routines are switched on by the flag \ttt{?hoppet\_b\_matching}. %%%%%%%%%%%%%%% \subsection{Lepton Collider ISR structure functions} \label{sec:lepton_isr} Initial state QED radiation off leptons is an important feature at all kinds of lepton colliders: the radiative return to the $Z$ resonance by ISR radiation was in fact the largest higher-order effect for the SLC and LEP I colliders. The soft-collinear and soft photon radiation can indeed be resummed/exponentiated to all orders in perturbation theory~\cite{Gribov:1972rt}, while higher orders in hard-collinear photons have to be explicitly calculated order by order~\cite{Kuraev:1985hb,Skrzypek:1990qs}. \whizard\ has an intrinsic implementation of the lepton ISR structure function that includes all orders of soft and soft-collinear photons as well as up to the third order in hard-collinear photons. It can be switched on by the following statement: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => isr \end{Verbatim} \end{footnotesize} \end{quote} As the ISR structure function is a single-beam structure function, this expression is synonymous for \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => isr, isr \end{Verbatim} \end{footnotesize} \end{quote} The ISR structure function can again be applied to only one of the two beams, e.g. in a HERA-like setup: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, p => isr, pdf_builtin \end{Verbatim} \end{footnotesize} \end{quote} Their are several options for the lepton-collider ISR structure function that are summarized in the following: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{isr\_alpha} & \ttt{0}/intrinsic & value of $\alpha_{QED}$ for ISR \\\hline \ttt{isr\_order} & \ttt{3} & max. order of hard-collinear photon emission \\\hline \ttt{isr\_mass} & \ttt{0}/intrinsic & mass of the radiating lepton \\\hline \ttt{isr\_q\_max} & \ttt{0}/$\sqrt{s}$ & upper cutoff for ISR \\\hline \hline \ttt{?isr\_recoil} & \ttt{false} & flag to switch on recoil/$p_T$ (\emph{deprecated})\\\hline \ttt{?isr\_keep\_energy} & \ttt{false} & recoil flag: conserve energy in splitting (\emph{deprecated}) \\\hline \end{tabular}}\mbox{} The maximal order of the hard-collinear photon emission taken into account by \whizard\ is set by the integer variable \ttt{isr\_order}; the default is the maximally available order of three. With the variable \ttt{isr\_alpha}, the value of the QED coupling constant $\alpha_{QED}$ used in the ISR structure function can be set. The default is taken from the active physics model. The mass of the radiating lepton (in most cases the electron) is set by \ttt{isr\_mass}; again the default is taken from the active physics model. Furthermore, the upper integration border for the ISR structure function which acts roughly as an upper hardness cutoff for the emitted photons, can be set through \ttt{isr\_q\_max}; if not set, the collider energy (possibly after beamstrahlung, cf. Sec.~\ref{sec:beamstrahlung}) $\sqrt{s}$ (or $\sqrt{\widehat{s}}$) is taken. Note that \whizard\ accounts for the exclusive effects of ISR radiation at the moment by a single (hard, resolved) photon in the event; a more realistic treatment of exclusive ISR photons in simulation is foreseen for a future version. While the ISR structure function is evaluated in the collinear limit, it is possible to generate transverse momentum for both the radiated photons and the recoiling partonic system. We recommend to stick to the collinear approximation for the integration step. Integration cuts should be set up such that they do not significantly depend on photon transverse momentum. In a subsequent simulation step, it is possible to transform the events with collinear ISR radiation into more realistic events with non-collinear radiation. To this end, \whizard\ provides a separate ISR photon handler which can be activated in the simulation step. The algorithm operates on the partonic event: it takes the radiated photons and the partons entering the hard process, and applies a $p_T$ distribution to those particles and their interaction products, i.e., all outgoing particles. Cuts that depend on photon $p_T$ may be applied to the modified events. For details on the ISR photon handler, cf.\ Sec.~\ref{sec:isr-photon-handler}. {\footnotesize The flag \ttt{?isr\_recoil} switches on $p_T$ recoil of the emitting lepton against photon radiation during integration; per default it is off. The flag \ttt{?isr\_keep\_energy} controls the mode of on-shell projection for the splitting process with $p_T$. Note that this feature is kept for backwards compatibility, but should not be used for new simulations. The reason is as follows: For a fraction of events, $p_T$ will become significant, and (i) energy/momentum non-conservation, applied to both beams separately, can lead to unexpected and unphysical effects, and (ii) the modified momenta enter the hard process, so the collinear approximation used in the ISR structure function computation does not hold. } %%%%%%%%%%%%%%% \subsection{Lepton Collider Beamstrahlung} \label{sec:beamstrahlung} At linear lepton colliders, the macroscopic electromagnetic interaction of the bunches leads to a distortion of the spectrum of the bunches that is important for an exact simulation of the beam spectrum. There are several methods to account for these effects. The most important tool to simulate classical beam-beam interactions in lepton-collider physics is \ttt{GuineaPig++}~\cite{Schulte:1998au,Schulte:1999tx,Schulte:2007zz}. A direct interface between this tool \ttt{GuineaPig++} and \whizard\ had existed as an inofficial add-on to the legacy branch \whizard\ttt{1}, but is no longer applicable in \whizard\ttt{2}. A \whizard-internal interface is foreseen for the very near future, most probably within this v2.2 release. Other options are to use parameterizations of the beam spectrum that have been included in the package \circeone~\cite{CIRCE} which has been interfaced to \whizard\ since version v1.20 and been included in the \whizard\ttt{2} release series. Another option is to generate a beam spectrum externally and then read it in as an ASCII data file, cf. Sec.~\ref{sec:beamevents}. More about this can be found in a dedicated section on lepton collider spectra, Sec.~\ref{sec:beamspectra}. In this section, we discuss the usage of beamstrahlung spectra by means of the \circeone\ package. The beamstrahlung spectra are true spectra, so they have to be applied to pairs of beams, and an application to only one beam is meaningless. They are switched on by this \ttt{beams} statement including structure functions: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => circe1 \end{Verbatim} \end{footnotesize} \end{quote} It is important to note that the parameterization of the beamstrahlung spectra within \circeone\ contain also processes where $e\to\gamma$ conversions have been taking place, i.e. also hard processes with one (or two) initial photons can be simulated with beamstrahlung switched on. In that case, the explicit photon flags, \ttt{?circe1\_photon1} and \ttt{?circe1\_photon2}, for the two beams have to be properly set, e.g. (ordering in the final state does not play a role): \begin{quote} \begin{footnotesize} \begin{Verbatim} process proc1 = A, e1 => A, e1 sqrts = 500 GeV beams = e1, E1 => circe1 ?circe1_photon1 = true integrate (proc1) process proc2 = e1, A => A, e1 sqrts = 1000 GeV beams = e1, A => circe1 ?circe1_photon2 = true \end{Verbatim} \end{footnotesize} \end{quote} or \begin{quote} \begin{footnotesize} \begin{Verbatim} process proc1 = A, A => Wp, Wm sqrts = 200 GeV beams = e1, E1 => circe1 ?circe1_photon1 = true ?circe1_photon2 = true ?circe1_generate = false \end{Verbatim} \end{footnotesize} \end{quote} In all cases (one or both beams with photon conversion) the beam spectrum applies to both beams simultaneously. In the last example ($\gamma\gamma\to W^+W^-$) the default \circeone\ generator mode was turned off by unsetting \verb|?circe1_generate|. In the other examples this flag is set, by default. For standard use cases, \circeone\ implements a beam-event generator inside the \whizard\ generator, which provides beam-event samples with correctly distributed probability. For electrons, the beamstrahlung spectrum sharply peaks near maximum energy. This distribution is most efficiently handled by the generator mode. By contrast, in the $\gamma\gamma$ mode, the beam-event c.m.\ energy is concentrated at low values. For final states with low invariant mass, which are typically produced by beamstrahlung photons, the generator mode is appropriate. However, the $W^+W^-$ system requires substantial energy, and such events will be very rare in the beam-event sample. Switching off the \circeone\ generator mode solves this problem. This is an overview over all options and flags for the \circeone\ setup for lepton collider beamstrahlung: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{?circe1\_photon1} & \ttt{false} & $e\to\gamma$ conversion for beam 1 \\\hline \ttt{?circe1\_photon2} & \ttt{false} & $e\to\gamma$ conversion for beam 2 \\\hline \ttt{circe1\_sqrts} & $\sqrt{s}$ & collider energy for the beam spectrum \\\hline \ttt{?circe1\_generate} & \ttt{true} & flag for the \circeone\ generator mode \\\hline \ttt{?circe1\_map} & \ttt{true} & flag to apply special phase-space mapping \\\hline \ttt{circe1\_mapping\_slope} & \ttt{2.} & value of PS mapping exponent \\\hline \ttt{circe1\_eps} & \ttt{1E-5} & parameter for mapping of spectrum peak position \\\hline \ttt{circe1\_ver} & \ttt{0} & internal version of \circeone\ package \\\hline \ttt{circe1\_rev} & \ttt{0}/most recent & internal revision of \circeone\ \\\hline \ttt{\$circe1\_acc} & \ttt{SBAND} & accelerator type \\\hline \ttt{circe1\_chat} & \ttt{0} & chattiness/verbosity of \circeone \\\hline \end{tabular}}\mbox{} The collider energy relevant for the beamstrahlung spectrum is set by \ttt{circe1\_sqrts}. As a default, this is always the value of \ttt{sqrts} set in the \sindarin\ script. However, sometimes these values do not match, e.g. the user wants to simulate $t\bar t h$ at \ttt{sqrts = 550 GeV}, but the only available beam spectrum is for 500 GeV. In that case, \ttt{circe1\_sqrts = 500 GeV} has to be set to use the closest possible available beam spectrum. As mentioned in the discussion of the examples above, in \circeone\ there are two options to use the beam spectra for beamstrahlung: intrinsic semi-analytic approximation formulae for the spectra, or a Monte-Carlo sampling of the sampling. The second possibility always give a better description of the spectra, and is the default for \whizard. It can, however, be switched off by setting the flag \ttt{?circe1\_generate} to \ttt{false}. As the beamstrahlung spectra are sharply peaked at the collider energy, but still having long tails, a mapping of the spectra for an efficient phase-space sampling is almost mandatory. This is the default in \whizard, which can be changed by the flag \ttt{?circe1\_map}. Also, the default exponent for the mapping can be changed from its default value \ttt{2.} with the variable \ttt{circe1\_mapping\_slope}. It is important to efficiently sample the peak position of the spectrum; the effective ratio of the peak to the whole sampling interval can be set by the parameter \ttt{circe1\_eps}. The integer parameter \ttt{circe1\_chat} sets the chattiness or verbosity of the \circeone\ package, i.e. how many messages and warnings from the beamstrahlung generation/sampling will be issued. The actual internal version and revision of the \circeone\ package are set by the two integer parameters \ttt{circe1\_ver} and \ttt{circe1\_rev}. The default is in any case always the newest version and revision, while older versions are still kept for backwards compatibility and regression testing. Finally, the geometry and design of the accelerator type is set with the string variable \ttt{\$circe1\_acc}: it contains the possible options for the old \ttt{"SBAND"} and \ttt{"XBAND"} setups, as well as the \ttt{"TESLA"} and JLC/NLC SLAC design \ttt{"JLCNLC"}. The setups for the most important energies of the ILC as they are summarized in the ILC TDR~\cite{Behnke:2013xla,Baer:2013cma,Adolphsen:2013jya,Adolphsen:2013kya} are available as \ttt{ILC}. Beam spectra for the CLIC~\cite{Aicheler:2012bya,Lebrun:2012hj,Linssen:2012hp} linear collider are much more demanding to correctly simulate (due to the drive beam concept; only the low-energy modes where the drive beam is off can be simulated with the same setup as the abovementioned machines). Their setup will be supported soon in one of the upcoming \whizard\ versions within the \circetwo\ package. An example of how to generate beamstrahlung spectra with the help of the package \circetwo\ (that is also a part of \whizard) is this: \begin{quote} \begin{footnotesize} \begin{Verbatim} process eemm = e1, E1 => e2, E2 sqrts = 500 GeV beams = e1, E1 => circe2 $circe2_file = "ilc500.circe" $circe2_design = "ILC" ?circe_polarized = false \end{Verbatim} \end{footnotesize}%$ \end{quote} Here, the ILC design is used for a beamstrahlung spectrum at 500 GeV nominal energy, with polarization averaged (hence, the setting of polarization to \ttt{false}). A list of all available options can be found in Sec.~\ref{sec:photoncoll}. More technical details about the simulation of beamstrahlung spectra see the documented source code of the \circeone\ package, as well as Chap.~\ref{chap:hardint}. In the next section, we discuss how to read in beam spectra from external files. %%%%%%%%%%%%%%% \subsection{Beam events} \label{sec:beamevents} As mentioned in the previous section, beamstrahlung is one of the crucial ingredients for a realistic simulation of linear lepton colliders. One option is to take a pre-generated beam spectrum for such a machine, and make it available for simulation within \whizard\ as an external ASCII data file. Such files basically contain only pairs of energy fractions of the nominal collider energy $\sqrt{s}$ ($x$ values). In \whizard\ they can be used in simulation with the following \ttt{beams} statement: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => beam_events $beam_events_file = "" \end{Verbatim} \end{footnotesize}%$ \end{quote} Note that beam spectra must always be pair spectra, i.e. they are automatically applied to both beam simultaneously. Beam spectra via external files are expected to reside in the current working directory. Alternatively, \whizard\ searches for them in the install directory of \whizard\ in \ttt{share/beam-sim}. There you can find an example file, \ttt{uniform\_spread\_2.5\%.dat} for such a beam spectrum. The only possible parameter that can be set is the flag \ttt{?beam\_events\_warn\_eof} whose default is \ttt{true}. This triggers the issuing of a warning when the end of file of an external beam spectrum file is reached. In such a case, \whizard\ starts to reuse the same file again from the beginning. If the available data points in the beam events file are not big enough, this could result in an insufficient sampling of the beam spectrum. %%%%%%%%%%%%%%% \subsection{Gaussian beam-energy spread} \label{sec:gaussian} Real beams have a small energy spread. If beamstrahlung is small, the spread may be approximately described as Gaussian. As a replacement for the full simulation that underlies \ttt{CIRCE2} spectra, it is possible to impose a Gaussian distributed beam energy, separately for each beam. \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => gaussian gaussian_spread1 = 0.1\% gaussian_spread2 = 0.2\% \end{Verbatim} \end{footnotesize}%$ \end{quote} (Note that the \% sign means multiplication by 0.01, as it should.) The spread values are defined as the $\sigma$ value of the Gaussian distribution, i.e., $2/3$ of the events are within $\pm 1\sigma$ for each beam, respectively. %%%%%%%%%%%%%%%% \subsection{Equivalent photon approximation} \label{sec:epa} The equivalent photon approximation (EPA) uses an on-shell approximation for the $e \to e\gamma$ collinear splitting to allow the simulation of photon-induced backgrounds in lepton collider physics. The original concept is that of the Weizs\"acker-Williams approximation~\cite{vonWeizsacker:1934sx,Williams:1934ad,Budnev:1974de}. This is a single-beam structure function that can be applied to both beams, or also to one beam only. Examples are: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => epa \end{Verbatim} \end{footnotesize} \end{quote} or for a single beam: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, p => epa, pdf_builtin \end{Verbatim} \end{footnotesize} \end{quote} The last process allows the reaction of (quasi-) on-shell photons with protons. In the following, we collect the parameters and flags that can be adjusted when using the EPA inside \whizard: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{epa\_alpha} & \ttt{0}/intrinsic & value of $\alpha_{QED}$ for EPA \\\hline \ttt{epa\_x\_min} & \ttt{0.} & soft photon cutoff in $x$ (mandatory) \\\hline \ttt{epa\_q\_min} & \ttt{0.} & minimal $\gamma$ momentum transfer \\\hline \ttt{epa\_mass} & \ttt{0}/intrinsic & mass of the radiating fermion (mandatory) \\\hline \ttt{epa\_q\_max} & \ttt{0}/$\sqrt{s}$ & upper cutoff for EPA \\\hline \ttt{?epa\_recoil} & \ttt{false} & flag to switch on recoil/$p_T$ \\\hline \ttt{?epa\_keep\_energy} & \ttt{false} & recoil flag to conserve energy in splitting \\\hline \end{tabular}}\mbox{} The adjustable parameters are partially similar to the parameters in the QED initial-state radiation (ISR), cf. Sec.~\ref{sec:lepton_isr}: the parameter \ttt{epa\_alpha} sets the value of the electromagnetic coupling constant, $\alpha_{QED}$ used in the EPA structure function. If not set, this is taken from the value inside the active physics model. The same is true for the mass of the particle that radiates the photon of the hard interaction, which can be reset by the user with the variable \ttt{epa\_mass}. There are two dimensionful scale parameters, the minimal momentum transfer to the photon, \ttt{epa\_q\_min}, which must not be zero, and the upper momentum-transfer cutoff for the EPA structure function, \ttt{epa\_q\_max}. The default for the latter value is the collider energy, $\sqrt{s}$, or the energy reduced by another structure function like e.g. beamstrahlung, $\sqrt{\hat{s}}$. Furthermore, there is a soft-photon regulator for the splitting function in $x$ space, \ttt{epa\_x\_min}, which also has to be explicitly set different from zero. Hence, a minimal viable scenario that will be accepted by \whizard\ looks like this: \begin{quote} \begin{footnotesize} \begin{Verbatim} beams = e1, E1 => epa epa_q_min = 5 GeV epa_x_min = 0.01 \end{Verbatim} \end{footnotesize} \end{quote} Finally, like the ISR case in Sec.~\ref{sec:lepton_isr}, there is a flag to consider the recoil of the photon against the radiating electron by setting \ttt{?epa\_recoil} to \ttt{true} (default: \ttt{false}). Though in principle processes like $e^+ e^- \to e^+ e^- \gamma \gamma$ where the two photons have been created almost collinearly and then initiate a hard process could be described by exact matrix elements and exact kinematics. However, the numerical stability in the very far collinear kinematics is rather challenging, such that the use of the EPA is very often an acceptable trade-off between quality of the description on the one hand and numerical stability and speed on the other hand. In the case, the EPA is set after a second structure function like a hadron collider PDF, there is a flavor summation over the quark constituents inside the proton, which are then the radiating fermions for the EPA. Here, the masses of all fermions have to be identical. More about the physics of the equivalent photon approximation can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Effective $W$ approximation} \label{sec:ewa} An approach similar to the equivalent photon approximation (EPA) discussed in the previous section Sec.~\ref{sec:epa}, is the usage of a collinear splitting function for the radiation of massive electroweak vector bosons $W$/$Z$, the effective $W$ approximation (EWA). It has been developed for the description of high-energy weak vector-boson fusion and scattering processes at hadron colliders, particularly the Superconducting Super-Collider (SSC). This was at a time when the simulation of $2\to 4$ processes war still very challenging and $2\to 6$ processes almost impossible, such that this approximation was the only viable solution for the simulation of processes like $pp \to jjVV$ and subsequent decays of the bosons $V \equiv W, Z$. Unlike the EPA, the EWA is much more involved as the structure functions do depend on the isospin of the radiating fermions, and are also different for transversal and longitudinal polarizations. Also, a truely collinear kinematics is never possible due to the finite $W$ and $Z$ boson masses, which start becoming more and more negligible for energies larger than the nominal LHC energy of 14 TeV. Though in principle all processes for which the EWA might be applicable are technically feasible in \whizard\ to be generated also via full matrix elements, the EWA has been implemented in \whizard\ for testing purposes, backwards compatibility and comparison with older simulations. Like the EPA, it is a single-beam structure function that can be applied to one or both beams. We only give an example for both beams here, this is for a 3 TeV CLIC collider: \begin{quote} \begin{footnotesize} \begin{Verbatim} sqrts = 3 TeV beams = e1, E1 => ewa \end{Verbatim} \end{footnotesize} \end{quote} And this is for LHC or a higher-energy follow-up collider (which also shows the concatenation of the single-beam structure functions, applied to both beams consecutively, cf. Sec.~\ref{sec:concatenation}: \begin{quote} \begin{footnotesize} \begin{Verbatim} sqrts = 14 TeV beams = p, p => pdf_builtin => ewa \end{Verbatim} \end{footnotesize} \end{quote} Again, we list all the options, parameters and flags that can be adapted for the EWA: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{ewa\_x\_min} & \ttt{0.} & soft $W$/$Z$ cutoff in $x$ (mandatory) \\\hline \ttt{ewa\_mass} & \ttt{0}/intrinsic & mass of the radiating fermion \\\hline \ttt{ewa\_pt\_max} & \ttt{0}/$\sqrt{\hat{s}}$ & upper cutoff for EWA \\\hline \ttt{?ewa\_recoil} & \ttt{false} & recoil switch \\\hline \ttt{?ewa\_keep\_energy} & \ttt{false} & energy conservation for recoil in splitting \\\hline \end{tabular}}\mbox{} First of all, all coupling constants are taken from the active physics model as they have to be consistent with electroweak gauge invariance. Like for EPA, there is a soft $x$ cutoff for the $f \to f V$ splitting, \ttt{ewa\_x\_min}, that has to be set different from zero by the user. Again, the mass of the radiating fermion can be set explicitly by the user; and, also again, the masses for the flavor sum of quarks after a PDF as radiators of the electroweak bosons have to be identical. Also for the EWA, there is an upper cutoff for the $p_T$ of the electroweak boson, that can be set via \ttt{eta\_pt\_max}. Indeed, the transversal $W$/$Z$ structure function is logarithmically divergent in that variable. If it is not set by the user, it is estimated from $\sqrt{s}$ and the splitting kinematics. For the EWA, there is a flag to switch on a recoil for the electroweak boson against the radiating fermion, \ttt{?ewa\_recoil}. Note that this is an experimental feature that is not completely tested. In any case, the non-collinear kinematics violates 4-four momentum conservation, so there are two choices: either to conserve the energy (\ttt{?ewa\_keep\_energy = true}) or to conserve 3-momentum (\ttt{?ewa\_keep\_energy = false}). Momentum conservation for the kinematics is the default. This is due to the fact that for energy conservation, there will be a net total momentum in the event including the beam remnants (ISR/EPA/EWA radiated particles) that leeds to unexpected or unphysical features in the energy distributions of the beam remnants recoiling against the rest of the event. More details about the physics can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Energy scans using structure functions} In \whizard, there is an implementation of a pair spectrum, \ttt{energy\_scan}, that allows to scan the energy dependence of a cross section without actually scanning over the collider energies. Instead, only a single integration at the upper end of the scan interval over the process with an additional pair spectrum structure function performed. The structure function is chosen in such a way, that the distribution of $x$ values of the energy scan pair spectrum translates in a plot over the energy of the final state in an energy scan from \ttt{0} to \ttt{sqrts} for the process under consideration. The simplest example is the $1/s$ fall-off with the $Z$ resonance in $e^+e^- \to \mu^+ \mu^-$, where the syntax is very easy: \begin{quote} \begin{footnotesize} \begin{Verbatim} process eemm = e1, E1 => e2, E2 sqrts = 500 GeV cuts = sqrts_hat > 50 beams = e1, E1 => energy_scan integrate (eemm) \end{Verbatim} \end{footnotesize} \end{quote} The value of \ttt{sqrts = 500 GeV} gives the upper limit for the scan, while the cut effectively let the scan start at 50 GeV. There are no adjustable parameters for this structure function. How to plot the invariant mass distribution of the final-state muon pair to show the energy scan over the cross section, will be explained in Sec.~\ref{sec:analysis}. More details can be found in Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Photon collider spectra} \label{sec:photoncoll} One option that has been discussed as an alternative possibility for a high-energy linear lepton collider is to convert the electron and positron beam via Compton backscattering off intense laser beams into photon beams~\cite{Ginzburg:1981vm,Telnov:1989sd,Telnov:1995hc}. Naturally, due to the production of the photon beams and the inherent electron spectrum, the photon beams have a characteristic spectrum. The simulation of such spectra is possible within \whizard\ by means of the subpackage \circetwo, which have been mentioned already in Sec.~\ref{sec:beamstrahlung}. It allows to give a much more elaborate description of a linear lepton collider environment than \circeone\ (which, however, is not in all cases necessary, as the ILC beamspectra for electron/positrons can be perfectly well described with \circeone). Here is a typical photon collider setup where we take a photon-initiated process: \begin{quote} \begin{footnotesize} \begin{Verbatim} process aaww = A, A => Wp, Wm beams = A, A => circe2 $circe2_file = "teslagg_500_polavg.circe" $circe2_design = "TESLA/GG" ?circe2_polarized = false \end{Verbatim} \end{footnotesize}%$ \end{quote} Here, the photons are the initial states initiating the hard scattering. The structure function is \ttt{circe2} which always is a pair spectrum. The list of available options are: \vspace{2mm} \centerline{\begin{tabular}{|l|l|l|}\hline Parameter & Default & Meaning \\\hline\hline \ttt{?circe2\_polarized} & \ttt{true} & spectrum respects polarization info \\\hline \ttt{\$circe2\_file} & -- & name of beam spectrum data file \\\hline \ttt{\$circe2\_design} & \ttt{"*"} & collider design \\\hline \end{tabular}}\mbox{} The only logical flag \ttt{?circe2\_polarized} let \whizard\ know whether it should keep polarization information in the beam spectra or average over polarizations. Naturally, because of the Compton backscattering generation of the photons, photon spectra are always polarized. The collider design can be specified by the string variable \ttt{\$circe2\_design}, where the default setting \ttt{"*"} corresponds to the default of \circetwo\ (which is the TESLA 500 GeV machine as discussed in the TESLA Technical Design Report~\cite{AguilarSaavedra:2001rg,Richard:2001qm}). Note that up to now there have not been any setups for a photon collider option for the modern linear collider concepts like ILC and CLIC. The string variable \ttt{\$circe2\_file} then allows to give the name of the file containing the actual beam spectrum; all files that ship with \whizard\ are stored in the directory \ttt{circe2/share/data}. More details about the subpackage \circetwo\ and the physics it covers, can be found in its own manual and the chapter Chap.~\ref{chap:hardint}. %%%%%%%%%%%%%%% \subsection{Concatenation of several structure functions} \label{sec:concatenation} As has been shown already in Sec.~\ref{sec:epa} and Sec.~\ref{sec:ewa}, it is possible within \whizard\ to concatenate more than one structure function, irrespective of the fact, whether the structure functions are single-beam structure functions or pair spectra. One important thing is whether there is a phase-space mapping for these structure functions. Also, there are some combinations which do not make sense from the physics point of view, for example using lepton-collider ISR for protons, and then afterwards switching on PDFs. Such combinations will be vetoed by \whizard, and you will find an error message like (cf. also Sec.~\ref{sec:errors}): \begin{interaction} ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Beam structure: [....] not supported ****************************************************************************** ****************************************************************************** \end{interaction} Common examples for the concatenation of structure functions are linear collider applications, where beamstrahlung (macroscopic electromagnetic beam-beam interactions) and electron QED initial-state radiation are both switched on: \begin{code} beams = e1, E1 => circe1 => isr \end{code} Another possibility is the simulation of photon-induced backgrounds at ILC or CLIC, using beamstrahlung and equivalent photon approximation (EPA): \begin{code} beams = e1, E1 => circe1 => epa \end{code} or with beam events from a data file: \begin{code} beams = e1, E1 => beam_events => isr \end{code} In hadron collider physics, parton distribution functions (PDFs) are basically always switched on, while afterwards the user could specify to use the effective $W$ approximation (EWA) to simulate high-energy vector boson scattering: \begin{code} sqrts = 100 TeV beams = p, p => pdf_builtin => ewa \end{code} Note that this last case involves a flavor sum over the five active quark (and anti-quark) species $u$, $d$, $c$, $s$, $b$ in the proton, all of which act as radiators for the electroweak vector bosons in the EWA. This would be an example with three structure functions: \begin{code} beams = e1, E1 => circe1 => isr => epa \end{code} %%%%%%%%%%%%%%% \section{Polarization} \label{sec:polarization} %%%%% \subsection{Initial state polarization} \label{sec:initialpolarization} \whizard\ supports polarizing the inital state fully or partially by assigning a nontrivial density matrix in helicity space. Initial state polarization requires a beam setup and is initialized by means of the \ttt{beams\_pol\_density} statement\footnote{Note that the syntax for the specification of beam polarization has changed from version v2.1 to v2.2 and is incompatible between the two release series. The old syntax \ttt{beam\_polarization} with its different polarization constructors has been discarded in favor of a unified syntax.}: \begin{quote} \begin{footnotesize} \begin{verbatim} beams_pol_density = @([]), @([]) \end{verbatim} \end{footnotesize} \end{quote} The command \ttt{beams\_pol\_fraction} gives the degree of polarization of the two beams: \begin{quote} \begin{footnotesize} \begin{verbatim} beams_pol_fraction = , \end{verbatim} \end{footnotesize} \end{quote} Both commands in the form written above apply to scattering processes, where the polarization of both beams must be specified. The \ttt{beams\_pol\_density} and \ttt{beams\_pol\_fraction} are possible with a single beam declaration if a decay process is considered, but only then. While the syntax for the command \ttt{beams\_pol\_fraction} is pretty obvious, the syntax for the actual specification of the beam polarization is more intricate. We start with the polarization fraction: for each beam there is a real number between zero (unpolarized) and one (complete polarization) that can be specified either as a floating point number like \ttt{0.4} or with a percentage: \ttt{40 \%}. Note that the actual arithmetics is sometimes counterintuitive: 80 \% left-handed electron polarization means that 80 \% of the electron beam are polarized, 20 \% are unpolarized, i.e. 20 \% have half left- and half right-handed polarization each. Hence, 90 \% of the electron beam is left-handed, 10 \% is right-handed. How does the specification of the polarization work? If there are no entries at all in the polarization constructor, \ttt{@()}, the beam is unpolarized, and the spin density matrix is proportional to the unit/identity matrix. Placing entries into the \ttt{@()} constructor follows the concept of sparse matrices, i.e. the entries that have been specified will be present, while the rest remains zero. Single numbers do specify entries for that particular helicity on the main diagonal of the spin density matrix, e.g. for an electron \ttt{@(-1)} means (100\%) left-handed polarization. Different entries are separated by commas: \ttt{@(1,-1)} sets the two diagonal entries at positions $(1,1)$ and $(-1,-1)$ in the density matrix both equal to one. Two remarks are in order already here. First, note that you do not have to worry about the correct normalization of the spin density matrix, \whizard\ is taking care of this automatically. Second, in the screen output for the beam data, only those entries of the spin density matrix that have been specified by the user, will be displayed. If a \ttt{beams\_pol\_fraction} statement appears, other components will be non-zero, but might not be shown. E.g. ILC-like, 80 \% polarization of the electrons, 30 \% positron polarization will be specified like this for left-handed electrons and right-handed positrons: \begin{code} beams = e1, E1 beams_pol_density = @(-1), @(+1) beams_pol_fraction = 80%, 30% \end{code} The screen output will be like this: \begin{code} | ------------------------------------------------------------------------ | Beam structure: e-, e+ | polarization (beam 1): | @(-1: -1: ( 1.000000000000E+00, 0.000000000000E+00)) | polarization (beam 2): | @(+1: +1: ( 1.000000000000E+00, 0.000000000000E+00)) | polarization degree = 0.8000000, 0.3000000 | Beam data (collision): | e- (mass = 0.0000000E+00 GeV) polarized | e+ (mass = 0.0000000E+00 GeV) polarized \end{code} But because of the fraction of unpolarized electrons and positrons, the spin density matrices for electrons and positrons are: \[ \rho(e^-) = \diag \left ( 0.10, 0.90 \right) \qquad \rho(e^+) = \diag \left ( 0.65, 0.35 \right) \quad , \] respectively. So, in general, only the entries due to the polarized fraction will be displayed on screen. We will come back to more examples below. Again, the setting of a single entry, e.g. \ttt{@($\pm m$)}, which always sets the diagonal component $(\pm m, \pm m)$ of the spin density matrix equal to one. Here $m$ can have the following values for the different spins (in parentheses are entries that exist only for massive particles): \vspace{1mm} \begin{center} \begin{tabular}{|l|l|l|}\hline Spin $j$ & Particle type & possible $m$ values \\\hline 0 & Scalar boson & 0 \\ 1/2 & Spinor & +1, -1 \\ 1 & (Massive) Vector boson & +1, (0), -1 \\ 3/2 & (Massive) Vectorspinor & +2, (+1), (-1), -2 \\ 2 & (Massive) Tensor & +2, (+1), (0), (-1), -2 \\\hline \end{tabular} \end{center} \vspace{1mm} Off-diagonal entries that are equal to one (up to the normalization) of the spin-density matrix can be specified simply by the position, namely: \ttt{@($m$:$m'$, $m''$)}. This would result in a spin density matrix with diagonal entry $1$ for the position $(m'', m'')$, and an entry of $1$ for the off-diagonal position $(m,m')$. Furthermore, entries in the density matrix different from $1$ with a numerical value \ttt{{\em }} can be specified, separated by another colon: \ttt{@($m$:$m'$:{\em })}. Here, it does not matter whether $m$ and $m'$ are different or not. For $m = m'$ also diagonal spin density matrix entries different from one can be specified. Note that because spin density matrices have to be Hermitian, only the entry $(m,m')$ has to be set, while the complex conjugate entry at the transposed position $(m',m)$ is set automatically by \whizard. We will give some general density matrices now, and after that a few more definite examples. In the general setups below, we always give the expression for the spin density matrix only for one single beam. % { \newcommand{\cssparse}[4]{% \begin{pmatrix} #1 & 0 & \cdots & \cdots & #3 \\ 0 & 0 & \ddots & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \ddots & 0 & 0 \\ #4 & \cdots & \cdots & 0 & #2 \end{pmatrix}% } % \begin{itemize} \item {\bf Unpolarized:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @()} \end{footnotesize} \end{center} % \newline This has the same effect as not specifying any polarization at all and is the only constructor available for scalars and fermions declared as left- or right-handed (like the neutrino). Density matrix: \[ \rho = \frac{1}{|m|}\mathbb{I} \] ($|m|$: particle multiplicity which is 2 for massless, $2j + 1$ for massive particles). % \item {\bf Circular polarization:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @($\pm j$) \qquad beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} A fraction $f$ (parameter range $f \in \left[0\;;\;1\right]$) of the particles are in the maximum / minimum helicity eigenstate $\pm j$, the remainder is unpolarized. For spin $\frac{1}{2}$ and massless particles of spin $>0$, only the maximal / minimal entries of the density matrix are populated, and the density matrix looks like this: \[ \rho = \diag\left(\frac{1\pm f}{2}\;,\;0\;,\;\dots\;,\;0\;, \frac{1\mp f}{2}\right) \] % \item {\bf Longitudinal polarization (massive):} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(0) \qquad beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} We consider massive particles with maximal spin component $j$, a fraction $f$ of which having longitudinal polarization, the remainder is unpolarized. Longitudinal polarization is (obviously) only available for massive bosons of spin $>0$. Again, the parameter range for the fraction is: $f \in \left[0\;;\;1\right]$. The density matrix has the form: \[ \rho = \diag\left(\frac{1-f}{|m|}\;,\;\dots\;,\;\frac{1-f}{|m|}\;,\; \frac{1+f \left(|m| - 1\right)}{|m|}\;,\;\frac{1-f}{|m|}\;, \;\dots\;,\;\frac{1-f}{|m|}\right) \] ($|m| = 2j+1 $: particle multiplicity) % \item {\bf Transverse polarization (along an axis):} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(j, -j, j:-j:exp(-I*phi)) \qquad beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} This so called transverse polarization is a polarization along an arbitrary direction in the $x-y$ plane, with $\phi=0$ being the positive $x$ direction and $\phi=90^\circ$ the positive $y$ direction. Note that the value of \ttt{phi} has either to be set inside the beam polarization expression explicitly or by a statement \ttt{real phi = {\em val} degree} before. A fraction $f$ of the particles are polarized, the remainder is unpolarized. Note that, although this yields a valid density matrix for all particles with multiplicity $>1$ (in which the only the highest and lowest helicity states are populated), it is meaningful only for spin $\frac{1}{2}$ particles and massless bosons of spin $>0$. The range of the parameters are: $f \in \left[0\;;\;1\right]$ and $\phi \in \mathbb{R}$. This yields a density matrix: \[ \rho = \cssparse{1}{1} {\frac{f}{2}\,e^{-i\phi}} {\frac{f}{2}\,e^{i\phi}} \] (for antiparticles, the matrix is conjugated). % \item {\bf Polarization along arbitrary axis $\left(\theta, \phi\right)$:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(j:j:1-cos(theta), j:-j:sin(theta)*exp(-I*phi), -j:-j:1+cos(theta))} \qquad\quad\qquad \ttt{beams\_pol\_fraction = $f$} \end{footnotesize} \end{center} This example describes polarization along an arbitrary axis in polar coordinates (polar axis in positive $z$ direction, polar angle $\theta$, azimuthal angle $\phi$). A fraction $f$ of the particles are polarized, the remainder is unpolarized. Note that, although axis polarization defines a valid density matrix for all particles with multiplicity $>1$, it is meaningful only for particles with spin $\frac{1}{2}$. Valid ranges for the parameters are $f \in \left[0\;;\;1\right]$, $\theta \in \mathbb{R}$, $\phi \in \mathbb{R}$. The density matrix then has the form: \[ \rho = \frac{1}{2}\cdot \cssparse{1 - f\cos\theta}{1 + f\cos\theta} {f\sin\theta\, e^{-i\phi}}{f\sin\theta\, e^{i\phi}} \] % \item {\bf Diagonal density matrix:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @(j:j:$h_j$, j-1:j-1:$h_{j-1}$, $\ldots$, -j:-j:$h_{-j}$)} \end{footnotesize} \end{center} This defines an arbitrary diagonal density matrix with entries $\rho_{j,j}\,,\,\dots\,,\,\rho_{-j,-j}$. % \item {\bf Arbitrary density matrix:} \begin{center} \begin{footnotesize} \ttt{beams\_pol\_density = @($\{m:m':x_{m,m'}\}$)}: \end{footnotesize} \end{center} Here, \ttt{$\{m:m':x_{m,m'}\}$} denotes a selection of entries at various positions somewhere in the spin density matrix. \whizard\ will check whether this is a valid spin density matrix, but it does e.g. not have to correspond to a pure state. % \end{itemize} } % The beam polarization statements can be used both globally directly with the \ttt{beams} specification, or locally inside the \ttt{integrate} or \ttt{simulate} command. Some more specific examples are in order to show how initial state polarization works: % \begin{itemize} \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = A, A beams_pol_density = @(+1), @(1, -1, 1:-1:-I) \end{verbatim} \end{footnotesize} \end{quote} This declares the initial state to be composed of two incoming photons, where the first photon is right-handed, and the second photon has transverse polarization in $y$ direction. % \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = A, A beams_pol_density = @(+1), @(1, -1, 1:-1:-1) \end{verbatim} \end{footnotesize} \end{quote} Same as before, but this time the second photon has transverse polarization in $x$ direction. % \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = "W+" beams_pol\_density = @(0) \end{verbatim} \end{footnotesize} \end{quote} This example sets up the decay of a longitudinal vector boson. % \item \begin{quote} \begin{footnotesize} \begin{verbatim} beams = E1, e1 scan int hel_ep = (-1, 1) { scan int hel_em = (-1, 1) { beams_pol_density = @(hel_ep), @(hel_em) integrate (eeww) } } integrate (eeww) \end{verbatim} \end{footnotesize} \end{quote} This example loops over the different positron and electron helicity combinations and calculates the respective integrals. The \ttt{beams\_pol\_density} statement is local to the scan loop(s) and, therefore, the last \ttt{integrate} calculates the unpolarized integral. \end{itemize} % Although beam polarization should be straightforward to use, some pitfalls exist for the unwary: \begin{itemize} \item Once \ttt{beams\_pol\_density} is set globally, it persists and is applied every time \ttt{beams} is executed (unless it is reset). In particular, this means that code like \begin{quote} \begin{footnotesize} \begin{verbatim} process wwaa = Wp, Wm => A, A process zee = Z => e1, E1 sqrts = 200 GeV beams_pol_density = @(1, -1, 1:-1:-1), @() beams = Wp, Wm integrate (wwaa) beams = Z integrate (zee) beams_pol_density = @(0) \end{verbatim} \end{footnotesize} \end{quote} will throw an error, because \whizard\ complains that the spin density matrix has the wrong dimensionality for the second (the decay) process. This kind of trap can be avoided be using \ttt{beams\_pol\_density} only locally in \ttt{integrate} or \ttt{simulate} statements. % \item On-the-fly integrations executed by \ttt{simulate} use the beam setup found at the point of execution. This implies that any polarization settings you have previously done affect the result of the integration. % \item The \ttt{unstable} command also requires integrals of the selected decay processes, and will compute them on-the-fly if they are unavailable. Here, a polarized integral is not meaningful at all. Therefore, this command ignores the current \ttt{beam} setting and issues a warning if a previous polarized integral is available; this will be discarded. \end{itemize} \subsection{Final state polarization} Final state polarization is available in \whizard\ in the sense that the polarization of real final state particles can be retained when generating simulated events. In order for the polarization of a particle to be retained, it must be declared as polarized via the \ttt{polarized} statement \begin{quote} \begin{footnotesize} \begin{verbatim} polarized particle [, particle, ...] \end{verbatim} \end{footnotesize} \end{quote} The effect of \ttt{polarized} can be reversed with the \ttt{unpolarized} statement which has the same syntax. For example, \begin{quote} \begin{footnotesize} \begin{verbatim} polarized "W+", "W-", Z \end{verbatim} \end{footnotesize} \end{quote} will cause the polarization of all final state $W$ and $Z$ bosons to be retained, while \begin{quote} \begin{footnotesize} \begin{verbatim} unpolarized "W+", "W-", Z \end{verbatim} \end{footnotesize} \end{quote} will reverse the effect and cause the polarization to be summed over again. Note that \ttt{polarized} and \ttt{unpolarized} are global statements which cannot be used locally as command arguments and if you use them e.g. in a loop, the effects will persist beyond the loop body. Also, a particle cannot be \ttt{polarized} and \ttt{unstable} at the same time (this restriction might be loosened in future versions of \whizard). After toggling the polarization flag, the generation of polarized events can be requested by using the \ttt{?polarized\_events} option of the \ttt{simulate} command, e.g. \begin{quote} \begin{footnotesize} \begin{verbatim} simulate (eeww) { ?polarized_events = true } \end{verbatim} \end{footnotesize} \end{quote} When \ttt{simulate} is run in this mode, helicity information for final state particles that have been toggled as \ttt{polarized} is written to the event file(s) (provided that polarization is supported by the selected event file format(s) ) and can also be accessed in the analysis by means of the \ttt{Hel} observable. For example, an analysis definition like \begin{quote} \begin{footnotesize} \begin{verbatim} analysis = if (all Hel == -1 ["W+"] and all Hel == -1 ["W-"] ) then record cta_nn (eval cos (Theta) ["W+"]) endif; if (all Hel == -1 ["W+"] and all Hel == 0 ["W-"] ) then record cta_nl (eval cos (Theta) ["W+"]) endif \end{verbatim} \end{footnotesize} \end{quote} can be used to histogram the angular distribution for the production of polarized $W$ pairs (obviously, the example would have to be extended to cover all possible helicity combinations). Note, however, that helicity information is not available in the integration step; therefore, it is not possible to use \ttt{Hel} as a cut observable. While final state polarization is straightforward to use, there is a caveat when used in combination with flavor products. If a particle in a flavor product is defined as \ttt{polarized}, then all particles ``originating'' from the product will act as if they had been declared as \ttt{polarized} --- their polarization will be recorded in the generated events. E.g., the example \begin{quote} \begin{footnotesize} \begin{verbatim} process test = u:d, ubar:dbar => d:u, dbar:ubar, u, ubar ! insert compilation, cuts and integration here polarized d, dbar simulate (test) {?polarized_events = true} \end{verbatim} \end{footnotesize} \end{quote} will generate events including helicity information for all final state $d$ and $\overline{d}$ quarks, but only for part of the final state $u$ and $\overline{u}$ quarks. In this case, if you had wanted to keep the helicity information also for all $u$ and $\overline{u}$, you would have had to explicitely include them into the \ttt{polarized} statement. \section{Cross sections} Integrating matrix elements over phase space is the core of \whizard's activities. For any process where we want the cross section, distributions, or event samples, the cross section has to be determined first. This is done by a doubly adaptive multi-channel Monte-Carlo integration. The integration, in turn, requires a \emph{phase-space setup}, i.e., a collection of phase-space \emph{channels}, which are mappings of the unit hypercube onto the complete space of multi-particle kinematics. This phase-space information is encoded in the file \emph{xxx}\ttt{.phs}, where \emph{xxx} is the process tag. \whizard\ generates the phase-space file on the fly and can reuse it in later integrations. For each phase-space channel, the unit hypercube is binned in each dimension. The bin boundaries are allowed to move during a sequence of iterations, each with a fixed number of sampled phase-space points, so they adapt to the actual phase-space density as far as possible. In addition to this \emph{intrinsic} adaptation, the relative channel weights are also allowed to vary. All these steps are done automatically when the \ttt{integrate} command is executed. At the end of the iterative adaptation procedure, the program has obtained an estimate for the integral of the matrix element over phase space, together with an error estimate, and a set of integration \emph{grids} which contains all information on channel weights and bin boundaries. This information is stored in a file \emph{xxx}\ttt{.vg}, where \emph{xxx} is the process tag, and is used for event generation by the \ttt{simulate} command. \subsection{Integration} \label{sec:integrate} Since everything can be handled automatically using default parameters, it often suffices to write the command \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (proc1) \end{verbatim} \end{footnotesize} \end{quote} for integrating the process with name tag \ttt{proc1}, and similarly \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (proc1, proc2, proc3) \end{verbatim} \end{footnotesize} \end{quote} for integrating several processes consecutively. Options to the integrate command are specified, if not globally, by a local option string \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (proc1, proc2, proc3) { mH = 200 GeV } \end{verbatim} \end{footnotesize} \end{quote} (It is possible to place a \ttt{beams} statement inside the option string, if desired.) If the process is configured but not compiled, compilation will be done automatically. If it is not available at all, integration will fail. The integration method can be specified by the string variable \begin{quote} \begin{footnotesize} \ttt{\$integration\_method = "{\em }"} \end{footnotesize} \end{quote} %$ The default method is called \ttt{"vamp"} and uses the \vamp\ algorithm and code. (At the moment, there is only a single simplistic alternative, using the midpoint rule or rectangle method for integration, \ttt{"midpoint"}. This is mainly for testing purposes. In future versions of \whizard, more methods like e.g. Gauss integration will be made available). \vamp, however, is clearly the main integration method. It is done in several \emph{passes} (usually two), and each pass consists of several \emph{iterations}. An iteration consists of a definite number of \emph{calls} to the matrix-element function. For each iteration, \whizard\ computes an estimate of the integral and an estimate of the error, based on the binned sums of matrix element values and squares. It also computes an estimate of the rejection efficiency for generating unweighted events, i.e., the ratio of the average sampling function value over the maximum value of this function. After each iteration, both the integration grids (the binnings) and the relative weights of the integration channels can be adapted to minimize the variance estimate of the integral. After each pass of several iterations, \whizard\ computes an average of the iterations within the pass, the corresponding error estimate, and a $\chi^2$ value. The integral, error, efficiency and $\chi^2$ value computed for the most recent integration pass, together with the most recent integration grid, are used for any subsequent calculation that involves this process, in particular for event generation. In the default setup, during the first pass(es) both grid binnings and channel weights are adapted. In the final (usually second) pass, only binnings are further adapted. Roughly speaking, the final pass is the actual calculation, while the previous pass(es) are used for ``warming up'' the integration grids, without using the numerical results. Below, in the section about the specification of the iterations, Sec.~\ref{sec:iterations}, we will explain how it is possible to change the behavior of adapting grids and weights. Here is an example of the integration output, which illustrates these properties. The \sindarin\ script describes the process $e^+e^-\to q\bar q q\bar q$ with $q$ being any light quark, i.e., $W^+W^-$ and $ZZ$ production and hadronic decay together will any irreducible background. We cut on $p_T$ and energy of jets, and on the invariant mass of jet pairs. Here is the script: \begin{quote} \begin{footnotesize} \begin{verbatim} alias q = d:u:s:c alias Q = D:U:S:C process proc_4f = e1, E1 => q, Q, q, Q ms = 0 mc = 0 sqrts = 500 GeV cuts = all (Pt > 10 GeV and E > 10 GeV) [q:Q] and all M > 10 GeV [q:Q, q:Q] integrate (proc_4f) \end{verbatim} \end{footnotesize} \end{quote} After the run is finished, the integration output looks like \begin{quote} \begin{footnotesize} \begin{verbatim} | Process library 'default_lib': loading | Process library 'default_lib': ... success. | Integrate: compilation done | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 12511 | Initializing integration for process proc_4f: | ------------------------------------------------------------------------ | Process [scattering]: 'proc_4f' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'proc_4f_i1': e-, e+ => d:u:s:c, dbar:ubar:sbar:cbar, | d:u:s:c, dbar:ubar:sbar:cbar [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 5.000000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'proc_4f_i1.phs' | Phase space: 123 channels, 8 dimensions | Phase space: found 123 channels, collected in 15 groves. | Phase space: Using 195 equivalences between channels. | Phase space: wood | Applying user-defined cuts. | OpenMP: Using 8 threads | Starting integration for process 'proc_4f' | Integrate: iterations not specified, using default | Integrate: iterations = 10:10000:"gw", 5:20000:"" | Integrator: 15 chains, 123 channels, 8 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 10000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 9963 2.3797857E+03 3.37E+02 14.15 14.13* 4.02 2 9887 2.8307603E+03 9.58E+01 3.39 3.37* 4.31 3 9815 3.0132091E+03 5.10E+01 1.69 1.68* 8.37 4 9754 2.9314937E+03 3.64E+01 1.24 1.23* 10.65 5 9704 2.9088284E+03 3.40E+01 1.17 1.15* 12.99 6 9639 2.9725788E+03 3.53E+01 1.19 1.17 15.34 7 9583 2.9812484E+03 3.10E+01 1.04 1.02* 17.97 8 9521 2.9295139E+03 2.88E+01 0.98 0.96* 22.27 9 9435 2.9749262E+03 2.94E+01 0.99 0.96 20.25 10 9376 2.9563369E+03 3.01E+01 1.02 0.99 21.10 |-----------------------------------------------------------------------------| 10 96677 2.9525019E+03 1.16E+01 0.39 1.22 21.10 1.15 10 |-----------------------------------------------------------------------------| 11 19945 2.9599072E+03 2.13E+01 0.72 1.02 15.03 12 19945 2.9367733E+03 1.99E+01 0.68 0.96* 12.68 13 19945 2.9487747E+03 2.03E+01 0.69 0.97 11.63 14 19945 2.9777794E+03 2.03E+01 0.68 0.96* 11.19 15 19945 2.9246612E+03 1.95E+01 0.67 0.94* 10.34 |-----------------------------------------------------------------------------| 15 99725 2.9488622E+03 9.04E+00 0.31 0.97 10.34 1.05 5 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:00m:51s | Creating integration history display proc_4f-history.ps and proc_4f-history.pdf \end{verbatim} \end{footnotesize} \end{quote} Each row shows the index of a single iteration, the number of matrix element calls for that iteration, and the integral and error estimate. Note that the number of calls displayed are the real calls to the matrix elements after all cuts and possible rejections. The error should be viewed as the $1\sigma$ uncertainty, computed on a statistical \begin{figure} \centering \includegraphics[width=.56\textwidth]{proc_4f-history} \caption{\label{fig:inthistory} Graphical output of the convergence of the adaptation during the integration of a \whizard\ process.} \end{figure} basis. The next two columns display the error in percent, and the \emph{accuracy} which is the same error normalized by $\sqrt{n_{\rm calls}}$. The accuracy value has the property that it is independent of $n_{\rm calls}$, it describes the quality of adaptation of the current grids. Good-quality grids have a number of order one, the smaller the better. The next column is the estimate for the rejection efficiency in percent. Here, the value should be as high as possible, with $100\,\%$ being the possible maximum. In the example, the grids are adapted over ten iterations, after which the accuracy and efficiency have saturated at about $1.0$ and $10\,\%$, respectively. The asterisk in the accuracy column marks those iterations where an improvement over the previous iteration is seen. The average over these iterations exhibits an accuracy of $1.22$, corresponding to $0.39\,\%$ error, and a $\chi^2$ value of $1.15$, which is just right: apparently, the phase-space for this process and set of cuts is well-behaved. The subsequent five iterations are used for obtaining the final integral, which has an accuracy below one (error $0.3\,\%$), while the efficiency settles at about $10\,\%$. In this example, the final $\chi^2$ value happens to be quite small, i.e., the individual results are closer together than the error estimates would suggest. One should nevertheless not scale down the error, but rather scale it up if the $\chi^2$ result happens to be much larger than unity: this often indicates sub-optimally adapted grids, which insufficiently map some corner of phase space. One should note that all values are subject to statistical fluctuations, since the number of calls within each iterations is finite. Typically, fluctuations in the efficiency estimate are considerably larger than fluctuations in the error/accuracy estimate. Two subsequent runs of the same script should yield statistically independent results which may differ in all quantities, within the error estimates, since the seed of the random-number generator will differ by default. It is possible to get exactly reproducible results by setting the random-number seed explicitly, e.g., \begin{quote} \begin{footnotesize} \begin{verbatim} seed = 12345 \end{verbatim} \end{footnotesize} \end{quote} at any point in the \sindarin\ script. \ttt{seed} is a predefined intrinsic variable. The value can be any 32bit integer. Two runs with different seeds can be safely taken as statistically independent. In the example above, no seed has been set, and the seed has therefore been determined internally by \whizard\ from the system clock. The concluding line with the time estimate applies to a subsequent simulation step with unweighted events, which is not actually requested in the current example. It is based on the timing and efficiency estimate of the most recent iteration. As a default, a graphical output of the integration history will be produced (if both \LaTeX\ and \metapost\ have been available during configuration). Fig.~\ref{fig:inthistory} shows how this looks like, and demonstrates how a proper convergence of the integral during the adaptation looks like. The generation of these graphical history files can be switched off using the command \ttt{?vis\_history = false}. %%%%% \subsection{Integration run IDs} A single \sindarin\ script may contain multiple calls to the \ttt{integrate} command with different parameters. By default, files generated for the same process in a subsequent integration will overwrite the previous ones. This is undesirable when the script is re-run: all results that have been overwritten have to be recreated. To avoid this, the user may identify a specific run by a string-valued ID, e.g. \begin{quote} \begin{footnotesize} \begin{verbatim} integrate (foo) { $run_id = "first" } \end{verbatim} \end{footnotesize} \end{quote} This ID will become part of the file name for all files that are created specifically for this run. Often it is useful to create a run ID from a numerical value using \ttt{sprintf}, e.g., in this scan: \begin{quote} \begin{footnotesize} \begin{verbatim} scan real mh = (100 => 200 /+ 10) { $run_id = sprintf "%e" (mh) integrate (h_production) } \end{verbatim} \end{footnotesize} \end{quote} With unique run IDs, a subsequent run of the same \sindarin\ script will be able to reuse all previous results, even if there is more than a single integration per process. \subsection{Controlling iterations} \label{sec:iterations} \whizard\ has some predefined numbers of iterations and calls for the first and second integration pass, respectively, which depend on the number of initial and final-state particles. They are guesses for values that yield good-quality grids and error values in standard situations, where no exceptionally strong peaks or loose cuts are present in the integrand. Actually, the large number of warmup iterations in the previous example indicates some safety margin in that respect. It is possible, and often advisable, to adjust the iteration and call numbers to the particular situation. One may reduce the default numbers to short-cut the integration, if either less accuracy is needed, or CPU time is to be saved. Otherwise, if convergence is bad, the number of iterations or calls might be increased. To set iterations manually, there is the \ttt{iterations} command: \begin{quote} \begin{footnotesize} \begin{verbatim} iterations = 5:50000, 3:100000 \end{verbatim} \end{footnotesize} \end{quote} This is a comma-separated list. Each pair of values corresponds to an integration pass. The value before the colon is the number of iterations for this pass, the other number is the number of calls per iteration. While the default number of passes is two (one for warmup, one for the final result), you may specify a single pass \begin{quote} \begin{footnotesize} \begin{verbatim} iterations = 5:100000 \end{verbatim} \end{footnotesize} \end{quote} where the relative channel weights will \emph{not} be adjusted (because this is the final pass). This is appropriate for well-behaved integrands where weight adaptation is not necessary. You can also define more than two passes. That might be useful when reusing a previous grid file with insufficient quality: specify the previous passes as-is, so the previous results will be read in, and then a new pass for further adaptation. In the final pass, the default behavior is to not adapt grids and weights anymore. Otherwise, different iterations would be correlated, and a final reliable error estimate would not be possible. For all but the final passes, the user can decide whether to adapt grids and weights by attaching a string specifier to the number of iterations: \ttt{"g"} does adapt grids, but not weights, \ttt{"w"} the other way round. \ttt{"gw"} or \ttt{"wg"} does adapt both. By the setting \ttt{""}, all adaptations are switched off. An example looks like this: \begin{code} iterations = 2:10000:"gw", 3:5000 \end{code} Since it is often not known beforehand how many iterations the grid adaptation will need, it is generally a good idea to give the first pass a large number of iterations. However, in many cases these turn out to be not necessary. To shortcut iterations, you can set any of \begin{quote} \begin{footnotesize} \begin{verbatim} accuracy_goal error_goal relative_error_goal \end{verbatim} \end{footnotesize} \end{quote} to a positive value. If this is done, \whizard\ will skip warmup iterations once all of the specified goals are reached by the current iteration. The final iterations (without weight adaptation) are always performed. \subsection{Phase space} Before \ttt{integrate} can start its work, it must have a phase-space configuration for the process at hand. The method for the phase-space parameterization is determined by the string variable \ttt{\$phs\_method}. At the moment there are only two options, \ttt{"single"}, for testing purposes, that is mainly used internally, and \whizard's traditional method, \ttt{"wood"}. This parameterization is particularly adapted and fine-tuned for electroweak processes and might not be the ideal for for pure jet cross sections. In future versions of \whizard, more options for phase-space parameterizations will be made available, e.g. the \ttt{RAMBO} algorithm and its massive cousin, and phase-space parameterizations that take care of the dipole-like emission structure in collinear QCD (or QED) splittings. For the standard method, the phase-space parameterization is laid out in an ASCII file \ttt{\textit{\_}i\textit{}.phs}. Here, \ttt{{\em }} is the process name chosen by the user while \ttt{{\em }} is the number of the process component of the corresponding process. This immediately shows that different components of processes are getting different phase space setups. This is necessary for inclusive processes, e.g. the sum of $pp \to Z + nj$ and $pp \to W + nj$, or in future versions of \whizard\ for NLO processes, where one component is the interference between the virtual and the Born matrix element, and another one is the subtraction terms. Normally, you do not have to deal with this file, since \whizard\ will generate one automatically if it does not find one. (\whizard\ is careful to check for consistency of process definition and parameters before using an existing file.) Experts might find it useful to generate a phase-space file and inspect and/or modify it before proceeding further. To this end, there is the parameter \verb|?phs_only|. If you set this \ttt{true}, \whizard\ skips the actual integration after the phase-space file has been generated. There is also a parameter \verb|?vis_channels| which can be set independently; if this is \ttt{true}, \whizard\ will generate a graphical visualization of the phase-space parameterizations encoded in the phase-space file. This file has to be taken with a grain of salt because phase space channels are represented by sample Feynman diagrams for the corresponding channel. This does however {\em not} mean that in the matrix element other Feynman diagrams are missing (the default matrix element method, \oMega, is not using Feynman-diagrammatic amplitudes at all). Things might go wrong with the default phase-space generation, or manual intervention might be necessary to improve later performance. There are a few parameters that control the algorithm of phase-space generation. To understand their meaning, you should realize that phase-space parameterizations are modeled after (dominant) Feynman graphs for the current process. \subsubsection{The main phase space setup {\em wood}} For the main phase-space parameterization of \whizard, which is called \ttt{"wood"}, there are many different parameters and flags that allow to tune and customize the phase-space setup for every certain process: The parameter \verb|phs_off_shell| controls the number of off-shell lines in those graphs, not counting $s$-channel resonances and logarithmically enhanced $s$- and $t$-channel lines. The default value is $2$. Setting it to zero will drop everything that is not resonant or logarithmically enhanced. Increasing it will include more subdominant graphs. (\whizard\ increases the value automatically if the default value does not work.) There is a similar parameter \verb|phs_t_channel| which controls multiperipheral graphs in the parameterizations. The default value is $6$, so graphs with up to $6$ $t/u$-channel lines are considered. In particular cases, such as $e^+e^-\to n\gamma$, all graphs are multiperipheral, and for $n>7$ \whizard\ would find no parameterizations in the default setup. Increasing the value of \verb|phs_t_channel| solves this problem. (This is presently not done automatically.) There are two numerical parameters that describe whether particles are treated like massless particles in particular situations. The value of \verb|phs_threshold_s| has the default value $50\;\GeV$. Hence, $W$ and $Z$ are considered massive, while $b$ quarks are considered massless. This categorization is used for deciding whether radiation of $b$ quarks can lead to (nearly) singular behavior, i.e., logarithmic enhancement, in the infrared and collinear regions. If yes, logarithmic mappings are applied to phase space. Analogously, \verb|phs_threshold_t| decides about potential $t$-channel singularities. Here, the default value is $100\;\GeV$, so amplitudes with $W$ and $Z$ in the $t$-channel are considered as logarithmically enhanced. For a high-energy hadron collider of 40 or 100 TeV energy, also $W$ and $Z$ in $s$-channel like situations might be necessary to be considered massless. Such logarithmic mappings need a dimensionful scale as parameter. There are three such scales, all with default value $10\;\GeV$: \verb|phs_e_scale| (energy), \verb|phs_m_scale| (invariant mass), and \verb|phs_q_scale| (momentum transfer). If cuts and/or masses are such that energies, invariant masses of particle pairs, and momentum transfer values below $10\;\GeV$ are excluded or suppressed, the values can be kept. In special cases they should be changed: for instance, if you want to describe $\gamma^*\to\mu^+\mu^-$ splitting well down to the muon mass, no cuts, you may set \verb|phs_m_scale = mmu|. The convergence of the Monte-Carlo integration result will be considerably faster. There are more flags. These and more details about the phase space parameterization will be described in Sec.~\ref{sec:wood}. \subsection{Cuts} \whizard~2 does not apply default cuts to the integrand. Therefore, processes with massless particles in the initial, intermediate, or final states may not have a finite cross section. This fact will manifest itself in an integration that does not converge, or is unstable, or does not yield a reasonable error or reweighting efficiency even for very large numbers of iterations or calls per iterations. When doing any calculation, you should verify first that the result that you are going to compute is finite on physical grounds. If not, you have to apply cuts that make it finite. A set of cuts is defined by the \ttt{cuts} statement. Here is an example \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = all Pt > 20 GeV [colored] \end{verbatim} \end{footnotesize} \end{quote} This implies that events are kept only (for integration and simulation) if the transverse momenta of all colored particles are above $20\;\GeV$. Technically, \ttt{cuts} is a special object, which is unique within a given scope, and is defined by the logical expression on the right-hand side of the assignment. It may be defined in global scope, so it is applied to all subsequent processes. It may be redefined by another \ttt{cuts} statement. This overrides the first cuts setting: the \ttt{cuts} statement is not cumulative. Multiple cuts should be specified by the logical operators of \sindarin, for instance \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = all Pt > 20 GeV [colored] and all E > 5 GeV [photon] \end{verbatim} \end{footnotesize} \end{quote} Cuts may also be defined local to an \ttt{integrate} command, i.e., in the options in braces. They will apply only to the processes being integrated, overriding any global cuts. The right-hand side expression in the \ttt{cuts} statement is evaluated at the point where it is used by an \ttt{integrate} command (which could be an implicit one called by \ttt{simulate}). Hence, if the logical expression contains parameters, such as \begin{quote} \begin{footnotesize} \begin{verbatim} mH = 120 GeV cuts = all M > mH [b, bbar] mH = 150 GeV integrate (myproc) \end{verbatim} \end{footnotesize} \end{quote} the Higgs mass value that is inserted is the value in place when \ttt{integrate} is evaluated, $150\;\GeV$ in this example. This same value will also be used when the process is called by a subsequent \ttt{simulate}; it is \ttt{integrate} which compiles the cut expression and stores it among the process data. This behavior allows for scanning over parameters without redefining the cuts every time. The cut expression can make use of all variables and constructs that are defined at the point where it is evaluated. In particular, it can make use of the particle content and kinematics of the hard process, as in the example above. In addition to the predefined variables and those defined by the user, there are the following variables which depend on the hard process: \begin{quote} \begin{tabular}{ll} integer: & \ttt{n\_in}, \ttt{n\_out}, \ttt{n\_tot} \\ real: & \ttt{sqrts}, \ttt{sqrts\_hat} \end{tabular} \end{quote} Example: \begin{quote} \begin{footnotesize} \begin{verbatim} cuts = sqrts_hat > 150 GeV \end{verbatim} \end{footnotesize} \end{quote} The constants \ttt{n\_in} etc.\ are sometimes useful if a generic set of cuts is defined, which applies to various processes simultaneously. The user is encouraged to define his/her own set of cuts, if possible in a process-independent manner, even if it is not required. The \ttt{include} command allows for storing a set of cuts in a separate \sindarin\ script which may be read in anywhere. As an example, the system directories contain a file \verb|default_cuts.sin| which may be invoked by \begin{quote} \begin{footnotesize} \begin{verbatim} include ("default_cuts.sin") \end{verbatim} \end{footnotesize} \end{quote} \subsection{QCD scale and coupling} \whizard\ treats all physical parameters of a model, the coefficients in the Lagrangian, as constants. As a leading-order program, \whizard\ does not make use of running parameters as they are described by renormalization theory. For electroweak interactions where the perturbative expansion is sufficiently well behaved, this is a consistent approach. As far as QCD is concerned, this approach does not yield numerically reliable results, even on the validity scale of the tree approximation. In \whizard\ttt{2}, it is therefore possible to replace the fixed value of $\alpha_s$ (which is accessible as the intrinsic model variable \verb|alphas|), by a function of an energy scale $\mu$. This is controlled by the parameter \verb|?alphas_is_fixed|, which is \ttt{true} by default. Setting it to \ttt{false} enables running~$\alpha_s$. The user has then to decide how $\alpha_s$ is calculated. One option is to set \verb|?alphas_from_lhapdf| (default \ttt{false}). This is recommended if the \lhapdf\ library is used for including structure functions, but it may also be set if \lhapdf\ is not invoked. \whizard\ will then use the $\alpha_s$ formula and value that matches the active \lhapdf\ structure function set and member. In the very same way, the $\alpha_s$ running from the PDFs implemented intrinsically in \whizard\ can be taken by setting \verb|?alphas_from_pdf_builtin| to \ttt{true}. This is the same running then the one from \lhapdf, if the intrinsic PDF coincides with a PDF chosen from \lhapdf. If this is not appropriate, there are again two possibilities. If \verb|?alphas_from_mz| is \ttt{true}, the user input value \verb|alphas| is interpreted as the running value $\alpha_s(m_Z)$, and for the particular event, the coupling is evolved to the appropriate scale $\mu$. The formula is controlled by the further parameters \verb|alphas_order| (default $0$, meaning leading-log; maximum $2$) and \verb|alphas_nf| (default $5$). Otherwise there is the option to set \verb|?alphas_from_lambda_qcd = true| in order to evaluate $\alpha_s$ from the scale $\Lambda_{\rm QCD}$, represented by the intrinsic variable \verb|lambda_qcd|. The reference value for the QCD scale is $\Lambda\_{\rm QCD} = 200$ MeV. \verb|alphas_order| and \verb|alphas_nf| apply analogously. Note that for using one of the running options for $\alpha_s$, always \ttt{?alphas\_is\_fixed = false} has to be invoked. In any case, if $\alpha_s$ is not fixed, each event has to be assigned an energy scale. By default, this is $\sqrt{\hat s}$, the partonic invariant mass of the event. This can be replaced by a user-defined scale, the special object \ttt{scale}. This is assigned and used just like the \ttt{cuts} object. The right-hand side is a real-valued expression. Here is an example: \begin{quote} \begin{footnotesize} \begin{verbatim} scale = eval Pt [sort by -Pt [colored]] \end{verbatim} \end{footnotesize} \end{quote} This selects the $p_T$ value of the first entry in the list of colored particles sorted by decreasing $p_T$, i.e., the $p_T$ of the hardest jet. The \ttt{scale} definition is used not just for running $\alpha_s$ (if enabled), but it is also the factorization scale for the \lhapdf\ structure functions. These two values can be set differently by specifying \ttt{factorization\_scale} for the scale at which the PDFs are evaluated. Analogously, there is a variable \ttt{renormalization\_scale} that sets the scale value for the running $\alpha_s$. Whenever any of these two values is set, it supersedes the \ttt{scale} value. Just like the \ttt{cuts} expression, the expressions for \ttt{scale}, \ttt{factorization\_scale} and also \ttt{renormalization\_scale} are evaluated at the point where it is read by an explicit or implicit \ttt{integrate} command. \subsection{Reweighting factor} It is possible to reweight the integrand by a user-defined function of the event kinematics. This is done by specifying a \ttt{weight} expression. Syntax and usage is exactly analogous to the \ttt{scale} expression. Example: \begin{quote} \begin{footnotesize} \begin{verbatim} weight = eval (1 + cos (Theta) ^ 2) [lepton] \end{verbatim} \end{footnotesize} \end{quote} We should note that the phase-space setup is not aware of this reweighting, so in complicated cases you should not expect adaptation to achieve as accurate results as for plain cross sections. Needless to say, the default \ttt{weight} is unity. \section{Events} After the cross section integral of a scattering process is known (or the partial-width integral of a decay process), \whizard\ can generate event samples. There are two limiting cases or modes of event generation: \begin{enumerate} \item For a physics simulation, one needs \emph{unweighted} events, so the probability of a process and a kinematical configuration in the event sample is given by its squared matrix element. \item Monte-Carlo integration yields \emph{weighted} events, where the probability (without any grid adaptation) is uniformly distributed over phase space, while the weight of the event is given by its squared matrix element. \end{enumerate} The choice of parameterizations and the iterative adaptation of the integration grids gradually shift the generation mode from option 2 to option 1, which obviously is preferred since it simulates the actual outcome of an experiment. Unfortunately, this adaptation is perfect only in trivial cases, such that the Monte-Carlo integration yields non-uniform probability still with weighted events. Unweighted events are obtained by rejection, i.e., accepting an event with a probability equal to its own weight divided by the maximal possible weight. Furthermore, the maximal weight is never precisely known, so this probability can only be estimated. The default generation mode of \whizard\ is unweighted. This is controlled by the parameter \verb|?unweighted| with default value \ttt{true}. Unweighted events are easy to interpret and can be directly compared with experiment, if properly interfaced with detector simulation and analysis. However, when applying rejection to generate unweighted events, the generator discards information, and for a single event it needs, on the average, $1/\epsilon$ calls, where the efficiency $\epsilon$ is the ratio of the average weight over the maximal weight. If \verb|?unweighted| is \ttt{false}, all events are kept and assigned their respective weights in histograms or event files. \subsection{Simulation} \label{sec:simulation} The \ttt{simulate} command generates an event sample. The number of events can be set either by specifying the integer variable \verb|n_events|, or by the real variable \verb|luminosity|. (This holds for unweighted events. If weighted events are requested, the luminosity value is ignored.) The luminosity is measured in femtobarns, but other units can be used, too. Since the cross sections for the processes are known at that point, the number of events is determined as the luminosity multiplied by the cross section. As usual, both parameters can be set either as global or as local parameters: \begin{quote} \begin{footnotesize} \begin{verbatim} n_events = 10000 simulate (proc1) simulate (proc2, proc3) { luminosity = 100 / 1 pbarn } \end{verbatim} \end{footnotesize} \end{quote} In the second example, both \verb|n_events| and \verb|luminosity| are set. In that case, \whizard\ chooses whatever produces the larger number of events. If more than one process is specified in the argument of \ttt{simulate}, events are distributed among the processes with fractions proportional to their cross section values. The processes are mixed randomly, as it would be the case for real data. The raw event sample is written to a file which is named after the first process in the argument of \ttt{simulate}. If the process name is \ttt{proc1}, the file will be named \ttt{proc1.evx}. You can choose another basename by the string variable \verb|$sample|. For instance, \begin{quote} \begin{footnotesize} \begin{verbatim} simulate (proc1) { n_events = 4000 $sample = "my_events" } \end{verbatim} \end{footnotesize} \end{quote} will produce an event file \verb|my_events.evx| which contains $4000$ events. This event file is in a machine-dependent binary format, so it is not of immediate use. Its principal purpose is to serve as a cache: if you re-run the same script, before starting simulation, it will look for an existing event file that matches the input. If nothing has changed, it will find the file previously generated and read in the events, instead of generating them. Thus you can modify the analysis or any further steps without repeating the time-consuming task of generating a large event sample. If you change the number of events to generate, the program will make use of the existing event sample and generate further events only when it is used up. If necessary, you can suppress the writing/reading of the raw event file by the parameters \verb|?write_raw| and \verb|?read_raw|. If you try to reuse an event file that has been written by a previous version of \whizard, you may run into an incompatibility, which will be detected as an error. If this happens, you may enforce a compatibility mode (also for writing) by setting \ttt{\$event\_file\_version} to the appropriate version string, e.g., \verb|"2.0"|. Be aware that this may break some more recent features in the event analysis. Generating an event sample can serve several purposes. First of all, it can be analyzed directly, by \whizard's built-in capabilities, to produce tables, histograms, or calculate inclusive observables. The basic analysis features of \whizard\ are described below in Sec.~\ref{sec:analysis}. It can be written to an external file in a standard format that a human or an external program can understand. In Chap.~\ref{chap:events}, you will find a more thorough discussion of event generation with \whizard, which also covers in detail the available event-file formats. Finally, \whizard\ can rescan an existing event sample. The event sample may either be the result of a previous \ttt{simulate} run or, under certain conditions, an external event sample produced by another generator or reconstructed from data. \begin{quote} \begin{footnotesize} \begin{verbatim} rescan "my_events" (proc1) { $pdf_builtin_set = "MSTW2008LO" } \end{verbatim} \end{footnotesize} \end{quote} The rescanning may apply different parameters and recalculate the matrix element, it may apply a different event selection, it may reweight the events by a different PDF set (as above). The modified event sample can again be analyzed or written to file. For more details, cf.\ Sec.~\ref{sec:rescan}. %%%%%%%%%%%%%%% \subsection{Decays} \label{sec:decays} Normally, the events generated by the \ttt{simulate} command will be identical in structure to the events that the \ttt{integrate} command generates. This implies that for a process such as $pp\to W^+W^-$, the final-state particles are on-shell and stable, so they appear explicitly in the generated event files. If events are desired where the decay products of the $W$ bosons appear, one has to generate another process, e.g., $pp\to u\bar d\bar ud$. In this case, the intermediate vector bosons, if reconstructed, are off-shell as dictated by physics, and the process contains all intermediate states that are possible. In this example, the matrix element contains also $ZZ$, photon, and non-resonant intermediate states. (This can be restricted via the \verb|$restrictions| option, cf.\ \ref{sec:process options}. Another approach is to factorize the process in production (of $W$ bosons) and decays ($W\to q\bar q$). This is actually the traditional approach, since it is much less computing-intensive. The factorization neglects all off-shell effects and irreducible background diagrams that do not have the decaying particles as an intermediate resonance. While \whizard\ is able to deal with multi-particle processes without factorization, the needed computing resources rapidly increase with the number of external particles. Particularly, it is the phase space integration that becomes the true bottleneck for a high multiplicity of final state particles. In order to use the factorized approach, one has to specify particles as \ttt{unstable}. (Also, the \ttt{?allow\_decays} switch must be \ttt{true}; this is however its default value.) We give an example for a $pp \to Wj$ final state: \begin{code} process wj = u, gl => d, Wp process wen = Wp => E1, n1 integrate (wen) sqrts = 7 TeV beams = p, p => pdf_builtin unstable Wp (wen) simulate (wj) { n_events = 1 } \end{code} This defines a $2 \to 2$ hard scattering process of $W + j$ production at the 7 TeV LHC 2011 run. The $W^+$ is marked as unstable, with its decay process being $W^+ \to e^+ \nu_e$. In the \ttt{simulate} command both processes, the production process \ttt{wj} and the decay process \ttt{wen} will be integrated, while the $W$ decays become effective only in the final event sample. This event sample will contain final states with multiplicity $3$, namely $e^+ \nu_e d$. Note that here only one decay process is given, hence the branching ratio for the decay will be taken to be $100 \%$ by \whizard. A natural restriction of the factorized approach is the implied narrow-width approximation. Theoretically, this restriction is necessary since whenever the width plays an important role, the usage of the factorized approach will not be fully justified. In particular, all involved matrix elements must be evaluated on-shell, or otherwise gauge-invariance issues could spoil the calculation. (There are plans for a future \whizard\ version to also include Breit-Wigner or Gaussian distributions when using the factorized approach.) Decays can be concatenated, e.g. for top pair production and decay, $e^+ e^- \to t \bar t$ with decay $t \to W^+ b$, and subsequent leptonic decay of the $W$ as in $W^+ \to \mu^+ \nu_\mu$: \begin{code} process eett = e1, E1 => t, tbar process t_dec = t => Wp, b process W_dec = Wp => E2, n2 unstable t (t_dec) unstable Wp (W_dec) sqrts = 500 simulate (eett) { n_events = 1 } \end{code} Note that in this case the final state in the event file will consist of $\bar t b \mu^+ \nu_\mu$ because the anti-top is not decayed. If more than one decay process is being specified like in \begin{code} process eeww = e1, E1 => Wp, Wm process w_dec1 = Wp => E2, n2 process w_dec2 = Wp => E3, n3 unstable Wp (w_dec1, w_dec2) sqrts = 500 simulate (eeww) { n_events = 100 } \end{code} then \whizard\ takes the integrals of the specified decay processes and distributes the decays statistically according to the calculated branching ratio. Note that this might not be the true branching ratios if decay processes are missing, or loop corrections to partial widths give large(r) deviations. In the calculation of the code above, \whizard\ will issue an output like \begin{code} | Unstable particle W+: computed branching ratios: | w_dec1: 5.0018253E-01 mu+, numu | w_dec2: 4.9981747E-01 tau+, nutau | Total width = 4.5496085E-01 GeV (computed) | = 2.0490000E+00 GeV (preset) | Decay options: helicity treated exactly \end{code} So in this case, \whizard\ uses 50 \% muonic and 50 \% tauonic decays of the positively charged $W$, while the $W^-$ appears directly in the event file. \whizard\ shows the difference between the preset $W$ width from the physics model file and the value computed from the two decay channels. Note that a particle in a \sindarin\ input script can be also explictly marked as being stable, using the \begin{code} stable \end{code} constructor for the particle \ttt{}. \subsubsection{Resetting branching fractions} \label{sec:br-reset} As described above, decay processes that appear in a simulation must first be integrated by the program, either explicitly via the \verb|integrate| command, or implicitly by \verb|unstable|. In either case, \whizard\ will use the computed partial widths in order to determine branching fractions. In the spirit of a purely leading-order calculation, this is consistent. However, it may be desired to rather use different branching-fraction values for the decays of a particle, for instance, NLO-corrected values. In fact, after \whizard\ has integrated any process, the integration result becomes available as an ordinary \sindarin\ variable. For instance, if a decay process has the ID \verb|h_bb|, the integral of this process -- the partial width, in this case -- becomes the variable \verb|integral(h_bb)|. This variable may be reset just like any other variable: \begin{code} integral(h_bb) = 2.40e-3 GeV \end{code} The new value will be used for all subsequent Higgs branching-ratio calculations and decays, if an unstable Higgs appears in a process for simulation. \subsubsection{Spin correlations in decays} \label{sec:spin-correlations} By default, \whizard\ applies full spin and color correlations to the factorized processes, so it keeps both color and spin coherence between productions and decays. Correlations between decay products of distinct unstable particles in the same event are also fully retained. The program sums over all intermediate quantum numbers. Although this approach obviously yields the optimal description with the limits of production-decay factorization, there is support for a simplified handling of particle decays. Essentially, there are four options, taking a decay \ttt{W\_ud}: $W^-\to \bar u d$ as an example: \begin{enumerate} \item Full spin correlations: \verb|unstable Wp (W_ud)| \item Isotropic decay: \verb|unstable Wp (W_ud) { ?isotropic_decay = true }| \item Diagonal decay matrix: \verb|unstable Wp (W_ud) { ?diagonal_decay = true }| \item Project onto specific helicity: \verb|unstable Wp (W_ud) { decay_helicity = -1 }| \end{enumerate} Here, the isotropic option completely eliminates spin correlations. The diagonal-decays option eliminates just the off-diagonal entries of the $W$ spin-density matrix. This is equivalent to a measurement of spin before the decay. As a result, spin correlations are still present in the classical sense, while quantum coherence is lost. The definite-helicity option is similar and additional selects only the specified helicity component for the decaying particle, so its decay distribution assumes the shape for an accordingly polarized particle. All options apply in the rest frame of the decaying particle, with the particle's momentum as the quantization axis. \subsubsection{Automatic decays} A convenient option is if the user did not have to specify the decay mode by hand, but if they were generated automatically. \whizard\ does have this option: the flag \ttt{?auto\_decays} can be set to \ttt{true}, and is taking care of that. In that case the list for the decay processes of the particle marked as unstable is left empty (we take a $W^-$ again as example): \begin{code} unstable Wm () { ?auto_decays = true } \end{code} \whizard\ then inspects at the local position within the \sindarin\ input file where that \ttt{unstable} statement appears the masses of all the particles of the active physics model in order to determine which decays are possible. It then calculates their partial widths. There are a few options to customize the decays. The integer variable \ttt{auto\_decays\_multiplicity} allows to set the maximal multiplicity of the final states considered in the auto decay option. The defaul value of that variable is \ttt{2}; please be quite careful when setting this to values larger than that. If you do so, the flag \ttt{?auto\_decays\_radiative} allows to specify whether final states simply containing additional resolved gluons or photons are taken into account or not. For the example above, you almost hit the PDG value for the $W$ total width: \begin{code} | Unstable particle W-: computed branching ratios: | decay_a24_1: 3.3337068E-01 d, ubar | decay_a24_2: 3.3325864E-01 s, cbar | decay_a24_3: 1.1112356E-01 e-, nuebar | decay_a24_4: 1.1112356E-01 mu-, numubar | decay_a24_5: 1.1112356E-01 tau-, nutaubar | Total width = 2.0478471E+00 GeV (computed) | = 2.0490000E+00 GeV (preset) | Decay options: helicity treated exactly \end{code} \subsubsection{Future shorter notation for decays} {\color{red} In an upcoming \whizard\ version there will be a shorter and more concise notation already in the process definition for such decays, which, however, is current not yet implemented. The two first examples above will then be shorter and have this form:} \begin{code} process wj = u, gl => (Wp => E1, n1), d \end{code} {\color{red} as well as } \begin{code} process eett = e1, E1 => (t => (Wp => E2, n2), b), tbar \end{code} %%%%% \subsection{Event formats} As mentioned above, the internal \whizard\ event format is a machine-dependent event format. There are a series of human-readable ASCII event formats that are supported: very verbose formats intended for debugging, formats that have been agreed upon during the Les Houches workshops like LHA and LHEF, or formats that are steered through external packages like HepMC. More details about event formats can be found in Sec.~\ref{sec:eventformats}. %%%%%%%%%%%%%%% \section{Analysis and Visualization} \label{sec:analysis} \sindarin\ natively supports basic methods of data analysis and visualization which are frequently used in high-energy physics studies. Data generated during script execution, in particular simulated event samples, can be analyzed to evaluate further observables, fill histograms, and draw two-dimensional plots. So the user does not have to rely on his/her own external graphical analysis method (like e.g. \ttt{gnuplot} or \ttt{ROOT} etc.), but can use methods that automatically ship with \whizard. In many cases, the user, however, clearly will use his/her own analysis machinery, especially experimental collaborations. In the following sections, we first summarize the available data structures, before we consider their graphical display. \subsection{Observables} Analyses in high-energy physics often involve averages of quantities other than a total cross section. \sindarin\ supports this by its \ttt{observable} objects. An \ttt{observable} is a container that collects a single real-valued variable with a statistical distribution. It is declared by a command of the form \begin{quote} \begin{footnotesize} \ttt{observable \emph{analysis-tag}} \end{footnotesize} \end{quote} where \ttt{\emph{analysis-tag}} is an identifier that follows the same rules as a variable name. Once the observable has been declared, it can be filled with values. This is done via the \ttt{record} command: \begin{quote} \begin{footnotesize} \ttt{record \emph{analysis-tag} (\emph{value})} \end{footnotesize} \end{quote} To make use of this, after values have been filled, we want to perform the actual analysis and display the results. For an observable, these are the mean value and the standard deviation. There is the command \ttt{write\_analysis}: \begin{quote} \begin{footnotesize} \ttt{write\_analysis (\emph{analysis-tag})} \end{footnotesize} \end{quote} Here is an example: \begin{quote} \begin{footnotesize} \begin{verbatim} observable obs record obs (1.2) record obs (1.3) record obs (2.1) record obs (1.4) write_analysis (obs) \end{verbatim} \end{footnotesize} \end{quote} The result is displayed on screen: \begin{quote} \begin{footnotesize} \begin{verbatim} ############################################################################### # Observable: obs average = 1.500000000000E+00 error[abs] = 2.041241452319E-01 error[rel] = 1.360827634880E-01 n_entries = 4 \end{verbatim} \end{footnotesize} \end{quote} \subsection{The analysis expression} \label{subsec:analysis} The most common application is the computation of event observables -- for instance, a forward-backward asymmetry -- during simulation. To this end, there is an \ttt{analysis} expression, which behaves very similar to the \ttt{cuts} expression. It is defined either globally \begin{quote} \begin{footnotesize} \ttt{analysis = \emph{logical-expr}} \end{footnotesize} \end{quote} or as a local option to the \ttt{simulate} or \ttt{rescan} commands which generate and handle event samples. If this expression is defined, it is not evaluated immediately, but it is evaluated once for each event in the sample. In contrast to the \ttt{cuts} expression, the logical value of the \ttt{analysis} expression is discarded; the expression form has been chosen just by analogy. To make this useful, there is a variant of the \ttt{record} command, namely a \ttt{record} function with exactly the same syntax. As an example, here is a calculation of the forward-backward symmetry in a process \ttt{ee\_mumu} with final state $\mu^+\mu^-$: \begin{quote} \begin{footnotesize} \begin{verbatim} observable a_fb analysis = record a_fb (eval sgn (Pz) ["mu-"]) simulate (ee_mumu) { luminosity = 1 / 1 fbarn } \end{verbatim} \end{footnotesize} \end{quote} The logical return value of \ttt{record} -- which is discarded here -- is \ttt{true} if the recording was successful. In case of histograms (see below) it is true if the value falls within bounds, false otherwise. Note that the function version of \ttt{record} can be used anywhere in expressions, not just in the \ttt{analysis} expression. When \ttt{record} is called for an observable or histogram in simulation mode, the recorded value is weighted appropriately. If \ttt{?unweighted} is true, the weight is unity, otherwise it is the event weight. The \ttt{analysis} expression can involve any other construct that can be expressed as an expression in \sindarin. For instance, this records the energy of the 4th hardest jet in a histogram \ttt{pt\_dist}, if it is in the central region: \begin{quote} \begin{footnotesize} \begin{verbatim} analysis = record pt_dist (eval E [extract index 4 [sort by - Pt [select if -2.5 < Eta < 2.5 [colored]]]]) \end{verbatim} \end{footnotesize} \end{quote} Here, if there is no 4th jet in the event which satisfies the criterion, the result will be an undefined value which is not recorded. In that case, \ttt{record} evaluates to \ttt{false}. Selection cuts can be part of the analysis expression: \begin{code} analysis = if any Pt > 50 GeV [lepton] then record jet_energy (eval E [collect [jet]]) endif \end{code} Alternatively, we can specify a separate selection expression: \begin{code} selection = any Pt > 50 GeV [lepton] analysis = record jet_energy (eval E [collect [jet]]) \end{code} The former version writes all events to file (if requested), but applies the analysis expression only to the selected events. This allows for the simultaneous application of different selections to a single event sample. The latter version applies the selection to all events before they are analyzed or written to file. The analysis expression can make use of all variables and constructs that are defined at the point where it is evaluated. In particular, it can make use of the particle content and kinematics of the hard process, as in the example above. In addition to the predefined variables and those defined by the user, there are the following variables which depend on the hard process. Some of them are constants, some vary event by event: \begin{quote} \begin{tabular}{ll} integer: &\ttt{event\_index} \\ integer: &\ttt{process\_num\_id} \\ string: &\ttt{\$process\_id} \\ integer: &\ttt{n\_in}, \ttt{n\_out}, \ttt{n\_tot} \\ real: &\ttt{sqrts}, \ttt{sqrts\_hat} \\ real: &\ttt{sqme}, \ttt{sqme\_ref} \\ real: &\ttt{event\_weight}, \ttt{event\_excess} \end{tabular} \end{quote} The \ttt{process\_num\_id} is the numeric ID as used by external programs, while the process index refers to the current library. By default, the two are identical. The process index itself is not available as a predefined observable. The \ttt{sqme} and \ttt{sqme\_ref} values indicate the squared matrix element and the reference squared matrix element, respectively. The latter applies when comparing with a reference sample (the \ttt{rescan} command). \ttt{record} evaluates to a logical, so several \ttt{record} functions may be concatenated by the logical operators \ttt{and} or \ttt{or}. However, since usually the further evaluation should not depend on the return value of \ttt{record}, it is more advisable to concatenate them by the semicolon (\ttt{;}) operator. This is an operator (\emph{not} a statement separator or terminator) that connects two logical expressions and evaluates both of them in order. The lhs result is discarded, the result is the value of the rhs: \begin{quote} \begin{footnotesize} \begin{verbatim} analysis = record hist_pt (eval Pt [lepton]) ; record hist_ct (eval cos (Theta) [lepton]) \end{verbatim} \end{footnotesize} \end{quote} \subsection{Histograms} \label{sec:histogram} In \sindarin, a histogram is declared by the command \begin{quote} \begin{footnotesize} \ttt{histogram \emph{analysis-tag} (\emph{lower-bound}, \emph{upper-bound})} \end{footnotesize} \end{quote} This creates a histogram data structure for an (unspecified) observable. The entries are organized in bins between the real values \ttt{\emph{lower-bound}} and \ttt{\emph{upper-bound}}. The number of bins is given by the value of the intrinsic integer variable \ttt{n\_bins}, the default value is 20. The \ttt{histogram} declaration supports an optional argument, so the number of bins can be set locally, for instance \begin{quote} \begin{footnotesize} \ttt{histogram pt\_distribution (0 GeV, 500 GeV) \{ n\_bins = 50 \}} \end{footnotesize} \end{quote} Sometimes it is more convenient to set the bin width directly. This can be done in a third argument to the \ttt{histogram} command. \begin{quote} \begin{footnotesize} \ttt{histogram pt\_distribution (0 GeV, 500 GeV, 10 GeV)} \end{footnotesize} \end{quote} If the bin width is specified this way, it overrides the setting of \ttt{n\_bins}. The \ttt{record} command or function fills histograms. A single call \begin{quote} \begin{footnotesize} \ttt{record (\emph{real-expr})} \end{footnotesize} \end{quote} puts the value of \ttt{\emph{real-expr}} into the appropriate bin. If the call is issued during a simulation where \ttt{unweighted} is false, the entry is weighted appropriately. If the value is outside the range specified in the histogram declaration, it is put into one of the special underflow and overflow bins. The \ttt{write\_analysis} command prints the histogram contents as a table in blank-separated fixed columns. The columns are: $x$ (bin midpoint), $y$ (bin contents), $\Delta y$ (error), excess weight, and $n$ (number of entries). The output also contains comments initiated by a \verb|#| sign, and following the histogram proper, information about underflow and overflow as well as overall contents is added. \subsection{Plots} \label{sec:plot} While a histogram stores only summary information about a data set, a \ttt{plot} stores all data as $(x,y)$ pairs, optionally with errors. A plot declaration is as simple as \begin{quote} \begin{footnotesize} \ttt{plot \emph{analysis-tag}} \end{footnotesize} \end{quote} Like observables and histograms, plots are filled by the \ttt{record} command or expression. To this end, it can take two arguments, \begin{quote} \begin{footnotesize} \ttt{record (\emph{x-expr}, \emph{y-expr})} \end{footnotesize} \end{quote} or up to four: \begin{quote} \begin{footnotesize} \ttt{record (\emph{x-expr}, \emph{y-expr}, \emph{y-error})} \\ \ttt{record (\emph{x-expr}, \emph{y-expr}, \emph{y-error-expr}, \emph{x-error-expr})} \end{footnotesize} \end{quote} Note that the $y$ error comes first. This is because applications will demand errors for the $y$ value much more often than $x$ errors. The plot output, again written by \ttt{write\_analysis} contains the four values for each point, again in the ordering $x,y,\Delta y, \Delta x$. \subsection{Analysis Output} There is a default format for piping information into observables, histograms, and plots. In older versions of \whizard\ there was a first version of a custom format, which was however rather limited. A more versatile custom output format will be coming soon. \begin{enumerate} \item By default, the \ttt{write\_analysis} command prints all data to the standard output. The data are also written to a default file with the name \ttt{whizard\_analysis.dat}. Output is redirected to a file with a different name if the variable \ttt{\$out\_file} has a nonempty value. If the file is already open, the output will be appended to the file, and it will be kept open. If the file is not open, \ttt{write\_analysis} will open the output file by itself, overwriting any previous file with the same name, and close it again after data have been written. The command is able to print more than one dataset, following the syntax \begin{quote} \begin{footnotesize} \ttt{write\_analysis (\emph{analysis-tag1}, \emph{analysis-tag2}, \ldots) \{ \emph{options} \}} \end{footnotesize} \end{quote} The argument in brackets may also be empty or absent; in this case, all currently existing datasets are printed. The default data format is suitable for compiling analysis data by \whizard's built-in \gamelan\ graphics driver (see below and particularly Chap.~\ref{chap:visualization}). Data are written in blank-separated fixed columns, headlines and comments are initiated by the \verb|#| sign, and each data set is terminated by a blank line. However, external programs often require special formatting. The internal graphics driver \gamelan\ of \whizard\ is initiated by the \ttt{compile\_analysis} command. Its syntax is the same, and it contains the \ttt{write\_analysis} if that has not been separately called (which is unnecessary). For more details about the \gamelan\ graphics driver and data visualization within \whizard, confer Chap.~\ref{chap:visualization}. \item Custom format. Not yet (re-)implemented in a general form. \end{enumerate} \section{Custom Input/Output} \label{sec:I/O} \whizard\ is rather chatty. When you run examples or your own scripts, you will observe that the program echoes most operations (assignments, commands, etc.) on the standard output channel, i.e., on screen. Furthermore, all screen output is copied to a log file which by default is named \ttt{whizard.log}. For each integration run, \whizard\ writes additional process-specific information to a file \ttt{\var{tag}.log}, where \ttt{\var{tag}} is the process name. Furthermore, the \ttt{write\_analysis} command dumps analysis data -- tables for histograms and plots -- to its own set of files, cf.\ Sec.~\ref{sec:analysis}. However, there is the occasional need to write data to extra files in a custom format. \sindarin\ deals with that in terms of the following commands: \subsection{Output Files} \subsubsection{open\_out} \begin{syntax} open\_out (\var{filename}) \\ open\_out (\var{filename}) \{ \var{options} \} \end{syntax} Open an external file for writing. If the file exists, it is overwritten without warning, otherwise it is created. Example: \begin{code} open_out ("my_output.dat") \end{code} \subsubsection{close\_out} \begin{syntax} close\_out (\var{filename}) \\ close\_out (\var{filename}) \{ \var{options} \} \end{syntax} Close an external file that is open for writing. Example: \begin{code} close_out ("my_output.dat") \end{code} \subsection{Printing Data} \subsubsection{printf} \begin{syntax} printf \var{format-string-expr} \\ printf \var{format-string-expr} (\var{data-objects}) \end{syntax} Format \ttt{\var{data-objects}} according to \ttt{\var{format-string-expr}} and print the resulting string to standard output if the string variable \ttt{\$out\_file} is undefined. If \ttt{\$out\_file} is defined and the file with this name is open for writing, print to this file instead. Print a newline at the end if \ttt{?out\_advance} is true, otherwise don't finish the line. The \ttt{\var{format-string-expr}} must evaluate to a string. Formatting follows a subset of the rules for the \ttt{printf(3)} command in the \ttt{C} language. The supported rules are: \begin{itemize} \item All characters are printed as-is, with the exception of embedded conversion specifications. \item Conversion specifications are initiated by a percent (\verb|%|) sign and followed by an optional prefix flag, an optional integer value, an optional dot followed by another integer, and a mandatory letter as the conversion specifier. \item A percent sign immediately followed by another percent sign is interpreted as a single percent sign, not as a conversion specification. \item The number of conversion specifiers must be equal to the number of data objects. The data types must also match. \item The first integer indicates the minimum field width, the second one the precision. The field is expanded as needed. \item The conversion specifiers \ttt{d} and \ttt{i} are equivalent, they indicate an integer value. \item The conversion specifier \ttt{e} indicates a real value that should be printed in exponential notation. \item The conversion specifier \ttt{f} indicates a real value that should be printed in decimal notation without exponent. \item The conversion specifier \ttt{g} indicates a real value that should be printed either in exponential or in decimal notation, depending on its value. \item The conversion specifier \ttt{s} indicates a logical or string value that should be printed as a string. \item Possible prefixes are \verb|#| (alternate form, mandatory decimal point for reals), \verb|0| (zero padding), \verb|-| (left adjusted), \verb|+| (always print sign), `\verb| |' (print space before a positive number). \end{itemize} For more details, consult the \verb|printf(3)| manpage. Note that other conversions are not supported and will be rejected by \whizard. The data arguments are numeric, logical or string variables or expressions. Numeric expressions must be enclosed in parantheses. Logical expressions must be enclosed in parantheses prefixed by a question mark \verb|?|. String expressions must be enclosed in parantheses prefixed by a dollar sign \verb|$|. These forms behave as anonymous variables. Note that for simply printing a text string, you may call \ttt{printf} with just a format string and no data arguments. Examples: \begin{code} printf "The W mass is %8f GeV" (mW) int i = 2 int j = 3 printf "%i + %i = %i" (i, j, (i+j)) string $directory = "/usr/local/share" string $file = "foo.dat" printf "File path: %s/%s" ($directory, $file) \end{code} There is a related \ttt{sprintf} function, cf.~Sec.~\ref{sec:sprintf}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{WHIZARD at next-to-leading order} \subsection{Prerequisites} A full NLO computation requires virtual matrix elements obtained from loop diagrams. Since \oMega\ cannot calculate such diagrams, external programs are used. \whizard\ has a generic interface to matrix-element generators that are BLHA-compatible. Explicit implementations exist for \gosam, \openloops\ and \recola. %%%%% \subsubsection{Setting up \gosam} The installation of \gosam\ is detailed on the HepForge page \url{https://gosam/hepforge.org}. We mention here some of the steps necessary to get it to be linked with \whizard. {\bf Bug in \gosam\ installation scripts:} In many versions of \gosam\ there is a bug in the installation scripts that is only relevant if \gosam\ is installed with superuser privileges. Then all files in \ttt{\$installdir/share/golem} do not have read privileges for normal users. These privileges must be given manually to all files in that directory. Prerequisites for \gosam\ to produce code for one-loop matrix elements are the scientific algebra program \ttt{form} and the generator of loop topologies and diagrams, \ttt{qgraf}. These can be accessed via their respective webpages \url{http://www.nikhef.nl/~form/} and \url{http://cfif.ist.utl.pt/~paulo/qgraf.html}. Note also that both \ttt{Java} and the Java runtime environment have to be installed in order for \gosam\ to properly work. Furthermore, \ttt{libtool} needs to be installed. A more convenient way to install \gosam, is the automatic installation script \url{https://gosam.hepforge.org/gosam_installer.py}. %%%%% \subsubsection{Setting up \openloops} \label{sec:openloops-setup} The installation of \openloops\ is explained in detail on the HepForge page \url{https://openloops.hepforge.org}. In the following, the main steps for usage with \whizard\ are summarized. Please note that at the moment, \openloops\ cannot be installed such that in almost all cases the explicit \openloops\ package directory has to be set via \ttt{--with-openloops=}. \openloops\ can be checked out with \begin{code} git clone https://gitlab.com/openloops/OpenLoops.git \end{code} Note that \whizard\ only supports \openloops\ version that are at least 2.1.1 or newer. Alternatively, one can use the public beta version of \openloops, which can be checked out by the command \begin{code} git clone -b public_beta https://gitlab.com/openloops/OpenLoops.git \end{code} The program can be build by running \ttt{scons} or \ttt{./scons}, a local version that is included in the \openloops\ directory. This produces the script \ttt{./openloops}, which is the main hook for the further usage of the program. \openloops\ works by downloading prebuild process libraries, which have to be installed for each individual process. This requires the file \ttt{openloops.cfg}, which should contain the following content: \begin{code} [OpenLoops] process\_repositories=public, whizard\\ compile\_extra=1 \end{code} The first line instructs \openloops\ to also look for process libraries in an additional lepton collider repository. The second line triggers the inclusion of $N+1$-particle tree-level matrix elements in the process directory, so that a complete NLO calculation including real amplitudes can be performed only with \openloops. The libraries can then be installed via \begin{code} ./openloops libinstall proc_name \end{code} A list of supported library names can be found on the \openloops\ web page. Note that a process library also includes all possible permutated processes. The process library \ttt{ppllj}, for example, can also be used to compute the matrix elements for $e^+ e^- \rightarrow q \bar{q}$ (massless quarks only). The massive case of the top quark is handled in \ttt{eett}. Additionally, there are process libraries for top and gauge boson decays, \ttt{tbw}, \ttt{vjj}, \ttt{tbln} and \ttt{tbqq}. Finally, \openloops\ can be linked to \whizard\ during configuration by including \begin{code} --enable-openloops --with-openloops=$OPENLOOPS_PATH, \end{code} where \ttt{\$OPENLOOPS\_PATH} is the directory the \openloops\ executable is located in. \openloops\ one-loop diagrams can then be used with the \sindarin\ option \begin{code} $loop_me_method = "openloops". \end{code} The functional tests which check the \openloops\ functionality require the libraries \ttt{ppllj}, \ttt{eett} and \ttt{tbw} to be installed (note that \ttt{eett} is not contained in \ttt{ppll}). During the configuration of \whizard, it is automatically checked that these two libraries, as well as the option \ttt{compile\_extra=1}, are present. \subsubsection{\openloops\ \sindarin\ flags} Several \sindarin\ options exist to control the behavior of \openloops. \begin{itemize} \item \ttt{openloops\_verbosity}:\\ Decide how much \openloops\ output is printed. Can have values 0, 1 and 2. \item \ttt{?openloops\_use\_cms}:\\ Activates the complex mass scheme. For computations with decaying resonances like the top quark or W or Z bosons, this is the preferred option to avoid gauge-dependencies. \item \ttt{openloops\_phs\_tolerance}:\\ Controls the exponent of \ttt{extra psp\_tolerance} in the BLHA interface, which is the numerical tolerance for the on-shell condition of external particles \item \ttt{openloops\_switch\_off\_muon\_yukawa}:\\ Sets the Yukawa coupling of muons to zero in order to assure agreement with \oMega, which is possibly used for other components and per default does not take $H\mu\mu$ couplings into account. \item \ttt{openloops\_stability\_log}:\\ Creates the directory \ttt{stability\_log}, which contains information about the performance of the matrix elements. Possible values are \begin{itemize} \item 0: No output (default), \item 1: On finish() call, \item 2: Adaptive, \item 3: Always \end{itemize} \item \ttt{?openloops\_use\_collier}: Use Collier as the reduction method (default true). \end{itemize} %%%%% \subsubsection{Setting up \recola} \label{sec:recola-setup} The installation of \recola\ is explained in detail on the HepForge page \url{https://recola.hepforge.org}. In the following the main steps for usage with \whizard\ are summarized. The minimal required version number of \recola\ is 1.3.0. \recola\ can be linked to \whizard\ during configuration by including \begin{code} --enable-recola \end{code} In case the \recola\ library is not in a standard path or a path accessible in the \ttt{LD\_LIBRARY\_PATH} (or \ttt{DYLD\_LIBRARY\_PATH}) of the operating system, then the option \begin{code} --with-recola=$RECOLA_PATH \end{code} can be set, where \ttt{\$RECOLA\_PATH} is the directory the \recola\ library is located in. \recola\ can then be used with the \sindarin\ option \begin{code} $method = "recola" \end{code} or any other of the matrix element methods. Note that there might be a clash of the \collier\ libraries when you have \collier\ installed both via \recola\ and via \openloops, but have compiled them with different \fortran\ compilers. %%%%% \subsection{NLO cross sections} An NLO computation can be switched on in \sindarin\ with \begin{code} process proc_nlo = in1, in2 => out1, ..., outN { nlo_calculation = }, \end{code} where the \ttt{nlo\_calculation} can be followed by a list of strings specifying the desired NLO-components to be integrated, i.e. \ttt{born}, \ttt{real}, \ttt{virtual}, \ttt{dglap}, (for hadron collisions) or \ttt{mismatch} (for the soft mismatch in resonance-aware computations) and \ttt{full}. The \ttt{full} option switches on all components and is required if the total NLO result is desired. For example, specifying \begin{code} nlo_calculation = born, virtual \end{code} will result in the computation of the Born and virtual component. The integration can be carried out in two different modes: Combined and separate integration. In the separate integration mode, each component is integrated individually, allowing for a good overview of their contributions to the total cross section and a fine tuned control over the iterations in each component. In the combined integration mode, all components are added up during integration so that the sum of them is evaluated. Here, only one integration will be displayed. The default method is the separate integration. The convergence of the integration can crucially be influenced by the presence of resonances. A better convergence is in this case achieved activating the resonance-aware FKS subtraction, \begin{code} $fks_mapping_type = "resonances". \end{code} This mode comes with an additional integration component, the so-called soft mismatch. Note that you can modify the number of iterations in each component with the multipliers: \begin{itemize} \item \ttt{mult\_call\_real} multiplies the number of calls to be used in the integration of the real component. A reasonable choice is \ttt{10.0} as the real phase-space is more complicated than the Born but the matrix elements evaluate faster than the virtuals. \item \ttt{mult\_call\_virt} multiplies the number of calls to be used in the integration of the virtual component. A reasonable choice is \ttt{0.5} to make sure that the fast Born component only contributes a negligible MC error compared to the real and virtual components. \item \ttt{mult\_call\_dglap} multiplies the number of calls to be used in the integration of the DGLAP component. \end{itemize} \subsection{Fixed-order NLO events} \label{ss:fixedorderNLOevents} Fixed-order NLO events can also be produced in three different modes: Combined weighted, combined unweighted and separated weighted. \begin{itemize} \item \textbf{Combined weighted}\\ In the combined mode, one single integration grid is produced, from which events are generated with the total NLO weight. The corresponding event file contains $N$ events with born-like kinematics and weight equal to $\mathcal{B} + \mathcal{V} + \sum_{\alpha_r} \mathcal{C}_{\alpha_r}$, where $\mathcal{B}$ is the Born matrix element, $\mathcal{V}$ is the virtual matrix element and $\mathcal{C}_{\alpha_r}$ are the subtraction terms in each singular region. For resonance-aware processes, also the mismatch value is added. Each born-like event is followed by $N_{\text{phs}}$ associated events with real kinematics, i.e. events where one additional QCD particle is present. The corresponding real matrix-elements $\mathcal{R}_\alpha$ form the weight of these events. $N_{\text{phs}}$ the number of distinct phase spaces. Two phase spaces are distinct if they share the same resonance history but have different emitters. So, two $\alpha_r$ can share the same phase space index. The combined event mode is activated by \begin{code} ?combined_nlo_integration = true ?unweighted = false ?fixed_order_nlo_events = true \end{code} Moreover, the process must be specified at next-to-leading-order in its definition using \ttt{nlo\_calculation = full}. \whizard\ then proceeds as in the usual simulation mode. I.e. it first checks whether integration grids are already present and uses them if they fit. Otherwise, it starts an integration. \item \textbf{Combined unweighted}\\ The unweighted combined events can be generated by using the \powheg\ mode, cf. also the next subsection, but disabling the additional radiation and Sudakov factors with the \ttt{?powheg\_disable\_sudakov} switch: \begin{code} ?combined_nlo_integration = true ?powheg_matching = true ?powheg_disable_sudakov = true \end{code} This will produce events with Born kinematics and unit weights (as \ttt{?unweighted} is \ttt{true} by default). The events are unweighted by using $\mathcal{B} + \mathcal{V} + \sum_{\alpha_r} (\mathcal{C}_{\alpha_r} + \mathcal{R}_{\alpha_r})$. Of course, this only works when these weights are positive over the full phase-space, which is not guaranteed for all scales and regions at NLO. However, for many processes perturbation theory works nicely and this is not an issue. \item \textbf{Separate weighted}\\ In the separate mode, grids and events are generated for each individual component of the NLO process. This method is preferable for complicated processes, since it allows to individually tune each grid generation. Moreover, the grid generation is then trivially parallelized. The event files either contain only Born kinematics with weight $\mathcal{B}$ or $\mathcal{V}$ (and mismatch in case of a resonance-aware process) or mixed Born and real kinematics for the real component like in the combined mode. However, the Born events have only the weight $\sum_{\alpha_r} \mathcal{C}_{\alpha_r}$ in this case. The separate event mode is activated by \begin{code} ?unweighted = false ?negative_weights = true ?fixed_order_nlo_events = true \end{code} Note that negative weights have to be switched on because, in contrast to the combined mode, the total cross sections of the individual components can be negative. Also, the desired component has to appear in the process NLO specification, e.g. using \ttt{nlo\_calculation = real}. \end{itemize} Weighted fixed-order NLO events are supported by any output format that supports weights like the \ttt{HepMC} format and unweighted NLO events work with any format. The output can either be written to disk or put into a FIFO to interface it to an analysis program without writing events to file. The weights in the real event output, both in the combined and separate weighted mode, are divided by a factor $N_{\text{phs}} + 1$. This is to account for the fact that we artificially increase the number of events in the output file. Thus, the sum of all event weights correctly reproduces the total cross section. \subsection{\powheg\ matching} To match the NLO computation with a parton shower, \whizard\ supports the \powheg\ matching. It generates a distribution according to \begin{align} \label{eq:powheg} \text{d}\sigma &= \text{d}\Phi_n \,{\bar{B}_{\text{s}}}\,\biggl( {\Delta_{\text{s}}}(p_T^{\text{min}}\bigr) + \text{d}\Phi_{\text{rad}}\,{\Delta_{\text{s}}}(k_{\text{T}}(\Phi_{\text{rad}})\bigr) {\frac{R_{\text{s}}}B}\biggr) \quad \text{where} \\ {\bar{B}_{\text{s}}} &= {B} + {\mathcal{V}} + \text{d}\Phi_{\text{rad}}\, {\mathcal{R}_{\text{s}}} \quad \text{and} \\ {\Delta_{\text{s}}}(p_T) &= \exp\left[- \int{\text{d}\Phi_{\text{rad}}} {\frac{R_{\text{s}}}{B}}\; \theta\left(k_T^2(\Phi_{\text{rad}}) - p_T^2\right)\right]\;. \end{align} The subscript s refers to the singular part of the real component, cf. to the next subsection. Eq.~\eqref{eq:powheg} produces either no or one additional emission. These events can then either be analyzed directly or passed on to the parton shower\footnote{E.g. \pythiaeight\ has explicit examples for \powheg\ input, see also \url{http://home.thep.lu.se/Pythia/pythia82html/POWHEGMerging.html}.} for the full simulation. You activate this with \begin{code} ?fixed_order_nlo_events = false ?combined_nlo_integration = true ?powheg_matching = true \end{code} The $p_T^{\text{min}}$ of Eq.~\eqref{eq:powheg} can be set with \ttt{powheg\_pt\_min}. It sets the minimal scale for the \powheg\ evolution and should be of order 1 GeV and set accordingly in the interfaced shower. The maximal scale is currently given by \ttt{sqrts} but should in the future be changeable with \ttt{powheg\_pt\_min}. Note that the \powheg\ event generation needs an additional grid for efficient event generation that is automatically generated during integration. Further options that steer the efficiency of this grid are \ttt{powheg\_grid\_size\_xi} and \ttt{powheg\_grid\_size\_y}. \subsection{Separation of finite and singular contributions} For both the pure NLO computations as well as the \powheg\ event generation, \whizard\ supports the partitioning of the real into finite and singular contributions with the flag \begin{code} ?nlo_use_real_partition = true \end{code} The finite contributions, which by definition should not contain soft or collinear emissions, will then integrate like a ordinary LO integration with one additional particle. Similarly, the event generation will produce only real events without subtraction terms with Born kinematics for this additional finite component. The \powheg\ event generation will also only use the singular parts. The current implementation uses the following parametrization \begin{align} R &= R_{\text{fin}} + R_{\text{sing}} \;,\\ R_{\text{sing}} &= R F(\Phi_{n+1}) \;,\\ R_{\text{fin}} &= R (1-F(\Phi_{n+1})) \;,\\ F(\Phi_{n+1}) &= \begin{cases} 1 & \text{if} \quad\exists\,(i,j)\in\mathcal{P}_{\text{FKS}}\quad \text{with} \quad \sqrt{(p_i+p_j)^2} < h + m_i + m_j \\ 0 & \text{else} \end{cases} \;. \end{align} Thus, a point is {singular ($F=1$)}, if {any} of the {FKS tuples} forms an {invariant mass} that is {smaller than the hardness scale $h$}. This parameter is controlled in \sindarin\ with \ttt{real\_partition\_scale}. This simplifies in {massless case} to \begin{align} F(\Phi_{n+1}) = \begin{cases} 1 & \text{if} \;\exists\,(i,j)\in\mathcal{P}_{\text{FKS}}\quad \text{with} \quad 2 E_i E_j (1-\cos\theta_{ij}) < h^2 \\ 0 & \text{else} \end{cases} \;. \end{align} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Random number generators} \label{chap:rng} \section{General remarks} \label{sec:rng} The random number generators (RNG) are one of the crucialer points of Monte Carlo calculations, hence, giving those their ``randomness''. A decent multipurpose random generator covers \begin{itemize} \item reproducibility \item large period \item fast generation \item independence \end{itemize} of the random numbers. Therefore, special care is taken for the choice of the RNGs in \whizard{}. It is stated that \whizard{} utilizes \textit{pseudo}-RNGs, which are based on one (or more) recursive algorithm(s) and start-seed(s) to have reproducible sequences of numbers. In contrast, a genuine random generator relies on physical processes. \whizard\ ships with two completely different random number generators which can be selected by setting the \sindarin\ option \begin{code} $rng_method = "rng_tao" \end{code} Although, \whizard{} sets a default seed, it is adviced to use a different one \begin{code} seed = 175368842 \end{code} note that some RNGs do not allow certain seed values (e.g. zero seed). \section{The TAO Random Number Generator} \label{sec:tao} The TAO (``The Art Of'') random number generator is a lagged Fibonacci generator based upon (signed) 32-bit integer arithmetic and was proposed by Donald E. Knuth and is implemented in the \vamp\ package. The TAO random number generator is the default RNG of \whizard{}, but can additionally be set as \sindarin\ option \begin{code} $rng_method = rng_tao \end{code} The TAO random number generators is a subtractive lagged Fibonacci generator \begin{equation*} x_{j} = \left( x_{j-k} - x_{j-L} \right) \mod 2^{30} \end{equation*} with lags $k = 100$ and $l = 37$ and period length $\rho = 2^{30} - 2$. \section{The RNGStream Generator} \label{sec:rngstream} The RNGStream \cite{L_Ecuyer:2002} was originally implemented in \cpp\ with floating point arithmetic and has been ported to \fortranOThree{}. The RNGstream can be selected by the \sindarin\ option \begin{code} $rng_method = "rng_stream" \end{code} The RNGstream supports multiple independent streams and substreams of random numbers which can be directly accessed. The main advantage of the RNGStream lies in the domain of parallelization where different worker have to access different parts of the random number stream to ensure numerical reproducibility. The RNGstream provides exactly this property with its (sub)stream-driven model. Unfortunately, the RNGStream can only be used in combination with \vamptwo{}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Integration Methods} \section{The Monte-Carlo integration routine: \ttt{VAMP}} \label{sec:vamp} \vamp\ \cite{Ohl:1998jn} is a multichannel extension of the \vegas\ \cite{Lepage:1980dq} algorithm. For all possible singularities in the integrand, suitable maps and integration channels are chosen which are then weighted and superimposed to build the phase space parameterization. Both grids and weights are modified in the adaption phase of the integration. The multichannel integration algorithm is implemented as a \fortranNinetyFive\ library with the task of mapping out the integrand and finding suitable parameterizations being completely delegated to the calling program (\whizard\ core in this case). This makes the actual \vamp\ library completely agnostic of the model under consideration. \section{The next generation integrator: \ttt{VAMP2}} \label{sec:vamp2} \vamptwo\ is a modern implementation of the integrator package \vamp\ written in \fortranOThree\, providing the same features. The backbone integrator is still \vegas\ \cite{Lepage:1980dq}, although implemented differently as in \vamp{}. The main advantage over \vamp\ is the overall faster integration due to the usage of \fortranOThree{}, the possible usage of different random number generators and the complete parallelization of \vegas\ and the multichannel integration. \vamptwo{} can be set by the \sindarin{} option \begin{code} $integration_method = "vamp2" \end{code} It is said that the generated grids between \vamp{} and \vamptwo{} are incompatible. \subsection{Multichannel integration} \label{sec:multi-channel} The usual matrix elements do not factorise with respect to their integration variables, thus making an direct integration ansatz with VEGAS unfavorable.\footnote{One prerequisite for the VEGAS algorithm is that the integral factorises, and such produces only the best results for those.} Instead, we apply the multichannel ansatz and let VEGAS integrate each channel in a factorising mapping. The different structures of the matrix element are separated by a partition of unity and the respective mappings, such that each structure factorise at least once. We define the mappings $\phi_i : U \mapsto \Omega$, where $U$ is the unit hypercube and $\Omega$ the physical phase space. We refer to each mapping as a \textit{channel}. Each channel then gives rise to a probability density $g_i : U \mapsto [0, \infty)$, normalised to unity \begin{equation*} \int_0^1 g_i(\phi_i^{-1}(p)) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right| \mathrm{d}\mu(p) = 1, \quad g_i(\phi_i^{-1}(p)) \geq 0, \end{equation*} written for a phase space point $p$ using the mapping $\phi_i$. The \textit{a-priori} channel weights $\alpha_i$ are defined as partition of unity by $\sum_{i\in I} \alpha_i = 1$ and $0 \leq \alpha_i \leq 1$. The overall probability density $g$ of a random sample is then obtained by \begin{equation*} g(p) = \sum_{i \in I} \alpha_i g_i(\phi_i^{-1}(p)) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right|, \end{equation*} which is also a non-negative and normalized probability density. We reformulate the integral \begin{equation*} I(f) = \sum_{i \in I} \alpha_i \int_\Omega g_i(\phi_i^{-1}(p)) \left| \frac{\partial \phi_i^{-1}}{\partial p} \right| \frac{f(p)}{g(p)} \mathrm{d}\mu(p). \end{equation*} The actual integration of each channel is then done by VEGAS, which shapes the $g_i$. \subsection{VEGAS} \label{sec:vegas} VEGAS is an adaptive and iterative Monte Carlo algorithm for integration using importance sampling. After each iteration, VEGAS adapts the probability density $g_i$ using information collected while sampling. For independent integration variables, the probability density factorises $g_i = \prod_{j = 1}^{d} g_{i,j}$ for each integration axis and each (independent) $g_{i,j}$ is defined by a normalised step function \begin{equation*} g_{i,j} (x_j) = \frac{1}{N\Delta x_{j,k}}, \quad x_{j,k} - \Delta x_{j,k} \leq x_{j} < x_{j,k}, \end{equation*} where the steps are $0 = x_{j, 0} < \cdots < x_{j,k} < \cdots < x_{j,N} = 1$ for each dimension $j$. The algorithm randomly selects for each dimension a bin and a position inside the bin and calculates the respective $g_{i,j}$. \subsection{Channel equivalences} \label{sec:equivalences} The automated mulitchannel phasespace configuration can lead to a surplus of degrees of freedom, e.g. for a highly complex process with a large number of channels (VBS). In order to marginalize the redundant degrees of freedom of phasespace configuration, the adaptation distribution of the grids are aligned in accordance to their phasespace relation, hence the binning of the grids is equialized. These equivalences are activated by default for \vamp{} and \vamptwo{}, but can be steered by: \begin{code} ?use_vamp_equivalences = true \end{code} Be aware, that the usage of equivalences are currently only possible for LO processes. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Phase space parameterizations} \section{General remarks} \whizard\ as a default performs an adaptive multi-channel Monte-Carlo integration. Besides its default phase space algorithm, \ttt{wood}, to be detailed in Sec.~\ref{sec:wood}, \whizard\ contains a phase space method \ttt{phs\_none} which is a dummy method that is intended for setups of processes where no phase space integration is needed, but the program flow needs a (dummy) integrator for internal consistency. Then, for testing purposes, there is a single-channel phase space integrator, \ttt{phs\_single}. From version 2.6.0 of \whizard\ on, there is also a second implementation of the \ttt{wood} phase space algorithm, called \ttt{fast\_wood}, cf. Sec.~\ref{sec:fast_wood}, whose implementation differs technically and which therefore solves certain technical flaws of the \ttt{wood} implementation. Additionally, \whizard\ supports single-channel, flat phase-space using RAMBO (on diet). %%% \section{The flat method: \ttt{rambo}} \label{sec:rambo} The \ttt{RAMBO} algorithm produces a flat phase-space with constant volume for massless particles. \ttt{RAMBO} was originally published in \cite{Kleiss:1985gy}. We use the slim version, called \ttt{RAMBO} on diet, published in \cite{Platzer:2013esa}. The overall weighting efficiency of the algorithm is unity for massless final-state particles. For the massive case, the weighting efficiency of unity will decrease rendering the algorithm less efficient. But in most cases, the invariants are in regions of phase space where they are much larger than the masses of the final-state particles. We provide the \ttt{RAMBO} mainly for cross checking our implementation and do not recommend it for real world application, even though it can be used as one. The \ttt{RAMBO} method becomes useful as a fall-back option if the standard algorithm fails for physical reasons, see, e.g., Sec.~\ref{sec:ps_anomalous}. %%% \section{The default method: \ttt{wood}} \label{sec:wood} The \ttt{wood} algorithm classifies different phase space channels according to their importance for a full scattering or decay process following heuristic rules. For that purpose, \whizard\ investigates the kinematics of the different channels depending on the total center-of-mass energy (or the mass of the decaying particle) and the masses of the final-state particles. The \ttt{wood} phase space inherits its name from the naming schemes of structures of increasing complexities, namely trees, forests and groves. Simply stated, a phase-space forest is a collection of phase-space trees. A phase-space tree is a parameterization for a valid channel in the multi-channel adaptive integration, and each variable in the a tree corresponds to an integration dimension, defined by an appropriate mapping of the $(0,1)$ interval of the unit hypercube to the allowed range of the corresponding integration variable. The whole set of these phase-space trees, collected in a phase-space forest object hence contains all parameterizations of the phase space that \whizard\ will use for a single hard process. Note that processes might contain flavor sums of particles in the final state. As \whizard\ will use the same phase space parameterization for all channels for this set of subprocesses, all particles in those flavor sums have to have the same mass. E.g. in the definition of a "light" jet consisting of the first five quarks and antiquarks, \begin{code} alias jet = u:d:s:c:b:U:D:S:C:B \end{code} all quarks including strange, charm and bottom have to be massless for the phase-space integration. \whizard\ can treat processes with subprocesses having final-state particles with different masses in an "additive" way, where each subprocess will become a distinct component of the whole process. Each process component will get its own phase-space parameterization, such that they can allow for different masses. E.g. in a 4-flavor scheme for massless $u,d,s,c$ quarks one can write \begin{code} alias jet = u:d:s:c:U:D:S:C process eeqq = e1, E1 => (jet, jet) + (b, B) \end{code} In that case, the parameterizations will be for massless final state quarks for the first subprocess, and for massive $b$ quarks for the second subprocess. In general, for high-energy lepton colliders, the difference would not matter much, but performing the integration e.g. for $\sqrt{s} = 11$ GeV, the difference will be tremendous. \whizard\ avoids inconsistent phase-space parameterizations in that way. As a multi-particle process will contain hundred or thousands of different channels, the different integration channels (trees) are grouped into so called {\em groves}. All channels/trees in the same grove share a common weight for the phase-space integration, following the assumption that they are related by some approximate symmetry. The \vamp\ adaptive multi-channel integrator (cf. Sec.~\ref{sec:vamp}) allows for equivalences between different integration channels. This means that trees/channels that are related by an exact symmetry are connected by an array of these equivalences. The phase-space setup, i.e. the detailed structure of trees and forests, are written by \whizard\ into a phase-space file that has the same name as the corresponding process (or process component) with the suffix \ttt{.phs}. For the \ttt{wood} phase-space method this file is written by a \fortran\ module which constructs a similar tree-like structure as the directed acyclical graphs (DAGs) in the \oMega\ matrix element generator but in a less efficient way. In some very rare cases with externally generated models (cf. Chapter~\ref{chap:extmodels}) the phase-space generation has been reported to fail as \whizard\ could not find a valid phase-space channel. Such pathological cases cannot occur for the hard-coded model implementations inside \whizard. They can only happen if there are in principle two different Feynman diagrams contributing to the same phase-space channel and \whizard\ considers the second one as extremely subleading (and would hence drop it). If for some reason however the first Feynman diagram is then absent, no phase-space channel could be found. This problem cannot occur with the \ttt{fast\_wood} implementation discussed in the next section, cf.~\ref{sec:fast_wood}. The \ttt{wood} algorithms orders the different groves of phase-space channels according to a heuristic importance depending on the kinematic properties of the different phase-space channels in the groves. A phase-space (\ttt{.phs}) file looks typically like this: \begin{code} process sm_i1 ! List of subprocesses with particle bincodes: ! 8 4 1 2 ! e+ e- => mu+ mu- ! 8 4 1 2 md5sum_process = "1B3B7A30C24664A73D3D027382CFB4EF" md5sum_model_par = "7656C90A0B2C4325AD911301DACF50EB" md5sum_phs_config = "6F72D447E8960F50FDE4AE590AD7044B" sqrts = 1.000000000000E+02 m_threshold_s = 5.000000000000E+01 m_threshold_t = 1.000000000000E+02 off_shell = 2 t_channel = 6 keep_nonresonant = T ! Multiplicity = 2, no resonances, 0 logs, 0 off-shell, s-channel graph grove #1 ! Channel #1 tree 3 ! Multiplicity = 1, 1 resonance, 0 logs, 0 off-shell, s-channel graph grove #2 ! Channel #2 tree 3 map 3 s_channel 23 ! Z \end{code} The first line contains the process name, followed by a list of subprocesses with the external particles and their binary codes. Then there are three lines of MD5 check sums, used for consistency checks. \whizard\ (unless told otherwise) will check for the existence of a phase-space file, and if the check sum matches, it will reuse the existing file and not generate it again. Next, there are several kinematic parameters, namely the center-of-mass energy of the process, \ttt{sqrts}, and two mass thresholds, \ttt{m\_threshold\_s} and \ttt{m\_threshold\_t}. The latter two are kinematical thresholds, below which \whizard\ will consider $s$-channel and $t$-channel-like kinematic configurations as effectively massless, respectively. The default values shown in the example have turned out to be optimal values for Standard Model particles. The two integers \ttt{off\_shell} and \ttt{t\_channel} give the number of off-shell lines and of $t$-channel lines that \whizard\ will allow for finding valid phase-space channels, respectively. This neglects extremley multi-peripheral background-like diagram constellations which are very subdominamnt compared to resonant signal processes. The final flag specifies whether \whizard\ will keep non-resonant phase-space channels (default), or whether it will focus only on resonant situations. After this header, there is a list of all groves, i.e. collections of phase-space channels which are connected by quasi-symmetries, together with the corresponding multiplicity of subchannels in that grove. In the phase-space file behind the multiplicity, \whizard\ denotes the number of (massive) resonances, logarithmcally enhanced kinematics (e.g. collinear regions), and number of off-shell lines, respectively. The final entry in the grove header notifies whether the diagrams in that grove have $s$-channel topologies, or count the number of corresponding $t$-channel lines. Another example is shown here, \begin{code} ! Multiplicity = 3, no resonances, 2 logs, 0 off-shell, 1 t-channel line grove #1 ! Channel #1 tree 3 12 map 3 infrared 22 ! A map 12 t_channel 2 ! u ! Channel #2 tree 3 11 map 3 infrared 22 ! A map 11 t_channel 2 ! u ! Channel #3 tree 3 20 map 3 infrared 22 ! A map 20 t_channel 2 ! u ! Channel #4 tree 3 19 map 3 infrared 22 ! A map 19 t_channel 2 ! u \end{code} where \whizard\ notifies in different situations a photon exchange as \ttt{infrared}. So it detects a possible infrared singularity where a particle can become arbitrarily soft. Such a situation can tell the user that there might be a cut necessary in order to get a meaningful integration result. The phase-space setup that is generated and used by the \ttt{wood} phase-space method can be visualized using the \sindarin\ option \begin{code} ?vis_channels = true \end{code} The \ttt{wood} phase-space method can be invoked with the \sindarin\ command \begin{code} $phs_method = "wood" \end{code} Note that this line is unnecessary, as \ttt{wood} is the default phase-space method of \whizard. %%%%% \section{A new method: \ttt{fast\_wood}} \label{sec:fast_wood} This method (which is available from version 2.6.0 on) is an alternative implementation of the \ttt{wood} phase-space algorithm. It uses the recursive structures inside the \oMega\ matrix element generator to generate all the structures needed for the different phase-space channels. In that way, it can avoid some of the bottlenecks of the \ttt{wood} \fortran\ implementation of the algorithm. On the other hand, it is only available if the \oMega\ matrix element generator has been enabled (which is the default for \whizard). The \ttt{fast\_wood} method is then invoked via \begin{code} ?omega_write_phs_output = true $phs_method = "fast_wood" \end{code} The first option is necessary in order to tell \oMega\ to write out the output needed for the \ttt{fast\_wood} parser in order to generate the phase-space file. This is not enabled by default in order not to generate unnecessary files in case the default method \ttt{wood} is used. So the \ttt{fast\_wood} implementation of the \ttt{wood} phase-space algorithm parses the tree-like represenation of the recursive set of one-particle off-shell wave functions that make up the whole amplitude inside \oMega\ in the form of a directed acyclical graph (DAG) in order to generate the phase-space (\ttt{.phs}) file (cf. Sec.~\ref{sec:wood}). In that way, the algorithm makes sure that only phase-space channels are generated for which there are indeed (sub)amplitudes in the matrix elements, and this also allows to exclude vetoed channels due to restrictions imposed on the matrix elements from the phase-space setup (cf. next Sec.~\ref{sec:ps_restrictions}). %%%%% \section{Phase space respecting restrictions on subdiagrams} \label{sec:ps_restrictions} The \fortran\ implementation of the \ttt{wood} phase-space does not know anything about possible restrictions that maybe imposed on the \oMega\ matrix elements, cf. Sec.~\ref{sec:process options}. Consequently, the \ttt{wood} phase space also generates phase-space channels that might be absent when restrictions are imposed. This is not a principal problem, as in the adaptation of the phase-space channels \whizard's integrator \vamp\ will recognize that there is zero weight in that channel and will drop the channel (stop sampling in that channel) after some iterations. However, this is a waste of ressources as it is in principle known that this channel is absent. Using the \ttt{fast\_wood} phase-space algorithm (cf. Sec.~\ref{sec:fast_wood} will take restrictions into account, as \oMega\ will not generate trees for channels that are removed with the restrictions command. So it advisable for the user in the case of very complicated processes with restrictions to use the \ttt{fast\_wood} phase-space method to make \whizard\ generation and integration of the phase space less cumbersome. %%%%% \section{Phase space for processes forbidden at tree level} \label{sec:ps_anomalous} The phase-space generators \ttt{wood} and \ttt{fast\_wood} are intended for tree-level processes with their typical patterns of singularities, which can be read off from Feynman graphs. They can and should be used for loop-induced or for externally provided matrix elements as long as \whizard\ does not provide a dedicated phase-space module. Some scattering processes do not occur at tree level but become allowed if loop effects are included in the calculation. A simple example is the elastic QED process \begin{displaymath} A\quad A \longrightarrow A\quad A \end{displaymath} which is mediated by a fermion loop. Similarly, certain applications provide externally provided or hand-taylored matrix-element code that replaces the standard \oMega\ code. Currently, \whizard's phase-space parameterization is nevertheless tied to the \oMega\ generator, so for tree-level forbidden processes the phase-space construction process will fail. There are two possible solutions for this problem: \begin{enumerate} \item It is possible to provide the phase-space parameterization information externally, by supplying an appropriately formatted \ttt{.phs} file, bypassing the automatic algorithm. Assuming that this phase-space file has been named \ttt{my\_phase\_space.phs}, the \sindarin\ code should contain the following: \begin{code} ?rebuild_phase_space = false $phs_file = "my_phase_space.phs" \end{code} Regarding the contents of this file, we recommend to generate an appropriate \ttt{.phs} for a similar setup, using the standard algorithm. The generated file can serve as a template, which can be adapted to the particular case. In detail, the \ttt{.phs} file consists of entries that specify the process, then a standard header which contains MD5 sums and such -- these variables must be present but their values are irrelevant for the present case --, and finally at least one \ttt{grove} with \ttt{tree} entries that specify the parameterization. Individual parameterizations are built from the final-state and initial-state momenta (in this order) which we label in binary form as $1,2,4,8,\dots$. The actual tree consists of iterative fusions of those external lines. Each fusion is indicated by the number that results from adding the binary codes of the external momenta that contribute to it. For instance, a valid phase-space tree for the process $AA\to AA$ is given by the simple entry \begin{code} tree 3 \end{code} which indicates that the final-state momenta $1$ and $2$ are combined to a fusion $1+2=3$. The setup is identical to a process such as $e^+e^-\to\mu^+\mu^-$ below the $Z$ threshold. Hence, we can take the \ttt{.phs} file for the latter process, replace the process tag, and use it as an external phase-space file. \item For realistic applications of \whizard\ together with one-loop matrix-element providers, the actual number of final-state particles may be rather small, say $2,3,4$. Furthermore, one-loop processes which are forbidden at tree level do not contain soft or collinear singularities. In this situation, the \ttt{RAMBO} phase-space integration method, cf.\ Sec.~\ref{sec:rambo} is a viable alternative which does not suffer from the problem. \end{enumerate} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Methods for Hard Interactions} \label{chap:hardint} The hard interaction process is the core of any physics simulation within an MC event generator. One tries to describe the dominant particle interaction in the physics process of interest at a given order in perturbation theory, thereby making use of field-theoretic factorization theorems, especially for QCD, in order to separate non-perturbative physics like parton distribution functions (PDFs) or fragmentation functions from the perturbative part. Still, it is in many cases not possible to describe the perturbative part completely by means of fixed-order hard matrix elements: in soft and/or collinear regions of phase space, multiple emission of gluons and quarks (in general QCD jets) and photons necessitates a resummation, as large logarithms accompany the perturbative coupling constants and render fixed-order perturbation theory unreliable. The resummation of these large logarithms can be done analytically or (semi-)numerically, however, usually only for very inclusive quantities. At the level of exclusive events, these phase space regions are the realm of (QCD and also QED) parton showers that approximate multi-leg matrix elements from the hard perturbative into to the soft-/collinear regime. The hard matrix elements are then the core building blocks of the physics description inside the MC event generator. \whizard\ generates these hard matrix elements at tree-level (or sometimes for loop-induced processes using effective operators as insertions) as leading-order processes. This is done by the \oMega\ subpackage that is automatically called by \whizard. Besides these physical matrix elements, there exist a couple of methods to generate dummy matrix elements for testing purposes, or for generating beam profiles and using them with externally linked special matrix elements. Especially for one-loop processes (next-to-leading order for tree-allowed processes or leading-order for loop-induced processes), \whizard\ allows to use matrix elements from external providers, so called OLP programs (one-loop providers). Of course, all of these external packages can also generate tree-level matrix elements, which can then be used as well in \whizard. We start the discussion with the two different options for test matrix elements, internal test matrix elements with no generated compiled code in Sec.~\ref{sec:test_me} and so called template matrix elements with actual \fortran\ code that is compiled and linked, and can also be modified by the user in Sec.~\ref{sec:template_me}. Then, we move to the main matrix element method by the matrix element generator \oMega\ in Sec.~\ref{sec:omega_me}. Matrix elements from the external matrix element generators are discussed in the order of which interfaces for the external tools have been implemented: \gosam\ in Sec.~\ref{sec:gosam_me}, \openloops\ in Sec.~\ref{sec:openloops_me}, and \recola\ in Sec.~\ref{sec:recola_me}. %%%%% \section{Internal test matrix elements} \label{sec:test_me} This method is merely for internal consistency checks inside \whizard, and is not really intended to be utilized by the user. The method is invoked by \begin{code} $method = "unit_test" \end{code} This particular method is only applicable for the internal test model \ttt{Test.mdl}, which just contains a Higgs boson and a top quark. Technically, it will also works within model specifications for the Standard Model, or the Minimal Supersymmetric Standard Model (MSSM), or all models which contain particles named as \ttt{H} and \ttt{t} with PDG codes 25 and 6, respectively. So, the models \ttt{QED} and {QCD} will not work. Irrespective of what is given in the \sindarin\ file as a scattering input process, \whizard\ will always take the process \begin{code} model = SM process = H, H => H, H \end{code} or for the test model: \begin{code} model = Test process = s, s => s, s \end{code} as corresponding process. (This is the same process, just with differing nomenclature in the different models). No matrix element code is generated and compiled, the matrix element is completely internal, included in the \whizard\ executable (or library), with a unit value for the squared amplitude. The integration will always be performed for this particularly process, even if the user provides a different process for that method. Hence, the result will always be the volume of the relativistic two-particle phase space. The only two parameters that influence the result are the collider energy, \ttt{sqrts}, and the mass of the Higgs particle with PDG code 25 (this mass parameter can be changed in the model \ttt{Test} as \ttt{ms}, while it would be \ttt{mH} in the Standard Model \ttt{SM}. It is also possible to use a test matrix element, again internal, for decay processes, where again \whizard\ will take a predefined process: \begin{code} model = SM process = H => t, tbar \end{code} in the \ttt{SM} model or \begin{code} model = Test process = s => f, fbar \end{code} Again, this is the same process with PDG codes $25 \to 6 \; -6$ in the corresponding models. Note that in the model \ttt{SM} the mass of the quark is set via the variable \ttt{mtop}, while it is \ttt{mf} in the model \ttt{Test}. Besides the fact that the user always gets a fixed process and cannot modify any matrix element code by hand, one can do all things as for a normal process like generating events, different weights, testing rebuild flags, using different setups and reweight events accordingly. Also factorized processes with production and decay can be tested that way. In order to avoid confusion, it is highly recommended to use this method \ttt{unit\_test} only with the test model setup, model \ttt{Test}. On the technical side, the method \ttt{unit\_test} does not produce a process library (at least not an externally linked one), and also not a makefile in order to modify any process files (which anyways do not exist for that method). Except for the logfiles and the phase space file, all files are internal. %%%%% \section{Template matrix elements} \label{sec:template_me} Much more versatile for the user than the previous matrix element method in~\ref{sec:test_me}, are two different methods with constant template matrix elements. These are written out as \fortran\ code by the \whizard\ main executable (or library), providing an interface that is (almost) identical to the matrix element code produced by the \oMega\ generator (cf. the next section, Sec.~\ref{sec:omega_me}. There are actually two different methods for that purpose, providing matrix elements with different normalizations: \begin{code} $method = "template" \end{code} generates matrix elements which give after integration over phase space exactly one. Of course, for multi-particle final states the integration can fluctuate numerically and could then give numbers that are only close to one but not exactly one. Furthermore, the normalization is not exact if any of the external particles have non-zero masses, or there are any cuts involved. But otherwise, the integral from \whizard\ should give unity irrespective of the number of final state particles. In contrast to this, the second method, \begin{code} $method = "template_unity" \end{code} gives a unit matrix elements, or rather a matrix element that contains helicity and color averaging factors for the initial state and the square root of the factorials of identical final state particles in the denominator. Hence, integration over the final state momentum configuration gives a cross section that corresponds to the volume of the $n$-particle final state phase space, divided by the corresponding flux factor, resulting in \begin{equation} \sigma(s, 2 \to 2,0) = \frac{3.8937966\cdot 10^{11}}{16\pi} \cdot \frac{1}{s \text{[GeV]}^2} \; \text{fb} \end{equation} for the massless case and \begin{equation} \sigma(s, 2 \to 2,m_i) = \frac{3.8937966\cdot 10^{11}}{16\pi} \cdot \sqrt{\frac{\lambda (s,m_3^2,m_4^2)}{\lambda (s,m_1^2,m_2^2)}} \cdot \frac{1}{s \text{[GeV]}^2} \; \text{fb} \end{equation} for the massive case. Here, $m_1$ and $m_2$ are the masses of the incoming, $m_3$ and $m_4$ the masses of the outgoing particles, and $\lambda(x,y,z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$. For the general massless case with no cuts, the integral should be exactly \begin{equation} \sigma(s, 2\to n, 0) = \frac{(2\pi)^4}{2 s}\Phi_n(s) = \frac{1}{16\pi s}\,\frac{\Phi_n(s)}{\Phi_2(s)}, \end{equation} where the volume of the massless $n$-particle phase space is given by \begin{equation}\label{phi-n} \Phi_n(s) = \frac{1}{4(2\pi)^5} \left(\frac{s}{16\pi^2}\right)^{n-2} \frac{1}{(n-1)!(n-2)!}. \end{equation} For $n\neq2$ the phase space volume is dimensionful, so the units of the integral are $\fb\times\GeV^{2(n-2)}$. (Note that for physical matrix elements this is compensated by momentum factors from wave functions, propagators, vertices and possibly dimensionful coupling constants, but here the matrix element is just equal to unity.) Note that the phase-space integration for the \ttt{template} and \ttt{template\_unity} matrix element methods is organized in the same way as it would be for the real $2\to n$ process. Since such a phase space parameterization is not optimized for the constant matrix element that is supplied instead, good convergence is not guaranteed. (Setting \ttt{?stratified = true} may be helpful here.) The possibility to call a dummy matrix element with this method allows to histogram spectra or structure functions: Choose a trivial process such as $uu\to dd$, select the \ttt{template\_unity} method, switch on structure functions for one (or both) beams, and generate events. The distribution of the final-state mass squared reflects the $x$ dependence of the selected structure function. Furthermore, the constant in the source code of the unit matrix elements can be easily modified by the user with their \fortran\ code in order to study customized matrix elements. Just rerun \whizard\ with the \ttt{--recompile} option after the modification of the matrix element code. Both methods, \ttt{template} and \ttt{template\_unity} will also work even if no \ocaml\ compiler is found or used and consequently the \oMega\ matrix elemente generator (cf. Sec.~\ref{sec:omega_me} is disable. The methods produce a process library for their corresponding processes, and a makefile, by which \whizard\ steers compilation and linking of the process source code. %%%%% \section{The O'Mega matrix elements} \label{sec:omega_me} \oMega\ is a subpackage of \whizard, written in \ocaml, which can produce matrix elements for a wide class of implemented physics models (cf. Sec.~\ref{sec:smandfriends} and \ref{sec:bsmmodels} for a list of all implemented physics models), and even almost arbitrary models when using external Lagrange level tools, cf. Chap.~\ref{chap:extmodels}. There are two different variants for matrix elements from \oMega: the first one is invoked as \begin{code} $method = "omega" \end{code} and is the default method for \whizard. It produces matrix element as \fortran\ code which is then compiled and linked. An alternative method, which for the moment is only available for the Standard Model and its variants as well models which are quite similar to the SM, e.g. the Two-Higgs doublet model or the Higgs-singlet extension. This method is taken when setting \begin{code} $method = "ovm" \end{code} The acronym \ttt{ovm} stands for \oMega\ Virtual Machine (OVM). The first (default) method (\ttt{omega}) of \oMega\ matrix elements produces \fortran\ code for the matrix elements,that is compiled by the same compiler with which \whizard\ has been compiled. The OVM method (\ttt{ovm}) generates an \ttt{ASCII} file with so called op code for operations. These are just numbers which tell what numerical operations are to be performed on momenta, wave functions and vertex expression in order to yield a complex number for the amplitude. The op codes are interpreted by the OVM in the same as a Java Virtual Machine. In both cases, a compiled \fortran\ is generated which for the \ttt{omega} method contains the full expression for the matrix element as \fortran\ code, while for the \ttt{ovm} method this is the driver file of the OVM. Hence, for the \ttt{ovm} method this file always has roughly the same size irrespective of the complexity of the process. For the \ttt{ovm} method, there will also be the \ttt{ASCII} file that contains the op codes, which has a name with an \ttt{.hbc} suffix: \ttt{.hbc}. For both \oMega\ methods, there will be a process library created as for the template matrix elements (cf. Sec.~\ref{sec:template_me}) named \ttt{default\_lib.f90} which can be given a user-defined name using the \ttt{library = ""} command. Again, for both methods \ttt{omega} and \ttt{ovm}, a makefile named \ttt{\_lib.makefile} is generated by which \whizard\ steers compilation, linking and clean-up of the process sources. This makefile can handily be adapted by the user in case she or he wants to modify the source code for the process (in the case of the source code method). Note that \whizard's default ME method via \oMega\ allows the user to specify many different options either globally for all processes in the \sindarin, or locally for each process separately in curly brackets behind the corresponding process definition. Examples are \begin{itemize} \item Restrictions for the matrix elements like the exclusion of intermediate resonances, the appearance of specific vertices or coupling constants in the matrix elments. For more details on this cf. Sec.~\ref{subsec:restrictions}. \item Choice of a specific scheme for the width of massive intermediate resonances, whether to use constant width, widths only in $s$-channel like kinematics (this is the default), a fudged-width scheme or the complex-mass scheme. The latter is actually steered as a specific scheme of the underlying model and not with a specific \oMega\ command. \item Choice of the electroweak gauge for the amplitude. The default is the unitary gauge. \end{itemize} With the exception of the restrictions steered by the \ttt{\$restrictions = ""} string expression, these options have to be set in their specific \oMega\ syntax verbatim via the string command \ttt{\$omega\_flags = ""}. %%%%% \section{Interface to GoSam} \label{sec:gosam_me} One of the supported methods for automated matrix elements from external providers is for the \gosam\ package. This program package which is a combination of \python\ scripts and \fortran\ libraries, allows both for tree and one-loop matrix elements (which is leading or next-to-leading order, depending on whether the corresponding process is allowed at the tree level or not). In principle, the advanced version of \gosam\ also allows for the evaluation of two-loop virtual matrix elements, however, this is currently not supported in \whizard. This method is invoked via the command \begin{code} $method = "gosam" \end{code} Of course, this will only work correctly of \gosam\ with all its subcomponents has been correctly found during configuration of \whizard\ and then subsequently correctly linked. In order to generate the tables for spin, flavor and color states for the corresponding process, first \oMega\ is called to provide \fortran\ code for the interfaces to all the metadata for the process(es) to be evaluated. Next, the \gosam\ \python\ script is automatically invoked that first checks for the necessary ingredients to produce, compile and link the \gosam\ matrix elements. These are the the \ttt{Qgraf} topology generator for the diagrams, \ttt{Form} to perform algebra, the \ttt{Samurai}, \ttt{AVHLoop}, \ttt{QCDLoop} and \ttt{Ninja} libraries for Passarino-Veltman reduction, one-loop tensor integrals etc. As a next step, \gosam\ automatically writes and executes a \ttt{configure} script, and then it exchanges the Binoth Les Houches accord (BLHA) contract files between \whizard\ and itself~\cite{Binoth:2010xt,Alioli:2013nda} to check whether it actually generate code for the demanded process at the given order. Note that the contract and answer files do not have to be written by the user by hand, but are generated automatically within the program work flow initiated by the original \sindarin\ script. \gosam\ then generates \fortran\ code for the different components of the processes, compiles it and links it into a library, which is then automatically accessible (as an external process library) from inside \whizard. The phase space setup and the integration as well as the LO (and NLO) event generation work then in exactly the same way as for \oMega\ matrix elements. As an NLO calculation consists of different components for the Born, the real correction, the virtual correction, the subtraction part and possible further components depending on the details of the calculation, there is the possible to separately choose the matrix element method for those components via the keywords \ttt{\$loop\_me\_method}, \ttt{\$real\_tree\_me\_method}, \ttt{\$correlation\_me\_method} etc. These keywords overwrite the master switch of the \ttt{\$method} keyword. For more information on the switches and details of the functionality of \gosam, cf. \url{http://gosam.hepforge.org}. %%%%% \section{Interface to Openloops} \label{sec:openloops_me} Very similar to the case of \gosam, cf. Sec.~\ref{sec:gosam_me}, is the case for \openloops\ matrix elements. Also here, first \oMega\ is called in order to provide an interface for the spin, flavor and color degrees of freedom for the corresponding process. Information exchange between \whizard\ and \openloops\ then works in the same automatic way as for \gosam\ via the BLHA interface. This matrix element method is invoked via \begin{code} $method = "openloops" \end{code} This again is the master switch that will tell \whizard\ to use \openloops\ for all components, while there are special keywords to tailor-make the setup for the different components of an NLO calculation (cf. Sec.~\ref{sec:gosam_me}. The main difference between \openloops\ and \gosam\ is that for \openloops\ there is no process code to be generated, compiled and linked for a process, but a precompiled library is called and linked, e.g. \ttt{ppllj} for the Drell-Yan process. Of course, this library has to be installed on the system, but if that is not the case, the user can execute the \openloops\ script in the source directory of \openloops\ to download, compile and link the corresponding dynamic library. This limits (for the moment) the usage of \openloops\ to processes where pre-existint libraries for that specific processes have been generated by the \openloops\ authors. A new improved generator for general process libraries for \openloops\ will get rid of that restriction. For more information on the installation, switches and details of the functionality of \openloops, cf. \url{http://openloops.hepforge.org}. %%%%% \section{Interface to Recola} \label{sec:recola_me} The third one-loop provider (OLP) for external matrix elements that is supported by \whizard, is \recola. In contrast to \gosam, cf. Sec.~\ref{sec:gosam_me}, and \openloops, cf. Sec.~\ref{sec:openloops_me}, \recola\ does not use a BLHA interface to exchange information with \whizard, but its own tailor-made C interoperable library interface to communicate to the Monte Carlo side. \recola\ matrix elements are called for via \begin{code} $method = "recola" \end{code} \recola\ uses a highly efficient algorithm to generate process code for LO and NLO SM amplitudes in a fully recursive manner. At the moment, the setup of the interface within \whizard\ does not allow to invoke more than one different process in \recola: this would lead to a repeated initialization of the main setup of \recola\ and would consequently crash it. It is foreseen in the future to have a safeguard mechanism inside \whizard\ in order to guarantee initialization of \recola\ only once, but this is not yet implemented. Further information on the installation, details and parameters of \recola\ can be found at \url{http://recola.hepforge.org}. %%%%% \section{Special applications} \label{sec:special_me} There are also special applications with combinations of matrix elements from different sources for dedicated purposes like e.g. for the matched top--anti-top threshold in $e^+e^-$. For this special application which depending on the order of the matching takes only \oMega\ matrix elements or at NLO combines amplitudes from \oMega\ and \openloops, is invoked by the method: \begin{code} $method = "threshold" \end{code} \newpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Implemented physics} \label{chap:physics} %%%%% \section{The hard interaction models} In this section, we give a brief overview over the different incarnations of models for the description of the realm of subatomic particles and their interactions inside \whizard. In Sec.~\ref{sec:smandfriends}, the Standard Model (SM) itself and straightforward extensions and modifications thereof in the gauge, fermionic and Higgs sector are described. Then, Sec.~\ref{sec:bsmmodels} gives a list and short description of all genuine beyond the SM models (BSM) that are currently implemented in \whizard\ and its matrix element generator \oMega. Additional models beyond that can be integrated and handled via the interfaces to external tools like \sarah\ and \FeynRules, or the universal model format \UFO, cf. Chap.~\ref{chap:extmodels}. %%%%%%%%%%%%%%% \subsection{The Standard Model and friends} \label{sec:smandfriends} %%%% \subsection{Beyond the Standard Model} \label{sec:bsmmodels} \begin{table} \begin{center} \begin{tabular}{|l|l|l|} \hline MODEL TYPE & with CKM matrix & trivial CKM \\ \hline\hline Yukawa test model & \tt{---} & \tt{Test} \\ \hline QED with $e,\mu,\tau,\gamma$ & \tt{---} & \tt{QED} \\ QCD with $d,u,s,c,b,t,g$ & \tt{---} & \tt{QCD} \\ Standard Model & \tt{SM\_CKM} & \tt{SM} \\ SM with anomalous gauge couplings & \tt{SM\_ac\_CKM} & \tt{SM\_ac} \\ SM with $Hgg$, $H\gamma\gamma$, $H\mu\mu$, $He^+e^-$ & \tt{SM\_Higgs\_CKM} & \tt{SM\_Higgs} \\ SM with bosonic dim-6 operators & \tt{---} & \tt{SM\_dim6} \\ SM with charge 4/3 top & \tt{---} & \tt{SM\_top} \\ SM with anomalous top couplings & \tt{---} & \tt{SM\_top\_anom} \\ SM with anomalous Higgs couplings & \tt{---} & \tt{SM\_rx}/\tt{NoH\_rx}/\tt{SM\_ul} \\\hline SM extensions for $VV$ scattering & \tt{---} & \tt{SSC}/\tt{AltH}/\tt{SSC\_2}/\tt{SSC\_AltT} \\\hline SM with $Z'$ & \tt{---} & \tt{Zprime} \\ \hline Two-Higgs Doublet Model & \tt{THDM\_CKM} & \tt{THDM} \\ \hline\hline MSSM & \tt{MSSM\_CKM} & \tt{MSSM} \\ \hline MSSM with gravitinos & \tt{---} & \tt{MSSM\_Grav} \\ \hline NMSSM & \tt{NMSSM\_CKM} & \tt{NMSSM} \\ \hline extended SUSY models & \tt{---} & \tt{PSSSM} \\ \hline\hline Littlest Higgs & \tt{---} & \tt{Littlest} \\ \hline Littlest Higgs with ungauged $U(1)$ & \tt{---} & \tt{Littlest\_Eta} \\ \hline Littlest Higgs with $T$ parity & \tt{---} & \tt{Littlest\_Tpar} \\ \hline Simplest Little Higgs (anomaly-free) & \tt{---} & \tt{Simplest} \\ \hline Simplest Little Higgs (universal) & \tt{---} & \tt{Simplest\_univ} \\ \hline\hline SM with graviton & \tt{---} & \tt{Xdim} \\ \hline UED & \tt{---} & \tt{UED} \\ \hline ``SQED'' with gravitino & \tt{---} & \tt{GravTest} \\ \hline Augmentable SM template & \tt{---} & \tt{Template} \\ \hline \end{tabular} \end{center} \caption{\label{tab:models} List of models available in \whizard. There are pure test models or models implemented for theoretical investigations, a long list of SM variants as well as a large number of BSM models.} \end{table} \subsubsection{Strongly Interacting Models and Composite Models} Higgsless models have been studied extensively before the Higgs boson discovery at the LHC Run I in 2012 in order to detect possible loopholes in the electroweak Higgs sector discovery potential of this collider. The Threesite Higgsless Model is one of the simplest incarnations of these models, and was one of the first BSM models beyond SUSY and Little Higgs models that have been implemented in \whizard~\cite{Speckner:2010zi}. It is also called the Minimal Higgsless Model (MHM)~\cite{Chivukula:2006cg} is a minimal deconstructed Higgsless model which contains only the first resonance in the tower of Kaluza-Klein modes of a Higgsless extra-dimensional model. It is a non-renormalizable, effective theory whose gauge group is an extension of the SM with an extra $SU(2)$ gauge group. The breaking of the extended electroweak gauge symmetry is accomplished by a set of nonlinear sigma fields which represent the effects of physics at a higher scale and make the theory nonrenormalizable. The physical vector boson spectrum contains the usual photon, $W^\pm$ and $Z$ bosons as well as a $W'^\pm$ and $Z'$ boson. Additionally, a new set of heavy fermions are introduced to accompany the new gauge group ``site'' which mix to form the physical eigenstates. This mixing is controlled by the small mixing parameter $\epsilon_L$ which is adjusted to satisfy constraints from precision observables, such as the S parameter~\cite{Chivukula:2005xm}. Here, additional weak gauge boson production at the LHC was one of the focus of the studies with \whizard~\cite{Ohl:2008ri}. \subsubsection{Supersymmetric Models} \whizard/\oMega\ was the first multi-leg matrix-element/event generator to include the full Minimal Supersymmetric Standard Model (MSSM), and also the NMSSM. The SUSY implementations in \whizard\ have been extensively tested~\cite{Ohl:2002jp,Reuter:2009ex}, and have been used for many theoretical and experimental studies (some prime examples being~\cite{Kalinowski:2008fk,Robens:2008sa,Hagiwara:2005wg}. \subsubsection{Little Higgs Models} \subsubsection{Inofficial models} There have been several models that have been included within the \whizard/\oMega\ framework but never found their way into the official release series. One famous example is the non-commutative extension of the SM, the NCSM. There have been several studies, e.g. simulations on the $s$-channel production of a $Z$ boson at the photon collider option of the ILC~\cite{Ohl:2004tn}. Also, the production of electroweak gauge bosons at the LHC in the framework of the NCSM have been studied~\cite{Ohl:2010zf}. %%%%%%%%%%%%%%% \section{The SUSY Les Houches Accord (SLHA) interface} \label{sec:slha} To be filled in ...~\cite{Skands:2003cj,AguilarSaavedra:2005pw,Allanach:2008qq}. The neutralino sector deserves special attention. After diagonalization of the mass matrix expresssed in terms of the gaugino and higgsino eigenstates, the resulting mass eigenvalues may be either negative or positive. In this case, two procedures can be followed. Either the masses are rendered positive and the associated mixing matrix gets purely imaginary entries or the masses are kept signed, the mixing matrix in this case being real. According to the SLHA agreement, the second option is adopted. For a specific eigenvalue, the phase is absorbed into the definition of the relevant eigenvector, rendering the mass negative. However, \whizard\ has not yet officially tested for negative masses. For external SUSY models (cf.~Chap.~\ref{chap:extmodels}) this means, that one must be careful using a SLHA file with explicit factors of the complex unity in the mixing matrix, and on the other hand, real and positive masses for the neutralinos. For the hard-coded SUSY models, this is completely handled internally. Especially Ref.~\cite{Hagiwara:2005wg} discusses the details of the neutralino (and chargino) mixing matrix. %%%%%%%%%%%%%%%% \section{Lepton Collider Beam Spectra} \label{sec:beamspectra} For the simulation of lepton collider beam spectra there are two dedicated tools, \circeone\ and \circetwo\ that have been written as in principle independent tools. Both attempt to describe the details of electron (and positron) beams in a realistic lepton collider environment. Due to the quest for achieving high peak luminosities at $e^+e^-$ machines, the goal is to make the spatial extension of the beam as small as possible but keeping the area of the beam roughly constant. This is achieved by forcing the beams in the final focus into the shape of a quasi-2D bunch. Due to the high charge density in that bunch, the bunch electron distribution is modified by classical electromagnetic radiation, so called {\em beamstrahlung}. The two \circe\ packages are intended to perform a simulation of this beamstrahlung and its consequences on the electron beam spectrum as realistic as possible. More details about the two packages can be found in their stand-alone documentations. We will discuss the basic features of lepton-collider beam simulations in the next two sections, including the technicalities of passing simulations of the machine beam setup to \whizard. This will be followed by a section on the simulation of photon collider spectra, included for historical reasons. %%%%% \subsection{\circeone} While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. There is a code to simulate the impact of this effect on luminosity and background, called \ttt{GuineaPig++}~\cite{Schulte:1998au,Schulte:1999tx,Schulte:2007zz}. This takes into account the details of the accelerator, the final focus etc. on the structure of the beam and the main features of the resulting energy spectrum of the electrons and positrons. It offers the state-of-the-art simulation of lepton-collider beam spectra as close as possible to reality. However, for many high-luminosity simulations, event files produced with \ttt{GuineaPig++} are usually too small, in the sense that not enough independent events are available for physics simulations. Lepton collider beam spectra do peak at the nominal beam energy ($\sqrt{s}/2$) of the collider, and feature very steeply falling tails. Such steeply falling distributions are very poorly mapped by histogrammed distributions with fixed bin widths. The main working assumption to handle such spectra are being followed within \circeone: \begin{enumerate} \label{circe1_assumptions} \item The beam spectra for the two beams $P_1$ and $P_2$ factorize (here $x_1$ and $x_2$ are the energy fractions of the two beams, respectively): \begin{equation*} D_{P_1P_2} (x_1, x_2) = D_{P_1} (x_1) \cdot D_{P_2} (x_2) \end{equation*} \item The peak is described with a delta distribution, and the tail with a power law: \begin{equation*} D(x) = d \cdot \delta(1-x) \; + \; c \cdot x^\alpha \, (1-x)^\beta \end{equation*} \end{enumerate} The two powers $\alpha$ and $\beta$ are the main coefficients that can be tuned in order to describe the spectrum with \circeone\ as close as possible as the original \ttt{GuineaPig++} spectrum. More details about how \circeone\ works and what it does can be found in its own write-up in \ttt{circe1/share/doc}. \subsection{\circetwo} The two conditions listed in \ref{circe1_assumptions} are too restrictive and hence insufficient to describe more complicated lepton-collider beam spectra, as they e.g. occur in the CLIC drive-beam design. Here, the two beams are highly correlated and also a power-law description does not give good enough precision for the tails. To deal with these problems, \circetwo\ starts with a two-dimensional histogram featuring factorized, but variable bin widths in order to simulate the steep parts of the distributions. The limited statistics from too small \ttt{GuineaPig++} event output files leads to correlated fluctuations that would leave strange artifacts in the distributions. To abandon them, Gaussian filters are applied to smooth out the correlated fluctuations. Here care has to be taken when going from the continuum in $x$ momentum fraction space to the corresponding \begin{figure} \centering \includegraphics{circe2-smoothing} \caption{\label{fig:circe2-smoothing} Smoothing the bin at the $x_{e^+} = 1$ boundary with Gaussian filters of 3 and 10 bins width compared to no smoothing.} \end{figure} boundaries: separate smoothing procedures are being applied to the bins in the continuum region and those in the boundary in order to avoid artificial unphysical beam energy spreads. Fig.~\ref{fig:circe2-smoothing} shows the smoothing of the distribution for the bin at the $x_{e^+} = 1$ boundary. The blue dots show the direct \ttt{GuineaPig++} output comprising the fluctuations due to the low statistics. Gaussian filters with widths of 3 and 10 bins, respectively, have been applied (orange and green dots, resp.). While there is still considerable fluctuation for 3 bin width Gaussian filtering, the distribution is perfectly smooth for 10 bin width. Hence, five bin widths seem a reasonable compromise for histograms with a total of 100 bins. Note that the bins are not equidistant, but shrink with a power law towards the $x_{e^-} = 1$ boundary on the right hand side of Fig.~\ref{fig:circe2-smoothing}. \whizard\ ships (inside its subpackage \circetwo) with prepared beam spectra ready to be used within \circetwo\ for the ILC beam spectra used in the ILC TDR~\cite{Behnke:2013xla,Baer:2013cma,Adolphsen:2013jya,Adolphsen:2013kya,Behnke:2013lya}. These comprise the designed staging energies of 200 GeV, 230 GeV, 250 GeV, 350 GeV, and 500 GeV. Note that all of these spectra up to now do not take polarization of the original beams on the beamstrahlung into account, but are polarization-averaged. For backwards compatibility, also the 500 GeV spectra for the TESLA design~\cite{AguilarSaavedra:2001rg,Richard:2001qm}, here both for polarized and polarization-averaged cases, are included. Correlated spectra for CLIC staging energies like 350 GeV, 1400 GeV and 3000 GeV are not yet (as of version 2.2.4) included in the \whizard\ distribution. In the following we describe how to obtain such files with the tools included in \whizard (resp. \circetwo). The procedure is equivalent to the so-called \ttt{lumi-linker} construction used by Timothy Barklow (SLAC) together with the legacy version \whizard\ttt{ 1.95}. The workflow to produce such files is to run \ttt{GuineaPig++} with the following input parameters: \begin{Code} do_lumi = 7; num_lumi = 100000000; num_lumi_eg = 100000000; num_lumi_gg = 100000000; \end{Code} This demands from \ttt{GuineaPig++} the generation of distributions for the $e^-e^+$, $e^\mp \gamma$, and $\gamma\gamma$ components of the beamstrahlung's spectrum, respectively. These are the files \ttt{lumi.ee.out}, \ttt{lumi.eg.out}, \ttt{lumi.ge.out}, and \ttt{lumi.gg.out}, respectively. These contain pairs $(E_1, E_2)$ of beam energies, {\em not} fractions of the original beam energy. Huge event numbers are out in here, as \ttt{GuineaPig++} will produce only a small fraction due to a very low generation efficiency. The next step is to transfer these output files from \ttt{GuineaPig++} into input files used with \circetwo. This is done by means of the tool \ttt{circe\_tool.opt} that is installed together with the \whizard\ main binary and libraries. The user should run this executable with the following input file: \begin{Code} { file="ilc500/ilc500.circe" # to be loaded by WHIZARD { design="ILC" roots=500 bins=100 scale=250 # E in [0,1] { pid/1=electron pid/2=positron pol=0 # unpolarized e-/e+ events="ilc500/lumi.ee.out" columns=2 # <= Guinea-Pig lumi = 1564.763360 # <= Guinea-Pig iterations = 10 # adapting bins smooth = 5 [0,1) [0,1) # Gaussian filter 5 bins smooth = 5 [1] [0,1) smooth = 5 [0,1) [1] } } } \end{Code} The first line defines the output file, that later can be read in into the beamstrahlung's description of \whizard\ (cf. below). Then, in the second line the design of the collider (here: ILC for 500 GeV center-of-mass energy, with the number of bins) is specified. The next line tells the tool to take the unpolarized case, then the \ttt{GuineaPig++} parameters (event file and luminosity) are set. In the last three lines, details concerning the adaptation of the simulation as well as the smoothing procedure are being specified: the number of iterations in the adaptation procedure, and for the smoothing with the Gaussian filter first in the continuum and then at the two edges of the spectrum. For more details confer the documentation in the \circetwo\ subpackage. This produces the corresponding input files that can be used within \whizard\ to describe beamstrahlung for lepton colliders, using a \sindarin\ input file like: \begin{Code} beams = e1, E1 => circe2 $circe2_file = "ilc500.circe" $circe2_design = "ILC" ?circe2_polarized = false \end{Code} %%%%% \subsection{Photon Collider Spectra} For details confer the complete write-up of the \circetwo\ subpackage. %%%%% \section{Transverse momentum for ISR photons} \label{sec:isr-photon-handler} The structure functions that describe the splitting of a beam particle into a particle pair, of which one enters the hard interaction and the other one is radiated, are defined and evaluated in the strict collinear approximation. In particular, this holds for the ISR structure function which describes the radiation of photons off a charged particle in the initial state. The ISR structure function that is used by \whizard\ is understood to be inclusive, i.e., it implicitly contains an integration over transverse momentum. This approach is to be used for computing a total cross section via \ttt{integrate}. In \whizard, it is possible to unfold this integration, as a transformation that is applied by \ttt{simulate} step, event by event. The resulting modified events will show a proper logarithmic momentum-transfer ($Q^2$) distribution for the radiated photons. The recoil is applied to the hard-interaction system, such that four-momentum and $\sqrt{\hat s}$ are conserved. The distribution is cut off by $Q_{\text{max}}^2$ (cf. \ttt{isr\_q\_max}) for large momentum transfer, and smoothly by the parton mass (cf.\ \ttt{isr\_mass}) for small momentum transfer. To activate this modification, set \begin{Code} ?isr_handler = true $isr_handler_mode = "recoil" \end{Code} before, or as an option to, the \ttt{simulate} command. Limitations: the current implementation of the $p_T$ modification works only for the symmetric double-ISR case, i.e., both beams have to be charged particles with identical mass (e.g., $e^+e^-$). The mode \ttt{recoil} generates exactly one photon per beam, i.e., it modifies the momentum of the single collinear photon that the ISR structure function implementation produces, for each beam. (It is foreseen that further modes or options will allow to generate multiple photons. Alternatively, the \pythia\ shower can be used to simulate multiple photons radiated from the initial state.) %%%%% \section{Transverse momentum for the EPA approximation} \label{sec:epa-beam-handler} For the equivalent-photon approximation (EPA), which is also defined in the collinear limit, recoil momentum can be inserted into generated events in an entirely analogous way. The appropriate settings are \begin{Code} ?epa_handler = true $epa_handler_mode = "recoil" \end{Code} Limitations: as for ISR, the current implementation of the $p_T$ modification works only for the symmetric double-EPA case. Both incoming particles of the hard process must be photons, while both beams must be charged particles with identical mass (e.g., $e^+e^-$). Furthermore, the current implementation does not respect the kinematical limit parameter \verb|epa_q_min|, it has to be set to zero. In effect, the lower $Q^2$ cutoff is determined by the beam-particle mass \verb|epa_mass|, and the upper cutoff is either given by $Q_{\text{max}}$ (the parameter \verb|epa_q_max|), or by the limit $\sqrt{s}$ if this is not set. It is possible to combine the ISR and EPA handlers, for processes where ISR is active for one of the beams, EPA for the other beam. For this scenario to work, both handler switches must be on, and both mode strings must coincide. The parameters are set separately for ISR and EPA, as described above. %%%%% \section{Resonances and continuum} \subsection{Complete matrix elements} Many elementary physical processes are composed of contributions that can be qualified as (multiply) \emph{resonant} or \emph{continuum}. For instance, the amplitude for the process $e^+e^-\to q\bar q q\bar q$, evaluated at tree level in perturbation theory, contains Feynman diagrams with zero, one, or two $W$ and $Z$ bosons as virtual lines. If the kinematical constraints allow this, two vector bosons can become simultaneously on-shell in part of phase space. To a first approximation, this situation is understood as $W^+W^-$ or $ZZ$ production with subsequent decay. The kinematical distributions show distinct resonances in the quark-pair spectra. Other graphs contain only one s-channel $W/Z$ boson, or none at all, such as graphs with $q\bar q$ production and subsequent gluon radiation, splitting into another $q\bar q$ pair. A \whizard\ declaration of the form \begin{Code} process q4 = e1, E1 => u, U, d, D \end{Code} produces the full set of graphs for the selected final state, which after squaring and integrating yields the exact tree-level result for the process. The result contains all doubly and singly resonant parts, with correct resonance shapes, as well as the continuum contribution and all interference. This is, to given order in perturbation theory, the best possible approximation to the true result. \subsection{Processes restricted to resonances} For an intuitive separation of a two-boson ``signal'' contribution, it is possible to restrict the set of graphs to a certain intermediate state. For instance, the declaration \begin{Code} process q4_zz = e1, E1 => u, U, d, D { $restrictions = "3+4~Z && 5+6~Z" } \end{Code} generates an amplitude that contains only those Feynman graphs where the specified quarks are connected to a $Z$ virtual line. The result may be understood as $ZZ$ production with subsequent decay, where the $Z$ resonances exhibit a Breit-Wigner shape. Combining this with the analogous $W^+W^-$ restricted process, the user can generate ``signal'' processes. Adding both ``signal'' cross sections $WW$ and $ZZ$ will result in a reasonable approximation to the exact tree-level cross section. The amplitude misses the single-resonant and continuum contributions, and the squared amplitude misses the interference terms, however. More importantly, the restricted processes as such are not gauge-invariant (with respect to the electroweak gauge group), and they are no longer dominant away from resonant kinematics. We therefore strongly recommend that such restricted processes are always accompanied by a cut setup that restricts the kinematics to an approximately on-shell pattern for both resonances. For instance: \begin{Code} cuts = all 85 GeV < M < 95 GeV [u:U] and all 85 GeV < M < 95 GeV [d:D] \end{Code} In this region, the gauge-dependent and continuum contributions are strictly subdominant. Away from the resonance(s), the results for a restricted process are meaningless, and the full process has to be computed instead. \subsection{Factorized processes} Another method for obtaining the signal contribution is a proper factorization into resonance production and decay. We would have to generate a production process and two decay processes: \begin{Code} process z_uu = Z => u, U process z_dd = Z => d, D process zz = e1, E1 => Z, Z \end{Code} All three processes must be integrated. The integration results are partial decay widths and the $ZZ$ production cross section, respectively. (Note that cut expressions in \sindarin\ apply to all integrations, so make sure that no production-process cuts are active when integrating the decay processes.) During a later event-generation step, the $Z$ decays can then be activated by declaring the $Z$ as unstable, \begin{Code} unstable Z (z_uu, z_dd) \end{Code} and then simulating the production process \begin{Code} simulate (zz) \end{Code} The generated events will consist of four-fermion final states, including all combinations of both decay modes. It is important to note that in this setup, the invariant $u\bar u$ and $d\bar d$ masses will be always \emph{exactly} equal to the $Z$ mass. There is no Breit-Wigner shape involved. However, in this approximation the results are gauge-invariant, as there is no off-shell contribution involved. For further details on factorized processes and spin correlations, cf.\ Sec.~\ref{sec:spin-correlations}. \subsection{Resonance insertion in the event record} From the above discussion, we may conclude that it is always preferable to compute the complete process for a given final state, as long as this is computationally feasible. However, in the simulation step this approach also has a drawback. Namely, if a parton-shower module (see below) is switched on, the parton-shower algorithm relies on event details in order to determine the radiation pattern of gluons and further splitting. In the generated event records, the full-process events carry the signature of non-resonant continuum production with no intermediate resonances. The parton shower will thus start the evolution at the process energy scale, the total available energy. By contrast, for an electroweak production and decay process, the evolution should start only at the vector boson mass, $m_Z$. In effect, even though the resonant contribution of $WW$ and $ZZ$ constitutes the bulk of the cross section, the radiation pattern follows the dynamics of four-quark continuum production. In general, the number of radiated hadrons will be too high. \begin{figure} \begin{center} \includegraphics[width=.41\textwidth]{resonance_e_gam} \includegraphics[width=.41\textwidth]{resonance_n_charged} \\ \includegraphics[width=.41\textwidth]{resonance_n_hadron} \includegraphics[width=.41\textwidth]{resonance_n_particles} \\ \includegraphics[width=.41\textwidth]{resonance_n_photons} \includegraphics[width=.41\textwidth]{resonance_n_visible} \end{center} \caption{The process $e^+e^- \to jjjj$ at 250 GeV center-of-mass energy is compared transferring the partonic events naively to the parton shower, i.e. without respecting any intermediate resonances (red lines). The blue lines show the process factorized into $WW$ production and decay, where the shower knows the origin of the two jet pairs. The orange and dark green lines show the resonance treatment as mentioned in the text, with \ttt{resonance\_on\_shell\_limit = 1} and \ttt{= 4}, respectively. \pythiasix\ parton shower and hadronization with the OPAL tune have been used. The observables are: photon energy distribution and number of charged tracks (upper line left/right, number of hadrons and total number of particles (middle left/right), and number of photons and neutral particles (lower line left/right).} \end{figure} To overcome this problem, there is a refinement of the process description available in \whizard. By modifying the process declaration to \begin{Code} ?resonance_history = true resonance_on_shell_limit = 4 process q4 = e1, E1 => u, U, d, D \end{Code} we advise the program to produce not just the complete matrix element, but also all possible restricted matrix elements containing resonant intermediate states. This has no effect at all on the integration step, and thus on the total cross section. However, when subsequently events are generated with this setting, the program checks, for each event, the kinematics and determines the set of potentially resonant contributions. The criterion is whether the off-shellness of a particular would-be resonance is less than the resonance width multiplied by the value of \verb|resonance_on_shell_limit| (default value $=4$). For the set of resonance histories which pass this criterion (which can be empty), their respective squared matrix element is related to the full-process matrix element. The ratio is interpreted as a probability. The random-number generator then selects one or none of the resonance histories, and modifies the event record accordingly. In effect, for an appropriate fraction of the events, depending on the kinematics, the parton-shower module is provided with resonance information, so it can adjust the radiation pattern accordingly. It has to be mentioned that generating the matrix-element code for all possible resonance histories takes additional computing resources. In the current default setup, this feature is switched off. It has to be explicitly activated via the \verb|?resonance_history| flag. Also, the feature can be activated or deactivated individually for each process, such as in \begin{Code} ?resonance_history = true process q4_with_res = e1, E1 => u, U, d, D { ?resonance_history = true } process q4_wo_res = e1, E1 => u, U, d, D { ?resonance_history = false } \end{Code} If the flag is \verb|false| for a process, no resonance code will be generated. Similarly, the flag has to be globally or locally active when \verb|simulate| is called, such that the feature takes effect for event generation. There are two additional parameters that can fine-tune the conditions for resonance insertion in the event record. Firstly, the parameter \verb|resonance_on_shell_turnoff|, if nonzero, enables a Gaussian suppression of the probability for resonance insertion. For instance, setting \begin{Code} ?resonance_history = true resonance_on_shell_turnoff = 4 resonance_on_shell_limit = 8 \end{Code} will reduce the probability for the event to be qualified as resonant by $e^{-1}= 37\,\%$ if the kinematics is off-shell by four units of the width, and by $e^{-4}=2\,\%$ at eight units of the width. Beyond this point, the setting of the \verb|resonance_on_shell_limit| parameter eliminates resonance insertion altogether. In effect, the resonance-background transition is realized in a smooth way. Secondly, within the resonant-kinematics range the probability for qualifying the event as background can be reduced by the parameter \verb|resonance_background_factor| (default value $=1$) to a number between zero and one. Setting this to zero means that the event will be necessarily qualified as resonant, if it falls within the resonant-kinematics range. Note that if an event, by the above mechanism, is identified as following a certain resonance history, the assigned color flow will be chosen to match the resonance history, not the complete matrix element. This may result in a reassignment of color flow with respect to the original partonic event. Finally, we mention the order of execution: any additional matrix element code is compiled and linked when \verb|compile| is executed for the processes in question. If this command is omitted, the \verb|simulate| command will trigger compilation. \section{Parton showers and Hadronization} In order to produce sensible events, final state QCD (and also QED) radiation has to be considered as well as the binding of strongly interacting partons into mesons and baryons. Furthermore, final state hadronic resonances undergo subsequent decays into those particles showing up in (or traversing) the detector. The latter are mostly pions, kaons, photons, electrons and muons. The physics associated with these topics can be divided into the perturbative part which is the regime of the parton shower, and the non-perturbative part which is the regime for the hadronization. \whizard\ comes with its own two different parton shower implementations, an analytic and a so-called $k_T$-ordered parton shower that will be detailed in the next section. Note that in general it is not advisable to use different shower and hadronization methods, or in other words, when using shower and hadronization methods from different programs these would have to be tuned together again with the corresponding data. Parton showers are approximations to full matrix elements taking only the leading color flow into account, and neglecting all interferences between different amplitudes leading to the same exclusive final state. They rely on the QCD (and QED) splitting functions to describe the emissions of partons off other partons. This is encoded in the so-called Sudakov form factor~\cite{Sudakov:1954sw}: \begin{equation*} \Delta( t_1, t_2) = \exp \left[ \int\limits_{t_1}^{t_2} \mbox{d} t \int\limits_{z_-}^{z_+} \mbox{d} z \frac{\alpha_s}{2 \pi t} P(z) \right] \end{equation*} This gives the probability for a parton to evolve from scale $t_2$ to $t_1$ without any further emissions of partons. $t$ is the evolution parameter of the shower, which can be a parton energy, an emission angle, a virtuality, a transverse momentum etc. The variable $z$ relates the two partons after the branching, with the most common choice being the ratio of energies of the parton after and before the branching. For final-state radiation brachings occur after the hard interaction, the evolution of the shower starts at the scale of the hard interaction, $t \sim \hat{s}$, down to a cut-off scale $t = t_{\text{cut}}$ that marks the transition to the non-perturbative regime of hadronization. In the space-like evolution for the initial-state shower, the evolution is from a cut-off representing the factorization scale for the parton distribution functions (PDFs) to the inverse of the hard process scale, $-\hat{s}$. Technically, this evolution is then backwards in (shower) time~\cite{Sjostrand:1985xi}, leading to the necessity to include the PDFs in the Sudakov factors. The main switches for the shower and hadronization which are realized as transformations on the partonic events within \whizard\ are \ttt{?allow\_shower} and \ttt{?allow\_hadronization}, which are true by default and only there for technical reasons. Next, different shower and hadronization methods can be chosen within \whizard: \begin{code} $shower_method = "WHIZARD" $hadronization_method = "PYTHIA6" \end{code} The snippet above shows the default choices in \whizard\, namely \whizard's intrinsic parton shower, but \pythiasix\ as hadronization tool. (Note that \whizard\ does not have its own hadronization module yet.) The usage of \pythiasix\ for showering and hadronization will be explained in Sec.~\ref{sec:pythia6}, while the two different implementations of the \whizard\ homebrew parton showers are discussed in Sec.~\ref{sec:ktordered} and~\ref{sec:analytic}, respectively. %%%%% \subsection{The $k_T$-ordered parton shower} \label{sec:ktordered} %%%%% \subsection{The analytic parton shower} \label{sec:analytic} %%%%% \subsection{Parton shower and hadronization from \pythiasix} \label{sec:pythia6} Development of the \pythiasix\ generator for parton shower and hadronization (the \fortran\ version) has been discontinued by the authors several years ago. Hence, the final release of that program is frozen. This allowed to ship this final version, v6.427, with the \whizard\ distribution without the need of updating it all the time. One of the main reasons for that inclusion -- besides having the standard tool for showering and hadronization for decays at hand -- is to allow for backwards validation within \whizard\ particularly for the event samples generated for the development of linear collider physics: first for TESLA, JLC and NLC, and later on for the Conceptual and Technical Design Report for ILC, for the Conceptual Design Report for CLIC as well as for the Letters of Intent for the LC detectors, ILD and SiD. Usually, an external parton shower and hadronization program (PS) is steered via the transfer of event files that are given to the PS via LHE events, while the PS program then produces hadron level events, usually in HepMC format. These can then be directed towards a full or fast detector simulation program. As \pythiasix\ has been completely integrated inside the \whizard\ framework, the showered or more general hadron level events can be returned to and kept inside \whizard's internal event record, and hence be used in \whizard's internal event analysis. In that way, the events can be also written out in event formats that are not supported by \pythiasix, e.g. \ttt{LCIO} via the output capabilities of \whizard. There are several switches to directly steer \pythiasix\ (the values in brackets correspond to the \pythiasix\ variables): \begin{code} ps_mass_cutoff = 1 GeV [PARJ(82)] ps_fsr_lambda = 0.29 GeV [PARP(72)] ps_isr_lambda = 0.29 GeV [PARP(61)] ps_max_n_flavors = 5 [MSTJ(45)] ?ps_isr_alphas_running = true [MSTP(64)] ?ps_fsr_alphas_running = true [MSTJ(44)] ps_fixed_alphas = 0.2 [PARU(111)] ?ps_isr_angular_ordered = true [MSTP(62)] ps_isr_primordial_kt_width = 1.5 GeV [PARP(91)] ps_isr_primordial_kt_cutoff = 5.0 GeV [PARP(93)] ps_isr_z_cutoff = 0.999 [1-PARP(66)] ps_isr_minenergy = 2 GeV [PARP(65)] ?ps_isr_only_onshell_emitted_partons = true [MSTP(63)] \end{code} The values given above are the default values. The first value corresponds to the \pythiasix\ parameter \ttt{PARJ(82)}, its squared being the minimal virtuality that is allowed for the parton shower, i.e. the cross-over to the hadronization. The same parameter is used also for the \whizard\ showers. \ttt{ps\_fsr\_lambda} is the equivalent of \ttt{PARP(72)} and is the $\Lambda_{\text{QCD}}$ for the final state shower. The corresponding variable for the initial state shower is called \ttt{PARP(61)} in \pythiasix. By the next variable (\ttt{MSTJ(45)}), the maximal number of flavors produced in splittings in the shower is given, together with the number of active flavors in the running of $\alpha_s$. \ttt{?ps\_isr\_alphas\_running} which corresponds to \ttt{MSTP(64)} in \pythiasix\ determines whether or net a running $\alpha_s$ is taken in the space-like initial state showers. The same variable for the final state shower is \ttt{MSTJ(44)}. For fixed $\alpha_s$, the default value is given by \ttt{ps\_fixed\_alpha}, corresponding to \ttt{PARU(111)}. \ttt{MSTP(62)} determines whether the ISR shower is angular order, i.e. whether angles are increasing towards the hard interaction. This is per default true, and set in the variable \ttt{?ps\_isr\_angular\_ordered}. The width of the distribution for the primordial (intrinsic) $k_T$ distribution (which is a non-perturbative quantity) is the \pythiasix\ variable \ttt{PARP(91)}, while in \whizard\ it is given by \ttt{pythia\_isr\_primordial\_kt\_width}. The next variable (\ttt{PARP(93}) gives the upper cutoff for that distribution, which is 5 GeV per default. For splitting in space-like showers, there is a cutoff on the $z$ variable named \ttt{ps\_isr\_z\_cutoff} in \whizard. This corresponds to one minus the value of the \pythiasix\ parameter \ttt{PARP(66)}. \ttt{PARP(65)}, on the other hand, gives the minimal (effective) energy for a time-like or on-shell emitted parton on a space-like QCD shower, given by the \sindarin\ parameter \ttt{ps\_isr\_minenergy}. Whether or not partons emitted from space-like showers are allowed to be only on-shell is given by \ttt{?ps\_isr\_only\_onshell\_emitted\_partons}, \ttt{MSTP(63)} in \pythiasix\ language. For more details confer the \pythiasix\ manual~\cite{Sjostrand:2006za}. Any other non-standard \pythiasix\ parameter can be fed into the parton shower via the string variable \begin{code} $ps_PYTHIA_PYGIVE = "...." \end{code} Variables set here get preference over the ones set explicitly by dedicated \sindarin\ commands. For example, the OPAL tune for hadronic final states can be set via: \begin{code} $ps_PYTHIA_PYGIVE = "MSTJ(28)=0; PMAS(25,1)=120.; PMAS(25,2)=0.3605E-02; MSTJ(41)=2; MSTU(22)=2000; PARJ(21)=0.40000; PARJ(41)=0.11000; PARJ(42)=0.52000; PARJ(81)=0.25000; PARJ(82)=1.90000; MSTJ(11)=3; PARJ(54)=-0.03100; PARJ(55)=-0.00200; PARJ(1)=0.08500; PARJ(3)=0.45000; PARJ(4)=0.02500; PARJ(2)=0.31000; PARJ(11)=0.60000; PARJ(12)=0.40000; PARJ(13)=0.72000; PARJ(14)=0.43000; PARJ(15)=0.08000; PARJ(16)=0.08000; PARJ(17)=0.17000; MSTP(3)=1;MSTP(71)=1" \end{code} \vspace{0.5cm} A very common error that appears quite often when using \pythiasix\ for SUSY or any other model having a stable particle that serves as a possible Dark Matter candidate, is the following warning/error message: \begin{Code} Advisory warning type 3 given after 0 PYEXEC calls: (PYRESD:) Failed to decay particle 1000022 with mass 15.000 ****************************************************************************** ****************************************************************************** *** FATAL ERROR: Simulation: failed to generate valid event after 10000 tries ****************************************************************************** ****************************************************************************** \end{Code} In that case, \pythiasix\ gets a stable particle (here the lightest neutralino with the PDG code 1000022) handed over and does not know what to do with it. Particularly, it wants to treat it as a heavy resonance which should be decayed, but does not know how do that. After a certain number of tries (in the example abobe 10k), \whizard\ ends with a fatal error telling the user that the event transformation for the parton shower in the simulation has failed without producing a valid event. The solution to work around that problem is to let \pythiasix\ know that the neutralino (or any other DM candidate) is stable by means of \begin{code} $ps_PYTHIA_PYGIVE = "MDCY(C1000022,1)=0" \end{code} Here, 1000022 has to be replaced by the stable dark matter candidate or long-lived particle in the user's favorite model. Also note that with other options being passed to \pythiasix\, the \ttt{MDCY} option above has to be added to an existing \ttt{\$ps\_PYTHIA\_PYGIVE} command separated by a semicolon. %%%%% \subsection{Parton shower and hadronization from \pythiaeight} \subsection{Other tools for parton shower and hadronization} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{More on Event Generation} \label{chap:events} In order to perform a physics analysis with \whizard\ one has to generate events. This seems to be a trivial statement, but as there have been any questions like "My \whizard\ does not produce plots -- what has gone wrong?" we believe that repeating that rule is worthwile. Of course, it is not mandatory to use \whizard's own analysis set-up, the user can always choose to just generate events and use his/her own analysis package like \ttt{ROOT}, or \ttt{TopDrawer}, or you name it for the analysis. Accordingly, we first start to describe how to generate events and what options there are -- different event formats, renaming output files, using weighted or unweighted events with different normalizations. How to re-use and manipulate already generated event samples, how to limit the number of events per file, etc. etc. \section{Event generation} To explain how event generation works, we again take our favourite example, $e^+e^- \to \mu^+ \mu^-$, \begin{verbatim} process eemm = e1, E1 => e2, E2 \end{verbatim} The command to trigger generation of events is \ttt{simulate () \{ \}}, so in our case -- neglecting any options for now -- simply: \begin{verbatim} simulate (eemm) \end{verbatim} When you run this \sindarin\ file you will experience a fatal error: \ttt{FATAL ERROR: Colliding beams: sqrts is zero (please set sqrts)}. This is because \whizard\ needs to compile and integrate the process \ttt{eemm} first before event simulation, because it needs the information of the corresponding cross section, phase space parameterization and grids. It does both automatically, but you have to provide \whizard\ with the beam setup, or at least with the center-of-momentum energy. A corresponding \ttt{integrate} command like \begin{verbatim} sqrts = 500 GeV integrate (eemm) { iterations = 3:10000 } \end{verbatim} obviously has to appear {\em before} the corresponding \ttt{simulate} command (otherwise you would be punished by the same error message as before). Putting things in the correct order results in an output like: \begin{footnotesize} \begin{verbatim} | Reading model file '/usr/local/share/whizard/models/SM.mdl' | Preloaded model: SM | Process library 'default_lib': initialized | Preloaded library: default_lib | Reading commands from file 'bla.sin' | Process library 'default_lib': recorded process 'eemm' sqrts = 5.000000000000E+02 | Integrate: current process library needs compilation | Process library 'default_lib': compiling ... | Process library 'default_lib': keeping makefile | Process library 'default_lib': keeping driver | Process library 'default_lib': active | Process library 'default_lib': ... success. | Integrate: compilation done | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 29912 | Initializing integration for process eemm: | ------------------------------------------------------------------------ | Process [scattering]: 'eemm' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'eemm_i1': e-, e+ => mu-, mu+ [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 5.000000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'eemm_i1.phs' | Phase space: 2 channels, 2 dimensions | Phase space: found 2 channels, collected in 2 groves. | Phase space: Using 2 equivalences between channels. | Phase space: wood Warning: No cuts have been defined. | OpenMP: Using 8 threads | Starting integration for process 'eemm' | Integrate: iterations = 3:10000 | Integrator: 2 chains, 2 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 10000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 9216 4.2833237E+02 7.14E-02 0.02 0.02* 40.29 2 9216 4.2829071E+02 7.08E-02 0.02 0.02* 40.29 3 9216 4.2838304E+02 7.04E-02 0.02 0.02* 40.29 |-----------------------------------------------------------------------------| 3 27648 4.2833558E+02 4.09E-02 0.01 0.02 40.29 0.43 3 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:00m:04s | Creating integration history display eemm-history.ps and eemm-history.pdf | Starting simulation for process 'eemm' | Simulate: using integration grids from file 'eemm_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 29913 | OpenMP: Using 8 threads | Simulation: requested number of events = 0 | corr. to luminosity [fb-1] = 0.0000E+00 | Events: writing to raw file 'eemm.evx' | Events: generating 0 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. | Events: closing raw file 'eemm.evx' | There were no errors and 1 warning(s). | WHIZARD run finished. |=============================================================================| \end{verbatim} \end{footnotesize} So, \whizard\ tells you that it has entered simulation mode, but besides this, it has not done anything. The next step is that you have to demand event generation -- there are two ways to do this: you could either specify a certain number, say 42, of events you want to have generated by \whizard, or you could provide a number for an integrated luminosity of some experiment. (Note, that if you choose to take both options, \whizard\ will take the one which gives the larger event sample. This, of course, depends on the given process(es) -- as well as cuts -- and its corresponding cross section(s).) The first of these options is set with the command: \ttt{n\_events = }, the second with \ttt{luminosity = }. Another important point already stated several times in the manual is that \whizard\ follows the commands in the steering \sindarin\ file in a chronological order. Hence, a given number of events or luminosity {\em after} a \ttt{simulate} command will be ignored -- or are relevant only for any \ttt{simulate} command potentially following further down in the \sindarin\ file. So, in our case, try: \begin{verbatim} n_events = 500 luminosity = 10 simulate (eemm) \end{verbatim} Per default, numbers for integrated luminosity are understood as inverse femtobarn. So, for the cross section above this would correspond to 4283 events, clearly superseding the demand for 500 events. After reducing the luminosity number from ten to one inverse femtobarn, 500 is the larger number of events taken by \whizard\ for event generation. Now \whizard\ tells you: \begin{verbatim} | Simulation: requested number of events = 500 | corr. to luminosity [fb-1] = 1.1673E+00 | Events: reading from raw file 'eemm.evx' | Events: reading 500 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event file terminates after 0 events. | Events: appending to raw file 'eemm.evx' | Generating remaining 500 events ... | ... event sample complete. | Events: closing raw file 'eemm.evx' \end{verbatim} I.e., it evaluates the luminosity to which the sample of 500 events would correspond to, which is now, of course, bigger than the $1 \fb^{-1}$ explicitly given for the luminosity. Furthermore, you can read off that a file \ttt{whizard.evx} has been generated, containing the demanded 500 events. (It was there before containing zero events, because to \ttt{n\_events} or \ttt{luminosity} value had been set. \whizard\ then tried to get the events first from file before generating new ones). Files with the suffix \ttt{.evx} are binary format event files, using a machine-dependent \whizard-specific event file format. Before we list the event formats supported by \whizard, the next two sections will tell you more about unweighted and weighted events as well as different possibilities to normalize events in \whizard. As already explained for the libraries, as well as the phase space and grid files in Chap.~\ref{chap:sindarin}, \whizard\ is trying to re-use as much information as possible. This is of course also true for the event files. There are special MD5 check sums testing the integrity and compatibility of the event files. If you demand for a process for which an event file already exists (as in the example above, though it was empty) equally many or less events than generated before, \whizard\ will not generate again but re-use the existing events (as already explained, the events are stored in a \whizard-own binary event format, i.e. in a so-called \ttt{.evx} file. If you suppress generation of that file, as will be described in subsection \ref{sec:eventformats} then \whizard\ has to generate events all the time). From version v2.2.0 of \whizard\ on, the program is also able to read in event from different event formats. However, most event formats do not contain as many information as \whizard's internal format, and a complete reconstruction of the events might not be possible. Re-using event files is very practical for doing several different analyses with the same data, especially if there are many and big data samples. Consider the case, there is an event file with 200 events, and you now ask \whizard\ to generate 300 events, then it will re-use the 200 events (if MD5 check sums are OK!), generate the remaining 100 events and append them to the existing file. If the user for some reason, however, wants to regenerate events (i.e. ignoring possibly existing events), there is the command option \ttt{whizard --rebuild-events}. %%%%%%%%% \section{Unweighted and weighted events} \whizard\ is able to generate unweighted events, i.e. events that are distributed uniformly and each contribute with the same event weight to the whole sample. This is done by mapping out the phase space of the process under consideration according to its different phase space channels (which each get their own weights), and then unweighting the sample of weighted events. Only a sample of unweighted events could in principle be compared to a real data sample from some experiment. The seventh column in the \whizard\ iteration/adaptation procedure tells you about the efficiency of the grids, i.e. how well the phase space is mapped to a flat function. The better this is achieved, the higher the efficiency becomes, and the closer the weights of the different phase space channels are to uniformity. This means, for higher efficiency less weighted events ("calls") are needed to generate a single unweighted event. An efficiency of 10 \% means that ten weighted events are needed to generate one single unweighted event. After the integration is done, \whizard\ uses the duration of calls during the adaptation to estimate a time interval needed to generate 10,000 unweighted events. The ability of the adaptive multi-channel Monte Carlo decreases with the number of integrations, i.e. with the number of final state particles. Adding more and more final state particles in general also increases the complexity of phase space, especially its singularity structure. For a $2 \to 2$ process the efficiency is roughly of the order of several tens of per cent. As a rule of thumb, one can say that with every additional pair of final state particle the average efficiency one can achieve decreases by a factor of five to ten. The default of \whizard\ is to generate {\em unweighted} events. One can use the logical variable \ttt{?unweighted = false} to disable unweighting and generate weighted events. (The command \ttt{?unweighted = true} is a tautology, because \ttt{true} is the default for this variable.) Note that again this command has to appear {\em before} the corresponding \ttt{simulate} command, otherwise it will be ignored or effective only for any \ttt{simulate} command appearing later in the \sindarin\ file. In the unweighted procedure, \whizard\ is keeping track of the highest weight that has been appeared during the adaptation, and the efficiency for the unweighting has been estimated from the average value of the sampling function compared to the maximum value. In principle, during event generation no events should be generated whose sampling function value exceeds the maximum function value encountered during the grid adaptation. Sometimes, however, there are numerical fluctuations and such events are happening. They are called {\em excess events}. \whizard\ does keep track of these excess events during event generation and will report about them, e.g.: \begin{code} Warning: Encountered events with excess weight: 9 events ( 0.090 %) | Maximum excess weight = 6.083E-01 | Average excess weight = 2.112E-04 \end{code} Whenever in an event generation excess events appear, this shows that the adaptation of the sampling function has not been perfect. When the number of excess weights is a finite number of percent, you should inspect the phase-space setup and try to improve its settings to get a better adaptation. Generating \emph{weighted} events is, of course, much faster if the same number of events is requested. Each event carries a weight factor which is taken into account for any internal analysis (histograms), and written to file if an external file format has been selected. The file format must support event weights. In a weighted event sample, there is typically a fraction of events which effectively have weight zero, namely those that have been created by the phase-space sampler but do not pass the requested cuts. In the default setup, those events are silently dropped, such that the events written to file or available for analysis all have nonzero weight. However, dropping such events affects the overall normalization. If this has happened, the program will issue a warning of the form \begin{code} | Dropped events (weight zero) = 1142 (total 2142) Warning: All event weights must be rescaled by f = 4.66853408E-01 \end{code} This factor has to be applied by hand to any external event files (and to internally generated histograms). The program cannot include the factor in the event records, because it is known only after all events have been generated. To avoid this problem, there is the logical flag \ttt{?keep\_failed\_events} which tells \whizard\ not to drop events with weight zero. The normalization will be correct, but the event sample will include invalid events which have to be vetoed by their zero weight, before any operations on the event record are performed. %%%%%%%%% \section{Choice on event normalizations} There are basically four different choices to normalize event weights ($\braket{\ldots}$ denotes the average): \begin{enumerate} \item $\braket{w_i} = 1$, \qquad\qquad $\Braket{\sum_i w_i} = N$ \item $\braket{w_i} = \sigma$, \qquad\qquad $\Braket{\sum_i w_i} = N \times \sigma$ \item $\braket{w_i} = 1/N$, \quad\qquad $\Braket{\sum_i w_i} = 1$ \item $\braket{w_i} = \sigma/N$, \quad\qquad $\Braket{\sum_i w_i} = \sigma$ \end{enumerate} So the four options are to have the average weight equal to unity, to the cross section of the corresponding process, to one over the number of events, or the cross section over the event calls. In these four cases, the event weights sum up to the event number, the event number times the cross section, to unity, and to the cross section, respectively. Note that neither of these really guarantees that all event weights individually lie in the interval $0 \leq w_i \leq 1$. The user can steer the normalization of events by using in \sindarin\ input files the string variable \ttt{\$sample\_normalization}. The default is \ttt{\$sample\_normalization = "auto"}, which uses option 1 for unweighted and 2 for weighted events, respectively. Note that this is also what the Les Houches Event Format (LHEF) demands for both types of events. This is \whizard's preferred mode, also for the reason, that event normalizations are independent from the number of events. Hence, event samples can be cut or expanded without further need to adjust the normalization. The unit normalization (option 1) can be switched on also for weighted events by setting the event normalization variable equal to \ttt{"1"}. Option 2 can be demanded by setting \ttt{\$sample\_normalization = "sigma"}. Options 3 and 4 can be set by \ttt{"1/n"} and \ttt{"sigma/n"}, respectively. \whizard\ accepts small and capital letters for these expressions. In the following section we show some examples when discussing the different event formats available in \whizard. %%%%%%%%% \section{Event selection} The \ttt{selection} expression (cf.\ Sec.~\ref{subsec:analysis}) reduces the event sample during generation or rescanning, selecting only events for which the expression evaluates to \ttt{true}. Apart from internal analysis, the selection also applies to writing external files. For instance, the following code generates a $e^+e^-\to W^+W^-$ sample with longitudinally polarized $W$ bosons only: \begin{footnotesize} \begin{verbatim} process ww = "e+", "e-" => "W-", "W+" polarized "W+" polarized "W-" ?polarized_events = true sqrts = 500 selection = all Hel == 0 ["W+":"W-"] simulate (ww) { n_events = 1000 } \end{verbatim} \end{footnotesize} The number of events that end up in the sample on file is equal to the number of events with longitudinally polarized $W$s in the generated sample, so the file will contain less than 1000 events. %%%%%%%%% \section{Supported event formats} \label{sec:eventformats} Event formats can either be distinguished whether they are plain text (i.e. ASCII) formats or binary formats. Besides this, one can classify event formats according to whether they are natively supported by \whizard\ or need some external program or library to be linked. Table~\ref{tab:eventformats} gives a complete list of all event formats available in \whizard. The second column shows whether these are ASCII or binary formats, the third column contains brief remarks about the corresponding format, while the last column tells whether external programs or libraries are needed (which is the case only for the HepMC formats). \begin{table} \begin{center} \begin{tabular}{|l||l|l|r|}\hline Format & Type & remark & ext. \\\hline ascii & ASCII & \whizard\ verbose format & no \\ Athena & ASCII & variant of HEPEVT & no \\ debug & ASCII & most verbose \whizard\ format & no \\ evx & binary & \whizard's home-brew & no \\ HepMC & ASCII & HepMC format & yes \\ HEPEVT & ASCII & \whizard~1 style & no \\ LCIO & ASCII & LCIO format & yes \\ LHA & ASCII & \whizard~1/old Les Houches style &no \\ LHEF & ASCII & Les Houches accord compliant & no \\ long & ASCII & variant of HEPEVT & no \\ mokka & ASCII & variant of HEPEVT & no \\ short & ASCII & variant of HEPEVT & no \\ StdHEP (HEPEVT) & binary & based on HEPEVT common block & no \\ StdHEP (HEPRUP/EUP) & binary & based on HEPRUP/EUP common block & no \\ Weight stream & ASCII & just weights & no \\ \hline \end{tabular} \end{center} \caption{\label{tab:eventformats} Event formats supported by \whizard, classified according to ASCII/binary formats and whether an external program or library is needed to generate a file of this format. For both the HEPEVT and the LHA format there is a more verbose variant. } \end{table} The "\ttt{.evx}'' is \whizard's native binary event format. If you demand event generation and do not specify anything further, \whizard\ will write out its events exclusively in this binary format. So in the examples discussed in the previous chapters (where we omitted all details about event formats), in all cases this and only this internal binary format has been generated. The generation of this raw format can be suppressed (e.g. if you want to have only one specific event file type) by setting the variable \verb|?write_raw = false|. However, if the raw event file is not present, \whizard\ is not able to re-use existing events (e.g. from an ASCII file) and will regenerate events for a given process. Note that from version v2.2.0 of \whizard\ on, the program is able to (partially) reconstruct complete events also from other formats than its internal format (e.g. LHEF), but this is still under construction and not yet complete. Other event formats can be written out by setting the variable \ttt{sample\_format = }, where \ttt{} can be any of the following supported variables: \begin{itemize} \item \ttt{ascii}: a quite verbose ASCII format which contains lots of information (an example is shown in the appendix). \newline Standard suffix: \ttt{.evt} \item \ttt{debug}: an even more verbose ASCII format intended for debugging which prints out also information about the internal data structures \newline Standard suffix: \ttt{.debug} \item \ttt{hepevt}: ASCII format that writes out a specific incarnation of the HEPEVT common block (\whizard~1 back-compatibility) \newline Standard suffix: \ttt{.hepevt} \item \ttt{hepevt\_verb}: more verbose version of \ttt{hepevt} (\whizard~1 back-compatibility) \newline Standard suffix: \ttt{.hepevt.verb} \item \ttt{short}: abbreviated variant of the previous HEPEVT (\whizard\ 1 back-compatibility) \newline Standard suffix: \ttt{.short.evt} \item \ttt{long}: HEPEVT variant that contains a little bit more information than the short format but less than HEPEVT (\whizard\ 1 back-compatibility) \newline Standard suffix: \ttt{.long.evt} \item \ttt{athena}: HEPEVT variant suitable for read-out in the ATLAS ATHENA software environment (\whizard\ 1 back-compatibility) \newline Standard suffix: \ttt{.athena.evt} \item \ttt{mokka}: HEPEVT variant suitable for read-out in the MOKKA ILC software environment \newline Standard suffix: \ttt{.mokka.evt} \item \ttt{lcio}: LCIO ASCII format (only available if LCIO is installed and correctly linked) \newline Standard suffix: \ttt{.lcio} \item \ttt{lha}: Implementation of the Les Houches Accord as it was in the old MadEvent and \whizard~1 \newline Standard suffix: \ttt{.lha} \item \ttt{lha\_verb}: more verbose version of \ttt{lha} \newline Standard suffix: \ttt{.lha.verb} \item \ttt{lhef}: Formatted Les Houches Accord implementation that contains the XML headers \newline Standard suffix: \ttt{.lhe} \item \ttt{hepmc}: HepMC ASCII format (only available if HepMC is installed and correctly linked) \newline Standard suffix: \ttt{.hepmc} \item \ttt{stdhep}: StdHEP binary format based on the HEPEVT common block \newline Standard suffix: \ttt{.hep} \item \ttt{stdhep\_up}: StdHEP binary format based on the HEPRUP/HEPEUP common blocks \newline Standard suffix: \ttt{.up.hep} \item \ttt{stdhep\_ev4}: StdHEP binary format based on the HEPEVT/HEPEV4 common blocks \newline Standard suffix: \ttt{.ev4.hep} \item \ttt{weight\_stream}: Format that prints out only the event weight (and maybe alternative ones) \newline Standard suffix: \ttt{.weight.dat} \end{itemize} Of course, the variable \ttt{sample\_format} can contain more than one of the above identifiers, in which case more than one different event file format is generated. The list above also shows the standard suffixes for these event formats (remember, that the native binary format of \whizard\ does have the suffix \ttt{.evx}). (The suffix of the different event formats can even be changed by the user by setting the corresponding variable \ttt{\$extension\_lhef = "foo"} or \ttt{\$extension\_ascii\_short = "bread"}. The dot is automatically included.) The name of the corresponding event sample is taken to be the string of the name of the first process in the \ttt{simulate} statement. Remember, that conventionally the events for all processes in one \ttt{simulate} statement will be written into one single event file. So \ttt{simulate (proc1, proc2)} will write events for the two processes \ttt{proc1} and \ttt{proc2} into one single event file with name \ttt{proc1.evx}. The name can be changed by the user with the command \ttt{\$sample = ""}. The commands \ttt{\$sample} and \ttt{sample\_format} are both accepted as optional arguments of a \ttt{simulate} command, so e.g. \ttt{simulate (proc) \{ \$sample = "foo" sample\_format = hepmc \}} generates an event sample in the HepMC format for the process \ttt{proc} in the file \ttt{foo.hepmc}. Examples for event formats, for specifications of the event formats correspond the different accords and publicatios: {\bf HEPEVT:} The HEPEVT is an ASCII event format that does not contain an event file header. There is a one-line header for each single event, containing four entries. The number of particles in the event (\ttt{ISTHEP}), which is four for a fictitious example process $hh\to hh$, but could be larger if e.g. beam remnants are demanded to be included in the event. The second entry and third entry are the number of outgoing particles and beam remnants, respectively. The event weight is the last entry. For each particle in the event there are three lines: the first one is the status according to the HEPEVT format, \ttt{ISTHEP}, the second one the PDG code, \ttt{IDHEP}, then there are the one or two possible mother particle, \ttt{JMOHEP}, the first and last possible daughter particle, \ttt{JDAHEP}, and the polarization. The second line contains the three momentum components, $p_x$, $p_y$, $p_z$, the particle energy $E$, and its mass, $m$. The last line contains the position of the vertex in the event reconstruction. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 2 25 0 0 3 4 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2 25 0 0 3 4 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1 25 1 2 0 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 1 25 1 2 0 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 \end{verbatim} \end{scriptsize} {\bf ASCII SHORT:} This is basically the same as the HEPEVT standard, but very much abbreviated. The header line for each event is identical, but the first line per particle does only contain the PDG and the polarization, while the vertex information line is omitted. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 25 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 25 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 \end{verbatim} \end{scriptsize} {\bf ASCII LONG:} Identical to the ASCII short format, but after each event there is a line containg two values: the value of the sample function to be integrated over phase space, so basically the squared matrix element including all normalization factors, flux factor, structure functions etc. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 25 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 25 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 25 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 1.0000000000E+00 1.0000000000E+00 \end{verbatim} \end{scriptsize} {\bf ATHENA:} Quite similar to the HEPEVT ASCII format. The header line, however, does contain only two numbers: an event counter, and the number of particles in the event. The first line for each particle lacks the polarization information (irrelevant for the ATHENA environment), but has as leading entry an ordering number counting the particles in the event. The vertex information line has only the four relevant position entries. \begin{scriptsize} \begin{verbatim} 0 4 1 2 25 0 0 3 4 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2 2 25 0 0 3 4 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 3 1 25 1 2 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 4 1 25 1 2 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 \end{verbatim} \end{scriptsize} {\bf MOKKA:} Quite similar to the ASCII short format, but the event entries are the particle status, the PDG code, the first and last daughter, the three spatial components of the momentum, as well as the mass. \begin{scriptsize} \begin{verbatim} 4 2 0 3.0574068604E+08 2 25 3 4 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 1.2500000000E+02 2 25 3 4 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 1.2500000000E+02 1 25 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 1.2500000000E+02 1 25 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 1.2500000000E+02 \end{verbatim} \end{scriptsize} {\bf LHA:} This is the implementation of the Les Houches Accord, as it was used in \whizard\ 1 and the old MadEvent. There is a first line containing six entries: 1. the number of particles in the event, \ttt{NUP}, 2. the subprocess identification index, \ttt{IDPRUP}, 3. the event weight, \ttt{XWGTUP}, 4. the scale of the process, \ttt{SCALUP}, 5. the value or status of $\alpha_{QED}$, \ttt{AQEDUP}, 6. the value for $\alpha_s$, \ttt{AQCDUP}. The next seven lines contain as many entries as there are particles in the event: the first one has the PDG codes, \ttt{IDUP}, the next two the first and second mother of the particles, \ttt{MOTHUP}, the fourth and fifth line the two color indices, \ttt{ICOLUP}, the next one the status of the particle, \ttt{ISTUP}, and the last line the polarization information, \ttt{ISPINUP}. At the end of the event there are as lines for each particles with the counter in the event and the four-vector of the particle. For more information on this event format confer~\cite{LesHouches}. \begin{scriptsize} \begin{verbatim} 25 25 5.0000000000E+02 5.0000000000E+02 -1 -1 -1 -1 3 1 1.0000000000E-01 1.0000000000E-03 1.0000000000E+00 42 4 1 3.0574068604E+08 1.000000E+03 -1.000000E+00 -1.000000E+00 25 25 25 25 0 0 1 1 0 0 2 2 0 0 0 0 0 0 0 0 -1 -1 1 1 9 9 9 9 1 5.0000000000E+02 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 2 5.0000000000E+02 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 3 5.0000000000E+02 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 4 5.0000000000E+02 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 \end{verbatim} \end{scriptsize} {\bf LHEF:} This is the modern version of the Les Houches accord event format (LHEF), for the details confer the corresponding publication~\cite{LHEF}. \begin{scriptsize} \begin{verbatim}
WHIZARD 2.8.3
25 25 5.0000000000E+02 5.0000000000E+02 -1 -1 -1 -1 3 1 1.0000000000E-01 1.0000000000E-03 1.0000000000E+00 42 4 42 3.0574068604E+08 1.0000000000E+03 -1.0000000000E+00 -1.0000000000E+00 25 -1 0 0 0 0 0.0000000000E+00 0.0000000000E+00 4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00 25 -1 0 0 0 0 0.0000000000E+00 0.0000000000E+00 -4.8412291828E+02 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00 25 1 1 2 0 0 -1.4960220911E+02 -4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00 25 1 1 2 0 0 1.4960220911E+02 4.6042825611E+02 0.0000000000E+00 5.0000000000E+02 1.2500000000E+02 0.0000000000E+00 9.0000000000E+00
\end{verbatim} \end{scriptsize} Note that for the LHEF format, there are different versions according to the different stages of agreement. They can be addressed from within the \sindarin\ file by setting the string variable \ttt{\$lhef\_version} to one of (at the moment) three values: \ttt{"1.0"}, \ttt{"2.0"}, or \ttt{"3.0"}. The examples above corresponds (as is indicated in the header) to the version \ttt{"1.0"} of the LHEF format. Additional information in form of alternative squared matrix elements or event weights in the event are the most prominent features of the other two more advanced versions. For more details confer the literature. \vspace{.5cm} Sample files for the default ASCII format as well as for the debug event format are shown in the appendix. %%%%%%%%% \section[Interfaces to Parton Showers, Matching and Hadronization]{Interfaces to Parton Showers, Matching\\and Hadronization} This section describes the interfaces to the internal parton shower as well as the parton shower and hadronization routines from \pythia. Moreover, our implementation of the MLM matching making use of the parton showers is described. Sample \sindarin\ files are located in the \ttt{share/examples} directory. All input files come in two versions, one using the internal shower, ending in \ttt{W.sin}, and one using \pythia's shower, ending in \ttt{P.sin}. Thus we state all file names as ending with \ttt{X.sin}, where \ttt{X} has to be replaced by either \ttt{W} or \ttt{P}. The input files include \ttt{EENoMatchingX.sin} and \ttt{DrellYanNoMatchingX.sin} for $e^+ e^- \to hadrons$ and $p\bar{p} \to Z$ without matching. The corresponding \sindarin\ files with matching enabled are \ttt{EEMatching2X.sin} to \ttt{EEMatching5X.sin} for $e^+ e^- \to hadrons$ with a different number of partons included in the matrix element and \ttt{DrallYanMatchingX.sin} for Drell-Yan with one matched emission. \subsection{Parton Showers and Hadronization} From version 2.1 onwards, \whizard\ contains an implementation of an analytic parton shower as presented in \cite{Kilian:2011ka}, providing the opportunity to perform the parton shower from whithin \whizard. Moreover, an interface to \pythia\ is included, which can be used to delegate the parton shower to \pythia. The same interface can be used to hadronize events using the generated events using \pythia's hadronization routines. Note that by \pythia's default, when performing initial-state radiation multiple interactions are included and when performing the hadronization hadronic decays are included. If required, these additional steps have to be switched off using the corresponding arguments for \pythia's \ttt{PYGIVE} routine vie the \ttt{\$ps\_PYTHIA\_PYGIVE} string. Note that from version 2.2.4 on the earlier flag \ttt{--enable-shower} flag has been abandoned, and there is only a flag to either compile or not compile the interally attached \pythia\ttt{6} package (\ttt{--enable-pythia6}) last release of the \fortran\ \pythia, v6.427) as well as the interface. It can be invoked by the following \sindarin\ keywords:\\[2ex] % \centerline{\begin{tabular}{|l|l|} \hline\ttt{?ps\_fsr\_active = true} & master switch for final-state parton showers\\\hline \ttt{?ps\_isr\_active = true} & master switch for initial-state parton showers\\\hline \ttt{?ps\_taudec\_active = true} & master switch for $\tau$ decays (at the moment only via \ttt{TAUOLA}\\\hline \ttt{?hadronization\_active = true} & master switch to enable hadronization\\\hline \ttt{\$shower\_method = "PYTHIA6"} & switch to use \pythiasix's parton shower instead of \\ & \whizard's own shower\\\hline \end{tabular}}\mbox{} \vspace{4mm} If either \ttt{?ps\_fsr\_active} or \ttt{?ps\_isr\_active} is set to \verb|true|, the event will be transferred to the internal shower routines or the \pythia\ data structures, and the chosen shower steps (initial- and final-state radiation) will be performed. If hadronization is enabled via the \ttt{?hadronization\_active} switch, \whizard\ will call \pythia's hadronization routine. The hadron\-ization can be applied to events showered using the internal shower or showered using \pythia's shower routines, as well as unshowered events. Any necessary transfer of event data to \pythia\ is automatically taken care of within \whizard's shower interface. The resulting (showered and/or hadronized) event will be transferred back to \whizard, the former final particles will be marked as intermediate. The analysis can be applied to a showered and/or hadronized event just like in the unshowered/unhadronized case. Any event file can be used and will contain the showered/hadronized event. Settings for the internal analytic parton shower are set via the following \sindarin\ variables:\\[2ex] \begin{description} \item[\ttt{ps\_mass\_cutoff}] The cut-off in virtuality, below which, partons are assumed to radiate no more. Used for both ISR and FSR. Given in $\mbox{GeV}$. (Default = 1.0) \item[\ttt{ps\_fsr\_lambda}] The value for $\Lambda$ used in calculating the value of the running coupling constant $\alpha_S$ for Final State Radiation. Given in $\mbox{GeV}$. (Default = 0.29) \item[\ttt{ps\_isr\_lambda}] The value for $\Lambda$ used in calculating the value of the running coupling constant $\alpha_S$ for Initial State Radiation. Given in $\mbox{GeV}$. (Default = 0.29) \item[\ttt{ps\_max\_n\_flavors}] Number of quark flavours taken into account during shower evolution. Meaningful choices are 3 to include $u,d,s$-quarks, 4 to include $u,d,s,c$-quarks and 5 to include $u,d,s,c,b$-quarks. (Default = 5) \item[\ttt{?ps\_isr\_alphas\_running}] Switch to decide between a constant $\alpha_S$, given by \ttt{ps\_fixed\_alphas}, and a running $\alpha_S$, calculated using \ttt{ps\_isr\_lambda} for ISR. (Default = true) \item[\ttt{?ps\_fsr\_alphas\_running}] Switch to decide between a constant $\alpha_S$, given by \ttt{ps\_fixed\_alphas}, and a running $\alpha_S$, calculated using \ttt{ps\_fsr\_lambda} for FSR. (Default = true) \item[\ttt{ps\_fixed\_alphas}] Fixed value of $\alpha_S$ for the parton shower. Used if either one of the variables \ttt{?ps\_fsr\_alphas\_running} or \ttt{?ps\_isr\_alphas\_running} are set to \verb|false|. (Default = 0.0) \item[\ttt{?ps\_isr\_angular\_ordered}] Switch for angular ordered ISR. (Default = true )\footnote{The FSR is always simulated with angular ordering enabled.} \item[\ttt{ps\_isr\_primordial\_kt\_width}] The width in $\mbox{GeV}$ of the Gaussian assumed to describe the transverse momentum of partons inside the proton. Other shapes are not yet implemented. (Default = 0.0) \item[\ttt{ps\_isr\_primordial\_kt\_cutoff}] The maximal transverse momentum in $\mbox{GeV}$ of a parton inside the proton. Used as a cut-off for the Gaussian. (Default = 5.0) \item[\ttt{ps\_isr\_z\_cutoff}] Maximal $z$-value in initial state branchings. (Default = 0.999) \item[\ttt{ps\_isr\_minenergy}] Minimal energy in $\mbox{GeV}$ of an emitted timelike or final parton. Note that the energy is not calculated in the labframe but in the center-of-mas frame of the two most initial partons resolved so far, so deviations may occur. (Default = 1.0) \item[\ttt{ps\_isr\_tscalefactor}] Factor for the starting scale in the initial state shower evolution. ( Default = 1.0 ) \item[\ttt{?ps\_isr\_only\_onshell\_emitted\_partons}] Switch to allow only for on-shell emitted partons, thereby rejecting all possible final state parton showers starting from partons emitted during the ISR. (Default = false) \end{description} Settings for the \pythia\ are transferred using the following \sindarin\ variables:\\[2ex] \centerline{\begin{tabular}{|l|l|} \hline\ttt{?ps\_PYTHIA\_verbose} & if set to false, output from \pythia\ will be suppressed\\\hline \ttt{\$ps\_PYTHIA\_PYGIVE} & a string containing settings transferred to \pythia's \ttt{PYGIVE} subroutine.\\ & The format is explained in the \pythia\ manual. The limitation to 100 \\ & characters mentioned there does not apply here, the string is split \\ & appropriately before being transferred to \pythia.\\\hline \end{tabular}}\mbox{} \vspace{4mm} Note that the included version of \pythia\ uses \lhapdf\ for initial state radiation whenever this is available, but the PDF set has to be set manually in that case using the keyword \ttt{ps\_PYTHIA\_PYGIVE}. \subsection{Parton shower -- Matrix Element Matching} Along with the inclusion of the parton showers, \whizard\ includes an implementation of the MLM matching procedure. For a detailed description of the implemented steps see \cite{Kilian:2011ka}. The inclusion of MLM matching still demands some manual settings in the \sindarin\ file. For a given base process and a matching of $N$ additional jets, all processes that can be obtained by attaching up to $N$ QCD splittings, either a quark emitting a gluon or a gluon splitting into two quarks ar two gluons, have to be manually specified as additional processes. These additional processes need to be included in the \ttt{simulate} statement along with the original process. The \sindarin\ variable \ttt{mlm\_nmaxMEjets} has to be set to the maximum number of additional jets $N$. Moreover additional cuts have to be specified for the additional processes. \begin{verbatim} alias quark = u:d:s:c alias antiq = U:D:S:C alias j = quark:antiq:g ?mlm_matching = true mlm_ptmin = 5 GeV mlm_etamax = 2.5 mlm_Rmin = 1 cuts = all Dist > mlm_Rmin [j, j] and all Pt > mlm_ptmin [j] and all abs(Eta) < mlm_etamax [j] \end{verbatim} Note that the variables \ttt{mlm\_ptmin}, \ttt{mlm\_etamax} and \ttt{mlm\_Rmin} are used by the matching routine. Thus, replacing the variables in the \ttt{cut} expression and omitting the assignment would destroy the matching procedure. The complete list of variables introduced to steer the matching procedure is as follows: \begin{description} \item[\ttt{?mlm\_matching\_active}] Master switch to enable MLM matching. (Default = false) \item[\ttt{mlm\_ptmin}] Minimal transverse momentum, also used in the definition of a jet \item[\ttt{mlm\_etamax}] Maximal absolute value of pseudorapidity $\eta$, also used in defining a jet \item[\ttt{mlm\_Rmin}] Minimal $\eta-\phi$ distance $R_{min}$ \item[\ttt{mlm\_nmaxMEjets}] Maximum number of jets $N$ \item[\ttt{mlm\_ETclusfactor}] Factor to vary the jet definition. Should be $\geq 1$ for complete coverage of phase space. (Default = 1) \item[\ttt{mlm\_ETclusminE}] Minimal energy in the variation of the jet definition \item[\ttt{mlm\_etaclusfactor}] Factor in the variation of the jet definition. Should be $\leq 1$ for complete coverage of phase space. (Default = 1) \item[\ttt{mlm\_Rclusfactor}] Factor in the variation of the jet definition. Should be $\ge 1$ for complete coverage of phase space. (Default = 1) \end{description} The variation of the jet definition is a tool to asses systematic uncertainties introduced by the matching procedure (See section 3.1 in \cite{Kilian:2011ka}). %%%%%%%%% \section{Rescanning and recalculating events} \label{sec:rescan} In the simplest mode of execution, \whizard\ handles its events at the point where they are generated. It can apply event transforms such as decays or shower (see above), it can analyze the events, calculate and plot observables, and it can output them to file. However, it is also possible to apply two different operations to those events in parallel, or to reconsider and rescan an event sample that has been previously generated. We first discuss the possibilities that \ttt{simulate} offers. For each event, \whizard\ calculates the matrix element for the hard interaction, supplements this by Jacobian and phase-space factors in order to obtain the event weight, optionally applies a rejection step in order to gather uniformly weighted events, and applies the cuts and analysis setup. We may ask about the event matrix element or weight, or the analysis result, that we would have obtained for a different setting. To this end, there is an \ttt{alt\_setup} option. This option allows us to recalculate, event by event, the matrix element, weight, or analysis contribution with a different parameter set but identical kinematics. For instance, we may evaluate a distribution for both zero and non-zero anomalous coupling \ttt{fw} and enter some observable in separate histograms: \begin{footnotesize} \begin{verbatim} simulate (some_proc) { fw = 0 analysis = record hist1 (eval Pt [H]) alt_setup = { fw = 0.01 analysis = record hist2 (eval Pt [H]) } } \end{verbatim} \end{footnotesize} In fact, the \ttt{alt\_setup} object is not restricted to a single code block (enclosed in curly braces) but can take a list of those, \begin{footnotesize} \begin{verbatim} alt_setup = { fw = 0.01 }, { fw = 0.02 }, ... \end{verbatim} \end{footnotesize} Each block provides the environment for a separate evaluation of the event data. The generation of these events, i.e., their kinematics, is still steered by the primary environment. The \ttt{alt\_setup} blocks may modify various settings that affect the evaluation of an event, including physical parameters, PDF choice, cuts and analysis, output format, etc. This must not (i.e., cannot) affect the kinematics of an event, so don't modify particle masses. When applying cuts, they can only reduce the generated event sample, so they apply on top of the primary cuts for the simulation. Alternatively, it is possible to \ttt{rescan} a sample that has been generated by a previous \ttt{simulate} command: \begin{footnotesize} \begin{verbatim} simulate (some_proc) { $sample = "my_events" analysis = record hist1 (eval Pt [H]) } ?update_sqme = true ?update_weight = true rescan "my_events" (some_proc) { fw = 0.01 analysis = record hist2 (eval Pt [H]) } rescan "my_events" (some_proc) { fw = 0.05 analysis = record hist3 (eval Pt [H]) } \end{verbatim} \end{footnotesize} In more complicated situation, rescanning is more transparent and offers greater flexibility than doing all operations at the very point of event generation. Combining these features with the \ttt{scan} looping construct, we already cover a considerable range of applications. (There are limitations due to the fact that \sindarin\ doesn't provide array objects, yet.) Note that the \ttt{rescan} construct also allows for an \ttt{alt\_setup} option. You may generate a new sample by rescanning, for which you may choose any output format: \begin{footnotesize} \begin{verbatim} rescan "my_events" (some_proc) { selection = all Pt > 100 GeV [H] $sample = "new_events" sample_format = lhef } \end{verbatim} \end{footnotesize} The event sample that you rescan need not be an internal raw \whizard\ file, as above. You may rescan a LHEF file, \begin{footnotesize} \begin{verbatim} rescan "lhef_events" (proc) { $rescan_input_format = "lhef" } \end{verbatim} \end{footnotesize} This file may have any origin, not necessarily from \whizard. To understand such an external file, \whizard\ must be able to reconstruct the hard process and match it to a process with a known name (e.g., \ttt{proc}), that has been defined in the \sindarin\ script previously. Within its limits, \whizard\ can thus be used for translating an event sample from one format to another format. There are three important switches that control the rescanning behavior. They can be set or unset independently. \begin{itemize} \item \ttt{?update\_sqme} (default: false). If true, \whizard\ will recalculate the hard matrix element for each event. When applying an analysis, the recalculated squared matrix element (averaged and summed over quantum numbers as usual) is available as the variable \ttt{sqme\_prc}. This may be related to \ttt{sqme\_ref}, the corresponding value in the event file, if available. (For the \ttt{alt\_env} option, this switch is implied.) \item \ttt{?update\_weight} (default: false). If true, \whizard\ will recalculate the event weight according to the current environment and apply this to the event. In particular, the user may apply a \ttt{reweight} expression. In an analysis, the new weight value is available as \ttt{weight\_prc}, to be related to \ttt{weight\_ref} from the sample. The updated weight will be applied for histograms and averages. An unweighted event sample will thus be transformed into a weighted event sample. (This switch is also implied for the \ttt{alt\_env} option.) \item \ttt{?update\_event} (default: false). If true, \whizard\ will generate a new decay chain etc., if applicable. That is, it reuses just the particles in the hard process. Otherwise, the complete event is kept as it is written to file. \end{itemize} For these options to make sense, \whizard\ must have access to a full process object, so the \sindarin\ script must contain not just a definition but also a \ttt{compile} command for the matrix elements in question. If an event file (other than raw format) contains several processes as a mixture, they must be identifiable by a numeric ID. \whizard\ will recognize the processes if their respective \sindarin\ definitions contain appropriate \ttt{process\_num\_id} options, such as \begin{footnotesize} \begin{verbatim} process foo = u, ubar => d, dbar { process_num_id = 42 } \end{verbatim} \end{footnotesize} Certain event-file formats, such as LHEF, support alternative matrix-element values or weights. \whizard\ can thus write both original and recalculated matrix-element and weight values. Other formats support only a single event weight, so the \ttt{?update\_weight} option is necessary for a visible effect. External event files in formats such as LHEF, HepMC, or LCIO, also may carry information about the value of the strong coupling $\alpha_s$ and the energy scale of each event. This information will also be provided by \whizard\ when writing external event files. When such an event file is rescanned, the user has the choice to either user the $\alpha_s$ value that \whizard\ defines in the current context (or the method for obtaining an event-specific running $\alpha_s$ value), or override this for each event by using the value in the event file. The corresponding parameter is \ttt{?use\_alphas\_from\_file}, which is false by default. Analogously, the parameter \ttt{?use\_scale\_from\_file} may be set to override the scale definition in the current context. Obviously, these settings influence matrix-element recalculation and therefore require \ttt{?update\_sqme} to be set in order to become operational. %%%%%%%%% \section{Negative weight events} For usage at NLO refer to Subsection~\ref{ss:fixedorderNLOevents}. In case, you have some other mechanism to produce events with negative weights (e.g. with the \ttt{weight = {\em }} command), keep in mind that you should activate \ttt{?negative\_weights = true} and \ttt{unweighted = false}. The generation of unweighted events with varying sign (also known as events and counter events) is currently not supported. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{User Code Plug-Ins} \label{chap:user} {\color{red} Note that the user-code plug-in mechanism has been currently (for version 2.2.0) disabled, as the huge refactoring of the code between versions 2.1.X and 2.2.X has completely changed many of the interfaces. We plan to bring the interface for user code for spectra, structure functions and event shapes, cuts and observables back online as soon as possible, at latest for version 2.4.0. } \vspace{2cm} \section{The plug-in mechanism} The capabilities of \whizard\ and its \sindarin\ command language are not always sufficient to adapt to all users' needs. To make the program more versatile, there are several spots in the workflow where the user may plug in his/her own code, to enhance or modify the default behavior. User code can be injected, without touching \whizard's source code, in the following places: \begin{itemize} \item Cuts, weights, analysis, etc.: \begin{itemize} \item Cut functions that operate on a whole subevent. \item Observable (e.g., event shapes) calculated from a whole subevent. \item Observable calculated for a particle or particle pair. \end{itemize} \item Spectra and structure functions. \end{itemize} Additional plug-in locations may be added in the future. User code is loaded dynamically by \whizard. There are two possibilities: \begin{enumerate} \item The user codes the required procedures in one or more Fortran source files that are present in the working directory of the \whizard\ program. \whizard\ is called with the \ttt{-u} flag: \begin{quote} \ttt{whizard -u --user-src=\emph{user-source-code-file}} \ldots \end{quote} The file must have the extension \ttt{.f90}, and the file name must be specified without extension. There may be an arbitrary number of user source-code files. The compilation is done in order of appearance. If the name of the user source-code file is \ttt{user.f90}, the flag \ttt{--user-src} can be omitted. This tells the program to compile and dynamically link the code at runtime. The basename of the linked library is \ttt{user}. If a compiled (shared) library with that name already exists, it is taken as-is. If the user code changes or the library becomes invalid for other reasons, recompilation of the user-code files can be forced by the flag \ttt{--rebuild-user} or by the generic \ttt{-r} flag. \item The user codes and compiles the required procedures him/herself. They should be provided in form of a library, where the interfaces of the individual procedures follow C calling conventions and exactly match the required interfaces as described in the following sections. The library must be compiled in such a way that it can be dynamically linked. If the calling conventions are met, the actual user code may be written in any programming language. E.g., it may be coded in Fortran, C, or C++ (with \ttt{extern(C)} specifications). \whizard\ is called with the \ttt{-u} flag and is given the name of the user library as \begin{quote} \ttt{whizard -u --user-lib=\emph{user-library-file}} \ldots \end{quote} \end{enumerate} The library file should either be a dynamically loadable (shared) library with appropriate extension (\ttt{.so} on Linux), or a libtool archive (\ttt{.la}). The user-provided procedures may have arbitrary names; the user just has to avoid clashes with procedures from the Fortran runtime library or from the operating-system environment. \section{Data Types Used for Communication} \label{sec:c_prt} Since the user-code interface is designed to be interoperable with C, it communicates with \whizard\ only via C-interoperable data types. The basic data types (Fortran: integer and real kinds) \ttt{c\_int} and \ttt{c\_double} are usually identical with the default kinds on the Fortran side. If necessary, explicit conversion may be inserted. For transferring particle data, we are using a specific derived type \ttt{c\_prt\_t} which has the following content: \begin{quote} \begin{footnotesize} \begin{verbatim} type, bind(C) :: c_prt_t integer(c_int) :: type integer(c_int) :: pdg integer(c_int) :: polarized integer(c_int) :: h real(c_double) :: pe real(c_double) :: px real(c_double) :: py real(c_double) :: pz real(c_double) :: p2 end type c_prt_t \end{verbatim} \end{footnotesize} \end{quote} The meaning of the entries is as follows: \begin{description} \item[\ttt{type}:] The type of the particle. The common type codes are 1=incoming, 2=outgoing, and 3=composite. A composite particle in a subevent is created from a combination of individual particle momenta, e.g., in jet clustering. If the status code is not defined, it is set to zero. \item[\ttt{pdg}:] The particle identification code as proposed by the Particle Data Group. If undefined, it is zero. \item[\ttt{polarized}:] If nonzero, the particle is polarized. The only polarization scheme supported at this stage is helicity. If zero, particle polarization is ignored. \item[\ttt{h}:] If the particle is polarized, this is the helicity. $0$ for a scalar, $\pm 1$ for a spin-1/2 fermion, $-1,0,1$ for a spin-1 boson. \item[\ttt{pe}:] The energy in GeV. \item[\ttt{px}/\ttt{py}:] The transversal momentum components in GeV. \item[\ttt{pz}:] The longitudinal momentum component in GeV. \item[\ttt{p2}:] The invariant mass squared of the actual momentum in GeV$^2$. \end{description} \whizard\ does not provide tools for manipulating \ttt{c\_prt\_t} objects directly. However, the four-momentum can be used in Lorentz-algebra calculations from the \ttt{lorentz} module. To this end, this module defines the transformational functions \ttt{vector4\_from\_c\_prt} and \ttt{vector4\_to\_c\_prt}. \section{User-defined Observables and Functions} \subsection{Cut function} Instead of coding a cut expression in \sindarin, it may be coded in Fortran, or in any other language with a C-compatible interface. A user-defined cut expression is referenced in \sindarin\ as follows: \begin{quote} \begin{footnotesize} \ttt{cuts = user\_cut (\emph{name-string}) [\emph{subevent}]} \end{footnotesize} \end{quote} The \ttt{\emph{name-string}} is an expression that evaluates to string, the name of the function to call in the user code. The \emph{subevent} is a subevent expression, analogous to the built-in cut definition syntax. The result of the \ttt{user\_cut} function is a logical value in \sindarin. It is true if the event passes the cut, false otherwise. If coded in Fortran, the actual user-cut function in the user-provided source code has the following form: \begin{quote} \begin{footnotesize} \begin{verbatim} function user_cut_fun (prt, n_prt) result (iflag) bind(C) use iso_c_binding use c_particles type(c_prt_t), dimension(*), intent(in) :: prt integer(c_int), intent(in) :: n_prt integer(c_int) :: iflag ! ... code that evaluates iflag end function user_cut_fun \end{verbatim} \end{footnotesize} \end{quote} Here, \ttt{user\_cut\_fun} can be replaced by an arbitrary name by which the function is referenced as \ttt{\emph{name-string}} above. The \ttt{bind(C)} attribute in the function declaration is mandatory. The argument \ttt{prt} is an array of objects of type \ttt{c\_prt\_t}, as described above. The integer \ttt{n\_prt} is the number of entries in the array. It is passed separately in order to determine the actual size of the assumed-size \ttt{prt} array. The result \ttt{iflag} is an integer. A nonzero value indicates \ttt{true} (i.e., the event passes the cut), zero value indicates \ttt{false}. (We do not use boolean values in the interface because their interoperability might be problematic on some systems.) \subsection{Event-shape function} An event-shape function is similar to a cut function. It takes a subevent as argument and returns a real (i.e., C double) variable. It can be used for defining subevent observables, event weights, or the event scale, as in \begin{quote} \begin{footnotesize} \ttt{analysis = record \emph{hist-id} (user\_event\_fun (\emph{name-string}) [\emph{subevent}])} \end{footnotesize} \end{quote} or \begin{quote} \begin{footnotesize} \ttt{scale = user\_event\_fun (\emph{name-string}) [\emph{subevent}]} \end{footnotesize} \end{quote} The corresponding Fortran source code has the form \begin{quote} \begin{footnotesize} \begin{verbatim} function user_event_fun (prt, n_prt) result (rval) bind(C) use iso_c_binding use c_particles type(c_prt_t), dimension(*), intent(in) :: prt integer(c_int), intent(in) :: n_prt real(c_double) :: rval ! ... code that evaluates rval end function user_event_fun \end{verbatim} \end{footnotesize} \end{quote} with \ttt{user\_event\_fun} replaced by \ttt{\emph{name-string}}. \subsection{Observable} In \sindarin, an observable-type function is a function of one or two particle objects that returns a real value. The particle objects result from scanning over subevents. In the \sindarin\ code, the observable is used like a variable; the particle-object arguments are implictly assigned. A user-defined observable is used analogously, e.g., \begin{quote} \begin{footnotesize} \ttt{cuts = all user\_obs (\emph{name-string}) > 0 [\emph{subevent}]} \end{footnotesize} \end{quote} The user observable is defined, as Fortran code, as either a unary or as a binary C-double-valued function of \ttt{c\_prt\_t} objects. The use in \sindarin\ (unary or binary) must match the definition. \begin{quote} \begin{footnotesize} \begin{verbatim} function user_obs_unary (prt1) result (rval) bind(C) use iso_c_binding use c_particles type(c_prt_t), intent(in) :: prt1 real(c_double) :: rval ! ... code that evaluates rval end function user_obs_unary \end{verbatim} \end{footnotesize} \end{quote} or \begin{quote} \begin{footnotesize} \begin{verbatim} function user_obs_binary (prt1, prt2) result (rval) bind(C) use iso_c_binding use c_particles type(c_prt_t), intent(in) :: prt1, prt2 real(c_double) :: rval ! ... code that evaluates rval end function user_obs_binary \end{verbatim} \end{footnotesize} \end{quote} with \ttt{user\_obs\_unary}/\ttt{binary} replaced by \ttt{\emph{name-string}}. \subsection{Examples} For an example, we implement three different ways of computing the transverse momentum of a particle. This observable is actually built into \whizard, so the examples are not particularly useful. However, implementing kinematical functions that are not supported (yet) by \whizard\ (and not easily computed via \sindarin\ expressions) proceeds along the same lines. \subsubsection{Cut} The first function is a complete cut which can be used as \begin{quote} \begin{footnotesize} \ttt{cuts = user\_cut("ptcut") [\emph{subevt}]} \end{footnotesize} \end{quote} It is equivalent to \begin{quote} \begin{footnotesize} \ttt{cuts = all Pt $>$ 50 [\emph{subevt}]} \end{footnotesize} \end{quote} The implementation reads \begin{quote} \begin{footnotesize} \begin{verbatim} function ptcut (prt, n_prt) result (iflag) bind(C) use iso_c_binding use c_particles use lorentz type(c_prt_t), dimension(*), intent(in) :: prt integer(c_int), intent(in) :: n_prt integer(c_int) :: iflag logical, save :: first = .true. if (all (transverse_part (vector4_from_c_prt (prt(1:n_prt))) > 50)) then iflag = 1 else iflag = 0 end if end function ptcut \end{verbatim} \end{footnotesize} \end{quote} The procedure makes use of the kinematical functions in the \ttt{lorentz} module, after transforming the particles into a \ttt{vector4} array. \subsubsection{Event Shape} Similar functionality can be achieved by implementing an event-shape function. The function computes the minimum $p_T$ among all particles in the subevent. The \sindarin\ expression reads \begin{quote} \begin{footnotesize} \ttt{cuts = user\_event\_shape("pt\_min") [\emph{subevt}] $>$ 50} \end{footnotesize} \end{quote} and the function is coded as \begin{quote} \begin{footnotesize} \begin{verbatim} function pt_min (prt, n_prt) result (rval) bind(C) use iso_c_binding use c_particles use lorentz type(c_prt_t), dimension(*), intent(in) :: prt integer(c_int), intent(in) :: n_prt real(c_double) :: rval rval = minval (transverse_part (vector4_from_c_prt (prt(1:n_prt)))) end function pt_min \end{verbatim} \end{footnotesize} \end{quote} \subsubsection{Observable} The third (and probably simplest) user implementation of the $p_T$ cut computes a single-particle observable. Here, the usage is \begin{quote} \begin{footnotesize} \ttt{cuts = all user\_obs("ptval") $>$ 50 [\emph{subevt}]} \end{footnotesize} \end{quote} and the subroutine reads \begin{quote} \begin{footnotesize} \begin{verbatim} function ptval (prt1) result (rval) bind(C) use iso_c_binding use c_particles use lorentz type(c_prt_t), intent(in) :: prt1 real(c_double) :: rval rval = transverse_part (vector4_from_c_prt (prt1)) end function ptval \end{verbatim} \end{footnotesize} \end{quote} \section{User Code and Static Executables} In Sec.~\ref{sec:static} we describe how to build a static executable that can be submitted to batch jobs, e.g., on the grid, where a compiler may not be available. If there is user plug-in code, it would require the same setup of libtool, compiler and linker on the target host, as physical process code. To avoid this, it is preferable to link the user code statically with the executable, which is then run as a monolithic program. This is actually simple. Two conditions have to be met: \begin{enumerate} \item The \whizard\ job that creates the executable has to be given the appropriate options (\ttt{-u}, \ttt{--user-src}, \ttt{--user-lib}) such that the user code is dynamically compiled and linked. \item The compile command in the \sindarin\ script which creates the executable takes options that list the procedures which the stand-alone program should access: \begin{quote} \begin{footnotesize} \ttt{% compile as "\emph{executable-name}" \{ \\ \hspace*{2em} \$user\_procs\_cut = "\emph{cut-proc-names}"\\ \hspace*{2em} \$user\_procs\_event\_shape = "\emph{event-shape-proc-names}"\\ \hspace*{2em} \$user\_procs\_obs1 = "\emph{obs1-proc-names}"\\ \hspace*{2em} \$user\_procs\_obs2 = "\emph{obs2-proc-names}"\\ \hspace*{2em} \$user\_procs\_sf = "\emph{strfun-names}"\\ \}} \end{footnotesize} \end{quote} The values of these option variables are comma-separated lists of procedure names, grouped by their nature. \ttt{obs1} and \ttt{obs2} refer to unary and binary observables, respectively. The \ttt{strfun-names} are the names of the user-defined spectra or structure functions as they would appear in the \sindarin\ file which uses them. \end{enumerate} With these conditions met, the stand-alone executable will have the user code statically linked, and it will be able to use exactly those user-defined routines that have been listed in the various option strings. (It is possible nevertheless, to plug in additional user code into the stand-alone executable, using the same options as for the original \whizard\ program.) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Data Visualization} \label{chap:visualization} \section{GAMELAN} The data values and tables that we have introduced in the previous section can be visualized using built-in features of \whizard. To be precise, \whizard\ can write \LaTeX\ code which incorporates code in the graphics language GAMELAN to produce a pretty-printed account of observables, histograms, and plots. GAMELAN is a macro package for MetaPost, which is part of the \TeX/\LaTeX\ family. MetaPost, a derivative of Knuth's MetaFont language for font design, is usually bundled with the \TeX\ distribution, but might need a separate switch for installation. The GAMELAN macros are contained in a subdirectory of the \whizard\ package. Upon installation, they will be installed in the appropriate directory, including the \ttt{gamelan.sty} driver for \LaTeX. \whizard\ uses a subset of GAMELAN's graphics macros directly, but it allows for access to the full package if desired. An (incomplete) manual for GAMELAN can be found in the \ttt{share/doc} subdirectory of the \whizard\ system. \whizard\ itself uses a subset of the GAMELAN capabilities, interfaced by \sindarin\ commands and parameters. They are described in this chapter. To process analysis output beyond writing tables to file, the \ttt{write\_analysis} command described in the previous section should be replaced by \ttt{compile\_analysis}, with the same syntax: \begin{quote} \begin{footnotesize} \ttt{compile\_analysis (\emph{analysis-tags}) \{ \ttt{\emph{options}} \}} \end{footnotesize} \end{quote} where \ttt{\emph{analysis-tags}}, a comma-separated list of analysis objects, is optional. If there are no tags, all analysis objects are processed. The \ttt{\emph{options}} script of local commands is also optional, of course. This command will perform the following actions: \begin{enumerate} \item It writes a data file in default format, as \ttt{write\_analysis} would do. The file name is given by \ttt{\$out\_file}, if nonempty. The file must not be already open, since the command needs a self-contained file, but the name is otherwise arbitrary. If the value of \ttt{\$out\_file} is empty, the default file name is \ttt{whizard\_analysis.dat}. \item It writes a driver file for the chosen datasets, whose name is derived from the data file by replacing the file extension of the data file with the extension \ttt{.tex}. The driver file is a \LaTeX\ source file which contains embedded GAMELAN code that handles the selected graphics data. In the \LaTeX\ document, there is a separate section for each contained dataset. Furthermore, a process-/analysis-specific makefile with the name \ttt{\_ana.makefile} is created that can be used to generate postscript or PDF output from the \LaTeX\ source. If the steering flag \ttt{?analysis\_file\_only} is set to \ttt{true}, then the \LaTeX\ file and the makefile are only written, but no execution of the makefile resulting in compilation of the \LaTeX\ code (see the next item) is invoked. \item As mentioned above, if the flag \ttt{?analysis\_file\_only} is set to \ttt{false} (which is the default), the driver file is processed by \LaTeX (invoked by calling the makefile with the name \ttt{\_ana.makefile}), which generates an appropriate GAMELAN source file with extension \ttt{.mp}. This code is executed (calling GAMELAN/MetaPost, and again \LaTeX\ for typesetting embedded labels). There is a second \LaTeX\ pass (automatically done by the makefile) which collects the results, and finally conversion to PostScript and PDF formats. \end{enumerate} The resulting PostScript or PDF file -- the file name is the name of the data file with the extension replaced by \ttt{.ps} or \ttt{.pdf}, respectively -- can be printed or viewed with an appropriate viewer such as \ttt{gv}. The viewing command is not executed automatically by \whizard. Note that \LaTeX\ will write further files with extensions \ttt{.log}, \ttt{.aux}, and \ttt{.dvi}, and GAMELAN will produce auxiliary files with extensions \ttt{.ltp} and \ttt{.mpx}. The log file in particular, could overwrite \whizard's log file if the basename is identical. Be careful to use a value for \ttt{\$out\_file} which is not likely to cause name clashes. \subsection{User-specific changes} In the case, that the \sindarin\ \ttt{compile\_analysis} command is invoked and the flag named \ttt{?analysis\_file\_only} is not changed from its default value \ttt{false}, \whizard\ calls the process-/analysis-specific makefile triggering the compilation of the \LaTeX\ code and the GAMELAN plots and histograms. If the user wants to edit the analysis output, for example changing captions, headlines, labels, properties of the plots, graphs and histograms using GAMELAN specials etc., this is possible and the output can be regenerated using the makefile. The user can also directly invoke the GAMELAN script, \ttt{whizard-gml}, that is installed in the binary directly along with the \whizard\ binary and other scripts. Note however, that the \LaTeX\ environment for the specific style files have to be set by hand (the command line invocation in the makefile does this automatically). Those style files are generally written into \ttt{share/texmf/whizard/} directory. The user can execute the commands in the same way as denoted in the process-/analysis-specific makefile by hand. %%%%% \section{Histogram Display} %%%%% \section{Plot Display} \section{Graphs} \label{sec:graphs} Graphs are an additional type of analysis object. In contrast to histograms and plots, they do not collect data directly, but they rather act as containers for graph elements, which are copies of existing histograms and plots. Their single purpose is to be displayed by the GAMELAN driver. Graphs are declared by simple assignments such as \begin{quote} \begin{footnotesize} \ttt{graph g1 = hist1} \\ \ttt{graph g2 = hist2 \& hist3 \& plot1} \end{footnotesize} \end{quote} The first declaration copies a single histogram into the graph, the second one copies two histograms and a plot. The syntax for collecting analysis objects uses the \ttt{\&} concatenation operator, analogous to string concatenation. In the assignment, the rhs must contain only histograms and plots. Further concatenating previously declared graphs is not supported. After the graph has been declared, its contents can be written to file (\ttt{write\_analysis}) or, usually, compiledd by the \LaTeX/GAMELAN driver via the \ttt{compile\_analysis} command. The graph elements on the right-hand side of the graph assignment are copied with their current data content. This implies a well-defined order of statements: first, histograms and plots are declared, then they are filled via \ttt{record} commands or functions, and finally they can be collected for display by graph declarations. A simple graph declaration without options as above is possible, but usually there are option which affect the graph display. There are two kinds of options: graph options and drawing options. Graph options apply to the graph as a whole (title, labels, etc.) and are placed in braces on the lhs of the assigment. Drawing options apply to the individual graph elements representing the contained histograms and plots, and are placed together with the graph element on the rhs of the assignment. Thus, the complete syntax for assigning multiple graph elements is \begin{quote} \begin{footnotesize} \ttt{graph \emph{graph-tag} \{ \emph{graph-options} \}} \\ \ttt{= \emph{graph-element-tag1} \{ \emph{drawing-options1} \}} \\ \ttt{\& \emph{graph-element-tag2} \{ \emph{drawing-options2} \}} \\ \ldots \end{footnotesize} \end{quote} This form is recommended, but graph and drawing options can also be set as global parameters, as usual. We list the supported graph and drawing options in Tables~\ref{tab:graph-options} and \ref{tab:drawing-options}, respectively. \begin{table} \caption{Graph options. The content of strings of type \LaTeX\ must be valid \LaTeX\ code (containing typesetting commands such as math mode). The content of strings of type GAMELAN must be valid GAMELAN code. If a graph bound is kept \emph{undefined}, the actual graph bound is determined such as not to crop the graph contents in the selected direction.} \label{tab:graph-options} \begin{center} \begin{tabular}{|l|l|l|l|} \hline Variable & Default & Type & Meaning \\ \hline\hline \ttt{\$title} & \ttt{""} & \LaTeX & Title of the graph = subsection headline \\ \hline \ttt{\$description} & \ttt{""} & \LaTeX & Description text for the graph \\ \hline \ttt{\$x\_label} & \ttt{""} & \LaTeX & $x$-axis label \\ \hline \ttt{\$y\_label} & \ttt{""} & \LaTeX & $y$-axis label \\ \hline \ttt{graph\_width\_mm} & 130 & Integer & graph width (on paper) in mm \\ \hline \ttt{graph\_height\_mm} & 90 & Integer & graph height (on paper) in mm \\ \hline \ttt{?x\_log} & false & Logical & Whether the $x$-axis scale is linear or logarithmic \\ \hline \ttt{?y\_log} & false & Logical & Whether the $y$-axis scale is linear or logarithmic \\ \hline \ttt{x\_min} & \emph{undefined} & Real & Lower bound for the $x$ axis \\ \hline \ttt{x\_max} & \emph{undefined} & Real & Upper bound for the $x$ axis \\ \hline \ttt{y\_min} & \emph{undefined} & Real & Lower bound for the $y$ axis \\ \hline \ttt{y\_max} & \emph{undefined} & Real & Upper bound for the $y$ axis \\ \hline \ttt{gmlcode\_bg} & \ttt{""} & GAMELAN & Code to be executed before drawing \\ \hline \ttt{gmlcode\_fg} & \ttt{""} & GAMELAN & Code to be executed after drawing \\ \hline \end{tabular} \end{center} \end{table} \begin{table} \caption{Drawing options. The content of strings of type GAMELAN must be valid GAMELAN code. The behavior w.r.t. the flags with \emph{undefined} default value depends on the type of graph element. Histograms: draw baseline, piecewise, fill area, draw curve, no errors, no symbols; Plots: no baseline, no fill, draw curve, no errors, no symbols.} \label{tab:drawing-options} \begin{center} \begin{tabular}{|l|l|l|l|} \hline Variable & Default & Type & Meaning \\ \hline\hline \ttt{?draw\_base} & \emph{undefined} & Logical & Whether to draw a baseline for the curve \\ \hline \ttt{?draw\_piecewise} & \emph{undefined} & Logical & Whether to draw bins separately (histogram) \\ \hline \ttt{?fill\_curve} & \emph{undefined} & Logical & Whether to fill area between baseline and curve \\ \hline \ttt{\$fill\_options} & \ttt{""} & GAMELAN & Options for filling the area \\ \hline \ttt{?draw\_curve} & \emph{undefined} & Logical & Whether to draw the curve as a line \\ \hline \ttt{\$draw\_options} & \ttt{""} & GAMELAN & Options for drawing the line \\ \hline \ttt{?draw\_errors} & \emph{undefined} & Logical & Whether to draw error bars for data points \\ \hline \ttt{\$err\_options} & \ttt{""} & GAMELAN & Options for drawing the error bars \\ \hline \ttt{?draw\_symbols} & \emph{undefined} & Logical & Whether to draw symbols at data points \\ \hline \ttt{\$symbol} & Black dot & GAMELAN & Symbol to be drawn \\ \hline \ttt{gmlcode\_bg} & \ttt{""} & GAMELAN & Code to be executed before drawing \\ \hline \ttt{gmlcode\_fg} & \ttt{""} & GAMELAN & Code to be executed after drawing \\ \hline \end{tabular} \end{center} \end{table} \section{Drawing options} The options for coloring lines, filling curves, or choosing line styles make use of macros in the GAMELAN language. At this place, we do not intend to give a full account of the possiblities, but we rather list a few basic features that are likely to be useful for drawing graphs. \subsubsection{Colors} GAMELAN knows about basic colors identified by name: \begin{center} \ttt{black}, \ttt{white}, \ttt{red}, \ttt{green}, \ttt{blue}, \ttt{cyan}, \ttt{magenta}, \ttt{yellow} \end{center} More generically, colors in GAMELAN are RGB triplets of numbers (actually, numeric expressions) with values between 0 and 1, enclosed in brackets: \begin{center} \ttt{(\emph{r}, \emph{g}, \emph{b})} \end{center} To draw an object in color, one should apply the construct \ttt{withcolor \emph{color}} to its drawing code. The default color is always black. Thus, this will make a plot drawn in blue: \begin{quote} \begin{footnotesize} \ttt{\$draw\_options = "withcolor blue"} \end{footnotesize} \end{quote} and this will fill the drawing area of some histogram with an RGB color: \begin{quote} \begin{footnotesize} \ttt{\$fill\_options = "withcolor (0.8, 0.7, 1)"} \end{footnotesize} \end{quote} \subsubsection{Dashes} By default, lines are drawn continuously. Optionally, they can be drawn using a \emph{dash pattern}. Predefined dash patterns are \begin{center} \ttt{evenly}, \ttt{withdots}, \ttt{withdashdots} \end{center} Going beyond the predefined patterns, a generic dash pattern has the syntax \begin{center} \ttt{dashpattern (on \emph{l1} off \emph{l2} on} \ldots \ttt{)} \end{center} with an arbitrary repetition of \ttt{on} and \ttt{off} clauses. The numbers \ttt{\emph{l1}}, \ttt{\emph{l2}}, \ldots\ are lengths measured in pt. To apply a dash pattern, the option syntax \ttt{dashed \emph{dash-pattern}} should be used. Options strings can be concatenated. Here is how to draw in color with dashes: \begin{quote} \begin{footnotesize} \ttt{\$draw\_options = "withcolor red dashed evenly"} \end{footnotesize} \end{quote} and this draws error bars consisting of intermittent dashes and dots: \begin{quote} \begin{footnotesize} \ttt{\$err\_options = "dashed (withdashdots scaled 0.5)"} \end{footnotesize} \end{quote} The extra brackets ensure that the scale factor $1/2$ is applied only the dash pattern. \subsubsection{Hatching} Areas (e.g., below a histogram) can be filled with plain colors by the \ttt{withcolor} option. They can also be hatched by stripes, optionally rotated by some angle. The syntax is completely analogous to dashes. There are two predefined \emph{hatch patterns}: \begin{center} \ttt{withstripes}, \ttt{withlines} \end{center} and a generic hatch pattern is written \begin{center} \ttt{hatchpattern (on \emph{w1} off \emph{w2} on} \ldots \ttt{)} \end{center} where the numbers \ttt{\emph{l1}}, \ttt{\emph{l2}}, \ldots\ determine the widths of the stripes, measured in pt. When applying a hatch pattern, the pattern may be rotated by some angle (in degrees) and scaled. This looks like \begin{quote} \begin{footnotesize} \ttt{\$fill\_options = "hatched (withstripes scaled 0.8 rotated 60)"} \end{footnotesize} \end{quote} \subsubsection{Smooth curves} Plot points are normally connected by straight lines. If data are acquired by statistical methods, such as Monte Carlo integration, this is usually recommended. However, if a plot is generated using an analytic mathematical formula, or with sufficient statistics to remove fluctuations, it might be appealing to connect lines by some smooth interpolation. GAMELAN can switch on spline interpolation by the specific drawing option \ttt{linked smoothly}. Note that the results can be surprising if the data points do have sizable fluctuations or sharp kinks. \subsubsection{Error bars} Plots and histograms can be drawn with error bars. For histograms, only vertical error bars are supported, while plot points can have error bars in $x$ and $y$ direction. Error bars are switched on by the \ttt{?draw\_errors} flag. There is an option to draw error bars with ticks: \ttt{withticks} and an alternative option to draw arrow heads: \ttt{witharrows}. These can be used in the \ttt{\$err\_options} string. \subsubsection{Symbols} To draw symbols at plot points (or histogram midpoints), the flag \ttt{?draw\_symbols} has to be switched on. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{User Interfaces for WHIZARD} \label{chap:userint} \section{Command Line and \sindarin\ Input Files} \label{sec:cmdline-options} The standard way of using \whizard\ involves a command script written in \sindarin. This script is executed by \whizard\ by mentioning it on the command line: \begin{interaction} whizard script-name.sin \end{interaction} You may specify several script files on the command line; they will be executed consecutively. If there is no script file, \whizard\ will read commands from standard input. Hence, this is equivalent: \begin{interaction} cat script-name.sin | whizard \end{interaction} When executed from the command line, \whizard\ accepts several options. They are given in long form, i.e., they begin with two dashes. Values that belong to options follow the option string, separated either by whitespace or by an equals sign. Hence, \ttt{--prefix /usr} and \ttt{--prefix=/usr} are equivalent. Some options are also available in short form, a single dash with a single letter. Short-form options can be concatenated, i.e., a dash followed by several option letters. The first set of options is intended for normal operation. \begin{description} \item[\ttt{--debug AREA}]: Switch on debug output for \ttt{AREA}. \ttt{AREA} can be one of \whizard's source directories or \ttt{all}. \item[\ttt{--debug2 AREA}]: Switch on more verbose debug output for \ttt{AREA}. \item[\ttt{--single-event}]: Only compute one phase-space point (for debugging). \item[\ttt{--execute COMMANDS}]: Execute \ttt{COMMANDS} as a script - before the script file. Short version: \ttt{-e} + before the script file (see below). Short version: \ttt{-e} +\item[\ttt{--file CMDFILE}]: Execute commands in \ttt{CMDFILE} before the + main script file (see below). Short version: \ttt{-f} \item[\ttt{--help}]: List the available options and exit. Short version: \ttt{-h} \item[\ttt{--interactive}]: Run \whizard\ interactively. See Sec.~\ref{sec:whish}. Short version: \ttt{-i}. \item[\ttt{--library LIB}]: Preload process library \ttt{LIB} (instead of the default \ttt{processes}). Short version: \ttt{-l}. \item[\ttt{--localprefix DIR}]: Search in \ttt{DIR} for local models. Default is \ttt{\$HOME/.whizard}. \item[\ttt{--logfile \ttt{FILE}}]: Write log to \ttt{FILE}. Default is \ttt{whizard.log}. Short version: \ttt{-L}. \item[\ttt{--logging}]: Start logging on startup (default). \item[\ttt{--model MODEL}]: Preload model \ttt{MODEL}. Default is the Standard Model \ttt{SM}. Short version: \ttt{-m}. \item[\ttt{--no-banner}]: Do not display banner at startup. \item[\ttt{--no-library}]: Do not preload a library. \item[\ttt{--no-logfile}]: Do not write a logfile. \item[\ttt{--no-logging}]: Do not issue information into the logfile. \item[\ttt{--no-model}]: Do not preload a specific physics model. \item[\ttt{--no-rebuild}]: Do not force a rebuild. \item[\ttt{--query VARIABLE}]: Display documentation of \ttt{VARIABLE}. Short version: \ttt{-q}. \item[\ttt{--rebuild}]: Do not preload a process library and do all calculations from scratch, even if results exist. This combines all rebuild options. Short version: \ttt{-r}. \item[\ttt{--rebuild-library}]: Rebuild the process library, even if code exists. \item[\ttt{--rebuild-phase-space}]: Rebuild the phase space setup, even if it exists. \item[\ttt{--rebuild-grids}]: Redo the integration, even if previous grids and results exist. \item[\ttt{--rebuild-events}]: Redo event generation, discarding previous event files. \item[\ttt{--show-config}]: Show build-time configuration. \item[\ttt{--version}]: Print version information and exit. Short version: \ttt{-V}. \item[-]: Any further options are interpreted as file names. \end{description} The second set of options refers to the configuration. They are relevant when dealing with a relocated \whizard\ installation, e.g., on a batch systems. \begin{description} \item[\ttt{--prefix DIR}]: Specify the actual location of the \whizard\ installation, including all subdirectories. \item[\ttt{--exec-prefix DIR}]: Specify the actual location of the machine-specific parts of the \whizard\ installation (rarely needed). \item[\ttt{--bindir DIR}]: Specify the actual location of the executables contained in the \whizard\ installation (rarely needed). \item[\ttt{--libdir DIR}]: Specify the actual location of the libraries contained in the \whizard\ installation (rarely needed). \item[\ttt{--includedir DIR}]: Specify the actual location of the include files contained in the \whizard\ installation (rarely needed). \item[\ttt{--datarootdir DIR}]: Specify the actual location of the data files contained in the \whizard\ installation (rarely needed). \item[\ttt{--libtool LOCAL\_LIBTOOL}]: Specify the actual location and name of the \ttt{libtool} script that should be used by \whizard. \item[\ttt{--lhapdfdir DIR}]: Specify the actual location and of the \lhapdf\ installation that should be used by \whizard. \end{description} +The \ttt{--execute} and \ttt{--file} options allow for fine-tuning the command +flow. The \whizard\ main program will concatenate all commands given in +\ttt{--execute} commands together with all commands contained in \ttt{--file} +options, in the order they are encountered, as a contiguous command stream +that is executed \emph{before} the main script (in the example above, +\ttt{script-name.sin}). + +Regarding the \ttt{--execute} option, commands that contain blanks must be +enclosed in matching single- or double-quote characters since the individual +tokens would otherwise be intepreted as separate option strings. +Unfortunately, a Unix/Linux shell interpreter will strip quotes before handing +the command string over to the program. In that situation, the +quote-characters must be quoted themselves, or the string must be enclosed in +quotes twice. Either version should work as a command line interpreted by +the shell: +\begin{interaction} + whizard --execute \'int my_flag = 1\' script-name.sin + whizard --execute "'int my_flag = 1'" script-name.sin +\end{interaction} \section{WHISH -- The \whizard\ Shell/Interactive mode} \label{sec:whish} \whizard\ can be also run in the interactive mode using its own shell environment. This is called the \whizard\ Shell (WHISH). For this purpose, one starts with the command \begin{interaction} /home/user$ whizard --interactive \end{interaction} or \begin{interaction} /home/user$ whizard -i \end{interaction} \whizard\ will preload the Standard Model and display a command prompt: \begin{interaction} whish? \end{interaction} You now can enter one or more \sindarin\ commands, just as if they were contained in a script file. The commands are compiled and executed after you hit the ENTER key. When done, you get a new prompt. The WHISH can be closed by the \ttt{quit} command: \begin{verbatim} whish? quit \end{verbatim} Obviously, each input must be self-contained: commands must be complete, and conditionals or scans must be closed on the same line. If \whizard\ is run without options and without a script file, it also reads commands interactively, from standard input. The difference is that in this case, interactive input is multi-line, terminated by \ttt{Ctrl-D}, the script is then compiled and executed as a whole, and \whizard\ terminates. In WHISH mode, each input line is compiled and executed individually. Furthermore, fatal errors are masked, so in case of error the program does not terminate but returns to the WHISH command line. (The attempt to recover may fail in some circumstances, however.) \section{Graphical user interface} \emph{This is still experimental.} \whizard\ ships with a graphical interface that can be steered in a browser of your choice. It is located in \ttt{share/gui}. To use it, you have to run \ttt{npm install} (which will install javascript libraries locally in that folder) and \ttt{npm start} (which will start a local web server on your machine) in that folder. More technical details and how to get \ttt{npm} is discussed in \ttt{share/gui/README.md}. When it is running, you can access the GUI by entering \ttt{localhost:3000} as address in your browser. The GUI is separated into different tabs for basic settings, integration, simulation, cuts, scans, NLO and beams. You can select and enter what you are interested in and the GUI will produce a \sindarin\ file. You can use the GUI to run WHIZARD with that \sindarin\ or just produce it with the GUI and then tweak it further with an editor. In case you run it in the GUI, the log file will be updated in the browser as it is produced. Any \sindarin\ features that are not supported by the GUI can be added directly as "Additional Code". \section{WHIZARD as a library} \emph{This is planned, but not implemented yet.} %%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Examples} \label{chap:examples} In this chapter we discuss the running and steering of \whizard\ with the help of several examples. These examples can be found in the \ttt{share/examples} directory of your installation. All of these examples are also shown on the \whizard\ Wiki page: \url{https://whizard.hepforge.org/trac/wiki}. \section{$Z$ lineshape at LEP I} By this example, we demonstrate how a scan over collision energies works, using as example the measurement of the $Z$ lineshape at LEP I in 1989. The \sindarin\ script for this example, \ttt{Z-lineshape.sin} can be found in the \ttt{share/examples} folder of the \whizard\ installation. We first use the Standard model as physics model: \begin{code} model = SM \end{code} Aliases for electron, muon and their antiparticles as leptons and those including the photon as particles in general are introduced: \begin{code} alias lep = e1:E1:e2:E2 alias prt = lep:A \end{code} Next, the two processes are defined, \eemm, and the same with an explicit QED photon: $e^+e^- \to \mu^+\mu^-\gamma$, \begin{code} process bornproc = e1, E1 => e2, E2 process rc = e1, E1 => e2, E2, A compile \end{code} and the processes are compiled. Now, we define some very loose cuts to avoid singular regions in phase space, name an infrared cutoff of 100 MeV for all particles, a cut on the angular separation from the beam axis and a di-particle invariant mass cut which regularizes collinear singularities: \begin{code} cuts = all E >= 100 MeV [prt] and all abs (cos(Theta)) <= 0.99 [prt] and all M2 >= (1 GeV)^2 [prt, prt] \end{code} For the graphical analysis, we give a description and labels for the $x$- and $y$-axis in \LaTeX\ syntax: \begin{code} $description = "A WHIZARD Example" $x_label = "$\sqrt{s}$/GeV" $y_label = "$\sigma(s)$/pb" \end{code} We define two plots for the lineshape of the \eemm\ process between 88 and 95 GeV, \begin{code} $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$" plot lineshape_born { x_min = 88 GeV x_max = 95 GeV } \end{code} and the same for the radiative process with an additional photon: \begin{code} $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$" plot lineshape_rc { x_min = 88 GeV x_max = 95 GeV } \end{code} %$ The next part of the \sindarin\ file actually performs the scan: \begin{code} scan sqrts = ((88.0 GeV => 90.0 GeV /+ 0.5 GeV), (90.1 GeV => 91.9 GeV /+ 0.1 GeV), (92.0 GeV => 95.0 GeV /+ 0.5 GeV)) { beams = e1, E1 integrate (bornproc) { iterations = 2:1000:"gw", 1:2000 } record lineshape_born (sqrts, integral (bornproc) / 1000) integrate (rc) { iterations = 5:3000:"gw", 2:5000 } record lineshape_rc (sqrts, integral (rc) / 1000) } \end{code} So from 88 to 90 GeV, we go in 0.5 GeV steps, then from 90 to 92 GeV in tenth of GeV, and then up to 95 GeV again in half a GeV steps. The partonic beam definition is redundant. Then, the born process is integrated, using a certain specification of calls with adaptation of grids and weights, as well as a final pass. The lineshape of the Born process is defined as a \ttt{record} statement, generating tuples of $\sqrt{s}$ and the Born cross section (converted from femtobarn to picobarn). The same happens for the radiative $2\to3$ process with a bit more iterations because of the complexity, and the definition of the corresponding lineshape record. If you run the \sindarin\ script, you will find an output like: \begin{scriptsize} \begin{Verbatim}[frame=single] | Process library 'default_lib': loading | Process library 'default_lib': ... success. $description = "A WHIZARD Example" $x_label = "$\sqrt{s}$/GeV" $y_label = "$\sigma(s)$/pb" $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-$" x_min = 8.800000000000E+01 x_max = 9.500000000000E+01 $title = "The Z Lineshape in $e^+e^-\to\mu^+\mu^-\gamma$" x_min = 8.800000000000E+01 x_max = 9.500000000000E+01 sqrts = 8.800000000000E+01 | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 10713 | Initializing integration for process bornproc: | ------------------------------------------------------------------------ | Process [scattering]: 'bornproc' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'bornproc_i1': e-, e+ => mu-, mu+ [omega] | ------------------------------------------------------------------------ | Beam structure: e-, e+ | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 8.800000000000E+01 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'bornproc_i1.phs' | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood | Applying user-defined cuts. | OpenMP: Using 8 threads | Starting integration for process 'bornproc' | Integrate: iterations = 2:1000:"gw", 1:2000 | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 1000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 800 2.5881432E+05 1.85E+03 0.72 0.20* 48.97 2 800 2.6368495E+05 9.25E+02 0.35 0.10* 28.32 |-----------------------------------------------------------------------------| 2 1600 2.6271122E+05 8.28E+02 0.32 0.13 28.32 5.54 2 |-----------------------------------------------------------------------------| 3 1988 2.6313791E+05 5.38E+02 0.20 0.09* 35.09 |-----------------------------------------------------------------------------| 3 1988 2.6313791E+05 5.38E+02 0.20 0.09 35.09 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:00m:05s [.......] \end{Verbatim} \end{scriptsize} %$ and then the integrations for the other energy points of the scan will \begin{figure} \centering \includegraphics[width=.47\textwidth]{Z-lineshape_1} \includegraphics[width=.47\textwidth]{Z-lineshape_2} \caption{\label{fig:zlineshape} $Z$ lineshape in the dimuon final state (left), and with an additional photon (right)} \end{figure} follow, and finally the same is done for the radiative process as well. At the end of the \sindarin\ script we compile the graphical \whizard\ analysis and direct the data for the plots into the file \ttt{Z-lineshape.dat}: \begin{code} compile_analysis { $out_file = "Z-lineshape.dat" } \end{code} %$ In this case there is no event generation, but simply the cross section values for the scan are dumped into a data file: \begin{scriptsize} \begin{Verbatim}[frame=single] $out_file = "Z-lineshape.dat" | Opening file 'Z-lineshape.dat' for output | Writing analysis data to file 'Z-lineshape.dat' | Closing file 'Z-lineshape.dat' for output | Compiling analysis results display in 'Z-lineshape.tex' \end{Verbatim} \end{scriptsize} %$ Fig.~\ref{fig:zlineshape} shows the graphical \whizard\ output of the $Z$ lineshape in the dimuon final state from the scan on the left, and the same for the radiative process with an additional photon on the right. %%%%%%%%%%%%%%% \section{$W$ pairs at LEP II} This example which can be found as file \ttt{LEP\_cc10.sin} in the \ttt{share/examples} directory, shows $W$ pair production in the semileptonic mode at LEP II with its final energy of 209 GeV. Because there are ten contributing Feynman diagrams, the process has been dubbed CC10: charged current process with 10 diagrams. We work within the Standard Model: \begin{code} model = SM \end{code} Then the process is defined, where no flavor summation is done for the jets here: \begin{code} process cc10 = e1, E1 => e2, N2, u, D \end{code} A compilation statement is optional, and then we set the muon mass to zero: \begin{code} mmu = 0 \end{code} The final LEP center-of-momentum energy of 209 GeV is set: \begin{code} sqrts = 209 GeV \end{code} Then, we integrate the process: \begin{code} integrate (cc10) { iterations = 12:20000 } \end{code} Running the \sindarin\ file up to here, results in the output: \begin{scriptsize} \begin{Verbatim}[frame=single] | Process library 'default_lib': loading | Process library 'default_lib': ... success. SM.mmu = 0.000000000000E+00 sqrts = 2.090000000000E+02 | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 31255 | Initializing integration for process cc10: | ------------------------------------------------------------------------ | Process [scattering]: 'cc10' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'cc10_i1': e-, e+ => mu-, numubar, u, dbar [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 5.1099700E-04 GeV) | e+ (mass = 5.1099700E-04 GeV) | sqrts = 2.090000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'cc10_i1.phs' | Phase space: 25 channels, 8 dimensions | Phase space: found 25 channels, collected in 7 groves. | Phase space: Using 25 equivalences between channels. | Phase space: wood Warning: No cuts have been defined. | OpenMP: Using 8 threads | Starting integration for process 'cc10' | Integrate: iterations = 12:20000 | Integrator: 7 chains, 25 channels, 8 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 20000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 19975 6.4714908E+02 2.17E+01 3.36 4.75* 2.33 2 19975 7.3251876E+02 2.45E+01 3.34 4.72* 2.17 3 19975 6.7746497E+02 2.39E+01 3.52 4.98 1.77 4 19975 7.2075198E+02 2.41E+01 3.34 4.72* 1.76 5 19975 6.5976152E+02 2.26E+01 3.43 4.84 1.46 6 19975 6.6633310E+02 2.26E+01 3.39 4.79* 1.43 7 19975 6.7539385E+02 2.29E+01 3.40 4.80 1.43 8 19975 6.6754027E+02 2.11E+01 3.15 4.46* 1.41 9 19975 7.3975817E+02 2.52E+01 3.40 4.81 1.53 10 19975 7.2284275E+02 2.39E+01 3.31 4.68* 1.47 11 19975 6.5476917E+02 2.18E+01 3.33 4.71 1.33 12 19975 7.2963866E+02 2.54E+01 3.48 4.92 1.46 |-----------------------------------------------------------------------------| 12 239700 6.8779583E+02 6.69E+00 0.97 4.76 1.46 2.18 12 |=============================================================================| | Time estimate for generating 10000 events: 0d:00h:01m:16s | Creating integration history display cc10-history.ps and cc10-history.pdf \end{Verbatim} \end{scriptsize} \begin{figure} \centering \includegraphics[width=.6\textwidth]{cc10_1} \\\vspace{5mm} \includegraphics[width=.6\textwidth]{cc10_2} \caption{Histogram of the dijet invariant mass from the CC10 $W$ pair production at LEP II, peaking around the $W$ mass (upper plot), and of the muon energy (lower plot).} \label{fig:cc10} \end{figure} The next step is event generation. In order to get smooth distributions, we set the integrated luminosity to 10 fb${}^{-1}$. (Note that LEP II in its final year 2000 had an integrated luminosity of roughly 0.2 fb${}^{-1}$.) \begin{code} luminosity = 10 \end{code} With the simulated events corresponding to those 10 inverse femtobarn we want to perform a \whizard\ analysis: we are going to plot the dijet invariant mass, as well as the energy of the outgoing muon. For the plot of the analysis, we define a description and label the $y$ axis: \begin{code} $description = "A WHIZARD Example. Charged current CC10 process from LEP 2." $y_label = "$N_{\textrm{events}}$" \end{code} We also use \LaTeX-syntax for the title of the first plot and the $x$-label, and then define the histogram of the dijet invariant mass in the range around the $W$ mass from 70 to 90 GeV in steps of half a GeV: \begin{code} $title = "Di-jet invariant mass $M_{jj}$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$M_{jj}$/GeV" histogram m_jets (70 GeV, 90 GeV, 0.5 GeV) \end{code} And we do the same for the second histogram of the muon energy: \begin{code} $title = "Muon energy $E_\mu$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$E_\mu$/GeV" histogram e_muon (0 GeV, 209 GeV, 4) \end{code} Now, we define the \ttt{analysis} consisting of two \ttt{record} statements initializing the two observables that are plotted as histograms: \begin{code} analysis = record m_jets (eval M [u,D]); record e_muon (eval E [e2]) \end{code} At the very end, we perform the event generation \begin{code} simulate (cc10) \end{code} and finally the writing and compilation of the analysis in a named data file: \begin{code} compile_analysis { $out_file = "cc10.dat" } \end{code} This event generation part screen output looks like this: \begin{scriptsize} \begin{Verbatim}[frame=single] luminosity = 1.000000000000E+01 $description = "A WHIZARD Example. Charged current CC10 process from LEP 2." $y_label = "$N_{\textrm{events}}$" $title = "Di-jet invariant mass $M_{jj}$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$M_{jj}$/GeV" $title = "Muon energy $E_\mu$ in $e^+e^- \to \mu^- \bar\nu_\mu u \bar d$" $x_label = "$E_\mu$/GeV" | Starting simulation for process 'cc10' | Simulate: using integration grids from file 'cc10_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 9910 | OpenMP: Using 8 threads | Simulation: using n_events as computed from luminosity value | Events: writing to raw file 'cc10.evx' | Events: generating 6830 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. Warning: Encountered events with excess weight: 39 events ( 0.571 %) | Maximum excess weight = 1.027E+00 | Average excess weight = 6.764E-04 | Events: closing raw file 'cc10.evx' $out_file = "cc10.dat" | Opening file 'cc10.dat' for output | Writing analysis data to file 'cc10.dat' | Closing file 'cc10.dat' for output | Compiling analysis results display in 'cc10.tex' \end{Verbatim} \end{scriptsize} %$ Then comes the \LaTeX\ output of the compilation of the graphical analysis. Fig.~\ref{fig:cc10} shows the two histograms as the are produced as result of the \whizard\ internal graphical analysis. %%%%%%%%%%%%%%% \section{Higgs search at LEP II} This example can be found under the name \ttt{LEP\_higgs.sin} in the \ttt{share/doc} folder of \whizard. It displays different search channels for a very light would-be SM Higgs boson of mass 115 GeV at the LEP II machine at its highest energy it finally achieved, 209 GeV. First, we use the Standard Model: \begin{code} model = SM \end{code} Then, we define aliases for neutrinos, antineutrinos, light quarks and light anti-quarks: \begin{code} alias n = n1:n2:n3 alias N = N1:N2:N3 alias q = u:d:s:c alias Q = U:D:S:C \end{code} Now, we define the signal process, which is Higgsstrahlung, \begin{code} process zh = e1, E1 => Z, h \end{code} the missing-energy channel, \begin{code} process nnbb = e1, E1 => n, N, b, B \end{code} and finally the 4-jet as well as dilepton-dijet channels: \begin{code} process qqbb = e1, E1 => q, Q, b, B process bbbb = e1, E1 => b, B, b, B process eebb = e1, E1 => e1, E1, b, B process qqtt = e1, E1 => q, Q, e3, E3 process bbtt = e1, E1 => b, B, e3, E3 compile \end{code} and we compile the code. We set the center-of-momentum energy to the highest energy LEP II achieved, \begin{code} sqrts = 209 GeV \end{code} For the Higgs boson, we take the values of a would-be SM Higgs boson with mass of 115 GeV, which would have had a width of a bit more than 3 MeV: \begin{code} mH = 115 GeV wH = 3.228 MeV \end{code} We take a running $b$ quark mass to take into account NLO corrections to the $Hb\bar b$ vertex, while all other fermions are massless: \begin{code} mb = 2.9 GeV me = 0 ms = 0 mc = 0 \end{code} \begin{scriptsize} \begin{Verbatim}[frame=single] | Process library 'default_lib': loading | Process library 'default_lib': ... success. sqrts = 2.090000000000E+02 SM.mH = 1.150000000000E+02 SM.wH = 3.228000000000E-03 SM.mb = 2.900000000000E+00 SM.me = 0.000000000000E+00 SM.ms = 0.000000000000E+00 SM.mc = 0.000000000000E+00 \end{Verbatim} \end{scriptsize} To avoid soft-collinear singular phase-space regions, we apply an invariant mass cut on light quark pairs: \begin{code} cuts = all M >= 10 GeV [q,Q] \end{code} Now, we integrate the signal process as well as the combined signal and background processes: \begin{code} integrate (zh) { iterations = 5:5000} integrate(nnbb,qqbb,bbbb,eebb,qqtt,bbtt) { iterations = 12:20000 } \end{code} \begin{scriptsize} \begin{Verbatim}[frame=single] | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 21791 | Initializing integration for process zh: | ------------------------------------------------------------------------ | Process [scattering]: 'zh' | Library name = 'default_lib' | Process index = 1 | Process components: | 1: 'zh_i1': e-, e+ => Z, H [omega] | ------------------------------------------------------------------------ | Beam structure: [any particles] | Beam data (collision): | e- (mass = 0.0000000E+00 GeV) | e+ (mass = 0.0000000E+00 GeV) | sqrts = 2.090000000000E+02 GeV | Phase space: generating configuration ... | Phase space: ... success. | Phase space: writing configuration file 'zh_i1.phs' | Phase space: 1 channels, 2 dimensions | Phase space: found 1 channel, collected in 1 grove. | Phase space: Using 1 equivalence between channels. | Phase space: wood | Applying user-defined cuts. | OpenMP: Using 8 threads | Starting integration for process 'zh' | Integrate: iterations = 5:5000 | Integrator: 1 chains, 1 channels, 2 dimensions | Integrator: Using VAMP channel equivalences | Integrator: 5000 initial calls, 20 bins, stratified = T | Integrator: VAMP |=============================================================================| | It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It] | |=============================================================================| 1 4608 1.6114109E+02 5.52E-04 0.00 0.00* 99.43 2 4608 1.6114220E+02 5.59E-04 0.00 0.00 99.43 3 4608 1.6114103E+02 5.77E-04 0.00 0.00 99.43 4 4608 1.6114111E+02 5.74E-04 0.00 0.00* 99.43 5 4608 1.6114103E+02 5.66E-04 0.00 0.00* 99.43 |-----------------------------------------------------------------------------| 5 23040 1.6114130E+02 2.53E-04 0.00 0.00 99.43 0.82 5 |=============================================================================| [.....] \end{Verbatim} \end{scriptsize} \begin{figure} \centering \includegraphics[width=.48\textwidth]{lep_higgs_1} \includegraphics[width=.48\textwidth]{lep_higgs_2} \\\vspace{5mm} \includegraphics[width=.48\textwidth]{lep_higgs_3} \caption{Upper line: final state $bb + E_{miss}$, histogram of the invisible mass distribution (left), and of the di-$b$ distribution (right). Lower plot: light dijet distribution in the $bbjj$ final state.} \label{fig:lep_higgs} \end{figure} Because the other integrations look rather similar, we refrain from displaying them here, too. As a next step, we define titles, descriptions and axis labels for the histograms we want to generate. There are two of them, one os the invisible mass distribution, the other is the di-$b$-jet invariant mass. Both histograms are taking values between 70 and 130 GeV with bin widths of half a GeV: \begin{code} $description = "A WHIZARD Example. Light Higgs search at LEP. A 115 GeV pseudo-Higgs has been added. Luminosity enlarged by two orders of magnitude." $y_label = "$N_{\textrm{events}}$" $title = "Invisible mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$" $x_label = "$M_{\nu\nu}$/GeV" histogram m_invisible (70 GeV, 130 GeV, 0.5 GeV) $title = "$bb$ invariant mass distribution in $e^+e^- \to \nu\bar\nu b \bar b$" $x_label = "$M_{b\bar b}$/GeV" histogram m_bb (70 GeV, 130 GeV, 0.5 GeV) \end{code} The analysis is initialized by defining the two records for the invisible mass and the invariant mass of the two $b$ jets: \begin{code} analysis = record m_invisible (eval M [n,N]); record m_bb (eval M [b,B]) \end{code} In order to have enough statistics, we enlarge the LEP integrated luminosity at 209 GeV by more than two orders of magnitude: \begin{code} luminosity = 10 \end{code} We start event generation by simulating the process with two $b$ jets and two neutrinos in the final state: \begin{code} simulate (nnbb) \end{code} As a third histogram, we define the dijet invariant mass of two light jets: \begin{code} $title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$" $x_label = "$M_{q\bar q}$/GeV" histogram m_jj (70 GeV, 130 GeV, 0.5 GeV) \end{code} Then we simulate the 4-jet process defining the light-dijet distribution as a local record: \begin{code} simulate (qqbb) { analysis = record m_jj (eval M / 1 GeV [combine [q,Q]]) } \end{code} Finally, we compile the analysis, \begin{code} compile_analysis { $out_file = "lep_higgs.dat" } \end{code} \begin{scriptsize} \begin{Verbatim}[frame=single] | Starting simulation for process 'nnbb' | Simulate: using integration grids from file 'nnbb_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 21798 | OpenMP: Using 8 threads | Simulation: using n_events as computed from luminosity value | Events: writing to raw file 'nnbb.evx' | Events: generating 1070 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. Warning: Encountered events with excess weight: 207 events ( 19.346 %) | Maximum excess weight = 1.534E+00 | Average excess weight = 4.909E-02 | Events: closing raw file 'nnbb.evx' $title = "Dijet invariant mass distribution in $e^+e^- \to q \bar q b \bar b$" $x_label = "$M_{q\bar q}$/GeV" | Starting simulation for process 'qqbb' | Simulate: using integration grids from file 'qqbb_m1.vg' | RNG: Initializing TAO random-number generator | RNG: Setting seed for random-number generator to 21799 | OpenMP: Using 8 threads | Simulation: using n_events as computed from luminosity value | Events: writing to raw file 'qqbb.evx' | Events: generating 4607 unweighted, unpolarized events ... | Events: event normalization mode '1' | ... event sample complete. Warning: Encountered events with excess weight: 112 events ( 2.431 %) | Maximum excess weight = 8.875E-01 | Average excess weight = 4.030E-03 | Events: closing raw file 'qqbb.evx' $out_file = "lep_higgs.dat" | Opening file 'lep_higgs.dat' for output | Writing analysis data to file 'lep_higgs.dat' | Closing file 'lep_higgs.dat' for output | Compiling analysis results display in 'lep_higgs.tex' \end{Verbatim} \end{scriptsize} The graphical analysis of the events generated by \whizard\ are shown in Fig.~\ref{fig:lep_higgs}. In the upper left, the invisible mass distribution in the $b\bar b + E_{miss}$ state is shown, peaking around the $Z$ mass. The upper right shows the $M(b\bar b)$ distribution in the same final state, while the lower plot has the invariant mass distribution of the two non-$b$-tagged (light) jets in the $bbjj$ final state. The latter shows only the $Z$ peak, while the former exhibits the narrow would-be 115 GeV Higgs state. %%%%%%%%%%%%%%% \section{Deep Inelastic Scattering at HERA} %%%%%%%%%%%%%%% \section{$W$ endpoint at LHC} %%%%%%%%%%%%%%% \section{SUSY Cascades at LHC} %%%%%%%%%%%%%%% \section{Polarized $WW$ at ILC} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Technical details -- Advanced Spells} \label{chap:tuning} \section{Efficiency and tuning} Since massless fermions and vector bosons (or almost massless states in a certain approximation) lead to restrictive selection rules for allowed helicity combinations in the initial and final state. To make use of this fact for the efficiency of the \whizard\ program, we are applying some sort of heuristics: \whizard\ dices events into all combinatorially possible helicity configuration during a warm-up phase. The user can specify a helicity threshold which sets the number of zeros \whizard\ should have got back from a specific helicity combination in order to ignore that combination from now on. By that mechanism, typically half up to more than three quarters of all helicity combinations are discarded (and hence the corresponding number of matrix element calls). This reduces calculation time up to more than one order of magnitude. \whizard\ shows at the end of the integration those helicity combinations which finally contributed to the process matrix element. Note that this list -- due to the numerical heuristics -- might very well depend on the number of calls for the matrix elements per iteration, and also on the corresponding random number seed. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{New External Physics Models} \label{chap:extmodels} It is never possible to include all incarnations of physics models that can be described by the maybe weirdest form of a quantum field theory in a tailor-made implementation within a program like \whizard. Users clearly want to be able to use their own special type of model; in order to do so there are external tools to translate models described by their field content and Lagrangian densities into Feynman rules and make them available in an event generator like \whizard. In this chapter, we describe the interfaces to two such external models, \sarah\ and \FeynRules. The \FeynRules\ interface had been started already for the legacy version \whizard\ttt{1} (where it had to be downloaded from \url{https://whizard.hepforge.org} as a separate package), but for the \whizard\ttt{two} release series it has been included in the \FeynRules\ package (from their version v1.6.0 on). Note that there was a regression for the usage of external models (from either \sarah\ or \FeynRules) in the first release of series v2.2, v2.2.0. This has been fixed in all upcoming versions. Besides using \sarah\ or \FeynRules\ via their interfaces, there is now a much easier way to let those programs output model files in the "Universal FeynRules Output" (or \UFO). This option does not have any principle limitations for models, and also does not rely on the never truly constant interfaces between two different tools. Their usage is described in Sec.~\ref{sec:ufo}. %%%%%%%%%%%%%%% \section{New physics models via \sarah} \sarah~\cite{Staub:2008uz,Staub:2009bi,Staub:2010jh,Staub:2012pb,Staub:2013tta} is a \Mathematica~\cite{mathematica} package which derives for a given model the minimum conditions of the vacuum, the mass matrices, and vertices at tree-level as well as expressions for the one-loop corrections for all masses and the full two-loop renormalization group equations (RGEs). The vertices can be exported to be used with \whizard/\oMega. All other information can be used to generate \fortran\ source code for the RGE solution tool and spectrum generator \spheno~\cite{Porod:2003um,Porod:2011nf} to get a spectrum generator for any model. The advantage is that \spheno\ calculates a consistent set of parameters (couplings, masses, rotation matrices, decay widths) which can be used as input for \whizard. \sarah\ and \spheno\ can be also downloaded from the \ttt{HepForge} server: \begin{center} \url{https://sarah.hepforge.org} \\ \url{https://spheno.hepforge.org} \end{center} \subsection{\whizard/\oMega\ model files from \sarah} \subsubsection{Generating the model files} Here we are giving only the information relevant to generate models for \whizard. For more details about the installation of \sarah\ and an exhaustion documentation about its usage, confer the \sarah\ manual. To generate the model files for \whizard/\oMega\ with \sarah, a new \Mathematica\ session has to be started. \sarah\ is loaded via \begin{code} </Output/TMSSM/EWSB/WHIZARD_Omega/ \end{code} and run % \begin{code} ./configure make install \end{code} % By default, the last command installs the compiled model into \verb".whizard" in current user's home directory where it is automatically picked up by \whizard. Alternative installation paths can be specified using the \verb"--prefix" option to \whizard. % \begin{code} ./configure --prefix=/path/to/installation/prefix \end{code} % If the files are installed into the \whizard\ installation prefix, the program will also pick them up automatically, while {\whizard}'s \verb"--localprefix" option must be used to communicate any other choice to \whizard. In case \whizard\ is not available in the binary search path, the \verb"WO_CONFIG" environment variable can be used to point \verb"configure" to the binaries % \begin{code} ./configure WO_CONFIG=/path/to/whizard/binaries \end{code} % More information on the available options and their syntax can be obtained with the \verb"--help" option. After the model is compiled it can be used in \whizard\ as \begin{code} model = tmssm_sarah \end{code} \subsection{Linking \spheno\ and \whizard} As mentioned above, the user can also use \spheno\ to generate spectra for its models. This is done by means of \fortran\ code for \spheno, exported from \sarah. To do so, the user has to apply the command \verb"MakeSPheno[]". For more details about the options of this command and how to compile and use the \spheno\ output, we refer to the \sarah\ manual. \\ As soon as the \spheno\ version for the given model is ready it can be used to generate files with all necessary numerical values for the parameters in a format which is understood by \whizard. For this purpose, the corresponding flag in the Les Houches input file of \spheno\ has to be turned on: \begin{code} Block SPhenoInput # SPheno specific input ... 75 1 # Write WHIZARD files \end{code} Afterwards, \spheno\ returns not only the spectrum file in the standard SUSY Les Houches accord (SLHA) format (for more details about the SLHA and the \whizard\ SLHA interface cf. Sec.~\ref{sec:slha}), but also an additional file called \verb"WHIZARD.par.TMSSM" for our example. This file can be used in the \sindarin\ input file via \begin{code} include ("WHIZARD.par.TMSSM") \end{code} %%%%% \subsection{BSM Toolbox} A convenient way to install \sarah\ together with \whizard, \spheno\ and some other codes are the \ttt{BSM Toolbox} scripts \footnote{Those script have been published under the name SUSY Toolbox but \sarah\ is with version 4 no longer restricted to SUSY models}~\cite{Staub:2011dp}. These scripts are available at \begin{center} \url{https://sarah.hepforge.org/Toolbox.html} \end{center} The \ttt{Toolbox} provides two scripts. First, the \verb"configure" script is used via \begin{code} toolbox-src-dir> mkdir build toolbox-src-dir> cd build toolbox-src-dir> ../configure \end{code} % The \verb"configure" script checks for the requirements of the different packages and downloads all codes. All downloaded archives will be placed in the \verb"tarballs" subdirectory of the directory containing the \verb"configure" script. Command line options can be used to disable specific packages and to point the script to custom locations of compilers and of the \Mathematica\ kernel; a full list of those can be obtained by calling \verb"configure" with the \verb"--help" option. After \verb"configure" finishes successfully, \verb"make" can be called to build all configured packages % \begin{code} toolbox-build-dir> make \end{code} \verb"configure" creates also the second script which automates the implementation of a new model into all packages. The \verb"butler" script takes as argument the name of the model in \sarah, e.g. \begin{code} > ./butler TMSSM \end{code} The \verb"butler" script runs \sarah\ to get the output in the same form as the \whizard/\oMega\ model files and the code for \spheno. Afterwards, it installs the model in all packages and compiles the new \whizard/\oMega\ model files as well as the new \spheno\ module. %%%%% \newpage \section{New physics models via \FeynRules} In this section, we present the interface between the external tool \FeynRules\ \cite{Christensen:2008py,Christensen:2009jx,Duhr:2011se} and \whizard. \FeynRules\ is a \Mathematica~\cite{mathematica} package that allows to derive Feynman rules from any perturbative quantum field theory-based Lagrangian in an automated way. It can be downloaded from \begin{center} \url{http://feynrules.irmp.ucl.ac.be/} \end{center} The input provided by the user is threefold and consists of the Lagrangian defining the model, together with the definitions of all the particles and parameters that appear in the model. Once this information is provided, \FeynRules\ can perform basic checks on the sanity of the implementation (e.g. hermiticity, normalization of the quadratic terms), and finally computes all the interaction vertices associated with the model and store them in an internal format for later processing. After the Feynman rules have been obtained, \FeynRules\ can export the interaction vertices to \whizard\ via a dedicated interface~\cite{Christensen:2010wz}. The interface checks whether all the vertices are compliant with the structures supported by \whizard's matrix element generator \oMega, and discard them in the case they are not supported. The output of the interface consists of a set of files organized in a single directory which can be injected into \whizard/\oMega\ and used as any other built-in models. Together with the model files, a framework is created which allows to communicate the new models to \whizard\ in a well defined way, after which step the model can be used exactly like the built-in ones. This specifically means that the user is not required to manually modify the code of \whizard/\oMega, the models created by the interface can be used directly without any further user intervention. We first describe the installation and general usage of the interface, and then list the general properties like the supported particle types, color quantum numbers and Lorentz structures as well as types of gauge interactions. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Installation and Usage of the \whizard-\FeynRules\ interface} \label{sec:interface-usage} \paragraph{{\bf Installation and basic usage:}} % From \FeynRules\ version 1.6.0 onward, the interface to \whizard\ is part of the \FeynRules\ distribution\footnote{Note that though the main interface of \FeynRules\ to \whizard\ is for the most recent \whizard\ release, but also the legacy branch \whizard\ttt{1} is supported.}. In addition, the latest version of the interface can be downloaded from the \whizard\ homepage on \ttt{HepForge}. There you can also find an installer that can be used to inject the interface into an existing \FeynRules\ installation (which allows to use the interface with the \FeynRules\ release series1.4.x where it is not part of the package). Once installed, the interface can be called and used in the same way \FeynRules' other interfaces described in~\cite{Christensen:2008py}. The details of how to install and use \FeynRules\ itself can be found there,~\cite{Christensen:2008py,Christensen:2009jx,Duhr:2011se}. Here, we only describe how to use the interface to inject new models into \whizard. For example, once the \FeynRules\ environment has been initialized and a model has been loaded, the command \begin{code} WriteWOOutput[L] \end{code} will call the \ttt{FeynmanRules} command to extract the Feynman rules from the Lagrangian \ttt{L}, translate them together with the model data and finally write the files necessary for using the model within \whizard\ to an output directory (the name of which is inferred from the model name by default). Options can be added for further control over the translation process (see Sec.~\ref{app:interface-options}). Instead of using a Lagrangian, it is also possible to call the interface on a pure vertex list. For example, the following command \begin{code} WriteWOOutput[Input -> list] \end{code} will directly translate the vertex list \ttt{list}. Note that this vertex list must be given in flavor-expanded form in order for the interface to process it correctly. The interface also supports the \ttt{WriteWOExtParams} command described in~\cite{Christensen:2008py}. Issuing \begin{code} WriteWOExtParams[filename] \end{code} will write a list of all the external parameters to \ttt{filename}. This is done in the form of a \sindarin\ script. The only option accepted by the command above is the target version of \whizard, set by the option \ttt{WOWhizardVersion}. During execution, the interface will print out a series of messages. It is highly advised to carefully read through this output as it not only summarizes the settings and the location of the output files, but also contains information on any skipped vertices or potential incompatibilities of the model with \whizard. After the interface has run successfully and written the model files to the output directory, the model must be imported into \whizard. For doing so, the model files have to be compiled and can then be installed independently of \whizard. In the simplest scenario, assuming that the output directory is the current working directory and that the \whizard\ binaries can be found in the current \ttt{\$\{PATH\}}, the installation is performed by simply executing \begin{code} ./configure~\&\&~make clean~\&\&~make install \end{code} This will compile the model and install it into the directory \ttt{\$\{HOME\}/.whizard}, making it fully available to \whizard\ without any further intervention. The build system can be adapted to more complicated cases through several options to the \ttt{configure} which are listed in the \ttt{INSTALL} file created in the output directory. A detailed explanation of all options can be found in Sec.~\ref{app:interface-options}. \paragraph{\bf Supported fields and vertices:} The following fields are currently supported by the interface: scalars, Dirac and Majorana fermions, vectors and symmetric tensors. The set of accepted operators, the full list of which can be found in Tab.~\ref{tab-operators}, is a subset of all the operators supported by \oMega. While still limited, this list is sufficient for a large number of BSM models. In addition, a future version of \whizard/\oMega\ will support the definition of completely general Lorentz structures in the model, allowing the interface to translate all interactions handled by \FeynRules. This will be done by means of a parser within \oMega\ of the \ttt{UFO} file format for model files from \FeynRules. \begin{table*}[!t] \centerline{\begin{tabular}{|c|c|} \hline Particle spins & Supported Lorentz structures \\\hline\hline FFS & \parbox{0.7\textwidth}{\raggedright All operators of dimension four are supported. \strut}\\\hline FFV & \parbox[t]{0.7\textwidth}{\raggedright All operators of dimension four are supported. \strut}\\\hline SSS & \parbox{0.7\textwidth}{\raggedright All dimension three interactions are supported. \strut}\\\hline SVV & \parbox[t]{0.7\textwidth}{\raggedright Supported operators:\\ \mbox{}\hspace{5ex}$\begin{aligned} \text{dimension 3:} & \quad\mathcal{O}_3 = V_1^\mu V_{2\mu}\phi \mbox{}\\ \text{dimension 5:} & \quad\mathcal{O}_5 = \phi \left(\partial^\mu V_1^\nu - \partial^\nu V_1^\mu\right) \left(\partial_\mu V_{2\nu} - \partial_\nu V_{2\mu}\right) \end{aligned}$\\ Note that $\mathcal{O}_5$ generates the effective gluon-gluon-Higgs couplings obtained by integrating out heavy quarks. \strut}\\\hline SSV & \parbox[t]{0.7\textwidth}{\raggedright $\left(\phi_1\partial^\mu\phi_2 - \phi_2\partial^\mu\phi_1\right)V_\mu\;$ type interactions are supported. \strut}\\\hline SSVV & \parbox{0.7\textwidth}{\raggedright All dimension four interactions are supported. \strut}\\\hline SSSS & \parbox{0.7\textwidth}{\raggedright All dimension four interactions are supported. \strut}\\\hline VVV & \parbox[t]{0.7\textwidth}{\raggedright All parity-conserving dimension four operators are supported, with the restriction that non-gauge interactions may be split into several vertices and can only be handled if all three fields are mutually different.\strut \strut}\\\hline VVVV & \parbox[t]{0.7\textwidth}{\raggedright All parity conserving dimension four operators are supported. \strut}\\\hline TSS, TVV, TFF & \parbox[t]{0.7\textwidth}{\raggedright The three point couplings in the Appendix of Ref.\ \cite{Han:1998sg} are supported. \strut}\\\hline \end{tabular}} \caption{All Lorentz structures currently supported by the \whizard-\FeynRules\ interface, sorted with respect to the spins of the particles. ``S'' stands for scalar, ``F'' for fermion (either Majorana or Dirac) and ``V'' for vector.} \label{tab-operators} \end{table*} \paragraph{\bf Color:} % Color is treated in \oMega\ in the color flow decomposition, with the flow structure being implicitly determined from the representations of the particles present at the vertex. Therefore, the interface has to strip the color structure from the vertices derived by \FeynRules\ before writing them out to the model files. While this process is straightforward for all color structures which correspond only to a single flow assignment, vertices with several possible flow configurations must be treated with care in order to avoid mismatches between the flows assigned by \oMega\ and those actually encoded in the couplings. To this end, the interface derives the color flow decomposition from the color structure determined by \FeynRules\ and rejects all vertices which would lead to a wrong flow assignment by \oMega\ (these rejections are accompanied by warnings from the interface)\footnote{For the old \whizard\ttt{1} legacy branch, there was a maximum number of external color flows that had to explicitly specified. Essentially, this is $n_8 - \frac{1}{2}n_3$ where $n_8$ is the maximum number of external color octets and $n_3$ is the maximum number of external triplets and antitriplets. This can be set in the \whizard/\FeynRules\ interface by the \ttt{WOMaxNcf} command, whose default is \ttt{4}.}. At the moment, the $SU(3)_C$ representations supported by both \whizard\ and the interface are singlets ($1$), triplets ($3$), antitriplets ($\bar{3}$) and octets ($8$). Tab.~\ref{tab:su3struct} shows all combinations of these representations which can form singlets together with the support status of the respective color structures in \whizard\ and the interface. Although the supported color structures do not comprise all possible singlets, the list is sufficient for a large number of SM extensions. Furthermore, a future revision of \whizard/\oMega\ will allow for explicit color flow assignments, thus removing most of the current restrictions. \begin{table*} \centerline{\begin{tabular}{|c|c|} \hline $SU(3)_C$ representations & Support status \\\hline\hline \parbox[t]{0.2\textwidth}{ \centerline{\begin{tabular}[t]{lll} $111,\quad$ & $\bar{3}31,\quad$ & $\bar{3}38,$ \\ $1111,$ & $\bar{3}311,$ & $\bar{3}381$ \end{tabular}}} & \parbox[t]{0.7\textwidth}{\raggedright\strut Fully supported by the interface\strut} \\\hline $888,\quad 8881$ & \parbox{0.7\textwidth}{\raggedright\strut Supported only if at least two of the octets are identical particles.\strut} \\\hline $881,\quad 8811$ & \parbox{0.7\textwidth}{\raggedright\strut Fully supported by the interface\footnote{% Not available in version 1.95 and earlier. Note that in order to use such couplings in 1.96/97, the \oMega\ option \ttt{2g} must be added to the process definition in \ttt{whizard.prc}.}.\strut} \\\hline $\bar{3}388$ & \parbox{0.7\textwidth}{\raggedright\strut Supported only if the octets are identical particles.\strut} \\\hline $8888$ & \parbox{0.7\textwidth}{\raggedright\strut The only supported flow structure is \begin{equation*} \parbox{21mm}{\includegraphics{flow4}}\cdot\;\Gamma(1,2,3,4) \quad+\quad \text{all acyclic permutations} \end{equation*} where $\Gamma(1,2,3,4)$ represents the Lorentz structure associated with the first flow.\strut} \\\hline \parbox[t]{0.2\textwidth}{ \centerline{\begin{tabular}[t]{lll} $333,\quad$ & $\bar{3}\bar{3}\bar{3},\quad$ & $3331$\\ $\bar{3}\bar{3}\bar{3}1,$ & $\bar{3}\bar{3}33$ \end{tabular}}} & \parbox[t]{0.7\textwidth}{\raggedright\strut Unsupported (at the moment)\strut} \\\hline \end{tabular}} \caption{All possible combinations of three or four $SU(3)_C$ representations supported by \FeynRules\ which can be used to build singlets, together with the support status of the corresponding color structures in \whizard\ and the interface.} \label{tab:su3struct} \end{table*} \paragraph{\bf Running $\alpha_S$:} While a running strong coupling is fully supported by the interface, a choice has to be made which quantities are to be reevaluated when the strong coupling is evolved. By default \ttt{aS}, \ttt{G} (see Ref.~\cite{Christensen:2008py} for the nomenclature regarding the QCD coupling) and any vertex factors depending on them are evolved. The list of internal parameters that are to be recalculated (together with the vertex factors depending on them) can be extended (beyond \ttt{aS} and \ttt{G}) by using the option \ttt{WORunParameters} when calling the interface~\footnote{As the legacy branch, \whizard\ttt{1}, does not support a running strong coupling, this is also vetoed by the interface when using \whizard \ttt{1.x}.}. \paragraph{\bf Gauge choices:} \label{sec:gauge-choices} The interface supports the unitarity, Feynman and $R_\xi$ gauges. The choice of gauge must be communicated to the interface via the option \ttt{WOGauge}. Note that massless gauge bosons are always treated in Feynman gauge. If the selected gauge is Feynman or $R_\xi$, the interface can automatically assign the proper masses to the Goldstone bosons. This behavior is requested by using the \ttt{WOAutoGauge} option. In the $R_\xi$ gauges, the symbol representing the gauge $\xi$ must be communicated to the interface by using the \ttt{WOGaugeSymbol} option (the symbol is automatically introduced into the list of external parameters if \ttt{WOAutoGauge} is selected at the same time). This feature can be used to automatically extend models implemented in Feynman gauge to the $R_\xi$ gauges. Since \whizard\ (at least until the release series 2.3) is a tree-level tool working with helicity amplitudes, the ghost sector is irrelevant for \whizard\ and hence dropped by the interface. \subsection{Options of the \whizard-\FeynRules\ interface} \label{app:interface-options} In the following we present a comprehensive list of all the options accepted by \ttt{WriteWOOutput}. Additionally, we note that all options of the \FeynRules\ command \ttt{FeynmanRules} are accepted by \ttt{WriteWOOutput}, which passes them on to \ttt{FeynmanRules}. \begin{description} \item[\ttt{Input}]\mbox{}\\ An optional vertex list to use instead of a Lagrangian (which can then be omitted). % \item[\ttt{WOWhizardVersion}]\mbox{}\\ Select the \whizard\ version for which code is to be generated. The currently available choices are summarized in Tab.~\ref{tab-wowhizardversion}. %% \begin{table} \centerline{\begin{tabular}{|l|l|} \hline \ttt{WOWhizardVersion} & \whizard\ versions supported \\\hline\hline \ttt{"2.0.3"} (default) & 2.0.3+ \\\hline \ttt{"2.0"} & 2.0.0 -- 2.0.2 \\\hline\hline \ttt{"1.96"} & 1.96+ \qquad (deprecated) \\\hline \ttt{"1.93"} & 1.93 -- 1.95 \qquad (deprecated) \\\hline \ttt{"1.92"} & 1.92 \qquad (deprecated) \\\hline \end{tabular}} \caption{Currently available choices for the \ttt{WOWhizardVersion} option, together with the respective \whizard\ versions supported by them.} \label{tab-wowhizardversion} \end{table} %% This list will expand as the program evolves. To get a summary of all choices available in a particular version of the interface, use the command \ttt{?WOWhizardVersion}. % \item[\ttt{WOModelName}]\mbox{}\\ The name under which the model will be known to \whizard\footnote{For versions 1.9x, model names must start with ``\ttt{fr\_}'' if they are to be picked up by \whizard\ automatically.}. The default is determined from the \FeynRules\ model name. % \item[\ttt{Output}]\mbox{}\\ The name of the output directory. The default is determined from the \FeynRules\ model name. % \item[\ttt{WOGauge}]\mbox{}\\ Gauge choice (\emph{cf.} Sec.~\ref{sec:gauge-choices}). Possible values are: \ttt{WOUnitarity} (default), \ttt{WOFeynman}, \ttt{WORxi} % \item[\ttt{WOGaugeParameter}]\mbox{}\\ The external or internal parameter representing the gauge $\xi$ in the $R_\xi$ gauges (\emph{cf.} Sec.~\ref{sec:gauge-choices}). Default: \ttt{Rxi} % \item[\ttt{WOAutoGauge}]\mbox{}\\ Automatically assign the Goldstone boson masses in the Feynman and $R_\xi$ gauges and automatically append the symbol for $\xi$ to the parameter list in the $R_\xi$ gauges. Default: \ttt{False} % \item[\ttt{WORunParameters}]\mbox{}\\ The list of all internal parameters which will be recalculated if $\alpha_S$ is evolved (see above)\footnote{Not available for versions older than 2.0.0}. Default: \mbox{\ttt{\{aS, G\}}} % \item[\ttt{WOFast}]\mbox{}\\ If the interface drops vertices which are supported, this option can be set to \ttt{False} to enable some more time consuming checks which might aid the identification. Default: \ttt{True} % \item[\ttt{WOMaxCouplingsPerFile}]\mbox{}\\ The maximum number of couplings that are written to a single \fortran\ file. If compilation takes too long or fails, this can be lowered. Default: \ttt{500} % \item[\ttt{WOVerbose}]\mbox{}\\ Enable verbose output and in particular more extensive information on any skipped vertices. Default: \ttt{False} \end{description} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Validation of the interface} The output of the interface has been extensively validated. Specifically, the integrated cross sections for all possible $2\rightarrow 2$ processes in the \FeynRules\ SM, the MSSM and the Three-Site Higgsless Model have been compared between \whizard, \madgraph, and \CalcHep, using the respective \FeynRules\ interfaces as well as the in-house implementations of these models (the Three-Site Higgsless model not being available in \madgraph). Also, different gauges have been checked for \whizard\ and \CalcHep. In all comparisons, excellent agreement within the Monte Carlo errors was achieved. The detailed comparison including examples of the comparison tables can be found in~\cite{Christensen:2010wz}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Examples for the \whizard-/\FeynRules\ interface} Here, we will use the Standard Model, the MSSM and the Three-Site Higgsless Model as prime examples to explain the usage of the interface. Those are the models that have been used in the validation of the interface in~\cite{Christensen:2010wz}. The examples are constructed to show the application of the different options of the interface and to serve as a starting point for the generation of the user's own \whizard\ versions of other \FeynRules\ models. \subsubsection{\whizard-\FeynRules\ example: Standard Model}\label{sec:usageSM} To start off, we will create {\sc Whizard} 2 versions of the Standard Model as implemented in \FeynRules\ for different gauge choices. \paragraph{SM: Unitarity Gauge} In order to invoke \FeynRules, we change to the corresponding directory and load the program in \Mathematica\ via \begin{code} $FeynRulesPath = SetDirectory[""]; < WOFeynman]; \end{code} The modified gauge is reflected in the output of the interface \begin{code} Short model name is "fr_standard_model" Gauge: Feynman Generating code for WHIZARD / O'Mega version 2.0.3 Maximum number of couplings per FORTRAN module: 500 Extensive lorentz structure checks disabled. \end{code} The summary of the vertex identification now takes the following form \begin{code} processed a total of 163 vertices, kept 139 of them and threw away 24, 24 of which contained ghosts. \end{code} Again, this line tells us that there were no problems --- the only discarded interactions involved the ghost sector which is irrelevant for the tree-level part of \whizard. For a tree-level calculation, the only difference between the different gauges from the perspective of the interface are the gauge boson propagators and the Goldstone boson masses. Therefore, the interface can automatically convert a model in Feynman gauge to a model in $R_\xi$ gauge. To this end, the call to the interface must be changed to \begin{code} WriteWOOutput[LSM, WOGauge -> WORxi, WOAutoGauge -> True]; \end{code} The \verb?WOAutoGauge? argument instructs the interface to automatically \begin{enumerate} \item Introduce a symbol for the gauge parameter $\xi$ into the list of external parameters \item Generate the Goldstone boson masses from those of the associated gauge bosons (ignoring the values provided by \FeynRules) \end{enumerate} The modified setup is again reflected in the interface output \begin{code} Short model name is "fr_standard_model" Gauge: Rxi Gauge symbol: "Rxi" Generating code for WHIZARD / O'Mega version 2.0.3 Maximum number of couplings per FORTRAN module: 500 Extensive lorentz structure checks disabled. \end{code} Note the default choice \verb?Rxi? for the name of the $\xi$ parameter -- this can be modified via the option \verb?WOGaugeParameter?. While the \verb?WOAutoGauge? feature allows to generate $R_\xi$ gauged models from models implemented in Feynman gauge, it is of course also possible to use models genuinely implemented in $R_\xi$ gauge by setting this parameter to \verb?False?. Also, note that the choice of gauge only affects the propagators of massive fields. Massless gauge bosons are always treated in Feynman gauge. \paragraph{Compilation and usage} In order to compile and use the freshly generated model files, change to the output directory which can be determined from the interface output (in this example, it is \verb?fr_standard_model-WO?). Assuming that \whizard\ is available in the binary search path, compilation and installation proceeds as described above by executing \begin{code} ./configure && make && make install \end{code} The model is now ready and can be used similarly to the builtin \whizard\ models. For example, a minimal \whizard\ input file for calculating the $e^+e^- \longrightarrow W^+W^-$ scattering cross section in the freshly generated model would look like \begin{code} model = fr_standard_model process test = "e+", "e-" -> "W+", "W-" sqrts = 500 GeV integrate (test) \end{code} %%%%% \subsubsection{\whizard/\FeynRules\ example: MSSM} In this Section, we illustrate the usage of the interface between {\sc FeynRules} and {\sc Whizard} in the context of the MSSM. All the parameters of the model are then ordered in Les Houches blocks and counters following the SUSY Les Houches Accord (SLHA) \cite{Skands:2003cj,AguilarSaavedra:2005pw,Allanach:2008qq} (cf. also Sec.~\ref{sec:slha}). After having downloaded the model from the \FeynRules\ website, we store it in a new directory, labelled \verb"MSSM", of the model library of the local installation of \FeynRules. The model can then be loaded in \Mathematica\ as in the case of the SM example above \begin{code} $FeynRulesPath = SetDirectory[""]; <True" option of both interface commands \verb"FeynmanRules" and \verb"WriteWOOutput". The Feynman rules of the MSSM are then computed within the \Mathematica\ notebook by \begin{code} rules = FeynmanRules[lag, Exclude4Scalars->True, FlavorExpand->True]; \end{code} where \verb'lag' is the variable containing the Lagrangian. By default, all the parameters of the model are set to the value of \ttt{1}. A complete parameter \ttt{{\em }.dat} file must therefore be loaded. Such a parameter file can be downloaded from the \FeynRules\ website or created by hand by the user, and loaded into \FeynRules\ as \begin{code} ReadLHAFile[Input -> ".dat"]; \end{code} This command does not reduce the size of the model output by removing vertices with vanishing couplings. However, if desired, this task could be done with the \ttt{LoadRestriction} command (see Ref.\ \cite{Fuks:2012im} for details). The vertices are exported to \whizard\ by the command \begin{code} WriteWOOutput[Input -> rules]; \end{code} Note that the numerical values of the parameters of the model can be modified directly from \whizard, without having to generate a second time the \whizard\ model files from \FeynRules. A \sindarin\ script is created by the interface with the help of the instruction \begin{code} WriteWOExtParams["parameters.sin"]; \end{code} and can be further modified according to the needs of the user. \subsubsection{\whizard-\FeynRules\ example: Three-Site Higgsless Model} The Three-Site Higgsless model or Minimal Higgsless model (MHM) has been implemented into \ttt{LanHEP}~\cite{He:2007ge}, \FeynRules\ and independently into \whizard~\cite{Speckner:2010zi}, and the collider phenomenology has been studied by making use of these implementations \cite{He:2007ge,Ohl:2010zf,Speckner:2010zi}. Furthermore, the independent implementations in \FeynRules\ and directly into {\sc Whizard} have been compared and found to agree~\cite{Christensen:2010wz}. After the discovery of a Higgs boson at the LHC in 2012, such a model is not in good agreement with experimental data any more. Here, we simply use it as a guinea pig to describe the handling of a model with non-renormalizable interactions with the \FeynRules\ interface, and discuss how to generate \whizard\ model files for it. The model has been implemented in Feynman gauge as well as unitarity gauge and contains the variable \verb|FeynmanGauge| which can be set to \verb|True| or \verb|False|. When set to \verb|True|, the option \verb|WOGauge-> WOFeynman| must be used, as explained in~\cite{Christensen:2010wz}. $R_\xi$ gauge can also be accomplished with this model by use of the options \verb|WOGauge -> WORxi| and \verb?WOAutoGauge -> True?. Since this model makes use of a nonlinear sigma field of the form \begin{equation} \Sigma = 1 + i\pi - \frac{1}{2}\pi^2+\cdots \end{equation} many higher dimensional operators are included in the model which are not currently not supported by \whizard. Even for a future release of \whizard\ containing general Lorentz structures in interaction vertices, the user would be forced to expand the series only up to a certain order. Although \whizard\ can reject these vertices and print a warning message to the user, it is preferable to remove the vertices right away in the interface by the option \verb|MaxCanonicalDimension->4|. This is passed to the command \verb|FeynmanRules| and restricts the Feynman rules to those of dimension four and smaller\footnote{\ttt{MaxCanonicalDimension} is an option of the \ttt{FeynmanRules} function rather than of the interface, itself. In fact, the interface accepts all the options of {\tt FeynmanRules} and simply passes them on to the latter.}. As the use of different gauges was already illustrated in the SM example, we discuss the model only in Feynman gauge here. We load \FeynRules: \begin{code} $FeynRulesPath = SetDirectory[""]; <"]; LoadModel["3-Site-particles.fr", "3-Site-parameters.fr", "3-Site-lagrangian.fr"]; FeynmanGauge = True; \end{code} where \verb|| is the path to the directory where the MHM model files are stored and where the output of the \whizard\ interface will be written. The \whizard\ interface is then initiated: \begin{code} WriteWOOutput[LGauge, LGold, LGhost, LFermion, LGoldLeptons, LGoldQuarks, MaxCanonicalDimension->4, WOGauge->WOFeynman, WOModelName->"fr_mhm"]; \end{code} where we have also made use of the option \verb|WOModelName| to change the name of the model as seen by \whizard. As in the case of the SM, the interface begins by writing a short informational message: \begin{code} Short model name is "fr_mhm" Gauge: Feynman Generating code for WHIZARD / O'Mega version 2.0.3 Automagically assigning Goldstone boson masses... Maximum number of couplings per FORTRAN module: 500 Extensive lorentz structure checks disabled. \end{code} After calculating the Feynman rules and processing the vertices, the interface gives a summary: \begin{code} processed a total of 922 vertices, kept 633 of them and threw away 289, 289 of which contained ghosts. \end{code} showing that no vertices were missed. The files are stored in the directory \verb|fr_mhm| and are ready to be installed and used with \whizard. %%%%%%%%%%%%%%% \section{New physics models via the \UFO\ file format} \label{sec:ufo} In this section, we describe how to use the {\em Universal FeynRules Output} (\UFO, \cite{Degrande:2011ua}) format for physics models inside \whizard. Please refer the manuals of e.g.~\FeynRules\ manual for details on how to generate a \UFO\ file for your favorite physics model. \UFO\ files are a collection of \ttt{Python} scripts that encode the particles, the couplings, the Lorentz structures, the decays, as well as parameters, vertices and propagators of the corresponding model. They reside in a directory of the exact name of the model they have been created from. If the user wants to generate events for processes from a physics model from a \UFO\ file, then this directory of scripts generated by \FeynRules\ is immediately available if it is a subdirectory of the working directory of \whizard. The directory name will be taken as the model name. (The \UFO-model file name must not start with a non-letter character, i.e. especially not a number. In case such a file name wants to be used at all costs, the model name in the \sindarin\ script has to put in quotation marks, but this is not guaranteed to always work.) Then, a \UFO\ model named, e.g., \ttt{test\_model} is accessed by an extra \ttt{ufo} tag in the model assignment: \begin{Code} model = test_model (ufo) \end{Code} If desired, \whizard\ can access a directory of \UFO\ files elsewhere on the file system. For instance, if \FeynRules\ output resides in the subdirectory \ttt{MyMdl} of \ttt{/home/users/john/ufo}, \whizard\ can use the model named \ttt{MyMdl} as follows \begin{Code} model = MyMdl (ufo ('/home/users/john/my_ufo_models')) \end{Code} that is, the \sindarin\ keyword \ttt{ufo} can take an argument. Note however, that the latter approach can backfire --- in case just the working directory is packed and archived for future reference. %%%%%%%%%%%%%%% \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \appendix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{\sindarin\ Reference} In the \sindarin\ language, there are certain pre-defined constructors or commands that cannot be used in different context by the user, which are e.g. \ttt{alias}, \ttt{beams}, \ttt{integrate}, \ttt{simulate} etc. A complete list will be given below. Also units are fixed, like \ttt{degree}, \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{GeV}, and \ttt{TeV}. Again, these tags are locked and not user-redefinable. Their functionality will be listed in detail below, too. Furthermore, a variable with a preceding question mark, ?, is a logical, while a preceding dollar, \$, denotes a character string variable. Also, a lot of unary and binary operators exist, \ttt{+ - $\backslash$ , = : => < > <= >= \^ \; () [] \{\} } \url{==}, as well as quotation marks, ". Note that the different parentheses and brackets fulfill different purposes, which will be explained below. Comments in a line can either be marked by a hash, \#, or an exclamation mark, !. \section{Commands and Operators} We begin the \sindarin\ reference with all commands, operators, functions and constructors. The list of variables (which can be set to change behavior of \whizard) can be found in the next section. \begin{itemize} \item \ttt{+} \newline 1) Arithmetic operator for addition of integers, reals and complex numbers. Example: \ttt{real mm = mH + mZ} (cf. also \ttt{-}, \ttt{*}, \ttt{/}, \ttt{\^{}}). 2) It also adds different particles for inclusive process containers: \ttt{process foo = e1, E1 => (e2, E2) + (e3, E3)}. 3) It also serves as a shorthand notation for the concatenation of ($\to$) \ttt{combine} operations on particles/subevents, e.g. \ttt{cuts = any 170 GeV < M < 180 GeV [b + lepton + invisible]}. %%%%% \item \ttt{-} \newline Arithmetic operator for subtraction of integers, reals and complex numbers. Example: \ttt{real foo = 3.1 - 5.7} (cf. also \ttt{+}, \ttt{*}, \ttt{/}, \ttt{\^{}}). %%%%% \item \ttt{/} \newline Arithmetic operator for division of integers, reals and complex numbers. Example: \ttt{scale = mH / 2} (cf. also \ttt{+}, \ttt{*}, \ttt{-}, \ttt{\^{}}). %%%%% \item \ttt{*} \newline Arithmetic operator for multiplication of integers, reals and complex numbers. Example: \ttt{complex z = 2 * I} (cf. also \ttt{+}, \ttt{/}, \ttt{-}, \ttt{\^{}}). %%%%% \item \ttt{\^{}} \newline Arithmetic operator for exponentiation of integers, reals and complex numbers. Example: \ttt{real z = x\^{}2 + y\^{}2} (cf. also \ttt{+}, \ttt{/}, \ttt{-}, \ttt{\^{}}). %%%%% \item \ttt{<} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } < {\em }} tests whether \ttt{{\em val1}} is smaller than \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{>} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } > {\em }} tests whether \ttt{{\em val1}} is larger than \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{<=} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } <= {\em }} tests whether \ttt{{\em val1}} is smaller than or equal \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{<}, \ttt{>=}) %%%%% \item \ttt{>=} \newline Arithmetic comparator between values that checks for ordering of two values: \ttt{{\em } >= {\em }} tests whether \ttt{{\em val1}} is larger than or equal \ttt{{\em val2}}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{==}, \ttt{>}, \ttt{<}, \ttt{>=}) %%%%% \item \ttt{==} \newline Arithmetic comparator between values that checks for identity of two values: \ttt{{\em } == {\em }}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{<>}, \ttt{>}, \ttt{<}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{<>} \newline Arithmetic comparator between values that checks for two values being unequal: \ttt{{\em } <> {\em }}. Allowed for integer and real values. Note that this is an exact comparison if \ttt{tolerance} is set to zero. For a finite value of \ttt{tolerance} it is a ``fuzzy'' comparison. (cf. also \ttt{tolerance}, \ttt{==}, \ttt{>}, \ttt{<}, \ttt{>=}, \ttt{<=}) %%%%% \item \ttt{!} \newline The exclamation mark tells \sindarin\ that everything that follows in that line should be treated as a comment. It is the same as ($\to$) \ttt{\#}. %%%%% \item \ttt{\#} \newline The hash tells \sindarin\ that everything that follows in that line should be treated as a comment. It is the same as ($\to$) \ttt{!}. %%%%% \item \ttt{\&} \newline Concatenates two or more particle lists/subevents and hence acts in the same way as the subevent function ($\to$) \ttt{join}: \ttt{let @visible = [photon] \& [colored] \& [lepton] in ...}. (cf. also \ttt{join}, \ttt{combine}, \ttt{collect}, \ttt{extract}, \ttt{sort}). %%%%% \item \ttt{\$} \newline Constructor at the beginning of a variable name, \ttt{\${\em }}, that specifies a string variable. %%%%% \item \ttt{@} \newline Constructor at the beginning of a variable name, \ttt{@{\em }}, that specifies a subevent variable, e.g. \ttt{let @W\_candidates = combine ["mu-", "numubar"] in ...}. %%%%% \item \ttt{=} \newline Binary constructor to appoint values to commands, e.g. \ttt{{\em } = {\em }} or \newline \ttt{{\em } {\em } = {\em }}. %%%%% \item \ttt{\%} \newline Constructor that gives the percentage of a number, so in principle multiplies a real number by \ttt{0.01}. Example: \ttt{1.23 \%} is equal to \ttt{0.0123}. %%%%% \item \ttt{:} \newline Separator in alias expressions for particles, e.g. \ttt{alias neutrino = n1:n2:n3:N1:N2:N3}. (cf. also \ttt{alias}) %%%%% \item \ttt{;} \newline Concatenation operator for logical expressions: \ttt{{\em lexpr1} ; {\em lexpr2}}. Evaluates \ttt{{\em lexpr1}} and throws the result away, then evaluates \ttt{{\em lexpr2}} and returns that result. Used in analysis expressions. (cf. also \ttt{analysis}, \ttt{record}) %%%%% \item \ttt{/+} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments additively, \ttt{scan {\em } = ({\em } => {\em } /+ {\em })}. E.g. \ttt{scan int i = (1 => 5 /+ 2)} scans over the values \ttt{1}, \ttt{3}, \ttt{5}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (1 => 1.5 /+ 0.2)} runs over \ttt{1.0}, \ttt{1.333}, \ttt{1.667}, \ttt{1.5}. %%%%% \item \ttt{/+/} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments additively, but the number after the incrementor is the number of steps, not the step size: \ttt{scan {\em } = ({\em } => {\em } /+/ {\em })}. It is only available for real scan ranges, and divides the interval \ttt{{\em } - {\em }} into \ttt{{\em }} steps, e.g. \ttt{scan real r = (1 => 1.5 /+/ 3)} runs over \ttt{1.0}, \ttt{1.25}, \ttt{1.5}. %%%%% \item \ttt{/-} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments subtractively, \ttt{scan {\em } {\em } = ({\em } => {\em } /- {\em })}. E.g. \ttt{scan int i = (9 => 0 /+ 3)} scans over the values \ttt{9}, \ttt{6}, \ttt{3}, \ttt{0}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (1 => 0.5 /- 0.2)} runs over \ttt{1.0}, \ttt{0.833}, \ttt{0.667}, \ttt{0.5}. %%%%% \item \ttt{/*} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments multiplicatively, \ttt{scan {\em } {\em } = ({\em } => {\em } /* {\em })}. E.g. \ttt{scan int i = (1 => 4 /* 2)} scans over the values \ttt{1}, \ttt{2}, \ttt{4}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (1 => 5 /* 2)} runs over \ttt{1.0}, \ttt{2.236} (i.e. $\sqrt{5}$), \ttt{5.0}. %%%%% \item \ttt{/*/} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments multiplicatively, but the number after the incrementor is the number of steps, not the step size: \ttt{scan {\em } {\em } = ({\em } => {\em } /*/ {\em })}. It is only available for real scan ranges, and divides the interval \ttt{{\em } - {\em }} into \ttt{{\em }} steps, e.g. \ttt{scan real r = (1 => 9 /*/ 4)} runs over \ttt{1.000}, \ttt{2.080}, \ttt{4.327}, \ttt{9.000}. %%%%% \item \ttt{//} \newline Incrementor for ($\to$) \ttt{scan} ranges, that increments by division, \ttt{scan {\em } {\em } = ({\em } => {\em } // {\em })}. E.g. \ttt{scan int i = (13 => 0 // 3)} scans over the values \ttt{13}, \ttt{4}, \ttt{1}, \ttt{0}. For real ranges, it divides the interval between upper and lower bound into as many intervals as the incrementor provides, e.g. \ttt{scan real r = (5 => 1 // 2)} runs over \ttt{5.0}, \ttt{2.236} (i.e. $\sqrt{5}$), \ttt{1.0}. %%%%% \item \ttt{=>} \newline Binary operator that is used in several different contexts: 1) in process declarations between the particles specifying the initial and final state, e.g. \ttt{process {\em } = {\em }, {\em } => {\em }, ....}; 2) for the specification of beams when structure functions are applied to the beam particles, e.g. \ttt{beams = p, p => pdf\_builtin}; 3) for the specification of the scan range in the \ttt{scan {\em } {\em } = ({\em } => {\em } {\em })} (cf. also \ttt{process}, \ttt{beams}, \ttt{scan}) %%%%% \item \ttt{\%d} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for decimal integer numbers, e.g. \ttt{printf "one = \%d" (i)}. The difference between \ttt{\%i} and \ttt{\%d} does not play a role here. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%e} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for floating-point numbers in standard form \ttt{[-]d.ddd e[+/-]ddd}. Usage e.g. \ttt{printf "pi = \%e" (PI)}. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%E} \newline Same as ($\to$) \ttt{\%e}, but using upper-case letters. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%f} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for floating-point numbers in fixed-point form. Usage e.g. \ttt{printf "pi = \%f" (PI)}. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%F} \newline Same as ($\to$) \ttt{\%f}, but using upper-case letters. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%g} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for floating-point numbers in normal or exponential notation, whichever is more approriate. Usage e.g. \ttt{printf "pi = \%g" (PI)}. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%G} \newline Same as ($\to$) \ttt{\%g}, but using upper-case letters. (cf. also \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%s}) %%%%% \item \ttt{\%i} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for integer numbers, e.g. \ttt{printf "one = \%i" (i)}. The difference between \ttt{\%i} and \ttt{\%d} does not play a role here. (cf. \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{\%s} \newline Format specifier in analogy to the \ttt{C} language for the print out on screen by the ($\to$) \ttt{printf} or into strings by the ($\to$) \ttt{sprintf} command. It is used for logical or string variables e.g. \ttt{printf "foo = \%s" (\$method)}. (cf. \ttt{printf}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}) %%%%% \item \ttt{abarn} \newline Physical unit, stating that a number is in attobarns ($10^{-18}$ barn). (cf. also \ttt{nbarn}, \ttt{fbarn}, \ttt{pbarn}) %%%%% \item \ttt{abs} \newline Numerical function that takes the absolute value of its argument: \ttt{abs ({\em })} yields \ttt{|{\em }|}. (cf. also \ttt{conjg}, \ttt{sgn}, \ttt{mod}, \ttt{modulo}) %%%%% \item \ttt{acos} \newline Numerical function \ttt{asin ({\em })} that calculates the arccosine trigonometric function (inverse of \ttt{cos}) of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{tan}, \ttt{asin}, \ttt{atan}) %%%%% \item \ttt{alias} \newline This allows to define a collective expression for a class of particles, e.g. to define a generic expression for leptons, neutrinos or a jet as \ttt{alias lepton = e1:e2:e3:E1:E2:E3}, \ttt{alias neutrino = n1:n2:n3:N1:N2:N3}, and \ttt{alias jet = u:d:s:c:U:D:S:C:g}, respectively. %%%%% \item \ttt{all} \newline \ttt{all} is a function that works on a logical expression and a list, \ttt{all {\em } [{\em }]}, and returns \ttt{true} if and only if \ttt{log\_expr} is fulfilled for {\em all} entries in \ttt{list}, and \ttt{false} otherwise. Examples: \ttt{all Pt > 100 GeV [lepton]} checks whether all leptons are harder than 100 GeV, \ttt{all Dist > 2 [u:U, d:D]} checks whether all pairs of corresponding quarks are separated in $R$ space by more than 2. Logical expressions with \ttt{all} can be logically combined with \ttt{and} and \ttt{or}. (cf. also \ttt{any}, \ttt{and}, \ttt{no}, and \ttt{or}) %%%%% \item \ttt{alt\_setup} \newline This command allows to specify alternative setups for a process/list of processes, \ttt{alt\_setup = \{ {\em } \} [, \{ {\em } \} , ...]}. An alternative setup can be a resetting of a coupling constant, or different cuts etc. It can be particularly used in a ($\to$) \ttt{rescan} procedure. %%%%% \item \ttt{analysis} \newline This command, \ttt{analysis = {\em }}, allows to define an analysis as a logical expression, with a syntax similar to the ($\to$) \ttt{cuts} or ($\to$) \ttt{selection} command. Note that a ($\to$) formally is a logical expression. %%%%% \item \ttt{and} \newline This is the standard two-place logical connective that has the value true if both of its operands are true, otherwise a value of false. It is applied to logical values, e.g. cut expressions. (cf. also \ttt{all}, \ttt{no}, \ttt{or}). %%%%% \item \ttt{any} \newline \ttt{any} is a function that works on a logical expression and a list, \ttt{any {\em } [{\em }]}, and returns \ttt{true} if \ttt{log\_expr} is fulfilled for any entry in \ttt{list}, and \ttt{false} otherwise. Examples: \ttt{any PDG == 13 [lepton]} checks whether any lepton is a muon, \ttt{any E > 2 * mW [jet]} checks whether any jet has an energy of twice the $W$ mass. Logical expressions with \ttt{any} can be logically combined with \ttt{and} and \ttt{or}. (cf. also \ttt{all}, \ttt{and}, \ttt{no}, and \ttt{or}) %%%%% \item \ttt{as} \newline cf. \ttt{compile} %%%%% \item \ttt{ascii} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the standard \whizard\ verbose/debug ASCII event files. (cf. also \ttt{\$sample}, \ttt{\$sample\_normalization}, \ttt{sample\_format}) %%%%% \item \ttt{asin} \newline Numerical function \ttt{asin ({\em })} that calculates the arcsine trigonometric function (inverse of \ttt{sin}) of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{tan}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{atan} \newline Numerical function \ttt{atan ({\em })} that calculates the arctangent trigonometric function (inverse of \ttt{tan}) of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{tan}, \ttt{asin}, \ttt{acos}) %%%%% \item \ttt{athena} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the ATHENA variant for HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{\$sample\_normalization}, \ttt{sample\_format}) %%%%% \item \ttt{beam} \newline Constructor that specifies a particle (in a subevent) as beam particle. It is used in cuts, analyses or selections, e.g. \ttt{cuts = all Theta > 20 degree [beam lepton, lepton]}. (cf. also \ttt{incoming}, \ttt{outgoing}, \ttt{cuts}, \ttt{analysis}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{beam\_events} \newline Beam structure specifier to read in lepton collider beamstrahlung's spectra from external files as pairs of energy fractions: \ttt{beams: e1, E1 => beam\_events}. Note that this is a pair spectrum that has to be applied to both beams simultaneously. (cf. also \ttt{beams}, \ttt{\$beam\_events\_file}, \ttt{?beam\_events\_warn\_eof}) %%%%% \item \ttt{beams} \newline This specifies the contents and structure of the beams: \ttt{beams = {\em }, {\em } [ => {\em } ....]}. If this command is absent in the input file, \whizard\ automatically takes the two incoming partons (or one for decays) of the corresponding process as beam particles, and no structure functions are applied. Protons and antiprotons as beam particles are predefined as \ttt{p} and \ttt{pbar}, respectively. A structure function, like \ttt{pdf\_builtin}, \ttt{ISR}, \ttt{EPA} and so on are switched on as e.g. \ttt{beams = p, p => lhapdf}. Structure functions can be specified for one of the two beam particles only, of the structure function is not a spectrum. (cf. also \ttt{beams\_momentum}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}, \ttt{beam\_events}, \ttt{circe1}, \ttt{circe2}, \ttt{energy\_scan}, \ttt{epa}, \ttt{ewa}, \ttt{isr}, \ttt{lhapdf}, \ttt{pdf\_builtin}). %%%%% \item \ttt{beams\_momentum} \newline Command to set the momenta (or energies) for the two beams of a scattering process: \ttt{beams\_momentum = {\em }, {\em }} to allow for asymmetric beam setups (e.g. HERA: \ttt{beams\_momentum = 27.5 GeV, 920 GeV}). Two arguments must be present for a scattering process, but the command can be used with one argument to integrate and simulate a decay of a moving particle. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{beams\_phi} \newline Same as ($\to$) \ttt{beams\_theta}, but to allow for a non-vanishing beam azimuth angle, too. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_momentum}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{beams\_pol\_density} \newline This command allows to specify the initial state for polarized beams by the syntax: \ttt{beams\_pol\_density = @({\em }), @({\em })}. Two polarization specifiers are mandatory for scattering, while one can be used for decays from polarized probes. The specifier \ttt{{\em }} can be empty (no polarization), has one entry (for a definite helicity/spin orientation), or ranges of entries of a spin density matrix. The command can be used globally, or as a local argument of the \ttt{integrate} command. For detailed information, see Sec.~\ref{sec:initialpolarization}. It is also possible to use variables as placeholders in the specifiers. Note that polarization is assumed to be complete, for partial polarization use ($\to$) \ttt{beams\_pol\_fraction}. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_momentum}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{beams\_pol\_fraction} \newline This command allows to specify the amount of polarization when using polarized beams ($\to$ \ttt{beams\_pol\_density}). The syntax is: \ttt{beams\_pol\_fraction = {\em }, {\em }}. Two fractions must be present for scatterings, being real numbers between \ttt{0} and \ttt{1}. A specification with percentage is also possible, e.g. \ttt{beams\_pol\_fraction = 80\%, 40\%}. (cf. also \ttt{beams}, \ttt{beams\_theta}, \ttt{beams\_phi}, \ttt{beams\_momentum}, \ttt{beams\_pol\_density}) %%%%% \item \ttt{beams\_theta} \newline Command to set a crossing angle (with respect to the $z$ axis) for one or both of the beams of a scattering process: \ttt{beams\_theta = {\em }, {\em }} to allow for asymmetric beam setups (e.g. \ttt{beams\_angle = 0, 10 degree}). Two arguments must be present for a scattering process, but the command can be used with one argument to integrate and simulate a decay of a moving particle. (cf. also \ttt{beams}, \ttt{beams\_phi}, \ttt{beams\_momentum}, \ttt{beams\_pol\_density}, \ttt{beams\_pol\_fraction}) %%%%% \item \ttt{by} \newline Constructor that replaces the default sorting criterion (according to PDG codes) of the ($\to$) \ttt{sort} function on particle lists/subevents by one given by a unary or binary particle observable: \ttt{sort by {\em } [{\em } [, {\em }] ]}. (cf. also \ttt{sort}, \ttt{extract}, \ttt{join}, \ttt{collect}, \ttt{combine}, \ttt{+}) %%%%% \item \ttt{ceiling} \newline This is a function \ttt{ceiling ({\em })} that gives the least integer greater than or equal to \ttt{{\em }}, e.g. \ttt{int i = ceiling (4.56789)} gives \ttt{i = 5}. (cf. also \ttt{int}, \ttt{nint}, \ttt{floor}) %%%%% \item \ttt{circe1} \newline Beam structure specifier for the \circeone\ structure function for beamstrahlung at a linear lepton collider: \ttt{beams = e1, E1 => circe1}. Note that this is a pair spectrum, so the specifier acts for both beams simultaneously. (cf. also \ttt{beams}, \ttt{?circe1\_photons}, \ttt{?circe1\_photon2}, \ttt{circe1\_sqrts}, \ttt{?circe1\_generate}, \ttt{?circe1\_map}, \ttt{circe1\_eps}, \newline \ttt{circe1\_mapping\_slope}, \ttt{circe1\_ver}, \ttt{circe1\_rev}, \ttt{\$circe1\_acc}, \ttt{circe1\_chat}) %%%%% \item \ttt{circe2} \newline Beam structure specifier for the lepton-collider structure function for photon spectra, \circetwo: \ttt{beams = A, A => circe2}. Note that this is a pair spectrum, an application to only one beam is not possible. (cf. also \ttt{beams}, \ttt{?circe2\_polarized}, \ttt{\$circe2\_file}, \ttt{\$circe2\_design}) %%%%% \item \ttt{clear} \newline This command allows to clear a variable set before: \ttt{clear ({\em })} resets the variable \ttt{{\em }} which could be the \ttt{beams}, the \ttt{unstable} settings, \ttt{sqrts}, any kind of \ttt{cuts} or \ttt{scale} expressions, any user-set variable etc. The syntax of the command is completely analogous to ($\to$) \ttt{show}. %%%%% \item \ttt{close\_out} \newline With the command, \ttt{close\_out ("{\em })} user-defined information like data or ($\to$) \ttt{printf} statements can be written out to a user-defined file. The command closes an I/O stream to an external file \ttt{{\em }}. (cf. also \ttt{open\_out}, \ttt{\$out\_file}, \ttt{printf}) %%%%% \item \ttt{cluster} \newline Command that allows to cluster all particles in a subevent to a set of jets: \ttt{cluster [{\em}]}. It also to cluster particles subject to a certain boolean condition, \ttt{cluster if {\em} [{\em}]}. At the moment only available if the \fastjet\ package is linked. (cf. also \ttt{jet\_r}, \ttt{combine}, \ttt{jet\_algorithm}, \ttt{kt\_algorithm}, \newline \ttt{cambridge\_[for\_passive\_]algorithm}, \ttt{antikt\_algorithm}, \ttt{plugin\_algorithm}, \newline \ttt{genkt\_[for\_passive\_]algorithm}, \ttt{ee\_kt\_algorithm}, \ttt{ee\_genkt\_algorithm}, \ttt{?keep\_flavors\_when\_clustering}) %%%%% \item \ttt{collect} \newline The \ttt{collect [{\em }]} operation collects all particles in the list \ttt{{\em }} into a one-entry subevent with a four-momentum of the sum of all four-momenta of non-overlapping particles in \ttt{{\em }}. (cf. also \ttt{combine}, \ttt{select}, \ttt{extract}, \ttt{sort}) %%%%% \item \ttt{complex} \newline Defines a complex variable. The syntax is e.g. \ttt{complex x = 2 + 3 * I}. (cf.~also \ttt{int}, \ttt{real}) %%%%% \item \ttt{combine} \newline The \ttt{combine [{\em }, {\em }]} operation makes a particle list whose entries are the result of adding (the momenta of) each pair of particles in the two input lists \ttt{list1}, {list2}. For example, \ttt{combine [incoming lepton, lepton]} constructs all mutual pairings of an incoming lepton with an outgoing lepton (an alias for the leptons has to be defined, of course). (cf. also \ttt{collect}, \ttt{select}, \ttt{extract}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{compile} \newline The \ttt{compile ()} command has no arguments (the parentheses can also been left out: /\ttt{compile ()}. The command is optional, it invokes the compilation of the process(es) (i.e. the matrix element file(s)) to be compiled as a shared library. This shared object file has the standard name \ttt{default\_lib.so} and resides in the \ttt{.libs} subdirectory of the corresponding user workspace. If the user has defined a different library name \ttt{lib\_name} with the \ttt{library} command, then WHIZARD compiles this as the shared object \ttt{.libs/lib\_name.so}. (This allows to split process classes and to avoid too large libraries.) Another possibility is to use the command \ttt{compile as "static\_name"}. This will compile and link the process library in a static way and create the static executable \ttt{static\_name} in the user workspace. (cf. also \ttt{library}) %%%%% \item \ttt{compile\_analysis} \newline The \ttt{compile\_analysis} statement does the same as the \ttt{write\_analysis} command, namely to tell \whizard\ to write the analysis setup by the user for the \sindarin\ input file under consideration. If no \ttt{\$out\_file} is provided, the histogram tables/plot data etc. are written to the default file \ttt{whizard\_analysis.dat}. In addition to \ttt{write\_analysis}, \ttt{compile\_analysis} also invokes the \whizard\ \LaTeX routines for producing postscript or PDF output of the data (unless the flag $\rightarrow$ \ttt{?analysis\_file\_only} is set to \ttt{true}). (cf. also \ttt{\$out\_file}, \ttt{write\_analysis}, \ttt{?analysis\_file\_only}) %%%%% \item \ttt{conjg} \newline Numerical function that takes the complex conjugate of its argument: \ttt{conjg ({\em })} yields \ttt{{\em }$^\ast$}. (cf. also \ttt{abs}, \ttt{sgn}, \ttt{mod}, \ttt{modulo}) %%%%% \item \ttt{cos} \newline Numerical function \ttt{cos ({\em })} that calculates the cosine trigonometric function of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{tan}, \ttt{asin}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{cosh} \newline Numerical function \ttt{cosh ({\em })} that calculates the hyperbolic cosine function of real and complex numerical numbers or variables. Note that its inverse function is part of the \ttt{Fortran2008} status and hence not realized. (cf. also \ttt{sinh}, \ttt{tanh}) %%%%% \item \ttt{count} \newline Subevent function that counts the number of particles or particle pairs in a subevent: \ttt{count [{\em } [, {\em }]]}. This can also be a counting subject to a condition: \ttt{count if {\em } [{\em } [, {\em }]]}. %%%%% \item \ttt{cuts} \newline This command defines the cuts to be applied to certain processes. The syntax is: \ttt{cuts = {\em } {\em } [{\em }]}, where the cut expression must be initialized with a logical classifier \ttt{log\_class} like \ttt{all}, \ttt{any}, \ttt{no}. The logical expression \ttt{log\_expr} contains the cut to be evaluated. Note that this need not only be a kinematical cut expression like \ttt{E > 10 GeV} or \ttt{5 degree < Theta < 175 degree}, but can also be some sort of trigger expression or event selection. Whether the expression is evaluated on particles or pairs of particles depends on whether the discriminating variable is unary or binary, \ttt{Dist} being obviously binary, \ttt{Pt} being unary. Note that some variables are both unary and binary, e.g. the invariant mass $M$. Cut expressions can be connected by the logical connectives \ttt{and} and \ttt{or}. The \ttt{cuts} statement acts on all subsequent process integrations and analyses until a new \ttt{cuts} statement appears. (cf. also \ttt{all}, \ttt{any}, \ttt{Dist}, \ttt{E}, \ttt{M}, \ttt{no}, \ttt{Pt}). %%%%% \item \ttt{debug} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the very verbose \whizard\ ASCII event file format intended for debugging. (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{\$sample\_normalization}) %%%%% \item \ttt{degree} \newline Expression specifying the physical unit of degree for angular variables, e.g. the cut expression function \ttt{Theta}. (if no unit is specified for angular variables, radians are used; cf. \ttt{rad}, \ttt{mrad}). %%%% \item \ttt{Dist} \newline Binary observable specifier, that gives the $\eta$-$\phi$- (pseudorapidity-azimuth) distance $R = \sqrt{(\Delta \eta)^2 + (\Delta\phi)^2}$ between the momenta of the two particles: \ttt{eval Dist [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Theta}, \ttt{Eta}, \ttt{Phi}) %%%%% \item \ttt{dump} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the intrinsic \whizard\ event record format (output of the \ttt{particle\_t} type container). (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{\$sample\_normalization} %%%%% \item \ttt{E} \newline Unary (binary) observable specifier for the energy of a single (two) particle(s), e.g. \ttt{eval E ["W+"]}, \ttt{all E > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{else} \label{sindarin_else}\newline Constructor for providing an alternative in a conditional clause: \ttt{if {\em } then {\em } else {\em } endif}. (cf. also \ttt{if}, \ttt{elsif}, \ttt{endif}, \ttt{then}). %%%%% \item \ttt{elsif} \newline Constructor for concatenating more than one conditional clause with each other: \ttt{if {\em } then {\em } elsif {\em } then {\em } \ldots endif}. (cf. also \ttt{if}, \ttt{else}, \ttt{endif}, \ttt{then}). %%%%% \item \ttt{endif} \newline Mandatory constructor to conclude a conditional clause: \ttt{if {\em } then \ldots endif}. (cf. also \ttt{if}, \ttt{else}, \ttt{elsif}, \ttt{then}). %%%%% \item \ttt{energy\_scan} \newline Beam structure specifier for the energy scan structure function: \ttt{beams = e1, E1 => energy\_scan}. This pair spectrum that has to be applied to both beams simultaneously can be used to scan over a range of collider energies without using the \ttt{scan} command. (cf. also \ttt{beams}, \ttt{scan}, \ttt{?energy\_scan\_normalize}) %%%%% \item \ttt{epa} \newline Beam structure specifier for the equivalent-photon approximation (EPA), i.e the Weizs\"acker-Williams structure function: e.g. \ttt{beams = e1, E1 => epa} (applied to both beams), or e.g. \ttt{beams = e1, u => epa, none} (applied to only one beam). (cf. also \ttt{beams}, \ttt{epa\_alpha}, \ttt{epa\_x\_min}, \ttt{epa\_mass}, \ttt{epa\_q\_max}, \ttt{epa\_q\_min}, \ttt{?epa\_recoil}, \ttt{?epa\_keep\_energy}) %%%%% \item \ttt{Eta} \newline Unary and also binary observable specifier, that as a unary observable gives the pseudorapidity of a particle momentum. The pseudorapidity is given by $\eta = - \log \left[ \tan (\theta/2) \right]$, where $\theta$ is the angle with the beam direction. As a binary observable, it gives the pseudorapidity difference between the momenta of two particles, where $\theta$ is the enclosed angle: \ttt{eval Eta [e1]}, \ttt{all abs (Eta) < 3.5 [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Rap}, \ttt{abs}) %%%%% \item \ttt{eV} \newline Physical unit, stating that the corresponding number is in electron volt. (cf. also \ttt{keV}, \ttt{meV}, \ttt{MeV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{eval} \newline Evaluator that tells \whizard\ to evaluate the following expr: \ttt{eval {\em }}. Examples are: \ttt{eval Rap [e1]}, \ttt{eval M / 1 GeV [combine [q,Q]]} etc. (cf. also \ttt{cuts}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{ewa} \newline Beam structure specifier for the equivalent-photon approximation (EWA): e.g. \ttt{beams = e1, E1 => ewa} (applied to both beams), or e.g. \ttt{beams = e1, u => ewa, none} (applied to only one beam). (cf. also \ttt{beams}, \ttt{ewa\_x\_min}, \ttt{ewa\_pt\_max}, \ttt{ewa\_mass}, \ttt{?ewa\_keep\_energy}, \ttt{?ewa\_recoil}) %%%%% \item \ttt{exec} \newline Constructor \ttt{exec ("{\em }")} that demands WHIZARD to execute/run the command \ttt{cmd\_name}. For this to work that specific command must be present either in the path of the operating system or as a command in the user workspace. %%%%% \item \ttt{exit} \newline Command to finish the \whizard\ run (and not execute any further code beyond the appearance of \ttt{exit} in the \sindarin\ file. The command (which is the same as $\to$ \ttt{quit}) allows for an argument, \ttt{exit ({\em })}, where the expression can be executed, e.g. a screen message or an exit code. %%%%% \item \ttt{exp} \newline Numerical function \ttt{exp ({\em })} that calculates the exponential of real and complex numerical numbers or variables. (cf. also \ttt{sqrt}, \ttt{log}, \ttt{log10}) %%%%% \item \ttt{expect} \newline The binary function \ttt{expect} compares two numerical expressions whether they fulfill a certain ordering condition or are equal up to a specific uncertainty or tolerance which can bet set by the specifier \ttt{tolerance}, i.e. in principle it checks whether a logical expression is true. The \ttt{expect} function does actually not just check a value for correctness, but also records its result. If failures are present when the program terminates, the exit code is nonzero. The syntax is \ttt{expect ({\em } {\em } {\em })}, where \ttt{{\em }} and \ttt{{\em }} are two numerical values (or corresponding variables) and \ttt{{\em }} is one of the following logical comparators: \ttt{<}, \ttt{>}, \ttt{<=}, \ttt{>=}, \ttt{==}, \ttt{<>}. (cf. also \ttt{<}, \ttt{>}, \ttt{<=}, \ttt{>=}, \ttt{==}, \ttt{<>}, \ttt{tolerance}). %%%%% \item \ttt{extract} \newline Subevent function that either extracts the first element of a particle list/subevent: \ttt{extract [ {\em }]}, or the element at position \ttt{} of the particle list: \ttt{extract {\em index } [ {\em }]}. Negative index values count from the end of the list. (cf. also \ttt{sort}, \ttt{combine}, \ttt{collect}, \ttt{+}, \ttt{index}) %%%%% \item \ttt{factorization\_scale} \newline This is a command, \ttt{factorization\_scale = {\em }}, that sets the factorization scale of a process or list of processes. It overwrites a possible scale set by the ($\to$) \ttt{scale} command. \ttt{{\em }} can be any kinematic expression that leads to a result of momentum dimension one, e.g. \ttt{100 GeV}, \ttt{eval Pt [e1]}. (cf. also \ttt{renormalization\_scale}). %%%%% \item \ttt{false} \newline Constructor stating that a logical expression or variable is false, e.g. \ttt{?{\em } = false}. (cf. also \ttt{true}). %%%%% \item \ttt{fbarn} \newline Physical unit, stating that a number is in femtobarns ($10^{-15}$ barn). (cf. also \ttt{nbarn}, \ttt{abarn}, \ttt{pbarn}) %%%%% \item \ttt{floor} \newline This is a function \ttt{floor ({\em })} that gives the greatest integer less than or equal to \ttt{{\em }}, e.g. \ttt{int i = floor (4.56789)} gives \ttt{i = 4}. (cf. also \ttt{int}, \ttt{nint}, \ttt{ceiling}) %%%%% \item \ttt{gaussian} \newline Beam structure specifier that imposes a Gaussian energy distribution, separately for each beam. The $\sigma$ values are set by \ttt{gaussian\_spread1} and \ttt{gaussian\_spread2}, respectively. %%%%% \item \ttt{GeV} \newline Physical unit, energies in $10^9$ electron volt. This is the default energy unit of WHIZARD. (cf. also \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{meV}, \ttt{TeV}) %%%%% \item \ttt{graph} \newline This command defines the necessary information regarding producing a graph of a function in \whizard's internal graphical \gamelan\ output. The syntax is: \ttt{graph {\em } \{ {\em } \}}. The record with name \ttt{{\em }} has to be defined, either before or after the graph definition. Possible optional arguments of the \ttt{graph} command are the minimal and maximal values of the axes (\ttt{x\_min}, \ttt{x\_max}, \ttt{y\_min}, \ttt{y\_max}). (cf. \ttt{plot}, \ttt{histogram}, \ttt{record}) %%%%% \item \ttt{Hel} \newline Unary observable specifier that allows to specify the helicity of a particle, e.g. \ttt{all Hel == -1 [e1]} in a selection. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{hepevt} \newline Specifier for the \ttt{sample\_format} command to demand the generation of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{hepevt\_verb} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the extended or verbose version of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{hepmc} \newline Specifier for the \ttt{sample\_format} command to demand the generation of HepMC ASCII event files. Note that this is only available if the HepMC package is installed and correctly linked. (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{?hepmc\_output\_cross\_section}) %%%%% \item \ttt{histogram} \newline This command defines the necessary information regarding plotting data as a histogram, in the form of: \ttt{histogram {\em } \{ {\em } \}}. The record with name \ttt{{\em }} has to be defined, either before or after the histogram definition. Possible optional arguments of the \ttt{histogram} command are the minimal and maximal values of the axes (\ttt{x\_min}, \ttt{x\_max}, \ttt{y\_min}, \ttt{y\_max}). (cf. \ttt{graph}, \ttt{plot}, \ttt{record}) %%%%% \item \ttt{if} \newline Conditional clause with the construction \ttt{if {\em } then {\em } [else {\em } \ldots] endif}. Note that there must be an \ttt{endif} statement. For more complicated expressions it is better to use expressions in parentheses: \ttt{if ({\em }) then \{{\em }\} else \{{\em }\} endif}. Examples are a selection of up quarks over down quarks depending on a logical variable: \ttt{if ?ok then u else d}, or the setting of an integer variable depending on the rapidity of some particle: \ttt{if (eta > 0) then \{ a = +1\} else \{ a = -1\}}. (cf. also \ttt{elsif}, \ttt{endif}, \ttt{then}) %%%%% \item \ttt{in} \newline Second part of the constructor to let a variable be local to an expression. It has the syntax \ttt{let {\em } = {\em } in {\em }}. E.g. \ttt{let int a = 3 in let int b = 4 in {\em }} (cf. also \ttt{let}) %%%%% \item \ttt{include} \newline The \ttt{include} statement, \ttt{include ("file.sin")} allows to include external \sindarin\ files \ttt{file.sin} into the main WHIZARD input file. A standard example is the inclusion of the standard cut file \ttt{default\_cuts.sin}. %%%%% \item \ttt{incoming} \newline Constructor that specifies particles (or subevents) as incoming. It is used in cuts, analyses or selections, e.g. \ttt{cuts = all Theta > 20 degree [incoming lepton, lepton]}. (cf. also \ttt{beam}, \ttt{outgoing}, \ttt{cuts}, \ttt{analysis}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{index} \newline Specifies the position of the element of a particle to be extracted by the subevent function ($\to$) \ttt{extract}: \ttt{extract {\em index } [ {\em }]}. Negative index values count from the end of the list. (cf. also \ttt{extract}, \ttt{sort}, \ttt{combine}, \ttt{collect}, \ttt{+}) %%%%% \item \ttt{int} \newline 1) This is a constructor to specify integer constants in the input file. Strictly speaking, it is a unary function setting the value \ttt{int\_val} of the integer variable \ttt{int\_var}: \ttt{int {\em } = {\em }}. Note that is mandatory for all user-defined variables. (cf. also \ttt{real} and \ttt{complex}) 2) It is a function \ttt{int ({\em })} that converts real and complex numbers (here their real parts) into integers. (cf. also \ttt{nint}, \ttt{floor}, \ttt{ceiling}) %%%%% \item \ttt{integrate} \newline The \ttt{integrate ({\em }) \{ {\em } \}} command invokes the integration (phase-space generation and Monte-Carlo sampling) of the process \ttt{proc\_name} (which can also be a list of processes) with the integration options \ttt{{\em }}. Possible options are (1) via \ttt{\$integration\_method = "{\em }"} the integration method (the default being VAMP), (2) the number of iterations and calls per integration during the Monte-Carlo phase-space integration via the \ttt{iterations} specifier; (3) goal for the accuracy, error or relative error (\ttt{accuracy\_goal}, \ttt{error\_goal}, \ttt{relative\_error\_goal}). (4) Invoking only phase space generation (\ttt{?phs\_only = true}), (5) making test calls of the matrix element. (cf. also \ttt{iterations}, \ttt{accuracy\_goal}, \ttt{error\_goal}, \ttt{relative\_error\_goal}, \ttt{error\_threshold}) %%%%% \item \ttt{isr} \newline Beam structure specifier for the lepton-collider/QED initial-state radiation (ISR) structure function: e.g. \ttt{beams = e1, E1 => isr} (applied to both beams), or e.g. \ttt{beams = e1, u => isr, none} (applied to only one beam). (cf. also \ttt{beams}, \ttt{isr\_alpha}, \ttt{isr\_q\_max}, \ttt{isr\_mass}, \ttt{isr\_order}, \ttt{?isr\_recoil}, \ttt{?isr\_keep\_energy}) %%%%% \item \ttt{iterations} \qquad (default: internal heuristics) \newline Option to set the number of iterations and calls per iteration during the Monte-Carlo phase-space integration process. The syntax is \ttt{iterations = {\em }:{\em }}. Note that this can be also a list, separated by colons, which breaks up the integration process into passes of the specified number of integrations and calls each. It works for all integration methods. For VAMP, there is the additional option to specify whether grids and channel weights should be adapted during iterations (\ttt{"g"}, \ttt{"w"}, \ttt{"gw"} for both, or \ttt{""} for no adaptation). (cf. also \ttt{integrate}, \ttt{accuracy\_goal}, \ttt{error\_goal}, \ttt{relative\_error\_goal}, \ttt{error\_threshold}). %%%%% \item \ttt{join} \newline Subevent function that concatenates two particle lists/subevents if there is no overlap: \ttt{join [{\em }, {\em }]}. The joining of the two lists can also be made depending on a condition: \ttt{join if {\em } [{\em }, {\em }]}. (cf. also \ttt{\&}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{keV} \newline Physical unit, energies in $10^3$ electron volt. (cf. also \ttt{eV}, \ttt{meV}, \ttt{MeV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{kT} \newline Binary particle observable that represents a jet $k_T$ clustering measure: \ttt{kT [j1, j2]} gives the following kinematic expression: $2 \min(E_{j1}^2, E_{j2}^2) / Q^2 \times (1 - \cos\theta_{j1,j2})$. At the moment, $Q^2 = 1$. %%%%% \item \ttt{let} \newline This allows to let a variable be local to an expression. It has the syntax \ttt{let {\em } = {\em } in {\em }}. E.g. \ttt{let int a = 3 in let int b = 4 in {\em }} (cf. also \ttt{in}) %%%%% \item \ttt{lha} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the \whizard\ version 1 style (deprecated) LHA ASCII event format files. (cf. also \ttt{\$sample}, \newline \ttt{sample\_format}) %%%%% \item \ttt{lhapdf} \newline This is a beams specifier to demand calling \lhapdf\ parton densities as structure functions to integrate processes in hadron collisions. Note that this only works if the external \lhapdf\ library is present and correctly linked. (cf. \ttt{beams}, \ttt{\$lhapdf\_dir}, \ttt{\$lhapdf\_file}, \ttt{lhapdf\_photon}, \ttt{\$lhapdf\_photon\_file}, \ttt{lhapdf\_member}, \ttt{lhapdf\_photon\_scheme}) %%%%% \item \ttt{lhapdf\_photon} \newline This is a beams specifier to demand calling \lhapdf\ parton densities as structure functions to integrate processes in hadron collisions with a photon as initializer of the hard scattering process. Note that this only works if the external \lhapdf\ library is present and correctly linked. (cf. \ttt{beams}, \ttt{lhapdf}, \ttt{\$lhapdf\_dir}, \ttt{\$lhapdf\_file}, \ttt{\$lhapdf\_photon\_file}, \ttt{lhapdf\_member}, \ttt{lhapdf\_photon\_scheme}) %%%%% \item \ttt{lhef} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the Les Houches Accord (LHEF) event format files, with XML headers. There are several different versions of this format, which can be selected via the \ttt{\$lhef\_version} specifier (cf. also \ttt{\$sample}, \ttt{sample\_format}, \ttt{\$lhef\_version}, \ttt{\$lhef\_extension}, \ttt{?lhef\_write\_sqme\_prc}, \newline \ttt{?lhef\_write\_sqme\_ref}, \ttt{?lhef\_write\_sqme\_alt}) %%%%% \item \ttt{library} \newline The command \ttt{library = "{\em }"} allows to specify a separate shared object library archive \ttt{lib\_name.so}, not using the standard library \ttt{default\_lib.so}. Those libraries (when using shared libraries) are located in the \ttt{.libs} subdirectory of the user workspace. Specifying a separate library is useful for splitting up large lists of processes, or to restrict a larger number of different loaded model files to one specific process library. (cf. also \ttt{compile}, \ttt{\$library\_name}) %%%%% \item \ttt{log} \newline Numerical function \ttt{log ({\em })} that calculates the natural logarithm of real and complex numerical numbers or variables. (cf. also \ttt{sqrt}, \ttt{exp}, \ttt{log10}) %%%%% \item \ttt{log10} \newline Numerical function \ttt{log10 ({\em })} that calculates the base 10 logarithm of real and complex numerical numbers or variables. (cf. also \ttt{sqrt}, \ttt{exp}, \ttt{log}) %%%%% \item \ttt{long} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the long variant of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{M} \newline Unary (binary) observable specifier for the (signed) mass of a single (two) particle(s), e.g. \ttt{eval M [e1]}, \ttt{any M = 91 GeV [e2, E2]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{M2} \newline Unary (binary) observable specifier for the mass squared of a single (two) particle(s), e.g. \ttt{eval M2 [e1]}, \ttt{all M2 > 2*mZ [e2, E2]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{max} \newline Numerical function with two arguments \ttt{max ({\em }, {\em })} that gives the maximum of the two arguments: $\max (var1, var2)$. It can act on all combinations of integer and real variables. Example: \ttt{real heavier\_mass = max (mZ, mH)}. (cf. also \ttt{min}) %%%%% \item \ttt{meV} \newline Physical unit, stating that the corresponding number is in $10^{-3}$ electron volt. (cf. also \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{MeV} \newline Physical unit, energies in $10^6$ electron volt. (cf. also \ttt{eV}, \ttt{keV}, \ttt{meV}, \ttt{GeV}, \ttt{TeV}) %%%%% \item \ttt{min} \newline Numerical function with two arguments \ttt{min ({\em }, {\em })} that gives the minimum of the two arguments: $\min (var1, var2)$. It can act on all combinations of integer and real variables. Example: \ttt{real lighter\_mass = min (mZ, mH)}. (cf. also \ttt{max}) %%%%% \item \ttt{mod} \newline Numerical function for integer and real numbers \ttt{mod (x, y)} that computes the remainder of the division of \ttt{x} by \ttt{y} (which must not be zero). (cf. also \ttt{abs}, \ttt{conjg}, \ttt{sgn}, \ttt{modulo}) %%%%% \item \ttt{model} \qquad (default: \ttt{SM}) \newline With this specifier, \ttt{model = {\em }}, one sets the hard interaction physics model for the processes defined after this model specification. The list of available models can be found in Table \ref{tab:models}. Note that the model specification can appear arbitrarily often in a \sindarin\ input file, e.g. for compiling and running processes defined in different physics models. (cf. also \ttt{\$model\_name}) %%%%% \item \ttt{modulo} \newline Numerical function for integer and real numbers \ttt{modulo (x, y)} that computes the value of $x$ modulo $y$. (cf. also \ttt{abs}, \ttt{conjg}, \ttt{sgn}, \ttt{mod}) %%%%% \item \ttt{mokka} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the MOKKA variant for HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{mrad} \newline Expression specifying the physical unit of milliradians for angular variables. This default in \whizard\ is \ttt{rad}. (cf. \ttt{degree}, \ttt{rad}). %%%%% \item \ttt{nbarn} \newline Physical unit, stating that a number is in nanobarns ($10^{-9}$ barn). (cf. also \ttt{abarn}, \ttt{fbarn}, \ttt{pbarn}) %%%%% \item \ttt{n\_in} \newline Integer variable that accesses the number of incoming particles of a process. It can be used in cuts or in an analysis. (cf. also \ttt{sqrts\_hat}, \ttt{cuts}, \ttt{record}, \ttt{n\_out}, \ttt{n\_tot}) %%%%% \item \ttt{Nacl} \newline Unary observable specifier that returns the total number of open anticolor lines of a particle or subevent (i.e., composite particle). Defined only if \ttt{?colorize\_subevt} is true.. (cf. also \ttt{Ncol}, \ttt{?colorize\_subevt}) %%%%% \item \ttt{Ncol} \newline Unary observable specifier that returns the total number of open color lines of a particle or subevent (i.e., composite particle). Defined only if \ttt{?colorize\_subevt} is true.. (cf. also \ttt{Nacl}, \ttt{?colorize\_subevt}) %%%%% \item \ttt{nint} \newline This is a function \ttt{nint ({\em })} that converts real numbers into the closest integer, e.g. \ttt{int i = nint (4.56789)} gives \ttt{i = 5}. (cf. also \ttt{int}, \ttt{floor}, \ttt{ceiling}) %%%%% \item \ttt{no} \newline \ttt{no} is a function that works on a logical expression and a list, \ttt{no {\em } [{\em }]}, and returns \ttt{true} if and only if \ttt{log\_expr} is fulfilled for {\em none} of the entries in \ttt{list}, and \ttt{false} otherwise. Examples: \ttt{no Pt < 100 GeV [lepton]} checks whether no lepton is softer than 100 GeV. It is the logical opposite of the function \ttt{all}. Logical expressions with \ttt{no} can be logically combined with \ttt{and} and \ttt{or}. (cf. also \ttt{all}, \ttt{any}, \ttt{and}, and \ttt{or}) %%%%% \item \ttt{none} \newline Beams specifier that can used to explicitly {\em not} apply a structure function to a beam, e.g. in HERA physics: \ttt{beams = e1, P => none, pdf\_builtin}. (cf. also \ttt{beams}) %%%%% \item \ttt{not} \newline This is the standard logical negation that converts true into false and vice versa. It is applied to logical values, e.g. cut expressions. (cf. also \ttt{and}, \ttt{or}). %%%%% \item \ttt{n\_out} \newline Integer variable that accesses the number of outgoing particles of a process. It can be used in cuts or in an analysis. (cf. also \ttt{sqrts\_hat}, \ttt{cuts}, \ttt{record}, \ttt{n\_in}, \ttt{n\_tot}) %%%%% \item \ttt{n\_tot} \newline Integer variable that accesses the total number of particles (incoming plus outgoing) of a process. It can be used in cuts or in an analysis. (cf. also \ttt{sqrts\_hat}, \ttt{cuts}, \ttt{record}, \ttt{n\_in}, \ttt{n\_out}) %%%%% \item \ttt{observable} \newline With this, \ttt{observable = {\em }}, the user is able to define a variable specifier \ttt{obs\_spec} for observables. These can be reused in the analysis, e.g. as a \ttt{record}, as functions of the fundamental kinematical variables of the processes. (cf. \ttt{analysis}, \ttt{record}) %%%%% \item \ttt{open\_out} \newline With the command, \ttt{open\_out ("{\em })} user-defined information like data or ($\to$) \ttt{printf} statements can be written out to a user-defined file. The command opens an I/O stream to an external file \ttt{{\em }}. (cf. also \ttt{close\_out}, \ttt{\$out\_file}, \ttt{printf}) %%%%% \item \ttt{or} \newline This is the standard two-place logical connective that has the value true if one of its operands is true, otherwise a value of false. It is applied to logical values, e.g. cut expressions. (cf. also \ttt{and}, \ttt{not}). %%%%% \item \ttt{outgoing} \newline Constructor that specifies particles (or subevents) as outgoing. It is used in cuts, analyses or selections, e.g. \ttt{cuts = all Theta > 20 degree [incoming lepton, outgoing lepton]}. Note that the \ttt{outgoing} keyword is redundant and included only for completeness: \ttt{outgoing lepton} has the same meaning as \ttt{lepton}. (cf. also \ttt{beam}, \ttt{incoming}, \ttt{cuts}, \ttt{analysis}, \ttt{selection}, \ttt{record}) %%%%% \item \ttt{P} \newline Unary (binary) observable specifier for the spatial momentum $\sqrt{\vec{p}^2}$ of a single (two) particle(s), e.g. \ttt{eval P ["W+"]}, \ttt{all P > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{pbarn} \newline Physical unit, stating that a number is in picobarns ($10^{-12}$ barn). (cf. also \ttt{abarn}, \ttt{fbarn}, \ttt{nbarn}) %%%%% \item \ttt{pdf\_builtin} \newline This is a beams specifier for \whizard's internal PDF structure functions to integrate processes in hadron collisions. (cf. \ttt{beams}, \ttt{pdf\_builtin\_photon}, \ttt{\$pdf\_builtin\_file}) %%%%% \item \ttt{pdf\_builtin\_photon} \newline This is a beams specifier for \whizard's internal PDF structure functions to integrate processes in hadron collisions with a photon as initializer of the hard scattering process. (cf. \ttt{beams}, \ttt{\$pdf\_builtin\_file}) %%%%% \item \ttt{PDG} \newline Unary observable specifier that allows to specify the PDG code of a particle, e.g. \ttt{eval PDG [e1]}, giving \ttt{11}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Phi} \newline Unary and also binary observable specifier, that as a unary observable gives the azimuthal angle of a particle's momentum in the detector frame (beam into $+z$ direction). As a binary observable, it gives the azimuthal difference between the momenta of two particles: \ttt{eval Phi [e1]}, \ttt{all Phi > Pi [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Theta}) %%%%% \item \ttt{photon\_isolation} \newline Logical function \ttt{photon\_isolation if {\em } [{\em } , {\em }]} that cuts out event where the photons in \ttt{{\em }} do not fulfill the condition \ttt{{\em }} and are not isolated from hadronic (and electromagnetic) activity, i.e. the photon fragmentation. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{Pl} \newline Unary (binary) observable specifier for the longitudinal momentum ($p_z$ in the c.m. frame) of a single (two) particle(s), e.g. \ttt{eval Pl ["W+"]}, \ttt{all Pl > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{plot} \newline This command defines the necessary information regarding plotting data as a graph, in the form of: \ttt{plot {\em } \{ {\em } \}}. The record with name \ttt{{\em }} has to be defined, either before or after the plot definition. Possible optional arguments of the \ttt{plot} command are the minimal and maximal values of the axes (\ttt{x\_min}, \ttt{x\_max}, \ttt{y\_min}, \ttt{y\_max}). (cf. \ttt{graph}, \ttt{histogram}, \ttt{record}) %%%%% \item \ttt{polarized} \newline Constructor to instruct \whizard\ to retain polarization of the corresponding particles in the generated events: \ttt{polarized {\em } [, {\em } , ...]}. (cf. also \ttt{unpolarized}, \ttt{simulate}, \ttt{?polarized\_events}) %%%%% \item \ttt{printf} \newline Command that allows to print data as screen messages, into logfiles or into user-defined output files: \ttt{printf "{\em }"}. There exist format specifiers, very similar to the \ttt{C} command \ttt{printf}, e.g. \ttt{printf "\%i" (123)}. (cf. also \ttt{open\_out}, \ttt{close\_out}, \ttt{\$out\_file}, \ttt{?out\_advance}, \ttt{sprintf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{process} \newline Allows to set a hard interaction process, either for a decay process with name \ttt{{\em }} as \ttt{process {\em } = {\em } => {\em }, {\em }, ...}, or for a scattering process with name \ttt{{\em } = {\em }, {\em } => {\em }, {\em }, ...}. Note that there can be arbitrarily many processes to be defined in a \sindarin\ input file. There are two options for particle/process sums: flavor sums: \ttt{{\em }:{\em }:...}, where all masses have to be identical, and inclusive sums, \ttt{{\em } + {\em } + ...}. The latter can be done on the level of individual particles, or sums over whole final states. Here, masses can differ, and terms will be translated into different process components. The \ttt{process} command also allows for optional arguments, e.g. to specify a numerical identifier (cf. \ttt{process\_num\_id}), the method how to generate the code for the matrix element(s): \ttt{\$method}, possible methods are either with the \oMega\ matrix element generator, using template matrix elements with different normalizations, or completely internal matrix element; for \oMega\ matrix elements there is also the possibility to specify possible restrictions (cf. \ttt{\$restrictions}). %%%%% \item \ttt{Pt} \newline Unary (binary) observable specifier for the transverse momentum ($\sqrt{p_x^2 + p_y^2}$ in the c.m. frame) of a single (two) particle(s), e.g. \ttt{eval Pt ["W+"]}, \ttt{all Pt > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Px} \newline Unary (binary) observable specifier for the $x$-component of the momentum of a single (two) particle(s), e.g. \ttt{eval Px ["W+"]}, \ttt{all Px > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Py} \newline Unary (binary) observable specifier for the $y$-component of the momentum of a single (two) particle(s), e.g. \ttt{eval Py ["W+"]}, \ttt{all Py > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{Pz} \newline Unary (binary) observable specifier for the $z$-component of the momentum of a single (two) particle(s), e.g. \ttt{eval Pz ["W+"]}, \ttt{all Pz > 200 GeV [b, B]}. (cf. \ttt{eval}, \ttt{cuts}, \ttt{selection}) %%%%% \item \ttt{quit} \newline Command to finish the \whizard\ run (and not execute any further code beyond the appearance of \ttt{quit} in the \sindarin\ file. The command (which is the same as $\to$ \ttt{exit}) allows for an argument, \ttt{quit ({\em })}, where the expression can be executed, e.g. a screen message or an quit code. %%%%% \item \ttt{rad} \newline Expression specifying the physical unit of radians for angular variables. This is the default in \whizard. (cf. \ttt{degree}, \ttt{mrad}). %%%%% \item \ttt{Rap} \newline Unary and also binary observable specifier, that as a unary observable gives the rapidity of a particle momentum. The rapidity is given by $y = \frac12 \log \left[ (E + p_z)/(E-p_z) \right]$. As a binary observable, it gives the rapidity difference between the momenta of two particles: \ttt{eval Rap [e1]}, \ttt{all abs (Rap) < 3.5 [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Eta}, \ttt{abs}) %%%%% \item \ttt{read\_slha} \newline Tells \whizard\ to read in an input file in the SUSY Les Houches accord (SLHA), as \ttt{read\_slha ("slha\_file.slha")}. Note that the files for the use in \whizard\ should have the suffix \ttt{.slha}. (cf. also \ttt{write\_slha}, \ttt{?slha\_read\_decays}, \ttt{?slha\_read\_input}, \ttt{?slha\_read\_spectrum}) %%%%% \item \ttt{real} \newline This is a constructor to specify real constants in the input file. Strictly speaking, it is a unary function setting the value \ttt{real\_val} of the real variable \ttt{real\_var}: \ttt{real {\em } = {\em }}. (cf. also \ttt{int} and \ttt{complex}) %%%%% \item \ttt{real\_epsilon}\\ Predefined real; the relative uncertainty intrinsic to the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{real\_precision}\\ Predefined integer; the decimal precision of the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{real\_range}\\ Predefined integer; the decimal range of the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{real\_tiny}\\ Predefined real; the smallest number which can be represented by the floating point type of the \fortran\ compiler with which \whizard\ has been built. %%%%% \item \ttt{record} \newline The \ttt{record} constructor provides an internal data structure in \sindarin\ input files. Its syntax is in general \ttt{record {\em } ({\em })}. The \ttt{{\em }} could be the definition of a tuple of points for a histogram or an \ttt{eval} constructor that tells \whizard\ e.g. by which rule to calculate an observable to be stored in the record \ttt{record\_name}. Example: \ttt{record h (12)} is a record for a histogram defined under the name \ttt{h} with the single data point (bin) at value 12; \ttt{record rap1 (eval Rap [e1])} defines a record with name \ttt{rap1} which has an evaluator to calculate the rapidity (predefined \whizard\ function) of an outgoing electron. (cf. also \ttt{eval}, \ttt{histogram}, \ttt{plot}) %%%%% \item \ttt{renormalization\_scale} \newline This is a command, \ttt{renormalization\_scale = {\em }}, that sets the renormalization scale of a process or list of processes. It overwrites a possible scale set by the ($\to$) \ttt{scale} command. \ttt{{\em }} can be any kinematic expression that leads to a result of momentum dimension one, e.g. \ttt{100 GeV}, \ttt{eval Pt [e1]}. (cf. also \ttt{factorization\_scale}). %%%%% \item \ttt{rescan} \newline This command allows to rescan event samples with modified model parameter, beam structure etc. to recalculate (analysis) observables, e.g.: \newline \ttt{rescan "{\em }" ({\em }) \{ {\em }\}}. \newline \ttt{"{\em }"} is the name of the event file and \ttt{{\em }} is the process whose (existing) event file of arbitrary size that is to be rescanned. Several flags allow to reconstruct the beams ($\to$ \ttt{?recover\_beams}), to reuse only the hard process but rebuild the full events ($\to$ \ttt{?update\_event}), to recalculate the matrix element ($\to$ \ttt{?update\_sqme}) or to recalculate the individual event weight ($\to$ \ttt{?update\_weight}). Further rescan options are redefining model parameter input, or defining a completely new alternative setup ($\to$ \ttt{alt\_setup}) (cf. also \ttt{\$rescan\_input\_format}) %%%%% \item \ttt{results} \newline Only used in the combination \ttt{show (results)}. Forces \whizard\ to print out a results summary for the integrated processes. (cf. also \ttt{show}) %%%%% \item \ttt{reweight} \newline The \ttt{reweight = {\em }} command allows to give for a process or list of processes an alternative weight, given by any kind of scalar expression \ttt{{\em }}, e.g. \ttt{reweight = 0.2} or \ttt{reweight = (eval M2 [e1, E1]) / (eval M2 [e2, E2])}. (cf. also \ttt{alt\_setup}, \ttt{weight}, \ttt{rescan}) %%%%% \item \ttt{sample\_format} \newline Variable that allows the user to specify additional event formats beyond the \whizard\ native binary event format. Its syntax is \ttt{sample\_format = {\em }}, where \ttt{{\em }} can be any of the following specifiers: \ttt{hepevt}, \ttt{hepevt\_verb}, \ttt{ascii}, \ttt{athena}, \ttt{debug}, \ttt{long}, \ttt{short}, \ttt{hepmc}, \ttt{lhef}, \ttt{lha}, \ttt{lha\_verb}, \ttt{stdhep}, \ttt{stdhep\_up}. (cf. also \ttt{\$sample}, \ttt{simulate}, \ttt{hepevt}, \ttt{ascii}, \ttt{athena}, \ttt{debug}, \ttt{long}, \ttt{short}, \ttt{hepmc}, \ttt{lhef}, \ttt{lha}, \ttt{stdhep}, \ttt{stdhep\_up}, \newline \ttt{\$sample\_normalization}, \ttt{?sample\_pacify}, \ttt{sample\_max\_tries}, \ttt{sample\_split\_n\_evt}, \ttt{sample\_split\_n\_kbytes}) %%%%% \item \ttt{scale} \newline This is a command, \ttt{scale = {\em }}, that sets the kinematic scale of a process or list of processes. Unless overwritten explicitly by ($\to$) \ttt{factorization\_scale} and/or ($\to$) \ttt{renormalization\_scale} it sets both scales. \ttt{{\em }} can be any kinematic expression that leads to a result of momentum dimension one, e.g. \ttt{scale = 100 GeV}, \ttt{scale = eval Pt [e1]}. %%%%% \item \ttt{scan} \newline Constructor to perform loops over variables or scan over processes in the integration procedure. The syntax is \ttt{scan {\em } {\em } ({\em } or {\em } => {\em } /{\em } {\em }) \{ {\em } \}}. The variable \ttt{var} can be specified if it is not a real, e.g. an integer. \ttt{var\_name} is the name of the variable which is also allowed to be a predefined one like \ttt{seed}. For the scan, one can either specify an explicit list of values \ttt{value list}, or use an initial and final value and a rule to increment. The \ttt{scan\_cmd} can either be just a \ttt{show} to print out the scanned variable or the integration of a process. Examples are: \ttt{scan seed (32 => 1 // 2) \{ show (seed\_value) \} }, which runs the seed down in steps 32, 16, 8, 4, 2, 1 (division by two). \ttt{scan mW (75 GeV, 80 GeV => 82 GeV /+ 0.5 GeV, 83 GeV => 90 GeV /* 1.2) \{ show (sw) \} } scans over the $W$ mass for the values 75, 80, 80.5, 81, 81.5, 82, 83 GeV, namely one discrete value, steps by adding 0.5 GeV, and increase by 20 \% (the latter having no effect as it already exceeds the final value). It prints out the corresponding value of the effective mixing angle which is defined as a dependent variable in the model input file(s). \ttt{scan sqrts (500 GeV => 600 GeV /+ 10 GeV) \{ integrate (proc) \} } integrates the process \ttt{proc} in eleven increasing 10 GeV steps in center-of-mass energy from 500 to 600 GeV. (cf. also \ttt{/+}, \ttt{/+/}, \ttt{/-}, \ttt{/*}, \ttt{/*/}, \ttt{//}) %%%%% \item \ttt{select} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_b\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are $b$ jets and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_c\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are $c$ jets (but {\em not} $b$ jets) and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_light\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are light(-flavor) jets and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{select\_non\_b\_jet} \newline Subevent function \ttt{select if {\em } [{\em } [ , {\em }]]} that selects all particles in \ttt{{\em }} that are {\em not} $b$ jets ($c$ and light jets) and satisfy the condition \ttt{{\em }}. The second particle list \ttt{{\em }} is for conditions that depend on binary observables. (cf. also \ttt{cluster}, \ttt{collect}, \ttt{combine}, \ttt{extract}, \ttt{select}, \ttt{sort}, \ttt{+}) %%%%% \item \ttt{selection} \newline Command that allows to select particular final states in an analysis selection, \ttt{selection = {\em }}. The term \ttt{log\_expr} can be any kind of logical expression. The syntax matches exactly the one of the ($\to$) \ttt{cuts} command. E.g. \ttt{selection = any PDG == 13} is an electron selection in a lepton sample. %%%%% \item \ttt{sgn} \newline Numerical function for integer and real numbers that gives the sign of its argument: \ttt{sgn ({\em })} yields $+1$ if \ttt{{\em }} is positive or zero, and $-1$ otherwise. (cf. also \ttt{abs}, \ttt{conjg}, \ttt{mod}, \ttt{modulo}) %%%%% \item \ttt{short} \newline Specifier for the \ttt{sample\_format} command to demand the generation of the short variant of HEPEVT ASCII event files. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{show} \newline This is a unary function that is operating on specific constructors in order to print them out in the \whizard\ screen output as well as the log file \ttt{whizard.log}. Examples are \ttt{show({\em })} to issue a specific parameter from a model or a constant defined in a \sindarin\ input file, \ttt{show(integral({\em }))}, \ttt{show(library)}, \ttt{show(results)}, or \ttt{show({\em })} for any arbitrary variable. Further possibilities are \ttt{show(real)}, \ttt{show(string)}, \ttt{show(logical)} etc. to allow to show all defined real, string, logical etc. variables, respectively. (cf. also \ttt{library}, \ttt{results}) %%%%% \item \ttt{simulate} \newline This command invokes the generation of events for the process \ttt{proc} by means of \ttt{simulate ({\em })}. Optional arguments: \ttt{\$sample}, \ttt{sample\_format}, \ttt{checkpoint} (cf. also \ttt{integrate}, \ttt{luminosity}, \ttt{n\_events}, \ttt{\$sample}, \ttt{sample\_format}, \ttt{checkpoint}, \ttt{?unweighted}, \ttt{safety\_factor}, \ttt{?negative\_weights}, \ttt{sample\_max\_tries}, \ttt{sample\_split\_n\_evt}, \ttt{sample\_split\_n\_kbytes}) %%%%% \item \ttt{sin} \newline Numerical function \ttt{sin ({\em })} that calculates the sine trigonometric function of real and complex numerical numbers or variables. (cf. also \ttt{cos}, \ttt{tan}, \ttt{asin}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{sinh} \newline Numerical function \ttt{sinh ({\em })} that calculates the hyperbolic sine function of real and complex numerical numbers or variables. Note that its inverse function is part of the \ttt{Fortran2008} status and hence not realized. (cf. also \ttt{cosh}, \ttt{tanh}) %%%%% \item \ttt{sort} \newline Subevent function that allows to sort a particle list/subevent either by increasing PDG code: \ttt{sort [{\em }]} (particles first, then antiparticles). Alternatively, it can sort according to a unary or binary particle observable (in that case there is a second particle list, where the first particle is taken as a reference): \ttt{sort by {\em } [{\em } [, {\em }]]}. (cf. also \ttt{extract}, \ttt{combine}, \ttt{collect}, \ttt{join}, \ttt{by}, \ttt{+}) %%%%% \item \ttt{sprintf} \newline Command that allows to print data into a string variable: \ttt{sprintf "{\em }"}. There exist format specifiers, very similar to the \ttt{C} command \ttt{sprintf}, e.g. \ttt{sprintf "\%i" (123)}. (cf. \ttt{printf}, \ttt{\%d}, \ttt{\%i}, \ttt{\%e}, \ttt{\%f}, \ttt{\%g}, \ttt{\%E}, \ttt{\%F}, \ttt{\%G}, \ttt{\%s}) %%%%% \item \ttt{sqrt} \newline Numerical function \ttt{sqrt ({\em })} that calculates the square root of real and complex numerical numbers or variables. (cf. also \ttt{exp}, \ttt{log}, \ttt{log10}) %%%%% \item \ttt{sqrts\_hat} \newline Real variable that accesses the partonic energy of a hard-scattering process. It can be used in cuts or in an analysis, e.g. \ttt{cuts = sqrts\_hat > {\em } [ {\em } ]}. The physical unit can be one of the following \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{GeV}, and \ttt{TeV}. (cf. also \ttt{sqrts}, \ttt{cuts}, \ttt{record}) %%%%% \item \ttt{stable} \newline This constructor allows particles in the final states of processes in decay cascade set-up to be set as stable, and not letting them decay. The syntax is \ttt{stable {\em }} (cf. also \ttt{unstable}) %%%%% \item \ttt{stdhep} \newline Specifier for the \ttt{sample\_format} command to demand the generation of binary StdHEP event files based on the HEPEVT common block. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{stdhep\_up} \newline Specifier for the \ttt{sample\_format} command to demand the generation of binary StdHEP event files based on the HEPRUP/HEPEUP common blocks. (cf. also \ttt{\$sample}, \ttt{sample\_format}) %%%%% \item \ttt{tan} \newline Numerical function \ttt{tan ({\em })} that calculates the tangent trigonometric function of real and complex numerical numbers or variables. (cf. also \ttt{sin}, \ttt{cos}, \ttt{asin}, \ttt{acos}, \ttt{atan}) %%%%% \item \ttt{tanh} \newline Numerical function \ttt{tanh ({\em })} that calculates the hyperbolic tangent function of real and complex numerical numbers or variables. Note that its inverse function is part of the \ttt{Fortran2008} status and hence not realized. (cf. also \ttt{cosh}, \ttt{sinh}) %%%%% \item \ttt{TeV} \newline Physical unit, for energies in $10^{12}$ electron volt. (cf. also \ttt{eV}, \ttt{keV}, \ttt{MeV}, \ttt{meV}, \ttt{GeV}) %%%% \item \ttt{then} \newline Mandatory phrase in a conditional clause: \ttt{if {\em } then {\em } \ldots endif}. (cf. also \ttt{if}, \ttt{else}, \ttt{elsif}, \ttt{endif}). %%%%% \item \ttt{Theta} \newline Unary and also binary observable specifier, that as a unary observable gives the angle between a particle's momentum and the beam axis ($+z$ direction). As a binary observable, it gives the angle enclosed between the momenta of the two particles: \ttt{eval Theta [e1]}, \ttt{all Theta > 30 degrees [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Phi}, \ttt{Theta\_star}) %%%%% \item \ttt{Theta\_star} \newline Binary observable specifier, that gives the polar angle enclosed between the momenta of the two particles in the rest frame of the mother particle (momentum sum of the two particle): \ttt{eval Theta\_star [jet, jet]}. (cf. also \ttt{eval}, \ttt{cuts}, \ttt{selection}, \ttt{Theta}) %%%%% \item \ttt{true} \newline Constructor stating that a logical expression or variable is true, e.g. \ttt{?{\em } = true}. (cf. also \ttt{false}). %%%%% \item \ttt{unpolarized} \newline Constructor to force \whizard\ to discard polarization of the corresponding particles in the generated events: \ttt{unpolarized {\em } [, {\em } , ...]}. (cf. also \ttt{polarized}, \ttt{simulate}, \ttt{?polarized\_events}) %%%%% \item \ttt{unstable} \newline This constructor allows to let final state particles of the hard interaction undergo a subsequent (cascade) decay (in the on-shell approximation). For this the user has to define the list of desired \begin{figure} \begin{Verbatim}[frame=single] process zee = Z => e1, E1 process zuu = Z => u, U process zz = e1, E1 => Z, Z compile integrate (zee) { iterations = 1:100 } integrate (zuu) { iterations = 1:100 } sqrts = 500 GeV integrate (zz) { iterations = 3:5000, 2:5000 } unstable Z (zee, zuu) \end{Verbatim} \caption{\label{fig:ex_unstable} \sindarin\ input file for unstable particles and inclusive decays.} \end{figure} decay channels as \ttt{unstable {\em } ({\em }, {\em }, ....)}, where \ttt{mother} is the mother particle, and the argument is a list of decay channels. Note that -- unless the \ttt{?auto\_decays = true} flag has been set -- these decay channels have to be provided by the user as in the example in Fig. \ref{fig:ex_unstable}. First, the $Z$ decays to electrons and up quarks are generated, then $ZZ$ production at a 500 GeV ILC is called, and then both $Z$s are decayed according to the probability distribution of the two generated decay matrix elements. This obviously allows also for inclusive decays. (cf. also \ttt{stable}, \ttt{?auto\_decays}) %%%%% \item \ttt{weight} \newline This is a command, \ttt{weight = {\em }}, that allows to specify a weight for a process or list of processes. \ttt{{\em }} can be any expression that leads to a scalar result, e.g. \ttt{weight = 0.2}, \ttt{weight = eval Pt [jet]}. (cf. also \ttt{rescan}, \ttt{alt\_setup}, \ttt{reweight}) %%%%% \item \ttt{write\_analysis} \newline The \ttt{write\_analysis} statement tells \whizard\ to write the analysis setup by the user for the \sindarin\ input file under consideration. If no \ttt{\$out\_file} is provided, the histogram tables/plot data etc. are written to the default file \ttt{whizard\_analysis.dat}. Note that the related command \ttt{compile\_analysis} does the same as \ttt{write\_analysis} but in addition invokes the \whizard\ \LaTeX routines for producing postscript or PDF output of the data. (cf. also \ttt{\$out\_file}, \ttt{compile\_analysis}) %%%%% \item \ttt{write\_slha} \newline Demands \whizard\ to write out a file in the SUSY Les Houches accord (SLHA) format. (cf. also \ttt{read\_slha}, \ttt{?slha\_read\_decays}, \ttt{?slha\_read\_input}, \ttt{?slha\_read\_spectrum}) %%%%% \end{itemize} \section{Variables} \subsection{Rebuild Variables} \begin{itemize} \item \ttt{?rebuild\_events} \qquad (default: \ttt{false}) \newline This logical variable, if set \ttt{true} triggers \whizard\ to newly create an event sample, even if nothing seems to have changed, including the MD5 checksum. This can be used when manually manipulating some settings. (cf also \ttt{?rebuild\_grids}, \ttt{?rebuild\_library}, \ttt{?rebuild\_phase\_space}) %%%%% \item \ttt{?rebuild\_grids} \qquad (default: \ttt{false}) \newline The logical variable \ttt{?rebuild\_grids} forces \whizard\ to newly create the VAMP grids when using VAMP as an integration method, even if they are already present. (cf. also \ttt{?rebuild\_events}, \ttt{?rebuild\_library}, \ttt{?rebuild\_phase\_space}) %%%%% \item \ttt{?rebuild\_library} \qquad (default: \ttt{false}) \newline The logical variable \ttt{?rebuild\_library = true/false} specifies whether the library(-ies) for the matrix element code for processes is re-generated (incl. possible Makefiles etc.) by the corresponding ME method (e.g. if the process has been changed, but not its name). This can also be set as a command-line option \ttt{whizard --rebuild}. The default is \ttt{false}, i.e. code is never re-generated if it is present and the MD5 checksum is valid. (cf. also \ttt{?recompile\_library}, \ttt{?rebuild\_grids}, \ttt{?rebuild\_phase\_space}) %%%%% \item \ttt{?rebuild\_phase\_space} \qquad (default: \ttt{false}) \newline This logical variable, if set \ttt{true}, triggers recreation of the phase space file by \whizard\. (cf. also \ttt{?rebuild\_events}, \ttt{?rebuild\_grids}, \ttt{?rebuild\_library}) %%%%% \item \ttt{?recompile\_library} \qquad (default: \ttt{false}) \newline The logical variable \ttt{?recompile\_library = true/false} specifies whether the library(-ies) for the matrix element code for processes is re-compiled (e.g. if the process code has been manually modified by the user). This can also be set as a command-line option \ttt{whizard --recompile}. The default is \ttt{false}, i.e. code is never re-compiled if its corresponding object file is present. (cf. also \ttt{?rebuild\_library}) %%%%% \end{itemize} \subsection{Standard Variables} \begin{itemize} \input{variables} \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \section*{Acknowledgements} We would like to thank E.~Boos, R.~Chierici, K.~Desch, M.~Kobel, F.~Krauss, P.M.~Manakos, N.~Meyer, K.~M\"onig, H.~Reuter, T.~Robens, S.~Rosati, J.~Schumacher, M.~Schumacher, and C.~Schwinn who contributed to \whizard\ by their suggestions, bits of codes and valuable remarks and/or used several versions of the program for real-life applications and thus helped a lot in debugging and improving the code. Special thanks go to A.~Vaught and J.~Weill for their continuos efforts on improving the g95 and gfortran compilers, respectively. %\end{fmffile} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% References %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\baselineskip15pt \begin{thebibliography}{19} \bibitem{PYTHIA} T.~Sj\"ostrand, Comput.\ Phys.\ Commun.\ \textbf{82} (1994) 74. \bibitem{comphep} A.~Pukhov, \emph{et al.}, Preprint INP MSU 98-41/542, \ttt{hep-ph/9908288}. \bibitem{madgraph} T.~Stelzer and W.F.~Long, Comput.\ Phys.\ Commun.\ \textbf{81} (1994) 357. \bibitem{omega} T.~Ohl, \emph{Proceedings of the Seventh International Workshop on Advanced Computing and Analysis Technics in Physics Research}, ACAT 2000, Fermilab, October 2000, IKDA-2000-30, \ttt{hep-ph/0011243}; M.~Moretti, Th.~Ohl, and J.~Reuter, LC-TOOL-2001-040 \bibitem{VAMP} T.~Ohl, {\em Vegas revisited: Adaptive Monte Carlo integration beyond factorization}, Comput.\ Phys.\ Commun.\ {\bf 120}, 13 (1999) [arXiv:hep-ph/9806432]. %%CITATION = CPHCB,120,13;%% \bibitem{CIRCE} T.~Ohl, {\em CIRCE version 1.0: Beam spectra for simulating linear collider physics}, Comput.\ Phys.\ Commun.\ {\bf 101}, 269 (1997) [arXiv:hep-ph/9607454]. %%CITATION = CPHCB,101,269;%% %\cite{Gribov:1972rt} \bibitem{Gribov:1972rt} V.~N.~Gribov and L.~N.~Lipatov, {\em e+ e- pair annihilation and deep inelastic e p scattering in perturbation theory}, Sov.\ J.\ Nucl.\ Phys.\ {\bf 15}, 675 (1972) [Yad.\ Fiz.\ {\bf 15}, 1218 (1972)]. %%CITATION = SJNCA,15,675;%% %\cite{Kuraev:1985hb} \bibitem{Kuraev:1985hb} E.~A.~Kuraev and V.~S.~Fadin, {\em On Radiative Corrections to e+ e- Single Photon Annihilation at High-Energy}, Sov.\ J.\ Nucl.\ Phys.\ {\bf 41}, 466 (1985) [Yad.\ Fiz.\ {\bf 41}, 733 (1985)]. %%CITATION = SJNCA,41,466;%% %\cite{Skrzypek:1990qs} \bibitem{Skrzypek:1990qs} M.~Skrzypek and S.~Jadach, {\em Exact and approximate solutions for the electron nonsinglet structure function in QED}, Z.\ Phys.\ C {\bf 49}, 577 (1991). %%CITATION = ZEPYA,C49,577;%% %\cite{Schulte:1998au} \bibitem{Schulte:1998au} D.~Schulte, {\em Beam-beam simulations with Guinea-Pig}, eConf C {\bf 980914}, 127 (1998). %%CITATION = ECONF,C980914,127;%% %\cite{Schulte:1999tx} \bibitem{Schulte:1999tx} D.~Schulte, {\em Beam-beam simulations with GUINEA-PIG}, CERN-PS-99-014-LP. %%CITATION = CERN-PS-99-014-LP;%% %\cite{Schulte:2007zz} \bibitem{Schulte:2007zz} D.~Schulte, M.~Alabau, P.~Bambade, O.~Dadoun, G.~Le Meur, C.~Rimbault and F.~Touze, {\em GUINEA PIG++ : An Upgraded Version of the Linear Collider Beam Beam Interaction Simulation Code GUINEA PIG}, Conf.\ Proc.\ C {\bf 070625}, 2728 (2007). %%CITATION = CONFP,C070625,2728;%% %\cite{Behnke:2013xla} \bibitem{Behnke:2013xla} T.~Behnke, J.~E.~Brau, B.~Foster, J.~Fuster, M.~Harrison, J.~M.~Paterson, M.~Peskin and M.~Stanitzki {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 1: Executive Summary}, arXiv:1306.6327 [physics.acc-ph]. %%CITATION = ARXIV:1306.6327;%% %\cite{Baer:2013cma} \bibitem{Baer:2013cma} H.~Baer, T.~Barklow, K.~Fujii, Y.~Gao, A.~Hoang, S.~Kanemura, J.~List and H.~E.~Logan {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 2: Physics}, arXiv:1306.6352 [hep-ph]. %%CITATION = ARXIV:1306.6352;%% %\cite{Adolphsen:2013jya} \bibitem{Adolphsen:2013jya} C.~Adolphsen, M.~Barone, B.~Barish, K.~Buesser, P.~Burrows, J.~Carwardine, J.~Clark and H\'{e}l\`{e}n.~M.~Durand {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase}, arXiv:1306.6353 [physics.acc-ph]. %%CITATION = ARXIV:1306.6353;%% %\cite{Adolphsen:2013kya} \bibitem{Adolphsen:2013kya} C.~Adolphsen, M.~Barone, B.~Barish, K.~Buesser, P.~Burrows, J.~Carwardine, J.~Clark and H\'{e}l\`{e}n.~M.~Durand {\it et al.}, {\em The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design}, arXiv:1306.6328 [physics.acc-ph]. %%CITATION = ARXIV:1306.6328;%% %\cite{Behnke:2013lya} \bibitem{Behnke:2013lya} T.~Behnke, J.~E.~Brau, P.~N.~Burrows, J.~Fuster, M.~Peskin, M.~Stanitzki, Y.~Sugimoto and S.~Yamada {\it et al.}, %``The International Linear Collider Technical Design Report - Volume 4: Detectors,'' arXiv:1306.6329 [physics.ins-det]. %%CITATION = ARXIV:1306.6329;%% %\cite{Aicheler:2012bya} \bibitem{Aicheler:2012bya} M.~Aicheler, P.~Burrows, M.~Draper, T.~Garvey, P.~Lebrun, K.~Peach and N.~Phinney {\it et al.}, {\em A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report}, CERN-2012-007. %%CITATION = CERN-2012-007;%% %\cite{Lebrun:2012hj} \bibitem{Lebrun:2012hj} P.~Lebrun, L.~Linssen, A.~Lucaci-Timoce, D.~Schulte, F.~Simon, S.~Stapnes, N.~Toge and H.~Weerts {\it et al.}, {\em The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report}, arXiv:1209.2543 [physics.ins-det]. %%CITATION = ARXIV:1209.2543;%% %\cite{Linssen:2012hp} \bibitem{Linssen:2012hp} L.~Linssen, A.~Miyamoto, M.~Stanitzki and H.~Weerts, {\em Physics and Detectors at CLIC: CLIC Conceptual Design Report}, arXiv:1202.5940 [physics.ins-det]. %%CITATION = ARXIV:1202.5940;%% %\cite{vonWeizsacker:1934sx} \bibitem{vonWeizsacker:1934sx} C.~F.~von Weizs\"acker, {\em Radiation emitted in collisions of very fast electrons}, Z.\ Phys.\ {\bf 88}, 612 (1934). %%CITATION = ZEPYA,88,612;%% %\cite{Williams:1934ad} \bibitem{Williams:1934ad} E.~J.~Williams, {\em Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae}, Phys.\ Rev.\ {\bf 45}, 729 (1934). %%CITATION = PHRVA,45,729;%% %\cite{Budnev:1974de} \bibitem{Budnev:1974de} V.~M.~Budnev, I.~F.~Ginzburg, G.~V.~Meledin and V.~G.~Serbo, {\em The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation}, Phys.\ Rept.\ {\bf 15} (1974) 181. %%CITATION = PRPLC,15,181;%% %\cite{Ginzburg:1981vm} \bibitem{Ginzburg:1981vm} I.~F.~Ginzburg, G.~L.~Kotkin, V.~G.~Serbo and V.~I.~Telnov, {\em Colliding gamma e and gamma gamma Beams Based on the Single Pass Accelerators (of Vlepp Type)}, Nucl.\ Instrum.\ Meth.\ {\bf 205}, 47 (1983). %%CITATION = NUIMA,205,47;%% %\cite{Telnov:1989sd} \bibitem{Telnov:1989sd} V.~I.~Telnov, {\em Problems of Obtaining $\gamma \gamma$ and $\gamma \epsilon$ Colliding Beams at Linear Colliders}, Nucl.\ Instrum.\ Meth.\ A {\bf 294}, 72 (1990). %%CITATION = NUIMA,A294,72;%% %\cite{Telnov:1995hc} \bibitem{Telnov:1995hc} V.~I.~Telnov, {\em Principles of photon colliders}, Nucl.\ Instrum.\ Meth.\ A {\bf 355}, 3 (1995). %%CITATION = NUIMA,A355,3;%% %\cite{AguilarSaavedra:2001rg} \bibitem{AguilarSaavedra:2001rg} J.~A.~Aguilar-Saavedra {\it et al.} [ECFA/DESY LC Physics Working Group Collaboration], {\em TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e+ e- linear collider}, hep-ph/0106315. %%CITATION = HEP-PH/0106315;%% %\cite{Richard:2001qm} \bibitem{Richard:2001qm} F.~Richard, J.~R.~Schneider, D.~Trines and A.~Wagner, {\em TESLA, The Superconducting Electron Positron Linear Collider with an Integrated X-ray Laser Laboratory, Technical Design Report Part 1 : Executive Summary}, hep-ph/0106314. %%CITATION = HEP-PH/0106314;%% %\cite{Sudakov:1954sw} \bibitem{Sudakov:1954sw} V.~V.~Sudakov, %``Vertex parts at very high-energies in quantum electrodynamics,'' Sov.\ Phys.\ JETP {\bf 3}, 65 (1956) [Zh.\ Eksp.\ Teor.\ Fiz.\ {\bf 30}, 87 (1956)]. %%CITATION = SPHJA,3,65;%% \cite{Sjostrand:1985xi} \bibitem{Sjostrand:1985xi} T.~Sjostrand, %``A Model for Initial State Parton Showers,'' Phys.\ Lett.\ {\bf 157B}, 321 (1985). doi:10.1016/0370-2693(85)90674-4 %%CITATION = doi:10.1016/0370-2693(85)90674-4;%% %\cite{Sjostrand:2006za} \bibitem{Sjostrand:2006za} T.~Sjostrand, S.~Mrenna and P.~Z.~Skands, %``PYTHIA 6.4 Physics and Manual,'' JHEP {\bf 0605}, 026 (2006) doi:10.1088/1126-6708/2006/05/026 [hep-ph/0603175]. %%CITATION = doi:10.1088/1126-6708/2006/05/026;%% %\cite{Ohl:1998jn} \bibitem{Ohl:1998jn} T.~Ohl, {\em Vegas revisited: Adaptive Monte Carlo integration beyond factorization}, Comput.\ Phys.\ Commun.\ {\bf 120}, 13 (1999) [hep-ph/9806432]. %%CITATION = HEP-PH/9806432;%% %\cite{Lepage:1980dq} \bibitem{Lepage:1980dq} G.~P.~Lepage, %``Vegas: An Adaptive Multidimensional Integration Program,'' CLNS-80/447. %%CITATION = CLNS-80/447;%% \bibitem{HDECAY} A.~Djouadi, J.~Kalinowski, M.~Spira, Comput.\ Phys.\ Commun.\ \textbf{108} (1998) 56-74. %\cite{Beyer:2006hx} \bibitem{Beyer:2006hx} M.~Beyer, W.~Kilian, P.~Krstono\v{s}ic, K.~M\"onig, J.~Reuter, E.~Schmidt and H.~Schr\"oder, {\em Determination of New Electroweak Parameters at the ILC - Sensitivity to New Physics}, Eur.\ Phys.\ J.\ C {\bf 48}, 353 (2006) [hep-ph/0604048]. %%CITATION = HEP-PH/0604048;%% %\cite{Alboteanu:2008my} \bibitem{Alboteanu:2008my} A.~Alboteanu, W.~Kilian and J.~Reuter, {\em Resonances and Unitarity in Weak Boson Scattering at the LHC}, JHEP {\bf 0811}, 010 (2008) [arXiv:0806.4145 [hep-ph]]. %%CITATION = ARXIV:0806.4145;%% %\cite{Binoth:2010xt} \bibitem{Binoth:2010xt} T.~Binoth {\it et al.}, %``A Proposal for a standard interface between Monte Carlo tools and one-loop programs,'' Comput.\ Phys.\ Commun.\ {\bf 181}, 1612 (2010) doi:10.1016/j.cpc.2010.05.016 [arXiv:1001.1307 [hep-ph]]. %%CITATION = doi:10.1016/j.cpc.2010.05.016;%% %\cite{Alioli:2013nda} \bibitem{Alioli:2013nda} S.~Alioli {\it et al.}, %``Update of the Binoth Les Houches Accord for a standard interface %between Monte Carlo tools and one-loop programs,'' Comput.\ Phys.\ Commun.\ {\bf 185}, 560 (2014) doi:10.1016/j.cpc.2013.10.020 [arXiv:1308.3462 [hep-ph]]. %%CITATION = doi:10.1016/j.cpc.2013.10.020;%% %\cite{Speckner:2010zi} \bibitem{Speckner:2010zi} C.~Speckner, {\em LHC Phenomenology of the Three-Site Higgsless Model}, PhD thesis, arXiv:1011.1851 [hep-ph]. %%CITATION = ARXIV:1011.1851;%% %\cite{Chivukula:2006cg} \bibitem{Chivukula:2006cg} R.~S.~Chivukula, B.~Coleppa, S.~Di Chiara, E.~H.~Simmons, H.~-J.~He, M.~Kurachi and M.~Tanabashi, {\em A Three Site Higgsless Model}, Phys.\ Rev.\ D {\bf 74}, 075011 (2006) [hep-ph/0607124]. %%CITATION = HEP-PH/0607124;%% %\cite{Chivukula:2005xm} \bibitem{Chivukula:2005xm} R.~S.~Chivukula, E.~H.~Simmons, H.~-J.~He, M.~Kurachi and M.~Tanabashi, {\em Ideal fermion delocalization in Higgsless models}, Phys.\ Rev.\ D {\bf 72}, 015008 (2005) [hep-ph/0504114]. %%CITATION = HEP-PH/0504114;%% %\cite{Ohl:2008ri} \bibitem{Ohl:2008ri} T.~Ohl and C.~Speckner, {\em Production of Almost Fermiophobic Gauge Bosons in the Minimal Higgsless Model at the LHC}, Phys.\ Rev.\ D {\bf 78}, 095008 (2008) [arXiv:0809.0023 [hep-ph]]. %%CITATION = ARXIV:0809.0023;%% %\cite{Ohl:2002jp} \bibitem{Ohl:2002jp} T.~Ohl and J.~Reuter, {\em Clockwork SUSY: Supersymmetric Ward and Slavnov-Taylor identities at work in Green's functions and scattering amplitudes}, Eur.\ Phys.\ J.\ C {\bf 30}, 525 (2003) [hep-th/0212224]. %%CITATION = HEP-TH/0212224;%% %\cite{Reuter:2009ex} \bibitem{Reuter:2009ex} J.~Reuter and F.~Braam, {\em The NMSSM implementation in WHIZARD}, AIP Conf.\ Proc.\ {\bf 1200}, 470 (2010) [arXiv:0909.3059 [hep-ph]]. %%CITATION = ARXIV:0909.3059;%% %\cite{Kalinowski:2008fk} \bibitem{Kalinowski:2008fk} J.~Kalinowski, W.~Kilian, J.~Reuter, T.~Robens and K.~Rolbiecki, {\em Pinning down the Invisible Sneutrino}, JHEP {\bf 0810}, 090 (2008) [arXiv:0809.3997 [hep-ph]]. %%CITATION = ARXIV:0809.3997;%% %\cite{Robens:2008sa} \bibitem{Robens:2008sa} T.~Robens, J.~Kalinowski, K.~Rolbiecki, W.~Kilian and J.~Reuter, {\em (N)LO Simulation of Chargino Production and Decay}, Acta Phys.\ Polon.\ B {\bf 39}, 1705 (2008) [arXiv:0803.4161 [hep-ph]]. %%CITATION = ARXIV:0803.4161;%% %\cite{Kilian:2004pp} \bibitem{Kilian:2004pp} W.~Kilian, D.~Rainwater and J.~Reuter, {\em Pseudo-axions in little Higgs models}, Phys.\ Rev.\ D {\bf 71}, 015008 (2005) [hep-ph/0411213]. %%CITATION = HEP-PH/0411213;%% %\cite{Kilian:2006eh} \bibitem{Kilian:2006eh} W.~Kilian, D.~Rainwater and J.~Reuter, {\em Distinguishing little-Higgs product and simple group models at the LHC and ILC}, Phys.\ Rev.\ D {\bf 74}, 095003 (2006) [Erratum-ibid.\ D {\bf 74}, 099905 (2006)] [hep-ph/0609119]. %%CITATION = HEP-PH/0609119;%% %\cite{Ohl:2004tn} \bibitem{Ohl:2004tn} T.~Ohl and J.~Reuter, {\em Testing the noncommutative standard model at a future photon collider}, Phys.\ Rev.\ D {\bf 70}, 076007 (2004) [hep-ph/0406098]. %%CITATION = HEP-PH/0406098;%% %\cite{Ohl:2010zf} \bibitem{Ohl:2010zf} T.~Ohl and C.~Speckner, {\em The Noncommutative Standard Model and Polarization in Charged Gauge Boson Production at the LHC}, Phys.\ Rev.\ D {\bf 82}, 116011 (2010) [arXiv:1008.4710 [hep-ph]]. %%CITATION = ARXIV:1008.4710;%% \bibitem{LesHouches} E.~Boos {\it et al.}, {\em Generic user process interface for event generators}, arXiv:hep-ph/0109068. %%CITATION = HEP-PH/0109068;%% \bibitem{Skands:2003cj} P.~Z.~Skands {\it et al.}, {\em SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators, Decay Packages, and Event Generators}, JHEP {\bf 0407}, 036 (2004) [arXiv:hep-ph/0311123]. %%CITATION = JHEPA,0407,036;%% %\cite{AguilarSaavedra:2005pw} \bibitem{AguilarSaavedra:2005pw} J.~A.~Aguilar-Saavedra, A.~Ali, B.~C.~Allanach, R.~L.~Arnowitt, H.~A.~Baer, J.~A.~Bagger, C.~Balazs and V.~D.~Barger {\it et al.}, {\em Supersymmetry parameter analysis: SPA convention and project}, Eur.\ Phys.\ J.\ C {\bf 46}, 43 (2006) [hep-ph/0511344]. %%CITATION = HEP-PH/0511344;%% %\cite{Allanach:2008qq} \bibitem{Allanach:2008qq} B.~C.~Allanach, C.~Balazs, G.~Belanger, M.~Bernhardt, F.~Boudjema, D.~Choudhury, K.~Desch and U.~Ellwanger {\it et al.}, %``SUSY Les Houches Accord 2,'' Comput.\ Phys.\ Commun.\ {\bf 180}, 8 (2009) [arXiv:0801.0045 [hep-ph]]. %%CITATION = ARXIV:0801.0045;%% \bibitem{LHEF} J.~Alwall {\it et al.}, {\em A standard format for Les Houches event files}, Comput.\ Phys.\ Commun.\ {\bf 176}, 300 (2007) [arXiv:hep-ph/0609017]. %%CITATION = CPHCB,176,300;%% \bibitem{Hagiwara:2005wg} K.~Hagiwara {\it et al.}, {\em Supersymmetry simulations with off-shell effects for LHC and ILC}, Phys.\ Rev.\ D {\bf 73}, 055005 (2006) [arXiv:hep-ph/0512260]. %%CITATION = PHRVA,D73,055005;%% \bibitem{Allanach:2002nj} B.~C.~Allanach {\it et al.}, {\em The Snowmass points and slopes: Benchmarks for SUSY searches}, in {\it Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) } ed. N.~Graf, Eur.\ Phys.\ J.\ C {\bf 25} (2002) 113 [eConf {\bf C010630} (2001) P125] [arXiv:hep-ph/0202233]. %%CITATION = HEP-PH 0202233;%% \bibitem{PeskinSchroeder} M.E. Peskin, D.V.Schroeder, {\em An Introduction to Quantum Field Theory}, Addison-Wesley Publishing Co., 1995. \bibitem{stdhep} L.~Garren, {\em StdHep, Monte Carlo Standardization at FNAL}, Fermilab CS-doc-903, \url{http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=903} %\cite{Frixione:1998jh} \bibitem{Frixione:1998jh} S.~Frixione, %``Isolated photons in perturbative QCD,'' Phys.\ Lett.\ B {\bf 429}, 369 (1998) doi:10.1016/S0370-2693(98)00454-7 [hep-ph/9801442]. %%CITATION = doi:10.1016/S0370-2693(98)00454-7;%% \bibitem{LHAPDF} W.~Giele {\it et al.}, {\em The QCD / SM working group: Summary report}, arXiv:hep-ph/0204316; %%CITATION = HEP-PH/0204316;%% M.~R.~Whalley, D.~Bourilkov and R.~C.~Group, {\em The Les Houches Accord PDFs (LHAPDF) and Lhaglue}, arXiv:hep-ph/0508110; %%CITATION = HEP-PH/0508110;%% D.~Bourilkov, R.~C.~Group and M.~R.~Whalley, {\em LHAPDF: PDF use from the Tevatron to the LHC}, arXiv:hep-ph/0605240. %%CITATION = HEP-PH/0605240;%% \bibitem{HepMC} M.~Dobbs and J.~B.~Hansen, {\em The HepMC C++ Monte Carlo event record for High Energy Physics}, Comput.\ Phys.\ Commun.\ {\bf 134}, 41 (2001). %%CITATION = CPHCB,134,41;%% %\cite{Boos:2004kh} \bibitem{Boos:2004kh} E.~Boos {\it et al.} [CompHEP Collaboration], %``CompHEP 4.4: Automatic computations from Lagrangians to events,'' Nucl.\ Instrum.\ Meth.\ A {\bf 534}, 250 (2004) [hep-ph/0403113]. %%CITATION = HEP-PH/0403113;%% %493 citations counted in INSPIRE as of 12 May 2014 % Parton distributions %\cite{Pumplin:2002vw} \bibitem{Pumplin:2002vw} J.~Pumplin, D.~R.~Stump, J.~Huston {\it et al.}, {\em New generation of parton distributions with uncertainties from global QCD analysis}, JHEP {\bf 0207}, 012 (2002). [hep-ph/0201195]. %\cite{Martin:2004dh} \bibitem{Martin:2004dh} A.~D.~Martin, R.~G.~Roberts, W.~J.~Stirling {\it et al.}, {\em Parton distributions incorporating QED contributions}, Eur.\ Phys.\ J.\ {\bf C39}, 155-161 (2005). [hep-ph/0411040]. %\cite{Martin:2009iq} \bibitem{Martin:2009iq} A.~D.~Martin, W.~J.~Stirling, R.~S.~Thorne {\it et al.}, {\em Parton distributions for the LHC}, Eur.\ Phys.\ J.\ {\bf C63}, 189-285 (2009). [arXiv:0901.0002 [hep-ph]]. %\cite{Lai:2010vv} \bibitem{Lai:2010vv} H.~L.~Lai, M.~Guzzi, J.~Huston, Z.~Li, P.~M.~Nadolsky, J.~Pumplin and C.~P.~Yuan, {\em New parton distributions for collider physics}, Phys.\ Rev.\ D {\bf 82}, 074024 (2010) [arXiv:1007.2241 [hep-ph]]. %%CITATION = PHRVA,D82,074024;%% %\cite{Owens:2012bv} \bibitem{Owens:2012bv} J.~F.~Owens, A.~Accardi and W.~Melnitchouk, {\em Global parton distributions with nuclear and finite-$Q^2$ corrections}, Phys.\ Rev.\ D {\bf 87}, no. 9, 094012 (2013) [arXiv:1212.1702 [hep-ph]]. %%CITATION = ARXIV:1212.1702;%% %\cite{Accardi:2016qay} \bibitem{Accardi:2016qay} A.~Accardi, L.~T.~Brady, W.~Melnitchouk, J.~F.~Owens and N.~Sato, %``Constraints on large-$x$ parton distributions from new weak boson production and deep-inelastic scattering data,'' arXiv:1602.03154 [hep-ph]. %%CITATION = ARXIV:1602.03154;%% %\cite{Harland-Lang:2014zoa} \bibitem{Harland-Lang:2014zoa} L.~A.~Harland-Lang, A.~D.~Martin, P.~Motylinski and R.~S.~Thorne, %``Parton distributions in the LHC era: MMHT 2014 PDFs,'' arXiv:1412.3989 [hep-ph]. %%CITATION = ARXIV:1412.3989;%% %\cite{Dulat:2015mca} \bibitem{Dulat:2015mca} S.~Dulat {\it et al.}, %``The CT14 Global Analysis of Quantum Chromodynamics,'' arXiv:1506.07443 [hep-ph]. %%CITATION = ARXIV:1506.07443;%% %\cite{Salam:2008qg} \bibitem{Salam:2008qg} G.~P.~Salam and J.~Rojo, {\em A Higher Order Perturbative Parton Evolution Toolkit (HOPPET)}, Comput.\ Phys.\ Commun.\ {\bf 180}, 120 (2009) [arXiv:0804.3755 [hep-ph]]. %%CITATION = ARXIV:0804.3755;%% %\cite{Kilian:2011ka} \bibitem{Kilian:2011ka} W.~Kilian, J.~Reuter, S.~Schmidt and D.~Wiesler, {\em An Analytic Initial-State Parton Shower}, JHEP {\bf 1204} (2012) 013 [arXiv:1112.1039 [hep-ph]]. %%CITATION = ARXIV:1112.1039;%% %\cite{Staub:2008uz} \bibitem{Staub:2008uz} F.~Staub, {\em Sarah}, arXiv:0806.0538 [hep-ph]. %%CITATION = ARXIV:0806.0538;%% %\cite{Staub:2009bi} \bibitem{Staub:2009bi} F.~Staub, {\em From Superpotential to Model Files for FeynArts and CalcHep/CompHep}, Comput.\ Phys.\ Commun.\ {\bf 181}, 1077 (2010) [arXiv:0909.2863 [hep-ph]]. %%CITATION = ARXIV:0909.2863;%% %\cite{Staub:2010jh} \bibitem{Staub:2010jh} F.~Staub, {\em Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies}, Comput.\ Phys.\ Commun.\ {\bf 182}, 808 (2011) [arXiv:1002.0840 [hep-ph]]. %%CITATION = ARXIV:1002.0840;%% %\cite{Staub:2012pb} \bibitem{Staub:2012pb} F.~Staub, {\em SARAH 3.2: Dirac Gauginos, UFO output, and more}, Computer Physics Communications {\bf 184}, pp. 1792 (2013) [Comput.\ Phys.\ Commun.\ {\bf 184}, 1792 (2013)] [arXiv:1207.0906 [hep-ph]]. %%CITATION = ARXIV:1207.0906;%% %\cite{Staub:2013tta} \bibitem{Staub:2013tta} F.~Staub, {\em SARAH 4: A tool for (not only SUSY) model builders}, Comput.\ Phys.\ Commun.\ {\bf 185}, 1773 (2014) [arXiv:1309.7223 [hep-ph]]. %%CITATION = ARXIV:1309.7223;%% \bibitem{mathematica} \Mathematica\ is a registered trademark of Wolfram Research, Inc., Champain, IL, USA. %\cite{Porod:2003um} \bibitem{Porod:2003um} W.~Porod, {\em SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders}, Comput.\ Phys.\ Commun.\ {\bf 153}, 275 (2003) [hep-ph/0301101]. %%CITATION = HEP-PH/0301101;%% %\cite{Porod:2011nf} \bibitem{Porod:2011nf} W.~Porod and F.~Staub, {\em SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM}, Comput.\ Phys.\ Commun.\ {\bf 183}, 2458 (2012) [arXiv:1104.1573 [hep-ph]]. %%CITATION = ARXIV:1104.1573;%% %\cite{Staub:2011dp} \bibitem{Staub:2011dp} F.~Staub, T.~Ohl, W.~Porod and C.~Speckner, %``A Tool Box for Implementing Supersymmetric Models,'' Comput.\ Phys.\ Commun.\ {\bf 183}, 2165 (2012) [arXiv:1109.5147 [hep-ph]]. %%CITATION = ARXIV:1109.5147;%% %%%%% FeynRules %%%%% %\cite{Christensen:2008py} \bibitem{Christensen:2008py} N.~D.~Christensen and C.~Duhr, {\em FeynRules - Feynman rules made easy}, Comput.\ Phys.\ Commun.\ {\bf 180}, 1614 (2009) [arXiv:0806.4194 [hep-ph]]. %%CITATION = ARXIV:0806.4194;%% %\cite{Christensen:2009jx} \bibitem{Christensen:2009jx} N.~D.~Christensen, P.~de Aquino, C.~Degrande, C.~Duhr, B.~Fuks, M.~Herquet, F.~Maltoni and S.~Schumann, {\em A Comprehensive approach to new physics simulations}, Eur.\ Phys.\ J.\ C {\bf 71}, 1541 (2011) [arXiv:0906.2474 [hep-ph]]. %%CITATION = ARXIV:0906.2474;%% %\cite{Duhr:2011se} \bibitem{Duhr:2011se} C.~Duhr and B.~Fuks, %``A superspace module for the FeynRules package,'' Comput.\ Phys.\ Commun.\ {\bf 182}, 2404 (2011) [arXiv:1102.4191 [hep-ph]]. %%CITATION = ARXIV:1102.4191;%% %\cite{Christensen:2010wz} \bibitem{Christensen:2010wz} N.~D.~Christensen, C.~Duhr, B.~Fuks, J.~Reuter and C.~Speckner, {\em Introducing an interface between WHIZARD and FeynRules}, Eur.\ Phys.\ J.\ C {\bf 72}, 1990 (2012) [arXiv:1010.3251 [hep-ph]]. %%CITATION = ARXIV:1010.3251;%% %\cite{Degrande:2011ua} \bibitem{Degrande:2011ua} C.~Degrande, C.~Duhr, B.~Fuks, D.~Grellscheid, O.~Mattelaer and T.~Reiter, %``UFO - The Universal FeynRules Output,'' Comput.\ Phys.\ Commun.\ {\bf 183}, 1201 (2012) doi:10.1016/j.cpc.2012.01.022 [arXiv:1108.2040 [hep-ph]]. %%CITATION = doi:10.1016/j.cpc.2012.01.022;%% %\cite{Han:1998sg} \bibitem{Han:1998sg} T.~Han, J.~D.~Lykken and R.~-J.~Zhang, {\em On Kaluza-Klein states from large extra dimensions}, Phys.\ Rev.\ D {\bf 59}, 105006 (1999) [hep-ph/9811350]. %%CITATION = HEP-PH/9811350;%% %\cite{Fuks:2012im} \bibitem{Fuks:2012im} B.~Fuks, {\em Beyond the Minimal Supersymmetric Standard Model: from theory to phenomenology}, Int.\ J.\ Mod.\ Phys.\ A {\bf 27}, 1230007 (2012) [arXiv:1202.4769 [hep-ph]]. %%CITATION = ARXIV:1202.4769;%% %\cite{He:2007ge} \bibitem{He:2007ge} H.~-J.~He, Y.~-P.~Kuang, Y.~-H.~Qi, B.~Zhang, A.~Belyaev, R.~S.~Chivukula, N.~D.~Christensen and A.~Pukhov {\it et al.}, {\em CERN LHC Signatures of New Gauge Bosons in Minimal Higgsless Model}, Phys.\ Rev.\ D {\bf 78}, 031701 (2008) [arXiv:0708.2588 [hep-ph]]. %%CITATION = ARXIV:0708.2588;%% %%%%% WHIZARD NLO %%%%% %\cite{Kilian:2006cj} \bibitem{Kilian:2006cj} W.~Kilian, J.~Reuter and T.~Robens, {\em NLO Event Generation for Chargino Production at the ILC}, Eur.\ Phys.\ J.\ C {\bf 48}, 389 (2006) [hep-ph/0607127]. %%CITATION = HEP-PH/0607127;%% %\cite{Binoth:2010ra} \bibitem{Binoth:2010ra} J.~R.~Andersen {\it et al.} [SM and NLO Multileg Working Group Collaboration], {\em Les Houches 2009: The SM and NLO Multileg Working Group: Summary report}, arXiv:1003.1241 [hep-ph]. %%CITATION = ARXIV:1003.1241;%% %\cite{Butterworth:2010ym} \bibitem{Butterworth:2010ym} J.~M.~Butterworth, A.~Arbey, L.~Basso, S.~Belov, A.~Bharucha, F.~Braam, A.~Buckley and M.~Campanelli {\it et al.}, {\em Les Houches 2009: The Tools and Monte Carlo working group Summary Report}, arXiv:1003.1643 [hep-ph], arXiv:1003.1643 [hep-ph]. %%CITATION = ARXIV:1003.1643;%% %\cite{Binoth:2009rv} \bibitem{Binoth:2009rv} T.~Binoth, N.~Greiner, A.~Guffanti, J.~Reuter, J.-P.~.Guillet and T.~Reiter, {\em Next-to-leading order QCD corrections to pp --> b anti-b b anti-b + X at the LHC: the quark induced case}, Phys.\ Lett.\ B {\bf 685}, 293 (2010) [arXiv:0910.4379 [hep-ph]]. %%CITATION = ARXIV:0910.4379;%% %\cite{Greiner:2011mp} \bibitem{Greiner:2011mp} N.~Greiner, A.~Guffanti, T.~Reiter and J.~Reuter, {\em NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC} Phys.\ Rev.\ Lett.\ {\bf 107}, 102002 (2011) [arXiv:1105.3624 [hep-ph]]. %% CITATION = ARXIV:1105.3624;%% %\cite{L_Ecuyer:2002} \bibitem{L_Ecuyer:2002} P.~L\'{e}Ecuyer, R.~Simard, E.~J.~Chen, and W.~D.~Kelton, {\em An Object-Oriented Random-Number Package with Many Long Streams and Substreams}, Operations Research, vol. 50, no. 6, pp. 1073-1075, Dec. 2002. %\cite{Platzer:2013esa} \bibitem{Platzer:2013esa} S.~Pl\"atzer, {\em RAMBO on diet}, [arXiv:1308.2922 [hep-ph]]. %% CITATION = ARXIV:1308.2922;%% %\cite{Kleiss:1991rn} \bibitem{Kleiss:1991rn} R.~Kleiss and W.~J.~Stirling, {\em Massive multiplicities and Monte Carlo}, Nucl.\ Phys.\ B {\bf 385}, 413 (1992). doi:10.1016/0550-3213(92)90107-M %%CITATION = doi:10.1016/0550-3213(92)90107-M;%% %\cite{Kleiss:1985gy} \bibitem{Kleiss:1985gy} R.~Kleiss, W.~J.~Stirling and S.~D.~Ellis, {\em A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies}, Comput.\ Phys.\ Commun.\ {\bf 40} (1986) 359. doi:10.1016/0010-4655(86)90119-0 %% CITATION = doi:10.1016/0010-4655(86)90119-0;%% \end{thebibliography} \end{document} Index: trunk/tests/functional_tests/cmdline_1.sh =================================================================== --- trunk/tests/functional_tests/cmdline_1.sh (revision 0) +++ trunk/tests/functional_tests/cmdline_1.sh (revision 8347) @@ -0,0 +1,12 @@ +#!/bin/sh +### Check WHIZARD control structures +echo "Running script $0" +script=`basename @script@` +./run_whizard.sh @script@ \ + -e "'int i = 1'" \ + -f ${script}_a.sin \ + --execute \'i = 4 a = 12\' \ + --file ${script}_b.sin \ + -e \"int q = 3\" \ + --no-logging --no-model --no-library +diff ref-output/$script.ref $script.log Index: trunk/tests/functional_tests/Makefile.am =================================================================== --- trunk/tests/functional_tests/Makefile.am (revision 8346) +++ trunk/tests/functional_tests/Makefile.am (revision 8347) @@ -1,790 +1,797 @@ ## Makefile.am -- Makefile for executable WHIZARD test scripts ## ## Process this file with automake to produce Makefile.in ## ######################################################################## # # Copyright (C) 1999-2019 by # Wolfgang Kilian # Thorsten Ohl # Juergen Reuter # with contributions from # cf. main AUTHORS file # # WHIZARD is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # WHIZARD is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # ######################################################################## WHIZARD_DRIVER = run_whizard.sh TESTS_DEFAULT = \ empty.run \ fatal.run \ + cmdline_1.run \ structure_1.run \ structure_2.run \ structure_3.run \ structure_4.run \ structure_5.run \ structure_6.run \ structure_7.run \ structure_8.run \ vars.run \ extpar.run \ testproc_1.run \ testproc_2.run \ testproc_3.run \ testproc_4.run \ testproc_5.run \ testproc_6.run \ testproc_7.run \ testproc_8.run \ testproc_9.run \ testproc_10.run \ testproc_11.run \ testproc_12.run \ template_me_1.run \ template_me_2.run \ model_scheme_1.run \ rebuild_1.run \ rebuild_4.run \ susyhit.run \ helicity.run \ libraries_4.run \ job_id_1.run \ pack_1.run XFAIL_TESTS_DEFAULT = TESTS_REQ_FASTJET = \ analyze_4.run \ bjet_cluster.run \ openloops_12.run \ openloops_13.run TESTS_REQ_OCAML = \ libraries_1.run \ libraries_2.run \ libraries_3.run \ rebuild_2.run \ rebuild_3.run \ rebuild_5.run \ defaultcuts.run \ cuts.run \ model_change_1.run \ model_change_2.run \ model_change_3.run \ model_test.run \ job_id_2.run \ job_id_3.run \ job_id_4.run \ qedtest_1.run \ qedtest_2.run \ qedtest_3.run \ qedtest_4.run \ qedtest_5.run \ qedtest_6.run \ qedtest_7.run \ qedtest_8.run \ qedtest_9.run \ qedtest_10.run \ rambo_vamp_1.run \ rambo_vamp_2.run \ beam_setup_1.run \ beam_setup_2.run \ beam_setup_3.run \ beam_setup_4.run \ beam_setup_5.run \ qcdtest_1.run \ qcdtest_2.run \ qcdtest_3.run \ qcdtest_4.run \ qcdtest_5.run \ qcdtest_6.run \ observables_1.run \ observables_2.run \ event_weights_1.run \ event_weights_2.run \ event_eff_1.run \ event_eff_2.run \ event_dump_1.run \ event_dump_2.run \ reweight_1.run \ reweight_2.run \ reweight_3.run \ reweight_4.run \ reweight_5.run \ reweight_6.run \ reweight_7.run \ reweight_8.run \ analyze_1.run \ analyze_2.run \ analyze_5.run \ analyze_6.run \ colors.run \ colors_2.run \ colors_hgg.run \ alphas.run \ jets_xsec.run \ lhef_1.run \ lhef_2.run \ lhef_3.run \ lhef_4.run \ lhef_5.run \ lhef_6.run \ lhef_7.run \ lhef_8.run \ lhef_9.run \ lhef_10.run \ lhef_11.run \ stdhep_1.run \ stdhep_2.run \ stdhep_3.run \ stdhep_4.run \ stdhep_5.run \ stdhep_6.run \ select_1.run \ select_2.run \ fatal_beam_decay.run \ smtest_1.run \ smtest_2.run \ smtest_3.run \ smtest_4.run \ smtest_5.run \ smtest_6.run \ smtest_7.run \ smtest_8.run \ smtest_9.run \ smtest_10.run \ smtest_11.run \ smtest_12.run \ smtest_13.run \ smtest_14.run \ smtest_15.run \ smtest_16.run \ photon_isolation_1.run \ photon_isolation_2.run \ resonances_1.run \ resonances_2.run \ resonances_3.run \ resonances_4.run \ resonances_5.run \ resonances_6.run \ resonances_7.run \ resonances_8.run \ resonances_9.run \ resonances_10.run \ resonances_11.run \ resonances_12.run \ mssmtest_1.run \ mssmtest_2.run \ mssmtest_3.run \ sm_cms_1.run \ ufo_1.run \ ufo_2.run \ ufo_3.run \ ufo_4.run \ nlo_1.run \ nlo_2.run \ nlo_3.run \ nlo_4.run \ nlo_5.run \ nlo_6.run \ nlo_decay_1.run \ real_partition_1.run \ fks_res_1.run \ fks_res_2.run \ fks_res_3.run \ openloops_1.run \ openloops_2.run \ openloops_3.run \ openloops_4.run \ openloops_5.run \ openloops_6.run \ openloops_7.run \ openloops_8.run \ openloops_9.run \ openloops_10.run \ openloops_11.run \ recola_1.run \ recola_2.run \ recola_3.run \ recola_4.run \ recola_5.run \ recola_6.run \ recola_7.run \ recola_8.run \ powheg_1.run \ spincor_1.run \ show_1.run \ show_2.run \ show_3.run \ show_4.run \ show_5.run \ method_ovm_1.run \ multi_comp_1.run \ multi_comp_2.run \ multi_comp_3.run \ multi_comp_4.run \ flvsum_1.run \ br_redef_1.run \ decay_err_1.run \ decay_err_2.run \ decay_err_3.run \ polarized_1.run \ pdf_builtin.run \ ep_1.run \ ep_2.run \ ep_3.run \ circe1_1.run \ circe1_2.run \ circe1_3.run \ circe1_4.run \ circe1_5.run \ circe1_6.run \ circe1_7.run \ circe1_8.run \ circe1_9.run \ circe1_10.run \ circe1_photons_1.run \ circe1_photons_2.run \ circe1_photons_3.run \ circe1_photons_4.run \ circe1_photons_5.run \ circe1_errors_1.run \ circe2_1.run \ circe2_2.run \ circe2_3.run \ ewa_1.run \ ewa_2.run \ ewa_3.run \ ewa_4.run \ isr_1.run \ isr_2.run \ isr_3.run \ isr_4.run \ isr_5.run \ epa_1.run \ epa_2.run \ isr_epa_1.run \ ilc.run \ gaussian_1.run \ gaussian_2.run \ beam_events_1.run \ beam_events_2.run \ beam_events_3.run \ beam_events_4.run \ energy_scan_1.run \ restrictions.run \ process_log.run \ shower_err_1.run \ parton_shower_1.run \ parton_shower_2.run \ hadronize_1.run \ mlm_matching_fsr.run \ user_cuts.run \ user_prc_threshold_1.run \ cascades2_phs_1.run \ user_prc_threshold_2.run \ vamp2_1.run \ vamp2_2.run XFAIL_TESTS_REQ_OCAML = \ colors_hgg.run \ hadronize_1.run \ user_cuts.run TESTS_REQ_HEPMC = \ hepmc_1.run \ hepmc_2.run \ hepmc_3.run \ hepmc_4.run \ hepmc_5.run \ hepmc_6.run \ hepmc_7.run \ hepmc_8.run \ hepmc_9.run \ hepmc_10.run XFAIL_TESTS_REQ_HEPMC = TESTS_REQ_LCIO = \ lcio_1.run \ lcio_2.run \ lcio_3.run \ lcio_4.run \ lcio_5.run \ lcio_6.run \ lcio_7.run \ lcio_8.run \ lcio_9.run \ lcio_10.run XFAIL_TESTS_REQ_LCIO = TESTS_REQ_LHAPDF5 = \ lhapdf5.run TESTS_REQ_LHAPDF6 = \ lhapdf6.run XFAIL_TESTS_REQ_LHAPDF5 = XFAIL_TESTS_REQ_LHAPDF6 = TESTS_STATIC = \ static_1.run \ static_2.run XFAIL_TESTS_STATIC = TESTS_REQ_PYTHIA6 = \ pythia6_1.run \ pythia6_2.run \ pythia6_3.run \ pythia6_4.run \ tauola_1.run \ tauola_2.run \ isr_5.run \ mlm_pythia6_isr.run \ mlm_matching_isr.run XFAIL_TESTS_REQ_PYTHIA6 = TESTS_REQ_PYTHIA8 = # pythia8_1.run \ # pythia8_2.run XFAIL_TESTS_REQ_PYTHIA8 = TESTS_REQ_EV_ANA = \ analyze_3.run XFAIL_TESTS_REQ_EV_ANA = TESTS_REQ_GAMELAN = \ analyze_3.run TEST_DRIVERS_RUN = \ $(TESTS_DEFAULT) \ $(TESTS_REQ_OCAML) \ $(TESTS_REQ_LHAPDF5) \ $(TESTS_REQ_LHAPDF6) \ $(TESTS_REQ_HEPMC) \ $(TESTS_REQ_LCIO) \ $(TESTS_REQ_FASTJET) \ $(TESTS_REQ_PYTHIA6) \ $(TESTS_REQ_EV_ANA) \ $(TESTS_STATIC) TEST_DRIVERS_SH = $(TEST_DRIVERS_RUN:.run=.sh) ######################################################################## TESTS = XFAIL_TESTS = TESTS_SRC = TESTS += $(TESTS_DEFAULT) XFAIL_TESTS += $(XFAIL_TESTS_DEFAULT) TESTS += $(TESTS_REQ_OCAML) XFAIL_TESTS += $(XFAIL_TESTS_REQ_OCAML) TESTS += $(TESTS_REQ_HEPMC) XFAIL_TESTS += $(XFAIL_TESTS_REQ_HEPMC) TESTS += $(TESTS_REQ_LCIO) XFAIL_TESTS += $(XFAIL_TESTS_REQ_LCIO) TESTS += $(TESTS_REQ_FASTJET) XFAIL_TESTS += $(XFAIL_TESTS_REQ_FASTJET) TESTS += $(TESTS_REQ_LHAPDF5) XFAIL_TESTS += $(XFAIL_TESTS_REQ_LHAPDF5) TESTS += $(TESTS_REQ_LHAPDF6) XFAIL_TESTS += $(XFAIL_TESTS_REQ_LHAPDF6) TESTS += $(TESTS_REQ_PYTHIA6) XFAIL_TESTS += $(XFAIL_TESTS_REQ_PYTHIA6) TESTS += $(TESTS_REQ_PYTHIA8) XFAIL_TESTS += $(XFAIL_TESTS_REQ_PYTHIA8) TESTS += $(TESTS_REQ_EV_ANA) XFAIL_TESTS += $(XFAIL_TESTS_REQ_EV_ANA) TESTS += $(TESTS_STATIC) XFAIL_TESTS += $(XFAIL_TESTS_STATIC) EXTRA_DIST = $(TEST_DRIVERS_SH) \ $(TESTS_SRC) ######################################################################## VPATH = $(srcdir) SUFFIXES = .sh .run .sh.run: @rm -f $@ @if test -f $(top_builddir)/share/tests/functional_tests/$*.sin; then \ $(SED) 's|@script@|$(top_builddir)/share/tests/functional_tests/$*|g' $< > $@; \ elif test -f $(top_srcdir)/share/tests/functional_tests/$*.sin; then \ $(SED) 's|@script@|$(top_srcdir)/share/tests/functional_tests/$*|g' $< > $@; \ else \ echo "$*.sin not found!" 1>&2; \ exit 2; \ fi @chmod +x $@ +cmdline_1.run: cmdline_1_a.sin cmdline_1_b.sin +cmdline_1_a.sin: $(top_builddir)/share/tests/functional_tests/cmdline_1_a.sin + cp $< $@ +cmdline_1_b.sin: $(top_builddir)/share/tests/functional_tests/cmdline_1_b.sin + cp $< $@ + structure_2.run: structure_2_inc.sin structure_2_inc.sin: $(top_builddir)/share/tests/functional_tests/structure_2_inc.sin cp $< $@ testproc_3.run: testproc_3.phs testproc_3.phs: $(top_builddir)/share/tests/functional_tests/testproc_3.phs cp $< $@ static_1.run: static_1.exe.sin static_1.exe.sin: $(top_builddir)/share/tests/functional_tests/static_1.exe.sin cp $< $@ static_2.run: static_2.exe.sin static_2.exe.sin: $(top_builddir)/share/tests/functional_tests/static_2.exe.sin cp $< $@ susyhit.run: susyhit.in user_cuts.run: user_cuts.f90 user_cuts.f90: $(top_builddir)/share/tests/functional_tests/user_cuts.f90 cp $< $@ model_test.run: tdefs.$(FC_MODULE_EXT) tglue.$(FC_MODULE_EXT) \ threeshl.$(FC_MODULE_EXT) tscript.$(FC_MODULE_EXT) tdefs.mod: $(top_builddir)/src/models/threeshl_bundle/tdefs.$(FC_MODULE_EXT) cp $< $@ tglue.mod: $(top_builddir)/src/models/threeshl_bundle/tglue.$(FC_MODULE_EXT) cp $< $@ tscript.mod: $(top_builddir)/src/models/threeshl_bundle/tscript.$(FC_MODULE_EXT) cp $< $@ threeshl.mod: $(top_builddir)/src/models/threeshl_bundle/threeshl.$(FC_MODULE_EXT) cp $< $@ WT_OCAML_NATIVE_EXT=opt if OCAML_AVAILABLE OMEGA_QED = $(top_builddir)/omega/bin/omega_QED.$(WT_OCAML_NATIVE_EXT) OMEGA_QCD = $(top_builddir)/omega/bin/omega_QCD.$(WT_OCAML_NATIVE_EXT) OMEGA_MSSM = $(top_builddir)/omega/bin/omega_MSSM.$(WT_OCAML_NATIVE_EXT) omega_MSSM.$(WT_OMEGA_CACHE_SUFFIX): $(OMEGA_MSSM) $(OMEGA_MSSM) -initialize . UFO_TAG_FILE = __init__.py UFO_MODELPATH = ../models/UFO ufo_1.run: ufo_1_SM/$(UFO_TAG_FILE) ufo_2.run: ufo_2_SM/$(UFO_TAG_FILE) ufo_3.run: ufo_3_models/ufo_3_SM/$(UFO_TAG_FILE) ufo_4.run: ufo_4_models/ufo_4_SM/$(UFO_TAG_FILE) ufo_1_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_1_SM cp $(UFO_MODELPATH)/SM/*.py ufo_1_SM ufo_2_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_2_SM cp $(UFO_MODELPATH)/SM/*.py ufo_2_SM ufo_3_models/ufo_3_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_3_models/ufo_3_SM cp $(UFO_MODELPATH)/SM/*.py ufo_3_models/ufo_3_SM ufo_4_models/ufo_4_SM/$(UFO_TAG_FILE): $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE) mkdir -p ufo_4_models/ufo_4_SM cp $(UFO_MODELPATH)/SM/*.py ufo_4_models/ufo_4_SM $(UFO_MODELPATH)/SM/$(UFO_TAG_FILE): $(top_srcdir)/omega/tests/UFO/SM/$(UFO_TAG_FILE) $(MAKE) -C $(UFO_MODELPATH)/SM all endif OCAML_AVAILABLE if MPOST_AVAILABLE $(TESTS_REQ_GAMELAN): gamelan.sty gamelan.sty: $(top_builddir)/src/gamelan/gamelan.sty cp $< $@ $(top_builddir)/src/gamelan/gamelan.sty: $(MAKE) -C $(top_builddir)/src/gamelan gamelan.sty endif noinst_PROGRAMS = if OCAML_AVAILABLE noinst_PROGRAMS += resonances_1_count resonances_1_count_SOURCES = resonances_1_count.f90 resonances_1.run: resonances_1_count noinst_PROGRAMS += resonances_2_count resonances_2_count_SOURCES = resonances_2_count.f90 resonances_2.run: resonances_2_count noinst_PROGRAMS += resonances_3_count resonances_3_count_SOURCES = resonances_3_count.f90 resonances_3.run: resonances_3_count noinst_PROGRAMS += resonances_4_count resonances_4_count_SOURCES = resonances_4_count.f90 resonances_4.run: resonances_4_count noinst_PROGRAMS += resonances_9_count resonances_9_count_SOURCES = resonances_9_count.f90 resonances_9.run: resonances_9_count noinst_PROGRAMS += resonances_10_count resonances_10_count_SOURCES = resonances_10_count.f90 resonances_10.run: resonances_10_count noinst_PROGRAMS += resonances_11_count resonances_11_count_SOURCES = resonances_11_count.f90 resonances_11.run: resonances_11_count noinst_PROGRAMS += epa_2_count epa_2_count_SOURCES = epa_2_count.f90 epa_2.run: epa_2_count noinst_PROGRAMS += isr_epa_1_count isr_epa_1_count_SOURCES = isr_epa_1_count.f90 isr_epa_1.run: isr_epa_1_count noinst_PROGRAMS += analyze_6_check analyze_6_check_SOURCES = analyze_6_check.f90 analyze_6.run: analyze_6_check endif if HEPMC_AVAILABLE TESTS_SRC += $(hepmc_6_rd_SOURCES) noinst_PROGRAMS += hepmc_6_rd if HEPMC_IS_VERSION3 hepmc_6_rd_SOURCES = hepmc3_6_rd.cpp else hepmc_6_rd_SOURCES = hepmc2_6_rd.cpp endif hepmc_6_rd_CXXFLAGS = $(HEPMC_INCLUDES) $(AM_CXXFLAGS) hepmc_6_rd_LDADD = $(LDFLAGS_HEPMC) hepmc_6.run: hepmc_6_rd endif if LCIO_AVAILABLE TESTS_SRC += $(lcio_rd_SOURCES) noinst_PROGRAMS += lcio_rd lcio_rd_SOURCES = lcio_rd.cpp lcio_rd_CXXFLAGS = $(LCIO_INCLUDES) $(AM_CXXFLAGS) lcio_rd_LDADD = $(LDFLAGS_LCIO) lcio_1.run: lcio_rd lcio_2.run: lcio_rd lcio_3.run: lcio_rd lcio_4.run: lcio_rd lcio_5.run: lcio_rd lcio_10.run: lcio_rd endif stdhep_4.run: stdhep_rd stdhep_5.run: stdhep_rd stdhep_6.run: stdhep_rd polarized_1.run: stdhep_rd tauola_1.run: stdhep_rd tauola_2.run: stdhep_rd stdhep_rd: $(top_builddir)/src/xdr/stdhep_rd cp $< $@ susyhit.in: $(top_builddir)/share/tests/functional_tests/susyhit.in cp $< $@ BUILT_SOURCES = \ TESTFLAG \ HEPMC2_FLAG \ HEPMC3_FLAG \ LCIO_FLAG \ FASTJET_FLAG \ LHAPDF5_FLAG \ LHAPDF6_FLAG \ GAMELAN_FLAG \ MPI_FLAG \ EVENT_ANALYSIS_FLAG \ OCAML_FLAG \ PYTHIA6_FLAG \ PYTHIA8_FLAG \ OPENLOOPS_FLAG \ RECOLA_FLAG \ GZIP_FLAG \ STATIC_FLAG \ ref-output # If this file is found in the working directory, WHIZARD # will use the paths for the uninstalled version (source/build tree), # otherwise it uses the installed version TESTFLAG: touch $@ FASTJET_FLAG: if FASTJET_AVAILABLE touch $@ endif HEPMC2_FLAG: if HEPMC2_AVAILABLE touch $@ endif HEPMC3_FLAG: if HEPMC3_AVAILABLE touch $@ endif LCIO_FLAG: if LCIO_AVAILABLE touch $@ endif LHAPDF5_FLAG: if LHAPDF5_AVAILABLE touch $@ endif LHAPDF6_FLAG: if LHAPDF6_AVAILABLE touch $@ endif GAMELAN_FLAG: if MPOST_AVAILABLE touch $@ endif MPI_FLAG: if FC_USE_MPI touch $@ endif OCAML_FLAG: if OCAML_AVAILABLE touch $@ endif PYTHIA6_FLAG: if PYTHIA6_AVAILABLE touch $@ endif PYTHIA8_FLAG: if PYTHIA8_AVAILABLE touch $@ endif OPENLOOPS_FLAG: if OPENLOOPS_AVAILABLE touch $@ endif RECOLA_FLAG: if RECOLA_AVAILABLE touch $@ endif EVENT_ANALYSIS_FLAG: if EVENT_ANALYSIS_AVAILABLE touch $@ endif GZIP_FLAG: if GZIP_AVAILABLE touch $@ endif STATIC_FLAG: if STATIC_AVAILABLE touch $@ endif # The reference output files are in the source directory. Copy them here. if FC_QUAD ref-output: $(top_srcdir)/share/tests/functional_tests/ref-output mkdir -p ref-output for f in $ neu1 A added to MSSM_Hgg model ################################################################## 2019-01-21 RELEASE: version 2.7.0 2018-12-18 Support RECOLA for integrated und unintegrated subtractions 2018-12-11 FCNC top-up sector in model SM_top_anom 2018-12-05 Use libtirpc instead of SunRPC on Arch Linux etc. 2018-11-30 Display rescaling factor for weighted event samples with cuts 2018-11-29 Reintroduce check against different masses in flavor sums Bug fix for wrong couplings in the Littlest Higgs model(s) 2018-11-22 Bug fix for rescanning events with beam structure 2018-11-09 Major refactoring of internal process data 2018-11-02 PYTHIA8 interface 2018-10-29 Flat phase space parametrization with RAMBO (on diet) implemented 2018-10-17 Revise extended test suite 2018-09-27 Process container for RECOLA processes 2018-09-15 Fixes by M. Berggren for PYTHIA6 interface 2018-09-14 First fixes after HepForge modernization ################################################################## 2018-08-23 RELEASE: version 2.6.4 2018-08-09 Infrastructure to check colored subevents 2018-07-10 Infrastructure for running WHIZARD in batch mode 2018-07-04 MPI available from distribution tarball 2018-06-03 Support Intel Fortran Compiler under MAC OS X 2018-05-07 FKS slicing parameter delta_i (initial state) implementend 2018-05-03 Refactor structure function assignment for NLO 2018-05-02 FKS slicing parameter xi_cut, delta_0 implemented 2018-04-20 Workspace subdirectory for process integration (grid/phs files) Packing/unpacking of files at job end/start Exporting integration results from scan loops 2018-04-13 Extended QCD NLO test suite 2018-04-09 Bug fix for Higgs Singlet Extension model 2018-04-06 Workspace subdirectory for process generation and compilation --job-id option for creating job-specific names 2018-03-20 Bug fix for color flow matching in hadron collisions with identical initial state quarks 2018-03-08 Structure functions quantum numbers correctly assigned for NLO 2018-02-24 Configure setup includes 'pgfortran' and 'flang' 2018-02-21 Include spin-correlated matrix elements in interactions 2018-02-15 Separate module for QED ISR structure functions ################################################################## 2018-02-10 RELEASE: version 2.6.3 2018-02-08 Improvements in memory management for PS generation 2018-01-31 Partial refactoring: quantum number assigment NLO Initial-state QCD splittings for hadron collisions 2018-01-25 Bug fix for weighted events with VAMP2 2018-01-17 Generalized interface for Recola versions 1.3+ and 2.1+ 2018-01-15 Channel equivalences also for VAMP2 integrator 2018-01-12 Fix for OCaml compiler 4.06 (and newer) 2017-12-19 RECOLA matrix elements with flavor sums can be integrated 2017-12-18 Bug fix for segmentation fault in empty resonance histories 2017-12-16 Fixing a bug in PYTHIA6 PYHEPC routine by omitting CMShowers from transferral between PYTHIA and WHIZARD event records 2017-12-15 Event index for multiple processes in event file correct ################################################################## 2017-12-13 RELEASE: version 2.6.2 2017-12-07 User can set offset in event numbers 2017-11-29 Possibility to have more than one RECOLA process in one file 2017-11-23 Transversal/mixed (and unitarized) dim-8 operators 2017-11-16 epa_q_max replaces epa_e_max (trivial factor 2) 2017-11-15 O'Mega matrix element compilation silent now 2017-11-14 Complete expanded P-wave form factor for top threshold 2017-11-10 Incoming particles can be accessed in SINDARIN 2017-11-08 Improved handling of resonance insertion, additional parameters 2017-11-04 Added Higgs-electron coupling (SM_Higgs) ################################################################## 2017-11-03 RELEASE: version 2.6.1 2017-10-20 More than 5 NLO components possible at same time 2017-10-19 Gaussian cutoff for shower resonance matching 2017-10-12 Alternative (more efficient) method to generate phase space file 2017-10-11 Bug fix for shower resonance histories for processes with multiple components 2017-09-25 Bugfix for process libraries in shower resonance histories 2017-09-21 Correctly generate pT distribution for EPA remnants 2017-09-20 Set branching ratios for unstable particles also by hand 2017-09-14 Correctly generate pT distribution for ISR photons ################################################################## 2017-09-08 RELEASE: version 2.6.0 2017-09-05 Bug fix for initial state NLO QCD flavor structures Real and virtual NLO QCD hadron collider processes work with internal interactions 2017-09-04 Fully validated MPI integration and event generation 2017-09-01 Resonance histories for shower: full support Bug fix in O'Mega model constraints O'Mega allows to output a parsable form of the DAG 2017-08-24 Resonance histories in events for transferral to parton shower (e.g. in ee -> jjjj) 2017-08-01 Alpha version of HepMC v3 interface (not yet really functional) 2017-07-31 Beta version for RECOLA OLP support 2017-07-06 Radiation generator fix for LHC processes 2017-06-30 Fix bug for NLO with structure functions and/or polarization 2017-06-23 Collinear limit for QED corrections works 2017-06-17 POWHEG grids generated already during integration 2017-06-12 Soft limit for QED corrections works 2017-05-16 Beta version of full MPI parallelization (VAMP2) Check consistency of POWHEG grid files Logfile config-summary.log for configure summary 2017-05-12 Allow polarization in top threshold 2017-05-09 Minimal demand automake 1.12.2 Silent rules for make procedures 2017-05-07 Major fix for POWHEG damping Correctly initialize FKS ISR phasespace ################################################################## 2017-05-06 RELEASE: version 2.5.0 2017-05-05 Full UFO support (SM-like models) Fixed-beam ISR FKS phase space 2017-04-26 QED splittings in radiation generator 2017-04-10 Retire deprecated O'Mega vertex cache files ################################################################## 2017-03-24 RELEASE: version 2.4.1 2017-03-16 Distinguish resonance charge in phase space channels Keep track of resonance histories in phase space Complex mass scheme default for OpenLoops amplitudes 2017-03-13 Fix helicities for polarized OpenLoops calculations 2017-03-09 Possibility to advance RNG state in rng_stream 2017-03-04 General setup for partitioning real emission phase space 2017-03-06 Bugfix on rescan command for converting event files 2017-02-27 Alternative multi-channel VEGAS implementation VAMP2: serial backbone for MPI setup Smoothstep top threshold matching 2017-02-25 Single-beam structure function with s-channel mapping supported Safeguard against invalid process libraries 2017-02-16 Radiation generator for photon emission 2017-02-10 Fixes for NLO QCD processes (color correlations) 2017-01-16 LCIO variable takes precedence over LCIO_DIR 2017-01-13 Alternative random number generator rng_stream (cf. L'Ecuyer et al.) 2017-01-01 Fix for multi-flavor BLHA tree matrix elements 2016-12-31 Grid path option for VAMP grids 2016-12-28 Alpha version of Recola OLP support 2016-12-27 Dalitz plots for FKS phase space 2016-12-14 NLO multi-flavor events possible 2016-12-09 LCIO event header information added 2016-12-02 Alpha version of RECOLA interface Bugfix for generator status in LCIO ################################################################## 2016-11-28 RELEASE: version 2.4.0 2016-11-24 Bugfix for OpenLoops interface: EW scheme is set by WHIZARD Bugfixes for top threshold implementation 2016-11-11 Refactoring of dispatching 2016-10-18 Bug fix for LCIO output 2016-10-10 First implementation for collinear soft terms 2016-10-06 First full WHIZARD models from UFO files 2016-10-05 WHIZARD does not support legacy gcc 4.7.4 any longer 2016-09-30 Major refactoring of process core and NLO components 2016-09-23 WHIZARD homogeneous entity: discarding subconfigures for CIRCE1/2, O'Mega, VAMP subpackages; these are reconstructable by script projectors 2016-09-06 Introduce main configure summary 2016-08-26 Fix memory leak in event generation ################################################################## 2016-08-25 RELEASE: version 2.3.1 2016-08-19 Bug fix for EW-scheme dependence of gluino propagators 2016-08-01 Beta version of complex mass scheme support 2016-07-26 Fix bug in POWHEG damping for the matching ################################################################## 2016-07-21 RELEASE: version 2.3.0 2016-07-20 UFO file support (alpha version) in O'Mega 2016-07-13 New (more) stable of WHIZARD GUI Support for EW schemes for OpenLoops Factorized NLO top decays for threshold model 2016-06-15 Passing factorization scale to PYTHIA6 Adding charge and neutral observables 2016-06-14 Correcting angular distribution/tweaked kinematics in non-collinear structure functions splittings 2016-05-10 Include (Fortran) TAUOLA/PHOTOS for tau decays via PYTHIA6 (backwards validation of LC CDR/TDR samples) 2016-04-27 Within OpenLoops virtuals: support for Collier library 2016-04-25 O'Mega vertex tables only loaded at first usage 2016-04-21 New CJ15 PDF parameterizations added 2016-04-21 Support for hadron collisions at NLO QCD 2016-04-05 Support for different (parameter) schemes in model files 2016-03-31 Correct transferral of lifetime/vertex from PYTHIA/TAUOLA into the event record 2016-03-21 New internal implementation of polarization via Bloch vectors, remove pointer constructions 2016-03-13 Extension of cascade syntax for processes: exclude propagators/vertices etc. possible 2016-02-24 Full support for OpenLoops QCD NLO matrix elements, inclusion in test suite 2016-02-12 Substantial progress on QCD NLO support 2016-02-02 Automated resonance mapping for FKS subtraction 2015-12-17 New BSM model WZW for diphoton resonances ################################################################## 2015-11-22 RELEASE: version 2.2.8 2015-11-21 Bugfix for fixed-order NLO events 2015-11-20 Anomalous FCNC top-charm vertices 2015-11-19 StdHEP output via HEPEVT/HEPEV4 supported 2015-11-18 Full set of electroweak dim-6 operators included 2015-10-22 Polarized one-loop amplitudes supported 2015-10-21 Fixes for event formats for showered events 2015-10-14 Callback mechanism for event output 2015-09-22 Bypass matrix elements in pure event sample rescans StdHep frozen final version v5.06.01 included internally 2015-09-21 configure option --with-precision to demand 64bit, 80bit, or 128bit Fortran and bind C precision types 2015-09-07 More extensive tests of NLO infrastructure and POWHEG matching 2015-09-01 NLO decay infrastructure User-defined squared matrix elements Inclusive FastJet algorithm plugin Numerical improvement for small boosts ################################################################## 2015-08-11 RELEASE: version 2.2.7 2015-08-10 Infrastructure for damped POWHEG Massive emitters in POWHEG Born matrix elements via BLHA GoSam filters via SINDARIN Minor running coupling bug fixes Fixed-order NLO events 2015-08-06 CT14 PDFs included (LO, NLO, NNLL) 2015-07-07 Revalidation of ILC WHIZARD-PYTHIA event chain Extended test suite for showered events Alpha version of massive FSR for POWHEG 2015-06-09 Fix memory leak in interaction for long cascades Catch mismatch between beam definition and CIRCE2 spectrum 2015-06-08 Automated POWHEG matching: beta version Infrastructure for GKS matching Alpha version of fixed-order NLO events CIRCE2 polarization averaged spectra with explicitly polarized beams 2015-05-12 Abstract matching type: OO structure for matching/merging 2015-05-07 Bug fix in event record WHIZARD-PYTHIA6 transferral Gaussian beam spectra for lepton colliders ################################################################## 2015-05-02 RELEASE: version 2.2.6 2015-05-01 Models for (unitarized) tensor resonances in VBS 2015-04-28 Bug fix in channel weights for event generation. 2015-04-18 Improved event record transfer WHIZARD/PYTHIA6 2015-03-19 POWHEG matching: alpha version ################################################################## 2015-02-27 RELEASE: version 2.2.5 2015-02-26 Abstract types for quantum numbers 2015-02-25 Read-in of StdHEP events, self-tests 2015-02-22 Bugfix for mother-daughter relations in showered/hadronized events 2015-02-20 Projection on polarization in intermediate states 2015-02-13 Correct treatment of beam remnants in event formats (also LC remnants) ################################################################## 2015-02-06 RELEASE: version 2.2.4 2015-02-06 Bugfix in event output 2015-02-05 LCIO event format supported 2015-01-30 Including state matrices in WHIZARD's internal IO Versioning for WHIZARD's internal IO Libtool update from 2.4.3 to 2.4.5 LCIO event output (beta version) 2015-01-27 Progress on NLO integration Fixing a bug for multiple processes in a single event file when using beam event files 2015-01-19 Bug fix for spin correlations evaluated in the rest frame of the mother particle 2015-01-17 Regression fix for statically linked processes from SARAH and FeynRules 2015-01-10 NLO: massive FKS emitters supported (experimental) 2015-01-06 MMHT2014 PDF sets included 2015-01-05 Handling mass degeneracies in auto_decays 2014-12-19 Fixing bug in rescan of event files ################################################################## 2014-11-30 RELEASE: version 2.2.3 2014-11-29 Beta version of LO continuum/NLL-threshold matched top threshold model for e+e- physics 2014-11-28 More internal refactoring: disentanglement of module dependencies 2014-11-21 OVM: O'Mega Virtual Machine, bytecode instructions instead of compiled Fortran code 2014-11-01 Higgs Singlet extension model included 2014-10-18 Internal restructuring of code; half-way WHIZARD main code file disassembled 2014-07-09 Alpha version of NLO infrastructure ################################################################## 2014-07-06 RELEASE: version 2.2.2 2014-07-05 CIRCE2: correlated LC beam spectra and GuineaPig Interface to LC machine parameters 2014-07-01 Reading LHEF for decayed/factorized/showered/ hadronized events 2014-06-25 Configure support for GoSAM/Ninja/Form/QGraf 2014-06-22 LHAPDF6 interface 2014-06-18 Module for automatic generation of radiation and loop infrastructure code 2014-06-11 Improved internal directory structure ################################################################## 2014-06-03 RELEASE: version 2.2.1 2014-05-30 Extensions of internal PDG arrays 2014-05-26 FastJet interface 2014-05-24 CJ12 PDFs included 2014-05-20 Regression fix for external models (via SARAH or FeynRules) ################################################################## 2014-05-18 RELEASE: version 2.2.0 2014-04-11 Multiple components: inclusive process definitions, syntax: process A + B + ... 2014-03-13 Improved PS mappings for e+e- ISR ILC TDR and CLIC spectra included in CIRCE1 2014-02-23 New models: AltH w\ Higgs for exclusion purposes, SM_rx for Dim 6-/Dim-8 operators, SSC for general strong interactions (w/ Higgs), and NoH_rx (w\ Higgs) 2014-02-14 Improved s-channel mapping, new on-shell production mapping (e.g. Drell-Yan) 2014-02-03 PRE-RELEASE: version 2.2.0_beta 2014-01-26 O'Mega: Feynman diagram generation possible (again) 2013-12-16 HOPPET interface for b parton matching 2013-11-15 PRE-RELEASE: version 2.2.0_alpha-4 2013-10-27 LHEF standards 1.0/2.0/3.0 implemented 2013-10-15 PRE-RELEASE: version 2.2.0_alpha-3 2013-10-02 PRE-RELEASE: version 2.2.0_alpha-2 2013-09-25 PRE-RELEASE: version 2.2.0_alpha-1 2013-09-12 PRE-RELEASE: version 2.2.0_alpha 2013-09-03 General 2HDM implemented 2013-08-18 Rescanning/recalculating events 2013-06-07 Reconstruction of complete event from 4-momenta possible 2013-05-06 Process library stacks 2013-05-02 Process stacks 2013-04-29 Single-particle phase space module 2013-04-26 Abstract interface for random number generator 2013-04-24 More object-orientation on modules Midpoint-rule integrator 2013-04-05 Object-oriented integration and event generation 2013-03-12 Processes recasted object-oriented: MEs, scales, structure functions First infrastructure for general Lorentz structures 2013-01-17 Object-orientated reworking of library and process core, more variable internal structure, unit tests 2012-12-14 Update Pythia version to 6.4.27 2012-12-04 Fix the phase in HAZ vertices 2012-11-21 First O'Mega unit tests, some infrastructure 2012-11-13 Bugfix in anom. HVV Lorentz structures ################################################################## 2012-09-18 RELEASE: version 2.1.1 2012-09-11 Model MSSM_Hgg with Hgg and HAA vertices 2012-09-10 First version of implementation of multiple interactions in WHIZARD 2012-09-05 Infrastructure for internal CKKW matching 2012-09-02 C, C++, Python API 2012-07-19 Fixing particle numbering in HepMC format ################################################################## 2012-06-15 RELEASE: version 2.1.0 2012-06-14 Analytical and kT-ordered shower officially released PYTHIA interface officially released 2012-05-09 Intrisince PDFs can be used for showering 2012-05-04 Anomalous Higgs couplings a la hep-ph/9902321 ################################################################## 2012-03-19 RELEASE: version 2.0.7 2012-03-15 Run IDs are available now More event variables in analysis Modified raw event format (compatibility mode exists) 2012-03-12 Bugfix in decay-integration order MLM matching steered completely internally now 2012-03-09 Special phase space mapping for narrow resonances decaying to 4-particle final states with far off-shell intermediate states Running alphas from PDF collaborations with builtin PDFs 2012-02-16 Bug fix in cascades decay infrastructure 2012-02-04 WHIZARD documentation compatible with TeXLive 2011 2012-02-01 Bug fix in FeynRules interface with --prefix flag 2012-01-29 Bug fix with name clash of O'Mega variable names 2012-01-27 Update internal PYTHIA to version 6.4.26 Bug fix in LHEF output 2012-01-21 Catching stricter automake 1.11.2 rules 2011-12-23 Bug fix in decay cascade setup 2011-12-20 Bug fix in helicity selection rules 2011-12-16 Accuracy goal reimplemented 2011-12-14 WHIZARD compatible with TeXLive 2011 2011-12-09 Option --user-target added ################################################################## 2011-12-07 RELEASE: version 2.0.6 2011-12-07 Bug fixes in SM_top_anom Added missing entries to HepMC format 2011-12-06 Allow to pass options to O'Mega Bug fix for HEPEVT block for showered/hadronized events 2011-12-01 Reenabled user plug-in for external code for cuts, structure functions, routines etc. 2011-11-29 Changed model SM_Higgs for Higgs phenomenology 2011-11-25 Supporting a Y, (B-L) Z' model 2011-11-23 Make WHIZARD compatible for MAC OS X Lion/XCode 4 2011-09-25 WHIZARD paper published: Eur.Phys.J. C71 (2011) 1742 2011-08-16 Model SM_QCD: QCD with one EW insertion 2011-07-19 Explicit output channel for dvips avoids printing 2011-07-10 Test suite for WHIZARD unit tests 2011-07-01 Commands for matrix element tests More OpenMP parallelization of kinematics Added unit tests 2011-06-23 Conversion of CIRCE2 from F77 to F90, major clean-up 2011-06-14 Conversion of CIRCE1 from F77 to F90 2011-06-10 OpenMP parallelization of channel kinematics (by Matthias Trudewind) 2011-05-31 RELEASE: version 1.97 2011-05-24 Minor bug fixes: update grids and elsif statement. ################################################################## 2011-05-10 RELEASE: version 2.0.5 2011-05-09 Fixed bug in final state flavor sums Minor improvements on phase-space setup 2011-05-05 Minor bug fixes 2011-04-15 WHIZARD as a precompiled 64-bit binary available 2011-04-06 Wall clock instead of cpu time for time estimates 2011-04-05 Major improvement on the phase space setup 2011-04-02 OpenMP parallelization for helicity loop in O'Mega matrix elements 2011-03-31 Tools for relocating WHIZARD and use in batch environments 2011-03-29 Completely static builds possible, profiling options 2011-03-28 Visualization of integration history 2011-03-27 Fixed broken K-matrix implementation 2011-03-23 Including the GAMELAN manual in the distribution 2011-01-26 WHIZARD analysis can handle hadronized event files 2011-01-17 MSTW2008 and CT10 PDF sets included 2010-12-23 Inclusion of NMSSM with Hgg couplings 2010-12-21 Advanced options for integration passes 2010-11-16 WHIZARD supports CTEQ6 and possibly other PDFs directly; data files included in the distribution ################################################################## 2010-10-26 RELEASE: version 2.0.4 2010-10-06 Bug fix in MSSM implementation 2010-10-01 Update to libtool 2.4 2010-09-29 Support for anomalous top couplings (form factors etc.) Bug fix for running gauge Yukawa SUSY couplings 2010-09-28 RELEASE: version 1.96 2010-09-21 Beam remnants and pT spectra for lepton collider re-enabled Restructuring subevt class 2010-09-16 Shower and matching are disabled by default PYTHIA as a conditional on these two options 2010-09-14 Possibility to read in beam spectra re-enabled (e.g. Guinea Pig) 2010-09-13 Energy scan as (pseudo-) structure functions re-implemented 2010-09-10 CIRCE2 included again in WHIZARD 2 and validated 2010-09-02 Re-implementation of asymmetric beam energies and collision angles, e-p collisions work, inclusion of a HERA DIS test case ################################################################## 2010-10-18 RELEASE: version 2.0.3 2010-08-08 Bug in CP-violating anomalous triple TGCs fixed 2010-08-06 Solving backwards compatibility problem with O'Caml 3.12.0 2010-07-12 Conserved quantum numbers speed up O'Mega code generation 2010-07-07 Attaching full ISR/FSR parton shower and MPI/ISR module Added SM model containing Hgg, HAA, HAZ vertices 2010-07-02 Matching output available as LHEF and STDHEP 2010-06-30 Various bug fixes, missing files, typos 2010-06-26 CIRCE1 completely re-enabled Chaining structure functions supported 2010-06-25 Partial support for conserved quantum numbers in O'Mega 2010-06-21 Major upgrade of the graphics package: error bars, smarter SINDARIN steering, documentation, and all that... 2010-06-17 MLM matching with PYTHIA shower included 2010-06-16 Added full CIRCE1 and CIRCE2 versions including full documentation and miscellanea to the trunk 2010-06-12 User file management supported, improved variable and command structure 2010-05-24 Improved handling of variables in local command lists 2010-05-20 PYTHIA interface re-enabled 2010-05-19 ASCII file formats for interfacing ROOT and gnuplot in data analysis ################################################################## 2010-05-18 RELEASE: version 2.0.2 2010-05-14 Reimplementation of visualization of phase space channels Minor bug fixes 2010-05-12 Improved phase space - elimination of redundancies 2010-05-08 Interface for polarization completed: polarized beams etc. 2010-05-06 Full quantum numbers appear in process log Integration results are usable as user variables Communication with external programs 2010-05-05 Split module commands into commands, integration, simulation modules 2010-05-04 FSR+ISR for the first time connected to the WHIZARD 2 core ################################################################## 2010-04-25 RELEASE: version 2.0.1 2010-04-23 Automatic compile and integrate if simulate is called Minor bug fixes in O'Mega 2010-04-21 Checkpointing for event generation Flush statements to use WHIZARD inside a pipe 2010-04-20 Reimplementation of signal handling in WGIZARD 2.0 2010-04-19 VAMP is now a separately configurable and installable unit of WHIZARD, included VAMP self-checks Support again compilation in quadruple precision 2010-04-06 Allow for logarithmic plots in GAMELAN, reimplement the possibility to set the number of bins 2010-04-15 Improvement on time estimates for event generation ################################################################## 2010-04-12 RELEASE: version 2.0.0 2010-04-09 Per default, the code for the amplitudes is subdivided to allow faster compiler optimization More advanced and unified and straightforward command language syntax Final bug fixes 2010-04-07 Improvement on SINDARIN syntax; printf, sprintf function thorugh a C interface 2010-04-05 Colorizing DAGs instead of model vertices: speed boost in colored code generation 2010-03-31 Generalized options for normalization of weighted and unweighted events Grid and weight histories added again to log files Weights can be used in analyses 2010-03-28 Cascade decays completely implemented including color and spin correlations 2010-03-07 Added new WHIZARD header with logo 2010-03-05 Removed conflict in O'Mega amplitudes between flavour sums and cascades StdHEP interface re-implemented 2010-03-03 RELEASE: version 2.0.0rc3 Several bug fixes for preventing abuse in input files OpenMP support for amplitudes Reimplementation of WHIZARD 1 HEPEVT ASCII event formats FeynRules interface successfully passed MSSM test 2010-02-26 Eliminating ghost gluons from multi-gluon amplitudes 2010-02-25 RELEASE: version 1.95 HEPEVT format from WHIZARD 1 re-implemented in WHIZARD 2 2010-02-23 Running alpha_s implemented in the FeynRules interface 2010-02-19 MSSM (semi-) automatized self-tests finalized 2010-02-17 RELEASE: version 1.94 2010-02-16 Closed memory corruption in WHIZARD 1 Fixed problems of old MadGraph and CompHep drivers with modern compilers Uncolored vertex selection rules for colored amplitudes in O'Mega 2010-02-15 Infrastructure for color correlation computation in O'Mega finished Forbidden processes are warned about, but treated as non-fatal 2010-02-14 Color correlation computation in O'Mega finalized 2010-02-10 Improving phase space mappings for identical particles in initial and final states Introduction of more extended multi-line error message 2010-02-08 First O'Caml code for computation of color correlations in O'Mega 2010-02-07 First MLM matching with e+ e- -> jets ################################################################## 2010-02-06 RELEASE: version 2.0.0rc2 2010-02-05 Reconsidered the Makefile structure and more extended tests Catch a crash between WHIZARD and O'Mega for forbidden processes Tensor products of arbitrary color structures in jet definitions 2010-02-04 Color correlation computation in O'Mega finalized ################################################################## 2010-02-03 RELEASE: version 2.0.0rc1 ################################################################## 2010-01-31 Reimplemented numerical helicity selection rules Phase space functionality of version 1 restored and improved 2009-12-05 NMSSM validated with FeynRules in WHIZARD 1 (Felix Braam) 2009-12-04 RELEASE: version 2.0.0alpha ################################################################## 2009-04-16 RELEASE: version 1.93 2009-04-15 Clean-up of Makefiles and configure scripts Reconfiguration of BSM model implementation extended supersymmetric models 2008-12-23 New model NMSSM (Felix Braam) SLHA2 added Bug in LHAPDF interface fixed 2008-08-16 Bug fixed in K matrix implementation Gravitino option in the MSSM added 2008-03-20 Improved color and flavor sums ################################################################## 2008-03-12 RELEASE: version 1.92 LHEF (Les Houches Event File) format added Fortran 2003 command-line interface (if supported by the compiler) Automated interface to colored models More bug fixes and workarounds for compiler compatibility ################################################################## 2008-03-06 RELEASE: version 1.91 New model K-matrix (resonances and anom. couplings in WW scattering) EWA spectrum Energy-scan pseudo spectrum Preliminary parton shower module (only from final-state quarks) Cleanup and improvements of configure process Improvements for O'Mega parameter files Quadruple precision works again More plotting options: lines, symbols, errors Documentation with PDF bookmarks enabled Various bug fixes 2007-11-29 New model UED ################################################################## 2007-11-23 RELEASE: version 1.90 O'Mega now part of the WHIZARD tree Madgraph/CompHEP disabled by default (but still usable) Support for LHAPDF (preliminary) Added new models: SMZprime, SM_km, Template Improved compiler recognition and compatibility Minor bug fixes ################################################################## 2006-06-15 RELEASE: version 1.51 Support for anomaly-type Higgs couplings (to gluon and photon/Z) Support for spin 3/2 and spin 2 New models: Little Higgs (4 versions), toy models for extra dimensions and gravitinos Fixes to the whizard.nw source documentation to run through LaTeX Intel 9.0 bug workaround (deallocation of some arrays) 2006-05-15 O'Mega RELEASE: version 0.11 merged JRR's O'Mega extensions ################################################################## 2006-02-07 RELEASE: version 1.50 To avoid confusion: Mention outdated manual example in BUGS file O'Mega becomes part of the WHIZARD generator 2006-02-02 [bug fix update] Bug fix: spurious error when writing event files for weighted events Bug fix: 'r' option for omega produced garbage for some particle names Workaround for ifort90 bug (crash when compiling whizard_event) Workaround for ifort90 bug (crash when compiling hepevt_common) 2006-01-27 Added process definition files for MSSM 2->2 processes Included beam recoil for EPA (T.Barklow) Updated STDHEP byte counts (for STDHEP 5.04.02) Fixed STDHEP compatibility (avoid linking of incomplete .so libs) Fixed issue with comphep requiring Xlibs on Opteron Fixed issue with ifort 8.x on Opteron (compiling 'signal' interface) Fixed color-flow code: was broken for omega with option 'c' and 'w' Workaround hacks for g95 compatibility 2005-11-07 O'Mega RELEASE: version 0.10 O'Mega, merged JRR's and WK's color hack for WHiZard O'Mega, EXPERIMENTAL: cache fusion tables (required for colors a la JRR/WK) O'Mega, make JRR's MSSM official ################################################################## 2005-10-25 RELEASE: version 1.43 Minor fixes in MSSM couplings (Higgs/3rd gen squarks). This should be final, since the MSSM results agree now completely with Madgraph and Sherpa User-defined lower and upper limits for split event file count Allow for counters (events, bytes) exceeding $2^{31}$ Revised checksum treatment and implementation (now MD5) Bug fix: missing process energy scale in raw event file ################################################################## 2005-09-30 RELEASE: version 1.42 Graphical display of integration history ('make history') Allow for switching off signals even if supported (configure option) 2005-09-29 Revised phase space generation code, in particular for flavor sums Negative cut and histogram codes use initial beams instead of initial parton momenta. This allows for computing, e.g., E_miss Support constant-width and zero-width options for O'Mega Width options now denoted by w:X (X=f,c,z). f option obsolescent Bug fix: colorized code: flipped indices could screw up result Bug fix: O'Mega with 'c' and 'w:f' option together (still some problem) Bug fix: dvips on systems where dvips defaults to lpr Bug fix: integer overflow if too many events are requested 2005-07-29 Allow for 2 -> 1 processes (if structure functions are on) 2005-07-26 Fixed and expanded the 'test' matrix element: Unit matrix element with option 'u' / default: normalized phase space ################################################################## 2005-07-15 RELEASE: version 1.41 Bug fix: no result for particle decay processes with width=0 Bug fix: line breaks in O'Mega files with color decomposition 2005-06-02 New self-tests (make test-QED / test-QCD / test-SM) check lists of 2->2 processes Bug fix: HELAS calling convention for wwwwxx and jwwwxx (4W-Vertex) 2005-05-25 Revised Makefile structure Eliminated obsolete references to ISAJET/SUSY (superseded by SLHA) 2005-05-19 Support for color in O'Mega (using color flow decomposition) New model QCD Parameter file changes that correspond to replaced SM module in O'Mega Bug fixes in MSSM (O'Mega) parameter file 2005-05-18 New event file formats, useful for LHC applications: ATHENA and Les Houches Accord (external fragmentation) Naive (i.e., leading 1/N) color factor now implemented both for incoming and outgoing partons 2005-01-26 include missing HELAS files for bundle pgf90 compatibility issues [note: still internal error in pgf90] ################################################################## 2004-12-13 RELEASE: version 1.40 compatibility fix: preprocessor marks in helas code now commented out minor bug fix: format string in madgraph source 2004-12-03 support for arbitray beam energies and directions allow for pT kick in structure functions bug fix: rounding error could result in zero cross section (compiler-dependent) 2004-10-07 simulate decay processes list fraction (of total width/cross section) instead of efficiency in process summary new cut/analysis parameters AA, AAD, CTA: absolute polar angle 2004-10-04 Replaced Madgraph I by Madgraph II. Main improvement: model no longer hardcoded introduced parameter reset_seed_each_process (useful for debugging) bug fix: color initialization for some processes was undefined 2004-09-21 don't compile unix_args module if it is not required ################################################################## 2004-09-20 RELEASE: version 1.30 g95 compatibility issues resolved some (irrelevant) memory leaks closed removed obsolete warning in circe1 manual update (essentially) finished 2004-08-03 O'Mega RELEASE: version 0.9 O'Mega, src/trie.mli, src/trie.ml: make interface compatible with the O'Caml 3.08 library (remains compatible with older versions). Implementation of unused functions still incomplete. 2004-07-26 minor fixes and improvements in make process 2004-06-29 workarounds for new Intel compiler bugs ... no rebuild of madgraph/comphep executables after 'make clean' bug fix in phase space routine: wrong energy for massive initial particles bug fix in (new) model interface: name checks for antiparticles pre-run checks for comphep improved ww-strong model file extended Model files particle name fixes, chep SM vertices included 2004-06-22 O'Mega RELEASE: version 0.8 O'Mega MSSM: sign of W+/W-/A and W+/W-/Z couplings 2004-05-05 Fixed bug in PDFLIB interface: p+pbar was initialized as p+p (ThO) NAG compiler: set number of continuation lines to 200 as default Extended format for cross section summary; appears now in whizard.out Fixed 'bundle' feature 2004-04-28 Fixed compatibility with revised O'Mega SM_ac model Fixed problem with x=0 or x=1 when calling PDFLIB (ThO) Fixed bug in comphep module: Vtb was overlooked ################################################################## 2004-04-15 RELEASE: version 1.28 Fixed bug: Color factor was missing for O'Mega processes with four quarks and more Manual partially updated 2004-04-08 Support for grid files in binary format New default value show_histories=F (reduce output file size) Revised phase space switches: removed annihilation_lines, removed s_channel_resonance, changed meaning of extra_off_shell_lines, added show_deleted_channels Bug fixed which lead to omission of some phase space channels Color flow guessed only if requested by guess_color_flow 2004-03-10 New model interface: Only one model name specified in whizard.prc All model-dependent files reside in conf/models (modellib removed) 2004-03-03 Support for input/output in SUSY Les Houches Accord format Split event files if requested Support for overall time limit Support for CIRCE and CIRCE2 generator mode Support for reading beam events from file 2004-02-05 Fixed compiler problems with Intel Fortran 7.1 and 8.0 Support for catching signals ################################################################## 2003-08-06 RELEASE: version 1.27 User-defined PDF libraries as an alternative to the standard PDFLIB 2003-07-23 Revised phase space module: improved mappings for massless particles, equivalences of phase space channels are exploited Improved mapping for PDF (hadron colliders) Madgraph module: increased max number of color flows from 250 to 1000 ################################################################## 2003-06-23 RELEASE: version 1.26 CIRCE2 support Fixed problem with 'TC' integer kind [Intel compiler complained] 2003-05-28 Support for drawing histograms of grids Bug fixes for MSSM definitions ################################################################## 2003-05-22 RELEASE: version 1.25 Experimental MSSM support with ISAJET interface Improved capabilities of generating/analyzing weighted events Optional drawing phase space diagrams using FeynMF ################################################################## 2003-01-31 RELEASE: version 1.24 A few more fixes and workarounds (Intel and Lahey compiler) 2003-01-15 Fixes and workarounds needed for WHIZARD to run with Intel compiler Command-line option interface for the Lahey compiler Bug fix: problem with reading whizard.phs ################################################################## 2002-12-10 RELEASE: version 1.23 Command-line options (on some systems) Allow for initial particles in the event record, ordered: [beams, initials] - [remnants] - outgoing partons Support for PYTHIA 6.2: Les Houches external process interface String pythia_parameters can be up to 1000 characters long Select color flow states in (internal) analysis Bug fix in color flow content of raw event files Support for transversal polarization of fermion beams Cut codes: PHI now for absolute azimuthal angle, DPHI for distance 'Test' matrix elements optionally respect polarization User-defined code can be inserted for spectra, structure functions and fragmentation Time limits can be specified for adaptation and simulation User-defined file names and file directory Initial weights in input file no longer supported Bug fix in MadGraph (wave function counter could overflow) Bug fix: Gamelan (graphical analysis) was not built if noweb absent ################################################################## 2002-03-16 RELEASE: version 1.22 Allow for beam remnants in the event record 2002-03-01 Handling of aliases in whizard.prc fixed (aliases are whole tokens) 2002-02-28 Optimized phase space handling routines (total execution time reduced by 20-60%, depending on process) ################################################################## 2002-02-26 RELEASE: version 1.21 Fixed ISR formula (ISR was underestimated in previous versions). New version includes ISR in leading-log approximation up to third order. Parameter ISR_sqrts renamed to ISR_scale. ################################################################## 2002-02-19 RELEASE: version 1.20 New process-generating method 'test' (dummy matrix element) Compatibility with autoconf 2.50 and current O'Mega version 2002-02-05 Prevent integration channels from being dropped (optionally) New internal mapping for structure functions improves performance Old whizard.phx file deleted after recompiling (could cause trouble) 2002-01-24 Support for user-defined cuts and matrix element reweighting STDHEP output now written by write_events_format=20 (was 3) 2002-01-16 Improved structure function handling; small changes in user interface: new parameter structured_beams in &process_input parameter fixed_energy in &beam_input removed Support for multiple initial states Eta-phi (cone) cut possible (hadron collider applications) Fixed bug: Whizard library was not always recompiled when necessary Fixed bug: Default cuts were insufficient in some cases Fixed bug: Unusable phase space mappings generated in some cases 2001-12-06 Reorganized document source 2001-12-05 Preliminary CIRCE2 support (no functionality yet) 2001-11-27 Intel compiler support (does not yet work because of compiler bugs) New cut and analysis mode cos-theta* and related Fixed circular jetset_interface dependency warning Some broadcast routines removed (parallel support disabled anyway) Minor shifts in cleanup targets (Makefiles) Modified library search, check for pdflib8* 2001-08-06 Fixed bug: I/O unit number could be undefined when reading phase space Fixed bug: Unitialized variable could cause segfault when event generation was disabled Fixed bug: Undefined subroutine in CIRCE replacement module Enabled feature: TGCs in O'Mega (not yet CompHEP!) matrix elements (CompHEP model sm-GF #5, O'Mega model SM_ac) Fixed portability issue: Makefile did rely on PWD environment variable Fixed portability issue: PYTHIA library search ambiguity resolved 2001-08-01 Default whizard.prc and whizard.in depend on activated modules Fixed bug: TEX=latex was not properly enabled when making plots 2001-07-20 Fixed output settings in PERL script calls Cache enabled in various configure checks 2001-07-13 Support for multiple processes in a single WHIZARD run. The integrations are kept separate, but the generated events are mixed The whizard.evx format has changed (incompatible), including now the color flow information for PYTHIA fragmentation Output files are now process-specific, except for the event file Phase space file whizard.phs (if present) is used only as input, program-generated phase space is now in whizard.phx 2001-07-10 Bug fix: Undefined parameters in parameters_SM_ac.f90 removed 2001-07-04 Bug fix: Compiler options for the case OMEGA is disabled Small inconsistencies in whizard.out format fixed 2001-07-01 Workaround for missing PDFLIB dummy routines in PYTHIA library ################################################################## 2001-06-30 RELEASE: version 1.13 Default path /cern/pro/lib in configure script 2001-06-20 New fragmentation option: Interface for PYTHIA with full color flow information, beam remnants etc. 2001-06-18 Severe bug fixed in madgraph interface: 3-gluon coupling was missing Enabled color flow information in madgraph 2001-06-11 VAMP interface module rewritten Revised output format: Multiple VAMP iterations count as one WHIZARD iteration in integration passes 1 and 3 Improved message and error handling Bug fix in VAMP: handle exceptional cases in rebinning_weights 2001-05-31 new parameters for grid adaptation: accuracy_goal and efficiency_goal ################################################################## 2001-05-29 RELEASE: version 1.12 bug fixes (compilation problems): deleted/modified unused functions 2001-05-16 diagram selection improved and documented 2001-05-06 allow for disabling packages during configuration 2001-05-03 slight changes in whizard.out format; manual extended ################################################################## 2001-04-20 RELEASE: version 1.11 fixed some configuration and compilation problems (PDFLIB etc.) 2001-04-18 linked PDFLIB: support for quark/gluon structure functions 2001-04-05 parameter interface written by PERL script SM_ac model file: fixed error in continuation line 2001-03-13 O'Mega, O'Caml 3.01: incompatible changes O'Mega, src/trie.mli: add covariance annotation to T.t This breaks O'Caml 3.00, but is required for O'Caml 3.01. O'Mega, many instances: replace `sig include Module.T end' by `Module.T', since the bug is fixed in O'Caml 3.01 2001-02-28 O'Mega, src/model.mli: new field Model.vertices required for model functors, will retire Model.fuse2, Model.fuse3, Model.fusen soon. ################################################################## 2001-03-27 RELEASE: version 1.10 reorganized the modules as libraries linked PYTHIA: support for parton fragmentation 2000-12-14 fixed some configuration problems (if noweb etc. are absent) ################################################################## 2000-12-01 RELEASE of first public version: version 1.00beta